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ON TIGHT MONOMIALS IN QUANTIZED
ENVELOPING ALGEBRAS

ROBERT BÉDARD

Abstract. In this paper, the author studies when some monomials are in the
canonical basis of the quantized enveloping algebra corresponding to a simply
laced semisimple finite dimensional complex Lie algebra.

0. Introduction

To any graph Γ, Lusztig has associated in [L1] and [L2] an algebra U− over
Z[v, v−1] provided with a canonical basis B. In the case that Γ is the Dynkin graph
of a simply laced semisimple finite dimensional complex Lie algebra g, then U− is
the negative part of the corresponding quantized enveloping algebra U and B, the
canonical basis (or crystal basis).

The simplest elements in U− are certain elements F (a)
i , where i is a vertex of Γ

and a ∈ N. In this paper, we study when some monomials in the F (a)
i ’s are in B.

These monomials are said to be tight in that case.
In Section 1, we first recall the approach of Lusztig to this question as presented

in [L2]. This comes down to studying a quadratic form Q̄Ω,i where Ω is a quiver
whose graph is Γ and i = (i1, i2, . . . , im), a sequence of vertices of Γ. This is explored
in more detail in Sections 2 and 3. The nicest case is when Γ is loop free. This is
studied in Section 3. In Section 4, we give criteria for tightness and semi-tightness.
In Sections 5 and 6, we give many examples of tight and semi-tight monomials.
Some of these were already studied by Lusztig in [L2] and by Marsh in [M]. We
present these examples using our approach. Finally in Section 7, we consider the
case where Γ is a Dynkin graph of a simply laced semisimple finite dimensional
complex Lie algebra g of small rank and i is the reduced expression for the longest
element of the Weyl group of g. Some of these were also studied by Lusztig in [L2]
and by Marsh in [M]. In our approach, there is a unit form Q+

i that we need to
study. We do this using results of the theory of representations of algebras. They
are presented in Section 6.

Our motivation was a question of Lusztig presented in Section 16 of [L2]. We
recall this in the first part of Section 7. We still don’t know the answer to this
question, but our hope is that this article will be useful in the search of a solution.
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1. Notations and results of Lusztig

1.1. We will now recall the notation and results of [L2]. Fix a finite graph Γ with
a set of vertices I 6= ∅ and a set of edges H . We assume given an orientation Ω for
our graph, i.e., two maps h 7→ h′ and h 7→ h′′ from H to I such that the ends of
h are h′, h′′. In this way we get a quiver that we will also denote Ω. The graph Γ
could have loops, that is, elements h ∈ H such that h′ = h′′. If there are no loops,
then we say that our graph is loop free. This property does not depend on Ω, but
only on Γ.

In [L2], Lusztig has associated to this graph an algebra U− over Z[v, v−1] (v is
an indeterminate) provided with a canonical basis B. Our graph could have loops
and this construction extends the one of [L1]. The simplest elements in U− are
certain elements of F (a)

i for various i ∈ I and a ∈ N.
A monomial in U− is an element of the form

(a) F
(a1)
i1

F
(a2)
i2

. . . F
(am)
im

where i1, i2, . . . , im ∈ I and a1, a2, . . . , am ∈ N. Such a monomial is said to be tight
(resp. semi-tight) if it belongs to B (resp. is a linear combination of elements of B
with constant coefficients, necessarily in N).

1.2. For the rest of this article, we fix a = (a1, a2, . . . , am) ∈ Nm and a sequence
i = (i1, i2, . . . , im) in I.

1.3. For i ∈ I, define Z(i) = {1 ≤ k ≤ m | ik = i}. Let X = {(i, p, q) | i ∈ I, p, q,∈
Z(i) and 1 ≤ p < q ≤ m}, Y = {(i, p, q) ∈ X | ∃r ∈ Z(i) such that p < r < q}
and Z = X \ Y. When we want to specify i, we write X (i), Y(i), Z(i) rather than
X , Y, Z.

1.4. Let P ′ be the real vector space with coordinate functions zp,qi indexed by the
triples (i, p, q) such that i ∈ I and p, q ∈ Z(i). Define zp,qi to be the 0 linear function
whenever i ∈ I and p, q ∈ [1,m] are not both contained in Z(i).

For s ∈ [1,m], define the linear forms on P ′:

ξs(z) =
∑
r

zr,si and ξ′s(z) =
∑
r

zs,ri for z = (zp,qi ) ∈ P ′.

Let P be the subspace of P ′ defined by

P =
m⋂
s=1

Ker(ξs − ξ′s).

1.5. Let Ta be the finite subset of P ′ consisting of z = (zp,qi ) with coordinates in
N such that ξs(z) = ξ′s(z) = as, ∀s ∈ [1,m]. Clearly Ta ⊂ P .

There is a distinguished vector za ∈ Ta; it has coordinates zp,qi = 0 if p 6= q, and
zp,pi = ap if p ∈ Z(i).

1.6. Consider the quadratic form QΩ,i on P ′ defined by

QΩ,i(z) =
∑
h∈H

∑
r≤p
q<s

zp,qh′ z
r,s
h′′ −

∑
i∈I

∑
r≤p
q<s

zp,qi zr,si .

Obviously QΩ,i(za) = 0.
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Theorem 1.7 (Lusztig). (a) If the quadratic form QΩ,i takes only values > 0 on
Ta \ {za}, then the monomial 1.1 (a) is tight.

(b) If the quadratic form QΩ,i takes only values ≥ 0 on Ta, then the monomial
1.1 (a) is semi-tight.

Proof. See Theorem 6 in [L2]. �

We will use the same machinery as Lusztig in [L2] to study QΩ,i on Ta. The
idea is to get an expression for the quadratic form QΩ,i by eliminating the variables
zp,pi .

1.8. Let V ′ be the real vector space with coordinate functions wp,qi indexed by
triples (i, p, q) such that i ∈ I and p, q ∈ Z(i) satisfy p 6= q. Define wp,qi to be the
0 linear function whenever i ∈ I and p 6= q ∈ [1,m] are not both contained in Z(i).

Let V be the subspace of V ′ such that

(a)
∑
r,s

r≤p<s

wr,si =
∑
r,s

r≤p<s

ws,ri for all p ∈ [1,m].

Let V + be the set of all w = (wp,qi ) ∈ V such that wp,qi ∈ N for all (i, p, q) with
i ∈ I and p 6= q ∈ Z(i).

Lemma 1.9. V is the subspace of V ′ such that

(a)
∑
s
s6=p

wp,si =
∑
s
s6=p

ws,pi for all p ∈ [1,m].

Proof. Let w = (wp,qi ) ∈ V . If p = 1 in 1.8 (a), then∑
s
s6=1

w1,s
i =

∑
r,s

r≤1<s

wr,si =
∑
r,s

r≤1<s

ws,ri =
∑
s
s6=1

ws,1i .

This is the first equation of Lemma 1.9 (a), the one corresponding to p = 1.
If p > 1, then∑

s
p<s

wp,si −
∑
r
r<p

wr,pi =
∑
r,s

r≤p<s

wr,si −
∑
r,s

r≤(p−1)<s

wr,si

=
∑
r,s

r≤p<s

ws,ri −
∑
r,s

r≤(p−1)<s

ws,ri =
∑
r
p<r

wr,pi −
∑
s
s<p

wp,si .

Consequently, ∑
s
s6=p

wp,si =
∑
r
r 6=p

wr,pi .

This is the pth equation of Lemma 1.9 (a) for p > 1. We have thus shown that V
is included in the subspace of V ′ defined by Lemma 1.9 (a).

If w = (wp,qi ) is an element of V ′ defined by Lemma 1.9 (a), we want to prove
that w ∈ V . We have∑

s
s6=p′

wp
′,s
i =

∑
s

s6=p′

ws,p
′

i ⇒
∑
s

p′<s

wp
′,s
i −

∑
r

r<p′

wr,p
′

i =
∑
r

p′<r

wr,p
′

i −
∑
s

s<p′

wp
′,s
i
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for all p′ ∈ [1,m]. Thus because

∑
p′

p′≤p

∑
s

p′<s

wp
′,s
i −

∑
r

r<p′

wr,p
′

i

 =
∑
p′

p′≤p

∑
r

p′<r

wr,p
′

i −
∑
s

s<p′

wp
′,s
i

 ,
we get that ∑

r,s
r≤p<s

wr,si =
∑
r,s

r≤p<s

ws,ri .

This is the pth equation of 1.8 (a) defining V . �

1.10. Let µa : V ′ → P ′ be the affine linear map defined by w = (wp,qi ) 7→ z = (zp,qi )
where zp,qi = wp,qi if p 6= q and zp,pi = ap −

∑
q,p6=q w

p,q
i .

Lemma 1.11. (a) µa is injective and carries V into P .

(b) Any point z ∈ Ta is the image of a unique point in V + under µa. In
particular, µa(0) = za.

(c) µ−1
a (Ta) is the set of w = (wp,qi ) ∈ V + such that we have

∑
q,p6=q w

p,q
i =∑

q,p6=q w
q,p
i ≤ ap for all p ∈ [1,m].

Proof. (a) It is obvious that µa is injective. If w ∈ V , then we want to prove that
z = µa(w) ∈ P . We have

ξs(z) =
∑
r

zr,si =
∑
r
r 6=s

wr,si +

as −∑
t
t6=s

ws,ti


and

ξ′s(z) =
∑
r

zs,ri =
∑
r
r 6=s

ws,ri +

as −∑
t
t6=s

ws,ti

 .

Because w ∈ V and by Lemma 1.9, ξs(z) = ξ′s(z) for all s ∈ [1,m]. Thus z ∈ P .
(b) For z = (zp,qi ) ∈ Ta, let w = (wp,qi ) be defined by wp,qi = zp,qi for p 6= q. Then

µa(w) = z. In fact, we just have to compute the (i, p, p)-component

(µa(w))p,pi = ap −
∑
q
p6=q

wp,qi = ap −
∑
q
p6=q

zp,qi = ap − ξ′p(z) + zp,pi = zp,pi

because ξ′p(z) = ap. Obviously µa(0) = za.
(c) If w = (wp,qi ) ∈ V ′ is such that µa(w) ∈ Ta, then wp,qi ∈ N for p 6= q. By

(a), we have
∑
q,p6=q w

p,q
i =

∑
q,p6=q w

q,p
i . We also have ap −

∑
q,p6=q w

p,q
i ≥ 0. So

we have just proved that

µ−1
a (Ta) ⊆

w = (wp,qi )

∣∣∣∣∣∣∣wp,qi ∈ N and
∑
q
p6=q

wp,qi =
∑
q
p6=q

wq,pi ≤ ap

 .
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The reverse inclusion is easy to get. In fact,

ξp(µa(w)) =
∑
q
q 6=p

wq,pi + ap −
∑
q
p6=q

wp,qi = ap

and

ξ′p(µa(w)) =
∑
q
q 6=p

wp,qi + ap −
∑
q
p6=q

wp,qi = ap.

�

1.12. Let Q̄Ω,i be the quadratic form on V ′ defined by

Q̄Ω,i(w) =
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

wp,qi wr,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
q<s≤p<r

wp,qi wr,si

−
∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

wp,qh′ w
r,s
h′′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s≤p<r

wp,qh′ w
r,s
h′′ .

We will again denote by Q̄Ω,i the restriction of Q̄Ω,i on V .

1.13. For s < s′ in [1,m] such that is = is′ = i and p 6∈ Z(i) whenever s < p < s′,
we set

N(s, s′) = (li − 1)(as + as′) +
∑
j∈I
j 6=i

∑
p∈Z(j)
s<p<s′

ei,j ap

where li is the number of edges joining i with i (loops) and ei,j is the number of
(unoriented) edges joining i with j.

More generally, given s < s′ in [1,m] such that is = is′ = i, we set N(s, s′) =
N(s0, s1) +N(s1, s2) + · · ·+N(sk−1, sk) where s = s0 < s1 < · · · < sk = s′ are the
elements of Z(i) ∩ [s, s′] in increasing order.

Let Li,a be the linear form on V ′ defined by

Li,a(w) =
∑
i∈I

∑
r,s∈Z(i)
s<r

N(s, r)wr,si

and denote again by Li,a the restriction of Li,a to V .

Proposition 1.14 (Lusztig). (a) For any w ∈ V , we have QΩ,i(µa(w)) = Q̄Ω,i(w)+
Li,a(w).

(b) If the non-homogeneous quadratic form Q̄Ω,i + Li,a takes only values > 0
on µ−1

a (Ta) \ {0}, then the monomial 1.1 (a) is tight.
(c) If the non-homogeneous quadratic form Q̄Ω,i + Li,a takes only values ≥ 0

on µ−1
a (Ta), then the monomial 1.1 (a) is semi-tight.

Proof. (a) is Lemma 9 (c) in [L2]. (b) and (c) follow from (a) and Theorem 1.7.
�
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2. Study of Q̄Ω,i on V

We will first study V by decomposing it as a direct sum V1⊕V−1 of two subspaces
V1 and V−1. In the last part of this section, we will show that the quadratic form
Q̄Ω,i can be decomposed with respect to the direct sum V1 ⊕ V−1 and that Q̄Ω,i is
also independent of Ω.

2.1. If w = (wp,qi ), then we write trw = (wq,pi ) for the transpose of w. If i ∈ I,
then the cardinality |{k ∈ [1,m] | ik = i}| will be denoted ni(i).

Proposition 2.2. (a) If w ∈ V (resp. V +, Ta), then trw ∈ V (resp. V +, Ta).

(b) V = V1 ⊕ V−1 where Vε = {w ∈ V | trw = εw} for ε ∈ {−1, 1}.
(c) V1 is the subspace of symmetric matrices in V ′. For (i, p, q) ∈ X , let

u(i, p, q) denote the matrix whose only nonzero entries are at the positions
(i, p, q) and (i, q, p) and these nonzero entries are equal to 1/2. Then the set
B1 of matrices u(i, p, q) with (i, p, q) ∈ X is a basis of V1 and the dimension
of V1 is dim(V1) =

∑
i∈I ni(i)(ni(i)− 1)/2.

(d) V−1 is the subspace of skew symmetric matrices (wp,qi ) in V ′ such that we
have

∑
q,q 6=p w

p,q
i =

∑
q,q 6=p w

q,p
i = 0 whenever p ∈ [1,m]. For (i, p, q) ∈

Y, let v(i, p, q) denote the matrix whose entries are given by wp,qi = 1/2,
wq,pi = −1/2, wpk ,pk+1

i = −1/2, wpk+1,pk
i = 1/2 where k = 0, 1, . . . , r − 1

and p = p0 < p1 < · · · < pr = q are the elements of Z(i) between p and q in
increasing order and all other entries of v(i, p, q) are 0. Then the set B−1

of matrices v(i, p, q) with (i, p, q) ∈ Y is a basis of V−1 and the dimension
of V−1 is dim(V−1) =

∑
i∈I(ni(i)− 1)(ni(i)− 2)/2.

(e) dim(V ) =
∑
i∈I(ni(i)− 1)2.

Proof. (a) is obvious for V and V + by Lemma 1.9. For Ta, it follows from its
definition.

(b) This is simply because w ∈ V can be written as

w =
(w + trw)

2
+

(w − trw)
2

with
(w + ε trw)

2
∈ Vε for ε ∈ {−1, 1}.

We also have V1 ∩ V−1 = {0}. Thus V = V1 ⊕ V−1.
(c) Denote by Sym: the space of symmetric matrices. We want to prove that

V1 = Sym ∩ V ′. It is easy to check that V1 ⊆ Sym ∩ V ′. If w = (wp,qi ) ∈ Sym ∩ V ′,
then ∑

q
q 6=p

wp,qi =
∑
q
q 6=p

wq,pi for all p ∈ [1,m].

Thus w ∈ V by Lemma 1.9. Because trw = w, we get w ∈ V1. It is easy to
prove that {u(i, p, q) | (i, p, q) ∈ X} is a basis of V1. From this, we get dim(V1) =∑
i∈I ni(i)(ni(i)− 1)/2.
(d) Denote by Skew: the space of skew symmetric matrices and by Skew0: the

subspace of Skew consisting of the matrices w = (wp,qi ) such that∑
q
q 6=p

wp,qi =
∑
q
q 6=p

wq,pi = 0 for all p ∈ [1,m].
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We must prove that V−1 = Skew0 ∩ V ′. It is obvious that Skew0 ∩ V ′ ⊆ V−1. If
w = (wp,qi ) ∈ V−1, then w is skew symmetric and is an element of V ′. We also have∑

q
q 6=p

wp,qi =
∑
q
q 6=p

wq,pi = −
∑
q
q 6=p

wp,qi ⇒
∑
q
q 6=p

wp,qi =
∑
q
q 6=p

wq,pi = 0

because w ∈ V ∩ Skew. Consequently, w ∈ Skew0 ∩ V ′ and V−1 ⊆ Skew0 ∩ V ′.
We now want to prove that {v(i, p, q) | (i, p, q) ∈ Y} is a basis of V−1. It is easy

to check that these vectors belong to V−1 and are linearly independent. We must
prove that they span V−1. Let w = (wp,qi ) ∈ V−1. We will prove that

w =
∑

(i,p,q)∈Y
2wp,qi v(i, p, q).

Note that w̄ = (w̄p,qi ) = w −
∑

(i,p,q)∈Y 2wp,qi v(i, p, q) is an element of V−1 such
that w̄p,qi = 0 whenever (i, p, q) ∈ Y. But this implies that w̄ = 0. In fact, if there
are p 6= q both belonging to Z(i) such that w̄p,qi 6= 0, then we can, by considering
w̄q,pi 6= 0 if needed, assume that p < q and (i, p, q) ∈ X . By our definition of w̄,
we have that (i, p, q) ∈ Z. Among all such triples (i, p, q) ∈ Z with w̄p,qi 6= 0, take
one for which p is minimal. For this p, we claim that w̄p,ri = 0 for all r ∈ Z(i) and
r 6= q. In fact, if r < p and we assume that w̄p,ri 6= 0, then −w̄r,pi 6= 0 and this
contradicts our choice of p. So w̄p,ri = 0 when r < p. If r = p, then w̄p,ri = 0 by
definition of V . If p < r and r 6= q, then r > q, (i, p, r) ∈ Y because (i, p, q) ∈ Z,
and w̄p,ri = 0 from our construction of w̄. From this we get a contradiction because
0 =

∑
r,r 6=p w̄

p,r
i = w̄p,qi .

From this we can conclude that {v(i, p, q) | (i, p, q) ∈ Y} is a basis of V−1. We
get easily that dim(V−1) =

∑
i∈I(ni(i)− 1)(ni(i)− 2)/2.

(e) follows from (c) and (d). �

Lemma 2.3. Let w ∈ V . Write w with respect to the basis B1 ∪ B−1 of V :

(a) w = (wp,qi ) =
∑

(i,p,q)∈X
x(i,p,q) u(i, p, q) +

∑
(i,p,q)∈Y

y(i,p,q) v(i, p, q).

Then w ∈ µ−1
a (Ta) if and only if the following six conditions are satisfied:

(1) x(i,p,q) ∈ N for all (i, p, q) ∈ X ,
(2) y(i,p,q) ∈ Z and y(i,p,q) ≡ x(i,p,q) (mod 2) for all (i, p, q) ∈ Y,
(3) |y(i,p,q)| ≤ x(i,p,q) for all (i, p, q) ∈ Y,
(4)

∑
(i,r,s)∈Y
r≤p<q≤s

y(i,r,s) ≡ x(i,p,q) (mod 2) for all (i, p, q) ∈ Z,

(5)
∣∣∣∑ (i,r,s)∈Y

r≤p<q≤s
y(i,r,s)

∣∣∣ ≤ x(i,p,q) for all (i, p, q) ∈ Z,

(6)
∑

q, (i,p,q)∈X x(i,p,q) +
∑

q, (i,q,p)∈X x(i,q,p) ≤ 2 ap for all p ∈ [1,m].

For now on, we will denote the set of pairs (x, y) with x = (x(i,p,q))(i,p,q)∈X and
y = (y(i,p,q))(i,p,q)∈Y satisfying the above six conditions by T̃a.

Proof. We note that (x(i,p,q) + y(i,p,q))/2 = wp,qi and (x(i,p,q)− y(i,p,q))/2 = wq,pi for
all (i, p, q) ∈ Y. Consequently, x(i,p,q) = wp,qi + wq,pi and y(i,p,q) = wp,qi − w

q,p
i for

all (i, p, q) ∈ Y.
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If (i, p, q) ∈ Z, then

wp,qi =
1
2

x(i,p,q) −
∑

(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 and wq,pi =
1
2

x(i,p,q) +
∑

(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 .
Consequently, x(i,p,q) = wp,qi + wq,pi if (i, p, q) ∈ Z.

If w = (wp,qi ) ∈ µ−1
a (Ta), then wp,qi ∈ N whenever i ∈ I and p 6= q ∈ Z(i)

and we also have
∑

q,p6=q w
p,q
i =

∑
q,p6=q w

q,p
i ≤ ap for all p ∈ [1,m]. From this,

we get easily the six conditions as follows. Because x(i,p,q) = wp,qi + wq,pi ∈ N
if (i, p, q) ∈ X , we must have condition 1. Because y(i,p,q) = wp,qi − wq,pi ∈ Z
and y(i,p,q) ≡ x(i,p,q) (mod 2) if (i, p, q) ∈ Y, we must have condition 2. Because
(x(i,p,q) + y(i,p,q)) = 2wp,qi ≥ 0 and (x(i,p,q) − y(i,p,q)) = 2wq,pi ≥ 0 if (i, p, q) ∈ Y,
then |y(i,p,q)| ≤ x(i,p,q) if (i, p, q) ∈ Y and condition 3 is verified. Because we havex(i,p,q) −

∑
(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 = 2wp,qi ≥ 0

and x(i,p,q) +
∑

(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 = 2wq,pi ≥ 0,

if (i, p, q) ∈ Z, then both conditions 4 and 5 follow easily.∑
q,q 6=p w

p,q
i is the sum of the entries of the pth row of w. Note that the sum of

the entries of the pth row of u(i, p′, q′) is
1/2, if (i, p′, q′) = (i, p, q) ∈ X for some q;
1/2, if (i, p′, q′) = (i, q, p) ∈ X for some q;
0 otherwise.

Note also that the sum of the entries of the pth row of v(i, p′, q′) is 0 for all (i, p′, q′) ∈
Y, because v(i, p′, q′) ∈ Skew0. From this we get∑

q,q 6=p
wp,qi =

1
2

∑
q,(i,p,q)∈X

x(i,p,q) +
1
2

∑
q,(i,q,p)∈X

x(i,q,p) ≤ ap

if 1 ≤ p ≤ m, and condition 6 is verified.
Conversely, if the six conditions above are satisfied, then we must show that

w ∈ µ−1
a (Ta). If (i, p, q) ∈ Y, then wp,qi = (x(i,p,q) + y(i,p,q))/2 ∈ N and wq,pi =

(x(i,p,q) − y(i,p,q))/2 ∈ N by conditions 1, 2 and 3. If (i, p, q) ∈ Z, then

wp,qi =
1
2

x(i,p,q) −
∑

(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 ∈ N
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and

wq,pi =
1
2

x(i,p,q) +
∑

(i,r,s)∈Y
r≤p<q≤s

y(i,r,s)

 ∈ N

by conditions 1, 2, 4 and 5.
As we saw above∑

q
q 6=p

wp,qi =
1
2

∑
q

(i,p,q)∈X

x(i,p,q) +
1
2

∑
q

(i,q,p)∈X

x(i,q,p) ≤ ap

by condition 6. We also have that
∑
q,q 6=p w

p,q
i =

∑
q,q 6=p w

q,p
i . From all of this and

Lemma 1.11 (c), we see that w ∈ µ−1
a (Ta). �

Theorem 2.4. Let w ∈ V and write w = u + v with u ∈ V1 and v ∈ V−1. Then
Q̄Ω,i(w) = Q̄Ω,i(u) + Q̄Ω,i(v).

Proof. We have wp,qi = up,qi + vp,qi for i ∈ I and p 6= q ∈ Z(i). To prove that
Q̄Ω,i(w) = Q̄Ω,i(u) + Q̄Ω,i(v), we must consider∑

i

∑
p,q,r,s,∈Z(i)
r≤p<s≤q

(up,qi + vp,qi )(ur,si + vr,si ) +
∑
i

∑
p,q,r,s,∈Z(i)
q<s≤p<r

(up,qi + vp,qi )(ur,si + vr,si )

−
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

(up,qh′ + vp,qh′ )(ur,sh′′ + vr,sh′′ )−
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s≤p<r

(up,qh′ + vp,qh′ )(ur,sh′′ + vr,sh′′ )

and show that it is equal to∑
i

∑
p,q,r,s∈Z(i)
r≤p<s≤q

up,qi ur,si +
∑
i

∑
p,q,r,s∈Z(i)
q<s≤p<r

up,qi ur,si −
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

up,qh′ u
r,s
h′′

−
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s≤p<r

up,qh′ u
r,s
h′′ +

∑
i

∑
p,q,r,s∈Z(i)
r≤p<s≤q

vp,qi vr,si +
∑
i

∑
p,q,r,s∈Z(i)
q<s≤p<r

vp,qi vr,si

−
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

vp,qh′ v
r,s
h′′ −

∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s≤p<r

vp,qh′ v
r,s
h′′ .

It is enough to prove that

(a)
∑
i

∑
p,q,r,s∈Z(i)
r≤p<s≤q

(up,qi vr,si + vp,qi ur,si ) +
∑
i

∑
p,q,r,s∈Z(i)
q<s≤p<r

(up,qi vr,si + vp,qi ur,si ) = 0

and
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(b)
∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

(up,qh′ v
r,s
h′′ + vp,qh′ u

r,s
h′′) +

∑
h

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s≤p<r

(up,qh′ v
r,s
h′′ + vp,qh′ u

r,s
h′′) = 0.

We will start with the equation (a) and use the fact that u is symmetric and v
belongs to Skew0. Thus the left-hand side of equation (a) is equal to

∑
i


∑

p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

up,qi vr,si +
∑

p,q∈Z(i)
r,s∈Z(i)
p≤r<q≤s

up,qi vr,si −
∑

p,q∈Z(i)
r,s∈Z(i)
p<r≤q<s

up,qi vr,si −
∑

p,q∈Z(i)
r,s∈Z(i)
r<p≤s<q

up,qi vr,si


=
∑
i,p,q

up,qi

∑
r<p

(vr,qi − v
r,p
i ) +

∑
r=p
p<s

vp,si

+ vp,qi +

( ∑
p<r<q

vr,qi

)
−

∑
r=q
q<s

vq,si




=
∑
i,p,q

up,qi [(sum of the entries in line p of v) + (sum of entries in column q of v)]

= 0.

We now consider equation (b) and use again the fact that u is symmetric and v
belongs to Skew0. The left-hand side of equation (b) can be split into two sums;
one sum is when h runs over H with h′ 6= h′′ and the other sum is when h runs
over H with h′ = h′′. For the first sum, we get

∑
h

h′ 6=h′′


∑

p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

up,qh′ v
r,s
h′′ +

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p≤r<q≤s

up,qh′′ v
r,s
h′ −

∑
p,q∈Z(h′)
r,s∈Z(h′′)
p<r≤q<s

up,qh′ v
r,s
h′′ −

∑
p,q∈Z(h′′)
r,s∈Z(h′)
r<p≤s<q

up,qh′′ v
r,s
h′



=
∑
i

p,q∈Z(i)
p<q

up,qi

∑
h

h′=i

 ∑
r,s∈Z(h′′)
r≤p<s≤q

vr,sh′′ −
∑

r,s∈Z(h′′)
p<r≤q<s

vr,sh′′




+
∑
i

p,q∈Z(i)
p<q

up,qi

∑
h

h′′=i

 ∑
r,s∈Z(h′)
p≤r<q≤s

vr,sh′ −
∑

r,s∈Z(h′)
r<p≤s<q

vr,sh′




= 0.
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This last sum is zero because we have that h′ 6= h′′ for these h and, if we denote
ei→j = |{h ∈ H | h′ = i, h′′ = j}| and ei←j = |{h ∈ H | h′ = j, h′′ = i}|, then

∑
i

p,q∈Z(i)
p<q

up,qi

∑
h

h′=i

 ∑
r,s∈Z(h′′)
r≤p<s≤q

vr,sh′′ −
∑

r,s∈Z(h′′)
p<r≤q<s

vr,sh′′




=
∑
i

p,q∈Z(i)
p<q

up,qi

∑
j
j 6=i

ei→j

 ∑
r,s∈Z(j)
r<p<s<q

vr,sj −
∑

r,s∈Z(j)
p<r<q<s

vr,sj




=
∑
i

p,q∈Z(i)
p<q

up,qi

∑
j
j 6=i

ei→j

 ∑
r,s∈Z(j)
r<p<s<q

vr,sj +
∑

r,s∈Z(j)
p<s<q<r

vr,sj




=
∑
i

p,q∈Z(i)
p<q

up,qi


∑
j
j 6=i

ei→j

−
∑

r,s∈Z(j)
p<r<q
p<s<q

vr,sj


 = 0

because v is skew symmetric, the sum of the entries of any column of v is 0 and
finally the sum of the entries of any principal submatrix of a skew symmetric matrix
is 0. Similarly,

∑
i

p,q∈Z(i)
p<q

up,qi

∑
h

h′′=i

 ∑
r,s∈Z(h′)
p≤r<q≤s

vr,sh′ −
∑

r,s∈Z(h′)
r<p≤s<q

vr,sh′




=
∑
i

p,q∈Z(i)
p<q

up,qi

∑
j
j 6=i

ei←j

 ∑
r,s∈Z(j)
p<r<q<s

vr,sj −
∑

r,s∈Z(j)
r<p<s<q

vr,sj




=
∑
i

p,q∈Z(i)
p<q

up,qi

∑
j
j 6=i

ei←j

 ∑
r,s∈Z(j)
p<r<q<s

vr,sj +
∑

r,s∈Z(j)
s<p<r<q

vr,sj




=
∑
i

p,q∈Z(i)
p<q

up,qi


∑
j
j 6=i

ei←j

−
∑

r,s∈Z(j)
p<r<q
p<s<q

vr,sj


 = 0

because v is skew symmetric, the sum of the entries of any row of v is 0 and finally
the sum of the entries of any principal submatrix of a skew symmetric matrix is 0.
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For the second sum in the left-hand side of equation (b), the one where h runs
over H with h′ = h′′, denote by li = |{h ∈ H | h′ = h′′ = i}| for i ∈ I, then we get

∑
h

h′=h′′


∑

p,q∈Z(h′)
r,s∈Z(h′′)
r≤p<s≤q

up,qh′ v
r,s
h′′ +

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p≤r<q≤s

up,qh′′ v
r,s
h′ −

∑
p,q∈Z(h′)
r,s∈Z(h′′)
p<r≤q<s

up,qh′ v
r,s
h′′ −

∑
p,q∈Z(h′′)
r,s∈Z(h′)
r<p≤s<q

up,qh′′ v
r,s
h′



=
∑
i

p,q∈Z(i)
p<q

liu
p,q
i

 ∑
r,s∈Z(i)
r≤p<s≤q

vr,si +
∑

r,s∈Z(i)
p≤r<q≤s

vr,si −
∑

r,s∈Z(i)
p<r≤q<s

vr,si −
∑

r,s∈Z(i)
r<p≤s≤q

vr,si


=

∑
i

p,q∈Z(i)
p<q

liu
p,q
i [(sum of entries in line p of v) + (sum of entries in line q of v)]

= 0

as in the case of equation (a).
Thus we have proved Q̄Ω,i(w) = Q̄Ω,i(u) + Q̄Ω,i(v). �

Corollary 2.5. The quadratic form Q̄Ω,i on V is independent of Ω.

Proof. Let Ω and Ω′ be two quivers for the graph Γ. We have four maps h 7→ h′(Ω),
h 7→ h′′(Ω), h 7→ h′(Ω′) and h 7→ h′′(Ω′) from H → I corresponding to these two
quivers. It is enough to show the result assuming that Ω and Ω′ are such that
h′(Ω) = h′(Ω′) and h′′(Ω) = h′′(Ω′) for all h ∈ H except for exactly one edge h0

for which we have h′0(Ω) = h′′0(Ω′), h′′0(Ω) = h′0(Ω′) and h′0(Ω) 6= h′′0(Ω). In other
words, all the edges have the same orientation in Ω and Ω′ except for h0 which has
opposite orientation in Ω and Ω′ and h0 is an edge between distinct vertices. Let
w ∈ V . Consider Q̄Ω,i(w) (resp. Q̄Ω′,i(w)) the quadratic form associated to i and
Ω (resp. to i and Ω′). Write w = u + v with u ∈ V1 and v ∈ V−1. Because u is
symmetric, then we get easily that Q̄Ω,i(u) is equal to∑

i

∑
p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

up,qi ur,si +
∑
i

∑
p,q∈Z(i)
r,s∈Z(i)
r<p≤s<q

up,qi ur,si −
∑
h∈H

∑
p,q∈Z(h′(Ω))
r,s∈Z(h′′(Ω))
r≤p<s≤q

up,qh′(Ω)u
r,s
h′′(Ω)

−
∑
h∈H

∑
p,q∈Z(h′′(Ω))
r,s∈Z(h′(Ω))
r<p≤s<q

up,qh′′(Ω)u
r,s
h′(Ω)

while Q̄Ω′,i(u) is equal to∑
i

∑
p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

up,qi ur,si +
∑
i

∑
p,q∈Z(i)
r,s∈Z(i)
r<p≤s<q

up,qi ur,si −
∑
h∈H

∑
p,q∈Z(h′(Ω′))
r,s∈Z(h′′(Ω′))
r≤p<s≤q

up,qh′(Ω′)u
r,s
h′′(Ω′)

−
∑
h∈H

∑
p,q∈Z(h′′(Ω′))
r,s∈Z(h′(Ω′))
r<p≤s<q

up,qh′′(Ω′)u
r,s
h′(Ω′).
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For the rest of this proof, we will write h′0 = h′0(Ω) = h′′0(Ω′) and h′′0 = h′′0(Ω) =
h′0(Ω′). Consequently, Q̄Ω′,i(u)− Q̄Ω,i(u) is equal to∑

p,q∈Z(h′0)
r,s∈Z(h′′0 )
r≤p<s≤q

up,qh′0
ur,sh′′0

+
∑

p,q∈Z(h′′0 )
r,s∈Z(h′0)
r<p≤s<q

up,qh′′0
ur,sh′0
−

∑
p,q∈Z(h′′0 )
r,s∈Z(h′0)
r≤p<s≤q

up,qh′′0
ur,sh′0
−

∑
p,q∈Z(h′0)
r,s∈Z(h′′0 )
r<p≤s<q

up,qh′0
ur,sh′′0

=
∑

p,q∈Z(h′0)
r,s∈Z(h′′0 )
r<p<s<q

up,qh′0
ur,sh′′0

+
∑

p,q∈Z(h′′0 )
r,s∈Z(h′0)
r<p<s<q

up,qh′′0
ur,sh′0
−

∑
p,q∈Z(h′′0 )
r,s∈Z(h′0)
r<p<s<q

up,qh′′0
ur,sh′0
−

∑
p,q∈Z(h′0)
r,s∈Z(h′′0 )
r<p<s<q

up,qh′0
ur,sh′′0

= 0

because h′0 6= h′′0 .
We can use a similar argument to show that Q̄Ω′,i(v) − Q̄Ω,i(v) = 0 whenever

v ∈ V−1. From Theorem 2.4, we can conclude that Q̄Ω,i = Q̄Ω′,i on V . �

3. The case of loop free graph Γ

3.1. For the rest of this article, we will assume that Γ is loop free. As we have
seen in the previous section, the quadratic form Q̄Ω,i on V is independent of the
quiver Ω. We will denote this quadratic form on V by Q̄i. We have also seen that
Q̄i(u + v) = Q̄i(u) + Q̄i(v) where u ∈ V1 and v ∈ V−1. Because V = V1 ⊕ V−1, we
see that to analyse Q̄i on V , it is enough to consider its restriction on V1 and V−1.
This is what we will do in this section.

The fact that Γ is loop free has a consequence that the restriction of Q̄i on V1

(resp. V−1) will be expressed as an integral unit form (resp. integral quadratic
form) and this will enable us to use results from the theory of representation of
algebras. Because all the graphs Γ we will consider in later sections are loop free,
we have decided to study Q̄i in this context.

More precisely, if we write u′(i, p, q) for 2u(i, p, q) when (i, p, q) ∈ X and v′(i, p, q)
for 2v(i, p, q) when (i, p, q) ∈ Y, then we will describe

Q̄i

 ∑
(i,p,q)∈X

x(i,p,q)u
′(i, p, q)

 and Q̄i

 ∑
(i,p,q)∈Y

y(i,p,q)v
′(i, p, q)

 .

3.2. Q+
i (x) will denote the quadratic form on V1 defined by

Q+
i (x) = Q̄i

 ∑
(i,p,q)∈X

x(i,p,q)u
′(i, p, q)


where (x) is equal to (x(i,p,q))(i,p,q)∈X and Q−i (y) will denote the quadratic form
on V−1 defined by

Q−i (y) = Q̄i

 ∑
(i,p,q)∈Y

y(i,p,q)v
′(i, p, q)


where (y) is equal to (y(i,p,q))(i,p,q)∈Y .
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Proposition 3.3. With the hypothesis of 3.1 and the notation of 3.2, Q+
i (x) is

equal to∑
(i,p,q)∈X

x2
(i,p,q) +

∑
(i,p,q)∈X
(i,p,s)∈X
p<q<s

x(i,p,q)x(i,p,s) +
∑

(i,p,q)∈X
(i,r,q)∈X
p<r<q

x(i,p,q)x(i,r,q)

+
∑

(i,p,q)∈X
(i,q,s)∈X
p<q<s

x(i,p,q)x(i,q,s) + 2
∑

(i,p,q)∈X
(i,r,s)∈X
p<r<q<s

x(i,p,q)x(i,r,s) −
∑

(i,p,q)∈X
(j,r,s)∈X
i6=j

p<r<q<s

ei,j x(i,p,q)x(j,r,s)

where ei,j is the number of (unoriented) edges joining i and j.

Proof. Choose a quiver Ω for the graph Γ. So we have two maps h 7→ h′ and h 7→ h′′

from H to I. If we write u = (up,qi ) =
∑

(i,p,q)∈X x(i,p,q)u
′(i, p, q), then

(a) up,qi =


x(i,p,q), if i ∈ I, p, q ∈ Z(i) and p < q,

x(i,q,p), if i ∈ I, p, q ∈ Z(i) and q < p,

0, otherwise.

Thus

Q+
i (x) = Q̄Ω,i(u) =

∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

up,qi ur,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
q<s≤p<r

up,qi ur,si

−
∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r<p<s<q

up,qh′ u
r,s
h′′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s<p<r

up,qh′ u
r,s
h′′ .

because by our hypothesis , h′ 6= h′′ for h ∈ H . From this and the fact that u is
symmetric, we get that Q+

i (x) is equal to

Q+
i (x) = Q̄Ω,i(u) =

∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p≤r<q≤s

up,qi ur,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
q<s≤p<r

uq,pi us,ri

−
∑
h∈H

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p<r<q<s

up,qh′′ u
r,s
h′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s<p<r

uq,ph′ u
s,r
h′′

=
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p≤r<q≤s

up,qi ur,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p<r≤q<s

up,qi ur,si

−
∑
h∈H

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p<r<q<s

up,qh′′ u
r,s
h′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
p<r<q<s

up,qh′ u
r,s
h′′ .

We can now consider the different possibilities for the intersection {p, q} ∩ {r, s} in
the two summations above where p, q, r, s ∈ Z(i). We get the following possibilities:

(1) p = r, q = s in the first sum;
(2) p = r < q < s in the first sum;
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(3) p < r < q = s in the first sum;
(4) p < r = q < s in the second sum; and
(5) p < r < q < s in the first and second sums.

We can also use equation 3.3 (a). Thus

Q+
i (x) =

∑
(i,p,q)∈X

x2
(i,p,q) +

∑
(i,p,q)∈X
(i,p,s)∈X
p<q<s

x(i,p,q)x(i,p,s) +
∑

(i,p,q)∈X
(i,r,q)∈X
p<r<q

x(i,p,q)x(i,r,q)

+
∑

(i,p,q)∈X
(i,q,s)∈X
p<q<s

x(i,p,q)x(i,q,s) + 2
∑

(i,p,q)∈X
(i,r,s)∈X
p<r<q<s

x(i,p,q)x(i,r,s)

−
∑
h∈H

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p<r<q<s

x(h′′,p,q)x(h′,r,s) −
∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
p<r<q<s

x(h′,p,q)x(h′′,r,s)

=
∑

(i,p,q)∈X
x2

(i,p,q) +
∑

(i,p,q)∈X
(i,p,s)∈X
p<q<s

x(i,p,q)x(i,p,s) +
∑

(i,p,q)∈X
(i,r,q)∈X
p<r<q

x(i,p,q)x(i,r,q)

+
∑

(i,p,q)∈X
(i,q,s)∈X
p<q<s

x(i,p,q)x(i,q,s) + 2
∑

(i,p,q)∈X
(i,r,s)∈X
p<r<q<s

x(i,p,q)x(i,r,s)

−
∑

(i,p,q)∈X
(j,r,s)∈X

i6=j
p<r<q<s

(∣∣{h ∈ H | {h′, h′′} = {i, j}
}∣∣)x(i,p,q)x(j,r,s)

=
∑

(i,p,q)∈X
x2

(i,p,q) +
∑

(i,p,q)∈X
(i,p,s)∈X
p<q<s

x(i,p,q)x(i,p,s) +
∑

(i,p,q)∈X
(i,r,q)∈X
p<r<q

x(i,p,q)x(i,r,q)

+
∑

(i,p,q)∈X
(i,q,s)∈X
p<q<s

x(i,p,q)x(i,q,s) + 2
∑

(i,p,q)∈X
(i,r,s)∈X
p<r<q<s

x(i,p,q)x(i,r,s)

−
∑

(i,p,q)∈X
(j,r,s)∈X

i6=j
p<r<q<s

eij x(i,p,q)x(j,r,s)

�

3.4. Let κi : [1,m]→ N: be the function defined by κi(p) = |{1 ≤ k ≤ p | ik = ip}|.

Proposition 3.5. With the hypothesis of 3.1 and the notation of 3.2, the quadratic
form Q−i (y) is equal to
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(i,p,q)∈Y

2
(
κi(q)− κi(p)− 1

)
y2

(i,p,q)

+
∑

(i,p,q)∈Y
(i,p,s)∈Y
p<q<s

4
(
κi(q)− κi(p)− 1

)
y(i,p,q) y(i,p,s)

+
∑

(i,p,q)∈Y
(i,r,q)∈Y
p<r<q

4
(
κi(q)− κi(r)− 1

)
y(i,p,q) y(i,r,q)

+
∑

(i,p,q)∈Y
(i,r,s)∈Y
p<r<q<s

(
4
(
κi(q)− κi(r)

)
− 2
)
y(i,p,q) y(i,r,s)

+
∑

(i,p,q)∈Y
(i,r,s)∈Y
p<r<s<q

4
(
κi(s)− κi(r) − 1

)
y(i,p,q) y(i,r,s)

−
∑

(i,p,q)∈Y
(j,r,s)∈Y
i6=j

p<r<q<s

ei,j α(i,p,q),(j,r,s) y(i,p,q) y(j,r,s)

−
∑

(i,p,q)∈Y
(j,r,s)∈Y
i6=j

p<r<s<q

ei,j β(i,p,q),(j,r,s) y(i,p,q) y(j,r,s)

where ei,j is the number of (unoriented) edges joining i and j, α(i,p,q),(j,r,s) is equal
to

|{((i, p′, q′), (j, r′, s′)) ∈ Z × Z | p ≤ p′ < r′ < q′ < s′ ≤ s and r ≤ r′ < q′ ≤ q}|
+ |{((i, p′, q′), (j, r′, s′)) ∈ Z × Z | r ≤ r′ < p′ < s′ < q′ ≤ q}|
− |{(i, p′, q′) ∈ Z | p ≤ p′ < r < q′ ≤ q}|
− |{(j, r′, s′) ∈ Z | r ≤ r′ < q < s′ ≤ s}|+ 1

and β(i,p,q),(j,r,s) is equal to

|{((i, p′, q′), (j, r′, s′)) ∈ Z × Z | p ≤ p′ < r′ < q′ < s′ ≤ s and r ≤ r′}|
+ |{((i, p′, q′), (j, r′, s′)) ∈ Z × Z | r ≤ r′ < p′ < s′ < q′ ≤ q and s′ ≤ s}|
− |{(i, p′, q′) ∈ Z | p ≤ p′ < r < q′ < s}|
− |{(i, p′, q′) ∈ Z | r < p′ < s < q′ ≤ q}|
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Proof. Choose a quiver Ω for the graph Γ. So we have two maps h 7→ h′ and h 7→ h′′

from H to I. If we write v = (vp,qi ) =
∑

(i,p,q)∈Y y(i,p,q)v
′(i, p, q), then

(a) vp,qi =



y(i,p,q), if i ∈ I, p, q ∈ Z(i), p < q and (i, p, q) ∈ Y ,
−y(i,q,p), if i ∈ I, p, q ∈ Z(i), q < p and (i, q, p) ∈ Y ,
−
∑

(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′), if i ∈ I, p, q ∈ Z(i), p < q and (i, p, q) ∈ Z,∑
(i,p′,q′)∈Y
p′≤q<p≤q′

y(i,p′,q′), if i ∈ I, p, q ∈ Z(i), q < p and (i, q, p) ∈ Z,

0, otherwise.

Thus

Q−i (y) = Q̄Ω,i(v) =
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
r≤p<s≤q

vp,qi vr,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
q<s≤p<r

vp,qi vr,si

−
∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
r<p<s<q

vp,qh′ v
r,s
h′′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s<p<r

vp,qh′ v
r,s
h′′

because by our hypothesis, h′ 6= h′′ for h ∈ H . From this and the fact that v is
skew symmetric, we get that Q−i (y) is equal to

Q−i (y) = Q̄Ω,i(v) =
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p≤r<q≤s

vp,qi vr,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
q<s≤p<r

vq,pi vs,ri

−
∑
h∈H

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p<r<q<s

vp,qh′′ v
r,s
h′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
q<s<p<r

vq,ph′ v
s,r
h′′

=
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p≤r<q≤s

vp,qi vr,si +
∑
i∈I

∑
p,q∈Z(i)
r,s∈Z(i)
p<r≤q<s

vp,qi vr,si

−
∑
h∈H

∑
p,q∈Z(h′′)
r,s∈Z(h′)
p<r<q<s

vp,qh′′ v
r,s
h′ −

∑
h∈H

∑
p,q∈Z(h′)
r,s∈Z(h′′)
p<r<q<s

vp,qh′ v
r,s
h′′ .

We can now consider the different possibilities for the intersection {p, q} ∩ {r, s} in
the two summations above where p, q, r, s ∈ Z(i). We get the following possibilities:

(1) p = r, q = s in the first sum;
(2) p = r < q < s in the first sum;
(3) p < r < q = s in the first sum;
(4) p < r = q < s in the second sum; and
(5) p < r < q < s in the first and second sums.
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We get that

Q−i (y) =
∑

(i,p,q)∈X
(vp,qi )2 +

∑
(i,p,q)∈X
(i,p,s)∈X
p<q<s

vp,qi vp,si +
∑

(i,p,q)∈X
(i,r,q)∈X
p<r<q

vp,qi vr,qi

+
∑

(i,p,q)∈X
(i,q,s)∈X
p<q<s

vp,qi vq,si + 2
∑

(i,p,q)∈X
(i,r,s)∈X
p<r<q<s

vp,qi vr,si −
∑
h∈H

∑
(h′′,p,q)∈X
(h′,r,s)∈X
p<r<q<s

vp,qh′′ v
r,s
h′

−
∑
h∈H

∑
(h′,p,q)∈X
(h′′,r,s)∈X
p<r<q<s

vp,qh′ v
r,s
h′′ .

To complete now, we must use equation 3.5 (a). We replace all of these components
by the appropriate expression, Q−i (y) is equal to

∑
(i,p,q)∈Y

y2
(i,p,q) +

∑
(i,p,q)∈Z

− ∑
(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′)


2

+
∑

(i,p,q)∈Y
(i,p,s)∈Y
p<q<s

y(i,p,q)y(i,p,s)

−
∑

(i,p,q)∈Z
(i,p,s)∈Y
p<q<s

 ∑
(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′)

 y(i,p,s) +
∑

(i,p,q)∈Y
(i,r,q)∈Y
p<r<q

y(i,p,q)y(i,r,q)

−
∑

(i,p,q)∈Y
(i,r,q)∈Z
p<r<q

y(i,p,q)

 ∑
(i,r′,q′)∈Y
r′≤r<q≤q′

y(i,r′,q′)

+
∑

(i,p,q)∈Y
(i,q,s)∈Y
p<q<s

y(i,p,q)y(i,q,s)

−
∑

(i,p,q)∈Z
(i,q,s)∈Y
p<q<s

 ∑
(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′)

 y(i,q,s) −
∑

(i,p,q)∈Y
(i,q,s)∈Z
p<q<s

y(i,p,q)

 ∑
(i,q′,s′)∈Y
q′≤q<s≤s′

y(i,q′,s′)



+
∑

(i,p,q)∈Z
(i,q,s)∈Z
p<q<s

 ∑
(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′)


 ∑

(i,q′′,s′)∈Y
q′′≤q<s≤s′

y(i,q′′,s′)

+ 2
∑

(i,p,q)∈Y
(i,r,s)∈Y
p<r<q<s

y(i,p,q)y(i,r,s)

−
∑
h∈H

∑
(h′′,p,q)∈Y
(h′,r,s)∈Y
p<r<q<s

y(h′′,p,q)y(h′,r,s) +
∑
h∈H

∑
(h′′,p,q)∈Z
(h′,r,s)∈Y
p<r<q<s

 ∑
(h′′,p′,q′)∈Y
p′≤p<q≤q′

y(h′′,p′,q′)

 y(h′,r,s)
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+
∑
h∈H

∑
(h′′,p,q)∈Y
(h′,r,s)∈Z
p<r<q<s

y(h′′,p,q)

 ∑
(h′,r′,s′)∈Y
r′≤r<s≤s′

y(h′,r′,s′)



−
∑
h∈H

∑
(h′′,p,q)∈Z
(h′,r,s)∈Z
p<r<q<s

 ∑
(h′′,p′,q′)∈Y
p′≤p<q≤q′

y(h′′,p′,q′)


 ∑

(h′,r′,s′)∈Y
r′≤r<s≤s′

y(h′,r′,s′)



−
∑
h∈H

∑
(h′,p,q)∈Y
(h′′,r,s)∈Y
p<r<q<s

y(h′,p,q)y(h′′,r,s) +
∑
h∈H

∑
(h′,p,q)∈Z
(h′′,r,s)∈Y
p<r<q<s

 ∑
(h′,p′,q′)∈Y
p′≤p<q≤q′

y(h′,p′,q′)

 y(h′′,r,s)

+
∑
h∈H

∑
(h′,p,q)∈Y
(h′′,r,s)∈Z
p<r<q<s

y(h′,p,q)

 ∑
(h′′,r′,s′)∈Y
r′≤r<s≤s′

y(h′′,r′,s′)



−
∑
h∈H

∑
(h′,p,q)∈Z
(h′′,r,s)∈Z
p<r<q<s

 ∑
(h′,p′,q′)∈Y
p′≤p<q≤q′

y(h′,p′,q′)


 ∑

(h′′,r′,s′)∈Y
r′≤r<s≤s′

y(h′′,r′,s′)

 .

Expanding and regrouping the terms of this summation, we get that Q−i (y) is equal
to ∑

(i,p,q)∈Y
Ap,q y

2
(i,p,q) +

∑
(i,p,q)∈Y
(i,p,s)∈Y
p<q<s

Bp,q,p,s y(i,p,q)y(i,p,s) +
∑

(i,p,q)∈Y
(i,r,q)∈Y
p<r<q

Cp,q,r,q y(i,p,q)y(i,r,q)

+
∑

(i,p,q)∈Y
(i,q,s)∈Y
p<q<s

Dp,q,q,s y(i,p,q)y(i,q,s) +
∑

(i,p,q)∈Y
(i,r,s)∈Y
p<r<q<s

Ep,q,r,s y(i,p,q)y(i,r,s)

+
∑

(i,p,q)∈Y
(i,r,s)∈Y
p<r<s<q

Fp,q,r,s y(i,p,q)y(i,r,s) +
∑

(i,p,q)∈Y
(j,r,s)∈Y
i6=j

p<r<q<s

A′p,q,r,s y(i,p,q)y(j,r,s)

+
∑

(i,p,q)∈Y
(j,r,s)∈Y
i6=j

p<r<s<q

B′p,q,r,s y(i,p,q)y(j,r,s)
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where

Ap,q = 1 + |{(i, p′, q′) ∈ Z | p < p′ < q′ < q}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ q}|;

Bp,q,p,s = 1 + |{(i, p′, q′) ∈ Z | p < p′ < q′ ≤ q}|
+ |{(i, p′, q′) ∈ Z | p < p′ < q′ < q}| − |{(i, q, s′) ∈ Z | q < s′ ≤ s}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ q}|
+ |{((i, p′, q′), (i, q′s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ s and q′ ≤ q}|;

Cp,q,r,q = 1 + |{(i, p′, q′) ∈ Z | r < p′ < q′ < q}|
+ |{(i, p′, q′) ∈ Z | r ≤ p′ < q′ < q}| − |{(i, p′, r) ∈ Z | p ≤ p′ < r}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | r ≤ p′ < q′ < s′ ≤ q}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ q and r ≤ q′ ≤ q}|;

Dp,q,q,s = 1− |{(i, p′, q) ∈ Z | p < p′ < q}| − |{(i, q, s′) ∈ Z | q < s′ < s}|
+ |{((i, p′, q), (i, q, s′)) ∈ Z × Z | p ≤ p′ < q < s′ ≤ s}|;

Ep,q,r,s = 2|{(i, p′, q′) ∈ Z | r ≤ p′ < q′ ≤ q}| − |{(i, r, r′) ∈ Z | r < r′ ≤ q}|
− |{(i, p′, q) ∈ Z | r ≤ p′ < q}| − |{(i, p′, r) ∈ Z | p ≤ p′ < r}|
− |{(i, q, s′) ∈ Z | q < s′ ≤ s}|+ 2

+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | r ≤ p′ < q′ < s′ ≤ q}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ s and r ≤ q′ ≤ q}|;

Fp,q,r,s = 2|{(i, p′, q′) ∈ Z | r ≤ p′ < q′ ≤ s}| − |{(i, r, r′) ∈ Z | r < r′ < s}|
− |{(i, r′, s) ∈ Z | r < r′ < s}| − |{(i, p′, r) ∈ Z | p ≤ p′ < r}|
− |{(i, s, s′) ∈ Z | s < s′ ≤ q}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | r ≤ p′ < q′ < s′ ≤ q and r ≤ q′ ≤ s}|
+ |{((i, p′, q′), (i, q′, s′)) ∈ Z × Z | p ≤ p′ < q′ < s′ ≤ s and r ≤ q′ ≤ s}|;

A′p,q,r,s = −|{h ∈ H | h′ = j, h′′ = i}|

+

∣∣∣∣∣
{

(h, p′, q′)

∣∣∣∣∣ h ∈ H, 1 ≤ p
′, q′ ≤ m,h′ = j, h′′ = i,

(i, p′, q′) ∈ Z, p ≤ p′ < r < q′ ≤ q

}∣∣∣∣∣
+

∣∣∣∣∣
{

(h, r′, s′)

∣∣∣∣∣ h ∈ H, 1 ≤ r
′, s′ ≤ m,h′ = j, h′′ = i

(j, r′, s′) ∈ Z, r ≤ r′ < q < s′ ≤ s

}∣∣∣∣∣
−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = j, h′′ = i

(i, p′, q′) ∈ Z, (j, r′, s′) ∈ Z
p ≤ p′ < r′ < q′ < s′ ≤ s, r ≤ r′ < q′ ≤ q


∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = i, h′′ = j

(i, r′, s′) ∈ Z, (j, p′, q′) ∈ Z
r ≤ p′ < r′ < q′ < s′ ≤ q


∣∣∣∣∣∣∣
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− |{h ∈ H | h′ = i, h′′ = j}|

+

∣∣∣∣∣
{

(h, p′, q′)

∣∣∣∣∣ h ∈ H, 1 ≤ p
′, q′ ≤ m,h′ = i, h′′ = j,

(i, p′, q′) ∈ Z, p ≤ p′ < r < q′ ≤ q

}∣∣∣∣∣
+

∣∣∣∣∣
{

(h, r′, s′)

∣∣∣∣∣h ∈ H, 1 ≤ r
′, s′ ≤ m,h′ = i, h′′ = j

(j, r′, s′) ∈ Z, r ≤ r′ < q < s′ ≤ s

}∣∣∣∣∣
−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = i, h′′ = j

(i, p′, q′) ∈ Z, (j, r′, s′) ∈ Z
p ≤ p′ < r′ < q′ < s′ ≤ s, r ≤ r′ < q′ ≤ q


∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = j, h′′ = i

(i, r′, s′) ∈ Z, (j, p′, q′) ∈ Z
r ≤ p′ < r′ < q′ < s′ ≤ q


∣∣∣∣∣∣∣

B′p,q,r,s =

∣∣∣∣∣
{

(h, p′, q′)

∣∣∣∣∣ h ∈ H, 1 ≤ p
′, q′ ≤ m,h′ = j, h′′ = i

(i, p′, q′) ∈ Z, p ≤ p′ < r < q′ < s

}∣∣∣∣∣
+

∣∣∣∣∣
{

(h, r′, s′)

∣∣∣∣∣h ∈ H, 1 ≤ r
′, s′ ≤ m,h′ = i, h′′ = j

(i, r′, s′) ∈ Z, r < r′ < s < s′ ≤ q

}∣∣∣∣∣
−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = j, h′′ = i

(i, p′, q′) ∈ Z, (j, r′, s′) ∈ Z
p ≤ p′ < r′ < q′ < s′ ≤ s, r ≤ r′


∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = i, h′′ = j

(i, r′, s′) ∈ Z, (j, p′, q′) ∈ Z
r ≤ p′ < r′ < q′ < s′ ≤ q, q′ ≤ s


∣∣∣∣∣∣∣

+

∣∣∣∣∣
{

(h, p′, q′)

∣∣∣∣∣ h ∈ H, 1 ≤ p
′, q′ ≤ m,h′ = i, h′′ = j

(i, p′, q′) ∈ Z, p ≤ p′ < r < q′ < s

}∣∣∣∣∣
+

∣∣∣∣∣
{

(h, r′, s′)

∣∣∣∣∣h ∈ H, 1 ≤ r
′, s′ ≤ m,h′ = j, h′′ = i

(i, r′, s′) ∈ Z, r < r′ < s < s′ ≤ q

}∣∣∣∣∣
−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = i, h′′ = j

(i, p′, q′) ∈ Z, (j, r′, s′) ∈ Z
p ≤ p′ < r′ < q′ < s′ ≤ s, r ≤ r′


∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
(h, p′, q′, r′, s′)

∣∣∣∣∣∣∣
h ∈ H, 1 ≤ p′, q′, r′, s′ ≤ m,h′ = j, h′′ = i

(i, r′, s′) ∈ Z, (j, p′, q′) ∈ Z
r ≤ p′ < r′ < q′ < s′ ≤ q, q′ ≤ s


∣∣∣∣∣∣∣ .

We can easily compute the cardinality of the sets appearing in each of the expres-
sions for the coefficients in Q−i (y) and get the proposition. We will leave this part
to the reader. �
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Remark 3.6. Propositions 3.3 and 3.5 show that both Q+
i (x) and Q−i (y) are integral

quadratic forms, i.e., the coefficients in the formula for Q+
i (x) (resp. Q−i (y)) relative

to the coordinates (x(i,p,q))(i,p,q)∈X (resp. (y(i,p,q))(i,p,q)∈Y) are integers. Moreover,
Q+

i (x) is also a unit form. This means that the coefficients of the x2
(i,p,q) in the

formula for Q+
i (x) are all equal to 1. Unit forms have been extensively studied. See

for example [Ri].
We will denote the restriction of Q+

i (x) (resp. Q−i (y)) on Z|X | (resp. Z|Y|) also
by Q+

i (x) (resp. Q−i (y)).

4. Criteria for tightness and semi-tightness

In this section, we will give criteria for a monomial to be tight or semi-tight.

4.1. Let Q : Zn → Z be the integral quadratic form defined by

Q(z) =
n∑
i=1

bi,iz
2
i +

∑
1≤i<j≤n

bi,jzizj

for (z) = (zi)1≤i≤n and where bi,i, bi,j ∈ Z for all i, j. To Q, we can associate the
bilinear form BQ : Zn × Zn → Z defined by BQ(z, z′) = Q(z + z′) −Q(z)−Q(z′)
for all z, z′ ∈ Zn. We get easily that Q(z) = BQ(z, z)/2.

We can also associate to Q the symmetric matrix A(Q) (relative to the coordi-
nates (zi)1≤i≤n) defined by

A(Q) = (ai,j)1≤i,j≤n with ai,j =


2bi,i if 1 ≤ i ≤ n;
bi,j if 1 ≤ i < j ≤ n;
bj,i if 1 ≤ j < i ≤ n.

For the rest of this paper, A+
i (resp. A−i ) will denote the symmetric matrix

A(Q+
i ) (resp. A(Q−i )) corresponding to the integral quadratic form Q+

i : Z|X | → Z
(resp. Q−i : Z|Y| → Z) defined by x 7→ Q+

i (x) (resp. y 7→ Q−i (y)) for x =
(x(i,p,q))(i,p,q)∈X (resp. y = (y(i,p,q))(i,p,q)∈Y) where the formula for Q+

i (x) (resp.
Q−i (y)) is given in Proposition 3.3 (resp. 3.5). Here the coordinates x(i,p,q) (resp.
y(i,p,q)) for (i, p, q) ∈ X (resp. (i, p, q) ∈ Y) are ordered lexicographically.

4.2. An integral quadratic form Q : Zn → Z is said to be positive definite (resp.
non-negative definite) if and only if Q(z) > 0 for all z ∈ Zn, z 6= 0 (resp. Q(z) ≥ 0
for all z ∈ Zn).

4.3. An integral quadratic form Q : Zn → Z is said to be weakly positive (resp.
weakly non-negative) if and only if Q(z) > 0 (resp. Q(z) ≥ 0) for all z ∈ Nn, z 6= 0
(resp. for all z ∈ Nn).

4.4. Let C(i) be the set of a = (a1, a2, . . . , am) ∈ Nm such that for all s < s′ ∈ [1,m]
with is = is′ = i and p 6∈ Z(i) whenever s < p < s′, we have

N(s, s′) = −(as + as′) +
∑
j∈I
j 6=i

∑
p∈Z(j)
s<p<s′

ei,jap ≥ 0.

Recall that ei,j is the number of (unoriented) edges joining i to j, i = (i1, i2, . . . , im)
and that we assume that our graph Γ is loop free.
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C◦(i) will denote the subset of C(i) consisting of the elements a = (a1, a2, . . . , am)
such that for all s < s′ ∈ [1,m] with is = is′ = i and p 6∈ Z(i) whenever s < p < s′,
we have

N(s, s′) = −(as + as′) +
∑
j∈I
j 6=i

∑
p∈Z(j)
s<p<s′

ei,jap > 0.

In other words, C◦(i) is the interior of C(i).

Proposition 4.5. Let Q+
i be the unit form defined by

Q+
i : Z|X | → Z, x = (x(i,p,q))(i,p,q)∈X 7→ Q+

i (x)

as in Proposition 3.3, Q−i the integral quadratic form defined by

Q−i : Z|Y| → Z, y = (y(i,p,q))(i,p,q)∈Y 7→ Q−i (y)

as in Proposition 3.5 and L+
i,a : Z|X | → Z the linear map defined by

L+
i,a(x) =

∑
(i,p,q)∈X

N(p, q)x(i,p,q) for x = (x(i,p,q))(i,p,q)∈X .

Recall that N(p, q) has been defined in 1.13.
(a) If Q+

i (x) + Q−i (y) + 2L+
i,a(x) > 0 for all (x, y) ∈ T̃a with x 6= 0, then the

monomial 1.1 (a) is tight. Recall that T̃a has been defined in Lemma 2.3.
(b) If Q+

i (x) +Q−i (y) + 2L+
i,a(x) ≥ 0 for all (x, y) ∈ T̃a, then the monomial 1.1

(a) is semi-tight.
(c) If a = (a1, a2, . . . , am) ∈ C(i), the unit form Q+

i is weakly non-negative and
the integral quadratic form Q−i is non-negative, then the monomial 1.1 (a)
is semi-tight.

(d) If a = (a1, a2, . . . , am) ∈ C(i), the unit form Q+
i is weakly positive and the

integral quadratic form Q−i is non-negative, then the monomial 1.1 (a) is
tight.

(e) If a = (a1, a2, . . . , am) ∈ C◦(i), the unit form Q+
i is weakly non-negative

and the integral quadratic form Q−i is non-negative, then the monomial 1.1
(a) is tight.

Proof. Choose a quiver Ω for the graph Γ. By Proposition 1.14, the monomial 1.1
(a) is tight (resp. semi-tight) if Q̄Ω,i + Li,a takes only values > 0 (resp. ≥ 0) on
µ−1

a (Ta) \ {0} (resp. µ−1
a (Ta)). So we have to study Q̄Ω,i + Li,a.

If w = u+ v where

u =
∑

(i,p,q)∈X
x(i,p,q)u(i, p, q) ∈ V1 and v =

∑
(i,p,q)∈Y

y(i,p,q)v(i, p, q) ∈ V−1,

then Q̄Ω,i(w) +Li,a(w) = Q̄Ω,i(u) + Q̄Ω,i(v) +Li,a(u) +Li,a(v) because of Theorem
2.4 and the fact that Li,a is linear. With the notation of 3.1 and 3.2, we can evaluate
each of these terms:

Q̄Ω,i(u) = Q̄Ω,i

 ∑
(i,p,q)∈X

x(i,p,q)u(i, p, q)

 = Q̄Ω,i

 ∑
(i,p,q)∈X

x(i,p,q)

[
1
2

]
u′(i, p, q)


=
[

1
4

]
Q̄Ω,i

 ∑
(i,p,q)∈X

x(i,p,q)u
′(i, p, q)

 =
[

1
4

]
Q+

i (x)
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where (x) = (x(i,p,q))(i,p,q)∈X .

Q̄Ω,i(v) = Q̄Ω,i

 ∑
(i,p,q)∈Y

y(i,p,q)v(i, p, q)

 = Q̄Ω,i

 ∑
(i,p,q)∈Y

y(i,p,q)

[
1
2

]
v′(i, p, q)


=
[

1
4

]
Q̄Ω,i

 ∑
(i,p,q)∈Y

y(i,p,q)v
′(i, p, q)

 =
[

1
4

]
Q−i (y)

where (y) = (y(i,p,q))(i,p,q)∈Y .

Li,a(u) = Li,a

 ∑
(i,p,q)∈X

x(i,p,q)u(i, p, q)

 = Li,a

 ∑
(i,p,q)∈X

x(i,p,q)

[
1
2

]
u′(i, p, q)


=
[

1
2

]
Li,a

 ∑
(i,p,q)∈X

x(i,p,q)u
′(i, p, q)

 =
[

1
2

] ∑
(i,p,q)∈X

N(p, q)x(i,p,q)

 .

This follows from the definition of Li,a and the fact that the matrix ū = 2u =
(ūp,qi ) =

∑
(i,p,q)∈X x(i,p,q)u

′(i, p, q) is symmetric and

ūp,qi =


x(i,p,q), if i ∈ I, p, q ∈ Z(i) and p < q,

x(i,q,p), if i ∈ I, p, q ∈ Z(i) and q < p,

0, otherwise.

So Li,a(u) = L+
i,a(x)/2 with the above notation.

Li,a(v) = Li,a

 ∑
(i,p,q)∈Y

y(i,p,q)v(i, p, q)

 = Li,a

 ∑
(i,p,q)∈Y

y(i,p,q)

[
1
2

]
v′(i, p, q)


=
[

1
2

]
Li,a

 ∑
(i,p,q)∈Y

y(i,p,q)v
′(i, p, q)

 .

The matrix v̄ = 2v = (v̄p,qi ) =
∑

(i,p,q)∈Y y(i,p,q)v
′(i, p, q) is skew symmetric and

v̄p,qi =



y(i,p,q), if i ∈ I, p, q ∈ Z(i), p < q and (i, p, q) ∈ Y ,
−y(i,q,p), if i ∈ I, p, q ∈ Z(i), q < p and (i, q, p) ∈ Y ,
−
∑

(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′), if i ∈ I, p, q ∈ Z(i), p < q and (i, p, q) ∈ Z,∑
(i,p′,q′)∈Y
p′≤q<p≤q′

y(i,p′,q′), if i ∈ I, p, q ∈ Z(i), q < p and (i, q, p) ∈ Z,

0, otherwise.
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So

Li,a(v) =
1
2

∑
i∈I

∑
r,s∈Z(i)
s<r

N(s, r)v̄r,si



=
1
2

−
 ∑

(i,p,q)∈Y
N(p, q)y(i,p,q)

+
∑

(i,p,q)∈Z
N(p, q)

 ∑
(i,p′,q′)∈Y
p′≤p<q≤q′

y(i,p′,q′)




=
1
2

∑
(i,p,q)∈Y


 ∑

(i,p′,q′)∈Z
p≤p′<q′≤q

N(p′, q′)

−N(p, q)

 y(i,p,q) = 0

because of the definitions of N(s, s′) and Z.
With the above notation, we get that Q̄Ω,i(w) + Li,a(w) > 0 (resp. ≥ 0) if

and only if Q+
i (x) + Q−i (y) + 2L+

i,a(x) > 0 (resp. ≥ 0). We can now prove the
proposition.

(a) and (b) By Lemma 2.3, w ∈ µ−1
a (Ta) if and only if (x, y) ∈ T̃a with x =

(x(i,p,q))(i,p,q)∈X and y = (y(i,p,q))(i,p,q)∈Y as above. Moreover, w = 0 if and only
if x = 0 by condition 3 in Lemma 2.3. (a) and (b) follow easily from Proposition
1.14.

(c) Q+
i (x) ≥ 0 for all (x) = (x(i,p,q))(i,p,q)∈X ∈ N|X | because Q+

i is weakly
non-negative.

If a ∈ C(i), then N(p, q) ≥ 0 for all (i, p, q) ∈ X by the definition of N(s, s′)
given in 1.13 and the definition of C(i). Consequently, L+

i,a(x) ≥ 0 for all (x) =
(x(i,p,q))(i,p,q)∈X ∈ N|X |.

We have that Q−i (y) ≥ 0 for all (y) = (y(i,p,q))(i,p,q)∈Y ∈ Z|Y|, because Q−i is
non-negative.

Finally, we get that Q+
i (x) + Q−i (y) + 2L+

i,a(x) ≥ 0 for all (x, y) ∈ T̃a and from
(b), we can conclude that the monomial 1.1(a) is semi-tight.

(d) By our proof of (c), we have that Q+
i (x) ≥ 0, Q−i (y) ≥ 0 and L+

i,a(x) ≥ 0
whenever (x, y) ∈ T̃a.

If we now assume that Q+
i (x) + Q−i (y) + 2L+

i,a(x) = 0, then we must have
Q+

i (x) = 0, Q−i (y) = 0 and L+
i,a(x) = 0 where (x) = (x(i,p,q))(i,p,q)∈X ∈ N|X | and

(y) = (y(i,p,q))(i,p,q)∈Y ∈ Z|Y| are such that (x, y) ∈ T̃a. Because Q+
i is weakly

positive, then x = 0. Because of condition 3 in the definition of T̃a, we get that y =
0. Consequently, from our observation above, we can conclude that the monomial
1.1 (a) is tight.

(e) By (c), the monomial 1.1 (a) is semi-tight. By our hypothesis, we have
Q+

i (x) ≥ 0, Q−i (y) ≥ 0 and L+
i,a(x) ≥ 0 whenever (x, y) ∈ T̃a. If we now assume

that Q+
i (x) + Q−i (y) + 2L+

i,a(x) = 0, then we must have that L+
i,a(x) = 0. Because

a ∈ C◦(i), then all the coefficients N(p, q) of L+
i,a(x) are > 0. From this, we get that

x = 0 because x ∈ N|X |. By condition 3 in the definition of T̃a, we get that y = 0.
Consequently, we can conclude from (a) that the monomial 1.1 (a) is tight. �
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5. Some examples

In this section, we will give examples of tight and semi-tight monomials for
different algebras U−. In some of our examples below, the graph Γ will be the
Dynkin graph of a simple simply laced finite dimensional complex Lie algebra g

and, in these cases, we will use the same notation for the Dynkin graph as the one
in Bourbaki [B].

The next three examples were considered by Lusztig in [L2]. We will study
in Section 7 the case when Γ is the Dynkin graph of a simple simply laced finite
dimensional complex Lie algebra g of small rank and i is a reduced expression of
the longest element of the Weyl group of g. These three examples are particular
cases of this.

Example 5.1. Let Γ be the Dynkin graph of type A2 and i = (1, 2, 1). Then
dimV1 = 1, V−1 = 0 and V = V1. We get that A+

i = (2). Because Q+
i is

positive definite and dim(V−1) = 0, we get from Proposition 4.5 that the monomial
F

(a1)
1 F

(a2)
2 F

(a3)
1 is tight when a1, a2, a3 ∈ N and a2 ≥ a1 + a3.

Example 5.2. Let Γ be the Dynkin graph of type A3 and i = (1, 2, 1, 3, 2, 1). Then
dim(V1) = 4, dim(V−1) = 1 and dim(V ) = 5. We get that

A+
i =


2 1 1 −1
1 2 1 0
1 1 2 −1
−1 0 −1 2


and A−i = (4). By computing the primary principal minors of A+

i , we get that
Q+

i is positive definite. In fact, the eigenvalues of A+
i are 1, 2, (5 +

√
17)/2 and

(5−
√

17)/2. Obviously Q−i is positive definite. Using Proposition 4.5, we get that
the monomial F (a1)

1 F
(a2)
2 F

(a3)
1 F

(a4)
3 F

(a5)
2 F

(a6)
1 is tight when ai ∈ N for i = 1, . . . , 6

and
a2 ≥ a1 + a3, a3 + a4 ≥ a2 + a5 and a5 ≥ a3 + a6.

Example 5.3. Let Γ be the Dynkin graph of type A3 and i = (2, 1, 3, 2, 1, 3). Then
dim(V1) = 3, dim(V−1) = 0 and dim(V ) = 3. We get that

A+
i =

 2 −1 0
−1 2 −1

0 −1 2

 .

By computing the primary principal minors of A+
i , we get that Q+

i is positive
definite. In fact, the eigenvalues of A+

i are 2, (2 +
√

2) and (2 −
√

2). Using
Proposition 4.5, we get that the monomial F (a1)

2 F
(a2)
1 F

(a3)
3 F

(a4)
2 F

(a5)
1 F

(a6)
3 is tight

when ai ∈ N for i = 1, . . . , 6 and

a2 + a3 ≥ a1 + a4, a4 ≥ a2 + a5 and a4 ≥ a3 + a6.

The previous example and the example of Lusztig in the case of affine A1 pre-
sented in section 12 of [L2] can be generalized. This is done next.

Proposition 5.4. Let Γ be the Dynkin graph or the extended Dynkin graph of
a simply laced simple finite dimensional complex Lie algebra g of rank n. Fix a
total order {j1, j2, . . . , jn} on the set I of vertices of Γ. Let i be the sequence
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i = (i1, i2, . . . , i2n) of length m = 2n such that ik = ik+n = jk for 1 ≤ k ≤ n and
let a = (a1, a2, . . . , a2n) ∈ N2n. If a ∈ C(i), then the monomial

(a) F
(a1)
i1

F
(a2)
i2

. . . F
(a2n)
i2n

is semi-tight. Moreover, if Γ is the Dynkin graph of g, then the monomial 5.4 (a) is
tight; while if Γ is the extended Dynkin graph of g and at least one of the inequalities
defining C(i) in 4.4 is strict, then again the monomial 5.4 (a) is tight.

Proof. We can note that dim(V−1) = 0. For each i ∈ I, there exists a unique pair
p(i), q(i) such that 1 ≤ p(i) ≤ n < q(i) ≤ 2n, q(i) = p(i) + n and ip(i) = iq(i) = i.
With this notation, X = {(i, p(i), q(i)) | i ∈ I}. By Proposition 3.3, we get easily
that

Q+
i (x) =

∑
i∈I

x2
(i,p(i),q(i)) −

∑
{i,j}∈H

ei,j x(i,p(i),q(i))x(j,p(j),q(j))

for x = (x(i,p(i),q(i)))(i,p(i),q(i))∈X . If Γ is not the graph of A1 affine, then ei,j = 1
for all i, j ∈ I such that {i, j} ∈ H . If Γ is the graph of A1 affine, then |I| = 2
and ei,j = 2 when i 6= j. It is well known that this quadratic form Q+

i is positive
definite when Γ is the Dynkin graph of g and it is non-negative definite when Γ is
the extended Dynkin graph of g. (See for example chapter 1 in [Ri].) Because of
Proposition 4.5 (c), we get that the monomial 5.4 (a) is semi-tight when Γ is the
Dynkin graph or the extended Dynkin graph of g.

If Γ is the Dynkin graph of g, then we get that the monomial 5.4 (a) is tight by
Proposition 4.5 (d).

If Γ is the extended Dynkin graph of g, then Q+
i (x) is non-negative definite and

it is well known that there exists a vector x̃ ∈ Nn whose components are all > 0
such that the radical of Q+

i is {x ∈ Zn | Q+
i (x) = 0} = Zx̃. (See again chapter 1 in

[Ri].) If Q+
i (x) = 0 and L+

i (x) = 0 for some x ∈ Nn, then x = kx̃ for some k ∈ N
and L+

i (x) = kL+
i (x̃) = 0. If at least one of the inequalities defining C(i) is strict,

then L+
i (x̃) > 0 because all the components of x̃ are > 0 and all the coefficients of

L+
i are ≥ 0 with at least one > 0. Consequently, k = 0 and x = 0. Using the same

argument as the one used in the proof of Proposition 4.5 (d), we can conclude that
y = 0 and consequently Q+

i (x) + Q−i (y) + 2L+
i,a(x) > 0 for (x, y) ∈ T̃a, x 6= 0. So

the monomial 5.4 (a) is tight when at least one of the inequalities defining C(i) is
strict. �

The next results will be used in Section 7.

5.5. Let i = (i1, i2, . . . , im) and j = (i1, j2, . . . , jm) be two sequences in I. We say
that i and j are related by a commutation if and only if there exists an integer a
such that 1 ≤ a ≤ (m− 1), ia 6= i(a+1),

jk =


ia+1, if k = a,

ia, if k = a+ 1,
ik, if k 6= a, (a+ 1),

and {ia, i(a+1)} is not an edge in Γ.
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In this case φj
i will denote the function φj

i : X (i)→ X (j) defined by

φj
i(i, p, q) =



(i, a+ 1, q), if p = a < q,

(i, p, a+ 1), if p < q = a,

(i, a, q), if p = (a+ 1) < q,

(i, p, a), if p < q = (a+ 1),
(i, p, q), if {p, q} ∩ {a, a+ 1} = ∅.

Note that |{p, q} ∩ {a, a+ 1}| ≤ 1 above, because (i, p, q) ∈ X (i) and ia 6= ia+1.
It is easy to see that φj

i is a bijection whose inverse is φi
j and such that φj

i(Y(i)) =
Y(j) and φj

i(Z(i)) = Z(j).

Lemma 5.6. Let i and j be two sequences in I of length m related by a commutation
as in 5.5 and denote the bijection φj

i : X (i)→ X (j) by φ.

(a) If T j
i : Z|X (i)| → Z|X (j)| is the linear map defined by T j

i

(
(x(i,p,q))(i,p,q)∈X (i)

)
= (x′(i′,p′,q′))(i′,p′,q′)∈X (j) where x′(i′,p′,q′) = xφ−1(i′,p′,q′) for all (i′, p′, q′) ∈
X (j), then T j

i is an isomorphism whose inverse is T i
j and such that T j

i (N|X (i)|)
= N|X (j)| and Q+

i = Q+
j ◦ T

j
i . In particular, Q+

i is weakly positive (resp.
weakly non-negative, positive definite, non-negative definite) if and only if
Q+

j is weakly positive (resp. weakly non-negative, positive definite, non-
negative definite). In the case that Q+

i is weakly positive, then

|{x ∈ N|X (i)| | Q+
i (x) = 1}| = |{x ∈ N|X (j)| | Q+

j (x) = 1}|

(b) If T̄ j
i : Z|Y(i)| → Z|Y(j)| is the linear map defined by T̄ j

i

(
(y(i,p,q))(i,p,q)∈Y(i)

)
=

(y′(i′,p′,q′))(i′,p′,q′)∈Y(j) where y′(i′,p′,q′) = yφ−1(i′,p′,q′) for all (i′, p′, q′) ∈
Y(j), then T̄ j

i is an isomorphism whose inverse is T̄ i
j and such that Q−i =

Q−j ◦ T̄
j
i . In particular, Q−i is positive definite (resp. non-negative definite)

if and only if Q−j is positive definite (resp. non-negative definite).
(c) If ψj

i : Zm → Zm is the linear map defined by φj
i(z1, . . . , zm) = (z′1, . . . , z

′
m)

where

z′k =


za+1, if k = a,

za, if k = a+ 1,
zk, if k 6= a, a+ 1,

then ψj
i is an isomorphism whose inverse is ψi

j and ψj
i(N

m) = Nm and
ψj

i (C(i)) = C(j).

Proof. It is easy to prove both (a) and (b) using the formulae in Propositions 3.3
and 3.5. (c) follows also easily from the definition of C(i). These arguments are left
to the reader. �

5.7. Let i = (i1, i2, . . . , im) and j = (i1, j2, . . . , jm) be two sequences in I. We write
i ∼ j if and only if there exists a sequence i = i0, i1, . . . , in = j of sequences in I
such that, for each 0 ≤ k ≤ (n− 1), ik, i(k+1) are related by a commutation.

Clearly ∼ is an equivalence relation and the equivalence classes of ∼ are called
commutation classes.

Corollary 5.8. Let i, j be two sequences in I such that i ∼ j.
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(a) Q+
i is weakly positive (resp. weakly non-negative, positive definite, non-

negative definite) if and only if Q+
j is weakly positive (resp. weakly non-

negative, positive definite, non-negative definite). Moreover, in the case
that Q+

i is weakly positive, then

|{z ∈ N|X (i)| | Q+
i (z) = 1}| = |{z ∈ N|X (j)| | Q+

j (z) = 1}|.

(b) Q−i is positive definite (resp. non-negative definite) if and only if Q−j is
positive definite (resp. non-negative definite).

(c) There exists an isomorphism ψ : Zm → Zm such that ψ(Nm) = Nm and
ψ(C(i)) = C(j).

Proof. This is simply an easy application of Lemma 5.6. �

6. Use of criteria from representation theory of algebras

We will need for the next examples a way of knowing when an integral unit form
is weakly positive. We will now describe the algorithm of de la Peña presented in
[P] to decide if an integral unit form is weakly positive.

6.1. Let Q : Zn → Z be an integral unit form. We start with C1 = {ei | 1 ≤ i ≤ n},
the standard basis of Zn, i.e. ei is the unique element of Zn whose coordinates are
all 0 except for its ith component which is equal to 1. We define inductively a
procedure for constructing a new set Ca+1 from Ca. The procedure could fail and
in that case Ca+1 is not defined and the procedure stops, indicating that Q is not
weakly positive. Otherwise, it continues.

Assume that Ca = {z1, z2, . . . , zk} ⊂ Zn and the procedure has not failed (to be
defined subsequently). We now construct Ca+1 as follows. Let zj = (zj1, z

j
2, . . . , z

j
n).

If either
(a) there is some 1 ≤ i ≤ n such that BQ(zj, ei) ≤ −2, or
(b) there is some 1 ≤ i ≤ n such that zji ≥ 7,

then the procedure is said to fail. If the procedure has not failed (in other words,
(a) and (b) have not occurred for any zj ∈ Ca), let Ra ⊆ Ca be those zj with
the property that there is some 1 ≤ i ≤ n such that BQ(zj , ei) = −1. If Ra = ∅,
then set Ca+1 = ∅ and the procedure is said to be successful. If Ra 6= ∅, then set
Ca+1 = {zj + ei | zj ∈ Ra and ei is such that BQ(zj, ei) = −1}.

Because of (b) above, this procedure will stop after a finite number of steps.

Proposition (de la Peña). The integral unit form Q : Zn → Z is weakly positive if
and only if the above procedure is successful. Moreover, if the procedure is successful
with Ca+1 = ∅, then C1 ∪ C2 ∪ · · · ∪ Ca is the set {z ∈ Nn | Q(z) = 1} of positive
roots of Q.

Proof. See [P]. �

The next example is presented in Proposition 15 of [L2] and is a particular case
of Proposition 4.1 in [M]. In our case, we can lift the conditions of strict inequalities
in the statement of the proposition of Lusztig for the monomial to be tight.

Example 6.2. Let Γ be the Dynkin graph of type A4 and let i be the sequence
(1, 3, 2, 4, 1, 3, 2, 4, 1, 3). Then dim(V1) = 8, dim(V−1) = 2 and dim(V ) = 10. We
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get that

A+
i =



2 1 1 −1 0 0 0 0
1 2 1 0 0 0 0 0
1 1 2 −1 0 0 0 0
−1 0 −1 2 −1 0 −1 0

0 0 0 −1 2 1 1 −1
0 0 0 0 1 2 1 0
0 0 0 −1 1 1 2 −1
0 0 0 0 −1 0 −1 2


and A−i =

(
4 0
0 4

)
.

The integral unit form Q+
i is weakly positive. We get this by using the algorithm

of de la Peña presented in 6.1. In fact, we get that the procedure is successful and
that

C1 = {e1, e2, e3, e4, e5, e6, e7, e8},
C2 = {(e1 + e4), (e3 + e4), (e4 + e5), (e4 + e7), (e5 + e8), (e7 + e8)},

C3 =

{
(e1 + e4 + e5), (e1 + e4 + e7), (e3 + e4 + e5),

(e3 + e4 + e7), (e4 + e5 + e8), (e4 + e7 + e8)

}
,

C4 =

{
(e1 + e4 + e5 + e8), (e1 + e4 + e7 + e8), (e3 + e4 + e5 + e8),

(e3 + e4 + e7 + e8), (e4 + e5 + e7 + e8)

}
,

C5 = {(e1 + e4 + e5 + e7 + e8), (e3 + e4 + e5 + e7 + e8)},
C6 = {(e1 + 2e4 + e5 + e7 + e8), (e3 + 2e4 + e5 + e7 + e8)}, and

C7 = {(e1 + e3 + 2e4 + e5 + e7 + e8)}.
Obviously, Q−i is positive definite. Note that Q+

i is not positive definite. In fact,
the eigenvalues of A+

i are 1, 1, 2, 2, (2 +
√

5), (2−
√

5) (3 +
√

5) and (3 −
√

5).
Using Proposition 4.5, we get that the monomial

F
(a1)
1 F

(a2)
3 F

(a3)
2 F

(a4)
4 F

(a5)
1 F

(a6)
3 F

(a7)
2 F

(a8)
4 F

(a9)
1 F

(a10)
3

is tight when ai ∈ N for i = 1, . . . , 10 and

a3 ≥ a1 + a5, a3 + a4 ≥ a2 + a6, a5 + a6 ≥ a3 + a7,
a6 ≥ a4 + a8, a7 ≥ a5 + a9, a7 + a8 ≥ a6 + a10.

There are determinantal criteria to test if an integral quadratic formQ : Zn → Z
is weakly positive (resp. weakly non-negative). We will now present a criteria for
weakly non-negative due to Keller (see [K]) and one for weakly positive due to
Motzkin (see [Mo]).

Proposition 6.3. Let Q : Zn → Z be an integral quadratic form and A(Q), its
corresponding symmetric matrix. Q is not weakly non-negative (resp. weakly posi-
tive) if and only if there is a principal submatrix D of A(Q) with det(D) < 0 (resp.
≤ 0) for which the cofactors of the last column are non-negative (resp. positive).

Proof. Denote the extension of Q to Rn by QR : Rn → R. We have A(Q) =
A(QR). If Q is weakly non-negative (resp. weakly positive), then QR(x) ≥ 0 (resp.
> 0) when x = (x1, x2, . . . , xn) ∈ Qn, xi ≥ 0 for all 1 ≤ i ≤ n and x 6= 0. By
continuity, if Q is weakly positive or weakly non-negative, we get that QR is weakly
non-negative. Obviously, if QR is weakly non-negative (resp. weakly positive), then
Q is weakly non-negative (resp. weakly positive).
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In the proof of a proposition of Drozd in section 1.1 of [Ri], Ringel showed that
if Q is weakly positive, then QR is weakly positive. Consequently, Q is weakly non-
negative (resp. weakly positive) if and only if QR is weakly non-negative (resp.
weakly positive).

Then the proposition follows by theorem 4.7 in [V] and the fact that A(Q) =
A(QR). In [V], weakly non-negative is called copositive and weakly positive is
called strictly copositive. �

Example 6.4. Let Γ be the Dynkin graph of type D4 and let i be the sequence
(2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4). Then dim(V1) = 12, dim(V−1) = 4 and dim(V ) = 16.
We get that the symmetric matrix A+

i is then

A+
i =



2 1 1 −1 0 −1 0 0 0 0 0 0
1 2 1 −1 −1 0 0 0 0 0 0 0
1 1 2 0 −1 −1 0 0 0 0 0 0
−1 −1 0 2 1 1 −1 −1 0 −1 −1 0

0 −1 −1 1 2 1 0 −1 −1 0 −1 −1
−1 0 −1 1 1 2 −1 0 −1 −1 0 −1

0 0 0 −1 0 −1 2 1 1 0 0 0
0 0 0 −1 −1 0 1 2 1 0 0 0
0 0 0 0 −1 −1 1 1 2 0 0 0
0 0 0 −1 0 −1 0 0 0 2 1 1
0 0 0 −1 −1 0 0 0 0 1 2 1
0 0 0 0 −1 −1 0 0 0 1 1 2



.

The eigenvalues of A+
i are (4 + 2

√
3), (4− 2

√
3), 4, (1 +

√
3), (1−

√
3), 4, (1 +

√
3),

(1 −
√

3), 1, 1, 1 and 1. So Q+
i is not positive definite nor non-negative definite.

Using the algorithm of de la Peña, we see that z = e1 + e4 + e6 + e7 ∈ C4 and
BQ+

i
(z, e10) = −2. This means that the algorithm fails. By this test, Q+

i is not
weakly positive.

Using the criteria in Proposition 6.3, it is possible to test if this form Q+
i is

weakly non-negative. There are 212 − 1 = 4095 principal submatrices that had to
be tested. Of these, 1134 had a negative determinant. In each case, the last column
of the inverse matrix had a positive entry. Hence Q+

i is weakly non-negative. These
computations were performed with the help of a computer.

The symmetric matrix A−i is

A−i =


4 −2 0 0
−2 4 −2 −2

0 −2 4 0
0 −2 0 4

 .

Its eigenvalues are (4 + 2
√

3), (4− 2
√

3), 4 and 4. Thus Q−i is positive definite.
Using Proposition 4.5, we get that the monomial

(a) F
(a1)
2 F

(a2)
1 F

(a3)
3 F

(a4)
4 F

(a5)
2 F

(a6)
1 F

(a7)
3 F

(a8)
4 F

(a9)
2 F

(a10)
1 F

(a11)
3 F

(a12)
4

is semi-tight when ai ∈ N for i = 1, 2, . . . , 12 and

a2 + a3 + a4 ≥ a1 + a5, a5 ≥ a2 + a6, a5 ≥ a3 + a7,

a5 ≥ a4 + a8, a6 + a7 + a8 ≥ a5 + a9, a9 ≥ a6 + a10,

a9 ≥ a7 + a11, a9 ≥ a8 + a12.
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We can prove more. If at least one of the following inequalities,

a2 + a3 + a4 ≥ a1 + a5 and a6 + a7 + a8 ≥ a5 + a9

is strict and at least one of the following inequalities,

a5 ≥ a2 + a6, a5 ≥ a3 + a7, a5 ≥ a4 + a8,

a9 ≥ a6 + a10, a9 ≥ a7 + a11, a9 ≥ a8 + a12.

is strict, then the monomial 6.4 (a) is tight.
In fact, we have that Q+

i (x) ≥ 0, Q−i (y) ≥ 0 and L+
i,a(x) ≥ 0 for all pairs

(x, y) ∈ T̃a. So if Q+
i (x) + Q−i (y) + 2L+

i,a(x) = 0 for (x, y) ∈ T̃a, then Q+
i (x) = 0,

Q−i (y) = 0 and L+
i,a(x) = 0. Under the above strict inequalities, there exist s < s′

and t < t′ belonging to [1, 12] such that is = is′ = 2, it = it′ = i 6= 2, ip 6= 2
whenever s < p < s′ and ip′ 6= i whenever t < p′ < t′ with∑

j∈I
j 6=2

∑
p∈Z(j)
s<p<s′

ap > (as + as′) and
∑

p′∈Z(2)
t<p′<t′

ap′ > (at + at′).

This implies that N(u, u′) > 0 if either iu = iu′ = 2 with u ≤ s < s′ ≤ u′ or
iu = iu′ = i with u ≤ t < t′ ≤ u′. Because L+

i,a(x) =
∑

(i,p,q)∈X N(p, q)x(i,p,q) = 0,
then x(i,p,q) = 0 whenever ip = iq = 2 with p ≤ s < s′ ≤ q or ip = iq = i with
p ≤ t < t′ ≤ q. If we restrict Q+

i to the submodule of Z|X | where x(i,p,q) = 0
whenever ip = iq = 2 with p ≤ s < s′ ≤ q or ip = iq = i with p ≤ t < t′ ≤ q,
then we get that this restriction is weakly positive using Proposition 6.1. For this
we must test all the possible cases. We can conclude that x = 0. By condition 3 of
Lemma 2.3, we get that y = 0. Finally, we can conclude that the monomial 6.4 (a)
is tight by Proposition 4.5.

Using the same type of argument, we can prove that the monomial 6.4 (a) is tight
if either (a5 > (a2+a6) and a9 > (a6+a10)), or if (a5 > (a2+a6) and a9 > (a7+a11)),
or if (a5 > (a2 +a6) and a9 > (a8 +a12)), or if (a9 > (a6 +a10) and a5 > (a3 +a7)),
or if (a9 > (a6 + a10) and a5 > (a4 + a8)), or if ((a2 + a3 + a4) > (a1 + a5) and
(a6 + a7 + a8) > (a5 + a9)), or if (a5 > (a3 + a7) and a9 > (a7 + a11)), or if
(a5 > (a3 + a7) and a9 > (a8 + a12)), or if (a9 > (a7 + a11) and a5 > (a4 + a8)), or
if (a5 > (a4 + a8) and a9 > (a8 + a12)).

We will conclude this section with a last example. This is proved by proceeding
as above.

Example 6.5. Let Γ be the Dynkin graph of type A5 and let i be the sequence
(1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1). Then dim(V1) = 20, dim(V−1) = 10 and conse-
quently dim(V ) = 30.
Q+

i is not positive definite, not non-negative definite nor weakly positive. But
we can use the determinantal criterion of Keller to show that Q+

i is weakly non-
negative. Q−i is not positive definite, but it is non-negative definite. Using Propo-
sition 4.5, we get that the monomial

F
(a1)
1 F

(a2)
2 F

(a3)
1 F

(a4)
3 F

(a5)
2 F

(a6)
1 F

(a7)
4 F

(a8)
3 F

(a9)
2 F

(a10)
1 F

(a11)
5 F

(a12)
4 F

(a13)
3 F

(a14)
2 F

(a15)
1
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is semi-tight when ai ∈ N for i = 1, 2, . . . , 15 and

a2 ≥ a1 + a3, a3 + a4 ≥ a2 + a5, a5 ≥ a3 + a6,

a5 + a7 ≥ a4 + a8, a6 + a8 ≥ a5 + a9, a9 ≥ a6 + a10,

a8 + a11 ≥ a7 + a12, a9 + a12 ≥ a8 + a13 a10 + a13 ≥ a9 + a14,

a14 ≥ a10 + a15.

Moreover, if a2 > (a1 + a3) and at least one of the following inequalities,

a5 ≥ a3 + a6, a9 ≥ (a6 + a10), (a3 + a4) ≥ (a2 + a5),

(a10 + a13) ≥ (a9 + a14), (a5 + a7) ≥ (a4 + a8), (a9 + a12) ≥ (a8 + a13)

is strict; or if a5 > (a3 + a6) and at least one of the following inequalities,

a9 ≥ (a6 + a10), a14 ≥ (a10 + a15), (a3 + a4) ≥ (a2 + a5),

(a6 + a8) ≥ (a5 + a9), (a9 + a12) ≥ (a8 + a13), (a8 + a11) ≥ (a7 + a12)

is strict; or if a9 > (a6 + a10) and at least one of the following inequalities,

a14 ≥ (a10 + a15), (a6 + a8) ≥ (a5 + a9), (a10 + a13) ≥ (a9 + a14),

(a5 + a7) ≥ (a4 + a8), (a8 + a11) ≥ (a7 + a12)

is strict; or if a14 > (a10 + a15) and at least one of the following inequalities,

(a3 + a4) ≥ (a2 + a5), (a10 + a13) ≥ (a9 + a14),

(a5 + a7) ≥ (a4 + a8), (a9 + a12) ≥ (a8 + a12)

is strict; or if (a3 + a4) > (a2 + a5) and at least one of the inequalities,

(a6 + a8) ≥ (a5 + a9), (a10 + a13) ≥ (a9 + a14),

(a5 + a7) ≥ (a4 + a8), (a8 + a11) ≥ (a7 + a12)

is strict; or if (a6 + a8) > (a5 + a9) and at least one of the inequalities,

(a10 + a13) ≥ (a9 + a14), (a5 + a7) ≥ (a4 + a8) (a9 + a12) ≥ (a8 + a13)

is strict; or if (a10 + a13) > (a9 + a14) and at least one of the inequalities,

(a9 + a12) ≥ (a8 + a13) (a8 + a11) ≥ (a7 + a12)

is strict; or if (a5 + a7) > (a4 + a8) and at least one of the inequalities,

(a9 + a12) ≥ (a8 + a13) (a8 + a11) ≥ (a7 + a12)

is strict; or if ((a9 + a12) > (a8 + a13) and (a8 + a11) > (a7 + a12)), then the above
monomial is tight.

7. The case of Dynkin graph Γ of small rank

In this section, we will consider the case where Γ is a Dynkin graph of a simply
laced semisimple finite dimensional complex Lie algebra g of small rank and the
sequence i is a reduced expression for the longest element w0 of the Weyl group
W of g (relative to a choice of a Cartan subalgebra h and a Borel subalgebra b

containing h). R+(Γ) will denote the set of positive roots of g relative to a choice
of h and b containing h.

Lusztig has asked in section 16 of [L2] under what circumstances is the monomial
1.1 (a) tight or semi-tight when a ∈ C(i) for Γ and i as above? He also answered
this question for all reduced expressions i of w0 when Γ is the Dynkin graph of type
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A1, A2 and A3. Marsh has also considered the same question in [M] for all reduced
expressions i of w0 when Γ is the Dynkin graph of type A4.

In the case where Γ is the Dynkin graph of a simply laced finite dimensional
complex Lie algebra, Reineke has given in [Re] a sufficient and necessary condition
for the monomial 1.1 (a) to be tight. He also gave an example in the case A6 to
illustrate the fact that even if a ∈ C(i), then the monomial 1.1 (a) is not necessarily
tight.

We will now recall this criterion of Reineke. We will also describe the behavior
of Q+

i and Q−i in the case An (n = 1, 2, 3, 4) and D4. From this, we get the results
of Lusztig and Marsh in the case An.

Proposition 7.1 (Reineke). Let Γ be the graph attached to a symmetric Cartan
datum (See 1.1.1, 2.1.3 and 14.1.3 in [L3]). Then the monomial 1.1 (a) is tight if
and only if QΩ,i(z) + QΩ,i(trz) > 0 for all z ∈ Ta \ {za}. Here trz is the transpose
of z.

Proof. This is a simple consequence of Theorem 3.2 and Lemma 3.3 of [Re]. �
Corollary 7.2. Let Γ be the Dynkin graph or the extended Dynkin graph of a simply
laced finite dimensional complex Lie algebra g. Then the monomial 1.1 (a) is tight
if and only if Q+

i (x) +Q−i (y) + 2L+
i,a(x) > 0 for all pairs (x, y) in T̃a with x 6= 0.

Proof. If Γ is the Dynkin graph or the extended Dynkin graph of a simply laced
finite dimensional complex Lie algebra g, then Γ is the graph attached to a sym-
metric Cartan datum and Proposition 7.1 can be applied. It is easy to see that if
w ∈ V , then trµa(w) = µa(trw). By Lemma 1.11 and Proposition 1.14, z ∈ Ta\{za}
is the image under µa of a unique w ∈ µ−1

a (Ta) \ {0} and

QΩ,i(z) +QΩ,i(trz) = QΩ,i(µa(w)) +QΩ,i(trµa(w))

= QΩ,i(µa(w)) +QΩ,i(µa(trw))

= Q̄Ω,i(w) + Q̄Ω,i(trw) + Li,a(w) + Li,a(trw).

Consequently, QΩ,i(z) +QΩ,i(trz) > 0 for all z ∈ Ta \ {za} if and only if Q̄Ω,i(w) +
Q̄Ω,i(trw) + Li,a(w) + Li,a(trw) > 0 for all w ∈ µ−1

a (Ta) \ {0}.
If we write w = u+ v with

u =
∑

(i,p,q)∈X
x(i,p,q)u(i, p, q) ∈ V1 and v =

∑
(i,p,q)∈Y

y(i,p,q)v(i, p, q) ∈ V−1,

then we get that Q̄Ω,i(w) + Q̄Ω,i(trw) + Li,a(w) + Li,a(trw) is equal to

Q̄Ω,i(u + v) + Q̄Ω,i(u− v) + Li,a(u+ v) + Li,a(u− v)

= Q̄Ω,i(u) + Q̄Ω,i(v) + Q̄Ω,i(u) + Q̄Ω,i(−v) + Li,a(u) + Li,a(v) + Li,a(u)− Li,a(v)

= 2Q̄Ω,i(u) + 2Q̄Ω,i(v) + 2Li,a(u)

=
2
4
Q+

i (x) +
2
4
Q−i (y) +

2
2
L+

i,a(x)

as in Proposition 4.5. Consequently, Q̄Ω,i(w) + Q̄Ω,i(trw) +Li,a(w) +Li,a(trw) > 0
if and only if Q+

i (x) +Q−i (y) + 2L+
i,a(x) > 0.

From Lemma 2.3, we get that w ∈ µ−1
a (Ta)\{0} if and only if the pair (x, y) ∈ T̃a

with x 6= 0. From these observations, we get easily the corollary. �
We will now recall a result due to Matsumoto and Tits.
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7.3. Let S be the set of all sequences (i1, i2, . . . , iq) in I such that si1si2 . . . siq is a
reduced expression in the Weyl group (W,S) of Γ. We can regard S as the vertices
of a graph. Two vertices (i1, i2, . . . , iq) and (i′1, i

′
2, . . . , i

′
q′) are joined by an edge

if one is obtained from the other by replacing m consecutive entries of the form
i, j, i, j, . . . by the m entries j, i, j, i, . . . ; here i 6= j and m = mi,j <∞ is the order
of sisj in W . We write (i1, i2, . . . , iq) ≈ (i′1, i′2, . . . , i′q′) if and only if (i1, i2, . . . , iq),
(i′1, i

′
2, . . . , i

′
q′) are in the same connected component of S.

Theorem 7.4 (Matsumoto-Tits). Let (i1, i2, . . . , iq) and (j1, j2, . . . , jq) in S be such
that si1si2 . . . siq = sj1sj2 . . . sjq = w ∈ W . Then (i1, i2, . . . , iq) ≈ (j1, j2, . . . , jq).

Proof. See, for example, Theorem 1.9 in [L4]. �

Theorem 7.5. Let Γ be the Dynkin graph of type An and i = (i1, i2, . . . , im) a
sequence in I such that si1si2 . . . sim is a reduced expression of the longest element
w0 of the Weyl group of Γ.

(a) If n = 2, then Q+
i is positive definite and dim(V−1) = 0. Also the number

of positive roots of Q+
i is 1 = |R+(A1)|.

(b) If n = 3, then Q+
i is positive definite. If i is not in the commutation class

of (2, 1, 3, 2, 1, 3) or (1, 3, 2, 1, 3, 2), then Q−i is positive definite; while if
i is in the commutation class of (2, 1, 3, 2, 1, 3) or of (1, 3, 2, 1, 3, 2), then
dim(V−1) = 0. Also the number of positive roots of Q+

i is 6 = |R+(A3)|.
(c) If n = 4, then Q+

i is weakly positive and Q−i is positive definite. Also the
number of positive roots of Q+

i is 30 = |R+(D6)|.
(d) (Lusztig-Marsh) If n ≤ 4 and a = (a1, a2, . . . , am) ∈ C(i), then the

monomial 1.1 (a) is tight.

Proof. Because of Corollary 5.8, it is enough to verify (a), (b), (c) for a represen-
tative of each commutation class of reduced expressions of w0. We can get a list of
all reduced expressions of w0 and also of all the representatives of the commutation
classes of reduced expressions of w0 using Theorem 7.4 of Matsumoto-Tits starting
with a reduced expression of w0 and using braid relations.

(a) In the case A2, there are two reduced expressions: (1, 2, 1) and (2, 1, 2) and
each is in a different commutation class. Then dim(V1) = 1, A+

i = (2), Q+
i is

positive definite, dim(V−1) = 0 and the number of positive roots is 1 for each
representative i of the commutation classes of w0.

(b) In the case A3, there are 16 reduced expressions for w0 and these are par-
titioned into 8 different commutation classes. Representatives for these 8 com-
mutation classes are: (1, 2, 1, 3, 2, 1), (1, 2, 3, 2, 1, 2), (1, 3, 2, 1, 3, 2), (3, 2, 1, 2, 3, 2),
(3, 2, 3, 1, 2, 3), (2, 3, 2, 1, 2, 3), (2, 1, 3, 2, 1, 3) and (2, 1, 2, 3, 2, 1). Using Propositions
3.3 and 3.5, we can compute A+

i , A−i in each case and test for positive definiteness
of Q+

i and Q−i and non-negative definiteness of Q−i . We get (b) this way. We can
compute the number of positive roots of Q+

i using for example Proposition 6.1.
(c) In the case A4, there are 768 reduced expressions for w0 and these are par-

titioned into 62 different commutation classes. Using a computer, we can test each
of the representatives of the commutation classes of w0. We get that Q+

i is weakly
positive, Q−i is positive definite and the number of positive roots of Q+

i is 30 by
using Proposition 6.1 for each of these representatives i.

(d) follows by (a), (b), (c) and Proposition 4.5 (d). �
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Remark 7.6. The fact that in the case An (n = 2, 3, 4), the weakly positive unit
forms Q+

i have the same number of positive roots is mysterious to the author. The
vector spaces V1 for these different reduced expressions do not all have the same
dimension and it is not clear how the unit forms Q+

i are related. For example in
the case A3, if i = (1, 3, 2, 1, 3, 2), then dim(V1) = 3,

A+
i =

 2 −1 0
−1 2 −1

0 −1 2


and the positive roots of Q+

i are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1) and
(1, 1, 1); while if i = (1, 2, 1, 3, 2, 1), then dim(V1) = 4,

A+
i =


2 1 1 −1
1 2 1 0
1 1 2 −1
−1 0 −1 2


and the positive roots ofQ+

i are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1)
and (0, 0, 1, 1).

Robert Marsh has noticed that the number of positive roots for the different Q+
i

is the number of positive roots of the cluster algebra corresponding to the quantized
enveloping algebra of type An (n = 2, 3, 4) (See for example [Z] or [FZ]). These
cluster algebras are of finite type and we can associate to them a Dynkin graph.
This correspondence associates to Γ = A2 the cluster algebra C[N−\SL3] of type
A1; to Γ = A3, the cluster algebra C[N−\SL4] of type A3; and to Γ = A4, the
cluster algebra C[N−\SL5] of type D6. Here N− denotes in each case the subgroup
of lower triangular unipotent matrices of SLn (n = 3, 4, 5).

Theorem 7.7. Let Γ be the Dynkin graph of type D4 and i = (i1, i2, . . . , im) be a
sequence in I such that si1si2 . . . sim is a reduced expression of the longest element
w0 of the Weyl group of Γ. Then

(a) Q+
i is weakly non-negative.

(b) Q−i is non-negative definite. Moreover, if the commutation class of i does
not consist of only i, then Q−i is positive definite.

(c) If a ∈ C(i), then the monomial 1.1 (a) is semi-tight.
(d) If a ∈ C◦(i), then the monomial 1.1 (a) is tight.

Proof. (a) and (b). Because of Corollary 5.8, it is enough to verify (a) and (b) for
a representative of each commutation class of reduced expressions of w0. We can
get a list of all the reduced expressions of w0 and also of representatives of each
commutation class of reduced expressions of w0 using the proposition of Matsumoto-
Tits starting with a reduced expression and using braid relations. There are 2316
reduced expressions of w0 and these are partitioned into 182 commutation classes.
For each of the representatives i, we can test that Q+

i is weakly non-negative using
Proposition 6.3. Note that we can also see that Q+

i is not weakly positive using the
algorithm of de la Peña.

We can also test that Q−i is non-negative definite. If the cardinality of the
commutation class of i is > 1, then Q−i is positive definite. This is obtained by
computing the determinant of the primary principal submatrices of A−i and showing
that they are > 0. If the cardinality of the commutation class of i is 1, then Q−i is
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not positive definite. In fact, A−i is singular and computing the determinant of the
principal submatrices of A−i and showing that they are ≥ 0 to conclude that Q−i is
non-negative definite. This proves (a) and (b).

(c) By (a), (b) and Proposition 4.5 (c), we can conclude that the monomial 1.1
(a) is semi-tight.

(d) By (a), (b) and Proposition 4.5 (e), we can conclude that the monomial 1.1
(a) is tight. �

We will close this article with an example to show that even if a ∈ C(i), then
the monomial 1.1 (a) is not necessarily tight. Reineke has given such an example
in the case that Γ = A6 in [Re].

Example 7.8. Let Γ be the graph of A1 affine. This is the loop free graph with
two vertices: i, j such that ei,j = 2. Take i = (i, j, i, j, i). Then dim(V1) = 4,
dim(V−1) = 1, X = {(i, 1, 3), (i, 1, 5), (i, 3, 5), (j, 2, 4)} and Y = {(i, 1, 5)}.

If x = (x(i,1,3), x(i,1,5), x(i,3,5), xj,2,4)), then

Q+
i (x) = x2

(i,1,3) + x2
(i,1,5) + x2

(i,3,5) + x2
(j,2,4) + x(i,1,3)x(i,1,5) + x(i,1,3)x(i,3,5)

+ x(i,1,5)x(i,3,5) − 2x(i,1,3)x(j,2,4) − 2x(i,3,5)x(j,2,4)

and

L+
i,a(x) = (2a2 − a1 − a3)x(i,1,3) + (2a2 + 2a4 − a1 − 2a3 − a5)x(i,1,5)

+ (2a4 − a3 − a5)x(i,3,5) + (2a3 − a2 − a4)x(j,2,4).

If y = (y(i,1,5)), then Q−i (y) = 2y2
(i,1,5).

We have also

C(i) = {(a1, a2, a3, a4, a5) ∈ N5 | 2a2 ≥ (a1 + a3), 2a3 ≥ (a2 + a4), 2a4 ≥ (a3 + a5)}.
Let a = (6, 8, 9, 9, 8). Clearly a ∈ C(i); in fact, a ∈ C◦(i). For x = (8, 0, 10, 16)

and y = (0), then (x, y) ∈ T̃a, Q+
i (x)+Q−i (y)+2L+

i,a(x) = −8 and we can conclude

from Corollary 7.2 that the monomial F (6)
i F

(8)
j F

(9)
i F

(9)
j F

(8)
i is not tight.
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