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CHARACTER SHEAVES ON DISCONNECTED GROUPS, IV

G. LUSZTIG

Abstract. We construct a basis for the space of invariant functions on the
rational points of a possibly disconnected reductive group over a finite field,
coming from intersection cohomology

Introduction

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
[L9] which attempts to develop a theory of character sheaves on G.

Assume that k is an algebraic closure of a finite field Fq and that G has a fixed
Fq-rational structure with Frobenius map F : G→ G. To any triple (L, S, E) (where
L is a Levi of a parabolic of G0, S is an isolated stratum of the normalizer of L,
with certain properties, and E is an irreducible cuspidal local system on S) we have
associated in 5.6 a (not necessarily irreducible) intersection cohomology complex
K on G. If F (L) = L,F (S) = S and we are given an isomorphism F ∗E → E ,
there is an induced isomorphism φ : F ∗K → K, hence the characteristic function
χK,φ : GF → Q̄l is well defined.

The main result of this paper (Theorem 21.14) is that the functions χK,φ that
are not identically zero (for various (L, S, E) up to G0F -conjugacy) form a Q̄l-basis
of the vector space V of functions GF → Q̄l that are constant on G0F -conjugacy
classes. The proof uses several of the results developed in earlier sections (the
generalized Springer correspondence in §11, the generalized Green functions in §15,
the character formula in §16). It also uses the classification of cuspidal local systems
(this is needed in §17 which is a preliminary to the proof of Theorem 21.14).

A corollary of the main theorem is Theorem 21.21 which states that the char-
acteristic functions of admissible complexes A such that F ∗A ∼= A form a basis
for V. In the connected case such a result was proved in [L3, V] subject to some
mild restrictions on the characteristic. The present proof has no restrictions on the
characteristic and it makes no use of the orthogonality formulas which will appear
in a later stage of the theory.

Another corollary of the main theorem is the construction in §22 of a “twisted
induction” map from certain functions on a subgroup of GF to functions on GF .

Our paper contains also a new characterization of isolated elements (see Proposi-
tion 18.2) which is obvious in the connected case but less obvious in the disconnected
case.
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We adhere to the notation of [L9]. Here is some additional notation. If Γ is
a finite group with a given automorphism F : Γ ∼−→ Γ, the “F -twisted conjugacy
classes” of Γ are the orbits of the Γ-action on Γ given by y : w 7→ F (y)wy−1.

We shall denote by σG the map from G to the set of G0-conjugacy classes of
quasi-semisimple elements in G defined in 7.1 (where it is denoted by σ).

For two elements a, b of a group we set ab = b−1ab.
Let p ≥ 0 be the characteristic of k.

Contents

17. Properties of cuspidal classes.
18. A property of isolated elements.
19. Properties of cuspidal local systems.
20. Twisted group algebras.
21. Bases.
22. Twisted induction of class functions.

17. Properties of cuspidal classes

17.1. This section contains the proof of a key property (Proposition 17.13) of
“cuspidal conjugacy classes” (see below) which is needed in the proof of the main
results of §21.

17.2. A G0-conjugacy class in G is said to be isolated if one (or equivalently, any)
element of it is isolated in G, see 2.2. We show that

(a) if G0 is semisimple and g ∈ G is isolated then gs has finite order.
We may assume that gu is quasi-semisimple in ZG(gs). Let H = ZG(gu). As in the
proof of Lemma 2.7, we see that H0 is semisimple. By Lemma 2.5, gs is isolated
in H . Replacing G by H , we are reduced to the case where g is semisimple. In
this case we argue by induction on dimG. Assume first that dimZG(g) < dimG.
Now ZG(g)0 is semisimple and g is isolated in ZG(g). By the induction hypothesis
g has finite order. Assume next that dimZG(g) = dimG that is, ZG(g)0 = G0. We
can find an integer n ≥ 1 such that gn ∈ G0. Clearly, ZG(g)0 ⊂ ZG(gn)0. Hence
ZG(gn)0 = G0. Thus, gn ∈ ZG0 . Since ZG0 is finite, we see that gn has finite order.
This proves (a).

17.3. Let c be an isolated G0-conjugacy class in G and let F be a local system
on c. Let [F ] be the isomorphism class of F . We say that (c,F) (or (c, [F ]) or
F) is cuspidal if F is G0-equivariant and for any proper parabolic P of G0 and
any UP -coset R in NGP we have Hd

c (c ∩ R,F) = 0 where d is dim c minus the
dimension of the P/UP -conjugacy class of R/UP in NGP/UP .

A G0-conjugacy class in G is said to be cuspidal if it is isolated and if it carries
some non-zero cuspidal local system.

Let c be an isolated G0-conjugacy class in G and let F be a G0-equivariant local
system on c. Then

(a) (c,F) is cuspidal if and only if for some/any g ∈ c, and some/any unipotent
ZG(gs)0-conjugacy class c of ZG(gs) contained in {u ∈ ZG(gs);u unipotent,
gsu ∈ c}, the local system j∗F on c is cuspidal relative to ZG(gs) (here
j : c→ c is u 7→ gsu).

The proof of (a) is identical to that of its special case 6.6.
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17.4. (a) Let g ∈ G be quasi-semisimple. Then ZG0(g)/ZG(g)0 is a diagonalizable
group.

(b) If in addition, G0 is semisimple, simply connected, we have ZG0(g) = ZG(g)0.
(b) is proved in [St, 8.1]; in the closely related case of compact Lie groups, it goes
back to the earlier paper [B1, 3.4]. In the case where G0 is semisimple, (a) is proved
in [St, 9.1] using (b). For the general case see [DM, 1.6(i)], [DM, 1.24].

Lemma 17.5. Assume that G is such that G0 is semisimple, simply connected.
Let s ∈ G be semisimple and u ∈ G be unipotent such that su = us and the G0-
conjugacy class of su is cuspidal. Let z ∈ ZG0 . Let Z = ZG(s)0. Assume that
g ∈ G0, gs = zg, gu = yg with y ∈ Z0. Then y = y′uy′−1 for some y′ ∈ Z0.

The proof (carried out in 17.6–17.11) consists of a number of steps which reduce
us to the case where G0 is almost simple, simply connected, in which case we shall
use the classification of cuspidal conjugacy classes (which by 17.3(a) follows from
the results on the classification of unipotent cuspidal conjugacy classes given in §12
and [L2]).

17.6. In the setup of Lemma 17.5 assume that

(a) G0 is almost simple and G = G0 × Cm (semidirect product, Cm a cyclic
group of order m ≥ 1 with generator e) with group structure (a, et)(a′, et

′
) =

(aαt(a′), et+t
′
) where α : G0 → G0 is an automorphism of order m ≥ 1

preserving an épinglage and su is of the form (x, e) for some x ∈ G0.

If ZG0 = {1}, then we must have z = 1 and we can take y′ = g. This handles the
following types of G0:
Bn, Cn (with m = 1, p = 2), Dn (with m ∈ {1, 2}, p = 2),
D4 (with m = 3, p = 2),
E6 (with m ∈ {1, 2}, p = 3), E7 (with p = 2),
E8, F4 (with m ∈ {1, 2}), G2.

If Z = G0, then we must have z = 1 and we can take y′ = g. This handles the
following types of G0:
An (with m = 1), An (with m = 2, p = 2),
E6 (with m = 1, p = 2, Z = G0), E7 (with p = 3, Z = G0).

Let c1 (resp. c2) be the Z0-conjugacy class of u (resp. uy) in ZG(s). Then
Ad(g) : ZG(s) ∼−→ ZG(s) carries c1 to c2. Thus c1, c2 are two cuspidal unipotent
Z-conjugacy classes in the same connected component of ZG(s). It is enough to
show that c1 = c2. (Then uy = y′uy′−1 for some y′ ∈ Z.) If there is only one
cuspidal unipotent Z-conjugacy class in uZ, then clearly c1 = c2. This handles the
following types of G0:
An (with m = 2, p 6= 2), Cn, D4 (with m = 3, p 6= 2),
E6 (with m = 1, p 6= 2, 3), E6 (with m = 1, p = 2, Z 6= G0),
E6 (with m = 2, p 6= 3),
E7 (with p 6= 2, 3), E7 (with p = 3, Z 6= G0).

The cases not covered by the arguments above are with G0 of type Bn or Dn with
m ∈ {1, 2} and p 6= 2. In each of these cases there are at most two cuspidal
unipotent Z-conjugacy classes in ZG(s) (they are automatically contained in Z).
Each of these classes is stable under any automorphism of Z; in particular, under
Ad(g). Hence these cases are settled. Thus, Lemma 17.5 holds in the present case.
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17.7. In the setup of Lemma 17.5 assume that
(a) G0 is almost simple and G = G0 × Cn (semidirect product, Cn a cyclic

group of order n ≥ 1 with generator e) with group structure (a, et)(a′, et
′
) =

(aαt(a′), et+t
′
) where α : G0 → G0 is an automorphism preserving an

épinglage such that αn = 1 and su is of the form (x, e) for some x ∈ G0.
Let m be the order of α. Thus, n/m ∈ Z. Let Ḡ = G0 × Cm (semidirect prod-
uct, Cn a cyclic group of order m ≥ 1 with generator e′) with group structure
(a, e′t)(a′, e′t

′
) = (aαt(a′), e′t+t

′
). Let π : G → Ḡ, (g, et) 7→ (g, e′t). Then

π induces G0 ∼−→ Ḡ0 with kernel K = {1, em, e2m, . . . }. From the definitions
we see that the Ḡ0-conjugacy class of π(s)π(u) is cuspidal. Applying 17.6 to
Ḡ, π(s), π(u), π(g), π(z), π(y) instead of G, s, u, g, z, y, we see that there exists y′ ∈
G0 such that sy′ = y′sk, uy = y′uy′−1k′ with k, k′ ∈ K. Applying the homomor-
phism ρ : G→ Cn, (g, et) 7→ et we get

ρ(s)ρ(y′) = ρ(y′)ρ(s)ρ(k), ρ(u)ρ(y) = ρ(y′)ρ(u)ρ(y′)−1ρ(k′),

ρ(u)−1ρ(g)ρ(u) = ρ(y)ρ(g).

Using the commutativity of Cn we deduce ρ(y) = 1, ρ(k′) = 1, ρ(k) = 1. Since
ρ : K → Cn is injective it follows that k = k′ = 1. Thus, Lemma 17.5 holds in the
present case.

17.8. In the setup of 17.5 assume that
(a) G0 is almost simple and G is generated by the connected component D that

contains su.
We can find d ∈ D such that Ad(d) : G0 → G0 preserves an épinglage. Then d has
order n <∞. Let G̃ = G0×Cn (semidirect product, Cn a cyclic group of order n ≥ 1
with generator e) with group structure (a, et)(a′, et

′
) = (aAd(d)t(a′), et+t

′
). Now

π : G̃→ G, π(g, et) = gdt is a group homomorphism with kernelK = {(dt, e−t); dt ∈
G0}; it induces an isomorphism G̃0 ∼−→ G0. Let x ∈ G̃ be s.t. π(x) = su, x of the
form (x0, e), x0 ∈ G0. We have (g, 1)xs(g−1, 1) = xs(z, 1)k, with k ∈ K. Taking
images in G̃/G0 we see that k goes to the neutral element hence k ∈ G0. But
K∩G0 = {1} so that k = 1. We have (g, 1)xu(g−1, 1) = xu(y, 1)k′ with k′ ∈ K. As
above we see that k′ = 1. We have (y, 1)xs(y−1, 1) = xsk

′′ with k′′ ∈ K. As above
we see that k′′ = 1. From the definitions we see that the G̃0-conjugacy class of x
is cuspidal. Applying 17.7 to G̃, xs, xu, (g, 1), (y, 1), (z, 1) instead of G, s, u, g, y, z
we find y′ ∈ G0 such that (y′, 1)xs(y′−1, 1) = xs, (y, 1) = x−1

u (y′, 1)xu(y′−1, 1).
Applying π we get y′sy′−1 = s, y = u−1y′uy′−1. Thus Lemma 17.5 holds in the
present case.

17.9. In the setup of Lemma 17.5 assume that G has no closed connected nor-
mal subgroup other than G0 and {1}. Assume also that p = 0. We have G0 =∏
j∈Z/bHj where Hj is connected, simply connected, almost simple, b ≥ 1 and

sHjs
−1 = Hj+1, u ∈ G0. Set g = (gj), z = (zj), y = (yj), u = (uj) where

gj ∈ Hj , zj ∈ ZHj , yj ∈ Hj , uj ∈ Hj . We have gsj+1 = zjgj , g
uj
j = yjgj,

ysj+1 = yj , zuj = zj , usj+1 = uj. Let G′ be the subgroup of G generated by
H0, s

b. This is a closed subgroup with identity component H0 since s has finite
order (see 17.2; recall that su is isolated in G). We have gu0

0 = y0g0, g
sb

0 = zg0,
where z = zs

b−1

b−1 . . . zs1z0 ∈ ZH0 . We have ys
b

0 = y0. Also sbu0 = u0s
b. We show
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that the H0-conjugacy class of sbu0 is cuspidal. By 17.3(a), it is enough to show
that:

(i) the ZH0(sb)0-conjugacy class of u0 is cuspidal in ZG′(sb)0,
(ii) sbu0 is isolated in G′.

Since the G0-conjugacy class of su is cuspidal, we see from 17.3(a) that:
(iii) the ZG(s)0-conjugacy class of u is cuspidal in ZG(s),
(iv) su is isolated in G.

Now ZG(s)0 = ZG0(s) (see 17.4(b)) consists of all (xj) where xj ∈ Hj satisfy
xsj+1 = xj . We may identify ZG0(s) = ZH0(sb) and (i) follows. We prove (ii). From
(iv) we see that ZZG0 (s) ∩ ZG0(u) is finite. Hence f ∈ ZH0(sb) subject to fu0 = f

has finitely many possible values. Hence (iv) holds.
Applying 17.8 to G′, sb, u0, g0, y0, z instead of G, s, u, g, y, z we find ỹ ∈ H0 such

that ỹs
b

= ỹ, y0 = ỹu0 ỹ−1. Set y′j = ỹs
−j ∈ Hj . Clearly, y′j+1

s = y′j , y0y
′
0 = y′0

u0 .
Hence yjy′j = y′j

uj . (We have

yjy
′
j = (y0y

′
0)s
−j

= (y′0
u0)s

−j
= (y′0

s−j )uj = y′j
uj .)

Hence setting y′ = (y′j) we have y′s = y′, y = y′uy′−1. Thus Lemma 17.5 holds in
the present case.

17.10. In the setup of Lemma 17.5 assume that
(a) G has no closed connected normal subgroup other than G0, {1} and p > 1.

We have G0 =
∏
i∈Z/a,j∈Z/bHij where Hij is connected, simply connected, almost

simple, a ≥ 1, b ≥ 1 and uHiju
−1 = Hi+1,j , sHijs

−1 = Hi,j+1. Let G′ be the
subgroup of G generated by H00, ua, sb. This is a closed subgroup with identity
component H00 since s has finite order (see 17.2; recall that su is isolated) and
u has finite order, power of p. Now a is a power of p and b is prime to p. Set
g = (gij), z = (zij), y = (yij) where gij ∈ Hij , zij ∈ ZHij , yij ∈ Hij . We have

gsi,j+1 = zijgij , g
u
i+1,j = yijgij , y

s
i,j+1 = yij ,

zui+1,j = zij .

(The last equation follows from uz = zu: we have

zugu = (gs)u = (gu)s = (yg)s = yzg = zyg = zgu

hence zu = z.) We have

gu
a

00 = yg00,y = yu
a−1

a−1,0 . . . y
u
1,0y0,0 ∈ H00,

gs
b

00 = zg00, z = zs
b−1

0,b−1 . . . z
s
0,1z0,0 ∈ ZH00 .

Since ys
b

ij = yij we have ys
b

= y. Also, sbua = uasb. We show that the H00-
conjugacy class of sbua is cuspidal. By 17.3(a) it is enough to show that:

(i) the ZH00(sb)0-conjugacy class of ua is cuspidal in ZG′(sb)0,
(ii) sbua is isolated in G′.

Since the G0-conjugacy class of su is cuspidal, we see from 17.3(a) that:
(iii) the ZG(s)0-conjugacy class of u is cuspidal in ZG(s),
(iv) su is isolated in G.
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Now ZG(s)0 = ZG0(s) (see 17.4(b)) consists of all (xij) where xij ∈ Hij satisfy
xsi,j+1 = xij . For each i ∈ Z/a let Fi =

∏
j∈Z/bHij . Then

sFis
−1 = Fi, uFiu

−1 = Fi+1, ZG0(s) =
∏
i∈Z/a

ZFi(s).

By an argument in 12.5(e) applied to ZG(s), ZG(s)0 =
∏
i ZFi(s), u instead of

G,G0 =
∏
iHi, u, we see that the ZF0(s)-conjugacy class of ua is cuspidal in the

subgroup generated by ZF0(s), ua. We may identify ZF0(s) = ZH00(sb) and (i)
follows. We prove (ii). From (iv) we see that ZZG0 (s) ∩ ZG0(u) is finite. Hence
if (fi) satisfies fi ∈ ZZFi (s), f

u
i+1 = fi, then fi has finitely many values. Hence

f0 ∈ ZZF0 (s), subject to fu
a

0 = f0 has finitely many values. Hence f0 ∈ ZH00(sb)
subject to fu

a

0 = f0 has finitely many values. Hence (ii) holds.
Applying 17.8 to G′, sb, ua, g00,y, z instead of G, s, u, g, y, z we find ỹ ∈ H00 such

that ỹs
b

= ỹ, y = ỹu
a

ỹ−1. Set y′ij ∈ Hij by y′0j = ỹs
−j

for j ∈ Z/b,

y′ij = yu
−1s−j

i−1,0 . . . yu
−i+1s−j

1,0 yu
−is−j

0,0 ỹu
−is−j

for i = 1, . . . , a− 1 and j ∈ Z/b. Clearly, y′i,j+1
s = y′ij . Moreover, yijy′ij = y′i+1,j

u

for i = 0, 1, . . . , a− 2. The same holds for i = a− 1:

ya−1,jy
′
a−1,j = ys

−j

a−1,0y
u−1s−j

a−2,0 . . . yu
−a+2s−j

1,0 yu
−a+1s−j

0,0 ỹu
−a+1s−j

= yu
−a+1s−j ỹu

−a+1s−j = ỹus
−j

= y′0j
u = y′aj

u.

Hence setting y′ = (y′ij) ∈ G0 we have y′s = y′, y = y′uy′−1. Thus Lemma 17.5
holds in the present case.

17.11. We now prove Lemma 17.5 by induction on dimG. If dimG = 0, the result
is trivial. We now assume that dimG > 0. Assume first that G0 = G1 ×G2 where
Gi 6= {1} are connected, simply connected, normal in G. Let G′1 = G/G2, G

′
2 =

G/G1, G
′ = G′1 ×G′2. Then G ⊂ G′, G0 = G′0. We have

s = (s1, s2), u = (u1, u2), z = (z1, z2), g = (g1, g2), y = (y1, y2)

where si is semisimple in G′i, ui is unipotent in G′i, zi ∈ ZGi , gi ∈ Gi, yi ∈ ZG′i(si)
0.

We have siui = uisi, gsii = zigi, guii = yigi. Also the Gi-conjugacy class of siui is
cuspidal. By the induction hypothesis, we can find y′i ∈ ZG′i(si)

0 with yi = y′i
uiy′i

−1.
Let y′ = (y′1, y′2). Then y′ ∈ ZG0(s), y = y′uy′−1. Thus Lemma 17.5 holds in the
present case.

Next we assume that no decomposition G0 = G1×G2 as above exists. Then the
result follows from 17.9, 17.10. The lemma is proved.

Lemma 17.12. Let s ∈ G be semisimple and u ∈ G be unipotent such that su = us
and the G0-conjugacy class of su is cuspidal. Assume that g ∈ G0, gs = g, gu = yg
with y ∈ ZG(s)0. Then y = y′uy′−1 for some y′ ∈ ZG(s)0.

Assume first that G0 is semisimple and that

(a) there exists an element d in the connected component of G that contains su
such that Ad(d) : G0 → G0 preserves an épinglage and such that {dt; t ∈
Z} ∩G0 = {1}.
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Using [St, 9.16] we can find a reductive group G̃ with G̃ semisimple, simply con-
nected and a surjective homomorphism of algebraic groups π : G̃ → G such
that K = Kerπ ⊂ ZG̃0 . Pick s̃′ ∈ G̃ semisimple, ũ ∈ G̃ unipotent such that
π(s̃′) = s, π(ũ) = u. Then ũs̃′ = s̃′ũk with k ∈ K. Now ũk = s̃′−1ũs̃′ is unipo-
tent. Since ũ normalizes K (a diagonalizable group) it follows that ũk = k′ũk′−1

for some k′ ∈ K. Set s̃ = s̃′k′. Then s̃ is semisimple (since s̃′ normalizes K,
a diagonalizable group) and π(s̃) = s, ũs̃ = s̃ũ. Since π(s̃ũ) = su we see that
the G0-conjugacy class of su is cuspidal. Let g′ ∈ G̃0 be such that π(g′) = g.
Since Ẑ = {x ∈ G̃; s̃x ∈ xs̃ZG̃0} has identity component ZG̃(s̃)0, we see that
ZG̃(s̃)0 → ZG(s)0 is surjective. Hence we can find ỹ ∈ ZG̃(s̃)0 such that π(ỹ) = y.
We have π(g′ũ) = π(ỹg′) hence g′ũ = k′ỹg′ for some k′ ∈ Γ. Hence g′ũg′−1 = ũk′ỹ,
equality in Ẑ. Hence ũk′ is unipotent in Ẑ/Ẑ0. Since the image of ũk′ in Ẑ/Ẑ0

normalizes the image of K in Ẑ/Ẑ0, we see that there exists k1 ∈ K such that
ũk′ = k1ũk

−1
1 (equality in Ẑ/Ẑ0) hence ũk′ = k1ũk

−1
1 ỹ1 (equality in Ẑ) for some

ỹ1 ∈ ZG̃(s̃)0. Hence g′ũg′−1 = k1ũk
−1
1 ỹ1ỹ = k1ũỹ

′′k−1
1 for some ỹ′′ ∈ ZG̃(s̃)0. Set

g̃ = k−1
1 g′. Then g̃ ∈ G̃0, g̃ũ = ỹ′′g̃, π(g̃) = g. We have π(g̃s̃) = π(g̃) hence g̃s̃ = zg̃

for some z ∈ K. Applying Lemma 17.5 to G̃, s̃, ũ, g̃, ỹ′′, z instead of G, s, u, g, y, z we
see that ỹ′′ = ỹ′ũỹ′−1 for some ỹ′ ∈ ZG̃(s̃)0. Let y′ = π(ỹ′). Then π(ỹ′′) = y′uy′−1,
y′ ∈ ZG(s)0. Also, gu = π(ỹ′′)g, gu = yg hence π(ỹ′′) = y and y = y′uy′−1. Thus
the lemma holds in the present case.

Next assume that G0 is semisimple and G is generated by a connected component
D. We can find d ∈ D such that Ad(d) : G0 → G0 preserves an épinglage. Then d
has order n <∞. Let G′ = G0×Cn (semidirect product, Cn a cyclic group of order
n ≥ 1 with generator e) with group structure (a, et)(a′, et

′
) = (aAd(d)t(a′), et+t

′
).

Now π′ : G′ → G, π(g, et) = gdt is a group homomorphism with kernel K ′ =
{(dt, e−t); dt ∈ ZG0}; it induces an isomorphism G′0

∼−→ G0. Then G′ is as in the
first part of the proof. Let x ∈ G′ be such that π′(x) = su. From the definitions
we see that the G′0-conjugacy class of x is cuspidal. For any h ∈ ZG(s) we have
(h, 1)xs(h−1, 1) = xsk with k ∈ K ′. Taking images in G′/G′0 we see that k goes to
1 hence k ∈ G′0 ∩K ′ = {1} hence k = 1. Thus, (h, 1) ∈ ZG′(xs). It follows that for
any h ∈ ZG(s)0 we have (h, 1) ∈ ZG′(xs)0. In particular, (y, 1) ∈ ZG′(xs)0. In the
same way we see that (g, 1)xs(g−1, 1) = xs, (g, 1)xu(g−1, 1) = xu(y, 1) (compare
17.8). From the first part of the proof we see that there exists (y′, 1) ∈ ZG′(xs)0 such
that (y, 1) = x−1

u (y′, 1)xu(y′−1, 1). It follows that y′ ∈ ZG(s)0, y = u−1y′uy′−1.
Thus the lemma holds in the present case.

Next, assume that G0 is semisimple (but there is no assumption on G/G0). Let
G1 be the subgroup of G generated by the connected component that contains
su. By the earlier part of the proof, the lemma holds for G1, s, u, g, y instead of
G, s, u, g, y. But then it automatically holds for G, s, u, g, y.

Finally, we consider the general case. Let π′′ : G→ Ḡ = G/Z0
G0 be the obvious

homomorphism. Let s̄ = π′′(s), ū = π′′(u). Then the Ḡ0-conjugacy class of s̄ū = ūs̄
is cuspidal. Let ḡ = π′′(g) ∈ Ḡ0, ȳ = π′′(y). Then ḡs̄ = ḡ, ḡū = ȳḡ, ȳ ∈ ZḠ(s̄)0.
Since the lemma holds for Ḡ instead of G, we have ȳ = ȳ′ūȳ′−1 for some ȳ′ ∈ ZḠ(s̄)0.
Let Z̃ = {x ∈ G;xsx−1 ∈ sZ0

G0}. Then π′′ induces a surjective homomorphism
Z̃ → ZḠ(s̄). Moreover, Z̃0 = ZG(s)0 hence π′′ induces a surjective homomorphism
ZG(s)0 → ZḠ(s̄)0. Hence we can find y′1 ∈ ZG(s)0 such that π′′(y′1) = ȳ′. We
have y = y′1

uy′1
−1z for some z ∈ Z0

G0 . Thus uy = y′1uy
′
1
−1z. Since uy = gug−1 is



152 G. LUSZTIG

unipotent, we see that y′1uy
′
1
−1z is unipotent. Also, z = y′1(u−1y′1

−1u)y ∈ ZG(s)0

(since y, y′1 ∈ ZG(s)0, u ∈ ZG(s)) hence z ∈ ZG(s)0 ∩ Z0
G0 .

Assume first that p = 0. We set y′ = y′1. Then y′uy′−1 being unipotent is in
G0 hence it commutes with z. Since y′uy′−1z is unipotent, we have z = 1 and
y = y′uy′−1, as required.

Next assume that p > 1. Then y′1uy
′
1
−1 has finite order and, being in ZG(s), it

normalizes H = ZG(s)0 ∩ Z0
G0 . Hence, if H ′ is the subgroup of G generated by H

and y′1uy
′
1
−1, we see that H ′ contains H as a normal subgroup of finite index, a

power of p. Since H is diagonalizable, it follows that any two unipotent elements
of H ′ in the same H-coset are H-conjugate. In particular, the unipotent elements
uy = y′1uy

′
1
−1z, y′1uy

′
1
−1 of H ′ are H-conjugate. Hence uy = ζy′1uy

′
1
−1ζ−1 for some

ζ ∈ H . We set y′ = ζy′1. Then y′ ∈ ZG(s)0 and uy = y′uy′−1. The lemma is
proved.

Proposition 17.13. Let c be a cuspidal G0-conjugacy class in G. Let s ∈ G be the
semisimple part of some element of c and let δ be a connected component of ZG(s).
Then {u ∈ ZG(s) unipotent , u ∈ δ, su ∈ c} is a single ZG(s)0-conjugacy class.

We must show that, if u, u′ ∈ ZG(s) are unipotent, u′ ∈ uZG(s)0 and su ∈
c, su′ ∈ c, then u, u′ are ZG(s)0-conjugate. We can find g ∈ G0 such that gsug−1 =
su′. Then gsg−1 = s, gug−1 = u′ = uy where y ∈ ZG(s)0. Hence gs = g, gu = yg.
By Lemma 17.12 we can find y′ ∈ ZG(s)0 such that y = u−1y′uy′−1. Then u′ =
y′uy′−1. The proposition is proved.

We now state a variant of the proposition above.

Proposition 17.14. Let S be an isolated stratum of G such that there exists some
non-zero cuspidal local system in S(S). Let s ∈ Ss and let δ be a connected com-
ponent of ZG(s). Then {u ∈ ZG(s) unipotent, u ∈ δ, su ∈ S} is a single ZG(s)0-
conjugacy class.

Let u, u′ be two unipotent elements of ZG(s) such that u ∈ δ, u′ ∈ δ, su ∈
S, su ∈ S. Let π′′ : G → Ḡ = G/Z0

G0 be the obvious homomorphism. Let
s̄ = π′′(s), ū = π′′(u), ū′ = π′′(u′), c = π′′(S). Then c is a cuspidal Ḡ0-conjugacy
class in Ḡ, s̄ is the semisimple part of some element of c, ū, ū′ are unipotent elements
in the same connected component of ZḠ(s̄), s̄ū ∈ c, s̄ū′ ∈ c. By Proposition
17.13 there exists x̄ ∈ ZḠ(s̄)0 such that ū′ = x̄ūx̄−1. As in the proof of Lemma
17.12, π′′ induces a surjective homomorphism ZG(s)0 → ZḠ(s̄)0. Thus we can
find x ∈ ZG(s)0 such that π′′(x) = x̄. We have xux−1 = u′z where z ∈ Z0

G0 .
Replacing u by xux−1 we can assume that u = u′z. Since u, u′ ∈ ZG(s)0, we have
z ∈ ZG(s)0 ∩ Z0

G0 . We now argue as in the proof of Lemma 17.12.
Assume first that p = 0. Then u′ ∈ G0 hence it commutes with z which is

semisimple. It follows that u = u′, z = 1.
Assume next that p > 0. Then u′ has finite order and normalizes H = ZG(s)0 ∩

Z0
G0 . Hence, if H ′ is the subgroup of G generated by H and u′, we see that H ′

contains H as a subgroup of finite index, a power of p. Since H is diagonalizable, it
follows that any two unipotent elements of H ′ in the same H-coset are H-conjugate.
In particular, the unipotent elements u, u′ of H ′ are H-conjugate. Thus, they are
ZG(s)0-conjugate. The proposition is proved.

18. A property of isolated elements

18.1. This section contains a characterization of isolated elements of G.
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Proposition 18.2. Let s ∈ G be semisimple and u ∈ G be unipotent such that
su = us. Then su is isolated in G if and only if s is isolated in G. Equivalently, we
have (ZZG(s)0∩ZG(u))0 = (ZG0∩ZG(su))0 if and only if Z0

ZG(s)0 = (ZG0∩ZG(s))0.

Clearly, if s is isolated in G, then su is isolated in G. The proof of the converse
is given in 18.3–18.12.

In 18.3–18.12, it is assumed that su is isolated in G.

18.3. In the setup of Proposition 18.2 assume that u ∈ G0. (This condition is
automatically satisfied if p = 0.) By assumption, we have u ∈ ZG0(s). The image
of u in ZG0(s)/ZG(s)0 is semisimple (by 17.4(a)) and unipotent hence is 1. Thus,
u ∈ ZG(s)0. It follows that (ZZG(s)0 ∩ ZG(u))0 = Z0

ZG(s)0 and (ZG0 ∩ ZG(su))0 =
(ZG0 ∩ZG(s))0. Hence the condition (ZZG(s)0 ∩ZG(u))0 = (ZG0 ∩ZG(su))0 implies
that Z0

ZG(s)0 = (ZG0 ∩ ZG(s))0. Thus s is isolated in G.

18.4. In the setup of Proposition 18.2 assume that G0 is semisimple, that s ∈ G0.
We show that s is isolated in G. We may assume that u is unipotent, quasi-
semisimple in ZG(s). Let Z = Z0

ZG(s)0 . Assume that Z 6= {1}. Let L = ZG0Z,
a Levi of a parabolic of G0. Since s ∈ G0, we have Z0

L = Z. Since su is quasi-
semisimple, we can find a Borel B and a maximal torus T of B that are normalized
by su. Since s ∈ G0, we have s ∈ T . Hence T ⊂ ZG(s)0 so that Z ⊂ T and T ⊂ L.
Let β = B ∩ L, a Borel of L. Let Π ⊂ V = Hom(T,k∗) ⊗Q be the set of simple
roots of G0 with respect to T,B (in particular, the corresponding root subgroups
are contained in UB). Let Q be the basis of V ∗ = Hom(k∗, T )⊗Q dual to Π. There
is a unique subset Q1 of Q which is a basis for the subspace V ∗1 = Hom(k∗,Z)⊗Q of
V ∗. Since Z 6= {1} we have V ∗1 6= 0 hence Q1 6= ∅. Now u normalizes ZG(s)0 hence
uZu−1 = Z, uLu−1 = u, uβu−1 = β. Hence the automorphism of V ∗1 induced by
Ad(u) preserves Q and Q1 and the sum of elements in Q1 is a non-zero Ad(u)-
invariant vector. Thus, Ad(u) : V ∗1 → V ∗1 has a non-zero fixed point set. It follows
that dim(Z ∩ ZG(u)) > 0 contradicting the assumption that su is isolated in G.
We have proved that Z = {1}. Hence s is isolated in G.

18.5. In the setup of Proposition 18.2 assume that G0 is semisimple, simply con-
nected and 17.6(a) holds. Since m in 17.6(a) is 1 or a prime number, we have three
cases:

(i) u ∈ G0, s /∈ G0 and 1 < m 6= p;
(ii) u /∈ G0, s ∈ G0 and 1 < m = p;
(iii) u ∈ G0, s ∈ G0 and 1 = m.

In cases (ii),(iii) we have s ∈ G0 hence by the argument in 18.4 we see that s is
isolated in G. In cases (i),(iii) we have u ∈ G0 hence by the argument in 18.3 we
see that s is isolated in G.

18.6. In the setup of Proposition 18.2 assume that G0 is semisimple, simply con-
nected and 17.7(a) holds. Let π : G → Ḡ be as in 17.7. Let s̄ = π(s), ū = π(u).
One checks that s̄ū is isolated in Ḡ. Applying 18.5 to Ḡ, s̄, ū instead of G, s, u we
see that Z0

ZḠ(s̄)0 = {1}. Hence Z0
ZG(s)0 = {1}. Thus s is isolated in G.

18.7. In the setup of Proposition 18.2 assume that G0 is semisimple, simply con-
nected and 17.8(a) holds. Let π : G̃ → G, x ∈ G̃ be as in 17.8. One checks
that x is isolated in G̃. Applying 18.6 to G̃, xs, xu instead of G, x, s we see that
Z0
ZG̃(s̃)0 = {1}. Hence Z0

ZG(s)0 = {1}. Thus s is isolated in G.
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18.8. In the setup of Proposition 18.2 assume that G0 is semisimple, simply con-
nected and 17.10(a) holds. Let a, b,Hij , G

′, Fk be as in 17.10. As in 17.10 we
see that sbua is isolated in G′. Applying 18.7 to G′, sb, ua instead of G, s, u we
see that Z0

ZG′ (s
b)0 = {1} that is Z0

ZH00 (sb)0 = {1}. Hence Z0
ZF0 (s)0 = {1}. Now

ukF0u
−k = Fk and since us = su, Ad(uk) is an isomorphism ZF0(s)0 ∼−→ ZFk(s)0

hence we have Z0
ZFk (s)0

∼= Z0
ZF0 (s)0 = {1}. Hence Z0

ZG(s)0 =
∏
i Z0

ZFi (s)
0 = {1}.

Thus s is isolated in G.

18.9. In the setup of 18.2 assume that G0 is semisimple, simply connected. We
show that s is isolated in G by induction on dimG. If dimG = 0 the result
is trivial. We now assume that dimG > 0. Assume first that G0 = G1 × G2

where Gi 6= {1} are connected, simply connected, normal in G. Let G′i, si, ui be
as in 17.11. Then siui = uisi is isolated in G′i. By the induction hypothesis we
have Z0

ZGi (si)
0 = {1} for i = 1, 2. Now ZG(s)0 = ZG1(s1)0 × ZG2(s2)0 hence

Z0
ZG(s)0 = Z0

ZG1 (s1)0 ×Z0
ZG2 (s2)0 = {1}. Thus s is isolated in G.

Next we assume that no decomposition G0 = G1 ×G2 as above exists. If p > 1,
then 18.8 shows that s is isolated in G. If p = 0 then 18.3 shows that s is isolated
in G. This completes the inductive proof.

18.10. In the setup of 18.2 assume that G0 is semisimple and that 17.12(a) holds.
Let π : G̃ → G, s̃, ũ be as in 17.12. We show that s̃ũ is isolated in G̃. Let
x ∈ (Z0

ZG̃(s̃)0 ∩ ZG̃(ũ))0. Then π(x) ∈ Z0
ZG(s)0 ∩ ZG(u). Indeed, the map π :

ZG̃(s̃)0 → ZG(s)0 is a surjective, finite covering of connected reductive groups
hence it restricts to a surjective map

(∗) Z0
ZG̃(s̃)0 → Z0

ZG(s)0 .

We see that π(x) ∈ (Z0
ZG(s)0 ∩ ZG(u))0. Hence π(x) ∈ (Z0

G0 ∩ ZG(u))0 and π(x) =
1. Hence x ∈ Kerπ, a finite group. It follows that x = 1 and s̃ũ is isolated in
G̃. Applying 18.9 to G̃, s̃, ũ instead of G, s, u, we see that Z0

ZG̃(s̃)0 = {1}. Let
y ∈ (ZZG(s)0)0. By the surjectivity of (∗) we have y = π(y′) where y′ ∈ Z0

ZG̃(s̃)0 .
Hence y′ = 1 and y = 1. We see that (ZZG(s)0)0 = {1}. Thus s is isolated in G.

Next we assume, in the setup of 18.2 that G0 is semisimple and G/G0 is cyclic.
Let π′ : G′ → G, x be as in 17.12. Then x is isolated in G′. By the argument above
applied to G′ instead of G we see that xs is isolated in G′. It follows immediately
that s is isolated in G.

18.11. In the setup of 18.2 assume that G0 is semisimple. Let G1 be the subgroup
of G generated by the connected component that contains su. Clearly, su is isolated
in G1. Applying 18.10 to G1, s, u instead of G, s, u we see that s is isolated in G1.
Hence s is isolated in G.

18.12. In the setup of 18.2 let π′ : G → Ḡ, s̄, ū be as in 17.12. Then the Ḡ0-
conjugacy class of s̄ū = ūs̄ is isolated in Ḡ. Applying 18.11 to Ḡ, s̄, ū instead of
G, s, u we see that s̄ is isolated in Ḡ. Using now 2.3(a) we see that s is isolated in
G. Proposition 18.2 is proved.
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19. Properties of cuspidal local systems

19.1. Let s ∈ G be semisimple and let c be a unipotent ZG(s)0-conjugacy class in
ZG(s). Assume that the unique G0-conjugacy class c that contains sc is isolated in
G. Let G1 = {g ∈ ZG0(s); gcg−1 = c} (a subgroup of ZG0(s) containing ZG(s)0).
Let c̃ be the variety of orbits for the ZG(s)0-action z : (y, u) 7→ (yz−1, zuz−1) on
G0 × c. Then (y, u) 7→ ysuy−1 is a finite principal covering π : c̃ → c with group
G1/ZG(s)0. Let f be a cuspidal local system on c. Let f̃ be the local system on c̃
whose inverse image under G0 × c→ c̃ is Q̄l � f. We show that

(a) π! f̃ is a cuspidal local system on c.
Since π! f̃ is clearly a G0-equivariant local system, it is enough to show that the
local system j∗π! f̃ on c is cuspidal relative to ZG(s) (here j : c → c is u 7→ su);
see 17.3(a). From the definitions we see that j∗π! f̃ ∼=

⊕
g1

Ad(g1)∗f where g1 runs
over a set of representatives for the ZG(s)0-cosets in G1. Clearly, each Ad(g1)∗f is
a cuspidal local system on c and (a) follows.

19.2. Let u ∈ G be unipotent, quasi-semisimple. Then ZG0(u) is connected.
(See [DM, 1.28].)

19.3. Let P be a parabolic of G0 and let x ∈ NGP, v ∈ UP , x′ = xv. We show that
(a) there exists v′ ∈ UP such that x′s = v′xsv

′−1, x′u = v′xuv
′−1 mod ZG(x′s)

0.
By 1.4(a) we can find Levi subgroups L.L′ of P such that xs ∈ NGL, x′s ∈ NGL′.
Applying the canonical projection p : NGP → NGP/UP to xsxuv = x′sx

′
u we obtain

p(xs)p(xu) = p(x′s)p(x
′
u). Using the uniqueness of the Jordan decomposition in

NGP/UP we get p(xs) = p(x′s). We can find v′ ∈ UP such that L′ = v′Lv′−1. Then
v′xsv

′−1, x′s are elements of NGL′ ∩NGP with the same image under p hence, by
1.26(a), we have v′xsv′−1 = x′s. We must show that x−1

u v′−1x′uv
′ ∈ ZG(xs)0. We

have x′u = v′x−1
s v′−1xsxuv hence x−1

u v′−1x′uv
′ = x−1

u x−1
s v′−1xsxuvv

′ ∈ UP since
x = xsxu ∈ NG(UP ). Since x−1

u v′−1x′uv
′ ∈ ZG(xs), we see that x−1

u v′−1x′uv
′ ∈

ZG(xs) ∩ UP ⊂ ZG(xs)0 (we use 1.11).

19.4. Let C be an isolated stratum ofG and let E ∈ S(C). We show that conditions
(i),(ii) below are equivalent.

(i) E is a cuspidal local system on C;
(ii) for any G0-conjugacy class c in C, E|c is a cuspidal local system on c.

Let P be a parabolic of G0 with P 6= G0 and let R be a UP -coset in NGP . By
19.3(a), the semisimple part of any element ofR is contained in a fixedG0-conjugacy
class. Hence R is contained in a union of finitely many G0-conjugacy classes. Hence
C∩R is contained in a union of finitely manyG0-conjugacy classes in C; this union is
necessarily disjoint (as a variety), by the definition of C. Thus, C∩R =

⊔n
i=1(ci∩R)

where ci areG0-conjugacy classes in C. Let d be the dimension of anyG0-conjugacy
class in C minus the dimension of the P/UP -conjugacy class of R/UP in NGP/UP .
If (ii) holds, then Hd

c (C ∩ R, E) =
⊕n

i=1H
d
c (ci ∩ R, E|ci) = 0 hence (i) holds.

Conversely, assume that (i) holds and c is a G0-conjugacy class in C. We must
show that Hd

c (c∩R, E|c) = 0 for R as above. We may assume that c∩R 6= ∅ hence
c = ci for some i. We have 0 = Hd

c (C ∩R, E) =
⊕n

i=1 H
d
c (ci ∩R, E|ci) hence each

Hd
c (ci ∩R, E|ci) is 0. In particular, Hd

c (c ∩R, E|c) = 0, as desired.

19.5. Let C be an isolated stratum of G. Let c be a G0-conjugacy class in C. Let F
be a G0-equivariant cuspidal local system on c. Let D be the connected component
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of G that contains C and let T = DZ0
G0 . Let L ∈ S(T ). Define π : T × c → C by

π(z, c) = zc. We show that
(a) π!(L� F) ∈ S(C) is a cuspidal local system.

Let Γ be the set of all z ∈ T such that zc = c (a finite group; see 1.23(a).) Then π
is a finite principal covering with group Γ. Hence π!(L�F) is a local system on C.
It is immediate that π!(L � F) ∈ S(C). We show that it is cuspidal. Let P be a
parabolic of G0 with P 6= G0 and let R be a UP -coset in NGP . Let d be dim c minus
the dimension of the P/UP -conjugacy class of R/UP in NGP/UP . We must show
that Hd

c (C ∩ R, π!(L � F)) = 0 or equivalently that Hd
c (π−1(C ∩ R),L � F) = 0.

Now π−1(C ∩ R) = {(z, c) ∈ T × c; zc ∈ R}. By 19.3(a), the semisimple part of
any element of R is contained in a fixed G0-conjugacy class. Hence for (z, c) ∈
π−1(C ∩R), (zc)s is contained in a fixed semisimple G0-conjugacy class hence zc is
contained in a union of finitely many G0-conjugacy classes, hence z can take only
finitely many values. Thus there exist z1, z2, . . . , zm in T × c such that

π−1(C ∩R) =
m⊔
i=1

{(zi, c); c ∈ c ∩ z−1
i R},

Hd
c (π−1(C ∩R),L� F) ∼=

m⊕
i=1

Lzi ⊗Hd
c (c ∩ z−1

i R,F) = 0.

This proves (a).

19.6. Let H be a connected algebraic group acting transitively on the variety X .
Assume that we are given Fq-rational structures on H,X compatible with the
action. Let F : H → H , F : X → X be the Frobenius maps. Let Υ be a set
of representatives for the isomorphism classes of irreducible H-equivariant local
systems F on X such that F ∗F ∼= F . For any F ∈ Υ we choose φ : F ∗F ∼−→ F .
Then χF ,φ : XF → Q̄l is a function constant on the orbits of HF , independent of
the choice of φ, up to a non-zero scalar.

Lemma 19.7. (χF ,φ)F∈Υ is a Q̄l-basis of the vector space of functions XF → Q̄l

that are constant on the orbits of HF .

A special case of this (when H is reductive and X is a unipotent conjugacy class
in H) is proved in [L3, V, §24, p. 140]. A similar proof works in the general case.
We can find x ∈ XF . Let Hx = {h ∈ H ;hx = x}. Associating to F ∈ Υ the
stalk Fx (an irreducible Hx-module, by the equivariance of F , on which Hx acts
through its finite quotient Γ = Hx/H

0
x) gives a bijection between Υ and a set Υ′

of representatives for the isomorphism classes of irreducible Q̄l[Γ]-modules V such
that there exists an isomorphism ιV : V → V with ιV γ = F−1(γ)ιV : V → V for
all γ ∈ Γ. (For V = Fx we may take ιV to be the isomorphism Fx → Fx induced
by φ.) Now F acts naturally on Γ and, according to [SS, 2.7],

(a) Hx → HF \XF , z 7→ HF − orbit of hx where h ∈ H,h−1F (h) = z−1

induces a bijection between the set of F -twisted conjugacy classes in Γ and the set
HF \XF of HF -orbits on XF .

Via this bijection, giving a function XF → Q̄l that is constant on HF -orbits
is the same as giving a function Γ → Q̄l that is constant on F -twisted conjugacy
classes in Γ. If F ∈ Υ and V = Fx, then the function χF ,φ : XF → Q̄l corresponds
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to the function

γ 7→ tr(Fhx
F (h)−1

−−−−−→ Fx
φ−→ Fx h−→ Fhx) = tr(Fx

F (h)−1h−−−−−→ Fx
φ−→ Fx)

= tr(ιV γ, V )

where h ∈ H is such that h−1F (h) ∈ Hx has image γ−1 in Γ. (We use the fact
that, for any h′ ∈ H, y ∈ X , the compositions

FF (y)
φ−→ Fy h′−→ Fh′y, FF (y)

F (h′)−−−→ FF (h′)F (y)
φ−→ Fh′y

coincide.) It is then enough to show that the functions γ 7→ tr(ιV γ, V ) (for various
V ∈ Υ′) form a basis for the vector space of functions Γ→ Q̄l that are constant on
F -twisted conjugacy classes. This follows from a variant of the Schur orthogonality
relations. (It also follows from 20.4(f) applied to the group algebra E = Q̄l[Γ]; in
this case all elements of Γ are effective, see 20.4.)

19.8. In the remainder of this section we assume that k is an algebraic closure of
a finite field Fq and that G has a fixed Fq-rational structure with Frobenius map
F : G→ G.

Let C be an isolated stratum of G such that F (C) = C. Let I be a set of
representatives for the isomorphism classes of irreducible local systems E in S(C)
such that F ∗E ∼= E ; for each E ∈ I we choose an isomorphism φ : F ∗E ∼−→ E . We
show that

(a) the functions χE,φ where E ∈ I form a basis of the vector space of functions
CF → Q̄l that are constant on the G0F -conjugacy classes in CF .

Let D be the connected component of G that contains C. Since I is a finite set,
we can find n ∈ N∗k such that

(∗) E ∈ I =⇒ E ∈ Sn(C), (see 5.2),
(∗∗) z ∈ DZ0

G0 , F (z) = z =⇒ zn = 1.
Applying Lemma 19.7 to the transitive action 5.2(a) (with n as above) of H =
DZ0

G0 ×G0 on C, we see that the functions χE,φ where E runs over the elements of
I that belong to Sn(C) (or equivalently, E runs over I, see (∗)) form a basis of the
vector space of functions CF → Q̄l that are constant on the HF -orbits in CF . By
(∗∗), the HF -orbits on CF are the same as the G0F -conjugacy classes in CF . This
proves (a).

19.9. For any isolated stratum C (resp. isolated G0-conjugacy class c) in G such
that F (C) = C (resp. F (c) = c) let CG0(C) (resp. CG0(c)) be the subspace of
the vector space of functions CF → Q̄l (resp. cF → Q̄l) spanned by the functions
χF ,ε where F runs through a set of representatives for the isomorphism classes
of irreducible cuspidal local systems on C (resp. on c) such that F ∗F ∼= F and
ε : F ∗F ∼−→ F is a fixed isomorphism. Clearly, the subspace CG0(C) (resp. CG0(c)) is
independent of choices. From 19.8(a) (resp. Lemma 19.7) we see that the functions
χF ,ε (as above) form a basis of CG0(C) (resp. CG0(c)): they are part of a basis of
the vector space of all functions CF → Q̄l (resp. cF → Q̄l) that are constant on
G0F -conjugacy classes. From the definitions we see that:

(a) if F is a (not necessarily irreducible) cuspidal local system on C (resp. c)
and ε : F ∗F → F is an isomorphism then χF ,ε belongs to CG0(C) (resp.
CG0(c)).
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19.10. Let C be an isolated stratum of G such that F (C) = C. For any G0-
conjugacy class c in C such that F (c) = c, f 7→ f |cF defines a linear map

(a) CG0(C)→ CG0(c).
(To see that this map is well defined, it is enough to show that, if F is a cuspidal
local system on C and ε : F ∗F → F is an isomorphism, then χF ,ε|cF ∈ CG0(c).
This follows from 19.4.) We now take the direct sum of the maps (a) where c runs
over the F -stable G0-conjugacy classes in C. We show that

(b) the resulting linear map CG0(C)→
⊕

c CG0(c) is an isomorphism.

It is obvious that this map is injective. To show that it is surjective it is enough to
verify the following statement:

for any F -stable G0-conjugacy class c in C, any cuspidal local system F
on c and any isomorphism F ∗F → F , there exists f ∈ CG0(C) such that
f |cF = χF ,ε and f |c′F = 0 for any F -stable G0-conjugacy class c′ in C with
c′ 6= c.

Let D be the connected component of G that contains C. Let T = DZ0
G0 . Let J

be a set of representatives for the isomorphism classes of local systems L of rank
1 in S(T ) such that F ∗L ∼= L. For each L ∈ J there is a unique isomorphism
φL : F ∗L → L which induces the identity map on the stalk of L at 1. Then
θL = χL,φL is a character TF → Q̄∗l and L 7→ θL is a bijection J ∼−→ Hom(TF , Q̄∗l ).
Define π : T × c → C by π(z, c) = zc. For any L ∈ J , π!(L � F) is naturally
isomorphic with its inverse image under F (using φL� ε); let χπ!(L�F),? : CF → Q̄l

be the corresponding characteristic function. From 19.5(a) we see that χπ!(L�F),? ∈
CG0(C). From the definitions we have

χπ!(L�F),?(x) =
∑

z∈TF ,c∈cF ;zc=x

θL(z)χF ,ε(c)

for x ∈ CF . Let f =
∑
L∈J χπ!(L�F),? ∈ CG0(C). For x ∈ CF we have

f(x) =
∑

z∈TF ,c∈cF ;zc=x

∑
L∈J

θL(z)χF ,ε(c) =
∑

z∈TF ,c∈cF ;zc=x

|TF |δz,1χF ,ε(c).

Thus f(x) = |TF |χF ,ε(x) if x ∈ cF and f(x) = 0 if x ∈ CF − cF . This completes
the proof of (b).

19.11. If E is the set of unipotent quasi-semisimple elements in some F -stable
connected component of G that contains unipotent elements then EF is a single
G0F -conjugacy class.

This follows from the fact that E is a homogeneous G0-space (see 1.9(a)) defined
over Fq in which the isotropy group of any point is connected (see 19.2).

19.12. Let c be a cuspidal G0-conjugacy class in G. Let c• = σG(x) for any x ∈ c;
this is the set of all quasi-semisimple elements g ∈ G such that for some x ∈ c we
have xs = gs, xu ∈ ZG(gs)0gu. Let Z be the set of all pairs (s, c) where s ∈ G
is semisimple and c is a connected component of ZG(s) such that there exists a
unipotent element u ∈ ZG(s) with su ∈ c, u ∈ c. We have a diagram

c a−→ Z
b←− c•
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where a(x) = (xs, ZG(xs)0xu), b(g) = (gs, ZG(gs)0gu). Now G0 acts transitively on
c, Z, c• compatibly with a, b. For any y ∈ G let

HG0(y) = {h ∈ G0;hysh−1 = ys, hyuh
−1 ∈ ZG(ys)0yu},

a closed subgroup of ZG0(ys) containing ZG(ys)0.
(a) Let x ∈ c, g ∈ c• be such that a(x) = b(g). Let H = HG0(x) = HG0(g)

(the stabilizer of a(x) = b(g) in G0). The map ZG0(x)/ZG0(x)0 → H/H0

induced by a is surjective and the map ZG0(g)/ZG0(g)0 → H/H0 induced
by b is an isomorphism.

We have a(x) = b(g) = (xs, ZG(xs)0xu) = (gs, ZG(gs)0gu). Let h ∈ H . Then
x, hxh−1 are elements of c with the same semisimple part xs and their unipotent
parts are contained in the same connected component of ZG(xs). By Proposition
17.13, there exists z ∈ ZG(xs)0 such that hxuh−1 = zxuz

−1. Thus, h = zh1 where
h1 ∈ ZG0(x). We see that H = ZG(xs)0ZG0(x). This proves the first assertion of
(a).

If h ∈ H , then gu, hguh
−1 are unipotent quasi-semisimple elements of ZG(gs)

contained in the same connected component of ZG(gs) hence, by Proposition 17.13,
there exists z ∈ ZG(gs)0 such that hguh−1 = zguz

−1. Thus, h = zh1 where h1 ∈
ZG0(g). We see that H = ZG(gs)0ZG0(g). This shows that b induces a surjective
map ZG0(g)/ZG0(g)0 ∼−→ H/H0 and that the group of components of H is the same
as the group of components of ZG0(g)/(ZG0(g) ∩ ZG(gs)0) = ZG0(g)/ZZG(gs)0(gu)
which (by the connectedness of ZZG(gs)0(gu), see 19.2) is the same as the group of
components of ZG0(g). Thus, the surjective map ZG0(g)/ZG0(g)0 ∼−→ H/H0 must
be an isomorphism. This proves (a).

19.13. In the setup of 19.12, let L be an irreducible G0-equivariant local system
on Z. Since H/H0 = ZG0(g)/ZG0(g)0 (see 19.12(a)) is commutative (see 17.4(a)),
L has rank 1. Let L̃ = a∗L, a local system of rank 1 on c. We show that

(a) if F is a cuspidal local system on c, then F ⊗ L̃ is a cuspidal local system
on c.

Let P be a parabolic of G0 with P 6= G0 and let x ∈ c∩NGP . Let d be dim c minus
the dimension of the P/UP -conjugacy class of xUP in NGP/UP . We must show
that Hd

c (c ∩ xUP ,F ⊗ L̃) = 0. By our assumption we have Hd
c (c ∩ xUP ,F) = 0.

Hence it is enough to show that L̃|c∩xUP ∼= Q̄l. Since L̃ = a∗L, it is enough to
show that there exists a subvariety V of Z such that

(b) a(c ∩ xUP ) ⊂ V , L|V ∼= Q̄l.
Let V be the UP -orbit of a(x) in Z (for the restriction of the G0-action to UP ).
For this V the first assertion of (b) holds by 19.3(a). We now show that for this V ,
the second assertion of (b) holds. It is enough to note that L|V is a UP -equivariant
local system of rank 1 on the homogeneous UP -space V in which the isotropy group
of a(x), that is, UP ∩ZG(xs) is connected (we use that xs normalizes UP , see 1.11).
Thus (b), hence also (a), are proved.

19.14. We now assume that F (c) = c. Then Z and c are defined over Fq and we
denote again by F the corresponding Frobenius maps.

(a) The map a0 : ZF → cF (restriction of a : Z → c) is surjective; the map
b0 : ZF → cF• (restriction of b : Z → c•) induces a bijection on the sets of
G0F -orbits.
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This follows immediately from 19.12(a) and 19.7(a). We have a partition cF• =
⊔
γ

where γ runs over the G0F -orbits on cF• . For any γ we set ZFγ = b−1
0 (γ), cFγ =

a0(ZFγ ). From (a) we see that ZF =
⊔
γ Z

F
γ is the partition of ZF into G0F -orbits

and that cF =
⊔
γ cFγ is a partition of cF into non-empty G0F -stable subsets.

Let f ∈ CG0(c) and let γ be a G0F -orbit on cF• . Define fγ : cF → Q̄l by
fγ(x) = 1 if γ ∈ cFγ , fγ(x) = 0 if γ ∈ cF − cFγ . We show that

(b) fγf ∈ CG0(c).

We may assume that f = χF ,ε where F is a cuspidal local system on c and ε :
F ∗F ∼−→ F is an isomorphism. Define f̃γ : ZF → Q̄l by f̃γ(z) = 1 if z ∈ ZFγ , f̃γ(z) =
0 if z ∈ ZF − ZFγ . By Lemma 19.7 applied to the homogeneous G0-space Z, there
exist irreducible G0-equivariant local systems Li, (i ∈ [1,m] on Z and isomorphisms
ei : F ∗Li ∼−→ Li such that f̃γ =

∑
i∈[1,m] ciχLi,ei where ci ∈ Q̄l. Each Li has rank

1. Composing with a0 : cF → ZF we obtain f̃γ ◦ a0 =
∑
i∈[1,m] ciχLi,ei ◦ a0, that

is fγ =
∑

i∈[1,m] ciχL̃i,ẽi where L̃i = a∗Li and ẽi : F ∗L̃i ∼−→ L̃i is induced by ei.
Hence

fγf =
∑

i∈[1,m]

ciχL̃i,ẽiχF ,ε =
∑

i∈[1,m]

ciχF⊗L̃i,ε⊗ẽi .

Using 19.13(a), we see that this belongs to CG0(c). This proves (b).
For any G0F -orbit γ on cF• we set

CG0,γ(c) = {f ∈ CG0(c); f = 0 on cF − cFγ }.
From (b) we see that

(c) CG0(c) =
⊕
γ

CG0,γ(c).

19.15. We now fix g ∈ cF• . We set s = gs. Let

c = {u ∈ ZG(s)0gu;u unipotent, su ∈ c}.
From the definitions we see that c 6= ∅ and from 17.13 we see that c is a single
(unipotent) ZG(s)0-conjugacy class in ZG(s). We have F (c) = c and c carries some
non-zero cuspidal local system (see 17.3(a)). Define CZG(s)0(c) in terms of ZG(s), c
in the same way as CG0(c) was defined in terms of G, c. For any f ∈ CG0(c) we
define f̄ : cF → Q̄l by f̄(u) = f(su). We claim that

f̄ ∈ CZG(s)0(c).

We may assume that f = χF ,ε where F is a cuspidal local system on c and ε :
F ∗F ∼−→ F is an isomorphism. Let F ′ = j∗F where j : c → c, u 7→ su and let
ε′ : F ∗F ′ ∼−→ F ′ be the isomorphism induced by ε. By 17.3(a), F ′ is a cuspidal local
system on c and by 19.9(a) applied to c instead of c we see that χF ′,ε′ ∈ CZG(s)0(c).
Clearly, χF ′,ε′ = f̄ and our claim is verified.

From 17.13 it follows that cF is stable under conjugation by HG0(g)F . It is clear
that for f, f̄ as above, f̄ is constant on any HG0(g)F -conjugacy class in cF . Thus
we have a well-defined linear map

(a) CG0(c)→ CHG0 (g)(c), f 7→ f̄

where CHG0(g)(c) is the space of functions in CZG(s)0(c) that are constant on any
HG0(g)F -conjugacy class in cF .
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We show that the map (a) is surjective. Now CHG0 (g)(c) is spanned by functions
f ′ : cF → Q̄l of the form

f ′(u) = |ZG(s)0F |−1
∑

y∈HG0 (g)F

χf,ε(y−1uy)

where f is a cuspidal local system on c and ε : F ∗f ∼−→ f is an isomorphism. It is
enough to show that any such f ′ is in the image of the map (a). Let π : c̃→ c, f̃ be
as in 19.1. Now ε induces an isomorphism ε̃ : F ∗π! f̃→ π! f̃. Let f = χπ! f̃,ε̃

: cF → Q̄l.
Since π! f̃ is a cuspidal local system on c (see 19.1(a)) we see that f ∈ CG0(c). From
the definitions we have

f̄(u) = f(su) = |ZG(s)0F |−1
∑

y∈G0F ,u′∈cF ;ysu′y−1=su

χf,ε(u′)

for u ∈ cF . For each y, u′ in the sum we have y ∈ ZG0(s)F and yu′y−1 = u hence
y ∈ HG0(g)F , u′ = y−1uy; hence

f̄(u) = |ZG(s)0F |−1
∑

y∈HG0(g)F

χf,ε(y−1uy).

We see that f̄ = f ′. Thus the surjectivity of the map (a) is established.
Next we note that, if γ′ is a G0F -orbit on cF• that does not contain g, then

the restriction of the map (a) to CG0,γ′(c) is 0. Using this and the direct sum
decomposition 19.14(c) we deduce that, if γ is the G0F -orbit on cF• that contains
g, then (a) restricts to a surjective linear map

(b) CG0,γ(c)→ CHG0 (g)(c).

We show that this map is injective. Let f, f ′ ∈ CG0,γ(c) be such that f(su) = f ′(su)
for any u ∈ cF . Since cFγ = {ysuy−1; y ∈ G0F , u ∈ cF } and f, f ′ are constant on
G0F -conjugacy classes it follows that f = f ′ on cFγ . Since f, f ′ are 0 on cF − cFγ it
follows that f = f ′, as desired. We see that

(c) the map (b) is an isomorphism.

20. Twisted group algebras

20.1. Let Γ be a finite group. Let E be a finite dimensional Q̄l-vector space with a
direct sum decomposition E =

⊕
w∈Γ Ew with dim Ew = 1 for all w. Assume that

on E we are given an associative algebra structure with 1 such that EwEy = Ewy

for any w, y ∈ Γ. Then 1 ∈ E1−{0}. We choose a basis {bw;w ∈ Γ} of E such that
bw ∈ Ew for all w. Each bw is invertible. We have bwby = λ(w, y)bwy, b−1

y b−1
w =

λ(w, y)−1b−1
wy with λ(w, y) ∈ Q̄∗l for any w, y ∈ Γ. We show that

(a) the algebra E is semisimple.
Let M be a finite dimensional E-module and let M ′ be an E-submodule of M .
We must show that there exists an E-submodule of M complementary to M ′. Let
π : M → M ′ be a Q̄l-linear map such that π(m′) = m′ for all m′ ∈ M ′. Define a
Q̄l-linear map π̃ : M → M ′ by π̃(m) = |Γ|−1

∑
w∈Γ b

−1
w π(bwm). For m′ ∈ M ′ we

have π̃(m′) = |Γ|−1
∑
w∈Γ b

−1
w bwm

′ = m′. We show that π̃ is E-linear. It is enough
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to show that b−1
y π̃(bym) = π̃(m) for m ∈M , y ∈ Γ. We have

|Γ|b−1
y π̃(bym) = b−1

y

∑
w

b−1
w π(bwbym) =

∑
w

b−1
y b−1

w π(λ(w, y)bwym)

=
∑
w

λ(w, y)−1b−1
wyπ(λ(w, y)bwym) =

∑
w

b−1
wyπ(bwym) = |Γ|π̃(m),

as desired. Now Kerπ̃ is an E-submodule of M complementary to M ′. This proves
(a).

20.2. Let V, V ′ be two simple E-modules. Let t : V → V, t′ : V ′ → V ′ be Q̄l-linear
maps. Let N = |Γ|−1

∑
w∈Γ tr(bwt, V )tr(t′b−1

w , V ′). We show that
(a) N = 0 if V, V ′ are not isomorphic E-modules and N = tr(tt′, V )/ dimV if

V = V ′.
In the case where λ(w, y) = 1 for all w, y this is just Schur’s orthogonality

formula. The proof in the general case is similar. Let (ei)i∈I be a basis of V and
let (e′h)h∈I′ be a basis of V ′. For w ∈ Γ we define αwij , β

w
hk ∈ Q̄l by bw(ei) =∑

j∈I α
w
ijej , b

−1
w (e′h) =

∑
k∈I′ β

w
hke
′
k. Define ξij , ζhk ∈ Q̄l by t(ei) =

∑
j∈I ξijej,

t′(e′h) =
∑
k∈I′ ζhke

′
k. We have

(b) N = |Γ|−1
∑
w∈Γ

∑
i,j,k,h

ξijα
w
jiζhkβ

w
kh.

For a Q̄l-linear map f : V → V ′ we define f̃ : V → V ′ by f̃(v) =
∑
w∈Γ b

−1
w f(bwv).

As in the proof of 20.1(a) we see that f̃ is E-linear. For i ∈ I, h ∈ I ′ define a linear
map f : V → V ′ by f(ej) = δije

′
h for all j. We have

f̃(eu) =
∑
w

b−1
w f(bweu) =

∑
w

b−1
w f(

∑
j

αwujej) =
∑
w

b−1
w

∑
j

αwujδije
′
h

=
∑
w

αwuib
−1
w e′h =

∑
w,k

αwuiβ
w
hke
′
k.

If V, V ′ are not isomorphic E-modules, then, by Schur’s lemma, we have f̃ = 0
hence

∑
w α

w
uiβ

w
hk = 0 for any u, i, h, k and N = 0 as desired. Assume now that

V = V ′. We may assume that I = I ′, ei = e′i. If f, f̃ are as above then, by Schur’s
lemma, f̃ is a multiple of 1. Since tr(f̃ , V ) = |Γ|tr(f, V ) = |Γ|tr(f, V ) = δih|Γ|, we
have f̃ = δih|Γ|n−11 where n = dimV . Hence

∑
w α

w
uiβ

w
hk = δihδuk|Γ|n−1 for any

u, i, h, k and

N =
∑
i,j,k,h

ξijδikδjhζhkn
−1 =

∑
i,j

ξijζjin
−1 = tr(tt′, V )n−1,

as desired.

20.3. Since E is semisimple, we have an algebra isomorphism
(a) E→

⊕r̃
i=1 End(Vi),

e 7→ (fei ) where fei : Vi → Vi takes v to ev; here Vi, (i ∈ [1, r̃]) is a set of represen-
tatives for the isomorphism classes of simple E-modules.

Let ι : E → E be an algebra automorphism. We may assume that for i ∈ [1, r]
the following property holds:

(∗) there exists a Q̄l-linear isomorphism ιi : Vi → Vi such that ιi(ev) = ι(e)ιi(v)
for all e ∈ E, v ∈ V
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and that for i > r this property does not hold. We choose for each i ∈ [1, r] an
isomorphism ιi : Vi → Vi as above (it is unique up to a non-zero scalar). We show
that, for any w,w′ in Γ,

(b)
∑r

i=1 tr(bwιi, Vi)tr(ι−1
i b−1

w′ , Vi) is equal to the trace of the linear map κ :
E→ E, e 7→ b−1

w′ ι
−1(e)bw.

Let τ :
⊕r̃

i=1 End(Vi) →
⊕r̃

i=1 End(Vi) be the linear map which corresponds to
κ : E → E under the isomorphism (a). For i ∈ [1, r], τ restricts to a linear map
τi : End(Vi) → End(Vi), while for i > r, τ maps the summand End(Vi) to a
different summand. Hence tr(κ,E) =

∑r
i=1 tr(τi,End(Vi)). For i ∈ [1, k], τi takes

f ∈ End(Vi) to v 7→ b−1
w′ ι
−1
i (f(ιi(bwv))) hence

tr(τi,End(Vi)) = tr(b−1
w′ ι
−1
i , Vi)tr(ιibw, Vi);

(b) follows.

20.4. We now assume that ι : E → E in 20.3 satisfies ι(Ew) = EF−1(w) for all w,
where F : Γ→ Γ is a group isomorphism. For x ∈ Γ, let Γx = {y ∈ Γ;F (y)xy−1 =
x}; we define γx : Γx → Q̄∗l by ι−1(by)bx = γx(y)bxby. We show that γx is a group
homomorphism. Let z, z′ ∈ Γx. We have bzbz′ = ubzz′ with u ∈ Q̄∗l . We have

ι−1(bzz′)bx = u−1ι−1(bzbz′)bx = u−1ι−1(bz)γx(z′)bxbz′

= u−1γx(z′)ι−1(bz)bxbz′ = u−1γx(z′)γx(z)bxbzbz′ = γx(z′)γx(z)bxbzz′

hence γx(zz′) = γx(z′)γx(z), as desired.
An element x ∈ Γ is said to be effective if γx is identically 1. For x, y ∈ Γ, z ∈ Γx

we have yzy−1 ∈ ΓF (y)xy−1 and γx(z) = γF (y)xy−1(yzy−1). It follows that the set
of effective elements in Γ is a union of F -twisted conjugacy classes. We say that an
F -twisted conjugacy class in Γ is effective if some/any element of it is effective.

(a) If an F -twisted conjugacy class C is not effective, then for i ∈ [1, r] and
x ∈ C we have tr(ιibx, Vi) = 0.

Indeed, we can find y ∈ Γx such that γx(y) 6= 1. We have

tr(ιibx, Vi) = tr(b−1
y ιibxby, Vi) = γx(y)−1tr(b−1

y ιiι
−1(by)bx, Vi)

= γx(y)−1tr(ιibx, Vi).

Thus (1− γx(y)−1)tr(ιibx, Vi) = 0 and tr(ιibx, Vi) = 0 as claimed.

(b) If i, j ∈ [1, r], then x 7→ tr(bxιi, Vi)tr(ι−1
j b−1

x , Vj) is constant on any F -
twisted conjugacy class.

Indeed let y ∈ Γ. We have bF (y)xy−1 = cι−1(by)bxb−1
y for some c ∈ Q̄∗l . Hence

tr(bF (y)xy−1ιi, Vi)tr(ι−1
j b−1

F (y)xy−1, Vj)

= tr(cι−1(by)bxb−1
y ιi, Vi)tr(ι−1

j c−1byb
−1
x ι−1(by)−1, Vj)

= tr(ι−1(by)bxιiι−1(by)−1, Vi)tr(ι−1(by)ι−1
j b−1

x ι−1(by)−1, Vj)

= tr(bxιi, Vi)tr(ι−1
j b−1

x , Vj)

and (b) follows.
Let Γ̄ be a set of representatives for the effective F -twisted conjugacy classes in

Γ. We rewrite 20.2(a) for V = Vi, V
′ = Vj , t = ιi, t

′ = ι−1
j where i, j ∈ [1, r], taking
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into account (a),(b):

(c)
∑
x∈Γ̄

|Γx|−1tr(bxιi, Vi)tr(ι−1
j b−1

x , Vj) = δij .

We rewrite 20.3(b) for w,w′ ∈ Γ̄ as follows

(d)
r∑
i=1

tr(bwιi, Vi)tr(ι−1
i b−1

w′ , Vi) = δw,w′|Γw|.

Indeed, it is enough to show that the trace of κ in 20.3(b) is in our case δw,w′ |Γw|.
Now that trace is

∑
y∈Γ;w′−1F (y)w=y cy where cy ∈ Q̄∗l is defined by b−1

w′ ι
−1(by)bw =

cyby. If w′ 6= w, the last sum is empty so its value is 0. If w′ = w, the last sum is∑
y∈Γw

γw(y) and this equals |Γw| since γw is identically 1.
(e) The matrix (tr(bxιi, Vi))i∈[1,r],x∈Γ̄ is square and invertible.

Indeed, from (c),(d) we see that this matrix has a left inverse and a right inverse.
The same argument shows that

(f) the matrix (tr(ι−1
i b−1

x , Vi))i∈[1,r],x∈Γ̄ is square and invertible.
In particular,

(g) |Γ̄| = r.

21. Bases

21.1. If L is a Levi of a parabolic of G0, let N•GL be the set of all g ∈ NGL such
that for some parabolic P of G0 with Levi L we have g ∈ NGP . Then N•GL is a
union of connected components of NGL.

Let AG be the set of all pairs (L, c) where L is a Levi subgroup of some parabolic
of G0 and c is a unipotent cuspidal L-conjugacy class in N•GL.

Let Gun be the set of unipotent elements in G.

21.2. Let L be a Levi of a parabolic P of G0 and let g ∈ L̃ = NGL ∩NGP . Then
(a) g is quasi-semisimple in G if and only if g is quasi-semisimple in L̃.

See [DM, 1.10].

21.3. For a fixed g ∈ G, let R be the set of all L such that L is a Levi of a parabolic
of G0, g ∈ N•GL and g is isolated in NGL; let R′ be the set of all L such that L is
a Levi of a parabolic of ZG(gs)0 and g ∈ N•ZG(gs)

L. We show that

(a) L 7→ a(L) = L ∩ ZG(gs)0, L 7→ b(L) = ZG0((Z0
L ∩ ZG(g))0) define inverse

bijections R↔ R′.
Let L ∈ R′. Set L = b(L). Then L is a Levi of a parabolic of G0. Clearly, g ∈ NGL.
If χ : k∗ → (Z0

L ∩ ZG(g))0 is general enough, then

ZZG(gs)0(χ(k∗)) = ZZG(gs)0(Z0
L ∩ ZG(g))0 = L

(see 1.10) and
ZG0(χ(k∗)) = ZG0(Z0

L ∩ ZG(g))0 = L.

Then L is a Levi of the parabolic P = Pχ (see 1.16). We have gχ(t)g−1 = χ(t) for
all t ∈ k∗, hence gPg−1 = P . Thus g ∈ N•GL. We have

L ∩ ZG(gs)0 = ZG0(χ(k∗)) ∩ ZG(gs)0 = ZZG(gs)0(χ(k∗)) = L.

From L = ZG(gs)0 ∩ L we see that L = ZL(gs)0. Hence Z0
ZL(gs)0 = Z0

L,

TNGL(g) = (Z0
ZL(gs)0 ∩ ZG(g))0 = (Z0

L ∩ ZG(g))0 ⊂ Z0
L.
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By 2.2(ii), we see that g is isolated in NGL. Hence L ∈ R and b is well defined.
Conversely, let L ∈ R. Set L = a(L). Let P be a parabolic of G0 with Levi L

such that g ∈ NGL ∩ NGP . Let Q = P ∩ ZG(gs)0. By 1.12, Q is a parabolic of
ZG(gs)0 with Levi L. Clearly, g ∈ ZG(gs) normalizes L and Q. Hence L ∈ R′ and
a is well defined. Since g is isolated in NGL, we have (see 2.2(iii))

(Z0
L ∩ ZG(g))0 = TNGL(g) = (Z0

ZL(gs)0 ∩ ZG(g))0 = (Z0
L ∩ ZG(g))0

hence (using 1.10)

L = ZG0((Z0
L ∩ ZG(g))0) = ZG0((Z0

L ∩ ZG(g))0) = b(L) = ba(L).

Thus, ba = 1. As we have seen above, for L ∈ R′ we have ab(L) = L. This proves
(a).

21.4. In the remainder of this section we assume that k is an algebraic closure of
a finite field Fq and that G has a fixed Fq-rational structure with Frobenius map
F : G→ G.

Let R be the set of all triples (g, L, c) where g ∈ GF is quasi-semisimple, L is
a Levi of a parabolic of G0, F (L) = L, c is a cuspidal L-conjugacy class in NGL
such that F (c) = c, c ⊂ N•GL and g ∈ σNGL(c).

Let R′ be the set of all triples (g, L, c) where g ∈ GF is quasi-semisimple, L
is a Levi of a parabolic of ZG(gs)0, F (L) = L, and c is a unipotent cuspidal L-
conjugacy class in NZG(gs)L such that F (c) = c, c ⊂ guL, c ⊂ N•ZG(gs)

L (we have
automatically g ∈ NZG(gs)L). Define ã : R→ R′ by

(a) (g, L, c) 7→ (g, L, c), L = a(L), c = {u ∈ guL;u unipotent,gsu ∈ c}.
To see that (g, L, c) ∈ R′ we note that c is a single L-conjugacy class, by Proposition
17.13 applied toNGL instead ofG; also from 20.7(a) we have g ∈ N•ZG(gs)

L, c ⊂ guL,
hence c ⊂ N•ZG(gs)

L.

Define b̃ : R′ →R by
(b) (g, L, c) 7→ (g, L, c), L = b(L), c =

⋃
l∈L lgscl

−1.
To see that (g, L, c) ∈ R we note that there exists x ∈ c with xs = gs, xu ∈
ZL(gs)0gu and that g is isolated in NGL, g ∈ N•GL (see 20.7(a)); it follows that
g ∈ σNGL(c) and that c is isolated in NGL, c ∈ N•GL (we apply Lemma 2.5 with
NGL instead of G to g and x as above).

From the definition we see that
(c) the maps (a),(b) are inverse bijections R↔ R′.

21.5. Assume that (g, L, c) ∈ R, (g, L, c) ∈ R correspond to each other under the
bijections 20.8(c). Let 〈g〉 =

⋃
l∈LF lgl

−1. Let

G = {y ∈ ZG0(gs)F ; yLy−1 = L, ycy−1 = c},
G′ = {y ∈ G0F , yLy−1 = L, ycy−1 = c, y〈g〉y−1 = 〈g〉}.

We show that
(a) G′ = LFG.

Let y ∈ G. Since c ⊂ guL and yLy−1 = L, ycy−1 = c, we have c ⊂ yguy−1L. Hence
yguy

−1, gu are two F -stable, unipotent quasi-semisimple elements of NGL in the
same connected component of NGL. Using 19.11 we have yguy−1 = lgul

−1 for some
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l ∈ LF . We have L = ZG0((Z0
L ∩ ZG(g))0) = ZG0((Z0

L ∩ ZG(gu))0). Hence

yLy−1 = ZG0((Z0
yLy−1 ∩ ZG(yguy−1))0)

= ZG0((Z0
L ∩ ZG(lgul−1))0) = ZG0((Z0

L ∩ ZG(gu))0) = L.

Since c =
⋃
l′∈L l

′gscl
′−1, we see that ycy−1 = c. We have ygy−1 = ygsy

−1yguy
−1

= gslgul
−1 = lgl−1 ∈ 〈g〉. Hence y〈g〉y−1 = 〈g〉. We see that y ∈ G′. Thus,

G ⊂ G′. The inclusion LF ⊂ G′ is obvious. Hence LFG ⊂ G′. Conversely, let
y ∈ G′. Then y = l′y′ where l′ ∈ LF , y′ ∈ G′, y′gy′−1 = g. We have y′Ly′−1 = L
hence y′Ly′−1 = L. We have y′cy′−1 = c, y′(guL)y′−1 = guL hence y′cy′−1 = c.
Thus y′ ∈ G and (a) holds.

21.6. Let (L, S) ∈ A and let E ∈ S(S) be an irreducible cuspidal local system on S
(relative to NGL). Let Y = YL,S , Ỹ = ỸL,S , π : Ỹ → Y be as in 3.13. Let Ẽ be the
local system on Ỹ defined in 5.6. Let Γ̃ = {n ∈ NG0L;nSn−1 = S,Ad(n)∗E ∼= E}
and let Γ = Γ̃/L. Let K = IC(Ȳ , π!Ẽ). Assume that FL = L,FS = S, F ∗E ∼= E .
Now F : G→ G induces isomorphisms F : Γ̃→ Γ̃, F : Γ→ Γ.

For any n ∈ Γ̃F there is a well-defined element η(n) ∈ Q̄∗l such that the fol-
lowing holds: if α : Ad(n)∗E → E , ε : F ∗E → E are isomorphisms, then for any
g ∈ S, the composition EnF (g)n−1

α−→ EF (g)
ε−→ Eg is η(n) times the composition

EnF (g)n−1
ε−→ Engn−1

α−→ Eg. (This follows from the irreducibility of E and Schur’s
lemma.) Clearly, η(n) is independent of the choice of α, ε. It follows that, if
g ∈ SF , then the composition Engn−1

α−→ Eg ε−→ Eg is η(n) times the composition
Engn−1

ε−→ Engn−1
α−→ Eg. Hence χE,ε(g) = η(n)χE,ε(ngn−1). This property charac-

terizes η(n) since SF 6= ∅. Since χE,ε is constant on LF -conjugacy classes in SF ,
it follows that η induces a homomorphism Γ̃F /LF = (Γ̃/L)F = ΓF → Q̄∗l . We say
that (L, S, E) is effective if the associated homomorphism η : ΓF → Q̄∗l is identically
1. (In this case we have χE,ε(ngn−1) = χE,ε(g) for any g ∈ SF , n ∈ Γ̃F .)

We fix an isomorphism ε : F ∗E ∼−→ E . Now F induces Frobenius maps on Y, Ỹ , Ȳ .
Also, ε induces an isomorphism F ∗Ẽ ∼−→ Ẽ of local systems on Ỹ , an isomorphism
F ∗π!Ẽ ∼−→ π!Ẽ of local systems on Y and an isomorphism φ : F ∗K ∼−→ K in D(Ȳ ).
As in 7.10, let E = End(π!Ẽ) =

⊕
w∈Γ Ew. Let bw be a basis element of Ew. Then

E,Ew, bw are as in 20.1. As in 20.3, let Vi, (i ∈ [1, r̃]) be a set of representatives for
the isomorphism classes of simple E-modules. We have canonically E = End(K).
For i ∈ [1, r̃] let (π!Ẽ)i = HomE(Vi, π!Ẽ), Ki = HomE(Vi,K). Then (π!Ẽ)i is an
irreducible local system on Y and Ki = IC(Ȳ , (π!Ẽ)i). Also, (π!Ẽ)i 6∼= (π!Ẽ)i′ for
i 6= i′. We have canonically π!Ẽ =

⊕
i∈[1,r̃] Vi ⊗ (π!Ẽ)i and K =

⊕
i∈[1,r̃] Vi ⊗ Ki.

For f ∈ Hom(π!Ẽ , π!Ẽ) we have

F ∗(f) ∈ Hom(F ∗π!Ẽ , F ∗π!Ẽ) = Hom(π!F
∗Ẽ , π!F

∗Ẽ) = Hom(π!Ẽ , π!Ẽ)

where the last equality is obtained by using twice the isomorphism F ∗Ẽ → Ẽ
as above. Hence we have a map ι : E → E, f 7→ F ∗(f) which is an algebra
isomorphism; it carries Ew onto EF−1(w) for any w ∈ Γ. As in 20.3 we may assume
that for i ∈ [1, r], property 20.3(∗) holds and that for i > r that property does not
hold. For i ∈ [1, r] we choose an isomorphism ιi : Vi → Vi as in 20.3(∗). For any
w ∈ Γ, the isomorphism bwφ : F ∗K ∼−→ K corresponds under K =

⊕
i∈[1,r̃] Vi⊗Ki to

an isomorphism
(a)

⊕
i∈[1,r̃] Vi ⊗ F ∗Ki →

⊕
i∈[1,r̃] Vi ⊗ Ki
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which is an isomorphism of the summand Vi ⊗ F ∗Ki onto a summand Vi′ ⊗ Ki′

where i′ = i for i ∈ [1, r] and i′ 6= i for i > r; moreover, the restriction of (a) to
Vi⊗F ∗Ki, i ∈ [1, r], is of the form bwιi⊗φi where φi : F ∗Ki

∼−→ Ki is an isomorphism
independent of w. (Note that F ∗Ki 6∼= Ki for i > r.) Taking induced maps on stalks
and taking traces we obtain for any j ∈ Z, g ∈ Ȳ F :

tr(bwφ,HjgK) =
∑
i∈[1,r]

tr(bwιi, Vi)tr(φi,HjKi).

Taking alternating sum over j we obtain

(b) χK,bwφ =
∑
i∈[1,r]

tr(bwιi, Vi)χKi,φi .

We choose an element gw ∈ G0 such that g−1
w F (gw) = n−1

w where nw is a represen-
tative of w in Γ̃. We set Lw = gwLg

−1
w , Sw = gwSg

−1
w , Ew = Ad(g−1

w )∗E (a local
system on Sw). Then F (Lw) = Lw and F (Sw) = Sw. We define an isomorphism
εw : F ∗Ew ∼−→ Ew in terms of ε : F ∗E ∼−→ E and bw as follows. By definition, bw de-
fines for each g ∈ S an isomorphism of stalks En−1

w gnw

∼−→ Eg; hence it defines for any
g′ ∈ Sw an isomorphism En−1

w F (gw)−1F (g′)F (gw)nw

∼−→ EF (gw)−1F (g′)F (gw) or equiva-

lently Eg−1
w F (g′)gw

∼−→ EF (g−1
w g′gw). Composing with ε : EF (g−1

w g′gw)

∼−→ Eg−1
w g′gw

we
obtain Eg−1

w F (g′)gw

∼−→ Eg−1
w g′gw

, that is, EwF (g′)
∼−→ Ewg′ which comes from an isomor-

phism εw : F ∗Ew ∼−→ Ew. We define πw : Ỹ w → Y w, Ẽw,Kw, φw : F ∗Kw ∼−→ Kw in
terms of Lw, Sw, Ew, εw in the same way as π : Ỹ → Y , Ẽ ,K, φ : F ∗K ∼−→ K were
defined in terms of L, S, E , ε. We have Y w = Y and the map (g, xL) 7→ (g, xg−1

w Lw)
is an isomorphism µ : Ỹ → Ỹ w commuting with the projections π, πw onto Y .
We have µ∗Ẽw = Ẽ canonically. Hence µ induces an isomorphism π!Ẽ ∼−→ πw! Ẽw
hence an isomorphism µ′ : K

∼−→ Kw. From the definitions we see that the com-

positions F ∗K
F∗µ′−−−→ F ∗Kw

φw−−→ Kw, F ∗K
bwφ−−→ K

µ′−→ Kw coincide. Hence for
j ∈ Z, g ∈ Ȳ F we have tr(bwφ,HjgK) = tr(φw ,HjgKw). Taking alternating sum over
j gives χK,bwφ = χKw,φw . Introducing this in (b) we obtain

(c) χKw,φw =
∑
i∈[1,r]

tr(bwιi, Vi)χKi,φi .

Using (c) for w running through Γ̄ (a set of representatives for the effective F -
twisted conjugacy classes in Γ) and 20.4(e),(g), we see that

(d) the functions (χKw ,φw)w∈Γ̄ span the same vector space as the functions
(χKi,φi)i∈[1,r]; moreover, |Γ̄| = r.

From the definitions we see that
(e) (Lw, Sw, Ew) is effective if and only if w ∈ Γ is effective.

We show that,
(f) if x ∈ Γ is not effective, then χKx,φx = 0.

It is enough to show that, for any j ∈ Z, g ∈ Ȳ F we have tr(bxφ,HjgK) = 0. The
proof is a repetition of that of 20.4(a). We can find y ∈ Γx such that γx(y) 6= 1.
(Notation of 20.4.) We have

tr(φbx,HjgK) = tr(b−1
y φbxby,HjgK) = γx(y)−1tr(b−1

y φι−1(by)bx,HjgK)

= γx(y)−1tr(φbx,HjgK).
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Thus (1− γx(y)−1)tr(φbx,HjgK) = 0 and tr(φbx,HjgK) = 0 as claimed.

21.7. We preserve the setup of 21.6. Let Ξ be the set of all triples (L′, S′, [E ′]) such
that

(L′, S′) ∈ A,

[E ′] is the isomorphism class of an irreducible cuspidal local system E ′ ∈ S(S′)
(relative to NGL

′); there exists g ∈ G0 such that gLg−1 = L′, gSg−1 = S′ and
Ad(g−1)∗E ∈ [E ′].

Note that G0 acts naturally on Ξ and this action is transitive. The isotropy
group of (L, S, [E ]) in G0 is Γ̃. Thus we may identify Ξ = G0/Γ̃. Since Γ̃ is F -
stable, we have an induced Frobenius map F : Ξ→ Ξ whose fixed point set consists
of all (L′, S′, [E ′]) ∈ Ξ such that F (L′) = L′, F (S′) = S′ and F ∗E ′ ∼= E ′. By Lemma
19.7(a), the triples (Lw, Sw, Ew) (where w runs through a set of representatives of
the F -twisted conjugacy classes in Γ) form a set of representatives for the G0F -
orbits in ΞF . Now using 21.6(e) we see that the triples (Lw, Sw, Ew) (where w runs
through Γ̄) form a set of representatives for the G0F -orbits on the set of effective
triples in ΞF .

Let (hL, hS, [hE ])h∈I be a set of representatives for the G0F -orbits on the set
of effective triples in ΞF . For each h ∈ I choose hE ∈ [hE ] and an isomorphism
hε : F ∗(hE) ∼−→ hE . Define hK, hφ : F ∗(hK) ∼−→ hK in terms of hL, hS, hE , hε in the
same way as K, φ : F ∗K ∼−→ K were defined in terms of L, S, E , ε. Let (Aj)j∈J be a
set of representatives for the isomorphism classes of simple intersection cohomology
complexes A on Ȳ that are summands of K and satisfy F ∗A ∼= A. For each j ∈ J
choose an isomorphism ψj : F ∗Aj

∼−→ Aj . We can now reformulate 21.6(d) as
follows:

(a) the functions (χhK,hφ)h∈I span the same vector space as the functions
(χAj ,ψj)j∈J ; moreover, |I| = |J |.

21.8. Let L, S, E be as in 21.6. Assume that S contains a unipotent L-conjugacy
class c (necessarily unique hence F -stable), that E is the inverse image under S →
c, g 7→ gu of an irreducible cuspidal local system F on c and that ε : F ∗E ∼−→ E is
induced via S → c by an isomorphism ε0 : F ∗F ∼−→ F . We show that

(a) (L, S, E) is effective.
Let Ȳ ,K, φ : F ∗K ∼−→ K,E, bw,Γ, F : Γ→ Γ, ι : E→ E be as in 21.6. By 21.6(e) it is
enough to show that 1 ∈ Γ is effective (relative to the basis bw of E and F : Γ→ Γ).
We may assume that bw are chosen as in the proof of Proposition 11.9. We must
show that y ∈ Γ, F (y) = y =⇒ ι−1(by) = by. Hence it is enough to show that
ι(by) = bF−1(y) for any y ∈ Γ. Let c be the unique unipotent G0-conjugacy class of
G that is open dense in Ȳ ∩Gun (see Lemma 10.3). Let H = H0K|c, an irreducible
local system on G0 (see Lemma 11.8). The natural action of E on K induces an
action of E on H in which by acts as the identity map (by the choice of by). Let
f ∈ Hom(K,K) = E. The commutative diagram

F ∗K
F∗f−−−−→ F ∗K

φ

y φ

y
K

ι(f)−−−−→ K
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(which comes from the definition of ι) induces a commutative diagram

F ∗H F∗f−−−−→ F ∗H

φ

y φ

y
H ι(f)−−−−→ H

If f = by, then f : H → H is the identity map hence F ∗f : F ∗H → F ∗H is the
identity map. Then the last commutative diagram shows that ι(f) : H → H is the
identity map. Since ι(by) is a scalar multiple of bF−1(y) and bF−1(y) acts on H as
the identity map, it follows that ι(by) = bF−1(y), as required.

21.9. Let V be the vector space of functions GFun → Q̄l that are constant on G0F -
conjugacy classes in GFun. Let N be the set of all pairs (c, [F ]) where c is a unipotent
G0-conjugacy class in G and [F ] is an isomorphism class of an irreducible G0-
equivariant local system F on c. Define F : N → N by F (c, [F ]) = (F (c), [F!F ]).
The fixed point set NF is the set of all (c, [F ]) ∈ N such that F (c) = c and
F ∗F ∼= F . For any (c, [F ]) ∈ NF we choose a local system F ∈ [F ] and an
isomorphism φF : F ∗F ∼−→ F . The function χF ,φF : cF → Q̄l will be regarded as a
function G0F

un → Q̄l, equal to zero on G0F
un − cF . Using Lemma 19.7, we see that

(a) for any F -stable unipotent G0-conjugacy class c′ in G, the functions χF ′,φF′
with (c′, [F ′]) ∈ NF form a basis for the vector space of functions in V that
are zero on GFun − c′F .

From (a) we deduce
(b) the functions χF ,φF with (c, [F ]) ∈ NF form a basis of the vector space V .

For (c, [F ]) ∈ NF let F ] = IC(c̄,F). Now φF induces an isomorphism φ]F :
F ∗F ] ∼−→ F ] in D(c̄). Hence χF],φ]F : c̄F → Q̄l is well defined. We regard χF],φ]F
as a function GFun → Q̄l, equal to zero on GFun − c̄F . This function is constant on
G0F -conjugacy classes. Hence it is of the form

∑
c′ cc′fc′ where c′ runs over the

unipotent G0-conjugacy classes in G such that F (c′) = c′, c′ ⊂ c̄, cc′ ∈ Q̄l and
fc′ ∈ V is zero on GF − c′F . For such c′, fc′ is a linear combination of functions
χF ′,φF′ with F ′ such that (c′, [F ′]) ∈ NF (see (a)). From the definitions we have
fc = χF ,φF . We see that

χF],φ]F
=

∑
(c′,[F ′])∈NF

c[F ],[F ′]χF ′,φF′

where c[F ],[F ′] ∈ Q̄l are uniquely determined and equal to zero unless c′ ⊂ c̄;
moreover, if c′ = c, then c[F ],[F ′] = δ[F ],[F ′]. Thus, the functions χF],φ]F are related
to the functions χF ,φF by an upper triangular matrix with all diagonal entries equal
to 1. Hence (b) implies:

(c) the functions χF],φ]F with (c, [F ]) ∈ NF form a basis of the vector space V .

21.10. Let Y be the set of triples (L, c, [f]) where L is the Levi of some parabolic
of G0, c is a unipotent L-conjugacy class of NGL with c ⊂ N•GL and [f] is the
isomorphism class of an irreducible cuspidal local sytem f on c (relative to NGL).
Let G0\Y be the set of orbits of the natural G0-action on Y given by conjugation
all factors. Define F : Y → Y by F (L, c, [f]) = (F (L), F (c), [F!f]); we have F (gy) =
F (g)F (y) for all g ∈ G0, y ∈ Y. Hence F induces a bijection F : G0\Y → G0\Y.
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Putting together the generalized Springer correspondences 11.10(a) for the various
connected components of G that contain unipotent elements we obtain a canonical
surjective map N → G0\Y. From the definitions we see that this map is compatible
with the F -actions, hence it restricts to a surjective map NF → (G0\Y)F whose
fibres form a partition of NF into subsets NF

η indexed by the F -stable G0-orbits η
on Y. Using 21.9(c), we see that

(a) V =
⊕

η Vη
(η as above) where Vη is the subspace of V with basis formed by the functions χF],φ]F
with (c, [F ]) ∈ NF

η . Since η is a homogeneous space for the connected group G0,
it contains some F -fixed point (L, c, [f]). We have F (L) = L,F (c) = c. We choose
f ∈ [f]. We have F ∗f ∼= f; we choose an isomorphism ε1 : F ∗f ∼−→ f. Let S be the
stratum of NGL that contains c, let E be the inverse of F under S → c, g 7→ gu and
let ε : F ∗E ∼−→ E be the isomorphism induced by ε1. Then (L, S, E , ε) are as in 21.6.

We will apply 21.7(a) in our case. Restricting the functions in 21.7(a) to Ȳ ωF =
Ȳ ∩GFun (Ȳ as in 21.6) we see that

(b) the functions χhK,hφ|Ȳ ωF (h ∈ I) span the same vector space as the func-
tions χAj ,ψj |Ȳ ωF (j ∈ J); moreover, |I| = |J |.

From the definition of generalized Springer correspondence we see that the functions
χAj,ψj |Ȳ ωF , (j ∈ J), extended by 0 on GFun − Ȳ ωF , are up to non-zero scalars the
same as the functions χF],φ]F with (c, [F ]) ∈ NF

η . In particular, they form a basis of
the vector space Vη. Now using (b), we see that the functions χhK,hφ|Ȳ ωF , (h ∈ I),
extended by 0 on GFun − Ȳ ωF (or equivalently, the generalized Green functions
QG,hL,hc,hf,hε1 : GFun → Q̄l, see below) form a basis of the vector space Vη. Here hc

is the set of unipotent elements in hS, hf = hE|hc and hε1 is the restriction of hε to
hc. In our case

(c) all triples in ΞF (see 21.7) are effective,

since all elements of Γ are effective (see 21.6(e) and 21.8(a)). Letting now η vary
and using (a), we obtain the following result.

Proposition 21.11. The generalized Green functions QG,L,c,f,ε1 (where (L, c, [f])
runs through a set of representatives for the G0F -orbits on YF and for each (L, c, [f])
in this set we choose f ∈ [f] and ε1 : F ∗f ∼−→ f) form a basis of the Q̄l-vector space
V of functions GFun → Q̄l that are constant on G0F -conjugacy classes in GFun.

21.12. Define F : AG → AG by F (L, c) = (F (L), F (c)). Let (L, c) ∈ AFG. Then
CL(c) is well defined (see 19.9).

(a) For any n ∈ G0F such that nLn−1 = L, ncn−1 = c and any f ∈ CL(c), g ∈
cF we have f(ngn−1) = f(g).

Indeed, we may assume that f = χf,ε1 where f is an irreducible cuspidal local
system on c and ε1 : F ∗f ∼−→ f is an isomorphism. In that case the result follows
from 21.10(c), since we have automatically Ad(n)∗f ∼= f (see Proposition 11.7(a)).

We define a Q̄l-linear map CL(c) → V , f 7→ QfG,L,c by the requirement that
QfG,L,c = QG,L,c,f,ε1 for any f = χf,ε1 as above. It is clear that this linear map
is well defined. Let JL,c be the its image. Note that JL,c depends only on the
G0F -orbit of (L, c). We can reformulate Proposition 21.11 as follows.
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(b) For any (L, c) ∈ AFG, the linear map CL(c) → JL,c is an isomorphism. We
have a direct sum decomposition V =

⊕
(L,c) JL,c where (L, c) runs through

a set of representatives for the G0F -orbits on AFG.
On
⊕

(L,c)∈AFG
CL(c) we have a linear GF -action: an element g ∈ GF takes f ∈ CL(c)

to f ′ ∈ CgLg−1(gcg−1) where f ′(h) = f(g−1hg) for h ∈ (gcg−1)F . This action
restricts to a G0F -action. Consider the linear map

⊕
(L,c)∈AFG

CL(c) → V whose

restriction to any summand CL(c) is f 7→ QfG,L,c. Restricting this to the space of
G0F -invariants we obtain

(c) an isomorphism (
⊕

(L,c)∈AFG
CL(c))G

0F ∼−→ V .

This follows immediately from (b),(a).

21.13. Let s ∈ GF be a semisimple element and let (L, c) ∈ AFZG(s). Let CsL(c) be
the vector space CL(c) defined as in 19.9 with respect to ZG(s) instead of G. Let
′CsL(c) be the subspace of CsL(c) consisting of all functions that are invariant under
the natural action of {g ∈ ZG0(s)F ; gLg−1 = L, gcg−1 = c}. Replacing G by ZG(s)
in 21.12(c) we obtain an isomorphism ⊕

(L,c)∈AF
ZG(s)

CsL(c)


ZG(s)0F

∼−→ Vs

where Vs is the vector space of functions {unipotent elements in ZG(s)F } → Q̄l

that are constant on ZG(s)0F -conjugacy classes. Taking now invariants for the
natural action of ZG0(s)F (which contains ZG(s)0F as a normal subgroup) we obtain
an isomorphism  ⊕

(L,c)∈AFZG(s)

CsL(c)


ZG0 (s)F

∼−→ V ′s

or, equivalently, an isomorphism

(∗)

 ⊕
(L,c)∈AF

ZG(s)

′CsL(c)


ZG0 (s)F

∼−→ V ′s

where V ′s is the vector space of functions {unipotent elements in ZG(s)F } → Q̄l

that are constant on ZG0(s)F -conjugacy classes. We now take the direct sum of
these isomorphisms over all semisimple s in GF and then take invariants for the
natural action of G0F . We obtain an isomorphism

(a)

 ⊕
(s,L,c)∈X

′CsL(c)

G0F

→ V V

where X is the set of all triples (s, L, c) with s ∈ GF semisimple and (L, c) ∈ AFZG(s)

and V is the vector space of functions GF → Q̄l that are constant onG0F -conjugacy
classes.

Let X 1 be the set of all quadruples (s, u, L, c) where s ∈ GF is semisimple,
u ∈ GF is unipotent, quasi-semisimple in NZG(s)L, (L, c) ∈ AFZG(s), c ⊂ uL. Now
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G0F acts naturally on X 1 and the map X 1 → X , (s, u, L, c) 7→ (s, L, c) induces a
bijection

(b) G0F \X 1 ∼−→ G0F \X
on the sets of G0F -orbits. (We use the fact that, for fixed (s, L, c) ∈ X , the set
of unipotent quasi-semisimple elements of NZG(s)L that are fixed by F and are
contained in the component cL of NZG(s)L is a single LF -conjugacy class; this
follows from 19.11.) Now (g, L, c) 7→ (gs, gu, L, c) is a bijection

(c) R′ ∼−→ X 1.
(We use 1.4(c) and 21.2(a).) Combining (a),(b),(c) we obtain an isomorphism

(d)

 ⊕
(g,L,c)∈R′

′CgsL (c)

G0F

∼−→ V.

Assume that (g, L, c) ∈ R corresponds to (g, L, c) ∈ R′ under 21.4(c) and let 〈g〉
be the LF -conjugacy of g. From 19.15(b),(c) applied to NGL,L instead of G,G0

we have an isomorphism

(e) CL,〈g〉(c) ∼−→ CHL(g)(c)

where HL(g) = {l ∈ L; lgsl−1 = gs, lgul
−1 ∈ ZL(gs)0gu}.

Let G = {y ∈ ZG0(gs)F ; yLy−1 = L, ycy−1 = c} (a group containing HL(g)F as
a normal subgroup).

Let G′ = {y ∈ G0F , yLy−1 = L, ycy−1 = c, y〈g〉y−1 = 〈g〉} (a group containing
LF as a normal subgroup).

Assume that f 7→ f̄ under (e). We show that the following two conditions are
equivalent:

(i) f̄ is invariant under the natural action of G;
(ii) f is invariant under the natural action of G′.

Assume that (i) holds. Let y ∈ G′. Then y = l′y′ where l′ ∈ LF , y′ ∈ G (see
21.5(a)). We must show that f(ylgsul−1y−1) = f(lgsul−1) for l ∈ LF , u ∈ cF or
that f(l′y′lgsul−1y′−1l′−1) = f̄(u) or that f̄(y′uy′−1) = f̄(u); this follows from
y′ ∈ G.

Assume that (ii) holds. Let y ∈ G. Then y ∈ G′ (see 21.5(a)). We must
show that f̄(yuy−1) = f̄(u) for u ∈ cF or that f(gsyuy−1) = f(gsu) or that
f(ygsuy−1) = f(gsu); this follows from y ∈ G′.

From the equivalence of (i),(ii), we see that (e) restricts to an isomorphism

(f) ′CL,〈g〉(c) ∼−→ ′CgsL (c)

where ′CL,〈g〉(c) is the space of all functions f ∈ CL,〈g〉(c) that are invariant under
the natural action of {y ∈ G0F , yLy−1 = L, ycy−1 = c, y〈g〉y−1 = 〈g〉}. Using (f),
we deduce from (d) an isomorphism ⊕

(g,L,c)∈R

′CL,〈g〉(c)

G0F

∼−→ V

or equivalently an isomorphism ⊕
(L,c)∈AFG

⊕
γ

′CL,γ(c)

G0F

→ V
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where γ runs through the set of LF -orbits on (σNGLc)F , or equivalently an isomor-
phism  ⊕

(L,c)∈AFG

⊕
γ

CL,γ(c)

G0F

∼−→ V.

From the definitions we have canonically
⊕

γ CL,γ(c) = CL(c) hence we obtain an
isomorphism

(g)

 ⊕
(L,c)∈AFG

CL(c)

G0F

∼−→ V.

We define F : A→ A by F (L, S) = (F (L), F (S)). There is a well-defined surjective
map AFG → AF given by (L, c) 7→ (L, S) where S is defined by c ⊂ S. Moreover,
if (L, S) ∈ AF is given we have a natural isomorphism CL(S) ∼−→

⊕
c CL(c) where

c runs over the F -stable L-conjugacy classes contained in S. (A special case of
19.10(b).) Introducing this in (g) we obtain an isomorphism ⊕

(L,S)∈AF

CL(S)

G0F

∼−→ V.

For each (L, S) ∈ AF we have a canonical direct sum decomposition

CL(S) =
⊕
[E]

C[E]
L (S)

where [E ] runs over the set of isomorphism classes of irreducible cuspidal local
systems E ∈ S(S) (relative to NGL) such that F ∗E ∼= E and C[E]

L (S) is the line
spanned by χE,ε where E ∈ [E ] and ε : F ∗E ∼−→ E . (This follows from 19.8(a).)
Hence we have an isomorphism

(h)

 ⊕
(L,S,[E])∈ÃF

C[E]
L (S)

G0F

∼−→ V

where ÃF is the set of triples (L, S, [E ]) with (L, S) ∈ AF and [E ] is as above. The
left-hand side of (h) is naturally a direct sum of subspaces V(L,S,[E]) indexed by a
set of representatives for the G0F -orbits on ÃF and V(L,S,[E]) is the space of vectors
in the one-dimensional vector space C[E]

L (S) that are invariant under the natural
action of the group {g ∈ G0F ; gLg−1 = L, gSg−1 = S,Ad(g)∗E ∼= E}. From the
definitions we see that V(L,S,[E]) is 1-dimensional if (L, S, E) is effective and is 0 if
(L, S, E) is not effective.

Thus the left-hand side of (h) has dimension equal to the number of G0F -orbits
on the set of effective triples in ÃF . Hence this number is equal to the dimension
of the right hand side that is, to the number of G0F -conjugacy classes in GF .

Theorem 21.14. Let A be a set of representatives for the G0F -orbits on the set
of effective triples in ÃF . For each (L, S, [E ]) ∈ A we choose E ∈ [E ] and an
isomorphism ε : F ∗E ∼−→ E. To L, S, E , ε we associate K ∈ D(G) and φ : F ∗K ∼−→ K

as in 21.6 (with L instead of L). The functions χK,φ (one for each (L, S, [E ]) ∈ A)
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form a Q̄l-basis of the vector space V of functions GF → Q̄l that are constant on
G0F -conjugacy classes.

Let V′ be the subspace of V spanned by the functions χK,φ in the theorem.
By the last paragraph in 21.13, it is enough to show that V′ = V. This will be
done in 21.17. Note that in the definition of V′ we may include the functions
χK,φ corresponding to non-effective triples in Ã (these functions are identically 0
by 21.6(f)).

21.15. Let (L, S) ∈ AF . We define a linear function Ψ : CL(S) → V by the
requirement that for any irreducible cuspidal local system E ∈ S(S) and any ε :
F ∗E ∼−→ E we have Ψ(χE,ε) = χK,φ where K, φ are defined as in 21.6. From Theorem
16.14 we see that for any f ∈ CL(S) and any y ∈ GF we have

(a) Ψ(f)(y) =
∑

x∈G0F ;x−1ysx∈Ss

|LFx ||ZG(ys)0F |−1|LF |−1Q
fd
x

Lx,ZG(ys),d
(yu)

where Lx = ZxLx−1(ys)0 (a Levi of some parabolic of ZG(ys)0),

d = {v ∈ ZG(ys); v unipotent, v ∈ ZG(ys)0yu, x
−1ysvx ∈ S},

(a single F -stable Lx-conjugacy class by Proposition 17.14) and fd
x ∈ CLx(d) is

defined by fd
x (v) = f(x−1ysvx). (Notation of 21.12.)

21.16. Assume that we are given an F -stable L-conjugacy class c in S and a quasi-
semisimple element g ∈ NGL such that F (g) = g and such that

c = {u ∈ ZL(s)0gu;u unipotent , su ∈ c} 6= ∅.
Here s = gs. We assume that c is cuspidal (relative to NGL). Then c is a single
ZL(gs)0-conjugacy class (see Proposition 17.13). Assume that f in 21.15 satisfies:

(i) f |SF−cF = 0,
(ii) h ∈ cF , f(h) 6= 0 =⇒ h = lsul−1 for some l ∈ LF and some u ∈ cF .

Consider the function f̃ ∈ V given on y ∈ GF by
(a) f̃(y) = 0 if ys is not G0F -conjugate to s;

f̃(y) = |ZG(s)0F |−1
∑

z∈ZG0 (s)F

QhL1,ZG(s),c(z
−1yuz) if ys = s;

here L1 = ZL(ys)0 and h : cF → Q̄l is given by h(v) = f(ysv). We show that
(b) Ψ(f) = |LF1 ||ZL(s)F |−1f̃ .

Consider the sum over x in 21.15(a) for our f . If fd
x is not identically 0, then

f(x−1ysvx) 6= 0 for some v ∈ dF . Hence there exist l ∈ LF , u ∈ cF such that
x−1ysvx = lsul−1 where v ∈ dF . Thus, xls(xl)−1 = ys, xlu(xl)−1 = v. We see
that Ψ(f)(y) = 0 if ys is not G0F -conjugate to s. Assume now that ys = s. Setting
z = xl we have z ∈ ZG0(s)F , zuz−1 = v. Hence d = zcz−1. We see that

Ψ(f)(y) =
∑

z∈ZG0(s)F ,l∈LF
|LFz ||ZG(s)0F |−1|LF |−1|ZL(s)F |−1Q

fzcz−1
z

Lz,ZG(s),zcz−1(yu)

= |LF1 ||ZG(s)0F |−1|ZL(s)F |−1
∑

z∈ZG0 (s)F

Q
fc
1
L1,ZG(s),c(z

−1yuz),

as desired.
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21.17. From the definitions we see that V′ is the subspace of V spanned by the
functions Ψ(f) for various (L, S) ∈ AF and f ∈ CL(S). Since the vector space
CL(S) is spanned by functions as in 21.16(i),(ii) (see 19.10(b),19.14(c)) we see that
any function f̃ as in 21.16(a) is contained in V′. In formula 21.16(a) defining f̃ we
may take (g, L1, c) to be any triple in R′ and h to be any function in CL1(c) that is
invariant under the natural action of {g′ ∈ ZG0(s)F ; g′L1g

′−1 = L1, g
′cg′−1 = c}.

(This follows from the bijection R ↔ R′ in 21.4(c), the isomorphism 19.15(c) and
the equivalence of (i),(ii) in 21.13.) But such f̃ span the vector space Vs of functions
in V that vanish at elements whose semisimple parts are not G0F -conjugate to s.
(Vs may be identified with V ′s in 21.13 and we may use the isomorphism 21.13(∗).)
We see that Vs ⊂ V′. Since V is the sum of its subspaces Vs for various s, we see
that V ⊂ V′. Hence V = V′. Theorem 21.14 is proved.

21.18. Let J be the set of all triples (L, S, [E ]) where (L, S) ∈ A and [E ] is the
isomorphism class of an irreducible cuspidal local system E ∈ S(S). The group G0

acts on J by g : (L, S, [E ]) 7→ (Ad(g)L,Ad(g)S, [Ad(g−1)∗E ]); let G0\J be the set
of orbits.

Let A(G) be the subcategory of D(G) whose objects are the complexes X on G
such that X [d] is a (simple) admissible perverse sheaf on G where d = dim suppX
(see 6.7).

Let A(G) be the set of isomorphism classes of objects in A(G). We define a map

j : A(G)→ G0\J
as follows. Let A ∈ A(G). By definition there exists (L, S, E) as above such that
A is isomorphic to a direct summand of IC(Ȳ , π!Ẽ) (extended by 0 on G − Ȳ ),
with π, Ẽ , Ȳ as in 5.6. Then j takes the isomorphism class of A to the G0-orbit
of (L, S, [E ]). To show that this is well defined we must show that, if (L′, S′, E ′)
is another triple like (L, S, E) such that A is isomorphic to a direct summand of
IC(Ȳ ′, π′! Ẽ ′) (extended by 0 on G − Ȳ ′), with π′, Ẽ ′, Ȳ ′ defined as in 5.6 in terms
of L′, S′, E ′ instead of L, S, E , then (L, S, [E ]), (L′, S′, [E ′]) are in the same G0-
orbit. Now A is an intersection cohomology complex supported by Ȳ and also
by Ȳ ′. It follows that Ȳ = Ȳ ′ hence YL,S = YL′,S′ . Using 3.12(b) we deduce that
(L, S), (L′, S′) are in the same G0-orbit. Hence we may assume that L = L′, S = S′.
Then E , E ′ ∈ S(S) and there exists an irreducible local system on Ȳ which is a
direct summand of both π!Ẽ and π!Ẽ ′. Thus, Hom(π!Ẽ , π!Ẽ ′) 6= 0. We now repeat
an argument in 7.10 (and use notation there):

Hom(π!Ẽ , π!Ẽ ′) = Hom(π∗π!Ẽ , Ẽ ′) =
⊕
w∈WS

Hom(f∗wẼ , Ẽ ′)

=
⊕
w∈WS

Hom(a∗f∗wẼ , a∗Ẽ ′) =
⊕
w∈WS

Hom(f̂∗wa
∗Ẽ , a∗Ẽ ′)

=
⊕
w∈WS

Hom(f̂∗wb
∗E , b∗E ′) =

⊕
w∈WS

Hom(b∗Ad(nw)∗E , b∗E ′)

=
⊕
w∈WS

Hom(Ad(nw)∗E , E ′).

We see that
⊕

w∈WS
Hom(Ad(nw)∗E , E ′) 6= 0. Hence Hom(Ad(nw)∗E , E ′) 6= 0 for

some w ∈ WS , so that Ad(nw)∗E ∼= E ′. Thus, (L, S, [E ]) is in the same G0-orbit as
(L, S, [E ′]), as required.



176 G. LUSZTIG

21.19. From the definitions we see that the map j in 21.18 is compatible with the
maps F : A(G) → A(G), F : G0\J → G0\J defined by A 7→ F!A, (L, S, [E ]) 7→
(F (L), F (S), [F!E ]). Hence it induces a map j0 : A(G)F → (G0\J)F on the fixed
point sets of F .

21.20. From Theorem 21.14 we see that V =
⊕

Ξ VΞ where Ξ runs over the
set of F -stable G0-orbits in J and VΞ is the subspace of V with basis given by
the characteristic functions of F -stable effective triples (L, S, [E ]) ∈ Ξ (up to the
action of G0F ). Now using 21.7(a) we see that another basis of VΞ is given by
the characteristic functions of objects in j−1

0 (Ξ). (Either of these bases is defined
only up to multiplication of any of its members by a non-zero scalar.) Here we
have used the fact that Ξ contains at least one F -stable triple (L, S, [E ]) which
follows from Lang’s theorem for G0 since Ξ is a homogeneous G0-space. Since
A(G)F =

⊔
Ξ j
−1
0 (Ξ), we see that the following result holds.

Theorem 21.21. Let A′ be a set of representatives for the isomorphism classes of
objects A ∈ A(G) such that F ∗A ∼= A. For each A ∈ A′ we choose an isomorphism
α : F ∗A ∼−→ A. The functions χA,α (one for each A ∈ A′) form a Q̄l-basis of the
vector space V of functions GF → Q̄l that are constant on G0F -conjugacy classes.

22. Twisted induction of class functions

22.1. This section gives an application of Theorem 21.14 to the construction of a
“twisted induction” map (see 22.3) from certain functions on a subgroup of GF to
functions on GF .

Lemma 22.2. Let L be a Levi of a parabolic of G0 and let L′ be a Levi of a parabolic
of L. Let δ′ be a connected component of NNGLL′ and let δ be the connected
component of NGL that contains δ′. Assume that δ′ ⊂ N•NGL(L′) and δ ⊂ N•GL.
Then δ′ ⊂ N•G(L′).

Since δ ⊂ N•GL, there exists a parabolic P of G0 such that L is a Levi of P and
δ ⊂ NGP . Since δ′ ⊂ N•NGL(L′), there exists a parabolic Q of L such that L′ is a
Levi of Q and δ′ ⊂ NNGLQ. Then P ′ = QUP is a parabolic of G0 such that L′ is
a Levi of P ′. If g ∈ δ′, then gQg−1 = Q and gUP g

−1 = UP (since g ∈ δ ⊂ NGP )
hence gP ′g−1 = P ′. Thus δ′ ⊂ NGP ′. We see that δ′ ⊂ N•G(L′), as required.

22.3. Let L be a Levi of a parabolic of G0 and let δ be a connected component
of NGL contained in N•GL. We assume that F (L) = L,F (δ) = δ. Let D be the
connected component of G that contains δ. Let VL(δ) (resp. VG0(D)) be the set of
all functions δF → Q̄l (resp. DF → Q̄l) that are constant on LF -conjugacy classes
in δ (resp. on G0F -conjugacy classes in D).

There is a unique Q̄l-linear map

RDδ : VL(δ)→ VG0(D)

such that the following holds.
Let L′ be a Levi of a parabolic of L with F (L′) = L′, let S′ be an isolated

stratum of NNGL(L′) = NGL ∩NGL′ with F (S′) = S′, S′ ⊂ δ, S′ ⊂ N•NGL(L′), let
E ′ be an irreducible cuspidal local system in S(S′) and let ε′ : F ∗E ′ ∼−→ E ′ be an
isomorphism. Define K′ ∈ D(NGL), φ′ : F ∗K′ ∼−→ K′ in terms of NGL,L′, S′, E ′, ε′
and K′′ ∈ D(G), φ′′ : F ∗K′′ ∼−→ K′′ in terms of G,L′, S′, E ′, ε′ in the same way as
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K ∈ D(G), φ : F ∗K ∼−→ K were defined in 21.6 in terms of G,L, S, E , ε. (Note that
K′′ is well defined since S′ ⊂ N•GL′, by Lemma 22.2.) Then

RDδ (χK′,φ′ |δF ) = χK′′,φ′′ |DF .
To see that this definition is correct we use the fact that the functions χK′,φ′ |δF
as above (with ε′ chosen for each L′, S′, E ′ given up to LF -conjugacy) provide a
basis for VL(δ) (which follows from Theorem 21.14 for NGL instead of G); note
that the choice of ε′ is immaterial since the same choice is made in the definition
of χK′′,φ′′ |DF .

22.4. For any G0F -conjugacy class c of semisimple elements in GF let VG0,c(D)
be the vector space consisting of all functions in VG0(D) that vanish on elements
g ∈ DF with gs /∈ c. We have a direct sum decomposition

(a) VG0(D) =
⊕

c VG0,c(D)
where c runs over the semisimple G0F -conjugacy classes in GF . Similarly we have
a direct sum decomposition

(b) VL(δ) =
⊕

c′ VL,c′(δ)
where c′ runs over the semisimple LF -conjugacy classes in (NGL)F . The next result
shows that RDδ is compatible with the direct sum decompositions (a),(b).

Proposition 22.5. Let c′ be any semisimple LF -conjugacy class in (NGL)F and let
c be the semisimple G0F -conjugacy class in GF such that c′ ⊂ c. Then RDδ (VL,c′(δ))
⊂ VG0,c(D).

Let L′, S′ be as in 22.3. As in 21.15 we define linear maps Ψ′ : CL′(S′)→ VL(δ),
Ψ′′ : CL′(S′) → VG0(D) by the requirement that for any E ′, ε′ as in 22.3 we have
Ψ′(χE′,ε′) = χK′,φ′ |δF , Ψ′′(χE′,ε′) = χK′′,φ′′ |DF (notation of 22.3). Clearly,

(a) RDδ (Ψ′(f)) = Ψ′′(f)
for f = χE′,ε′ hence also for any f ∈ CL′(S′). Assume now that c is an F -stable
L′-conjugacy class in S′ and that g is a quasi-semisimple element in NNGL(L′) such
that g ∈ δ, F (g) = g and such that c = {u ∈ ZL′(s)0gu;u unipotent , su ∈ c} 6= ∅
(with s = gs). Assume that c is cuspidal (relative to NNGL(L′)) so that c is a single
ZL′(s)0-conjugacy class. Assume that f ∈ CL′(S′) satisfies

(i) f |S′F−cF = 0,
(ii) h ∈ cF , f(h) 6= 0 =⇒ h = lsul−1 for some l ∈ L′F and some u ∈ cF .

Consider the functions f̃ ∈ VL(δ), f̃ ′′ ∈ VG0(D) defined by
f̃(y) = 0 if y ∈ δF , ys is not LF -conjugate to s;
f̃(y) = |ZL(s)0F |−1

∑
z∈ZL(s)F Q

h
L′1,ZNGL(s),c(z

−1yuz) if y ∈ δF , ys = s;

f̃ ′′(y) = 0 if y ∈ DF , ys is not G0F -conjugate to s;
f̃ ′′(y) = |ZG(s)0F |−1

∑
z∈ZG0 (s)F Q

h
L′1,ZG(s),c(z

−1yuz) if y ∈ DF , ys = s;
here L′1 = ZL′(s)0 and h : cF → Q̄l is given by h(v) = f(ysv). Using 21.16(f) for
G and for NGL and (a) we see that

(b) RDδ (f̃) = f̃ ′′.
As in 21.17, here we may assume that (g, L′1, c) used in the definition of f̃ , f̃ ′′ is
any triple in R′ (for NGL instead of G) with g ∈ δ and h is any function in CL′1(c)
that is invariant under the natural action of {g′ ∈ ZL(s)F ; g′L′1g

′−1 = L′1, g
′cg′−1 =

c}. Since the functions f̃ as above span the vector space VL,c′(δ) where c′ is the
LF -conjugacy class of gs and the corresponding functions f̃ ′′ are contained in the
corresponding VG0,c(D) we see that the proposition follows from (b).
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22.6. Let L′ ⊂ L ⊂ G0, δ′ ⊂ δ be as in Lemma 22.2 and let D be the connected
component of G that contains δ. Then Rδδ′ , R

D
δ , R

D
δ′ are well defined (the last one,

by Lemma 22.2). From the definitions we see that the transitivity property
(a) RDδ ◦Rδδ′ = RDδ′

holds.
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