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DOUBLE AFFINE HECKE ALGEBRAS AND
CALOGERO-MOSER SPACES

ALEXEI OBLOMKOV

Abstract. In this paper we prove that the spherical subalgebra eH1,τ e of
the double affine Hecke algebra H1,τ is an integral Cohen-Macaulay algebra
isomorphic to the center Z of H1,τ , and H1,τ e is a Cohen-Macaulay eH1,τ e-
module with the property H1,τ = EndeH1,τ e(H1,τ e) when τ is not a root of

unity. In the case of the root system An−1 the variety Spec(Z) is smooth and
coincides with the completion of the configuration space of the Ruijenaars-
Schneider system. It implies that the module eH1,τ is projective and all irre-
ducible finite dimensional representations of H1,τ are isomorphic to the regular
representation of the finite Hecke algebra.

Introduction

In his pioneering paper [1] Cherednik introduced double affine Hecke algebras.
They played a crucial role in the proof of Macdonald conjectures [2, 3], and are
currently a subject of active research. A double affine Hecke algebra attached to a
root system R contains copies of the coweight and weight lattice of R, and thus can
be informally viewed (for terminological convenience) as an “elliptic” object. We
use the word “elliptic” because the double affine Hecke algebras studied here are
closely related to the notion of the elliptic root system introduced by Saito [4, 5].
More precisely, as established in [6], the Hecke algebra associated to the elliptic root
system is H1,τ . A double affine algebra has the trigonometric, respectively rational,
degeneration, in which one, respectively both, lattices degenerate to a vector space.

The rational degeneration Ht,c (called the rational Cherednik algebra) was re-
cently studied in [7]. One of the main results of [7] is that for t = 0 the structure of
the algebra Ht,c has interesting connections with algebraic geometry. More specif-
ically, the results of [7] for t = 0 can be summarized as follows.

1. The algebra H = H0,c is finite over its center Z, which is finitely generated.
If χ is a generic central character, then the quotient Hχ of H by χ is simple. The
unique irreducible representation of H with central character χ, as a representation
of C[W ], is isomorphic to the regular representation. Thus any irreducible H-
module has dimension ≤ |W |.

2. Let e be the symmetrizing idempotent in the group algebra of W . Then the
natural homomorpism Z → eHe given by z → ze is an isomorphism. In particular,
eHe is a commutative algebra. In addition, Z = eHe carries a Poisson structure
coming from the noncommutative deformation eHt,ce of eH0,ce.
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3. Z is an integral Cohen-Macaulay domain. He is a Cohen-Macaulay module
over Z = eHe, generically of rank |W |, and H = EndeHe(He).

4. Suppose R is the root system of the Lie algebra gln. Then the Poisson alge-
braic variety SpecZ is smooth and symplectic. This variety is naturally isomorphic
(as a symplectic variety) to the Calogero-Moser space CM introduced in [8]—the
space of conjugacy classes of pairs (X,Y ) of n-by-n matrices such that the matrix
[X,Y ] + 1 has rank 1, with the symplectic structure coming from the reduction
procedure of [8] (this result depends on Wilson’s theorem that the Calogero-Moser
space is connected). In particular, 1 holds for any (not only generic) character χ;
the module He over Z considered in 3 is projective, and thus corresponds to a
vector bundle E over CM of dimension n!, and H is the endomorphism algebra of
this vector bundle. Thus H in this case is an Azumaya algebra.

The Calogero-Moser space appearing in 4 was introduced in [8] as a completed
configuration space of the Calogero-Moser classical integrable system. It recently
found itself in the center of attention due to its interpretation as a deformation of
the Hilbert scheme Hilbn(C2) [9] and as a noncommutative Hilbert scheme [10, 11].
In fact, the commutative analog of the vector bundle E (which is a vector bundle
over Hilbn(C2)) is closely related to the n! conjecture proved recently by Haiman.

The goal of this paper is to generalize the results 1–4 to the triginometric and
elliptic cases. More specifically, we propose a modification of the approach of [7], in
which all three cases (rational, trigonometric, and elliptic) can be treated uniformly.
In fact, we treat mostly the elliptic case; the other two are analogous, and are
discussed at the end in Section 7.

The structure of the paper is as follows.
In Section 1 we define the main characters of the paper—the double affine Hecke

algebra Hq,τ for the root system of gln, and the corresponding Calogero-Moser
space CMτ , which is a completed configuration space of the Ruijsenaars-Shneider
(RS) integrable system. Similarly to the rational case, this space should have an
interpretation as a deformation and noncommutative version of the Hilbert scheme
Hilbn(C∗×C∗) (in the trigonometric case C∗×C∗ should be replaced with C×C∗).

In Section 2, we prove that CMτ is smooth and carries a symplectic structure
(after [12, 13]); this symplectic structure can also be obtained by Quasi-Poisson
reduction [14]. We also generalize Wilson’s theorem by proving that CMτ is con-
nected.

In Section 3, we study the representation theory of Hq,τ for q = 1.
In Section 4, to every representation of H1,τ which is regular as a representation

of the finite Hecke algebra sitting in H1,τ , we attach a point on the space CMτ .
In Section 5, we study the properties of the double affine Hecke algebra H for

any root system R; in particular, we prove that the results 1–3 from [7] cited above
hold in the elliptic case, with the group algebra C[W ] replaced by the finite Hecke
algebra Cτ [W ].

In Section 6, we use the results of Sections 2, 3 and 4 to prove the elliptic analogs
of the results from [7] under item 4 above. Namely, we establish a symplectic
isomorphism of the spectrum of the center Z of H = H1,τ for glN with the space
CMτ , which is the main result of the paper. In particular, Spec(Z) is smooth,
and He is a vector bundle on it, such that the fibers are the regular representation
of the finite Hecke algebra. Thus, H is the endomorphism algebra of this vector
bundle, i.e. an Azumaya algebra.
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In Section 7, we treat the rational and trigonometric case.
In a later publication, we plan to generalize the results of this paper to the case

of the non-reduced root system C∨Cn. In this case, instead of a single parameter
τ one has five independent parameters.

Acknowledgments. I would like to thank my adviser Pavel Etingof for posing the
problem, for multiple explanations, for his help in writing the introduction, and for
proving many statements in this paper. I am especially grateful for the proof of
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job, his remarks and suggestions allowed me to significantly improve and simplify
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1. Definitions

1.1. Definition of the double affine Hecke algebra corresponding to
GL(n,C). We denote this algebra by the symbol Hq,τ . It is generated by the
elements Ti, 1 ≤ i ≤ n− 1, π, X±1

i , 1 ≤ i ≤ n with relations

XiXj = XjXi, (1 ≤ i, j ≤ n),(1)

TiXiTi = Xi+1, (1 ≤ i < n),(2)

TiXj = XjTi, if j − i 6= 0, 1(3)

[Ti, Tj] = 0, if |i− j| > 1(4)

TiTi+1Ti = Ti+1TiTi+1, (1 ≤ i < n),(5)

πXi = Xi+1π (1 ≤ i ≤ n− 1), πXn = q−1X1π,(6)

πTi = Ti+1π, (1 ≤ i ≤ n− 2), πnTi = Tiπ
n, (1 ≤ i ≤ n− 1),(7)

(Ti − τ)(Ti + τ−1) = 0, (1 ≤ i ≤ n).(8)

Remark 1.1. To identify this definition with the standard definition from the papers
of Cherednik one should replace τ by t

1
2 and q by q

1
2 . Also, some definitions use

the element T0 = πTn−1π
−1.

Remark 1.2. The double affine Hecke algebra corresponding to SL(n,C) is a quo-
tient of the subalgebra of Hq,τ generated by Xi/Xi+1, Ti, π, 1 ≤ i ≤ n− 1, by one
extra relation:

πn = 1.

1.2. Definition of the Calogero-Moser space. Let E be an n-dimensional vec-
tor space (over C). We denote by the symbol CM ′τ the subset of GL(E)×GL(E)×
E × E∗ consisting of the elements (X,Y, U, V ) satisfying the equation

(9) X−1Y −1XY τ−1 − τ = U ⊗ V.
Obviously it is an affine variety.

The group GL(n,C) = GL(E) acts on it by conjugation:

(X,Y, U, V )→ (gXg−1, gY g−1, gU, V g−1), g ∈ GL(E).

Later we will show that this action is free if τ2i 6= 1 for i = 1, . . . , n. So the naive
quotient by the action (i.e. the spectrum of the ring of GL(E) invariant functions)
yields an affine variety, and the quotient is nonsingular if CM ′τ is.
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Definition. The quotient of CM ′τ by the action GL(E) is called the Calogero-
Moser space. We use the notation CMτ for this space.

Below we always suppose that τ2i 6= 1 for i = 1, . . . , n.

2. Properties of the Calogero-Moser space

The goal of this section is to prove that CMτ is a smooth irreducible algebraic
variety of dimension 2n. We also introduce coordinates on its dense subset. The
methods of this section are analogous to the ones from the paper [10]. In principle,
smoothness of CMτ follows from the results of the paper [13], the authors of [13]
use the moduli space of the vector bundles on the punctured torus. For convenience
of the reader we give a direct elementary proof.

2.1. Smoothness of the Calogero-Moser space. First we prove a simple lemma
on which all the following statements are based.

Lemma 2.1. If (X,Y, U, V ) ∈ CM ′τ and [A,X ] = [A, Y ] = 0, A ∈ gl(E), then
A = λId for some λ ∈ C.

Proof. Let W ⊂ E be a nonzero subspace which is invariant under the action of
X , Y and A. We denote by X̄ and Ȳ the restriction of the operators X , Y to this
subspace. It follows from equation (9) that there are two possibilities.

In the first case W ⊂ V ⊥, where V ⊥ is the notation for the annihilator. In this
case (9) implies

X̄−1Ȳ −1X̄Ȳ = τ2Id.

But the determinant of LHS is equal to 1, hence we get a contradiction.
In the second case W * V ⊥, U ∈W . In this case (9) implies

X̄−1Ȳ −1X̄Ȳ − τUV̄ = τ2Id,

where 0 6= V̄ is the restriction of V to the subspace W . Since det(X̄Ȳ X̄−1Ȳ −1) = 1,
the last equation implies that there is a basis in W in which X̄−1Ȳ −1X̄Ȳ is diagonal
with the spectrum τ2, τ2, . . . , τ2, τ2−2k where k = dimW . But we know from
equation (9) that the spectrum of X−1Y −1XY is equal to τ2, τ2, . . . , τ2−2n. Thus
we get W = E.

The fact that the only common nonzero invariant subspace of X,Y and A is
the whole E immediately implies the statement of the lemma. Indeed, let λ be
an eigenvalue of A, then the corresponding eigenspace Wλ is invariant under the
action of X and Y , hence it coincides with E. �

Corollary 2.1. The action of GL(E) on CM ′τ is free.

Lemma 2.2. CM ′τ is smooth.

Proof. Let us introduce the map Ψ: GL(E)×GL(E)× E × E∗ → gl(E):

Ψ(X,Y, U, V ) = X−1Y −1XY − τU ⊗ V.

It is enough to show that dΨ is epimorphic at a point (X,Y, U, V ) ∈ CM ′τ . Let
x, y ∈ gl(E), u ∈ E, v ∈ E∗ and X(t) = Xext, Y (t) = Y eyt, U(t) = U + tu,
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V (t) = V + tv. Then

dΨ(X,Y,U,V )(x, y, u, v) =
d

dt
(Ψ(X(t), Y (t), U(t), V (t))|t=0

= −xX−1Y −1XY +X−1Y −1XxY −X−1yY −1XY

+X−1Y −1XY y − τU ⊗ v − τu ⊗ V.
If dΨ is not an epimorphism, then there exists 0 6= A ∈ gl(E) such that

tr(dΨ(X,Y,U,V )(x, y, u, v)A) = 0

for all x, y ∈ gl(E), u ∈ E, v ∈ E∗. Using the cyclic invariance of the trace, we can
rewrite the last condition in the form

tr(x(Y AX−1Y −1X −X−1Y −1XYA))

+ tr(y(AX−1Y −1XY − Y −1XYAX−1))− τv(AU) − τV A(u) = 0.

As the bilinear form tr(xy) is nondegenerate, the last equation implies

Y AX−1Y −1X −X−1Y −1XYA = 0,(10)

AX−1Y −1XY − Y −1XYAX−1 = 0,(11)

AU = 0, V A = 0.(12)

These equations together with equation (9) imply [A,X ] = [A, Y ] = 0. Indeed, let
us derive the first equation.

Multiplying on the right formula (9) by A we get

(13) X−1Y −1XYA = τ2A.

Hence

τ2XAX−1 = Y −1XYAX−1 = AX−1Y −1XY = A(τU ⊗ V + τ2Id) = τ2A,

here the first equation uses (13), second (11), third (9) and fourth (12).
By the previous lemma A = λId and finally from (12) we get A = 0. �

Corollary 2.2. CMτ is smooth algebraic variety, and all its irreducible components
have dimension 2n.

2.2. Local coordinates on CMτ . It is easy to see that matrices X,Y ∈ gl(n,C),

X = diag(λ1, . . . , λn),(14)

Yii = qi, i = 1, . . . , n,(15)

Yij =
(τ−1 − τ)qiλj
(τ−1λi − τλj)

, 1 ≤ i 6= j ≤ n,(16)

satisfy the equation

(17) rk(τ−1XY − τY X) = 1,

for all λ ∈ (C∗)n, q ∈ (C∗)n such that τλi 6= τ−1λj for i 6= j.
There is a well-known formula: if M = (Mij), where Mij = (λi − µj)−1, 1 ≤

i, j ≤ n, then

det(M) =

∏
i<j(λi − λj)(µj − µi)∏

i,j(λi − µj)
.

To prove this formula one can proceed by the induction on n using the Gaussian
method of calculation of the determinant for the step of the induction.
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Applying the last formula to the matrix Y we see that det(Y ) is nonzero if and
only if λi 6= λj , i 6= j.

Let us denote by π′12: CM ′τ → GL(E) × GL(E) the projection on the first
two coordinates. The previous reasoning shows that (X,Y ) ∈ π′12(CM ′τ ), for λ ∈
(C∗)n \Dτ , q ∈ (C∗)n where

Dτ = {λ|δτ (λ) =
∏
i6=j

(1− λi/λj)(τ−1 − τλi/λj) = 0}.

Now we can state

Proposition 2.1. Let (X,Y, U, V ) ∈ CM ′τ and X be diagonalizable with the distinct
eigenvalues λi, i = 1, . . . , n such that τλi 6= τ−1λj . Then the GL(n,C) orbit of
(X,Y, U, V ) contains a representative satisfying equations V = λt and (14)–(16) for
some q ∈ (C∗)n. Such a representative is unique up to (simultaneous) permutation
of the parameters (λi, qi).

Proof. Equation (17) is equivalent to the system

(18)
(τ−1λi − τλj)Yij

τ−1 − τ = pisj , 1 ≤ i, j ≤ n,

if X = diag(λ1, . . . , λn). If there exists i such that si = 0, then Yij = 0, j = 1, . . . , n
and det(Y ) = 0. Thus we have si 6= 0. Analogously we get pi 6= 0.

Let us fix a solution of (18) lying in the GL(n,C) orbit of (X,Y, U, V ). Putting
qi = pisi/λi we get the desired representative with X given by formula (14), Y by
formulas (15) and (16), and U = (τ−1 − τ)X−1Y −1q. �

Let us denote by U′ ⊂ CM ′τ the subset consisting of the quadruples (X,Y, U, V )
satisfying the conditions of the previous proposition and by U ⊂ CMτ the image of
U′ under the factorization by the action of GL(n,C). The proposition together with
Corollary 2.2 implies that (λ, q) are local coordinates on the open subset U ⊂ CMτ .
In the next section we show that this subset is dense.

2.3. Irreducibility of CMτ . In this subsection we prove

Proposition 2.2. The variety CMτ is irreducible.

Let us consider the projection on the first component π′1: CM ′τ → GL(E).
After taking the quotient by the action of GL(E), this map becomes a map π1:
CMτ → JNF , where JNF is a stack, but we can think about it as the set of
Jordan normal forms of matrices (we do not need the stack structure).

Inside JNF there is an open part Ũ corresponding to diagonal matrices with
eigenvalues {λ1, . . . , λn} such that λi 6= λj , τ−1λi 6= τλj for i 6= j. The subset
π−1

1 (Ũ) was described in the previous section. It is obviously connected. If we
show that dimπ−1

1 (JNF \ Ũ) < 2n, then Corollary 2.2 implies the irreducibility.
Let us denote by Jk(λ) the Jordan block of size k with the eigenvalue λ and

by the symbol J~k(λ) the matrix diag(Jk1(λ), . . . , Jkt(λ)), ~k ∈ Nt and ki ≥ ki+1,
i = 1, . . . , t − 1. Let us formulate without a proof an elementary statement from
linear algebra.

Lemma 2.3. The dimension of

Stab(J~k(λ)) = {X ∈ GL(n,C)|[X, J~k(λ)] = 0}
is equal to

∑
1≤i,j≤t min{ki, kj}.
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Let us denote by Jk(λ) the matrix

diag(J ~k1
(λ), J ~k2

(λτ−2), . . . , J ~kr(λτ
−2r)),

~ki ∈ Nti . We use the notation |~ki| =
∑ti
j=1 k

j
i , |k| =

∑r
j=1 |~kj |.

Let λ1, . . . , λs ∈ C be such that λi/λj 6= τ2c, c ∈ Z, |c| ≤ n and

(19) J = diag(Jk1(λ1), . . . , Jks(λs)).

We denote by π′34: CM ′τ → Cn × Cn the slightly modified projection on the
last two components: π′34(X,Y, U, V ) = (Y XU, V ). The fiber of the map π′34 over
the point (U, V ) of the subset Ĵ = π′34((π′1)−1(J)) consists of the points (J, Y +
F, J−1(Y + F )−1U, V ) where F is an element of the kernel of the linear map:

SJ (F ) = τ−1JF − τFJ, F ∈ gl(E),

Y + F is invertible, and (J, Y, J−1Y −1U, V ) ∈ CM ′τ . Obviously (π′34)−1(U, V ) is a
Zariski open nonempty subset inside ker(SJ ) hence they have the same dimension.

First let us study the map SJ in the simple case when in the equation (19) we
have s = 1 and k1 = k = (~k1, . . . , ~kr), ~ki ∈ Ndi , 1 ≤ i ≤ r. In this situation we
denote by F stij ∈ Mat(kis, k

j
t ), 1 ≤ s, t ≤ r the matrix with the entries F stij;pq = Fp′q′ ,

p′ =
∑s−1

l=1 |~kl|+
∑i−1

l=1 k
l
s + p, q′ =

∑t−1
l=1 |~kl|+

∑j−1
l=1 k

l
s + q. In these notations the

following lemma holds

Lemma 2.4. Let J be the matrix given by (19) with s = 1 and k1 = k =
(~k1, . . . , ~kr). Then F ∈ kerSJ if and only if

F stij = 0, if t− s 6= 1,(20)

F s,s+1
ij = (

kis−1∑
l=0

csij;lJ
l
kis

(0))D
kis,k

j
s+1

τ if kis ≤ k
j
s+1,(21)

F s,s+1
ij = D

kis,k
j
s+1

τ (
kjs+1−1∑
l=0

csij;lJ
l
kjs+1

(0)) if kis > kjs+1,(22)

where csij;l ∈ C, J lkis(0) (and J l
kjs+1

(0)) is the l-th power of the Jordan block matrix,

and Dkis,k
j
s+1 ∈ Mat(kis, k

j
s+1) is given by the formula

D
kis,k

j
s+1

τ ;pq = δp+kjs+1,q+k
i
s
τ2p−2 if kis ≤ k

j
s+1,

D
kis,k

j
s+1

τ ;pq = δp,qτ
2p−2 if kis > kjs+1.

Proof. The system of linear equations SJ(F ) = 0 is equivalent to the collection of
linear systems:

τJkis(λτ
2−2s)F stij − τ−1F stij Jkjt

(λτ2−2t) = 0, 1 ≤ s, t ≤ r,

because J has a block structure. The equations for the entries of F stij are of the
simple form:

(23) F stij;pqλ(τ1−2s − τ3−2t) = τ−1(δp,ksi − 1)F stij;p+1,q − τ(δq,1 − 1)F stij;p,q−1.

First consider the case t − s 6= 1. Then τ1−2s − τ3−2t 6= 0 and equations (23)
express the entries of l-th diagonal through the entries of (l − 1)-th diagonal. It
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easy to see that in this case (23) implies F stij;kis ,1 = 0, that is, the first diagonal is
zero. Moving from the left to the right we get that all the diagonals of F stij are zero.

If s + 1 = t, then equation (23) is a linear relation between the neighboring
entries on the diagonal. It is easy to derive equations (21), (22) from this fact.

Indeed, let us consider the case kis ≤ kjs+1. Then equation (23) for p = ksi ,
1 < q ≤ ksi says F s,s+1

ij;ksi ,q−1 = 0. Moving along the diagonal from the bottom to the

top and using equation (23) we get that the first ksi−1 diagonals of the matrix F s,s+1
ij

are zero. For the rest of the diagonals equation (23) implies F s,s+1
ij;p+1,q+p = F s,s+1

ij;1,q τ
2p.

Putting csij;l = F s,s+1

ij;1,l+kjs+1−kis+1
we get equation (21). �

Obviously Z ∈ ImSJ if and only if tr(ZF ) = 0 for all F ∈ ker S̄J , S̄J(F ) =
τJF − τ−1FJ . The space ker S̄J has a description similar to the one of kerSJ (to
get ker S̄J from kerSJ it is enough to change the order of the Jordan blocks in J)
and one can easily derive

Corollary 2.3. Z ∈ ImSJ if and only if following equations hold
u−1∑
l=0

Zs,s+1
ij;kis−l,u−l

τ2l = 0, u = 1, . . . ,min{kis, k
j
s+1},

where s = 1, . . . , r − 1.

The lowest nonzero diagonal of a rank one matrix contains only one nonzero
entry. As Ĵ ⊂ ImSJ ∩ {matrices of rank 1} the following statement holds

Corollary 2.4. (U, V ) ∈ Ĵ = π′34((π′1)−1(J)) if and only if Z = U ⊗ V satisfies
the equation

Zs,s+1
ij;pq = 0 if p− q ≥ min{0, kis − k

j
s+1}, s = 1, . . . , r − 1.

Lemma 2.4 gives us the formula for the dimension of the kernel

dim kerSJ =
r−1∑
s=1

∑
i,j

min{kis, k
j
s+1}.

We know that GL(E) acts on CM ′τ freely. Hence if we want to estimate the
dimension of the fiber of π34 over Ĵ , we should estimate dim Stab(J)− dim kerSJ .
This difference is positive:

Lemma 2.5. Let ks ∈ Nds , s = 1, . . . , r, kis ≥ ki+1
s , then the following inequality

holds:
r∑
s=1

∑
i,j

min{kis, kjs} −
r−1∑
s=1

∑
i,j

min{kis, k
j
s+1} > 0,

if there exists s such that ks 6= 0.

Proof. Because of the inequality kis ≥ ki+1
s we can rewrite LHS of the inequality in

the form ∑
ν=1

(
r∑
s=1

(xνs )2 −
r−1∑
s=1

xνsx
ν
s+1

)
,

xνs = #{i ∈ N|kis ≥ ν}.
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But the first expression is a sum of positive definite quadratic forms. Thus we get
the lemma. �

The following statement is crucial for estimating dim(π−1
1 (JNF \ Ũ)):

Proposition 2.3. If J is given by (19) with s = 1 and k1 = k = (~k1, . . . , ~kr), then
dimπ−1

1 (J) < 2n− 1 when either r > 1 or k1
1 > 1.

Proof. In the case r > 1, Corollary 2.4 implies that dimπ′34((π′1)−1(J)) ≤ 2n− 1.
The theorem on the dimension of the fibers and previous reasoning imply:

dimπ−1
1 (J) ≤ dimπ′34(π′−1

1 (J)) + dim kerSJ − dim Stab(J).

Together with the inequality from Lemma 2.5 it proves the statement.
Another case (i.e. k = ~k1) is even easier because in this case we have

dimπ−1
1 (J) ≤ 2n− dim Stab(J) < 2n− 1.

�

The case in formula (19) s > 1, can be easily reduced to the previous case. For
that let us introduce the embedding il: gl(|kl|,C) → gl(n,C) and the projection
prl: gl(n,C)→ gl(|kl|,C): il(Y )p′,q′ = Ypq, prl(Y )pq = Yp′,q′ , p′ = p+

∑l−1
m=1 |~km|,

q′ = q +
∑l−1

m=1 |~km|, 0 ≤ p, q ≤ |~kl|, and il(Y )ij = 0 for the rest of the entries of
il(Y ).

Using arguments analogous to the ones from Lemma 2.4 one gets

Lemma 2.6. Let J be given by formula (19). Then
(1) kerSJ =

⊕s
l=1 il(kerSJkl

(λi)),
(2) for l = 1, . . . , s, prl(ImSJ) ⊂ ImSJkl

.

This lemma immediately implies

Proposition 2.4. Let J be given by formula (19), then there exists l, 1 ≤ l ≤ s
such that |kl| > 1. Then dim π−1

1 (J) < 2n− s.

Thus we eventually achieve the goal of the subsection:

Proof of Proposition 2.2. Indeed Proposition 2.4 implies dimπ−1
1 (JNF \ Ũ) < 2n.

Hence by Corollary 2.2 π−1
1 (JNF \ Ũ) lies inside the Zariski closure of π−1

1 (Ũ).
But π−1

1 (Ũ) is irreducible. �

2.4. The Poisson structure on the CM space. In the paper [13] the Poisson
structure on the space CMτ was constructed. This Poisson structure on CMτ

yields the RS integrable system which is the relativistic analog of the trigonometric
Calogero-Moser system.

On the open part U of CMτ described in subsection 2.2 the Poisson bracket
{·, ·}FR takes the form (see Appendix of [13] for the proof):

{λi, λj}FR = 0, {λj , qi}FR = λiqiδij ,

{qi, qj}FR =
(τ−1 − τ)2qiqj(λi + λj)λiλj

(τ−1λi − τλj)(τ−1λj − τλi)(λi − λj)
.

Remark 2.1. The formulas in [13] contain a misprint, the authors lost the factor
(τ−2 − 1)2 in the expression for {qi, qj}FR.
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Using the Hamiltonian reduction on the combinatorial model of the space of
flat connections on the torus without a point, the authors of [13] prove that the
Poisson structure {·, ·}FR has a holomorphic extension from U to the whole CMτ ,
and this Poisson structure is nondegenerate (i.e. CMτ is a symplectic variety).
Another way to see this Poisson structure is to use Quasi-Poisson reduction [14].
In this picture the Poisson structure is the result of the reduction of the natural
Quasi-Poisson structure on the product GL(n,C) ×GL(n,C) and it is immediate
that this Poisson structure is symplectic.

3. Finite dimensional representations of H1,τ

In this subsection we construct a family of finite dimensional representations of
H1,τ . Later we will show that this family forms an open dense set inside the space
of all finite dimensional representations. The main tool of this section is the faithful
representation of H1,τ which is the quasiclassical limit of the standard realization
of Hq,τ as a subring of the ring of reflection difference operators [2].

3.1. Limit of the Lusztig-Demazure operators. Let us introduce the ring
R̃ = C[P±1

1 , . . . , P±1
n , X±1

1 , . . . , X±1
n ]δ(X)#Sn, where the subscript δ(X) means lo-

calization by the ideal generated by δ(X) =
∏

1≤i<j≤n(1−Xi/Xj) and # is a nota-
tion for the smash product. Let us explain what the smash product is. For brevity
we will use the notation C[P±1, X±1] for the ring C[P±1

1 , . . . , P±1
n , X±1

1 , . . . , X±1
n ].

An element of the ring R̃ has the form
∑

w∈Sn Fw(P,X)w. The group Sn acts
on the ring R = C[P±1, X±1]δ(X) by the formulas

Pwi = Pw(i), Xw
i = Xw(i),

and
F (P,X)wF ′(P,X)w′ = F (P,X)(F ′)w(P,X)ww′.

Proposition 3.1. [3] The following formulas give an injective homomorphism of
H1,τ → R̃:

Xµ 7→ Xµ,

Ti 7→ τsi +
τ − τ−1

Xi/Xi+1 − 1
(si − 1), i = 1, . . . , n− 1,

π 7→ P−1
1 c,

where si = (i, i + 1) ∈ Sn is a transposition and c ∈ Sn is a cyclic transformation:
c(i) = i+ 1, i = 1, . . . , n− 1, c(n) = 1.

The homomorphism from the proposition is a quasiclassical limit of the Lusztig-
Demazure representation from Theorem 2.3, [3]. For brevity we call this homomor-
phism the Lusztig-Demazure representation.

Remark 3.1. Actually the paper [3] contains the proof for the case q 6= 1 but leading
term considerations used in the paper could be adapted for the case q = 1. For
example, one can take Lecture 5 from exposition [16] and get the proof in the case
q = 1 by mechanical replacement of operators τ(λ), λ ∈ Zn by their quasiclassical
limits Pλ. The operator τ(λ) from [16] acts on the ring of Laurent polynomials, it
acts on the monomial Xµ by the formula τ(λ)(Xµ) = q(λ,µ)Xµ, where (·, ·) is the
standard scalar product.
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Proposition 3.1 immediately implies

Corollary 3.1. Hδτ (X) ' C[P±1, X±1]δτ (X)#Sn, where

δτ (X) =
∏
i6=j

(1−Xi/Xj)(τ−1 − τXi/Xj).

3.2. PBW theorem. Let us introduce pairwise commutative elements of Yi ∈
Hq,τ :

(24) Yi = Ti . . . Tn−1π
−1T−1

1 . . . T−1
i−1, i = 1, . . . , n− 1.

These elements satisfy the relations

TiYi+1Ti = Yi, (1 ≤ i < n),(25)

TiYj = YjTi, if j − i 6= 0, 1.(26)

Using Yi we can formulate the following PBW type result for Hq,τ :

Proposition 3.2 ([3]). Each element h ∈ Hq,τ can be uniquely presented in the
form

h =
∑
w∈Sn

fw(X)Twgw(Y ),

h =
∑
w∈Sn

g′w(Y )Twf ′w(X),

where fw, f ′w, gw, g′w are polynomials and Tw = Ti1 . . . Tis with w = si1 . . . sis being
a reduced expression for w ∈ Sn.

3.3. The representation Vµ,ν. Let (µ, ν) ∈ (C∗)2n, δτ (ν) 6= 0 and χµ,ν ' C be a
one-dimensional R-module (character): χµ,ν(R(P,X)) = R(µ, ν). We can induce a
finite dimensional module Vµ,ν from this module:

Vµ,ν = R̃⊗R χµ,ν .
This module has a C basis w ⊗ 1, w ∈ Sn, hence dim Vµ,ν = n!.

Proposition 3.3. If δτ (ν) 6= 0, then the H1,τ -module Vµ,ν is irreducible.

Proof. The module Vµ,ν has a natural Hδτ (X) ' C[P±1, X±1]δτ (X)#Sn-module
structure. The group Sn acts freely on the variety Spec(C[P±1, X±1]δτ (X)) hence
the algebra Hδτ (X) is Morita equivalent to the algebra C[P±1, X±1]Snδτ (X). In
particular, the module Vµ,ν corresponds to the one-dimensional representation:
P 7→ P (µ, ν). Thus Vµ,ν is an irreducible Hδτ (X)-module and hence an irreducible
H-module. �

3.4. The action of the finite Hecke algebra. The elements Ti, i = 1, . . . , n− 1
generate an algebra of dimension n! which is called the finite Hecke algebra. We
will denote it by the symbol Cτ [Sn].

Suppose that ν satisfies the inequality δτ (ν) 6= 0. If e is the unit in Sn, then
Corollary 3.1 and Proposition 3.2 imply that by the action of elements Ti we can
get from the vector e ⊗ 1 the whole space Vµ,ν . Hence the map j: Cτ [Sn] → Vµ,ν ,
j(Ti1 . . . Tik) = Ti1 . . . Tike⊗ 1 is an isomorphism of (left) Cτ [Sn]-modules.

Definition. We denote the subset of all finite dimensional irreducibleH1,τ -modules
which are regular Cτ [Sn]-modules by the symbol Irrepn!.
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Let us denote the subset of Irrepn! consisting of Vµ,ν µ, ν ∈ (C∗)n, δτ (ν) 6= 0
by U . Later (see Corollary 6.2) we will show that all finite dimensional irreducible
modules are from Irrepn!.

3.5. The projective GL(2,Z) action on double affine Hecke algebras. One
of the most important properties of the double affine Hecke algebra Hq,τ is the
existence of a homomorphism from GL(2,Z) to the group of outer automorphisms
of Hq,τ : Out(Hq,τ ) := Aut(Hq,τ )/Int(Hq,τ ). This homomorphism was discovered
by Cherednik [2] and he calls it projective action of GL(2,Z). Below we use pairwise
commutative elements Yi ∈ Hq,τ defined by the formulas (24).

The group GL(2,Z) is generated by the elements

ε =
(

0 −1
−1 0

)
, σ =

(
1 1
0 1

)
.

These generators correspond to the maps

ε : Xi 7→ Yi, Yi 7→ Xi, Ti 7→ T−1
i ,

σ : Xi 7→ Xi, Yi 7→ XiYiq
−1, Ti 7→ Ti,

where ε : Hq,τ → Hq−1,τ−1 , σ : Hq,τ → Hq,τ . The transformation ε is called the
duality involution.

Using these transformations we can construct some finite dimensional represen-
tations. Indeed, if γ ∈ GL(2,Z) is such that γ(H1,τ ) = H1,τ ′ and φ′ : H1,τ ′ →
GL(V ′µ,ν) is the corresponding representation of H1,τ ′ (here τ ′ is either τ or τ−1),
then the map φ′ ◦ γ is a representation of H1,τ . We denote the set of such repre-
sentations by γ(U).

4. The map from Irrepn!
to CMτ

In this section we construct a map Φ: Irrepn! → CMτ . Later we will show that it
is an isomorphism. Constructions of this section generalize constructions of section
11 of [7].

4.1. Construction of the map. Let us denote by Cτ [Sn−1] ⊂ Cτ [Sn] the sub-
algebra generated by the elements T2, . . . , Tn−1. It is the finite Hecke algebra of
rank n− 2. The element v of an Cτ [Sn]-module is said to be Cτ [Sn−1] invariant if
Tiv = τv for all i = 2, . . . , n− 1.

The H1,τ -module V ∈ Irrepn! by definition is a regular Cτ [Sn]-module. Hence
the space V Cτ [Sn−1] of Cτ [Sn−1]-invariants has dimension n. The relations inside
H1,τ and (26) imply that X1 and Y1 commute with the action of Cτ [Sn−1]. Thus
if we fix a basis in V we get X1|V Cτ [Sn−1] , Y1|V Cτ [Sn−1] ∈ GL(n,C). The following
statement is a key statement of the section.

Proposition 4.1. Let V ∈ Irrepn!. Then the operators X̄1 = X1|V Cτ [Sn−1] , Ȳ1 =
Y1|V Cτ [Sn−1] satisfy the equation

rk(X̄1Ȳ1X̄
−1
1 Ȳ −1

1 − τ2Id) = 1.

Obviously the space CMτ is isomorphic to the quotient of the space of solutions
of (17) by the action of GL(n,C). Thus the last proposition proves that the map
Φ: Irrepn! → CMτ , Φ(V ) = (X̄1, Ȳ1) is well defined.

In the rest of the section we prove Proposition 4.1. It is done in two steps. First
we prove
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Lemma 4.1. The elements X1, Y1 ∈ H1,τ satisfy the relation

(27) X1Y1X
−1
1 Y −1

1 = T−1
1 T−1

2 . . . T−1
n−2T

−2
n−1T

−1
n−2 . . . T

−1
1 .

Proof. Indeed using formulas (24) and defining relations for DAHA we get

X1Y1X
−1
1 Y −1

1 = X1T1 . . . Tn−1(π−1X−1
1 π)T−1

n−1 . . . T
−1
1

= X1T1 . . . (Tn−1X
−1
n )T−1

n−1 . . . T
−1
1 = X1T1 . . . Tn−2(X−1

n−1T
−1
n−1)T−1

n−1 . . . T1

= T−1
1 T−1

2 . . . T−2
n−1T

−1
n−2 . . . T

−1
1 .

�

The last step is the analysis of the LHS of (27) using the quasiclassical limit
τ → 1. It is done in the last subsection.

4.2. The spectrum of Θ = T−1
1 . . . T−1

n−2T
−2
n−1T

−1
n−2 . . . T

−1
1 . For a representation

V from Irrepn! there is an isomorphism V ' Cτ [Sn] of left Cτ [Sn]-modules. Hence
the right multiplication on Cτ [Sn] induces a structure of a right Cτ [Sn]-module on
V and as a consequence on V Cτ [Sn−1].

The right Cτ [Sn]-module V Cτ [Sn−1] is a sum of the n − 1-dimensional vector
representation and one-dimensional representation because it is true for τ = 1
and for τ it is not a root of unity. Obviously, the operator Θ (acting by left
multiplication) commutes with the right action of Cτ [Sn]. Hence by the Schur
lemma, Θ acts as a constant on Cτ [Sn]-irreducible components of the right Cτ [Sn]-
module V Cτ [Sn−1]. That is, there exists a basis in the module in which Θ is diagonal
and of the form diag(λ1(τ), λ2(τ), . . . , λ2(τ)). Thus we only need to calculate λ1(τ),
λ2(τ).

The module V Cτ [Sn−1] exists for all τ 6= 0. As the operator Θ is invertible for all
nonzero values of τ , we have λ1(τ) 6= 0, λ2(τ) 6= 0 and det(Θ) = λ1(τ)(λ2(τ))n−1 =
Kλl for some integer l and K ∈ C∗.

Let us consider
e =

∑
w∈Sn

τ l(w)Tw/(
∑
w∈W

τ2l(w)),

where Tw = Ti1 . . . Til(w) if w = si1 . . . sil(w) is a reduced expression for w. Then it
is easy to see that Tie = eTi = τe for i = 1, . . . , n − 1 hence e ∈ V Cτ [Sn−1]. As e
spans the only copy of the trivial Cτ [Sn]-representation inside V , it spans the copy
of the trivial Cτ [Sn]-representation inside V Cτ [Sn−1]. Hence λ1(τ) = τ2−2n because
Θe = τ2−2ne. Combining the last observation with the conclusion from the last
paragraph we get λ2(τ) = Cτk, for some integer k.

When τ = 1, the algebra Cτ [Sn] becomes the group algebra of Sn, and Θ = 1.
Thus we have C = 1. The calculation of k uses the quasiclassical limit reasoning.

If τ = eh, then we can write the expansion of Ti in terms of h,

Ti = si + hs̃i +O(h2), i = 1, . . . , n− 1,

where si = (i, i+ 1) is a usual transposition. Relation (8) inside H1,τ implies

sis̃i + s̃isi = 2si, i = 1, . . . , n− 1.

Let us calculate the first nontrivial term Θ̃ of the expansion of Θ = 1+hΘ̃+O(h2):

Θ̃ = −
n−1∑
i=1

s1 . . . si−1(s̃isi + s̃isi)si−1 . . . s1 = −2
n−1∑
i=1

t1i,
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where t1i = s1 . . . si−1sisi−1 . . . s1 is a permutation of 1 and i.
The operator Θ̃/2 acts on C[Sn]Sn−1 (by left multiplication) and in the basis

ei = (
∑
w′∈Sn−1

w′)t1i it has the matrix J − Id, Jij = 1, 1 ≤ i, j ≤ n. Hence
Spec(Θ̃/2) = (1 − n, 1, . . . , 1). On the other hand, Spec(Θ̃) = (2 − 2n, k, . . . , k).
Thus k = 2 and we proved Proposition 4.1.

4.3. The map Φ on the subset U ⊂ Irrepn!. It is possible to calculate Φ(Vµ,ν)
explicitly. Indeed let us fix a basis in V Cτ [Sn−1]

µ,ν : ei = (
∑

w′∈Sn−1
w′)t1i, i = 1, . . . , n.

Proposition 4.2. For the matrices of the operators X̄1 and Ȳ1 written in the basis
ei the following equations hold:

X̄1 = diag(ν1, . . . , νn),

Ȳii = µi
∏
j 6=i

(τ−1νj − τνi)
(νj − νi)

, i = 1, . . . , n.

Proof. The first equation is obvious. The second formula is a result of direct cal-
culation using formulas (24) for Y1 and explicit formulas for Ti.

Indeed, we make this calculation for i = 1. The expansion of the product
expression for Y1 consists of the terms of the form si1,j1 . . . sir ,jrc

−1F (X)P1, where
il < jl, jm < im+1, l = 1, . . . , r, m = 1, . . . , r − 1 and F ∈ C[X±1]δ(X). We
know that Y1e1 is a linear combination of ei, i = 1, . . . , n. The terms of the
expansion of Y1e1 which contribute to the coefficient before e1 satisfy the equation
si1,j1 . . . sir ,jrc

−1(1) = 1. This is possible only in the case r = 1, i1 = 1, j1 = n.
Thus rewriting Ti in the form

Ti =
(τXi − τ−1Xi+1)

Xi −Xi+1
si +

Xi+1(τ−1 − τ)
Xi −Xi+1

,

we see that

Y1e1 =

(
n−1∏
i=1

(τXi − τ−1Xi+1)
Xi −Xi+1

si

)
c−1e1 + r,

where r is a linear combination of ej with j > 1. This formula immediately implies
the last formula from the proposition for i = 1. �

It is actually not easy to compute all coefficients Ȳ1 using explicit formulas for
Y1 and Ti but we do not need them. Because by Proposition 2.1, if the pair (X,Y )
satisfies equation (17) and X is diagonal with eigenvalues satisfying the conditions
of Proposition 2.1, then the corresponding GL(E)-orbit is uniquely determined by
the diagonal elements of X and Y (because the stabilizer of X consists of diagonal
matrices which do not change diagonal elements of Y and we can extract q from
these elements). This reasoning implies

Corollary 4.1. The map Φ is an isomorphism on the subset U , and local coor-
dinates λ, q on CMτ are expressed through coordinates µ, ν on U ⊂ Irrepn! by the
formulas

λi = νi, qi = µi
∏
j 6=i

(τ−1νj − τνi)
(νj − νi)

.
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5. Results on the general double affine Hecke algebra

Let R = {α} be a root system (possibly nonreduced) of type A, BC, . . . , F , G,
W the Weyl group generated by the reflections sα, α ∈ R. The extended affine
Weyl group W̃ is a semidirect product W n P , where P is a weight lattice (i.e.
b ∈ P if 2(b, α)/(α, α) ∈ Z for all α ∈ R).

The affine Hecke algebra Ĥτ is a deformation of the group algebra C[W̃ ] with
deformation parameters τα, τw(α) = τα, α ∈ R, w ∈ W (for the exact definition
of the affine Hecke algebra see [15]). The double affine Hecke algebra Hq,τ is a
nontrivial extension of the affine Hecke algebra Ĥτ by the group algebra C[P∨] of
the coweight lattice P∨ (b ∈ P∨ if (b, α) ∈ Z for all α ∈ R). This extension has one
parameter q which is the shift parameter in the Lusztig-Demazure representation
of this algebra. We consider algebras with q = 1 and we denote them by H . For
the exact definition of the double affine Hecke algebra and formulas for the Lusztig-
Demazure representation see the original paper [1] or survey [16].

We use the notation δ(X) for the Weyl denominator for the root system R. By
C[X±1] we denote the group algebra of the weight lattice P lying inside the affine
Hecke algebra Ĥτ and by C[Y ±1] we denote the group algebra C[P∨] ⊂ H which
extends Ĥτ .

There is an injective homomorphism g: H → C[P±1, X±1]δ(X)#W via the qua-
siclassical Lusztig-Demazure operators. The formulas for the embedding are very
similar to the formulas from the previous section. These formulas are quasiclassical
limits of the Lusztig-Demazure operators from the papers [3] (in the case of reduced
root systems) and [17] (in the case of nonreduced root systems).

Let Cτ [W ] be the corresponding finite Hecke algebra, and e the symmetrizer in
Cτ [W ]:

e =
∑
w∈W

τ l(w)Tw/(
∑
w∈W

τ2l(w)),

where Tw = Ti1 . . . Til(w) if w = si1 . . . sil(w) is a reduced expression for w.
In this section we will need the following PBW type result

Proposition 5.1 ([3]). Each element h ∈ H can be uniquely presented in the forms

h =
∑
w∈W

fw(X)Twgw(Y ),

h =
∑
w∈W

g′w(Y )Twf ′w(X).

5.1. Formulation of the theorem. The goal of this section is to study the center
Z of H and corresponding scheme Spec(Z). It turns out that Z is isomorphic to
the subalgebra eHe and we can reduce the study of Z to the study of eHe.

We recall the definition of a Cohen-Macaulay variety.

Definition ([18]). A finitely generated commutative C-algebra A is called Cohen-
Macaulay if it contains a subalgebra of the form O(V ) such that A is a free O(V )-
module of finite rank, and V is a smooth affine algebraic variety.

For the definition of a Cohen-Macaulay module see [19], (Chapter 4, p. 18). In
this section we prove the following

Theorem 5.1. For any double affine Hecke algebra H the following is true:
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(1) eHe is commutative.
(2) M = Spec(eHe) is an irreducible Cohen-Macaulay and normal variety.
(3) The right eHe-module He is Cohen-Macaulay.
(4) The left action of H on He induces an isomorphism of algebras H '

EndeHe(He).
(5) The map η : z → ze is an isomorphism Z → eHe. Thus, M = SpecZ.

We call the isomorphism η the Satake isomorphism (by analogy with [7]).

5.2. Proof of Theorem 5.1. Below we use the τ -deformed Weyl denominator

δτ (X) =
∏
α∈R

(1 −Xα)(τ−1
α − ταXα).

Lemma 5.1. (1) Hδτ (X) ' C[X±1, P±1]δτ (X)#W .

(2) The map h: Z(Hδτ (X))→ C[P±1, X±1]Wδτ (X)e, induced by multiplication by
e is an isomorphism.

(3) The left Hδτ (X)-action on Hδτ (X) induces the isomorphism

Hδτ (X) ' EndeHδτ (X)e(Hδτ (X)).

Proof. The first and second items of the lemma follow from the representation of
H by the quasiclassical Lusztig-Demazure operators. The third item is equivalent
to the isomorphism

C[P±1, X±]δτ (X)#W ' EndC[P±1,X±1]Wδτ (X)
(C[P±1, X±1]δτ (X)).

We will proceed analogously to the proof of Theorem 1.5 in [7].
If a: C[P±1, X±1]δτ (X) → C[P±1, X±1]δτ (X) is C[P±1, X±1]Wδτ (X)-linear, then it

defines a C(P,X)W -linear map C(P,X)→ C(P,X). The isomorphism C(P,X)#W
' EndC(P,X)W (C(P,X)) implies a =

∑
w∈W aww, aw ∈ C(P,X). It is clear that

the functions aw are regular on (C∗)n × (C∗)n \ ∆ where ∆ is the subset of the
points of Cn × Cn with a nontrivial stabilizer in W . But ∆ has codimension 2,
hence by Hartogs theorem aw ∈ C[P±1, X±1]δτ (X). �

Lemma 5.2. Z contains C[X±1]W and C[Y ±1]W .

Proof. C[X±1]W clearly lies in the center of C[P±1, X±1]δ(X)#W , and therefore in
the center of H . The fact that C[Y ±1]W is contained in Z follows from the existence
of duality involution described in Theorem 2.3 in [20]. In the case of the root system
An−1 this morphism is the duality morphism described in subsection 3.5. This
morphism maps the subalgebra C[Y ±1]W ⊂ H into subalgebra C[X±1]W ⊂ H ′

where H ′ is DAHA corresponding to the dual root system. �

Lemma 5.3. eHe is commutative, without zero divisors.

Proof. Let us prove that the subalgebra eHδτ (X)e ofHδτ (X)'C[P±1, X±1]δτ (X)#W
is commutative and without zero divisors. Obviously it implies the statement.

An element z ∈ Hδτ (X) has a unique representation in the form z=
∑
w∈W QwTw;

that is, Hδτ (X) is isomorphic to C[P±1, X±1]δτ (X)⊗Cτ [W ] as a rightCτ [W ]-module.
If z ∈ eHe, then zTα = ταz for all α ∈ R because eTα = ταe. Hence z is an
Cτ [W ]-invariant element of the right Cτ [W ]-module Hδτ (X) ' C[P±1, X±1]δτ (X)⊗
Cτ [W ]. As C(P,X) ⊗ Cτ [W ] is a regular Cτ [W ]-module (over the field C(P,X)),
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C(P,X)⊗ e is a unique copy of the trivial representation. It implies that z = Qe,
Q ∈ C[P±1, X±1]δτ (X).

Finally, for z = Qe ∈ eHe we have (Tα − τα)Qe = 0. The simple calculation
using the explicit expression for Tα yields

(Tα − τα)Qe = Pα(sα − 1)Qe = Pα(sα(Q)−Q)e,

where Pα∈C[X±1]δτ (X) and α is a simple root. This implies Q∈C[P±1, X±1]Wδτ (X)e

and eHδτ (X)e ' C[P±1, X±1]Wδτ (X). �

The algebraH has a naturalC[X±1]W⊗C[Y ±1]W -module structure: the element
p⊗ q acts on x ∈ H by the formula (p⊗ q)x = pxq.

Lemma 5.4. H is a projective finitely generated C[X±1]W ⊗ C[Y ±1]W -module.

Proof. Let us first show that C[X±1] is a projective finitely generated C[X±1]W -
module. Finite generation is clear, since W is a finite group. Also, it is well
known that C[X±1]W is a polynomial ring (it is generated by the characters of the
fundamental representations of the corresponding simply connected group). Since
C[X±1] is a regular ring, by Serre’s theorem ([19], Chapter 4, p. 37, Proposition
22) C[X±1] must be locally free over C[X±1]W (in fact, by the Steinberg-Pittie
theorem [21] it is free, but we will not use it). For the same reasons C[Y ±1] is
locally free over C[Y ±1]W .

Now the claim follows from the PBW factorization from Proposition 5.1 H =
C[X±1]⊗ Cτ [W ]⊗ C[Y ±1]. �

Lemma 5.5. He and eHe are projective finitely generated modules over C[X±1]W⊗
C[Y ±1]W .

Proof. The finite generation follows from the Hilbert-Noether lemma and Lemma 5.4.
The projectivity is true because He and eHe are direct summands in H . �

Proof of Theorem 5.1. The first item follows form Lemma 5.3.
Proof of (2): M = Spec(eHe) is an irreducible affine variety by Lemma 5.3.

As follows from Lemma 5.2 the elements f(X)g(Y )e, where f ∈ C[X±1]W and
g ∈ C[Y ±1]W , form the commutative subalgebra P . Obviously this subalgebra is
polynomial. Hence to prove that M is Cohen-Macaulay it is sufficient to show that
eHe is a locally free module of finite rank over its subalgebra P ' C[X±1]W ⊗
C[Y ±1]W . But the module is projective and finitely generated by Lemma 5.5.

It is easy to see by localizing with respect to eδτ (X) or eδτ (Y ) that M is smooth
away from a codimension 2 subset. Indeed, by the first item of Lemma 5.1 after
localizing with respect to eδτ (X) the image of eHe under the injection g becomes
eC[X,P ]δτ(X)e ' C[X,P ]Wδτ(X)e, which is the ring of regular functions on a smooth
affine variety. The statement for the localization with respect to eδτ (Y ) follows
from the existence of the duality involution discussed in the proof of Lemma 5.2.
But an irreducible Cohen-Macaulay variety that is smooth outside of a codimension
2 subset is normal ([18], 2.2).

Proof of (3): eHe is finitely generated over C[X±1]W ⊗ C[Y ±1]W . Hence by
Theorem 2.1 of [22] eH is Cohen-Macaulay over eHe if and only if it is Cohen-
Macaulay over C[X±1]W ⊗ C[Y ±1]W .

We know that He ' C[X±1, Y ±1] as a C[X±1]W ⊗ C[Y ±1]W -module and He
is projective over C[X±1]W ⊗ C[Y ±1]W . As C[X±1]W ⊗ C[Y ±1]W is a polynomial
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ring, the module C[X±1, Y ±1] is Cohen-Macaulay if and only if it is projective. So
Lemma 5.5 implies the statement.

Proof of (4): We have an obvious homomorphism f : H → EndeHeHe. It is
clearly injective because it is injective after localization by the ideal (δτ (X)).

Let us denote EndeHe(He) by H̃ . Regard H̃ ⊃ H as C[X±1]W ⊗ C[Y ±1]W -
modules. H̃ is torsion free because He is a torsion free C[X±1]W⊗C[Y ±1]W -module
(by the PBW theorem). As He is finitely generated over eHe, H̃ is a finitely
generated C[X±1]W ⊗ C[Y ±1]W -module. Also, H is finitely generated projective,
and H̃/H is supported in codimension 2. Indeed, the last part of Lemma 5.1 implies
that Hδτ (X) is isomorphic to H̃δτ (X) as a eHδτ (X)e-module. Similarly, the module
Hδτ (Y ) is isomorphic to H̃δτ (Y ) as a eHδτ (Y )e-module because we can use (the same
way as in the proof of Lemma 5.3) the duality involution.

The module H̃ represents some class in Ext1(H̃/H,H), which must be zero
since H̃/H is finitely generated and lives in codimension 2 and H is projective.
Thus, H̃ = H ⊕ H̃/H and the summand H̃/H is torsion. But H̃ is a torsion free
eHe-module, hence H̃/H = 0 and H̃ = H .

Proof of (5): It is clear that η is injective, by looking at the Lusztig-Demazure
representation. Indeed the equation ze = 0 implies zp = 0 for any p ∈ C[X ]W ,
hence by the PBW theorem z = 0.

It remains to show that η is surjective. Since eHe is commutative, every element
a ∈ eHe defines an endomorphism of He over eHe (by right multiplication). So by
statement (4) a defines an element za ∈ H . This element commutes with H . Indeed
the right multiplication by a is an endomorphism of the right eHe-module which
commutes with left multiplication by elements of H hence by the forth part of the
theorem [za, h] = 0 for all h ∈ H . For any x ∈ H , zaxe = xa, so xzae = xa, i.e.
x(zae− a) = 0. Since eHe has no zero divisors, we find η(za) = a, as desired. �

6. The results in the case of the root system An−1

In this section H = H1,τ is the double Hecke algebra corresponding to GL(n,C).
A point (µ, ν) ∈ (C∗)n×((C∗)n\Dτ ) defines a C[P±1, X±1]Snδτ (X)-character χ(µ,ν):

χ(µ,ν)(Q(P,X)) = Q(µ, ν). The embedding Z ↪→ Zδτ (X) ' C[P±1, X±1]Snδτ (X)

allows us to restrict this character to Z. We use the same notation for this character.

Lemma 6.1. For any point (µ, ν) ∈ (C∗)n × ((C∗)n \Dτ ) we have

He⊗eHe χ(µ,ν) ' Vµ,ν .

Proof. The H-module Vµ,ν has a natural structure of an Hδτ (X)-module. Let us
study finite dimensional irreducible Hδτ (X)-modules.

By Lemma 5.1 the ring eHδτ (X)e is a regular ring. As the action of Sn on
(C∗)n × ((C∗)n \Dτ ) is free, the ring C[P±1, X±1]δτ (X) ' Hδτ (X)e is a projective
eHδτ (X)e-module and defines the vector bundle F over (C∗)n × (C∗)n \ Dτ ) =
Spec(eHδτ (X)e). Hence by Lemma 5.1 Hδτ (X) = End(F ) is an Azumaya algebra
and by the basic property of Azumaya algebras any irreducible Hδτ (X)-module is of
the form Hδτ (X)e⊗eHδτ (X)e χ(µ′,ν′) for some point (µ′, ν′) ∈ (C∗)n × ((C∗)n \Dτ ).

Obviously any irreducible Hδτ (X)-module is irreducible as an H-module. Also we
have an obvious isomorphism of H-modules Hδτ (X)e⊗eHδτ (X)e χ(µ′,ν′) ' He⊗eHe
χ(µ′,ν′). Thus the previous paragraph implies Vµ,ν ' He⊗eHe χ(µ′,ν′). Comparing
the action of the center on both sides yields the statement. �
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The previous lemma implies that there is a map Υ from the open subset
Spec(Zδτ (X)) of Spec(Z) to the CM space CMτ : Υ(µ, ν) = Φ(Vµ,ν), where Φ is
the map constructed in Section 4. As Spec(Zδτ (X)) is an open dense subset in
Spec(Z), we can define a rational map Υ: Spec(Z) 99K CMτ .

Theorem 6.1. The map Υ: Spec(Z) 99K CMτ is a regular isomorphism of the
algebraic varieties. In particular, Spec(Z) is smooth.

Proof. The previous lemma and Corollary 4.1 imply that Υ is a regular isomorphism
on Spec(Zδτ (X)). The duality involution from subsection 3.5 allows us to state the
same for the open subset Spec(Zδτ (Y )).

Indeed, the duality involution ε maps the double affine Hecke algebra H1,τ

to H1,τ−1 and it induces the map εCM : CMτ → CMτ−1, εCM (X,Y, U, V ) =
(Y,X,−Y −1X−1Y XU, V ). By the construction we have εCM ◦Υ = Υ◦ε. Thus the
restriction of the morphism ε−1

CM ◦Υ ◦ ε to Spec(Zδτ (Y ) is a regular isomorphism.
Now, we know from the Theorem 5.1 that Spec(Z) is normal. As the complement

of Spec(Zδτ (X)) ∪ Spec(Zδτ (Y )) has codimension 2 (because Spec(Z) is irreducible
by Theorem 5.1), we can extend Υ to a regular map on the whole Spec(Z). The ex-
tended map is dominant because by Proposition 2.2 the variety CMτ is irreducible.

Thus Υ is a regular birational map which is an isomorphism outside of the subset
of codimension 2. But we know that CMτ is smooth and Spec(Z) is normal, hence
(by Theorem 5, Section 5, Chapter 2 of [23]) the map Υ−1 is regular and as a
consequence is an isomorphism. �

Corollary 6.1. He is a projective eHe-module.

Proof. We proved for any R that He is a Cohen-Macaulay module over eHe. Since
M = Spec(eHe) is smooth, the result follows from corollary 2 from chapter 4 of
[19]. �

Thus He defines the vector bundle E on Spec(eHe), with fibers of the dimension
n!.

Corollary 6.2. For the double affine Hecke algebra H = H1,τ the following is true:

(1) H = EndE where E is a vector bundle over Spec(Z) i.e. H is an Azumaya
algebra.

(2) Every irreducible representation of H is of the form Vz = He ⊗eHe χz,
z ∈M = Spec(Z).

(3) Vz has dimension n! and is a regular representation of Cτ [Sn].

Proof. The first item follows from Theorem 5.1. The second item is a general
property of Azumaya algebras. The third item follows from the fact that it is true
for the generic point z ∈ Spec(Z). �

Remark 6.1. This corollary was proved in 2000 by Cherednik using the technique
of the intertwiners [24].

The ring Z ' eH1,τe has a natural noncommutative deformation eHq,τe. Hence
this ring has a natural Poisson structure {·, ·}. The variety CMτ also has a Poisson
structure described in subsection 2.4. It turns out that the isomorphism Φ respects
these Poisson structures.
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Theorem 6.2. The isomorphism Φ is an isomorphism of Poisson varieties, that
is the following formula holds:

{·, ·}FR = {·, ·}.

Proof. It is enough to prove that it is an isomorphism of Poisson varieties on the
open set U . For q = eh 6= 1 we have an embedding gq; Hq,τ → Dq#Sn via Lusztig-
Demazure reflection difference operators. Here Dq is a localization of the Weyl
algebra with generators X±1

i , P̂±1
i , i = 1, . . . , n and relations:

[Xi, Xj] = 0, [P̂i, P̂j ] = 0, XjP̂i − qδij P̂iXj = 0,

by the ideal (δτ (X)). When q = 1, the noncommutative ring Dq becomes the
commutative ring C[P±1, X±1]δτ (X) and the corresponding Poisson structure on
this ring is given by the formulas

{Xi, Xj} = 0, {Pi, Pj} = 0, {Xi, Pj} = δijXiPj .

The H1,τ -module Vµ,ν has a natural C[P±1, X±1]δτ (X)#Sn structure. It is easy
to see that in the basis 1⊗w, w ∈ W operators Pi, Xj are diagonal. In particular,
Pi(1⊗ e) = µi(1⊗ e) and Xi(1⊗ e) = νi(1⊗ e), hence we have the following Poisson
bracket on U :

(28) {νi, νj} = 0, {µi, µj} = 0 {νi, µj} = δijνiµj .

The comparison of the formulas for the Poisson bracket on U ⊂ CMτ from subsec-
tion 2.4 and explicit formulas for the map Φ|U from subsection 4.3 give the formula.
Indeed, we can express the functions λi, qk through the functions µs, νt and using
(28) to calculate Poisson brackets {λi, λk}, {λi, qk}, {qi, qk}. We give formulas for
the last bracket:

{qi, qk} = qiqk

(
νk
∂ ln(qi)
∂νk

− νi
∂ ln(qk)
∂νi

)
= qiqk

(
νk

(
− τ

τ−1νi − τνk
+

1
νi − νk

)
− νi

(
− τ

τ−1νk − τνi
+

1
νk − νi

))
=

(τ−1 − τ)2qiqk(νk + νi)νiνk
(νi − νk)(τ−1νk − τνi)(τ−1νi − τνk)

.

�

7. The rational and trigonometric cases

In this section we explain how one can get an easier proof of the results of [7] on
the rational double affine Hecke algebra. We also give the version of the results of
the paper for the trigonometric Hecke algebra and explain how to modify the proof
from the paper for this case.

We give the modifications of the results from the main body of the text only for
the root system An−1 but the rational (and trigonometric) version of Theorem 5.1
holds for any root system R (and the proof is analogous). Moreover, in the rational
case we can replace the Weyl group W by a finite Coxeter group (see [7]). Proofs of
these results repeat proofs for (nondegenerate) double affine Hecke algebras from
the paper.
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7.1. Definition of the rational and trigonometric double affine Hecke al-
gebras. Below we give a definition of the rational and trigonometric double affine
Hecke algebra.

Definition ([7]). The rational double affine Hecke algebra Hrat
t,c is generated by

elements sij , 1 ≤ i 6= j ≤ n, xi, yj , 1 ≤ i, j ≤ n. The elements sij , 1 ≤ i, j ≤ n gen-
erate the subalgebra inside Hrat

t,c isomorphic to the group algebra of the symmetric
group Sn, and sij corresponds to the transposition (ij). In addition, generators of
Hrat
t,c satisfy the relations

xisij = sijxj , yisij = sijyj , 1 ≤ i, j ≤ n,
[xk, sij ] = 0, [yk, sij ] = 0, k /∈ {i, j}, 1 ≤ i, j, k ≤ n,

[yi, xj ] = csij , 1 ≤ i 6= j ≤ n,
[xi, xj ] = 0 = [yi, yj], 1 ≤ i, j ≤ n,

[yk, xk] = t− c
∑
i6=k

sik, 1 ≤ k ≤ n.

Definition. The trigonometric double affine Hecke algebra Htrig
t,c is generated by

elements sij , 1 ≤ i 6= j ≤ n, X±1
i , yj , 1 ≤ i, j ≤ n. The elements sij , 1 ≤

i, j ≤ n generate the subalgebra inside Htrig
t,c isomorphic to the group algebra of the

symmetric group Sn, and sij corresponds to the transposition (ij). In addition, the
generators of Htrig

t,c satisfy the relations

Xisij = sijXj , 1 ≤ i, j ≤ n,
sijyi − yjsij = c if j > i, sijyi − yjsij = −c if j < i,

[Xk, sij ] = 0, [yk, sij ] = 0 if k /∈ {i, j}, 1 ≤ i, j, k ≤ n,
[Xi, Xj] = 0 = [yi, yj], 1 ≤ i, j ≤ n,

X−1
j yiXj − yi = csij if j > i, X−1

j yiXj − yi = XiX
−1
j csij if j < i,

X−1
k ykXk − yk = t− c(

∑
i<k

sik +
∑
i>k

XiX
−1
k sik), 1 ≤ k ≤ n.

Remark 7.1. Let Ĥ be the C[c, t][[h]]-algebra topologically generated (in the h-adic
topology) by Xi, yi, si,i+1 with Ti = si,i+1e

chsi,i+1 , i = 1, . . . , n − 1, Yi = ehyi,
Xi, i = 1, . . . , n satisfying the relations for the double affine Hecke algebra Hq,τ ,
q = eth, τ = ech. It coincides with an appropriate completion of the double affine
Hecke algebra Hq,τ , in the h-adic topology. Moreover, one can show that Ĥ is
flat over C[[h]] and Ĥ/hĤ = Htrig

t,c . Analogously, if Ĥtrig is the C[c, t][[h]]-algebra
topologically generated by by sij , yi, xj , 1 ≤ i ≤ n with sij , yi, Xj = ehxj , i, j =
1, . . . , n, satisfying the relations for the trigonometric double affine Hecke algebra
Htrig
ht,hc, then the algebra Ĥtrig is flat over C[[h]] and Hrat

t,c = Ĥtrig/hĤtrig. Let us
also mention that there is a direct limiting process from the double affine Hecke
algebra to the rational double affine Hecke algebra [25].

7.2. Representation by Dunkl operators. Let Drat
t be the localization of the

n-dimensional Weyl algebra Arat
t by the ideal generated by δ(x). The Weyl algebra

Arat
t is generated by elements xi, pi, 1 ≤ i ≤ n modulo relations

[xi, xj ] = 0 = [pi, pj ], [xi, pj ] = tδij , 1 ≤ i, j ≤ n.



264 ALEXEI OBLOMKOV

Let us denote by Dtrig
t the trigonometric version of algebra Drat

t . This algebra is
a localization by (δ(X)) of the algebra Atrig

t with generators pi, X±1
i , i = 1, . . . , n

modulo relations

(29) [Xi, Xj ] = 0 = [pi, pj], [Xi, pj] = tδijXi, 1 ≤ i, j ≤ n.

It is easy to see that the ring Atrig
t is isomorphic to the ring of differential operators

on the torus (C∗)n.

Proposition 7.1. The homorphisms grat: Hrat
t,c → Drat

t #Sn, gtrig: Htrig →
Dtrig
t #Sn defined by the formulas

grat(yi) = pi + c
∑
j 6=i

1
xi − xj

(sij − 1),

grat(xi) = xi, grat(w) = w,

gtrig(yi) = pi + c
∑
j<i

Xi

Xi −Xj
(sij − 1) + c

∑
j>i

Xj

Xi −Xj
(sij − 1),

gtrig(Xi) = Xi, gtrig(w) = w,

(i = 1, . . . , n) is injective.

This proposition allows us to prove the PBW type result for these algebras.

7.3. Calogero-Moser spaces. Next we give a definition of the Calogero-Moser
space in the rational and trigonometric cases. These spaces were defined by Kazh-
dan, Kostant and Sternberg in [8].

Let CM ′rat be the subset of gl(n,C) × gl(n,C) consisting of the elements (x, y)
satisfying the equation

rk([x, y] + Id) = 1.

By CM ′trig ⊂ GL(n,C)× gl(n,C) we denote the subset of pairs (X, y) satisfying

rk(X−1yX − y + Id) = 1.

The group GL(n,C) acts on the spaces CM ′rat and CM ′trig by conjugation. This
action is free.

Definition. The quotient of CM ′rat (CM ′trig) by the action of GL(n,C) is called
the rational (trigonometric) Calogero-Moser space. We use the notation CMrat

(respectively CMtrig) for this space.

Proposition 7.2. The rational (trigonometric) Calogero-Moser space CMrat(CMtrig)
is an irreducible smooth variety of dimension 2n.

For the rational Calogero-Moser space this statement is proved in section 1 of
[10]. The proof in the trigonometric case almost identically repeats the proof in the
rational case.

The Calogero-Moser spaces CMrat and CMtrig are the configuration spaces for
the rational and trigonometric integrable Calogero-Moser systems. The Poisson
structures corresponding to these systems are the results of the Hamiltonian re-
duction of the natural Poisson structures on the spaces gl(n,C) ⊕ gl

∗(n,C) and
T ∗GL(n,C) (see [26]).
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7.4. The main result for the rational and trigonometric double-affine
Hecke algebras. As we mentioned in the first subsection, the algebras Hrat

0,c H
trig
0,c

are in some sense quasiclassical limits of the double-affine Hecke algebra H1,τ . Nat-
urally, the theorems from the previous section have their rational and trigonometric
analogs:

Theorem 7.1. Let H be one of three described algebras: H1,τ , Htrig
0,c , Hrat

0,c , CM
is the corresponding Calogero-Moser space, and e is the symmetrizer (in the fi-
nite Hecke algebra if H = H1,q and in the symmetric group otherwise). Then the
following is true:

(1) The map h: z → ze is an isomorphism between Z(H) and eHe.
(2) Spec(Z(H)) is an irreducible smooth variety naturally isomorphic to CM .
(3) The Poisson structure on CM which comes from the noncommutative de-

formation eHq,τe (eHtrig
t,c e, eHrat

t,c e respectively) of eHe coincides (up to
a constant) with the (quasi) Poisson structure on CM coming from the
(quasi) Hamiltonian reduction.

(4) The left eHe-module He is projective and H = EndeHe(He).

In particular, the algebras Hrat
0,c and Htrig

0,c are Azumaya algebras and for these
algebras the statement of Corollary 6.2 holds with Cτ [Sn] replaced by Sn.

The proof of the theorem in the case H = Hrat
0,c is completely parallel to the case

H = H1,τ .
In the trigonometric case the only difficulty is that the group GL(2,Z) does not

act on Htrig
0,c and we do not have any analog of the duality involution. But instead

of the duality transform one can use the faithful representation ḡtrig of Htrig
0,c . The

representation ḡtrig is the “bispectral dual” to gtrig; that is, the role of Xi, 1 ≤ i ≤ n
is played by yi, 1 ≤ i ≤ n.

Let us describe the representation ḡtrig. The homomorphism ḡtrig : Htrig
t,c →

C[P±1, y]δ(y)#Sn is defined by the formulas

si,i+1 7→ T̄i = si,i+1 +
c

yi − yi+1
(si,i+1 − 1), 1 ≤ i ≤ n− 1,

yi 7→ yi, 1 ≤ i ≤ n,
Xi 7→ T̄i . . . T̄

−1
n−1wP1T̄

−1
1 . . . T̄i−1, 1 ≤ i ≤ n.

where w ∈ Sn, w(1) = n, w(i) = i− 1, i = 2, . . . , n.

Remark 7.2. It may appear that one can obtain some of our results from the rational
case by a naive deformation argument. However, it is not clear how to do it, since
the variety Spec(Z) is not compact, and when it is deformed, there is a priori a
possibility of singularities arriving from infinity.
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