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PARAMETRIZATIONS OF FLAG VARIETIES

B. R. MARSH AND K. RIETSCH

Abstract. For the flag variety G/B of a reductive algebraic groupG we define
and describe explicitly a certain (set-theoretical) cross-section φ : G/B → G.
The definition of φ depends only on a choice of reduced expression for the

longest element w0 in the Weyl group W . It assigns to any gB a representa-
tive g ∈ G together with a factorization into simple root subgroups and simple
reflections. The cross-section φ is continuous along the components of Deod-
har’s decomposition of G/B. We introduce a generalization of the Chamber
Ansatz and give formulas for the factors of g = φ(gB). These results are then
applied to parametrize explicitly the components of the totally nonnegative
part of the flag variety (G/B)≥0 defined by Lusztig, giving a new proof of
Lusztig’s conjectured cell decomposition of (G/B)≥0. We also give minimal
sets of inequalities describing these cells.

1. Introduction

Consider a simply connected reductive algebraic group G over C (or Cheval-
ley group over K) with opposite Borel subgroups B+ and B−. So, for example,
G = SLd(C) with the subgroups of upper- and lower-triangular matrices. The flag
variety G/B+ may be embedded in the projective space of a sufficiently general
representation of G, say V = V (ρ), by

G/B+ ↪→ P(V ) : gB+ → 〈g · ξ〉
C
,

where ξ is a highest weight vector. Then to any element gB+ we may associate the
highest and lowest extremal weights, vρ and wρ, such that g · ξ has nonzero com-
ponent in the corresponding weight space. Equivalently, the Weyl group elements
v and w determine the intersection of opposed Bruhat cells

B−vB+/B+ ∩B+wB+/B+

in which gB+ lies. Now fix a reduced expression w0 = si1 · · · siN for the longest
element of the Weyl group. Following V. Deodhar [6], there is a finer datum that can
be associated to gB+. The element gB+ can be successively reduced, compatibly
with this reduced expression, to give a sequence

(
B+, g(1)B

+, . . . , g(n−1)B
+, gB+

)
in the flag variety, or a sequence of intermediate lines

L0 = 〈ξ〉 , L1 =
〈
g(1) · ξ

〉
, . . . , Ln−1 =

〈
g(n−1) · ξ

〉
, Ln = 〈g · ξ〉

Received by the editors February 13, 2004, and in revised form March 19, 2004.
2000 Mathematics Subject Classification. Primary 14M15; Secondary 20G20.
Key words and phrases. Algebraic groups, flag varieties, total positivity, Chamber Ansatz,

Deodhar decomposition.
The first named author was supported by a University of Leicester Research Fund Grant and

a Leverhulme Fellowship.
The second named author is supported by a Royal Society Dorothy Hodgkin Research

Fellowship.

c©2004 B.R. Marsh and K. Rietsch

212



PARAMETRIZATIONS OF FLAG VARIETIES 213

in V (ρ). For example, if we write gB+ as bwB+ for b ∈ B+, then Ln−1 is the line
〈bwsi · ξ〉, where si is the right-most simple reflection in the reduced expression for
w0 such that wsi < w (see Section 4.4). Given all the intermediate lines Lk, the
further data associated to gB+ is now the collection (v(1), . . . , v(n)) of Weyl group
elements such that v(k)ρ is the highest extremal weight for which g(k) ·ξ has nonzero

weight space component. The set of gB+ in B+wB+/B+ with fixed (v(1), . . . , v(n))
is called a Deodhar component of the flag variety.

Consider the special case where the element gB+ from above has v = 1. Then
gB+ = uB+ for some unipotent u ∈ B−. If also v(i) = 1 for all i, then u may be
factorized into negative simple root subgroups as u = yj1(t1) · · · yjn(tn) for some
nonzero parameters ti ∈ C (where sj1 · · · sjn is a reduced expression for w governing
the construction of the intermediate lines Li). If we write uB+ = zwB+ for some
unipotent z ∈ B+, then A. Berenstein and A. Zelevinsky’s Chamber Ansatz [2]
gives formulas for the ti in terms of minors of z.

In this paper we generalize the above result by describing factorizations, and
hence parametrizations, for a general Deodhar component and by giving formulas
for the parameters (Proposition 5.2 and Theorem 7.1). Our formulas for the nonzero
parameters, analogous to the tk above, are obtained by a direct generalization of the
Chamber Ansatz. However, a general Deodhar component also has another type of
parameter which runs through K. The formulas for these involve the qgeneralized
Chamber Ansatz along with a correction term.

The Chamber Ansatz used in the formulas for the parameters depends on the
Deodhar component in which an element zwB+ lies. Therefore we also give a
simple algorithm to determine this component (Section 6). The algorithm in a
sense “generates” the chambers in the Chamber Ansatz for zwB+ recursively. We
illustrate how this works with a very explicit type A example in Section 10.

In Section 11 we set K = R and use these results to examine the totally non-
negative part (G/B+)≥0 of the flag variety. This is the closure in G/B+ of the
set {yi1(t1) · · · yiN (tN )B+ | ti ∈ R>0}. We explicitly describe the intersection of
(G/B+)≥0 with each of the sets Rv,w = B−vB+/B+ ∩ B+wB+/B+. Namely
in Rv,w there is a unique open dense Deodhar component which is isomorphic to

(R∗)�(w)−�(v). And the totally nonnegative part R>0
v,w of Rv,w is shown to be the

subset of the above Deodhar component where all of the parameters are positive.
This, in particular, reproves a result of the second author conjectured by Lusztig,

that R>0
v,w is a semi-algebraic cell. However, the new proof presented in this paper

gives for the first time explicit parametrizations of these totally nonnegative parts
(depending on a choice of reduced expression of w). It has the advantage of being
independent of the theory of canonical bases, which was required in the previous
proof. Moreover, the parameters of R>0

v,w can all be computed by the generalized
Chamber Ansatz (without correction term).

Finally in Section 11 we give an efficient description for R>0
v,w in terms of minor

inequalities, generalizing a result of Berenstein and Zelevinsky from the v = 1 case.
For any choice of reduced expression for w we obtain a set of �(w)−�(v) inequalities.
This set of inequalities and �(v) minor equalities, that can also be given explicitly,
describe R>0

v,w as a semi-algebraic subset of the (real) Bruhat cell B+wB+/B+.

Remark 1.1. The case of intersections of opposite Bruhat cells Rv,w in the flag
variety which we treat in this paper is not to be confused with intersections of
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opposite Bruhat double cosets

Gv,w = B+wB+ ∩B−vB−

in the group. These other intersections were studied by Fomin and Zelevinsky
[7], who obtained a different generalization of the Chamber Ansatz in that setting
(using it also to give parametrizations and minimal sets of inequalities for their
corresponding totally positive parts in the group).

Our study of parametrizations in flag varieties compatible with the Rv,w is sub-
stantially different from the problems in the group considered in [7], for example,
already where total positivity is concerned. An immediate and obvious difference
between total positivity questions in the two cases lies in the fact that (G/B+)≥0

is the closure of the image in G/B+ of the totally nonnegative part G≥0 of the
group, and is actually generally larger than this image. So it is clear that the to-
tally positive cells R>0

v,w in (G/B+)≥0 cannot all come from totally positive cells in
G≥0. In fact, the cell decomposition of G≥0, which is studied in detail in [7], was
first obtained by Lusztig in [10] where the analogous problem for flag varieties was
formulated only as a conjecture. One has to depart significantly from the study of
total positivity in the group in order to study total positivity in the flag variety.

The overlap between the two parametrization problems, ours and the one from
[7], is precisely the joint special case covered in [2]. In that case one has G1,w ∼=
R1,w × T , where the maximal torus factor T is irrelevant for the parametrization
problem. Otherwise, unless v = 1 or symmetrically w = w0, the varieties G

v,w have
no sensible counterpart in the flag variety. Moreover, both [2] and [7] parametrize
and give formulas only for an open dense subset of the varieties they study. So The-
orem 7.1 already adds to these results in the joint special case, since it determines
parameters for any element in R1,w.

It is an interesting open problem to extend our results from R1,w, and hence
G1,w, also to the remaining varieties Gv,w in the group. That is, similarly to find
a way to parametrize every element of the group G. This should involve finding
appropriate stratifications of the Gv,w for arbitrary v, w (the open strata being the
ones already understood by [7]), and then extending the Chamber Ansatz from [7]
to all the remaining strata.

2. Notation and basic definitions

Let K be a field. Let GK be a split, connected, simply connected, semisimple
algebraic K-group (or Chevalley group over K). See [8] Section II.1 or any of [5],
[13], [14]. Fix a K-split maximal torus TK. We write K∗ for the multiplicative group
Gm(K) and K for the additive group Ga(K). Since we will always be concerned
with the K-valued points, we will write G for G(K) and T for T (K), and so forth.
In later sections we will take K to be R.

Let X(T ) = Hom(T,K∗) and R ⊂ X(T ) the set of roots. Choose a system of
positive roots R+. We denote by B+ the Borel subgroup corresponding to R+,
and by U+ its unipotent radical. We also have the opposite Borel B− such that
B+ ∩B− = T , and its unipotent radical U−.

Denote the set of simple roots by

Π = {αi | i ∈ I} ⊂ R+ ⊂ R ⊂ X(T ).
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For every αi ∈ Π there is an associated homomorphism

ϕi : SL2 → G.

Consider the 1-parameter subgroups in G (landing in U+, U− and T respectively)
defined by

xi(m) = ϕi

(
1 m
0 1

)
, yi(m) = ϕi

(
1 0
m 1

)
, α∨

i (t) = ϕi

(
t 0
0 t−1

)
,

wherem ∈ K, t ∈ K∗, and i ∈ I. The datum (T,B+, B−, xi, yi; i ∈ I) for G is called
a pinning in [10]. The standard pinning for SLd consists of the diagonal, upper-
triangular and lower-triangular matrices, along with the simple root subgroups
xi(m) = Id +mEi,i+1 and yi(m) = Id +mEi+1,i, where Id is the identity matrix,
and Ei,j has a 1 in position (i, j) and zeroes elsewhere.

Next consider the cocharacter lattice Y (T ) = Hom(K∗, T ). It is dually paired
with X(T ) in the standard way by 〈 , 〉 : X(T )× Y (T ) → Hom(K∗,K∗) ∼= Z. The
α∨
i viewed as elements of Y (T ) are the simple coroots, and the Cartan matrix

A = (aij) ∈ ZI×I is given by aij = 〈αj , α
∨
i 〉.

That G is simply connected means the α∨
i freely generate Y (T ) ∼= ZI . The dual

basis in X(T ) is the set of fundamental weights {ωi | i ∈ I}. Let X(T )+ be the set
of dominant weights and ρ =

∑
i∈I ωi ∈ X(T )+. For a dominant weight λ let V (λ)

denote the Weyl module with highest weight λ; see [8], II, 2.13. In characteristic 0
this is just the irreducible representation with highest weight λ.

The Weyl group W = NG(T )/T acts on X(T ) permuting the roots R. We denote
the action of w ∈ W on α ∈ X(T ) by wα. The simple reflections si ∈ W are given
explicitly by si := ṡiT , where

ṡi := ϕi

(
0 −1
1 0

)
,

and any w ∈ W can be expressed as a product w = si1 · · · sim with a minimal
number of factors m = �(w). We set

ẇ = ṡi1 ṡi2 · . . . · ṡim

to get a representative of w in NG(T ). It is well known that this product is in-
dependent of the choice of reduced expression si1 · · · sim for w. Let < denote the
Bruhat order on W . The unique maximal element of W is denoted w0.

We note for future reference the following identity ([8], II, 1.3)

(2.1) α∨
i (t

−1)ṡi = xi(−t−1)yi(t)xi(−t−1),

which can be checked in SL2(K).
Finally, for every root we introduce the corresponding root subgroup. Let U+

αi
be

the simple root subgroup in G given explicitly by {xi(t) | t ∈ K}. For an arbitrary
root α there is a w ∈ W and simple root αi such that α = wαi. Then the one-
dimensional subgroup corresponding to α may be defined as ẇU+

αi
ẇ−1. If α ∈ R+

this subgroup lies in U+ and we write U+
α = ẇU+

αi
ẇ−1. Otherwise the subgroup is

called U−
α = ẇU+

αi
ẇ−1 and lies in U−.



216 B. R. MARSH AND K. RIETSCH

3. Subexpressions of reduced expressions

Consider a reduced expression in W , say s3s2s1s3s2s3 in type A3. Informally, a
subexpression is what is obtained by choosing some of the factors. So, for example,
choosing the underlined factors in

(3.1) s3 s2 s1 s3 s2 s3

gives a subexpression for s2s3 in the word s3s2s1s3s2s3.
It will be useful to represent expressions, like s3s2s1s3s2s3 or its subexpression

s3s2 1 s3s2 1, by their sequences of partial products

( 1, s3, s3s2, s3s2s1, s3s2s1s3, s3s2s1s3s2, s3s2s1s3s2s3 ),
( 1, s3, s3s2, s3s2, s3s2s3, s2s3, s2s3 ).

We formalize this below.

Definition 3.1. Let us define an expression for w ∈ W to be a sequence

w =
(
w(0), w(1), w(2), . . . , w(n)

)
in W , such that w(0) = 1, w(n) = w and

w(j) =

{
w(j−1), or

w(j−1)si, for some simple reflection si

for j = 1, . . . , n. The expression w may equivalently be specified by its sequence of
factors,

(w(1), w
−1
(1)w(2), . . . , w

−1
(n−1)w(n)),

which has entries in {si | i ∈ I} ∪ {1}.
Definition 3.2. For an expression w = (w(0), w(1), . . . , w(n)) define

J+
w = {k ∈ {1, . . . , n} | w(k−1) < w(k)},

J◦
w = {k ∈ {1, . . . , n} | w(k−1) = w(k)},
J−
w = {k ∈ {1, . . . , n} | w(k) < w(k−1)}.

An expressionw = (w(0), w(1), . . . , w(n)) is called non-decreasing if w(j−1) ≤ w(j) for

all j = 1, . . . , n, so J−
w = ∅. It is called reduced if w(j−1) < w(j) for all j = 1, . . . , n.

Clearly, any non-decreasing expression w for w gives rise to a reduced expression
ŵ of w by discarding all w(j) with j ∈ J◦

w.

The following definition is taken from [6, Definition 2.3].

Definition 3.3 (Distinguished subexpressions). Let w be a reduced expression for
w ∈ W with factors (si1 , . . . , sin). Let v ≤ w. Then by a subexpression for v in w,
we mean an expression v = (v(0), v(1), v(2), . . . , v(n)) such that

v(j) ∈
{
v(j−1), v(j−1)sij

}
for all j = 1, . . . n,

and v(n) = v. In particular, there is always the “empty” subexpression (1, . . . , 1)
for 1.

A subexpression v of w as above is called distinguished if we have

(3.2) v(j) ≤ v(j−1) sij for all j ∈ {1, . . . , n}.
In other words, if right multiplication by sij decreases the length of v(j−1), then in
a distinguished subexpression the component v(j) must be given by v(j) = v(j−1)sij .

We write v ≺ w if v is a distinguished subexpression of w.
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Examples. For w = w0 in A3 and the reduced expression w with factors (s3, s2, s1,
s3, s2, s3), the only distinguished subexpression for s2s3 is

v = (1, 1, 1, 1, 1, s2, s2s3).(3.3)

In particular, the subexpression indicated in (3.1) is not distinguished. If v = s2,
then we have four distinguished subexpressions for v in w,

v = (1, 1, 1, 1, 1, s2, s2), (s3 s2 s1 s3 s2 s3),(3.4)

v = (1, s3, s3, s3, 1, s2, s2), (s3 s2 s1 s3 s2 s3),(3.5)

v = (1, s2, s2, s2s3, s2s3, s2), (s3 s2 s1 s3 s2 s3),(3.6)

v = (1, s3, s3s2, s3s2, s3s2s3, s2s3, s2), (s3 s2 s1 s3 s2 s3).(3.7)

Definition 3.4 (Positive subexpressions). Let w be a reduced expression with
factors (si1 , . . . , sin). We call a subexpression v of w positive if

(3.8) v(j−1) < v(j−1)sij

for all j = 1, . . . , n.

Note that (3.8) is equivalent to v(j−1) ≤ v(j) ≤ v(j−1)sij . So, in other words,
a positive subexpression is one that is distinguished and non-decreasing. In the
examples above only (3.3) and (3.4) are positive.

Lemma 3.5. Given v ≤ w in W and a reduced expression w for w, then there is
a unique positive subexpression v+ for v in w.

Proof. We construct v+ = (v(0), . . . , v(n)) starting from the right with v(n) = v.
The inequality v(j−1) < v(j−1)sij says that v(j−1) cannot have a reduced expression
ending in sij . If v(j) has such a reduced expression, then we must set v(j−1) =
v(j)sij . If v(j) does not, then v(j−1) = v(j). To summarize, v(j−1) is given by

v(j−1) =

{
v(j)sij if v(j)sij < v(j),

v(j) otherwise.

This along with v(n) = v clearly defines (uniquely) the desired positive subexpres-
sion of w. �

The positive subexpression v+ is in a sense the right-most subexpression for v
in w that is non-decreasing.

4. Deodhar’s decomposition

4.1. Bruhat decomposition. Let us identify the flag variety with the variety B
of Borel subgroups, via

gB+ ←→ g ·B+ := gB+g−1.

We have the Bruhat decompositions,

B =
⊔

w∈W

B+ẇ ·B+ =
⊔

w∈W

B−ẇ ·B−,

of B into B+-orbits called Bruhat cells, and B−-orbits called opposite Bruhat cells.
Let α1, . . . , αn be the positive roots made negative by w−1. Recall that the Bruhat
cell B+ẇ ·B+ can be identified with the product of root subgroups

(4.1) U+ ∩ ẇU−ẇ−1 = U+
α1U

+
α2 · · ·U+

αn
∼= K

n
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via u �→ uẇ ·B+. Moreover,

U+ = (U+ ∩ ẇU−ẇ−1)(U+ ∩ ẇU+ẇ−1),

where the second factor is a product of the remaining positive root subgroups.
Given a reduced expression w = (w(0), w(1), . . . , w(n)) with factors (si1 , . . . , sin),

the positive roots sent to negative roots by w−1 can be listed as

(4.2) α1
w = αi1 , α2

w = w(1) ·αi2 , α3
w = w(2) ·αi3 , . . . . . . , αn

w = w(n−1) ·αin .

Therefore another way to write the parametrization of the Bruhat cell B+ẇ ·B+ is

(4.3) K
n ∼−→ B+ẇ ·B+ : (m1, . . . ,mn) �→ xi1(m1)ṡi1 · · ·xin(mn)ṡin ·B+.

If one moves all the simple reflections to the right (conjugating the intermediate
simple root subgroups), then what remains on the left is a product of root subgroups
corresponding to precisely the roots listed in (4.2).

4.2. Relative position. Consider the product B × B with G acting diagonally.
Let B1 = g1 · B+ and B2 = g2 · B+. Then there is a unique w ∈ W such that
g1

−1g2 · B+ ∈ B+ẇ · B+. Equivalently, w is the unique Weyl group element such
that

(B1, B2) ∈ G-orbit of (B+, ẇ ·B+).

We call w the relative position of (B1, B2) and write

B1
w−→ B2.

For example, B1
1−→ B2 implies B1 = B2. And B+ w−→ B says that B lies in the

Bruhat cell B+ẇ ·B+. While B− w−→ B means that B lies in the opposite Bruhat
cell B−ẇ0ẇẇ0 ·B−. We will also use the notation

(B1, B2) ∼ (B′
1, B

′
2)

to indicate that (B1, B2) and (B′
1, B

′
2) in B × B are conjugate under G.

The following assertions follow from the definitions and standard properties of
the Bruhat decomposition.

(1) If B1
w−→ B2 and g ∈ G, then also g ·B1

w−→ g ·B2.

(2) If B1
s−→ B2

s−→ B3 for a simple reflection s, then B1
s−→ B3 or B1 = B3.

(3) If B1
v−→ B2

w−→ B3 and �(vw) = �(v) + �(w), then B1
vw−→ B3.

(4) If B1
w−→ B2, then B2

w−1

−→ B1.

We will make use of these properties freely.

4.3. Reduction maps. Suppose w = vv′ with �(w) = �(v)+�(v′). Then the set of
positive roots sent to negative roots by v−1 is a subset of the positive roots made
negative by w−1, by (4.2). Under these circumstances one can define a morphism

πw
v : B+ẇ ·B+ → B+v̇ ·B+

bẇ ·B+ �→ bv̇ ·B+,

where b ∈ B+. The map πw
v is well defined since B+ ∩ ẇB+ẇ−1 ⊆ B+ ∩ v̇B+v̇−1.

For a given B ∈ B+ẇ ·B+, the element πw
v (B) is characterized by the property

(4.4) B+ v−→ πw
v (B)

v−1w−→ B.

Let us call πw
v a reduction map.
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4.4. Deodhar’s theorem.

Definition 4.1. For v, w ∈ W define

Rv,w := B+ẇ ·B+ ∩B−v̇ ·B+ = {B ∈ B | B+ w−→ B
w0v←− B−}.

The intersection Rv,w is non-empty precisely if v ≤ w. And in that case Kazh-
dan and Lusztig proved that over an algebraically closed field it is irreducible of
dimension �(w)− �(v); see [9] §1. If v = w, then Rw,w = {ẇ ·B+}.

Suppose now thatw is a reduced expression for w ∈ W with factors (si1 , . . . , sin),
and B ∈ Rv,w. Using the reduction maps we can associate to B uniquely a sequence
of “intermediate” Borel subgroups

B+ = B0

si1−→ B1

si2−→ B2

si3−→ · · · sin−→ Bn = B,

where Bk = πw
w(k)

(B). By construction B+
w(k)−→ Bk. However, the position of

Bk with respect to B−, or the opposite Bruhat cell containing Bk, defines a new
element v(k) ∈ W by

Bk ∈ B−v(k) ·B+.

For w as above and a sequence v := (v(0), . . . , v(n)) we define the Deodhar compo-
nent Rv,w in B by

(4.5)
Rv,w := {B ∈ Rv,w | πw

w(k)
(B) ∈ B−v(k) ·B+ }

= {B ∈ Rv,w | πw
w(k)

(B) ∈ Rv(k),w(k)
}.

Theorem 4.2 ([6] Theorem 1.1). Suppose w ∈ W and B ∈ B+ẇ · B+, and fix a
reduced expression w = (w(0), w(1), . . . , w(n)) for w.

(1) The Deodhar component Rv,w is nonempty if and only if v is a distinguished
subexpression of w.

(2) If v ≺ w, then Rv,w
∼= (K∗)|J

◦
v | × K|J−

v |, where J◦
v and J−

v are as in
Definition 3.2.

Another proof of this theorem will be contained in the next section. If the reduced
expression w is fixed, then as a corollary of the theorem one has a decomposition

(4.6) Rv,w =
⊔
v

Rv,w,

where the union is over all distinguished subexpressions for v in w. Note that the
Deodhar component Rv+,w corresponding to the unique positive subexpression for
v in w has dimension |J◦

v+
| = �(w) − �(v). So if K is algebraically closed, then it

is dense in Rv,w. This also holds for K = R since Rv+,w(R) is Zariski dense in
Rv+,w(C). Finally, for K = R or K = C, it holds that Rv+,w is open dense in Rv,w

with respect to the usual Hausdorff topology.
Suppose we fix a reduced expression w0 for the longest element w0. Then for

any w ∈ W the positive subexpression for w in w0 determines a reduced expression
ŵ+ for w. Therefore we have a decomposition of the whole flag variety,

(4.7) B =
⊔

w∈W

⎛⎝ ⊔
v≺ŵ+

Rv,ŵ+

⎞⎠ ,

which we may call the Deodhar decomposition of B corresponding to w0.
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Remark 4.3. The varieties Rv,w may be defined over a finite field K = Fq. In this
setting the number of points determine the R-polynomials Rv,w(q) = #(Rv,w(Fq))
introduced by Kazhdan and Lusztig [9] to give a recursive formula for the Kazhdan-
Lusztig polynomials. This is the origin of the notation Rv,w as well as Deodhar’s
original application of the theorem. The decompositions (4.6) together with the

isomorphisms Rv,w(Fq) ∼= (F∗
q)

|J◦
v | × Fq

|J−
v | give formulas for the R-polynomials.

5. Explicit parametrizations of Deodhar components

Let w be a reduced expression with factors (si1 , . . . , sin), and v ≺ w.

Definition 5.1. Define a subset Gv,w in G by

Gv,w =⎧⎨⎩g = g1g2 · · · gn

∣∣∣∣∣∣
gk = xik(mk)ṡ

−1
ik

if k ∈ J−
v ,

gk = yik(tk) if k ∈ J◦
v,

gk = ṡik if k ∈ J+
v ,

for tk ∈ K
∗, mk ∈ K.

⎫⎬⎭ .

(5.1)

There is an obvious map (K∗)J
◦
v ×KJ−

v → Gv,w defined by the parameters tk and
mk in (5.1). For v = w = (1) we define Gv,w = {1}.

The following proposition gives an explicit parametrization for the Deodhar com-
ponent Rv,w.

Proposition 5.2. The map (K∗)J
◦
v × KJ−

v → Gv,w from Definition 5.1 is an
isomorphism. The set Gv,w lies in U−v̇∩B+ẇB+, and the assignment g �→ g ·B+

defines an isomorphism

Gv,w
∼−→ Rv,w.(5.2)

The special case v = 1 and w = w0 of this proposition already appears in
[11] Proposition 2.5. The proof below is analogous to the one we gave for that special
case, and of course also similar to Deodhar’s proof of Theorem 4.2(2), although his
is ultimately a different isomorphism.

Proof. Let w = (w(0), . . . , w(n)) be a reduced expression with factors (si1 , . . . , sin),
and let v = (v(0), . . . , v(n)). The proof is by induction on n. If n = 0, then v = w =

(1) and the isomorphism (5.2) is the trivial one 1 �→ B+. There is nothing more to
check. For n > 0 let w′ := (w(0), . . . , w(n−1)) and similarly v′ = (v(0), . . . , v(n−1)),
the truncations of v and w. Also set w′ = w(n−1) and v′ = v(n−1). We may assume
the proposition is true for v′,w′.

It is easy to check that Gv′,w′ × K
∼−→ (πw

w′)−1(Rv′,w′) via the map (g′,m) �→
g′xin(m)ṡin · B+, using for example (4.4) and properties of relative position. And
we have a commutative diagram

(5.3)
Gv′,w′ ×K

∼−→ (πw
w′)−1(Rv′,w′)

pr1 ↓ ↓ πw
w′

Gv′,w′
∼−→ Rv′,w′ .

Now let B ∈ (πw
w′)−1(Rv′,w′), so B = g′xin(m)ṡin · B+ for some g′ ∈ Gv′,w′ and

m ∈ K. We consider two cases.

(i) Suppose m = 0. Then B = g′ṡin · B+. Since g′ ∈ U−v̇′, we have B ∈
B−v̇′ṡin ·B+.
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(ii) Suppose m �= 0. Then the identity (2.1) implies xin(m)ṡin ·B+ = yin(m
−1)·

B+. So we may write B in two different ways,

B = g′xin(m)ṡi ·B+ = g′yin(m
−1) ·B+.

• If v′sin > v′, then v̇′yin(m
−1)v̇′−1 ∈ U−. In this case we have

g := g′yin(m
−1) ∈ U−v̇′

and B = g ·B+ ∈ B−v̇′ ·B+.
• If v′sin < v′, then v̇′xin(m)v̇′−1 ∈ U−. Therefore we have

g := g′xin(m)ṡ−1
in

∈ U−v̇′ṡ−1
in

and B = g ·B+ ∈ B−v̇′ṡ−1
in

·B+.

Note that in both cases, (i) and (ii), if v′sin < v′, we have B ∈ B−v̇′ṡin · B+.
This explains Theorem 4.2.(1). We now use the above to analyze the possibilities for

an element B ∈ Rv,w ⊆ (πw′

w )−1(Rv′,w′) and complete the proof of the proposition.

(1) Suppose n ∈ J−
v . Then both (i) and (ii) are possible. Therefore Rv,w =

(πw′

w )−1(Rv′,w′), and we have

Gv,w
∼= Gv′,w′ ×K

∼−→ Rv,w,

via g1 . . . gn−1xin(mn)ṡ
−1
in

�→ (g1 . . . gn−1,mn) and (5.3).
(2) If n ∈ J◦

v, then v(n) = v(n−1) so only case (ii) is possible. Then (5.3)
restricts to give

Gv,w
∼= Gv′,w′ ×K

∗ ∼−→ Rv,w,

where the identification Gv,w
∼= Gv′,w′ × K∗ is via g1 . . . gn−1yin(tn) �→

(g1 . . . gn−1, t
−1
n ).

(3) Finally, if n ∈ J+
v , then only case (i) is possible and B = g′ṡin · B+.

Therefore (5.3) induces

Gv,w
∼= Gv′,w′ × { 1 } ∼−→ Rv,w.

In each case Gv,w ⊂ U−v̇(n), where we note that in (1) above, v(n) = v′sin < v′

implies v̇(n) = v̇′ṡ−1
in

. The inclusion Gv,w ⊂ B+ẇB+ is clear. �

Remark 5.3. Let w0 be a fixed reduced expression for w0. Then Deodhar’s de-
composition (4.7) of B together with Proposition 5.2 gives rise to a set theoretic
cross-section

φ : B −→ G,

defined on each Deodhar componentRv,ŵ+
⊂ B as the inverse of Gv,ŵ+

∼−→ Rv,ŵ+
.

To describe the map φ more explicitly we must first explain how to determine
the Deodhar component of an element of B and, secondly, give formulas for the
individual maps Rv,w → Gv,w.

6. Deodhar components in terms of minors

Suppose B lies in a particular Bruhat cell, B = zẇ · B+ for z ∈ U+. In this
section we determine the conditions on z for B to lie in a Deodhar component Rv,w.
The conditions will be expressed in terms of (generalized) minors of z.

Let V (λ) be the Weyl module of G with highest weight λ. In the following λ will
often be a fundamental weight ωi. Consider the weight space decomposition V (λ) =⊕

μ V (λ)μ, and denote by prμ : V (λ) → V (λ)μ the corresponding projections. Let
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us fix a highest weight vector ξλ. Then the element ẇ · ξλ ∈ V (λ) for w ∈ W spans
the extremal weight space V (λ)wλ. In this way, the choice of highest weight vector
gives rise to a canonical choice of basis vectors for all the extremal weight spaces.

Lemma 6.1. If wλ = w′λ, then ẇ · ξλ = ẇ′ · ξλ.

Proof. It is necessary only to check that v̇ · ξλ = ξλ whenever vλ = λ. Since the
stabilizer of λ is a parabolic subgroup of W we may assume v is a simple reflection
si. Then ṡi = xi(−1)yi(1)xi(−1) and the statement is clear. �

Definition 6.2 (Generalized minors). For η ∈ V (λ) define 〈η, ẇ · ξλ〉 to be the
coefficient in η of the extremal weight vector ẇ · ξλ. That is, with notation as
above,

prwλ(η) = 〈η, ẇ · ξλ〉 ẇ · ξλ.
For two extremal weights wλ and w′λ we then have a regular function Δwλ

w′λ on G
defined by

Δwλ
w′λ(g) := 〈gẇ′ · ξλ , ẇ · ξλ〉 .

Since any weight lies in the Weyl group orbit of a unique dominant weight, this
notation is unambiguous.

It is not hard to see that Δwλ
w′λ coincides with the regular function Δwλ,w′λ

defined in [7, Definition 1.4].
The functions Δwωi

w′ωi
, where ωi ranges through the set of fundamental weights,

are called minors or generalized minors. If G = SLd with the standard pinning,
then Δwωi

w′ωi
is precisely the usual i × i minor, where wωi encodes the row set and

w′ωi the column set.

Definition 6.3 (Chamber minors). Suppose w is a reduced expression and v ≺ w
a distinguished subexpression.

(1) The minors Δ
v(k)ωik
w(k)ωik

for k = 0, 1, . . . , n are called the standard chamber
minors for v and w.

(2) The minors Δ
v(k−1)ωik
w(k)ωik

for k ∈ J−
v ∪J+

v are called the special chamber minors
for v and w.

Note that Δ
v(k−1)ωik
w(k)ωik

= Δ
v(k)ωik
w(k)ωik

if k ∈ J◦
v.

Proposition 6.4. Let B = zẇ ·B+ for z ∈ U+, and w be a reduced expression with
factors (si1 , si2 , . . . , sin). Then B lies in the the Deodhar component Rv,w where
v = (v(0), v(1), . . . , v(n)) is constructed as follows. Let v(0) = 1. Suppose that k ≥ 1
and v(k−1) has already been defined.

(a) If v(k−1)sik > v(k−1) and Δ
v(k−1)ωik
w(k)ωik

(z) �= 0, then v(k) = v(k−1).

(b) If v(k−1)sik > v(k−1) and Δ
v(k−1)ωik
w(k)ωik

(z) = 0, then v(k) = v(k−1)sik .
(c) If v(k−1)sik < v(k−1), then v(k) = v(k−1)sik .

Remark 6.5. Note that in the situation of the proposition Δ
v(k)ωik
w(k)ωik

(z) �= 0 for all
k = 1, . . . , n, as follows from the definition of the v(k). The chamber minors give
rise to well-defined maps (which we denote in the same way),

Δ
v(k)ωik
w(k)ωik

: Rv,w → K∗ : zẇ ·B+ �→ Δ
v(k)ωik
w(k)ωik

(z) k = 1, . . . , n,

Δ
v(k−1)ωik
w(k)ωik

: Rv,w → K : zẇ ·B+ �→ Δ
v(k−1)ωik
w(k)ωik

(z) k ∈ J−
v .

Proof. By Theorem 4.2.(1) we have that v is a distinguished subexpression of w.
Therefore (c) holds. Now suppose v(k−1)sik > v(k−1). We have either
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(1) v(k) = v(k−1) and zẇ(k) ·B+ ∈ B−v̇(k−1) ·B+, or

(2) v(k) = v(k−1)sik and zẇ(k) ·B+ ∈ B−v̇(k−1)ṡik ·B+.

We can distinguish between these two cases by looking just at the representation
Vωik

. In the first case, the highest weight occurring in zẇ(k) · ξωik
is v(k−1)ωik ,

and hence Δ
v(k−1)ωik
w(k)ωik

(z) �= 0. In the second case, the highest weight occurring in
zẇ(k) · ξωik

is v(k−1)sikωik , which is lower than v(k−1)ωik since v(k−1)sik > v(k−1).

Therefore we have Δ
v(k−1)ωik
w(k)ωik

(z) = 0. �

As a reformulation of Proposition 6.4 we have the following description of Rv,w

inside the Bruhat cell B+ẇ ·B+.

Corollary 6.6. Suppose w is a reduced expression of w and v ≺ w a distinguished
subexpression, with J+

v and J◦
v as in Definition 3.2. Then Rv,w may be described

by

Rv,w =

{
zẇ ·B+

∣∣∣∣ z ∈ U+ ;
Δ

v(k−1)ωik
w(k)ωik

(z) = 0 for all k ∈ J+
v ,

Δ
v(k)ωik
w(k)ωik

(z) �= 0 for all k ∈ J◦
v

}
.

7. The generalized Chamber Ansatz

By Proposition 5.2 a Deodhar component Rv,w comes with isomorphisms

(7.1) (K∗)J
◦
v ×K

J−
v

∼→ Gv,w
∼→ Rv,w.

The aim of this section is to describe an inverse to (7.1). The following theorem
generalizes the Chamber Ansatz of Berenstein and Zelevinsky [2].

Theorem 7.1 (Generalized Chamber Ansatz). Let B = zẇ · B+ ∈ Rv,w, where
z ∈ U+, v, w ∈ W and v ≤ w. Let w = (w(0), w(1), . . . , w(n)) be a reduced expression
for w with factors (si1 , si2 , . . . , sin). Then B lies in a Deodhar component Rv,w,
where v = (v(0), v(1), . . . , v(n)) is a distinguished subexpression for v in w. By

Proposition 5.2, there is g ∈ Gv,w such that B = g ·B+. By Definition 5.1 we can
write g = g1g2 · · · gn ∈ U−v̇ ∩B−ẇB+, where

gk =

⎧⎨⎩
yik(tk) k ∈ J◦

v,
ṡik k ∈ J+

v ,
xik(mk)ṡ

−1
ik

k ∈ J−
v .

For each k, let g(k) = g1g2 · · · gk denote the partial product. Then the following
hold:

(1) For k ∈ J◦
v, we have

tk =

∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

Δ
v(k)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)
.

(2) For k ∈ J−
v , we have

mk =
Δ

v(k−1)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

−Δ
v(k−1)ωik
sikωik

(g(k−1)).

Remark 7.2. It is easy to check that the minors appearing in Theorem 7.1(1) are the
standard chamber minors of Definition 6.3(1). The formula for the mk also involves

the special chamber minors, as well as a correction term, Δ
v(k−1)ωik
sikωik

(g(k−1)), which
can be computed recursively. It is an open problem to find a closed formula in terms
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of minors of z for this correction term. See Section 8 for another interpretation of
the formulas in Theorem 7.1.

In order to prove Theorem 7.1, we will rewrite the chamber minors as minors
of g(k) = g1g2 · · · gk, for k = 0, 1, . . . , n (Lemma 7.4). We will then compute these
minors (Lemma 7.5) and substitute these formulas back into the expressions in
Theorem 7.1(1) and (2), finally showing that they reduce to the coefficients tk and
mk as claimed.

Lemma 7.3. For k ∈ {0, 1, . . . , n} we have g(k) ·B+ = zẇ(k) · B+.

Proof. Consider the sequence B+, g(1) ·B+, g(2) ·B+, . . . , g(n) ·B+. Then clearly

B+ si1−→ g(1) · B+ si2−→ g(2) ·B+ si3−→ · · · sin−→ g(n) ·B+.

It follows from Section 4.3 that g(k) ·B+ = πw
w(k)

(B) = zẇ(k) ·B+ for k = 0, 1, . . . , n

as required. �

We note that Lemma 7.3 gives two expressions for the intermediate Borel sub-
groups Bk = πw

w(k)
(B). Suppose that λ is a dominant weight. Let Lk denote

the line in the module V (λ) stabilised by Bk. Then, by the above, we have
Lk = 〈zẇ(k) · ξλ〉 = 〈g(k) · ξλ〉, where 〈η〉 denotes the line spanned by η ∈ V (λ). We
use this fact in the following lemma to compute minors of z in terms of minors of
g(k).

Lemma 7.4. Let λ be a dominant weight. Then:

(1) For k ∈ {0, 1, . . . , n}, we have

Δ
v(k)λ

w(k)λ
(z) =

1

Δ
w(k)λ

λ (g(k))
.

(2) For k ∈ {1, . . . , n}, we have

Δ
v(k−1)λ

w(k)λ
(z) =

Δ
v(k−1)λ

λ (g(k))

Δ
w(k)λ

λ (g(k))
.

Proof. Let Lk = 〈zẇ(k) · ξλ〉 = 〈g(k) · ξλ〉 be the line in V (λ) defined above. Since

z ∈ U+, we have 〈zẇ(k) · ξλ, ẇ(k) · ξλ〉 = 1. Therefore

(7.2) zẇ(k) · ξλ =

(
1〈

g(k) · ξλ, ẇ(k) · ξλ
〉) g(k) · ξλ.

Comparing coefficients of v̇(k−1) · ξλ on both sides, (2) immediately follows, and
comparing coefficients of v̇(k) · ξλ on both sides, we obtain

Δ
v(k)λ

w(k)λ
(z) =

Δ
v(k)λ

λ (g(k))

Δ
w(k)λ

λ (g(k))
.

However, by Proposition 5.2, g(k) ∈ U−v̇(k), so 〈g(k) ·ξλ, v̇(k) ·ξλ〉 = Δ
v(k)λ

λ (g(k)) = 1,
and (1) follows. �

We now compute the minors of g(k) from Lemma 7.4.

Lemma 7.5. Let k ∈ {0, 1, . . . , n} and let λ be a dominant weight. Then we have
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(1)

Δ
w(k)λ

λ (g(k)) =
k∏

l=1, l∈J◦
v

t
〈sil+1

sil+2
···sikλ,α

∨
il
〉

l

k∏
l=1, l∈J−

v

(−1)〈sil+1
sil+2

···sikλ,α
∨
il
〉.

(2) If k ∈ J−
v , then

mk = −Δ
v(k−1)ωik
ωik

(g(k))−Δ
v(k−1)ωik
sikωik

(g(k−1)).

Proof. (1) We prove the result for g = g(n) = g1g2 · · · gn. The result for arbitrary
k follows since g(k) is defined in terms of the distinguished subexpression v(k) =
(v(0), v(1), v(2), . . . , v(k)) for v(k) in w(k) in the same way that g is defined in terms of

the reduced subexpression v for v inw. For l = 1, 2, . . . , n+1, let g(l) = glgl+1 · · · gn.
We note that g(l) ∈ B+ẇ(l)B+ for l = 1, 2, . . . , n + 1, where w(l) = ṡil ṡil+1

· · · ṡin .
We prove, by reverse induction on l, that

Δw(l)λ
λ (g(l)) =

n∏
j=l, j∈J◦

v

t

〈
sij+1

sij+2
···sinλ,α∨

ij

〉
j

n∏
j=l, j∈J−

v

(−1)

〈
sij+1

sij+2
···sinλ,α∨

ij

〉
.

The start of the induction is clear. Suppose that the result holds for l + 1, i.e., for
g(l+1) = gl+1 · · · gn, and consider g(l) = glgl+1 · · · gn. Since g(l+1) ∈ B+ẇ(l+1)B+,
g(l+1) · ξλ is a linear combination of elements of V (λ) of weight μ ≥ w(l+1)λ.

Case (I). Suppose that l ∈ J◦
v, so that gl = yil(tl). Then, using that w(l+1)λ and

w(l)λ are extremal weights, and w(l)λ = silw
(l+1)λ ≤ w(l+1)λ we have

Δw(l)λ
λ (g(l)) = Δw(l)λ

λ (yil(tl)g
(l+1))

=
〈
yil(tl)g

(l+1) · ξλ, ẇ(l) · ξλ
〉

=
〈
yil(tl)ẇ

(l+1) · ξλ, ẇ(l) · ξλ
〉〈

g(l+1) · ξλ, ẇ(l+1) · ξλ
〉
.

By equation (2.1),

Δw(l)λ
λ (g(l))=

〈
xil(t

−1
l )α∨

il
(t−1

l )ṡilxil(t
−1
l )ẇ(l+1) · ξλ, ẇ(l) · ξλ

〉〈
g(l+1) · ξλ, ẇ(l+1) · ξλ

〉
=t

〈sil+1
···sinλ,α∨

il
〉

l Δw(l+1)λ
λ (g(l+1)).

Case (II). Suppose that l ∈ J+
v , so that gl = ṡil . Then

Δw(l)λ
λ (g(l)) = Δw(l)λ

λ (ṡilg
(l+1))

=
〈
ṡilg

(l+1) · ξλ, ẇ(l) · ξλ
〉
.

It is thus clear that

Δw(l)λ
λ (g(l)) = Δw(l+1)λ

λ (g(l+1)).
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Case (III). Suppose that l ∈ J−
v , so that gl = xil(ml)ṡ

−1
il

. Then, using the fact

that that w(l+1)λ ≥ w(l)λ = silw
(l+1)λ are extremal weights, we have

Δw(l)λ
λ (g(l)) = Δw(l)λ

λ (xil(ml)ṡ
−1
il

g(l+1))

=
〈
xil(ml)ṡ

−1
il

g(l+1) · ξλ, ẇ(l) · ξλ
〉

=
〈
xil(ml)ṡ

−1
il

ẇ(l+1) · ξλ, ẇ(l) · ξλ
〉〈

g(l+1) · ξλ, ẇ(l+1) · ξλ
〉

=
〈
ṡ−1
il

ẇ(l+1) · ξλ, ẇ(l) · ξλ
〉〈

g(l+1) · ξλ, ẇ(l+1) · ξλ
〉

= (−1)〈sil+1
···sinλ,α∨

il
〉Δw(l+1)λ

λ (g(l+1)).

The last equality follows from the fact that ṡ−1
il

= α∨
il
(−1)ṡil .

The result for l now follows (in each case) from the inductive hypothesis and we
are done.

(2) We have

Δ
v(k−1)ωik
ωik

(g(k))=
〈
g(k) · ξωik

, v̇(k−1) · ξωik

〉
=
〈
g(k−1)xik(mk)ṡ

−1
ik

· ξωik
, v̇(k−1) · ξωik

〉
=−

〈
g(k−1)ṡik · ξωik

, v̇(k−1) · ξωik

〉
−mk

〈
g(k−1) · ξωik

, v̇(k−1) · ξωik

〉
,

=−Δ
v(k−1)ωik
sikωik

(g(k−1))−mk,

noting that, since g(k−1) ∈ U−v̇(k−1), we have that 〈g(k−1) · ξωik
, v̇(k−1) · ξωik

〉 = 1.
The result follows. �

Remarks 7.6. (1) Let tk = −1 for k ∈ J−
v and let tk = 1 for k ∈ J+

v (so that now tk
is defined for k = 1, 2, . . . , n). Then the formula in Lemma 7.5(1) can be rewritten
as

Δ
w(k)λ

λ (g(k)) =
k∏

l=1

t
〈sil+1

sil+2
···sikλ,α

∨
il
〉

l .

(2) The following lemma gives an expression for mk which is simpler than the
Chamber Ansatz version, Theorem 7.1(2). However, the Chamber Ansatz formula
for the mk will be more useful in Section 8.

Lemma 7.7. For k ∈ J−
v , we have

mk = −
Δ

v(k−1)ωik
w(k)ωik

(z)

Δ
v(k)ωik
w(k)ωik

(z)
−Δ

v(k−1)ωik
sikωik

(g(k−1)).

Proof. This follows immediately from Lemma 7.4 and Lemma 7.5(2). �

Proof of Theorem 7.1. We can now prove Theorem 7.1 by using Lemmas 7.4 and 7.5
and Remark 7.6(1) to substitute for the minors appearing in the expressions on the
right-hand sides of Theorem 7.1(1) and (2). We first claim that, for k = 1, 2, . . . , n,
we have

(7.3) tk =

∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

Δ
v(k)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)
.
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(See [2, 4.3] for a similar proof of this statement in the special case where J+
v = ∅.)

We have using Lemma 7.4(1) and Remark 7.6(1):∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

Δ
v(k)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)
=

∏
j 
=ik

∏k
l=1 t

aj,ik〈sil+1
···sikωj ,α

∨
il
〉

l∏k
l=1 t

−
〈
sil+1

···sikωik
,α∨

il

〉
l

∏k−1
l=1 t

−
〈
sil+1

···sik−1
ωik

,α∨
il

〉
l

.

The exponent of tk is given by∑
j 
=ik

aj,ik
〈
ωj , α

∨
ik

〉
+
〈
ωik , α

∨
ik

〉
=

〈∑
j 
=ik

aj,ikωj + ωik , α
∨
ik

〉
=

〈
αik − ωik , α

∨
ik

〉
= 1.

If k < k′, the exponent of tk′ is clearly zero. If k′ < k, then the exponent of tk′ is
given by ⎛⎝∑

j 
=ik

aj,ik

〈
sik′+1

· · · sikωj , α
∨
ik′

〉⎞⎠
+
〈
sik′+1

· · · sikωik , α
∨
ik′

〉
+
〈
sik′+1

· · · sik−1
ωik , α

∨
ik′

〉
=

〈
sik′+1

· · · sik

⎛⎝⎛⎝∑
j 
=ik

aj,ikωj

⎞⎠+ 2ωik − αik

⎞⎠ , α∨
ik′

〉

=
〈
sik′+1

· · · sik(αik − αik), α
∨
ik′

〉
= 0,

and the claim (7.3) is proved; Theorem 7.1(1) is a special case.
We now prove Theorem 7.1(2). Suppose that k ∈ J−

v . Using Lemma 7.4 and (7.3)
(noting that tk = −1), we see that

Δ
v(k−1)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

=
Δ

v(k−1)ωik
ωik

(g(k))Δ
v(k−1)ωik
w(k−1)ωik

(z)

Δ
w(k)ωik
ωik

(g(k))
∏

j 
=ik
Δ

v(k)ωj
w(k)ωj (z)

−aj,ik

=
Δ

v(k−1)ωik
ωik

(g(k))Δ
v(k)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

= −Δ
v(k−1)ωik
ωik

(g(k)).

Theorem 7.1(2) now follows from Lemma 7.5(2), and the proof of Theorem 7.1 is
complete. �

8. A change of coordinates

We can gain some more insight into the structure of the formulas from Theo-
rem 7.1 if we consider the standard and special chamber minors as providing an
alternative system of coordinates on Rv,w.

Proposition 8.1. Let v ≺ w. With notation as above, the map

Rv,w −→ (K∗)J
◦
v × (K)J

−
v

zẇ ·B+ �→
(
(Δ

v(j)ωij
w(j)ωij

(z))j∈J◦
v
, (Δ

v(j−1)ωij
w(j)ωij

(z))j∈J−
v

)
is an isomorphism.
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For the special case v = (1, . . . , 1) see also Theorem 4.3 and Corollary 4.4 in [2].

Proof. Let w(k) = (w(0), . . . , w(k)) be the reduced expression for w(k) obtained from
w by truncation, and let v(k) be the corresponding truncation of v. The proof of
the proposition is by induction on k and using Theorem 7.1. The start of the
induction is trivial, so let us assume the proposition is true for Rv(k−1),w(k−1)

. We
have three cases for k.

(1) If k ∈ J◦
v, then as in the proof of Proposition 5.2 we have

Rv(k−1),w(k−1)
×K∗ ∼−→ Rv(k),w(k)

,
(g(k−1) ·B+, tk) �→ g(k−1)yik(tk) ·B+, g(k−1) ∈ Gv(k−1),w(k−1)

.

Compose this map with

(8.1)
Rv(k),w(k)

−→ Rv(k−1),w(k−1)
×K∗,

zẇ(k) ·B+ �→
(
zẇ(k−1) ·B+,Δ

v(k)ωik
w(k)ωik

(z)
)

to get a map ψk : Rv(k−1),w(k−1)
×K

∗ → Rv(k−1),w(k−1)
×K

∗. The Chamber

Ansatz says that tk can be recovered from zẇ(k) ·B+ by

(8.2) tk = ak
(
zẇ(k−1) ·B+

)
Δ

v(k)ωik
w(k)ωik

(z)−1,

where

ak(zẇ(k−1) ·B+) :=

∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

Δ
v(k−1)ωik
w(k−1)ωik

(z)
, zẇ(k−1) ·B+ ∈ Rv(k−1),w(k−1)

.

Note that this gives a well-defined map ak : Rv(k−1),w(k−1)
→ K∗, since ak is

made up of standard chamber minors for (v(k−1),w(k−1)). Now the formula
(8.2) gives rise to an inverse to ψk . Hence also (8.1) is an isomorphism,
and the proposition holds for Rv(k),w(k)

by the induction hypothesis.

(2) Suppose k ∈ J−
v . Then we have an isomorphism

Rv(k−1),w(k−1)
×K

∼−→ Rv(k),w(k)
,

(g(k−1) ·B+,mk) �→ g(k−1)xik(mk)ṡ
−1
ik

·B+, g(k−1) ∈ Gv(k−1),w(k−1)
,

which we can compose with

(8.3)
Rv(k),w(k)

−→ Rv(k−1),w(k−1)
×K,

zẇ(k) ·B+ �→
(
zẇ(k−1) ·B+,Δ

v(k−1)ωik
w(k)ωik

(z)
)

to get a map ψk : Rv(k−1),w(k−1)
×K → Rv(k−1),w(k−1)

×K. By Theorem 7.1

one can recover the mk coordinate from zẇ(k) ·B+ by

(8.4) mk = ak
(
zẇ(k−1) ·B+

)
Δ

v(k−1)ωik
w(k)ωik

(z)− bk
(
zẇ(k−1) ·B+

)
,

where ak : Rv(k−1),w(k−1)
→ K∗ and bk : Rv(k−1),w(k−1)

→ K are given by

ak(zẇ(k−1) ·B+) =
Δ

v(k−1)ωik
w(k−1)ωik

(z)∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

, zẇ(k−1) ·B+ ∈ Rv(k−1),w(k−1)
,

bk(g(k−1) ·B+) = Δ
v(k−1)ωik
sikωik

(g(k−1)), g(k−1) ∈ Gv(k−1),w(k−1)
.

Now the identity (8.4) gives an inverse to the map ψk. So (8.3) is an
isomorphism and the proposition holds for Rv(k),w(k)

.

(3) If k ∈ J+
v , then Rv(k),w(k)

∼= Rv(k−1),w(k−1)
and we are done.

�
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Remark 8.2. Assuming Proposition 8.1, much of the structure of Theorem 7.1 is

already determined. The proposition says that we may take the (Δ
v(j)ωij
w(j)ωij

(z))j∈J◦
v

in K∗, and the (Δ
v(j−1)ωij
w(j)ωij

(z))j∈J−
v

in K together as coordinates for Rv,w. Then

Theorem 7.1 can be interpreted roughly as the transition from these coordinates
to the coordinates (tj)j∈J◦

v
and (mj)j∈J−

v
from the factorization. From the outset

these two sets of coordinates have to be quite closely related, since they are both
compatible with reduction. In either setting the map πw

w(k)
: Rv,w → Rv(k),w(k)

corresponds to the projection onto the first k coordinates.
Let us consider explicitly an element g · B+ = zẇ · B+ with fixed reduction

g(k) · B+ = zẇ(k) · B+. Then this is equivalent to fixing coordinates tj and mj ,

or to fixing the minors Δ
v(j)ωij
w(j)ωij

(z) and Δ
v(j−1)ωij
w(j)ωij

(z), where j ≤ k in J◦
v or J−

v . If

k + 1 ∈ J◦
v, then the change of coordinate from Δ

v(k+1)ωik+1
w(k+1)ωik+1

(z) to tk+1 amounts

to an invertible map K∗ → K∗, which depends only on the earlier coordinates. So
it has to be of the form z �→ az±1 for some a ∈ K∗. The Chamber Ansatz simply
says the map is of the form z �→ az−1 and describes the coefficient a explicitly in
terms of earlier chamber minors of z.

If k ∈ J−
v , then the change of the coordinate Δ

v(k)ωik+1
w(k+1)ωik+1

(z) to mk+1 amounts to

an invertible map K → K, which depends only on the earlier coordinates. Therefore
this map must be of the form z �→ az + b for a ∈ K∗ and b ∈ K. Here again a is
computed by the Chamber Ansatz, and b is the correction term in Theorem 7.1.

9. The generalized Chamber Ansatz for SLd

Suppose we are given B = zẇ ·B+, with z ∈ U+, with fixed reduced expression
w for w. We can use Proposition 6.4 to determine which Deodhar component Rv,w

contains B, where v is a distinguished subexpression for v in w. We shall give
an explicit example in Section 10 of how to do this. Then B = g · B+, where
g = g1g2 · · · gn, and

gk =

⎧⎨⎩
yik(tk) k ∈ J◦

v,
ṡik k ∈ J+

v ,
xik(mk)ṡ

−1
ik

k ∈ J−
v .

The generalized Chamber Ansatz (Theorem 7.1) gives formulas for the tk and mk

in terms of minors of z (and the minor Δ
v(k−1)ωik
sikωik

(g(k−1)) of g(k−1)). We write
Theorem 7.1(2) in the form

mk = rk −Δ
v(k−1)ωik
sikωik

(g(k−1)),

where

rk =
Δ

v(k−1)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

.

This is the term ak
(
zẇ(k−1) ·B+

)
Δ

v(k−1)ωik
w(k)ωik

(z) in equation (8.4). In this section,
we give a graphical algorithm (generalizing that of [3]) for determining the co-
efficients tk and rk, in the case where G = SLd. The coefficients mk can then
be computed by computing the minors Δ

v(k−1)ωik
sikωik

(g(k−1)) inductively, noting that
g(k−1) depends only on the coefficients tj and mj for j ≤ k− 1 (an example of this
will be given in section 10.2).

We employ a generalised version of the pseudoline arrangements used in [3], in
which two pseudolines can either intersect, as in [3], or pass over or under each
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other (see below for examples). These can also be regarded as diagrams of singular
braids [1, 4].

The main idea is to associate such an arrangement (which we call the ansatz
arrangement) to the pair v,w. For example, if w = (1, s3, s3s2, s3s2s1, s3s2s1s3,
s3s2s1s3s2), and v is the distinguished subexpression (1, s3, s3, s3, 1, s2) for s2 in
w, then the arrangement is as in Figure 1.

......................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
................................................................................................................................................................................................................

.......
.......
.....
.......
.......
...............................

...........................................................................................................
.......
.......
.......
.......
.......
.......
.....................................................................................................................................

.......
.......
.......
.......
.......
.......
.......
............................................................................

.......................................................................................................................................................

................................
.......
......
.......
.......
...............................................................................................................................................................................................................................................................................................................................

.......
.......
.......
.......
.......
.......


•

•

•

1

2

3

4

Figure 1. Ansatz arrangement (unlabeled) for s3s2s1s3s2. Note

that g = ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 ṡ2.

The pair v, w determines the factors gk of g, which in turn determine the ansatz
arrangement in the following way. It consists of d pseudolines, numbered 1, 2, . . . , d,
from bottom to top on the left-hand side of the arrangement. Each factor xik(mk),
yik(tk), ṡik or ṡ−1

ik
of g gives rise to a constituent of the arrangement, in which

pseudolines at level ik from the bottom of the arrangement are either braided or
cross at a singular point. Note that xik(mk) and ṡ−1

ik
are treated as separate factors.

The rules for how this is done are given in Figure 2.

Factor of g

Constituent of
ansatz

arrangement

xik(mk) yik(tk) ṡik ṡ−1
ik
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.............................................................................
.............................................

Figure 2. Constituents of the ansatz arrangement.

As usual, we define a chamber of a generalised pseudoline arrangement to be a
component of the complement of the union of the pseudolines in the arrangement
(for this definition we interpret the under- and over-crossings as singular points).
In order to label the chambers, we need two auxilliary pseudoline arrangements
associated to the pair v,w, which we call the upper and lower arrangements (since,
as will be seen, they will determine upper and lower subscripts of chamber minors).
These arrangements are defined in the same way as the ansatz arrangement, except
that different rules for the factors of g are employed. These are described in Figure 3,
and the upper and lower arrangements for the example above are given in Figures 4
and 5. The chambers for these arrangements are labeled with the labels of the
strings passing below them.

We note that, since G = SLd, the generalized minors of Definition 6.2 coincide
with the usual minors of matrices. We denote by ΔR

S the minor with row set R
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Factor of g

Constituent of
upper

arrangement

Constituent of
lower

arrangement

xik(mk) yik(tk) ṡik ṡ−1
ik
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Figure 3. Constituents of the auxilliary arrangements.
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12 13

1
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4

Figure 4. Upper arrangement for s3s2s1s3s2. Note that g =

ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 ṡ2.
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•123 124 134

12 14 34

1 4
1

2

3

4

Figure 5. Lower arrangement for s3s2s1s3s2. Note that g =

ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 ṡ2.

and column set S (interpreted as 1 if R = S = ∅). Suppose that X is a chamber
of the ansatz arrangement. Let R(X) be the label of the chamber containing
the corresponding part of the upper arrangement, and let S(X) be the label of
the chamber containing the corresponding part of the lower arrangement (these
corresponding parts can be obtained by overlaying the ansatz arrangement with the

upper and lower arrangements respectively). We label X with the minor Δ
R(X)
S(X) .

The resulting labeled ansatz arrangement for our example is given in Figure 6.
Next, we note that the singular points in the ansatz arrangement correspond

precisely to the factors of g of the form xik(mk) and yik(tk). We label these (be-
neath the arrangment) with tk and mk, respectively, for convenience. The ansatz
arrangement can then be used to compute the coefficients tk and mk as follows.
Suppose k ∈ J−

v ∪J◦
v. Let Ak, Bk, Ck and Dk be the minors labelling the chambers

surrounding the singular point in the ansatz arrangement corresponding to k, with
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......................................................................................................................................................................................
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t2 t3 m4

Figure 6. Ansatz arrangement for s3s2s1s3s2. Note that g =

ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 ṡ2.

Ak and Dk above and below it, and Bk and Ck on the same horizontal level (see
Figure 7). It is easy to check that Theorem 7.1 implies that, for k ∈ J◦

v,

tk =
Ak(z)Dk(z)

Bk(z)Ck(z)
,

and, for k ∈ J−
v ,

rk =
Bk(z)Ck(z)

Ak(z)Dk(z)
.

................................
.......
.......
.......
.......
.......
.......
..........................................................................................................................................

•

Ak

Dk

Bk Ck

Figure 7. Chambers surrounding the singular point correspond-
ing to k ∈ J−

v ∪ J◦
v.

10. Determining Deodhar components for SLd

10.1. Graphical algorithm for Deodhar components. In this section we show
that Proposition 6.4 also gives rise to a graphical algorithm for SLd to determine
the Deodhar component of an element B ∈ B. Suppose that B = zẇ · B+, where
w ∈ W and z ∈ U+, and that a reduced expression w for w is chosen. Then the
graphical algorithm for computing the distinguished subexpression v of w such that
B ∈ Rv,w is as follows.

First we draw the usual pseudoline diagram for the reduced expression w of w
as in [3] (call this the classical pseudoline arrangement for w). Each factor sik
of w corresponds to a singular crossing between the ikth and ik+1st pseudolines
from the bottom (see below for an example). We define v(0) to be 1. Suppose
that v(0), v(1), . . . , v(k−1) have already been computed, and that if k > 1, we have
drawn the upper arrangement for the pair v(k−1) = (v(1), v(2), . . . , v(k−1)),w(k−1) =
(w(0), w(1), . . . , w(k−1)).

We compute v(k) in the following way. Consider the upper arrangement for the
pair v(k−1),w(k−1). If k > 1, let Rk be the label of the unbounded chamber at
the right-hand end of this arrangement between the ikth and ik+1st pseudolines
(counting from bottom to top). If k = 1, we take R1 to be {1, 2, . . . , ik}.
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Let Sk be the label of the chamber in the classical arrangement forw immediately
to the right of the kth crossing. It is clear that |Rk| = |Sk| = ik. Now the minor

ΔRk

Sk
(z) determines the value of v(k). We have, by Proposition 6.4:

(a) If v(k−1)sik > v(k−1) and ΔRk

Sk
(z) �= 0, then v(k) = v(k−1).

(b) If v(k−1)sik > v(k−1) and ΔRk

Sk
(z) = 0, then v(k) = v(k−1)sik .

(c) If v(k−1)sik < v(k−1), then v(k) = v(k−1)sik .

Thus v(k) is computed, and we draw the upper arrangement for the pair v(k),w(k),
by building on the upper arrangement for v(k−1),w(k−1) if k > 1. We are thus
ready for the next step.

In this way, all of the v(k) are determined inductively. We also note that at the
end we have drawn the upper arrangement for the pair v,w. So, after drawing
the lower arrangement for v,w, we are ready to apply the method in Section 9 to
compute the factors of g explicitly.

10.2. An Example. In this section we give an explicit example of the graphical
algorithm described above. We consider the element

z =

⎛⎜⎜⎝
1 1 2 1
0 1 4 2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ∈ SL4(C),

and set w = s3s2s1s3s2, so we have the reduced expression w = (1, s3, s3s2, s3s2s1,
s3s2s1s3, s3s2s1s3s2) for w. The classical arrangement for w is given in Figure 8.
We start with v(0) = 1.

......................................................................................................................................................................................
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123 124 134

12 14 34

1 4
1
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3

4

s3 s2 s1 s3 s2

Figure 8. Classical arrangement for w = s3s2s1s3s2.

Step 1.: We have v(0)s3 = s3 > v(0). Here, R1 = {1, 2, 3} and S1 = {1, 2, 4}.
Since i1 = 3 and Δ123

124(z) = 0, we are in case (b) and v(1) = v(0)s3 = s3.
Step 2.: We have v(1)s2 = s3s2 > v(1). The upper arrangement for the pair

v(1),w(1) is shown in Figure 9. Here, R2 = {1, 2} and S2 = {1, 4}. Since

i2 = 2 and Δ12
14(z) = 2 �= 0, we are in case (a) and v(2) = v(1) = s3.

Step 3.: We have v(2)s1 = s3s1 > v(2). The upper arrangement for the pair
v(2),w(2) is shown in Figure 10. Here, R3 = {1} and S3 = {4}. Since

i3 = 1 and Δ1
4(z) = 1, we are in case (a) and v(3) = v(2) = s3.

Step 4.: We have v(3)s3 = s3s3 = 1 < v(2). The upper arrangement for the
pair v(3),w(3) is shown in Figure 11. We are in case (c) and v(4) = v(3)s3 =
1.



234 B. R. MARSH AND K. RIETSCH

Step 5.: We have v(4)s2 = s2 > v(4). The upper arrangement for the pair
v(4),w(4) is shown in Figure 12. Here, R5 = {1, 2} and S5 = {3, 4}. Since

i5 = 2 and Δ12
34(z) = 0, we are in case (b) and v(5) = v(4)s2 = s2. The

upper arrangement for the pair v(5),w(5) is shown in Figure 4.

...........................................................................
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Figure 9. Upper arrangement for s3. Note that g(1) = ṡ3.
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Figure 10. Upper arrangement for s3s2. Note that g(2) = ṡ3y2(t2).
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Figure 11. Upper arrangement for s3s2s1. Note that g(3) = ṡ3y2(t2)y1(t3).
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Figure 12. Upper arrangement for s3s2s1s3. Note that g(4) =

ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 .
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We conclude thatB lies in the Deodhar componentRv,w, where v = (1, s3, s3, s3,
1, s2) and w = (1, s3, s3s2, s3s2s1, s3s2s1s3, s3s2s1s3s2).

We remark that we can use the above computation to determine criteria for
zẇ ·B+ to lie in Rv,w, where z is an arbitrary matrix in U+, in terms of minors of
z (see Corollary 6.6). Suppose that

z =

⎛⎜⎜⎝
1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1

⎞⎟⎟⎠ .

We obtain that

Rv,w = {zẇ ·B+ : Δ123
124(z) = a34 = 0,Δ12

14(z) = a24 �= 0,Δ1
4(z) = a14 �= 0,

Δ12
34(z) = a13a24 − a14a23 = 0}.

We note that no condition is obtained on the entry a12 of z. No such condition
could arise, since zẇ ·B+ doesn’t depend on a12, as w

−1α1 is positive.
Finally, we note that in our example, B lies in the Deodhar component Rv,w

considered in Section 9, so we can apply the graphical algorithm given there in
order to compute the coefficients tk and mk in the factorisation of

g = ṡ3y2(t2)y1(t3)x3(m4)ṡ
−1
3 ṡ2 ∈ Gv,w

(where B = g ·B+). We obtain

t2 =
Δ124

124(z)Δ
1
1(z)

Δ12
12(z)Δ

12
14(z)

= 1/2,

t3 =
Δ12

14(z)Δ
∅
∅(z)

Δ1
1(z)Δ

1
4(z)

= 2,

and

r4 =
Δ124

124(z)Δ
124
134(z)

Δ1234
1234(z)Δ

12
14(z)

= 2.

Finally, we show that the minor Δ
v(k−1)ωik
sikωik

(g(k−1)), that would appear as cor-
rection term vanishes on this Deodhar component, so that mk = rk. We have
Δ

v(k−1)ωik
sikωik

(g(k−1)) = Δ
v(3)ωi4
si4ωi4

(g(3)) = Δs3ω3
s3ω3

(ṡ3y2(t2)y1(t3)). We note that g(3)ṡ3ω3

is a linear combination of elements of weight ω3 and s3(s3ω3 −α2) = ω3 −α2 −α3,
and therefore has zero component in the s3ω3-weight space, from which it follows
that Δs3ω3

s3ω3
(ṡ3y2(t2)y1(t3)) = 0, so m4 = r4 − 0 = r4. Thus, in this case, m4 = 2.

We finally see that⎛⎜⎜⎝
1 1 2 1
0 1 4 2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ṡ3ṡ2ṡ1ṡ3ṡ2 ·B+ = ṡ3y2(1/2)y1(2)x3(2)ṡ
−1
3 ṡ2 ·B+.

Remark 10.1. It is possible that the minor Δ
v(k−1)ωik
sikωik

(g(k−1)) is nonzero. This
happens, for example, for G = SL4. Let v = 1 and w = w0, and take v =
(1, 1, 1, 1, s1, s1, 1), a subexpression for v in the reduced expression for w with factors
(s1, s2, s3, s1, s2, s1). Then g(5) = y1(t1)y2(t2)y3(t3)ṡ1y2(t5), and it is easy to check
that

Δ
v(5)ωi6
si6ωi6

(g(5)) = −t1.
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11. Total positivity

From now on let K = R. We view the group G and the flag variety B as real
manifolds, with the corresponding Hausdorff topology.

Definition 11.1 ([10]). The totally nonnegative part U−
≥0 of U− is defined to be

the semigroup in U− generated by the yi(t) for t ∈ R≥0. The totally nonnegative
part of B is defined by

B≥0 := {u ·B+ | u ∈ U−
≥0}

where the closure is taken inside B in its real topology.

Let us collect below some useful facts; see [10] and also [2] for (1).

(1) For any braid relation such as sisjsi = sjsisj in W there is a subtraction-
free rational transformation relating the parameters of the corresponding
parametrizations. For example in type A2,

yi(a)yj(b)yi(c) = yj

(
bc

a+ c

)
yi(a+ c) yj

(
ab

a+ c

)
.

(2) For w ∈ W and a reduced expression w = si1 . . . sin define

U−
>0(w) := {yi1(t1) · . . . · yin(tn) | t1, . . . , tn ∈ R>0}.

By (1) this set is independent of the reduced expression chosen. Moreover,
any product of yi(t)’s for positive parameters t can be transformed until it
is seen to lie in some U−

>0(w). Therefore

U−
≥0 =

⊔
w∈W

U−
>0(w).

This is of course precisely the decomposition of U−
≥0 induced by Bruhat

decomposition, that is, U−
>0(w) = U−

≥0 ∩B+ẇB+.

(3) The totally positive part of U− may be defined as U−
>0 = U−

≥0(w0). For the
flag variety the totally positive part is taken to be

B>0 := {u ·B+ | u ∈ U−
>0}.

Clearly B>0 is open dense in B≥0.
(4) Let u ∈ U−

≥0. The semigroup property uU−
≥0 ⊂ U−

≥0 implies, by continuity,
that

u · B≥0 ⊂ B≥0.

Definition 11.2. For v, w ∈ W with v ≤ w, let

R>0
v,w := Rv,w ∩ B≥0.

In the special case where v = 1 we have R1,w
∼= U− ∩ B+ẇB+ and R>0

1,w =

U−
>0(w)·B+ (see property (2) above). From this observation Lusztig [10] conjectured

that also R>0
v,w is a semi-algebraic cell. The first proof of this is in [12]. However,

this proof does not provide an explicit parametrization and uses deep properties of
canonical bases. We will now give a different proof which gives parametrizations
and is completely elementary.
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Let us choose a reduced expression w for w with factors (si1 , . . . , sin). To v ≤ w
we may associate the positive subexpression v+ for v in w as in Lemma 3.5. Note
that v+ is non-decreasing, so J−

v+
= ∅. We define

G>0
v+,w :=

{
g = g1g2 · · · gn

∣∣∣∣ gk = yik(tk) for tk ∈ R>0, if k ∈ J◦
v+

gk = ṡik , if k ∈ J+
v+

}
.

Then G>0
v+,w

∼= R
�(w)−�(v)
>0 is a semi-algebraic cell in G. The aim of this section is

to prove the following theorem.

Theorem 11.3. The isomorphism Gv+,w
∼→ Rv+,w restricts to an isomorphism of

real semi-algebraic varieties

G>0
v+,w

∼−→ R>0
v,w.

Note that if v = 1, then G>0
v+,w = U−

>0(w) and, as a subset of G, does not depend
on the reduced expression w. This is no longer true if v �= 1 as can be seen already
in type A2. We begin the proof of Theorem 11.3 with a simple observation about
minors.

Lemma 11.4. Suppose B = zẇ · B+ lies in B≥0 with z ∈ U+ and w ∈ W . For
any dominant weight λ and v ∈ W ,

Δvλ
wλ(z) ≥ 0.

Proof. Since B ∈ B≥0 we can find a sequence un ·B+ with un ∈ U−
>0 that converges

to B = zẇ · B+. Note that for any u = yi1(t1) . . . yiN (tN ) ∈ U−
>0 and x ∈ W , the

element u · ξλ in V (λ) has a positive projection to the xλ weight space, using that
si1 . . . siN = w0 has a subexpression for x. Now we have

un · ξλ
〈un · ξλ, ẇ · ξλ〉

→ zẇ · ξλ (n → ∞),

where the denominator 〈un · ξλ, ẇ · ξλ〉 is just the required normalization factor. It
follows that

0 ≤ lim
n→∞

〈un · ξλ, v̇ · ξλ〉
〈un · ξλ, ẇ · ξλ〉

= 〈zẇ · ξλ, v̇ · ξλ〉 = Δvλ
wλ(z).

�

We need to recall one lemma.

Lemma 11.5 ([12] Lemma 2.3). Suppose w = w1w2 with �(w) = �(w1) + �(w2).
Consider the reduction map πw

w1
: B+ẇ · B+ → B+ẇ1 · B+. If B ∈ B+ẇ · B+ lies

in B≥0, then so does πw
w1

(B).

This lemma is easy to see if B ∈ R>0
1,w : In that case using Lusztig’s parametriza-

tion we may write B = yi1(t1) . . . yin(tn) · B+ for some positive ti, being careful
to choose a reduced expression si1 · · · sin of w such that w1 = si1 · · · sim , where
m = �(w1). The element πw

w1
(B) = yi1(t1) . . . yim(tm) · B+ is then clearly totally

nonnegative again. The property extends from the dense open part R1,w to the
whole Bruhat cell essentially by continuity (see [12] for a more careful argument).

Now we are ready to show one part of the theorem.

Lemma 11.6. If Rv,w ∩ B≥0 �= ∅, then v is a positive subexpression of w.
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Proof. Let B ∈ Rv,w ∩ B≥0 and write B = zẇ · B+ for z ∈ U+. Suppose v ≺ w
is not a positive subexpression. Then J−

v �= ∅. Let k ∈ J−
v . The equation (7.3)

together with Remark 7.6.(1) gives

−1 =

∏
j 
=ik

Δ
v(k)ωj
w(k)ωj (z)

−aj,ik

Δ
v(k)ωik
w(k)ωik

(z)Δ
v(k−1)ωik
w(k−1)ωik

(z)
.

Therefore at least one of the minors in this formula must be negative. By Lemma
11.4 this implies that one of the two elements zẇ(k) · B+ and zẇ(k−1) · B+ does
not lie in B≥0. Since these are both reductions of B, we have a contradiction to
Lemma 11.5. �
Remark 11.7. Suppose zẇ · B+ ∈ R>0

v,w and w is a reduced expression for w with
positive subexpression v+ for v. Then by a combination of the above lemmas we
have

Δ
v(k)ωik
w(k)ωik

(z) > 0, k = 0, 1, . . . , �(w).

Recall that these minors, as standard chamber minors, are automatically nonzero,
hence the strict positivity. Since v+ is non-decreasing there are no special chamber
minors. So the observation is that if zẇ ·B+ lies in B≥0, then all of the associated
chamber minors are positive.

The following lemma is a technical tool we will need to finish the proof of the
theorem.

Lemma 11.8. Let v ≤ w in W and suppose αi0 is a simple root such that u−1αi0 >
0 for all v ≤ u ≤ w. Then for all g ·B+ ∈ Rv,w and any m ∈ R,

(11.1) xi0(m)g ·B+ = g ·B+.

In other words, if u−1αi0 > 0 for all v ≤ u ≤ w, then Rv,w is contained in the
Springer fiber of xi0(m).

Note that it is easy to see that the condition on αi0 is also necessary. Suppose
m �= 0. If xi0(m) fixes the elements of Rv,w, then it also fixes the elements of the
closure. So, in particular, xi0(m)u̇ · B+ = u̇ · B+ for v ≤ u ≤ w. This implies
u−1αi0 > 0.

Proof. Let v+ be the positive subexpression for v of a reduced expression w for
w. Since the corresponding Deodhar component Rv+,w is dense in Rv,w, it suffices
to show that xi0(m)g · B+ = g · B+ for g · B+ ∈ Rv+,w. In other words, we may
assume g ∈ Gv+,w.

By the defining property (3.8) for positive subexpressions we have that v(j−1)αij

> 0 for all j. Also J−
v+

= ∅. So we may write g ∈ Gv+,w as

g =

⎛⎝ ∏
j∈J◦

v+

yv(j−1)αij
(tj)

⎞⎠ v̇,

where yv(j−1)αij
(t) := v̇(j−1)yij (t)v̇

−1
(j−1) ∈ U−. Let us set y =

∏
j∈J◦

v+

yv(j−1)αij
(tj).

Then we have
g ·B+ = yv̇ ·B+ = zẇ ·B+,

where z ∈ U+. Let us also write the reductions πw
w(k)

(g ·B+) as

g(k) ·B+ = y(k)v̇(k) ·B+ = zẇ(k) ·B+,
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where y(k) =
∏

j∈J◦
v+

,j≤k yv(j−1)αij
(tj) and otherwise the notation is as usual.

We will now show that the conditions on αi0 imply the following assertions.

(i) If x ∈ W satisfies v(j) ≤ x ≤ w(j) for some j = 1, . . . , n, then x−1αi0 > 0.
(ii) v(j−1)αij �= αi0 for all j = 1, . . . , n.

For x ∈ W let R+(x) := {α ∈ R+ |x−1α < 0}. Suppose we have an x ∈ W with
v(j) ≤ x ≤ w(j). We want to show that there exists x′ with v ≤ x′ ≤ w such that

R+(x) ⊆ R+(x′). This will imply (i). Set x(j) := x. It suffices if we can construct

x(j+1) with v(j+1) ≤ x(j+1) ≤ w(j+1) and R+(x(j)) ⊂ R+(x(j+1)). For this there
are two cases. If already v(j+1) ≤ x(j), then we may set x(j+1) := x(j). Otherwise
we must be in the situation v(j+1) = v(j)sij+1

and we need to take (at least)
x(j+1) := x(j)sij+1

to obtain v(j+1) ≤ x(j+1) ≤ w(j+1). Because v(j+1) ≤ x(j+1) and
v(j+1) �≤ x(j), we find that x(j) < x(j+1) and also R+(x(j)) ⊂ R+(x(j+1)). So x(j+1)

has been constructed successfully.
Now consider x = v(j−1)sij . Clearly v(j) ≤ x ≤ w(j) is satisfied, and so by (i) we

have s−1
ij

v−1
(j−1)αi0 > 0. Therefore

�(si0v(j−1)sij ) = �(v(j−1)sij ) + 1 = �(v(j−1)) + 2

using also that v+ is non-decreasing. It follows that si0v(j−1)sij > si0v(j−1) and
si0v(j−1)αij > 0. This implies (ii).

Finally we can put everything together to show that xi0(m)g ·B+ lies in Rv+,w

and equals g ·B+. By Corollary 6.6 and Theorem 7.1 we know exactly which minors
to check. Namely we only have to prove

(1)

Δ
v(k−1)ωik
w(k)ωik

(xi0(m)z) = 0, k ∈ J+
v+

,

(2)

Δ
v(k)ωik
w(k)ωik

(xi0(m)z) = Δ
v(k)ωik
w(k)ωik

(z), k = 1, . . . , n.

Suppose l ∈ Z≥0 and μ = v(k−1)ωik − lαi0 . Let ζ = prμ(y(k)v̇(k) · ξωik
) in V (ωik).

If ζ �= 0, then the weight μ must be of the form

v(k−1)ωik − lαi0 = v(k)ωik −
∑

j≤k,j∈J◦
v

cjv(j−1)αij

with cj ≥ 0, since the factors of y(k) are yv(j−1)αij
(tj) for j ∈ J◦

v+
with j ≤ k.

Simplifying this equation we get

lαi0 = v(k−1)αik +
∑

j≤k,j∈J◦
v+

cjv(j−1)αij .

But the right-hand side is a nonzero sum of positive roots α not equal to αi0 by
(ii) above. Therefore we have a contradiction and so ζ = 0. Since zẇ(k) · ξωik

and

y(k)v̇(k) · ξωik
are collinear in V (ωik) this implies that also

prv(k−1)ωik
−lαi0

(zẇ(k) · ξωik
) = 0

for all l ≥ 0. Therefore
〈
xi0(m)zẇ(k) · ξωik

, v̇(k−1) · ξωik

〉
= 0 and (1) holds.

We can now prove (2) in a completely analogous way. Let l ∈ Z>0 and consider
ζ = prv(k)ωik

−lαi0
(y(k)v̇(k) · ξωik

). Then ζ �= 0 only if

lαi0 =
∑

j≤k,j∈J◦
v+

cjv(j−1)αij
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for cj ≥ 0. And again this is impossible by (ii). So ζ = 0 and with it

prv(k)ωik
−lαi0

(zẇ(k) · ξωik
) = 0

for all l > 0. This implies (2). �

Lemma 11.9. If g ∈ G>0
v+,w, then g ·B+ ∈ R>0

v,w.

Proof. By Proposition 5.2 we have g ·B+ ∈ Rv+,w. We need to show that g ·B+ ∈
B≥0. We have g = g1 . . . gn with

gj =

{
yij (tj) for tj ∈ R>0, if j ∈ J◦

v+
,

ṡij , if j ∈ J+
v+

.

Clearly gn · B+ ∈ B≥0. We will prove that gk . . . gn · B+ lies in B≥0 for all k
by descending induction. Suppose we know gk+1 . . . gn · B+ ∈ B≥0. There are two
possibilities for gk. The first case, k ∈ J◦

v+
, is clear. In that case gk = yik(tk) ∈ U−

≥0

and so gkgk+1 . . . gn ·B+ again lies in B≥0.
Let us now consider the other case. So gk = ṡik and k ∈ J+

v+
. From (2.1) we get

the formula

xi(t)ṡi = α∨
i (t)yi(t)xi(−t−1).

We apply this element for i = ik to gk+1 . . . gn ·B+ to get

xik(t)ṡikgk+1 . . . gn ·B+ = α∨
ik
(t)yik(t)xik(−t−1)gk+1 . . . gn ·B+.

Let v′ = v−1
(k)v and w′ = w−1

(k)w. Since v is the positive subexpression of w, so

the right-most reduced subexpression and k ∈ J+
v , it follows that siku > u for all

v′ ≤ u ≤ w′. Applying Lemma 11.8 we get

xik(−t−1)gk+1 . . . gn ·B+ = gk+1 . . . gn ·B+.

Therefore in total

(11.2) xik(t)ṡikgk+1 . . . gn ·B+ = α∨
ik
(t)yik(t)gk+1 . . . gn ·B+.

Now one can see that the right-hand side of (11.2) lies in B≥0 for all t > 0. However,
as t → 0 the left-hand side converges to ṡikgk+1 . . . gn ·B+. Therefore ṡikgk+1 . . . gn ·
B+ ∈ B≥0 and the lemma follows. �

Proof of Theorem 11.3. By Lemma 11.9 the map

(11.3) G>0
v+,w → R>0

v,w

is well defined. Lemma 11.6 implies that R>0
v,w ⊂ Rv+,w. Now if B = zẇ · B+ ∈

R>0
v,w, then Lemma 11.5 and Lemma 11.4 together with Corollary 6.6 imply that

the chamber minors of z (for the subexpression v+) are all positive. Note also that
J−
v+

= ∅. It follows that the map Rv+,w → Gv+,w described in Theorem 7.1 (see

Proposition 5.2) restricts to

R>0
v,w → G>0

v+,w,

giving the inverse to (11.3). �
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12. Total positivity criteria

We can use the Chamber Ansatz together with Theorem 11.3 to characterize
R>0

v,w by inequalities. In the case where v = 1 the criteria below reduce to the total

positivity criteria for U+ ∩B−ẇB− of Berenstein and Zelevinsky, [2] Theorem 6.9.

Proposition 12.1. Consider w ∈ W with a fixed reduced expression w = (w(0), . . . ,
w(n)). Let v ≤ w in W and v+ = (v(0), . . . , v(n)) be the positive subexpression for
v in w. Then

R>0
v,w =

{
zẇ ·B+

∣∣∣∣∣ z ∈ U+;
Δ

v(k−1)ωik
w(k)ωik

(z) = 0, k ∈ J+
v+

Δ
v(k)ωik
w(k)ωik

(z) > 0, k ∈ J◦
v+

}
=
{
zẇ ·B+ ∈ Rv,w

∣∣∣ z ∈ U+; Δ
v(k)ωik
w(k)ωik

(z) > 0, k ∈ J◦
v+

}
.

Proof. Let us call the two sets in question S1 and S2, respectively. We want to
show R>0

v,w = S1 = S2. The inclusions in one direction, R>0
v,w ⊆ S1 ⊆ S2, are clear

from Remark 11.7 and Corollary 6.6.
Moreover, by Corollary 6.6,

Δ
v(k−1)ωik
w(k)ωik

(z) = 0, for k ∈ J+
v+

,

is true for all zẇ ·B+ in Rv+,w. Since Rv+,w is dense in Rv,w, this equality holds
for all zẇ ·B+ ∈ Rv,w. Therefore we also have the inclusions S2 ⊆ S1 ⊆ Rv+,w.

It remains to show the final inclusion, of S1, say, into R>0
v,w. Consider zẇ ·B+ ∈

Rv+,w with Δ
v(k)ωik
w(k)ωik

(z) > 0 for all k ∈ J◦
v+

. By Theorem 11.3 and Theorem 7.1.(1)

we need only show that the remaining chamber minors, Δ
v(k)ωik
w(k)ωik

(z) for k ∈ J+
v+

,

are also positive. Suppose indirectly that Δ
v(k0)ωik0
w(k0)ωik0

(z) < 0 for some k0 ∈ J+
v+

.

We may choose k0 to be minimal with this property. From Remark 7.6.(1) and
equation (7.3) one obtains

(12.1) Δ
v(k0)ωik0
w(k0)ωik0

(z) =

∏
j 
=ik0

Δ
v(k0)ωj

w(k0)ωj (z)
−aj,ik0

Δ
v(k0−1)ωik0
w(k0−1)ωik0

(z)
.

Since the right-hand side is made up of chamber minors for smaller k, it must be
positive. So we have a contradiction. �

Remark 12.2. Note that by this proposition, R>0
v,w is given insideRv,w by dim(Rv,w)

= �(w)− �(v) inequalities. This is the ideal situation. Indeed, it is easy to see that
our set of inequalities,

(12.2) Δ
v(k)ωik
w(k)ωik

(z) > 0 (k ∈ J◦
v+

),

is minimal. Using Proposition 8.1 we can describe the situation by the following
commutative diagram:

Δ : Rv+,w
∼−→ (R∗)�(w)−�(v)

↑ ↑
R>0

v,w
∼−→ (R>0)

�(w)−�(v),

where the horizontal maps are given by the chamber minors,

Δ
(
zẇ ·B+

)
=
(
Δ

v(k)ωik
w(k)ωik

(z)
)
k∈J◦

v+

,
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and the vertical maps are inclusions. From this picture it is clear that (12.2), or
Proposition 12.1, has no redundant inequalities.
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