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CHARACTER SHEAVES ON DISCONNECTED GROUPS, 1V

G. LUSZTIG

ABSTRACT. We construct a basis for the space of invariant functions on the
rational points of a possibly disconnected reductive group over a finite field,
coming from intersection cohomology

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
IL9] which attempts to develop a theory of character sheaves on G.

Assume that k is an algebraic closure of a finite field F; and that G has a fixed
F ;-rational structure with Frobenius map F' : G — G. To any triple (L, S, £) (where
L is a Levi of a parabolic of GY, S is an isolated stratum of the normalizer of L,
with certain properties, and £ is an irreducible cuspidal local system on S) we have
associated in 5.6 a (not necessarily irreducible) intersection cohomology complex
Ron G If F(L) = L,F(S) = S and we are given an isomorphism F*& — &,
there is an induced isomorphism ¢ : F*R — K, hence the characteristic function
Xs,6 1 G — Qq is well defined.

The main result of this paper (Theorem 21.14) is that the functions xg 4 that
are not identically zero (for various (L, S, &) up to G°F'-conjugacy) form a Q;-basis
of the vector space V of functions G¥ — Q; that are constant on G°F'-conjugacy
classes. The proof uses several of the results developed in earlier sections (the
generalized Springer correspondence in §11, the generalized Green functions in §15,
the character formula in §16). It also uses the classification of cuspidal local systems
(this is needed in §17 which is a preliminary to the proof of Theorem 21.14).

A corollary of the main theorem is Theorem 21.21 which states that the char-
acteristic functions of admissible complexes A such that F*A = A form a basis
for V. In the connected case such a result was proved in [L3] V] subject to some
mild restrictions on the characteristic. The present proof has no restrictions on the
characteristic and it makes no use of the orthogonality formulas which will appear
in a later stage of the theory.

Another corollary of the main theorem is the construction in §22 of a “twisted
induction” map from certain functions on a subgroup of G to functions on G¥'.

Our paper contains also a new characterization of isolated elements (see Proposi-
tion 18.2) which is obvious in the connected case but less obvious in the disconnected
case.
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146 G. LUSZTIG

We adhere to the notation of [L9]. Here is some additional notation. If T is
a finite group with a given automorphism F : I' = T, the “F-twisted conjugacy
classes” of T" are the orbits of the '-action on I' given by y : w — F(y)wy~!.

We shall denote by o the map from G to the set of G°-conjugacy classes of
quasi-semisimple elements in G defined in 7.1 (where it is denoted by o).

For two elements a, b of a group we set a® = b~ 'ab.

Let p > 0 be the characteristic of k.

CONTENTS

17. Properties of cuspidal classes.

18. A property of isolated elements.

19. Properties of cuspidal local systems.
20. Twisted group algebras.

21. Bases.

22. Twisted induction of class functions.

17. PROPERTIES OF CUSPIDAL CLASSES

17.1. This section contains the proof of a key property (Proposition 17.13) of
“cuspidal conjugacy classes” (see below) which is needed in the proof of the main
results of §21.

17.2. A G%-conjugacy class in G is said to be isolated if one (or equivalently, any)
element of it is isolated in G, see 2.2. We show that
(a) if GV is semisimple and g € G is isolated then g has finite order.

We may assume that g, is quasi-semisimple in Z;(gs). Let H = Zg(gy). As in the
proof of Lemma 2.7, we see that H? is semisimple. By Lemma 2.5, g, is isolated
in H. Replacing G by H, we are reduced to the case where g is semisimple. In
this case we argue by induction on dim G. Assume first that dim Zg(g) < dim G.
Now Zg(g)? is semisimple and g is isolated in Zg(g). By the induction hypothesis
g has finite order. Assume next that dim Zg(g) = dim G that is, Zg(g)° = G°. We
can find an integer n > 1 such that g" € G°. Clearly, Zg(g)° C Zg(g™)°. Hence
Za(g™)? = GY. Thus, g" € Zqo0. Since Zqo is finite, we see that g™ has finite order.
This proves (a).

17.3. Let ¢ be an isolated G°-conjugacy class in G and let F be a local system
on c. Let [F] be the isomorphism class of F. We say that (¢, F) (or (c,[F]) or
F) is cuspidal if F is G%-equivariant and for any proper parabolic P of G° and
any Up-coset R in NgP we have H(c N R, F) = 0 where d is dim ¢ minus the
dimension of the P/Up-conjugacy class of R/Up in NqP/Up.
A GP-conjugacy class in G is said to be cuspidal if it is isolated and if it carries
some non-zero cuspidal local system.
Let ¢ be an isolated G°-conjugacy class in G and let F be a G°-equivariant local
system on c. Then
(a) (c,F) is cuspidal if and only if for some/any g € ¢, and some/any unipotent
Zc(gs)°-conjugacy class ¢ of Zg(gs) contained in {u € Zg(gs); u unipotent,
gsu € c}, the local system j*F on ¢ is cuspidal relative to Zg(gs) (here
jiec—ocisur— gsu).

The proof of (a) is identical to that of its special case 6.6.
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17.4. (a) Let g € G be quasi-semisimple. Then Zgo(9)/Zc(g)° is a diagonalizable
group.

(b) If in addition, G° is semisimple, simply connected, we have Zgo(g9) = Zg(g)°.
(b) is proved in [Stl 8.1]; in the closely related case of compact Lie groups, it goes
back to the earlier paper [B1), 3.4]. In the case where G is semisimple, (a) is proved
in [Stl, 9.1] using (b). For the general case see [DM], 1.6(i)], [DM] 1.24].

Lemma 17.5. Assume that G is such that G° is semisimple, simply connected.
Let s € G be semisimple and v € G be unipotent such that su = us and the G-
conjugacy class of su is cuspidal. Let z € Zgo. Let Z = Zg(s)?. Assume that
ge G g° =2g,g" =yg withy € Z°. Then y =y'"y' = for some y' € Z°.

The proof (carried out in 17.6-17.11) consists of a number of steps which reduce
us to the case where G is almost simple, simply connected, in which case we shall
use the classification of cuspidal conjugacy classes (which by 17.3(a) follows from
the results on the classification of unipotent cuspidal conjugacy classes given in §12
and [[2]).

17.6. In the setup of Lemma 17.5 assume that

(a) G is almost simple and G = G° x C,, (semidirect product, C,, a cyclic
group of order m > 1 with generator e) with group structure (a,e)(a’,e!’) =
(act(a’),et!) where a : GO — GO is an automorphism of order m > 1
preserving an épinglage and su is of the form (xz,e) for some x € G°.

If Zgo = {1}, then we must have z = 1 and we can take y’ = g. This handles the
following types of GU:

B,,C, (withm =1, p=2), D, (with m € {1,2},p=2),

Dy (with m =3,p=2),

Eg (with m € {1,2},p =3), E7 (with p = 2),

FEg, Fy (Wlth m e {1,2}), Gs.
If Z = GY, then we must have z = 1 and we can take ¢/ = ¢g. This handles the
following types of GU:

A, (with m =1), 4, (with m =2,p = 2),

Es (withm =1,p=2, Z=G°), E; (with p =3, Z = G").
Let ¢ (resp. cg) be the Z°-conjugacy class of u (resp. wuy) in Zg(s). Then
Ad(g) : Zg(s) = Zg(s) carries ¢1 to ca. Thus c1,cy are two cuspidal unipotent
Z-conjugacy classes in the same connected component of Zg(s). It is enough to
show that ¢; = ca. (Then uy = y'uy’~! for some y' € Z.) If there is only one
cuspidal unipotent Z-conjugacy class in uZ, then clearly ¢; = co. This handles the
following types of G:

A, (with m =2,p # 2), Cy,, Dy (with m = 3,p # 2),

Es (with m =1,p # 2,3), Eg (with m =1,p=2,Z # G),

Eg (with m = 2,p # 3),

E7 (Wlth P # 2, 3), E7 (Wlth p = 3,Z # GO)
The cases not covered by the arguments above are with Gy of type B,, or D,, with
m € {1,2} and p # 2. In each of these cases there are at most two cuspidal
unipotent Z-conjugacy classes in Zg(s) (they are automatically contained in Z).
Each of these classes is stable under any automorphism of Z; in particular, under
Ad(g). Hence these cases are settled. Thus, Lemma 17.5 holds in the present case.
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17.7. In the setup of Lemma 17.5 assume that
(a) G° is almost simple and G = G° x C,, (semidirect product, C, a cyclic

group of order n > 1 with generator e) with group structure (a,et)(a’, et') =

(act(a’), ettt where o : GO — G° is an automorphism preserving an

épinglage such that o™ =1 and su is of the form (x,e) for some x € G°.
Let m be the order of a. Thus, n/m € Z. Let G = G° x C,, (semidirect prod-
uct, C,, a cyclic group of order m > 1 with generator e’) with group structure
(a,e'V)(a’,e'') = (act(a),e’t!). Let 7 : G — G, (g,e!) — (g,e'"). Then
7 induces GO = G with kernel K = {1,e™,e?" ...}. From the definitions
we see that the G°-conjugacy class of 7(s)w(u) is cuspidal. Applying 17.6 to
G,7(s),n(u),m(g),7(2), m(y) instead of G, s,u,g,z,y, we see that there exists y’ €
GO such that sy’ = y'sk, uy = y'uy’ ~'k’ with k, k' € K. Applying the homomor-
phism p: G — Cy, (g,€") — e* we get

p(s)p(y') = p(y)p(s)p(k), p(u)p(y) = p(y")p(u)p(y) " p(K'),
p(u) " p(g)p(u) = p(y)p(g)-

Using the commutativity of C,, we deduce p(y) = 1,p(k’) = 1,p(k) = 1. Since
p: K — C, is injective it follows that kK = ¥’ = 1. Thus, Lemma 17.5 holds in the
present case.

17.8. In the setup of 17.5 assume that

(a) G is almost simple and G is generated by the connected component D that
contains su.

We can find d € D such that Ad(d) : G° — G° preserves an épinglage. Then d has
ordern < co. Let G = G°xC,, (semidirect product, C), a cyclic group of order n > 1
with generator e) with group structure (a,e!)(a’,e!’) = (aAd(d)!(a’), ™). Now
7:G — G,7(g,e') = gd" is a group homomorph1sm with kernel K = {(d',e™!);d" €
G°}; it induces an isomorphism G = GO. Let z € G be s.t. 7(x) = su, = of the
form (zg,e),z9 € G°. We have (g,1)zs(g71,1) = z5(z, 1)k, with k € K. Taking
images in G/G° we see that k goes to the neutral element hence k € G°. But
KNG° = {1} so that k = 1. We have (g, 1)x,(¢7 %, 1) = z,(y, )k’ with ¥’ € K. As
above we see that k' = 1. We have (y, 1)zs(y~1,1) = z.k” with k" € K. As above
we see that k&” = 1. From the definitions we see that the G°-conjugacy class of z
is cuspidal. Applying 17.7 to G, s, 2y, (g, 1), (y,1),(2,1) instead of G, s,u,g,y,z
we find y' € G° such that (y/,D)zs(y' "1, 1) = x4, (y,1) = 2,2y, Dau(y' "1, 1).
Applying m we get /sy’ ™! = s,y = u~'y'uy’~'. Thus Lemma 17.5 holds in the
present case.

17.9. In the setup of Lemma 17.5 assume that G has no closed connected nor-
mal subgroup other than G° and {1}. Assume also that p = 0. We have G° =
HjeZ /b H; where H; is connected, simply connected, almost simple, b > 1 and
sHyjs™' = Hjy1, u € G Set g = (g5),2 = (2),y = (yj),u = (u;) where
9j € Hj,zj € Zy;, y; € Hj,u; € H;. We have 9i11 = %Y g;” = Y;9;,
Yipn = Yy, Zf = 7, ujy; = uj. Let G’ be the subgroup of G generated by
Hy,s®. This is a closed subgroup with identity component Hy since s has finite
order (see 17.2; recall that su is isolated in G). We have g;° = yogo,g(ﬁb = Z4o,
where z = zlfb:ll ...220 € Zg,. We have yéb = yo. Also sPug = ugs®. We show
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that the Ho-conjugacy class of s’ is cuspidal. By 17.3(a), it is enough to show
that:

(i) the Zg,(s)%-conjugacy class of ug is cuspidal in Zg/(s°)°,

(ii) sPug is isolated in G'.
Since the G%-conjugacy class of su is cuspidal, we see from 17.3(a) that:

(iii) the Zg(s)°-conjugacy class of u is cuspidal in Zg(s),

(iv) su is isolated in G.
Now Zg(s)? = Zgo(s) (see 17.4(b)) consists of all (z;) where z; € H; satisfy
x5, = x;. We may identify Zgo(s) = Zp,(s") and (i) follows. We prove (ii). From
(iv) we see that Z7_,(s) N Zgo(u) is finite. Hence f € Z,(s%) subject to fuo = f
has finitely many possible values. Hence (iv) holds.

Applying 17.8 to G’, s°, uo, go, yo, z instead of G, s,u,g,y, 2z we find § € Hy such
that §* =7, yo = §"§ ' Set y} = §° € H;. Clearly, ¥}, ,* = v/}, youh = 6™

Hence y;y; = yi"/. (We have

vivy = (oye)® " = (w")* " = (wp® )W = i)

Hence setting y' = (y;) we have y'* =/, y = y*y'~'. Thus Lemma 17.5 holds in
the present case.

17.10. In the setup of Lemma 17.5 assume that
(a) G has no closed connected normal subgroup other than G°,{1} and p > 1.

We have G° = Hiez/a’jez/b H;; where H;; is connected, simply connected, almost
simple, a > 1,b > 1 and uHiju’l = Hi1, sHijs’l = H; ;1. Let G’ be the
subgroup of G generated by Hgg, u®,s®. This is a closed subgroup with identity
component Hop since s has finite order (see 17.2; recall that su is isolated) and
u has finite order, power of p. Now a is a power of p and b is prime to p. Set
9 = (9ij),2 = (2i5),y = (yiz) where g;; € Hyj, zij € Zp,;, yij € Hij. We have

9i i1 = ZijYijs Gig1,; = Yij%ijs Yij+1 = Yijs
u
Fit1,j = Fij-
(The last equation follows from uz = zu: we have
29" =(9°)" = (9")° = (y9)* = yzg = 2yg = 29"

hence z* = z.) We have

985' =Yg00,Y = yZil,lo - ~yﬁoy0,0 € Hoo,
s° sb1 s
900 = 29005% = 20 p—1 - - - 20.170,0 € ZHop-
Since yf]b = y;; we have ysb = y. Also, s®u® = u%s®. We show that the Hgo-
conjugacy class of s®u® is cuspidal. By 17.3(a) it is enough to show that:
(i) the Zg,,(s%)°-conjugacy class of u® is cuspidal in Zg/(s%)?,
(ii) su® is isolated in G'.
Since the G%-conjugacy class of su is cuspidal, we see from 17.3(a) that:
(iii) the Zg(s)°-conjugacy class of u is cuspidal in Zg(s),
(iv) su is isolated in G.
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Now Zg(s)? = Zgo(s) (see 17.4(b)) consists of all (z;;) where x;; € H;; satisfy
7 j41 = @ij. For each i € Z/alet F; = [];c4,, Hij. Then

sFis™' = Fy, uFou™' = Fiyq, Zgo(s) = H Z,(s).
i€Z/a

By an argument in 12.5(e) applied to Zg(s), Zg(s)® = I, Zr (s),u instead of
G,G" =TI, Hi, u, we see that the Zp, (s)-conjugacy class of u® is cuspidal in the
subgroup generated by Zr,(s),u®. We may identify Zpg,(s) = Zm,,(s?) and (i)
follows. We prove (ii). From (iv) we see that Zz_,(s) N Zgo(u) is finite. Hence
if (f;) satisfies f; € Zzp,(s)s fit1 = [i, then f; has finitely many values. Hence
fo € Zz,,(s), subject to & = fo has finitely many values. Hence fo € Zg,,(s%)
subject to f&" = fo has finitely many values. Hence (ii) holds.

Applying 17.8 to G’, s°,u®, goo, y, z instead of G, s, u, g,y, 2 we find § € Hop such
that g]Sb =7, y=4“9". Set yi; € Hij by yo; = g* " for j € Z/b,

—1.—3J —i+l . —j —i—J —ig—J
! u S u S U S ~U S
Yi; = Yi—10 ---Y10 Yo,0

)

fori=1,...,a—1and j € Z/b. Clearly, y; ;. ,° = yi;. Moreover, yi;y;; = yi. ;"
for i =0,1,...,a — 2. The same holds for i = a — 1:

/ _ .57 uts™I w257 g metlgmi g matlg—d
Ya—1,Ya-1,5 = Ya—1,0%—-2,0 - -Y1,0 Yo,0
I T e O et e A e A B VRN )
=Yy Y =Y =Y = Yaj -

Hence setting ' = (y;;) € G we have y'* = ¢/,y = y*y'~'. Thus Lemma 17.5
holds in the present case.

17.11. We now prove Lemma 17.5 by induction on dim G. If dim G = 0, the result
is trivial. We now assume that dim G > 0. Assume first that G° = G x G5 where
G; # {1} are connected, simply connected, normal in G. Let G} = G/G2, G} =
G/G1,G' = Gy x GYy. Then G C G',G° = G’°. We have

§ = (51752),U = (ul,uQ)aZ = (ZlaZQ)mg = (91792)ay = (ylayQ)

where s; is semisimple in G}, u; is unipotent in G}, z; € Zg,, 9; € G4, yi € ngi(si)o.
We have s;u; = u;si, ;' = zigi, g;° = v:g;- Also the G;-conjugacy class of s;u; is
cuspidal. By the induction hypothesis, we can find y; € Z¢ (8:)° with y; = yiviy! =1,
Let v/ = (v},v5). Then v/ € Zgo(s), y = y'*y’~. Thus Lemma 17.5 holds in the
present case.

Next we assume that no decomposition G° = G; x G as above exists. Then the

result follows from 17.9, 17.10. The lemma is proved.

Lemma 17.12. Let s € G be semisimple and u € G be unipotent such that su = us
and the G°-conjugacy class of su is cuspidal. Assume that g € G°, ¢° = g, g% = yg
with y € Zg(s)?. Then y = y'"y' =1 for some y' € Zg(s)°.

Assume first that G° is semisimple and that

(a) there exists an element d in the connected component of G that contains su
such that Ad(d) : G° — G° preserves an épinglage and such that {d*;t €
Z} NGO ={1}.
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Using [Stl, 9.16] we can find a reductive group G with G semisimple, simply con-
nected and a surjective homomorphlsm of algebraic groups m : G — G such
that K = Kermr C Z5,. Pick § € G semisimple, & € G unipotent such that
7(3') = s,m(@) = u. Then @8 = §'uk with k € K. Now @k = § 14§ is unipo-
tent. Since % normalizes K (a diagonalizable group) it follows that @k = k'ak’ 1
for some k' € K. Set § = §'k’. Then § is semisimple (since § normalizes K,
a diagonalizable group) and 7(5) = s, 4§ = §u. Since 7(Su) = su we see that
the GO- conjugacy class of su is cuspidal. Let ¢’ € G° be such that w(g") = g.
Since Z = {x € G;3z € 25240} has identity component Zs(3)°, we see that
Z5(5)° — ZG( )¥ is surjective. Hence we can find § € Z5(3)° such that 7(9) = y.
We have 7(g’'%) = m(7g’) hence g% = k'fjg’ for some k' € I‘ Hence ¢'tg’ ~' = ak'f,
equality in Z. Hence @k’ is unipotent in Z/Z0 Since the image of ak’ in Z/Z0
normalizes the image of K in Z/ZO, we see that there exists k; € K such that
uk! = klﬂkfl (equality in Z/ZO) hence @k’ = klﬂkflgjl (equality in Z) for some
U1 € Z5(3)°. Hence g'iig'~' = kyiky 91§ = k1ag”k; " for some §” € Z5(5)°. Set
Gg=Fk{'¢g. Then ge G° g% =74"g, 7(§) = g. We have n(§°) = n(j) hence §° = 2§
for some z € K. Applying Lemma 17.5 to G, 5, @ g,g z instead of G, s, u, g,y, z we
see that §” = ¢'%g'~! for some ¢’ € Z5(5)°. Let y' = 7r( "). Then (g’ ) = y’“y' L
y' € Za(s). Also, g* = 7(§")g, 9" = yg hence n(§") = y and y = y'*y’~*. Thus
the lemma holds in the present case.

Next assume that G is semisimple and G is generated by a connected component
D. We can find d € D such that Ad(d) : G — G° preserves an épinglage. Then d
has order n < co. Let G’ = G% x C,, (semidirect product, C,, a cyclic group of order
n > 1 with generator ) with group structure (a,e?)(a’,e!’) = (aAd(d)!(a’), e!+").
Now 7’ : G' — G,7n(g,e') = gd' is a group homomorphism with kernel K’ =
{(d*,e7t);d* € Zgo}; it induces an isomorphism G’° = G°. Then G’ is as in the
first part of the proof. Let z € G’ be such that 7’/(z) = su. From the definitions
we see that the G'’-conjugacy class of = is cuspidal. For any h € Zg(s) we have
(h,1)xs(h=1,1) = 24k with k € K’. Taking images in G’ /G’° we see that k goes to
1 hence k € GO NK' = {1} hence k = 1. Thus, (h,1) € Z¢g/(zs). It follows that for
any h € Zg(s)? we have (h,1) € Zg/(z5)°. In particular, (y,1) € Zg/(z5)". In the
same way we see that (g,1)zs(g7 1, 1) = x4, (g9,1)zu(g 1, 1) = 24(y,1) (compare
17.8). From the first part of the proof we see that there exists (y', 1) € Zg/(z5)° such
that (y,1) = a,; (v, Da.(y =1, 1). It follows that y' € Zg(s)?, vy = u= g uy’ 1.
Thus the lemma holds in the present case.

Next, assume that G is semisimple (but there is no assumption on G/G°). Let
G1 be the subgroup of G generated by the connected component that contains
su. By the earlier part of the proof, the lemma holds for Gi,s,u, g,y instead of
G, s,u,g,y. But then it automatically holds for G, s, u, g, y.

Finally, we consider the general case. Let 7 : G — G = G/Z%, be the obvious
homomorphism. Let 3 = n’(s), % = 7" (u). Then the G°-conjugacy class of 51 = u5
is cuspidal. Let g = 7”(g) € G°, 5 = 7" (y). Then g° = §,3% = 43, ¥ € Z5(5)°.
Since the lemma holds for G instead of G, we have § = 7%y’ ~! for some §’ € Z5(3)°.
Let Z = {z € Gyusz' € sZ20}. Then 7" induces a surjective homomorphism
Z — Z(5). Moreover, Z° = Z(s)? hence n” induces a surjective homomorphism
Zg(s)? — Z&(5)°. Hence we can find y; € Zg(s)? such that 7”(y}) = §'. We

have y = yi“yi_lz for some z € Z2,. Thus uy = yjuy;'z. Since uy = gug™' is
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unipotent, we see that yjuy] 'z is unipotent. Also, z = y|(u™'y} ~tu)y € Zg(s)®
(since y,y] € Za(s)?,u € Zg(s)) hence z € Zg(s)? N ZL,.

Assume first that p = 0. We set 4’ = y;. Then y'uy’~! being unipotent is in
G° hence it commutes with z. Since y/'uy’ 'z is unipotent, we have z = 1 and
y=1y'%y' "1, as required.

Next assume that p > 1. Then yjuy]~! has finite order and, being in Zg(s), it
normalizes H = Zg(s)° N Zgo. Hence, if H' is the subgroup of G generated by H
and yjuy; !, we see that H’ contains H as a normal subgroup of finite index, a
power of p. Since H is diagonalizable, it follows that any two unipotent elements
of H' in the same H-coset are H-conjugate. In particular, the unipotent elements
uy = yiuy) 1z, yjuy, =t of H' are H-conjugate. Hence uy = (yjuy;~1¢~! for some
¢ € H Wesety = (y;. Then y/ € Zg(s)? and uy = y'uy’~'. The lemma is
proved.

Proposition 17.13. Let c be a cuspidal GO-conjugacy class in G. Let s € G be the
semisimple part of some element of ¢ and let § be a connected component of Zg(s).
Then {u € Zg(s) unipotent ,u € §, su € c} is a single Zg(s)?-conjugacy class.

We must show that, if u,u’ € Zg(s) are unipotent, u’ € uZg(s)? and su €
c,su’ € c, then u,u’ are Zg(s)%-conjugate. We can find g € G° such that gsug™! =
su’. Then gsg~! = s,gug™! = u’ = uy where y € Zg(s)". Hence g° = g, g% = yg.
By Lemma 17.12 we can find 3’ € Zg(s)? such that y = u~'y/uy’~!. Then v’ =
y'uy’~!. The proposition is proved.

We now state a variant of the proposition above.

Proposition 17.14. Let S be an isolated stratum of G such that there exists some
non-zero cuspidal local system in S(S). Let s € S; and let § be a connected com-
ponent of Zg(s). Then {u € Zg(s) unipotent, u € 6,su € S} is a single Zg(s)°-
conjugacy class.

Let u,u’ be two unipotent elements of Zg(s) such that u € §,u’ € 6, su €
S,su € S. Let 7 : G - G = G/Zgo be the obvious homomorphism. Let
5=17"(s),u = 7"(u),u’ = 7"(u),c = 7"(S). Then c is a cuspidal G°-conjugacy
classin G, § is the semisimple part of some element of ¢, %, % are unipotent elements
in the same connected component of Z5(5), su € c¢,5u’ € c¢. By Proposition
17.13 there exists T € Zz(5)" such that @ = zuz~'. As in the proof of Lemma
17.12, 7" induces a surjective homomorphism Zg(s)® — Zz(5)°. Thus we can
find z € Zg(s)? such that n”(z) = . We have zuz™! = u'z where z € Z2,.
Replacing u by zuxr~! we can assume that u = u’z. Since u,u’ € Zg(s)?, we have
z € Zg(s)° N Z2,. We now argue as in the proof of Lemma 17.12.

Assume first that p = 0. Then «/ € G° hence it commutes with z which is
semisimple. It follows that u = v/, 2z = 1.

Assume next that p > 0. Then u’ has finite order and normalizes H = Zg(s)° N
Z2,. Hence, if H' is the subgroup of G generated by H and u', we see that H’
contains H as a subgroup of finite index, a power of p. Since H is diagonalizable, it
follows that any two unipotent elements of H' in the same H-coset are H-conjugate.
In particular, the unipotent elements u,u’ of H' are H-conjugate. Thus, they are
Z(s)%-conjugate. The proposition is proved.

18. A PROPERTY OF ISOLATED ELEMENTS

18.1. This section contains a characterization of isolated elements of G.
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Proposition 18.2. Let s € G be semisimple and v € G be unipotent such that
su = us. Then su is isolated in G if and only if s is isolated in G. Equivalently, we
have (27,50 NZa(w))° = (ZgoNZa(su))® if and only ifZgG(S)O = (ZgoNZg(s))°.

Clearly, if s is isolated in G, then su is isolated in G. The proof of the converse
is given in 18.3-18.12.
In 18.3-18.12, it is assumed that su is isolated in G.

18.3. In the setup of Proposition 18.2 assume that u € G°. (This condition is
automatically satisfied if p = 0.) By assumption, we have u € Zgo(s). The image
of u in Zgo(s)/Zg(s)? is semisimple (by 17.4(a)) and unipotent hence is 1. Thus,
u € Zg(s)’. It follows that (2740 N Za(u)” = 25,0 and (Z2go N Zg(su))’ =
(ZgoNZg(s))?. Hence the condition (27,50 NZa(w))? = (2go N Zg(su))? implies
that Z%G(S)O = (2o N Zg(s))°. Thus s is isolated in G.

18.4. In the setup of Proposition 18.2 assume that G is semisimple, that s € G°.
We show that s is isolated in G. We may assume that u is unipotent, quasi-
semisimple in Zg(s). Let Z = Z%G(S)O' Assume that Z # {1}. Let L = ZgoZ,
a Levi of a parabolic of GY. Since s € G°, we have Z? = Z. Since su is quasi-
semisimple, we can find a Borel B and a maximal torus T of B that are normalized
by su. Since s € G°, we have s € T. Hence T C Zg(s)® so that Z CT and T C L.
Let 3 = BN L, aBorel of L. Let IT C V = Hom(7,k*) ® Q be the set of simple
roots of G® with respect to T, B (in particular, the corresponding root subgroups
are contained in Ug). Let @ be the basis of V* = Hom(k*,T)® Q dual to II. There
is a unique subset @)1 of @ which is a basis for the subspace V;* = Hom(k*, Z)®Q of
V*. Since Z # {1} we have V;* # 0 hence Q1 # (). Now u normalizes Z¢(s)° hence
uZu~! = Z uLu~! = u,uBu~! = B. Hence the automorphism of V;* induced by
Ad(u) preserves @ and ()1 and the sum of elements in @7 is a non-zero Ad(u)-
invariant vector. Thus, Ad(u) : V}* — V;* has a non-zero fixed point set. It follows
that dim(Z N Zg(u)) > 0 contradicting the assumption that su is isolated in G.
We have proved that Z = {1}. Hence s is isolated in G.

18.5. In the setup of Proposition 18.2 assume that G° is semisimple, simply con-
nected and 17.6(a) holds. Since m in 17.6(a) is 1 or a prime number, we have three
cases:

(i) ue GO s¢ G and 1 <m #p;

(i) u¢ G, s € G® and 1 < m = p;

(iii) u € GY, s € GY and 1 = m.
In cases (ii),(iii) we have s € G° hence by the argument in 18.4 we see that s is
isolated in G. In cases (i),(iii) we have u € G° hence by the argument in 18.3 we
see that s is isolated in G.

18.6. In the setup of Proposition 18.2 assume that G° is semisimple, simply con-
nected and 17.7(a) holds. Let # : G — G be as in 17.7. Let 5 = n(s), @ = m(u).
One checks that 54 is isolated in G. Applying 18.5 to G, 5, @ instead of G, s, u we
see that Z%(;(E)O = {1}. Hence Z%G(S)O = {1}. Thus s is isolated in G.

18.7. In the setup of Proposition 18.2 assume that G° is semisimple, simply con-
nected and 17.8(a) holds. Let 7 : G — G,z € G be as in 17.8. One checks
that z is isolated in G. Applying 18.6 to G, s, 1, instead of G,z,s we see that
Zgé(g)o = {1}. Hence ch(s)o = {1}. Thus s is isolated in G.
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18.8. In the setup of Proposition 18.2 assume that G° is semisimple, simply con-
nected and 17.10(a) holds. Let a,b, H;;,G', F}, be as in 17.10. As in 17.10 we
see that sPu® is isolated in G’. Applying 18.7 to G, s’ u® instead of G, s,u we

see that ch/(sb)o = {1} that is ZgHoo(S”)O = {1}. Hence ZgFO( o = {1}. Now
0

uFFou™* = F}, and since us = su, Ad(u*) is an isomorphism Zp,(s)° = Zp, (s)
hence we have Z%Fk(s)o o~ Z%FO(S)O = {1}. Hence ch(s)o =1L Z%Fi(s)o = {1}.
Thus s is isolated in G.

S

18.9. In the setup of 18.2 assume that G° is semisimple, simply connected. We
show that s is isolated in G by induction on dimG. If dimG = 0 the result
is trivial. We now assume that dimG > 0. Assume first that G° = G; x Gs
where G; # {1} are connected, simply connected, normal in G. Let G}, s;, u; be
as in 17.11. Then s;u; = u;s; is isolated in Gj. By the induction hypothesis we

have ch_(si)o = {1} for i = 1,2. Now Zg(s)? = Zg,(51)° x Zg,(s2)° hence
ch(s)o = Z%G (s1)0 % Z%c2(32)0 = {1}. Thus s is isolated in G.

Next we assume that no decomposition G® = G x G as above exists. If p > 1,
then 18.8 shows that s is isolated in G. If p = 0 then 18.3 shows that s is isolated
in G. This completes the inductive proof.

18.10. In the setup of 18.2 assume that GO is semisimple and that 17.12(a) holds.
Let m : G — G,s,u be as in 17.12. We show that su is isolated in G. Let
T € (Z%é(g)o N Za(@)°. Then w(x) € ch(s)o N Zg(u). Indeed, the map 7 :
Z&(3)° — Zg(s)? is a surjective, finite covering of connected reductive groups
hence it restricts to a surjective map

(*) Z%é(g)o - ch(s)0~

We see that 7(z) € (ch(s)o N Za(u))?. Hence m(z) € (22 N Zg(u))? and w(z) =
1. Hence x € Kerm, a finite group. It follows that x = 1 and 5@ is isolated in
G. Applying 18.9 to G, 3,4 instead of G,s,u, we see that Zgé(g)o = {1}. Let
y € (ZZG(S)o)O. By the surjectivity of (x) we have y = 7(y’) where y' € Z%é(g)o.
Hence y’ = 1 and y = 1. We see that (Zz,(50)° = {1}. Thus s is isolated in G.

Next we assume, in the setup of 18.2 that G is semisimple and G/GY is cyclic.
Let 7' : G — G,z be as in 17.12. Then z is isolated in G’. By the argument above
applied to G’ instead of G we see that x is isolated in G’. It follows immediately
that s is isolated in G.

18.11. In the setup of 18.2 assume that G is semisimple. Let G be the subgroup
of G generated by the connected component that contains su. Clearly, su is isolated
in G;. Applying 18.10 to G1, s, u instead of G, s, u we see that s is isolated in Gj.
Hence s is isolated in G.

18.12. In the setup of 18.2 let ' : G — G,5,u be as in 17.12. Then the G°-
conjugacy class of 54 = @5 is isolated in G. Applying 18.11 to G, 5, @ instead of
G, s,u we see that 3 is isolated in G. Using now 2.3(a) we see that s is isolated in
G. Proposition 18.2 is proved.
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19. PROPERTIES OF CUSPIDAL LOCAL SYSTEMS

19.1. Let s € G be semisimple and let ¢ be a unipotent Z¢(s)°-conjugacy class in
Za(s). Assume that the unique G°-conjugacy class c that contains sc is isolated in
G. Let G1 = {g € Zgo(s);gcg™! = ¢} (a subgroup of Zgo(s) containing Zg(s)?).
Let € be the variety of orbits for the Zg(s)%action 2 : (y,u) — (yz—1, zuz=!) on
G° x ¢. Then (y,u) — ysuy~ ' is a finite principal covering 7 : € — ¢ with group
G1/Za(s)°. Let § be a cuspidal local system on ¢. Let f be the local system on &
whose inverse image under G° x ¢ — ¢ is Q; X . We show that
(a) mf is a cuspidal local system on c.

Since mf is clearly a G-equivariant local system, it is enough to show that the
local system j*mf on ¢ is cuspidal relative to Zc(s) (here j : ¢ — cis u — su);
see 17.3(a). From the definitions we see that j*mf = ®,, Ad(g1)"f where g1 runs

over a set of representatives for the Zg(s)%-cosets in G;. Clearly, each Ad(g1)*f is
a cuspidal local system on ¢ and (a) follows.

19.2. Let u € G be unipotent, quasi-semisimple. Then Zgo(u) is connected.
(See [DM] 1.28].)

19.3. Let P be a parabolic of G° and let € NgP,v € Up,x’ = xv. We show that

(a) there exists v' € Up such that z!, = v'zsv' ™1, 2!, = v'z,v' ™! mod Zg(z))°.
By 1.4(a) we can find Levi subgroups L.L’ of P such that x4 € NgL, z!, € NgL'.
Applying the canonical projection p : Ng P — NgP/Up to zsx,v = xx,, we obtain
p(xs)p(zy) = plal)p(x),). Using the uniqueness of the Jordan decomposition in
NgP/Up we get p(zs) = p(z),). We can find v' € Up such that L’ = v'Lv'~!. Then
v'zsv' L o are elements of NgL' N NgP with the same image under p hence, by

1.26(a), we have v'zsv'~! = 2/, We must show that x, v/ "2/ v € Zg(zs)°. We

u
/n—1,7—1 —1,/—1,.7 .,/ —-1,.—1,/—1

! _ ! :
have 2!, = v’z '~ togx,v hence z; ' "ol v' = e ' " lagx, 00’ € Up since
r = z52y € Ng(Up). Since ;v ~tzlv' € Zg(xs), we see that x, v/ "1zl v €

Za(zs) NUp C Zg(z5)° (we use 1.11).

19.4. Let C be an isolated stratum of G and let £ € S(C'). We show that conditions
(i),(il) below are equivalent.

(i) € is a cuspidal local system on C;

(ii) for any G°-conjugacy class ¢ in C, | is a cuspidal local system on c.
Let P be a parabolic of G° with P # GY and let R be a Up-coset in NgP. By
19.3(a), the semisimple part of any element of R is contained in a fixed G°-conjugacy
class. Hence R is contained in a union of finitely many G°-conjugacy classes. Hence
CNR is contained in a union of finitely many G°-conjugacy classes in C'; this union is
necessarily disjoint (as a variety), by the definition of C. Thus, CNR = | |I_, (¢;NR)
where c; are G%-conjugacy classes in C. Let d be the dimension of any G°-conjugacy
class in C minus the dimension of the P/Up-conjugacy class of R/Up in NgP/Up.
If (ii) holds, then HI(C N R,E) = @;_, Hi(c; N R,E|e;) = 0 hence (i) holds.
Conversely, assume that (i) holds and c is a G%-conjugacy class in C. We must
show that HY(cN R, E&|c) = 0 for R as above. We may assume that ¢ R # ) hence
¢ = ¢; for some i. We have 0 = HI(C N R, &) = @;_, Hi(c; N R, &|c,) hence each
Hi(c; N R,&|c,) is 0. In particular, HY(c N R, £|c) = 0, as desired.

19.5. Let C be an isolated stratum of G. Let ¢ be a G°-conjugacy class in C. Let F
be a G%-equivariant cuspidal local system on c. Let D be the connected component
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of G that contains C and let T' = DZgO. Let £ € S(T'). Define 7 : T x ¢ — C by
m(z,¢) = zc. We show that

(a) m(LRF) € S(C) is a cuspidal local system.
Let I' be the set of all z € T such that zc = c (a finite group; see 1.23(a).) Then 7
is a finite principal covering with group I'. Hence m(£LX F) is a local system on C.
It is immediate that m (L X F) € S(C). We show that it is cuspidal. Let P be a
parabolic of GV with P # G° and let R be a Up-coset in NgP. Let d be dim ¢ minus
the dimension of the P/Up-conjugacy class of R/Up in NgP/Up. We must show
that HY(C N R, m(L X F)) = 0 or equivalently that H(z~1(C N R), LR F) =
Now 77 Y(C N R) = {(z,¢) € T x ¢c;zc € R}. By 19.3(a), the semisimple part of
any element of R is contained in a fixed G°-conjugacy class. Hence for (z,c) €
7~ Y(CNR), (2¢)s is contained in a fixed semisimple GY-conjugacy class hence zc is
contained in a union of finitely many G°-conjugacy classes, hence z can take only
finitely many values. Thus there exist z1, z2,..., 2y, in T X ¢ such that

YCNR)= |_|{zz, J;e € cnz 'Ry,

HY(x Y (CNR),LRF) = @E ® Hl(cnz 'R, F) =0.
This proves (a).

19.6. Let H be a connected algebraic group acting transitively on the variety X.
Assume that we are given F,-rational structures on H, X compatible with the
action. Let FF: H — H, F : X — X be the Frobenius maps. Let T be a set
of representatives for the isomorphism classes of irreducible H-equivariant local
systems F on X such that F*F = F. For any F € T we choose ¢ : F*F = F.
Then x4 : XI' — Q is a function constant on the orbits of H, independent of
the choice of ¢, up to a non-zero scalar.

Lemma 19.7. (xr.4)recr is a Q;-basis of the vector space of functions X¥ — Q,
that are constant on the orbits of HT .

A special case of this (when H is reductive and X is a unipotent conjugacy class
in H) is proved in [L3l V, §24, p. 140]. A similar proof works in the general case.
We can find # € X¥. Let H, = {h € H;hx = z}. Associating to F € T the
stalk F, (an irreducible H,-module, by the equivariance of F, on which H, acts
through its finite quotient I' = H,/H?) gives a bijection between YT and a set Y’
of representatives for the isomorphism classes of irreducible Q;[T']-modules V' such
that there exists an isomorphism ¢y : V — V with tyy = F~1(y)ty : V — V for
all v € I'. (For V = F, we may take ¢ty to be the isomorphism F,, — F, induced
by ¢.) Now F' acts naturally on I' and, according to [SS], 2.7],

(a) Hy — HE\XY, 2 — HY — orbit of hx where h € H,h 'F(h) = 271
induces a bijection between the set of F-twisted conjugacy classes in I' and the set
HI\XT of HF -orbits on XT. B

Via this bijection, giving a function X — Q; that is constant on H-orbits

is the same as giving a function I' — Q; that is constant on F -twisted conjugacy
classesin I'. If 7 € T and V = F,, then the function xr 4 : X¥ — Q corresponds
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to the function

v o te(Fre T F 8 F R F) = (s

= tr(['V'Ya V)

where h € H is such that h='F(h) € H, has image v~ ! in I'. (We use the fact
that, for any h' € H,y € X, the compositions

-1
NN A A

Frw & Fy ™5 Firyy Frgy o Fronpa 2 Fuy
coincide.) It is then enough to show that the functions v — tr(cyy, V) (for various
V € Y') form a basis for the vector space of functions I' — Q; that are constant on
F-twisted conjugacy classes. This follows from a variant of the Schur orthogonality
relations. (It also follows from 20.4(f) applied to the group algebra E = Q;[I']; in
this case all elements of I" are effective, see 20.4.)

19.8. In the remainder of this section we assume that k is an algebraic closure of
a finite field F; and that G has a fixed F,-rational structure with Frobenius map
F:G—-G.

Let C be an isolated stratum of G such that F'(C) = C. Let T be a set of
representatives for the isomorphism classes of irreducible local systems & in S(C)
such that F*£ = &; for each £ € T we choose an isomorphism ¢ : F*€ = £. We
show that

(a) the functions xe,4 where & € I form a basis of the vector space of functions
CF — Qq that are constant on the G°F -conjugacy classes in CT.

Let D be the connected component of G that contains C. Since 7 is a finite set,
we can find n € Ny such that

(x) E€T = €€ 8,(0), (see 5.2),

(#%) 2z € P20, F(z) =2 = 2" =1.
Applying Lemma 19.7 to the transitive action 5.2(a) (with n as above) of H =
DZgO x G% on C, we see that the functions ¢ », where € runs over the elements of
7 that belong to S,,(C) (or equivalently, £ runs over Z, see (x)) form a basis of the
vector space of functions C* — Q; that are constant on the H-orbits in C¥'. By
(%%), the HT-orbits on CF are the same as the G°F-conjugacy classes in C¥'. This
proves (a).

19.9. For any isolated stratum C (resp. isolated G-conjugacy class ¢) in G such
that F(C) = C (resp. F(c) = c) let Cqo(C) (resp. Cgo(c)) be the subspace of
the vector space of functions CF — Q; (resp. ¢ — Q) spanned by the functions
XF, where F runs through a set of representatives for the isomorphism classes
of irreducible cuspidal local systems on C' (resp. on c¢) such that F*F = F and
€: F*F = Fis afixed isomorphism. Clearly, the subspace Cgo(C) (resp. Cqo(c)) is
independent of choices. From 19.8(a) (resp. Lemma 19.7) we see that the functions
Xr,e (as above) form a basis of Cqo(C) (resp. Cgo(c)): they are part of a basis of
the vector space of all functions CF — Q; (resp. ¢/ — Q;) that are constant on
G°F-conjugacy classes. From the definitions we see that:

(a) if F is a (not necessarily irreducible) cuspidal local system on C' (resp. c)
and € : F*F — F is an isomorphism then xr . belongs to Cqo(C) (resp.

Cen(C)).



158 G. LUSZTIG

19.10. Let C be an isolated stratum of G such that F(C) = C. For any G°-
conjugacy class ¢ in C such that F(c) =c¢, f — f|c.r defines a linear map

(a) Cgo (C) — CGO (C)
(To see that this map is well defined, it is enough to show that, if F is a cuspidal
local system on C' and ¢ : F*F — F is an isomorphism, then xr c|.r € Cgo(c).
This follows from 19.4.) We now take the direct sum of the maps (a) where ¢ runs
over the F-stable G%-conjugacy classes in C. We show that

(b) the resulting linear map Cqo(C) — @, Cqo(c) is an isomorphism.

It is obvious that this map is injective. To show that it is surjective it is enough to
verify the following statement:

for any F-stable GO-conjugacy class ¢ in C, any cuspidal local system F
on ¢ and any isomorphism F*F — F, there exists f € Cqo(C) such that
fler = xF.c and f|er = 0 for any F-stable G°-conjugacy class ¢’ in C with
c #ec.
Let D be the connected component of G that contains C. Let T = DZgO. Let J
be a set of representatives for the isomorphism classes of local systems L of rank
1 in S(T) such that F*L = L. For each £ € J there is a unique isomorphism
¢r : F*L — L which induces the identity map on the stalk of £ at 1. Then
0z = Xc,6. is a character ¥ — Qj and £ — 6 is a bijection J — Hom(T*', Q7).
Define 7 : T x ¢ — C by 7w(z,¢) = zc. For any £ € J, m(L K F) is naturally
isomorphic with its inverse image under F (using ¢z Me); let X, (zmr)2 : CF — Qu
be the corresponding characteristic function. From 19.5(a) we see that x,cxz)? €
Co(C). From the definitions we have

X (£RF),2(T) = > Oc(2)xF,e(c)

2€TF ceclize=x

for z € CF. Let f = Y oreg Xm(crF),? € Cao(C). For x € CF we have

flz) = > D 0c(z)xF(c) = > 7702 1x 7 e(c)-

2€TF cecFize=x LET 2€TF cecFze=x

Thus f(z) = |TF|xr.(z) if x € ¢! and f(z) = 0 if x € CF — ¢, This completes
the proof of (b).

19.11. If E is the set of unipotent quasi-semisimple elements in some F'-stable
connected component of G that contains unipotent elements then ET is a single
G F -conjugacy class.

This follows from the fact that E is a homogeneous G°-space (see 1.9(a)) defined
over F, in which the isotropy group of any point is connected (see 19.2).

19.12. Let ¢ be a cuspidal G%-conjugacy class in G. Let co = og(x) for any z € c;
this is the set of all quasi-semisimple elements g € G such that for some = € ¢ we
have 25 = gs, Tu € Zc(95)°gu. Let Z be the set of all pairs (s,c) where s € G
is semisimple and ¢ is a connected component of Zs(s) such that there exists a
unipotent element u € Zg(s) with su € ¢,u € c. We have a diagram

a b
c— Z <+ Cq
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where a(z) = (v5, Zg(75)°24),b(g) = (95, Z6(95)°gu). Now GO acts transitively on
¢, Z,ce compatibly with a,b. For any y € G let

HGO (y) = {h € GO; hysh71 = Ys; hyuhil € ZG(ys)Oyu}a
a closed subgroup of Zgo(ys) containing Zg (ys)°.

(a) Let x € ¢c,g € co be such that a(z) = b(g). Let H = Hgo(xz) = Hgo(g)
(the stabilizer of a(z) = b(g) in G°). The map Zgo(x)/Zgo(x)? — H/H°
induced by a is surjective and the map Zgo(g)/Zqo(9)? — H/H® induced
by b is an isomorphism.

We have a(z) = b(g) = (zs, Zc(2s)°24) = (95, Zc(9s)°gu). Let h € H. Then
x, heh~! are elements of ¢ with the same semisimple part , and their unipotent
parts are contained in the same connected component of Zg(z,). By Proposition
17.13, there exists z € Zg(xs)? such that hz,h~! = 22,271, Thus, h = zh; where
hy € Zgo(x). We see that H = Zg(x5)°Zgo(z). This proves the first assertion of
(a).

If h € H, then g,,hg,h™! are unipotent quasi-semisimple elements of Zg(gs)
contained in the same connected component of Z¢(gs) hence, by Proposition 17.13,
there exists z € Zg(gs)? such that hg,h~t = 2g,2~%. Thus, h = zhy where h; €
Zgo(g). We see that H = Zg(gs)°Zgo(g). This shows that b induces a surjective
map Zgo(9)/Zaqo(g)° — H/H° and that the group of components of H is the same
as the group of components of Zeo (9)/(Zan(9) N Z6(95)°) = Zg0(9)/Z 76 (5.y0(54)
which (by the connectedness of Zz 4 y0(gu), see 19.2) is the same as the group of
components of Zgo(g). Thus, the surjective map Zgo(g)/Zao(g9)? = H/H® must
be an isomorphism. This proves (a).

19.13. In the setup of 19.12, let £ be an irreducible G°-equivariant local system
on Z. Since H/H® = Zg0(9)/Zco(9)° (see 19.12(a)) is commutative (see 17.4(a)),

L has rank 1. Let £ = a*L, a local system of rank 1 on c. We show that

(a) if F is a cuspidal local system on c, then F ® L is a cuspidal local system
on c.

Let P be a parabolic of G® with P # G° and let € cNNgP. Let d be dim ¢ minus
the dimension of the P/Up-conjugacy class of zUp in NgP/Up. We must show
that H%(c N zUp, F @ L) = 0. By our assumption we have H%(c N 2Up, F) = 0.
Hence it is enough to show that E|cszp = Ql. Since £ = a*L, it is enough to
show that there exists a subvariety V' of Z such that
(b) a(cnaUp) CV, L|y = Q..

Let V be the Up-orbit of a(z) in Z (for the restriction of the G%action to Up).
For this V the first assertion of (b) holds by 19.3(a). We now show that for this V/,
the second assertion of (b) holds. It is enough to note that L[|y is a Up-equivariant
local system of rank 1 on the homogeneous Up-space V' in which the isotropy group
of a(x), that is, Up N Zg(xs) is connected (we use that zs normalizes Up, see 1.11).
Thus (b), hence also (a), are proved.

19.14. We now assume that F'(c) = c. Then Z and c are defined over F,; and we
denote again by F' the corresponding Frobenius maps.
(a) The map ag : ZF — ' (restriction of a : Z — c) is surjective; the map
bo : ZF — ¢t (restriction of b: Z — ¢, ) induces a bijection on the sets of
G F -orbits.
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This follows immediately from 19.12(a) and 19.7(a). We have a partition ¢ = | |v

where 7 runs over the G -orbits on c¢’. For any v we set Zf = bal(’y),ci =
ao(ZX). From (a) we see that ZF = L, Z*¥ is the partition of ZF into GF-orbits

and that ¢ = |_|7 cf;7 is a partition of cf" into non-empty GOF'-stable subsets.

Let f € Cgo(c) and let v be a G -orbit on cl’. Define f, : " — Q; by
(@) =1ifyech, fy(x) =0if y € &' — cf. We show that

(b) Iy f € Ceo(c).
We may assume that f = xr . where F is a cuspidal local system on ¢ and € :
F*F =5 Fis an isomorphism. Define fv : ZF — Qi by fv(z) =1lifz € Zf, f;(z) =
0if z € ZF — Zf. By Lemma 19.7 applied to the homogeneous G°-space Z, there
exist irreducible G°-equivariant local systems £, (i € [1,m] on Z and isomorphisms

e’ : F*L" = L' such that f, = D ic(1,m] CiXci et Where ¢; € Q. Each £’ has rank

1. Composing with ag : ¢ — ZF we obtain f,o0a9 =, 1, m] CiXLiei © 0, that

is f, = Zie[l,m] CiXji g Where LP = a*L! and & : F*L! = L' is induced by e’.

Hence
f”/f = Z CiXjigiXF,e = Z CiXFQLie@di-
i€[1,m] i€[1,m]
Using 19.13(a), we see that this belongs to Cgo(c). This proves (b).

For any G%F-orbit  on cf” we set

Cao (€)= {f €Caolc); f=0o0nc" — c?}
From (b) we see that

() Coole) = P Coo 5 ().

19.15. We now fix g € cf’. We set s = g,. Let
¢ = {u € Zg(5)°gy; u unipotent, su € c}.

From the definitions we see that ¢ # () and from 17.13 we see that ¢ is a single
(unipotent) Zg(s)%-conjugacy class in Zg(s). We have F(c) = ¢ and ¢ carries some
non-zero cuspidal local system (see 17.3(a)). Define Cz (50 (c) in terms of Zg(s), ¢
in the same way as Cgo(c) was defined in terms of G,c. For any f € Cgo(c) we
define f : ¢ — Q; by f(u) = f(su). We claim that

f S CZG(S)O (C)

We may assume that f = xr . where F is a cuspidal local system on ¢ and € :
F*F = F is an isomorphism. Let F' = j*F where j : ¢ — c,u ~— su and let
€ : F*F' = F' be the isomorphism induced by e. By 17.3(a), F' is a cuspidal local
system on ¢ and by 19.9(a) applied to ¢ instead of ¢ we see that x 7/« € Cz(5)0(c).
Clearly, x# . = f and our claim is verified.

From 17.13 it follows that ¢ is stable under conjugation by Hgo(g)F. Tt is clear
that for f, f as above, f is constant on any Hgo(g)"-conjugacy class in ¢. Thus
we have a well-defined linear map

(a) Cao(c) = Cro(g)(c), [ — [

where Cpr_,(g)(c) is the space of functions in Cz,(s)o(c) that are constant on any

Heo(g)F-conjugacy class in cf'.
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We show that the map (a) is surjective. Now Cp_, (4)(c) is spanned by functions
f:ef — Qq of the form

) =1Za° ™ D Xl uy)

yEHGO (Q)F

where f is a cuspidal local system on ¢ and € : F*f = § is an isomorphism. It is
enough to show that any such f’ is in the image of the map (a). Let 7 : ¢ — c,f be
asin 19.1. Now € induces an isomorphism € : F*mf — mf Let f = Xmf,e - cf - Q.
Since 7 f is a cuspidal local system on ¢ (see 19.1(a)) we see that f € Cgo(c). From
the definitions we have

Flu) = f(su) = |Za(s)"F| ! > Xp.e(u)

yeGOF /' ecFiysu/y—1=su

1

for u € ¢f". For each y,u’ in the sum we have y € Zgo(s)¥ and yu'y~' = u hence

y € Hgo(g)F,u' = y~uy; hence

Fw)=1Za()°F 17" >0 Xpely  uy).

yeHgo(9)F

We see that f = f’. Thus the surjectivity of the map (a) is established.

Next we note that, if 7/ is a G°F-orbit on ¢’ that does not contain g, then
the restriction of the map (a) to Cgo /(c) is 0. Using this and the direct sum
decomposition 19.14(c) we deduce that, if v is the G°F-orbit on ¢l that contains
g, then (a) restricts to a surjective linear map

(b) Cao~(€) = Chy(g)(©).

We show that this map is injective. Let f, ' € Cgo (c) be such that f(su) = f'(su)
for any u € ¢, Since c5 = {ysuy Yy € GF u € '} and f, f’ are constant on
G°F-conjugacy classes it follows that f = f’ on cfj. Since f, f' are 0 on cf' — c5 it
follows that f = f’, as desired. We see that

(c) the map (b) is an isomorphism.

20. TWISTED GROUP ALGEBRAS

20.1. Let I be a finite group. Let E be a finite dimensional Q;-vector space with a
direct sum decomposition E = @, . E,, with dimE,, = 1 for all w. Assume that
on E we are given an associative algebra structure with 1 such that E,E,; = E,
for any w,y € I'. Then 1 € E; —{0}. We choose a basis {b,,; w € I'} of E such that
by € E,, for all w. Each b, is invertible. We have b,b, = )\(w,y)bwy,b;lbal =
AMw,y) " by with Aw,y) € Q; for any w,y € I'. We show that
(a) the algebra E is semisimple.

Let M be a finite dimensional E-module and let M’ be an E-submodule of M.
We must show that there exists an E-submodule of M complementary to M’. Let
7 : M — M’ be a Q-linear map such that 7w(m') = m’ for all m’ € M’. Define a
Q-linear map 7 : M — M’ by @(m) = [T|7' 3, cp by'm(bwm). For m' € M’ we

have 7(m’) = [L|71 Y cp by 'bwm’ = m’. We show that 7 is E-linear. It is enough
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to show that b, '7(bym) = 7(m) for m € M, y € T. We have
Db, 7 (bym) = b, * Zb 7(buwbym) Zb‘lb_lw()\(w,y)bwym)

= Z)\ w,y _1b;y7r()\(w Y)buwym) wayﬂ' wym) = |T|7(m),

as desired. Now Ker7 is an E-submodule of M complementary to M’. This proves
(a).
20.2. Let V, V' be two simple E-modules. Let ¢t : V — V,t/ : V! — V' be Q;-linear
maps. Let N = [T|71 Y tr(bwt, V)tr(t'b,', V’). We show that
(a) N =04 V,V' are not isomorphic E-modules and N = tr(¢t',V)/dim V if
V=V

In the case where A(w,y) = 1 for all w,y this is just Schur’s orthogonality
formula. The proof in the general case is similar. Let (e;);er be a basis of V' and
let (e},)ner be a basis of V/. For w € T' we define %, By, € Qu by bw(ei) =
del ajses, bl(e)) = > oker Biner Define &, (e € Qi by t(e;) = Zjejfijejv
t'(e},) = > ner Cnrey- We have
(b) N=T71 )0 > &aknmnb.

weT 4,5,k,h

For a Q;-linear map f : V — V' we define f : V — V' by f(v) = > wer bt f(bwv).

As in the proof of 20.1(a) we see that f is E-linear. For i € I, h € I’ define a linear
map f:V — V' by f(e;) = d;;e), for all j. We have

= 2 b e = 301 ee) = D bu" D aldiel
J w J
= Zauz w eh - Z auzﬂhkek

If V,V' are not isomorphic E-modules, then, by Schur’s lemma, we have f =0
hence ) a;B, = 0 for any u,i,h,k and N = 0 as desired. Assume now that
V =V’. We may assume that I =I', e; = e}. If f, f are as above then, by Schur’s
lemma, f is a multiple of 1. Since tr(f, V) = [[[tr(f,V) = |T|tr(f, V) = &[], we
have f = §;;|T'|n~'1 where n = dim V. Hence D ow B = Sinbur|T|n~1 for any
u, 1, h, k and
N= > &idudimlun " =Y &;¢in~ " =tr(tt',V)n ™!
ik, h ij
as desired.

20.3. Since E is semisimple, we have an algebra isomorphism
(a) E — @;_, End(V)),
e — (ff) where ff : V; — V; takes v to ev; here V;, (i € [1,7]) is a set of represen-
tatives for the isomorphism classes of simple E-modules.
Let ¢ : E — E be an algebra automorphism. We may assume that for i € [1,7]
the following property holds:
(%) there exists a Q;-linear isomorphism 1; : V; — V; such that 1;(ev) = 1(e)u;(v)
forallee E,o eV
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and that for ¢ > r this property does not hold. We choose for each i € [1,7] an
isomorphism ¢; : V; — V; as above (it is unique up to a non-zero scalar). We show
that, for any w,w’ in T,

(b) S, tr(byei, Vi)tr(e; 1o}, Vi) is equal to the trace of the linear map k :

E—>E e b} _1( )by -
Let 7 : @1 1 End(V}) — @1 1 End(V;) be the linear map which corresponds to
k : E — E under the isomorphism (a). For i € [1,r], 7 restricts to a linear map
7; + End(V;) — End(V;), while for ¢ > r, 7 maps the summand End(V;) to a
different summand. Hence tr(x,E) = >_, tr(7;, End(V;)). For i € [1,k], ; takes
f € End(V;) to v byle; H(f(2i(byv))) hence
tr(r;, End(V;)) = tr(b, i_l,Vi)tr(Libw, Vi);

U}/L

(b) follows.

20.4. We now assume that ¢ : E — E in 20.3 satisfies +(Ey,) = Ep-1(y,) for all w,

where F: T' — T is a group isomorphism. For z € T, let T, = {y € I'; F(y)ry ! =

z}; we define v, : T'y — QF by 71 (by)by = 72 (y)bsby. We show that v, is a group
homomorphism. Let z,2" € T';. We have b,b,» = ub,,» with u € Q. We have
U (b )by = um T (b0 )by = w T (b2 )0 (2) Db
= u_l'Yz(zl)L_l(bZ)bzbZ’ = u_l'yx(z/)'yx(z)bzbzb?«*’ = 'Yx(zl)%s (2)bgbsr
hence 7v,(22") = 72 (2" )72 (2), as desired.
An element x € T is said to be effective if 7, is identically 1. For x,y € I,z € T,
we have yzy~! € Lp)ey—1 and v2(2) = 'yp(y)my_l(yzy’l). It follows that the set

of effective elements in I' is a union of F-twisted conjugacy classes. We say that an
F-twisted conjugacy class in I is effective if some/any element of it is effective.

(a) If an F-twisted conjugacy class C is not effective, then for i € [1,r] and
x € C we have tr(1;b,,V;) = 0.

Indeed, we can find y € T'; such that v, (y) # 1. We have
tr(eibe, Vi) = tr(b Lyibs by, Vi) = v2(y)~ 1tlr(b L™ (b )bu, Vi)
= Y2 (y) " tr(uibs, V7).

Thus (1 — v (y) " )tr(ibe, Vi) = 0 and tr(e;b,, Vi) = 0 as claimed.

(b) If i,5 € [1,7], then z — tr(bei,Vi)tr(L;lb;l,Vj) is constant on any F-
twisted conjugacy class.

Indeed let y € T'. We have bp(y)zy—1 = CL_l(by)bxb;1 for some ¢ € Q}. Hence

/-\

tr(bp(y)s ‘““V) (Jle(ly)xy 15 V;)

(
tr(ce ™t (by)bs Lz,V)tl"( crhyby (b))
tr(e (by)batit 71(by)7 Vi)te(e 7t (by )y ot (by) T V)
tr(byei, Vi)tr(e; o V)

and (b) follows.

Let T be a set of representatives for the effective F-twisted conjugacy classes in

I'. We rewrite 20.2(a) for V =V, V' =V, t = ;,t' = L;l where 4, j € [1,7], taking
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into account (a),(b)

(c) Z T~ Mr(bai, Vi)tr(glb;l, V;) = 6ij.
zel
We rewrite 20.3(b) for w,w’ € T as follows

(d) > tr(buti, Vi)te(e; byt Vi) = Gy [Tl
=1

Indeed, it is enough to show that the trace of x in 20.3(b) is in our case dy |-
Now that trace is 3, e -1 5=y Cy Where ¢y € Q; is defined by b 171 (by )by =
cyby. If w' # w, the last sum is empty so its value is 0. If w’ = w, the last sum is
>_yer,, Yw(y) and this equals [I',| since 7, is identically 1.

(e) The matriz (tr(bsti, Vi))icp,r,oct S Square and invertible.
Indeed, from (c),(d) we see that this matrix has a left inverse and a right inverse.
The same argument shows that

(f) the matriz (tr(s; 'b; 1, Vi))icn,r,zer 8 square and invertible.
In particular,

(g) [T] =
21. BASES

21.1. If L is a Levi of a parabolic of G°, let N&L be the set of all g € NgL such
that for some parabolic P of G® with Levi L we have g € NgP. Then N&L is a
union of connected components of NgL.

Let 2 be the set of all pairs (L, ¢) where L is a Levi subgroup of some parabolic
of G® and ¢ is a unipotent cuspidal L-conjugacy class in N&L.

Let Gyn be the set of unipotent elements in G.

21.2. Let L be a Levi of a parabolic P of G° and let g € L = NgL N NgP. Then
(a) g is quasi-semisimple in G if and only if g is quasi-semisimple in L.
See [DM] 1.10].

21.3. For a fixed g € G, let R be the set of all L such that L is a Levi of a parabolic
of G% g € N&L and g is isolated in NgL; let R be the set of all L such that L is
a Levi of a parabolic of Zg(gs)° and g € N}G(gS)L. We show that

(a) L a(L) = LN Zg(gs)’, L — b(L) = Zgo((22 N Zg(g))°) define inverse

bijections R «— R'.
Let L € RR'. Set L = b(L). Then L is a Levi of a parabolic of G°. Clearly, g € NgL.
If x : k* — (29N Zg(g))° is general enough, then
Z 26090 (X(K")) = Zz4(9.0 (2L N Zc(9))° = L
(see 1.10) and
Zao(x (k")) = Zeo (21 N Zc(9))° = L.

Then L is a Levi of the parabolic P = P, (see 1.16). We have gx(t)g~! = x(t) for
all t € k*, hence gPg~! = P. Thus g € N&L. We have

LN Za(9s)° = Zao(x(k") N Za(95)° = Z (9.0 (X(K)) = L.

From L = Zg(gs)° N L we see that L = Z1,(gs)°. Hence Z%L(gs)o =29,

Tnar(9) = (22,400 N Zc(9))° = (21N Za(9))° C Z1.
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By 2.2(ii), we see that g is isolated in NgL. Hence L € R and b is well defined.

Conversely, let L € R. Set L = a(L). Let P be a parabolic of G° with Levi L
such that g € NoL N NgP. Let Q = PN Zg(gs)°. By 1.12, Q is a parabolic of
Zc(gs)? with Levi L. Clearly, g € Zg(gs) normalizes L and Q. Hence L € R’ and
a is well defined. Since g is isolated in NgL, we have (see 2.2(iii))

(22N Z6(9)° = Trer(9) = (25, (5.00 N Za(9))° = (22 N Za(9))°
hence (using 1.10)
L =Zeo((Z2LN Zc(9))") = Zeo (21 N Za(9))°) = b(L) = ba(L).

Thus, ba = 1. As we have seen above, for L € R’ we have ab(L) = L. This proves

(a).

21.4. In the remainder of this section we assume that k is an algebraic closure of
a finite field F, and that G has a fixed Fy-rational structure with Frobenius map
F:G—-G.

Let R be the set of all triples (g, L,c) where g € G¥' is quasi-semisimple, L is
a Levi of a parabolic of G°, F(L) = L, c is a cuspidal L-conjugacy class in NgL
such that F(c) =c¢, ¢ C N&L and g € on,1(c).

Let R’ be the set of all triples (g, L,c) where g € G is quasi-semisimple, L
is a Levi of a parabolic of Zg(gs)?, F(L) = L, and ¢ is a unipotent cuspidal L-
conjugacy class in Ny, )L such that F(c) = ¢, ¢ C gL, ¢ C N}, L (we have
automatically g € Nz, (4.)L). Define a: R — R’ by

() (9,L,¢) — (g,L,¢), L = a(L),c = {u € g, L;u unipotent,gsu € c}.
To see that (g, L, c¢) € R’ we note that ¢ is a single L-conjugacy class, by Proposition
17.13 applied to Ng L instead of G; also from 20.7(a) we have g € N gokse C gul,

gs
hence ¢ C N}G(QS)L.

Define b: R’ — R by

(b) (9, L,¢) = (9,L,c), L =0b(L),c = U;ep Lgscl ™.
To see that (g,L,c) € R we note that there exists z € ¢ with x5 = gs,24 €
Z1(95)%gy and that g is isolated in NgL, g € N&L (see 20.7(a)); it follows that
g € ongr(c) and that c is isolated in NgL, ¢ € N&L (we apply Lemma 2.5 with
N¢L instead of G to g and z as above).

From the definition we see that

(c) the maps (a),(b) are inverse bijections R < R'.

c(9gs)

21.5. Assume that (g9,L,c) € R, (g,L,c) € R correspond to each other under the
bijections 20.8(c). Let (g) = U,cpr lgl™". Let

G={y€ Zgo(gs)"syLy " = L,ycy ' = ¢},
G ={yeG yLy ' = Lycy ' = c,ylg)y ' = (9)}.

We show that

(a) ' =L"G.
Let y € G. Since ¢ C g,L and yLy~! = L,ycy~! = ¢, we have ¢ C yg,y ' L. Hence
Yguy ', gu are two F-stable, unipotent quasi-semisimple elements of NgL in the
same connected component of NgL. Using 19.11 we have yg,y~! = lg,l~! for some

1 1
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l € LF. We have L = Zgo((2) N Z(9))°) = Zao((22 N Zg(gu))?). Hence
yLy ™" = Zeo (21, N Za(yguy™))°)

=Zeo (22N Za(lg ™)) = Zao (22 N Za(ga))?) = L.

Since ¢ = Uy ey l'gscl' ™!, we see that yey™! = c¢. We have ygy™' = ygsy ™ 'yguy ™"

= gslgul™! = Igl™* € {(g). Hence y(g)y~! = (g). We see that y € G'. Thus,
G C G'. The inclusion LY C G’ is obvious. Hence LG c ¢’ Conversely, let
y€G. Then y =1y where l' € L*, 3 € G, y'gy' " = g. We have y/Ly'~' = L
hence y'Ly’ =t = L. We have y'cy’ ™! = ¢, y/(guL)y' "' = guL hence y'cy/ ™1 = «.
Thus ¢’ € G and (a) holds.

21.6. Let (L, S) € A and let & € S(S) be an irreducible cuspidal local system on S
(relative to NGL) Let Y =Y, s, Y = YL s,m:Y — Y be as 1n 3.13. Let € be the
local system on Y defined in 5.6. Let T = {n € NgoL;nSn~' = S, Ad(n)*E = £}
and let T =T /L. Let & = IC(Y,m&). Assume that FL = L,FS = S, F*§ = £,
Now F : G — G induces isomorphisms F: T — T, F:T —T.

For any n € T'F there is a well-defined element n(n) € Qj such that the fol-
lowing holds: if a : Ad(n)*E — &,e : F*€ — & are isomorphisms, then for any
g € S, the composition &, p(g),—1 i Er(g) = &, is n(n) times the composition
EnFgn—1 5 Engn—1 = &y. (This follows from the irreducibility of £ and Schur’s
lemma.) Clearly, n(n) is independent of the choice of a,e. It follows that, if
g € ST, then the composition Engn—1 = & 5 &,y is n(n) times the composition
Engn—1 5 Engn—1 i &,. Hence xg,(g9) = n(n)xe,c(ngn="). This property charac-
terizes n(n) since ST # ). Since xe . is constant on L¥-conjugacy classes in S¥,
it follows that 7 induces a homomorphism ' /LF = (I/L)F = TF — QF. We say
that (L, S, €) is effective if the associated homomorphism 7 : I'f' — Q; is identically

1. (In this case we have xg (ngn~ 1) Xe.c(g) for any g € SF .n € TF)

We fix an isomorphism € : F*£ = 8 Now F induces Frobenius mapson Y, Y, Y.
Also, € 1nduces an isomorphism F*€ % £ of local systems on Y, an isomorphism

F*m& =5 mé of local systems on Y and an isomorphism ¢ : F*& = & in D(Y).
As in 7.10, let E = End(m&) = @, e Ew. Let by, be a basis element of E,,. Then
E,E,, b, are as in 20.1. As in 20.3, let V;, (i € [1,7]) be a set of representatives for
the isomorphism classes of simple E-modules. We have canonically E = End(R).
For i € [1,7] let (m&); = Homg(V;, m&), & = Homg(V;,&). Then (m&); is an
irreducible local system on Y and & = IC(Y,(m&);). Also, (m€); % (m€)y for
i # i’. We have canonically mé = @ie[lﬂ Vi® (mé:)i and & = @ie[lﬂ Vi @ K.
For f € Hom(mg, W!g) we have

F*(f) € Hom(F*m&, F*m&) = Hom(m F*E, m F*€) = Hom(m&, mé€)

where the last equality is obtained by using twice the isomorphism F* — &
as above. Hence we have a map ¢ : E — E,f — F*(f) which is an algebra
isomorphism; it carries E,, onto Ep-1(,, for any w € I'. As in 20.3 we may assume
that for 7 € [1, 7], property 20.3(*) holds and that for ¢ > r that property does not
hold. For i € [1,r] we choose an isomorphism ti + Vi = Vi as in 20.3(x). For any
w € T, the isomorphism b,,¢ : F*& — & corresponds under & = P V: ® R; to
an isomorphism

(a) Gaie[l,F] Vi® F*R — @ig[lj] Vi® &

1€[1,7]
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which is an isomorphism of the summand V; ® F*R; onto a summand V;; ® K
where ¢’ = i for i € [1,r] and ¢’ # 4 for ¢ > r; moreover, the restriction of (a) to
Vi@F*R;,i € [1,7], is of the form b,,1; ® ¢; where ¢; : F*&; — R; is an isomorphism
independent of w. (Note that F*R; % &; for ¢ > r.) Taking induced maps on stalks
and taking traces we obtain for any j € Z,g € Y'":

tr(bug, H)R) = Y tr(buts, Vi)tr(di, M R;).
i€[1,7]

Taking alternating sum over j we obtain

(b) Xsbws = > tr(buti, Vi)Xg,.0:-
i€[1,r]

We choose an element g,, € G° such that g;'F(g,) = n,' where n,, is a represen-
tative of w in T. We set L = g, Lgz", S = guSg;", €Y = Ad(g;")*€ (a local
system on S™). Then F(L™) = L* and F(S") = S¥. We define an isomorphism
€¥: F*EW 25 Y in terms of € : F*€ = £ and by, as follows. By definition, b,, de-

fines for each g € S an isomorphism of stalks £ -1 . — &,; hence it defines for any

g’ € S¥ an isomorphism Enu_;lF(gw)*1F(g’)F(gw)nw = EF(gw)-1F(g')F(gw) OF €quiva-
lently EQEIF(!]/)QW - 8F(91;19l9w)' F(g;lg/gw) - 89’:;19/911)
obtain & —1p g — &€ -1y, that is, 8}:{(9,) — & vifhich comes from an isomor-
phism € : F*£¥ =5 €% We define 7% : Y — Y™, E¥ /Y, ¢¥ : F*RY =5 &Y in
terms of L*,S%,E¥ € in the same way as m: Y — Y, £, 8, ¢ : F*R = R were
defined in terms of L, S, €, e. We have Y¥ =Y and the map (g, zL) — (g, zg, L")
is an isomorphism g : Y — Y commuting with the projections m, 7" onto Y.
We have p*€% = £ canonically. Hence p induces an isomorphism mé& — w*&Y
hence an isomorphism u' : & = &. From the definitions we see that the com-
positions F*R Ry o AN RY, F*R bwd g *, v coincide. Hence for
j€Z,g €YT we have tr(by, ¢, H)R) = tr(¢", H}R"). Taking alternating sum over
J gives X g b,o = Xaw,¢w. Introducing this in (b) we obtain

(C) Xﬁw7¢w = Z tr(bwbi;%)xﬁi;(bi'
i€[1,r]

~

Composing with € : £ we

Using (c) for w running through T' (a set of representatives for the effective F-
twisted conjugacy classes in I') and 20.4(e),(g), we see that

(d) the functions (Xgw,¢w)wer Span the same wvector space as the functions
(Xﬁi’(lgi)ie[lﬁ-]; moreover, |T'| = r.
From the definitions we see that
(e) (LY, S™,EY) is effective if and only if w € T is effective.
We show that,
(f) if x € T is not effective, then xg= ¢= = 0.
It is enough to show that, for any j € Z,g € Y we have tr(bxcﬁ,Hgﬁ) = 0. The
proof is a repetition of that of 20.4(a). We can find y € I, such that ~,(y) # 1.
(Notation of 20.4.) We have
tr(gby, HIR) = tr(b, ' ¢baby, HIR) = v (y) " tr(b, " dv ™" (by)bs, HIR)

= Y2(y) 71tr(¢bx ) Hf]ﬁ) .
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Thus (1 — 7. (y)~")tr(¢bs, HJR) = 0 and tr(¢b,, H)R) = 0 as claimed.

21.7. We preserve the setup of 21.6. Let Z be the set of all triples (L', ', [€’]) such
that

(L',S") € A,

[€'] is the isomorphism class of an irreducible cuspidal local system &' € S(S')
(relative to NgL'); there exists g € G© such that gLg~! = L/,gSg™! = S’ and
Ad(g—H*€ € [€'].

Note that G° acts naturally on = and this action is transitive. The isotropy
group of (L, S,[£]) in GO is . Thus we may identify = = G°/T". Since T is F-
stable, we have an induced Frobenius map F': = — = whose fixed point set consists
ofall (L', 5",[€']) € Esuch that F(L') = L', F(S") = §" and F*&' = £'. By Lemma
19.7(a), the triples (L™, S*,E") (where w runs through a set of representatives of
the F-twisted conjugacy classes in I') form a set of representatives for the G°F'-
orbits in ZF". Now using 21.6(e) we see that the triples (LY, S¥,E£Y) (where w runs
through I') form a set of representatives for the G%F-orbits on the set of effective
triples in ZF.

Let ("L,"S,["&])ner be a set of representatives for the GOF-orbits on the set
of effective triples in ZF. For each h € I choose "€ € ["€] and an isomorphism
he: F*(h&) = hE. Define "R, "¢ : F*("R) = "R in terms of "L," S, "E "¢ in the
same way as &, ¢ : F*& — & were defined in terms of L, S, €, e. Let (4;);cs be a
set of representatives for the isomorphism classes of simple intersection cohomology
complexes A on Y that are summands of & and satisfy F*A = A. For each j € J
choose an isomorphism ¢; : F*A; = A;. We can now reformulate 21.6(d) as
follows:

(a) the functions (xnanre)ner span the same vector space as the functions
(XA, )jes; moreover, |I| = |J|.

21.8. Let L, S, € be as in 21.6. Assume that S contains a unipotent L-conjugacy
class ¢ (necessarily unique hence F-stable), that £ is the inverse image under S —
¢, g — gy of an irreducible cuspidal local system F on ¢ and that € : F*& =5 £ is
induced via S — ¢ by an isomorphism €q : F*F = F. We show that
(a) (L, S, &) is effective.

Let Y, 8, ¢: F*& = & E,b,,[,F:T —T,.: E — E be as in 21.6. By 21.6(e) it is
enough to show that 1 € T" is effective (relative to the basis b, of Eand F': T' — TI).
We may assume that b,, are chosen as in the proof of Proposition 11.9. We must
show that y € I', F(y) =y = .~ !(b,) = b,. Hence it is enough to show that
t(by) = bp-1(y) for any y € T'. Let ¢ be the unique unipotent G°-conjugacy class of
G that is open dense in Y NGy, (see Lemma 10.3). Let H = H°f|, an irreducible
local system on GO (see Lemma 11.8). The natural action of E on & induces an
action of E on H in which b, acts as the identity map (by the choice of b,). Let
f € Hom(R, 8) = E. The commutative diagram

R 2 g
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(which comes from the definition of ¢) induces a commutative diagram
o Ry

d d

H o(f) H
If f =0y, then f:H — 'H is the identity map hence F*f : F*H — F*H is the
identity map. Then the last commutative diagram shows that ¢(f) : H — H is the
identity map. Since ¢(by) is a scalar multiple of bp-1(,y and bp-1(,) acts on H as
the identity map, it follows that +(b,) = bp-1(y), as required.

21.9. Let V be the vector space of functions GE, — Q; that are constant on G°F-
conjugacy classes in GE . Let A be the set of all pairs (c, [F]) where c is a unipotent
GP-conjugacy class in G and [F] is an isomorphism class of an irreducible G°-
equivariant local system F on c¢. Define F : N'— N by F(c, [F]) = (F(c), [F1F]).
The fixed point set AN is the set of all (c,[F]) € A such that F(c) = c and
F*F = F. For any (c,[F]) € NF we choose a local system F € [F] and an
isomorphism ¢ : F*F = F. The function xz 4, : ¢/’ — Q; will be regarded as a
function G — Q, equal to zero on GYE — ¢, Using Lemma 19.7, we see that

(a) for any F-stable unipotent G°-conjugacy class ¢ in G, the functions x 7.4,
with (¢, [F']) € N form a basis for the vector space of functions in V' that

are zero on GE — /¥

From (a) we deduce

(b) the functions xr 4, with (c,[F|) € NT form a basis of the vector space V.
For (c,[F]) € N let F* = IC(¢,F). Now ¢ induces an isomorphism ¢ﬁ}_ :
F*F* = Ffin D(c). 7Hence Xra gt cl” — Q is well defined. We regard XFt g8
as a function GE — Q, equal to zero on GE, — &¥". This function is constant on
G°F-conjugacy classes. Hence it is of the form Y, ces for where ¢’ runs over the
unipotent GY-conjugacy classes in G such that F(c') = ¢/,¢’ C €, cer € Q; and
fer €V is zero on GF — ¢'F. For such ¢/, fe is a linear combination of functions
XF',6, with F’ such that (¢/,[F]) € N (see (a)). From the definitions we have
fe = XF,¢-. We see that

XFiph = Z ClFLIFIXF bz
(c',[F)eNF

where ¢z} (7] € Q; are uniquely determined and equal to zero unless ¢/ C ¢;
moreover, if ¢’ = ¢, then ¢z} 7] = 07),;7/. Thus, the functions Xt 4t Ar€ related
to the functions x 7 4, by an upper triangular matrix with all diagonal entries equal
to 1. Hence (b) implies:

(c) the functions Xra 0t with (c, [F]) € NT form a basis of the vector space V.

21.10. Let Y be the set of triples (L, ¢, [f]) where L is the Levi of some parabolic
of GY, ¢ is a unipotent L-conjugacy class of NgL with ¢ C N&L and [f] is the
isomorphism class of an irreducible cuspidal local sytem f on ¢ (relative to NgL).
Let G°\Y be the set of orbits of the natural G-action on ) given by conjugation
all factors. Define F: Y — ) by F(L,¢,[f]) = (F(L), F(¢), [Ff]); we have F(gy) =
F(g)F(y) for all g € G°, y € Y. Hence F induces a bijection F : G°\Y — GO\ .
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Putting together the generalized Springer correspondences 11.10(a) for the various
connected components of G that contain unipotent elements we obtain a canonical
surjective map N — G®\Y. From the definitions we see that this map is compatible
with the F-actions, hence it restricts to a surjective map N* — (G°\Y)¥ whose
fibres form a partition of N into subsets N,f indexed by the F-stable G°-orbits 1
on Y. Using 21.9(c), we see that

(a) V= @7] Vn
(n as above) where V, is the subspace of V with basis formed by the functions x ,, ob
with (c, [F]) € N{ . Since 7 is a homogeneous space for the connected group G,
it contains some F-fixed point (L, ¢, [f]). We have F(L) = L, F(c) = ¢. We choose
f € [f]. We have F*f = f; we choose an isomorphism €; : F*f = f. Let S be the
stratum of NgL that contains ¢, let £ be the inverse of F under S — ¢, g — ¢, and
let € : F*€ = £ be the isomorphism induced by €;. Then (L, S, &, €) are as in 21.6.

~ We will apply 21.7(a) in our case. Restricting the functions in 21.7(a) to Y*F =
Y NGE (Y asin 21.6) we see that

(b) the functions xngne|ywr (h € I) span the same vector space as the func-
tions x A, .y, |ywr (j € J); moreover, |I| = |J|.

From the definition of generalized Springer correspondence we see that the functions
XA, 0;lver, (J € J), extended by 0 on GE — VI are up to non-zero scalars the
same as the functions X2 4, with (c, [F]) € MF'. In particular, they form a basis of
the vector space V;,. Now using (b), we see that the functions xug ng|ywr, (h € 1),
extended by 0 on GE — Y“F (or equivalently, the generalized Green functions
QG rr e e, G — Q, see below) form a basis of the vector space V,. Here "¢
is the set of unipotent elements in S, #f = €|, and "e; is the restriction of "¢ to
he. In our case

(c) all triples in ZF (see 21.7) are effective,

since all elements of I are effective (see 21.6(e) and 21.8(a)). Letting now 7 vary
and using (a), we obtain the following result.

Proposition 21.11. The generalized Green functions Qa,r,c,j,e; (where (L,¢,][f])
runs through a set of representatives for the G°F -orbits on Y and for each (L, ¢, [f])
in this set we choose | € [f] and €1 : F*§ = §) form a basis of the Q;-vector space
V of functions GE — Q, that are constant on G°F -conjugacy classes in GE, .

21.12. Define F : A — A by F(L,c) = (F(L),F(c)). Let (L,c) € AL. Then
Cr(c) is well defined (see 19.9).
(a) For any n € G such that nLn=' = L,necn™! = ¢ and any f € Cr(c),g €
cf” we have f(ngn=1) = f(g).
Indeed, we may assume that f = xj., where § is an irreducible cuspidal local
system on ¢ and € : F*f = § is an isomorphism. In that case the result follows
from 21.10(c), since we have automatically Ad(n)*f 2§ (see Proposition 11.7(a)).
We define a Q-linear map Cr(c) — V, f Qé,L,c by the requirement that
QéJ—%c = Qq,Lcf,e for any f = xj., as above. It is clear that this linear map
is well defined. Let Jr . be the its image. Note that Jr . depends only on the
G F-orbit of (L,c). We can reformulate Proposition 21.11 as follows.
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(b) For any (L,c) € AL, the linear map Cp(c) — Jp . is an isomorphism. We
have a direct sum decomposition V = €Dy, o) Jr,c where (L, <) runs through

a set of representatives for the GO -orbits on AL,
On @(L,c)emg Cr.(c) we have a linear G¥-action: an element g € G¥ takes f € Cr.(c)
to f' € Cyrg-1(gcg™) where f'(h) = f(g~'hg) for h € (geg~')¥. This action
restricts to a G°F-action. Consider the linear map ®(L,c)emg Cr(c) — V whose

restriction to any summand Cr(c) is f — QéLJ. Restricting this to the space of

GO _jnvariants we obtain
0OF ~

(¢) an isomorphism (®(L7C)Em§ Cr(e) =y,
This follows immediately from (b),(a).

21.13. Let s € GF be a semisimple element and let (L,c¢) € ngc(s). Let C3(c) be
the vector space Cr(c) defined as in 19.9 with respect to Zg(s) instead of G. Let
'C$ (¢) be the subspace of Cf (¢) consisting of all functions that are invariant under
the natural action of {g € Zgo(s)f';gLg™" = L, gcg~! = ¢}. Replacing G by Zg(s)
in 21.12(c) we obtain an isomorphism

ZG(S)OF

b e =y,

(L,c)eﬁgc(s)

where V; is the vector space of functions {unipotent elements in Zg(s)f'} — Q;
that are constant on Zg(s)?f-conjugacy classes. Taking now invariants for the
natural action of Zgo (s)f" (which contains Z¢(s)°F" as a normal subgroup) we obtain

an isomorphism
ZGO (G) B

b e =V

P
(L,c)EQlZG(S>

or, equivalently, an isomorphism

(%) @D ¢ =V

F
(L,c)GQlZG(S)

where V! is the vector space of functions {unipotent elements in Zg(s)f'} — Q;
that are constant on Zgo(s)F-conjugacy classes. We now take the direct sum of
these isomorphisms over all semisimple s in G¥ and then take invariants for the
natural action of G°¥. We obtain an isomorphism
GOF
(a) P ¢ —VV
(s,L,c)eX
where X is the set of all triples (s, L, ¢) with s € G semisimple and (L, ¢) € ngc(s)

and V is the vector space of functions GF' — Q; that are constant on G°F'-conjugacy
classes.

Let X! be the set of all quadruples (s,u, L,c) where s € GF is semisimple,
u € GF is unipotent, quasi-semisimple in Nz.5)L, (L,c) € ngc(s), ¢ C ul.. Now
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GYF' acts naturally on X! and the map X! — X, (s,u, L,c) — (s,L,c) induces a
bijection

(b) GOF\Xl =~ GOF\X
on the sets of G%7-orbits. (We use the fact that, for fixed (s,L,c) € X, the set
of unipotent quasi-semisimple elements of Ny ()L that are fixed by F' and are
contained in the component ¢L of Nz, ()L is a single L¥-conjugacy class; this
follows from 19.11.) Now (g, L, ¢) — (gs, gu, L, ¢) is a bijection

(c) R = XL
(We use 1.4(c) and 21.2(a).) Combining (a),(b),(c) we obtain an isomorphism

GOF

(d) B ol V4

(g9,L,c)eR’
Assume that (g,L,c) € R corresponds to (g, L,c) € R’ under 21.4(c) and let (g)
be the L¥-conjugacy of g. From 19.15(b),(c) applied to NgL, L instead of G, G°
we have an isomorphism

(e) CL (g)(€) = Crip(g)(0)

where H(9) = {l € L;lgsl™' = g5,1gul™ € Z1(95)%gu}-

Let G = {y € Zgo(gs);yLy~ = L,ycy™! = ¢} (a group containing Hy(g)F as
a normal subgroup).

Let ¢ = {y € GF yLy=' = L,ycy ! = ¢,y(g9)y~' = {9)} (a group containing
LT as a normal subgroup).

Assume that f +— f under (e). We show that the following two conditions are
equivalent:

(i) f is invariant under the natural action of G;

(ii) f is invariant under the natural action of G'.

Assume that (i) holds. Let y € G. Then y = I'y’ where I’ € L ¢/ € G (see
21.5(a)). We must show that f(ylgsul~'y=") = f(lgsul™") for | € L* ,u € & or
that f(I'y'lgsul™'y'~1'=1) = f(u) or that f(y'uy’~') = f(u); this follows from
y €q.

Assume that (ii) holds. Let y € G. Then y € G’ (see 21.5(a)). We must
show that f(yuy~!) = f(u) for u € ¢ or that f(gsyuy™') = f(gsu) or that
flygsuy™t) = f(gsu); this follows from y € G'.

From the equivalence of (i),(ii), we see that (e) restricts to an isomorphism

(f) 'Cog)(c) = CL (o)
where 'Cp gy (c) is the space of all functions f € Cp, (4y(c) that are invariant under

the natural action of {y € GF yLy=! = L,ycy™' = c,y(g)y~* = (g)}. Using (f),
we deduce from (d) an isomorphism

GOF
D L] SV
(9,L,c)eR
or equivalently an isomorphism
GOF

@ @/CL;“/(C) -V

(L,e)eAE v
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where 4 runs through the set of L-orbits on (ongre)T, or equivalently an isomor-
phism
GOF

D Pcrlo V.
(Le)eAs 7
From the definitions we have canonically €. Cr(c) = Cr(c) hence we obtain an
isomorphism
GOF
(2) P cwlo) v
(L,c)eAE
We define F': A — A by F(L,S) = (F(L), F(S)). There is a well-defined surjective
map AL — AT given by (L,c) — (L, S) where S is defined by ¢ C S. Moreover,
if (L,S) € AT is given we have a natural isomorphism Cp(S) = @_Cr(c) where
c runs over the F-stable L-conjugacy classes contained in S. (A special case of
19.10(b).) Introducing this in (g) we obtain an isomorphism
GOF

B cus) V.

(L,S)eEAF

For each (L, S) € AT we have a canonical direct sum decomposition

cu(s) =P ()
c
where [€] runs over the set of isomorphism classes of irreducible cuspidal local
systems £ € S(5) (relative to NgL) such that F*€ = £ and C[Lg](S) is the line
spanned by ye . where £ € [£] and € : F*£ — €. (This follows from 19.8(a).)
Hence we have an isomorphism
GOF

(h) b | v

(L,S,[E])€AF

where A is the set of triples (L, S, [€]) with (L, S) € A and [£] is as above. The
left-hand side of (h) is naturally a direct sum of subspaces V(s [¢]) indexed by a

set of representatives for the GOF-orbits on A¥ and V(L,s,(e)) is the space of vectors

in the one-dimensional vector space C[Lg} (S) that are invariant under the natural
action of the group {g € GF;gLg™! = L,gSg~! = S,Ad(9)*€ = £}. From the
definitions we see that V(1 g (¢)) is 1-dimensional if (L, S, &) is effective and is 0 if
(L, S, €) is not effective.

Thus the left-hand side of (h) has dimension equal to the number of G%F-orbits
on the set of effective triples in AT Hence this number is equal to the dimension
of the right hand side that is, to the number of G°F-conjugacy classes in G

Theorem 21.14. Let A be a set of representatives for the GOF-orbits on the set
of effective triples in AT. For each (L,S,[€]) € A we choose & € [€] and an
isomorphism € : F*€ = €. To L, S,E, e we associate & € D(G) and ¢ : F*R = &
as in 21.6 (with L instead of L). The functions x4 (one for each (L, S,[E]) € A)
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form a Qq-basis of the vector space V of functions G — Qq that are constant on
G F -conjugacy classes.

Let V' be the subspace of V spanned by the functions x4 in the theorem.
By the last paragraph in 21.13, it is enough to show that V' = V. This will be
done in 21.17. Note that in the definition of V' we may include the functions
X#,¢ corresponding to non-effective triples in A (these functions are identically 0
by 21.6(f)).

21.15. Let (L,S) € AF. We define a linear function ¥ : Cr(S) — V by the
requirement that for any irreducible cuspidal local system £ € S(S) and any € :
F*& = € we have ¥(xe,c) = x5, where &, ¢ are defined as in 21.6. From Theorem
16.14 we see that for any f € Cr(S) and any y € G we have

d
@ A= Y. EENZe@) T TQE ()
r€GOF:x—ly.xeS,

where L, = Z,1..-1(ys)? (a Levi of some parabolic of Zg(ys)?),
d = {v € Za(ys);v unipotent, v € Za(ys) yu, v~ ysvx € S},

(a single F-stable L,-conjugacy class by Proposition 17.14) and fd € C_(d) is
defined by fd(v) = f(z~'ysvz). (Notation of 21.12.)

21.16. Assume that we are given an F-stable L-conjugacy class ¢ in S and a quasi-
semisimple element g € NgL such that F'(g) = g and such that

¢ = {u € Z1(5)°gy; u unipotent , su € c} # (.

Here s = gs. We assume that c is cuspidal (relative to NgL). Then ¢ is a single
Z1,(gs)%-conjugacy class (see Proposition 17.13). Assume that f in 21.15 satisfies:

(1) f|SF—cF =0,

(i) h € ', f(h) #0 = h =lsul~! for some [ € L¥ and some u € %"
Consider the function f € V given on y € GF by

(a) f(y) = 0 if y, is not G%F-conjugate to s;

f(y) = |ZG(S)0F|71 Z QZ1,ZG(S),C(’Z71yuz) if yS = S;
z2€Zq0(s)F
here Ly = Z1(ys)°? and h : ¢ — Q, is given by h(v) = f(ysv). We show that
(b) ®(f) = [LT]|Ze(s)" |71 f.

Consider the sum over z in 21.15(a) for our f. If f9 is not identically 0, then
flx~lyvx) # 0 for some v € df'. Hence there exist | € LT, u € ¢ such that
r 7 ysvr = lsul~! where v € d¥'. Thus, xls(zl)™! = ys, zlu(zl)™! = v. We see
that U(f)(y) = 0 if y, is not G°F'-conjugate to s. Assume now that y, = s. Setting
z =zl we have z € Zgo(s)F', zuz~! = v. Hence d = zcz~!. We see that

-1
_ _ _ fZZCZ
Y(f)(y) = > (LI 126 () L T ZL() ' QL. s (o mee1 (W)
2€Zg0(s)F leLF
_ _ 15 _
= L711Za() 17121 YD Q1 2. (F  vu2),
z2€Zq0(s)F

as desired.
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21.17. From the definitions we see that V' is the subspace of V spanned by the
functions ¥(f) for various (L,S) € Af and f € C(S). Since the vector space
Cr(S) is spanned by functions as in 21.16(i),(ii) (see 19.10(b),19.14(c)) we see that
any function f as in 21.16(a) is contained in V’. In formula 21.16(a) defining f we
may take (g, L1, ¢) to be any triple in R’ and h to be any function in Cr, (c) that is
invariant under the natural action of {g’ € Zgo(s)¥;9'L1g'~" = L1,g'cg’~! = ¢}.
(This follows from the bijection R «» R’ in 21.4(c), the isomorphism 19.15(c) and
the equivalence of (i),(ii) in 21.13.) But such f span the vector space V, of functions
in V that vanish at elements whose semisimple parts are not G°F'-conjugate to s.
(V4 may be identified with V. in 21.13 and we may use the isomorphism 21.13(x).)
We see that V, C V’. Since V is the sum of its subspaces V, for various s, we see
that V C V’'. Hence V = V’. Theorem 21.14 is proved.

21.18. Let J be the set of all triples (L, S, [€]) where (L, S) € A and [€] is the
isomorphism class of an irreducible cuspidal local system & € S(S). The group G°
acts on J by g : (L, S,[€]) — (Ad(g)L,Ad(g)S, [Ad(g~1)*&]); let GO\J be the set
of orbits.

Let 2[(G) be the subcategory of D(G) whose objects are the complexes X on G
such that X|[d] is a (simple) admissible perverse sheaf on G where d = dim suppX
(see 6.7).

Let 2(G) be the set of isomorphism classes of objects in 2(G). We define a map

j2UG) — G\J

as follows. Let A € A(G). By definition there exists (L, S,E) as above such that
A is isomorphic to a direct summand of IC(Y,m€) (extended by 0 on G —Y),
with 7,&,Y as in 5.6. Then j takes the isomorphism class of A to the G%-orbit
of (L,S,[€]). To show that this is well defined we must show that, if (L', S",&")
is another triple like (L, S, &) such that A is isomorphic to a direct summand of
IC(Y',m€") (extended by 0 on G — Y”), with 7/, Y" defined as in 5.6 in terms
of L', S’ & instead of L,S,&, then (L,S,[£]), (L',S',[€]) are in the same G°-
orbit. Now A is an intersection cohomology complex supported by Y and also
by Y’. Tt follows that Y = Y’ hence Y, s = Y/ g. Using 3.12(b) we deduce that
(L,S), (L', S") are in the same G°-orbit. Hence we may assume that L = L', S = S’
Then &,& € S(S) and there exists an irreducible local system on Y which is a
direct summand of both m& and m&’. Thus, Hom(mg,mg’) # 0. We now repeat
an argument in 7.10 (and use notation there):

Hom(mé&, mE&') = Hom(r*m&, E') = @ Hom(f:E,&")

weWs
= @ Hom(a*f:€,a*E") = @ Hom(f}a*E,a*E")
weEWs weEWs
= €P Hom(f;p*E,b°") = € Hom(b*Ad(n,)*E,b°E)
weEWs weEWs
= €P Hom(Ad(n,)*€,£").
wEWs

We see that ¢y, Hom(Ad(n,,)*E,E) # 0. Hence Hom(Ad(ny,)*E,E") # 0 for
some w € Wg, so that Ad(n,)*€ = &’. Thus, (L, S, [£]) is in the same G%-orbit as
(L, S,[€']), as required.
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21.19. From the definitions we see that the map j in 21.18 is compatible with the
maps F : 2(G) — A(GQ), F : GO\J — G°\J defined by A — RA, (L,S,[€]) —
(F(L),F(S),[F€]). Hence it induces a map jo : A(G)F — (G°\J)¥ on the fixed
point sets of F'.

21.20. From Theorem 21.14 we see that V. = @ V= where E runs over the
set of F-stable G%-orbits in J and V= is the subspace of V with basis given by
the characteristic functions of F-stable effective triples (L, S, [€]) € E (up to the
action of G9F'). Now using 21.7(a) we see that another basis of V= is given by
the characteristic functions of objects in j; '(Z). (Either of these bases is defined
only up to multiplication of any of its members by a non-zero scalar.) Here we
have used the fact that = contains at least one F-stable triple (L, S,[£]) which
follows from Lang’s theorem for G° since = is a homogeneous G°-space. Since
A(G)F =z 4o “(E), we see that the following result holds.

Theorem 21.21. Let A’ be a set of representatives for the isomorphism classes of
objects A € UA(G) such that F*A = A. For each A € A" we choose an isomorphism
a: F*A =5 A, The functions xa. (one for each A € A') form a Q;-basis of the
vector space V of functions GF' — Q that are constant on G°F -conjugacy classes.

22. TWISTED INDUCTION OF CLASS FUNCTIONS

22.1. This section gives an application of Theorem 21.14 to the construction of a
“twisted induction” map (see 22.3) from certain functions on a subgroup of G to
functions on G¥'.

Lemma 22.2. Let L be a Levi of a parabolic of GO and let L' be a Levi of a parabolic
of L. Let &' be a connected component of Ny, L' and let § be the connected
component of NgL that contains ¢'. Assume that 0" C Ny (L") and § C N&L.
Then 6" C N&(L').

Since § C N&L, there exists a parabolic P of G® such that L is a Levi of P and
§ C NgP. Since 0’ C N} (L), there exists a parabolic @ of L such that L is a
Levi of Q and ¢’ C Ny,r.Q. Then P’ = QUp is a parabolic of G° such that L’ is
a Levi of P'. If g € ¢', then gQg~! = Q and gUpg~! = Up (since g € § C NgP)
hence gP’'g~! = P'. Thus §' C NgP'. We see that &' C N&(L'), as required.

22.3. Let L be a Levi of a parabolic of G° and let § be a connected component
of NgL contained in NAL. We assume that F'(L) = L, F(§) = 6. Let D be the
connected component of G that contains §. Let V(d) (resp. Vgo(D)) be the set of
all functions 7 — Q; (resp. D — Q) that are constant on L¥-conjugacy classes
in § (resp. on G°F'-conjugacy classes in D).
There is a unique Q;-linear map
RP V. (8) = Vego(D)

such that the following holds.

Let L' be a Levi of a parabolic of L with F(L') = L/, let S’ be an isolated
stratum of Nygr(L') = NoL N NgL' with F'(S") = §',8" C 6, 8" C N (L"), let
&' be an irreducible cuspidal local system in S(S’) and let € : F*&' = &' be an
isomorphism. Define & € D(NgL), ¢' : F*& = & in terms of NgL,L',S", &', ¢
and R’ € D(G), ¢" : F*& = & in terms of G, L', 5", &', ¢ in the same way as
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R €D(G),¢: F*& — & were defined in 21.6 in terms of G, L, S,&,e. (Note that
R is well defined since S’ C N&L', by Lemma 22.2.) Then

R3 (xs.¢ls7) = X597 P
To see that this definition is correct we use the fact that the functions xar ¢ |sr
as above (with ¢ chosen for each L', S’ &' given up to Lf-conjugacy) provide a
basis for V(d) (which follows from Theorem 21.14 for NgL instead of G); note
that the choice of € is immaterial since the same choice is made in the definition
of Xar e

22.4. For any G -conjugacy class ¢ of semisimple elements in G let Vo (D)
be the vector space consisting of all functions in Vgo (D) that vanish on elements
g € DY with g, ¢ c. We have a direct sum decomposition

(2) Vao(D) = @, Voo (D)
where ¢ runs over the semisimple G°F-conjugacy classes in GF'. Similarly we have
a direct sum decomposition

(b) VL(6) =D Vi, ()
where ¢’ runs over the semisimple L-conjugacy classes in (NgL)¥'. The next result
shows that RY is compatible with the direct sum decompositions (a),(b).

Proposition 22.5. Let ¢’ be any semisimple LY -conjugacy class in (Ng L)Y and let
c be the semisimple GOF -conjugacy class in G*' such that ¢ C c. Then RP (Vi (9))
C Vgo7C(D).

Let L', S” be as in 22.3. As in 21.15 we define linear maps ¥’ : Cr/(S') — V(9),
0" Cr/(S") — Vgo(D) by the requirement that for any £, ¢’ as in 22.3 we have
\I//(Xg/’gl) = Xﬁ/’¢/|5F, \I/,/(Xg/7e/) = X8&",¢" |DF (notation of 223) Clearly,

(a) RP(W'(f)) = (/)
for f = xe/. hence also for any f € Cr/(S’). Assume now that c is an F-stable
L’-conjugacy class in S” and that g is a quasi-semisimple element in Ny (L’) such
that g € 4, F(g) = g and such that ¢ = {u € Z/(5)%g,;u unipotent ,su € c} # 0
(with s = ¢5). Assume that c is cuspidal (relative to Ny, (L)) so that ¢ is a single
Z1,(s)°-conjugacy class. Assume that f € Cr/(9’) satisfies

(1) f|S'F70F =0,

(ii) h e cf', f(h) #0 = h =lsul~! for some [ € L'F and some u € cF'.
Consider the functions f € V1(8), f” € Vo(D) defined by

f(y) =0if y € 6F, y, is not LF-conjugate to s;

f(y) = |ZL(5)OF|71 ZzEZL(s)F QZLZNGL(S)ﬂ(ZilyuZ) if y € 5Fa Ys = S

f"(y) = 0if y € DF, y, is not G°F-conjugate to s;

F"(y) = Za(s)F | ZZEZGo(s)_F Q%/l,zc(s),c(z_lyuz) if y e DY, ys = 5;
here L} = Z1/(s)? and h : ¢ — Qy is given by h(v) = f(ysv). Using 21.16(f) for
G and for NgL and (a) we see that

(b) RP(f) = f". o
As in 21.17, here we may assume that (g, L], ) used in the definition of f, f” is
any triple in R’ (for NgL instead of G) with g € § and h is any function in Cy; (c)
that is invariant under the natural action of {g’ € Z(s)f;¢/Lig'~' = L}, g'cg ™' =
¢}. Since the functions f as above span the vector space Vi, . (8) where ¢ is the
LF-conjugacy class of g, and the corresponding functions f” are contained in the
corresponding Vo (D) we see that the proposition follows from (b).
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22.6. Let L' ¢ L C G°,6' C 6 be as in Lemma 22.2 and let D be the connected
component of G that contains . Then Rg,,R(;D , R(’SD, are well defined (the last one,
by Lemma 22.2). From the definitions we see that the transitivity property

(a) RP o R}, = RE
holds.
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