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SUBREGULAR REPRESENTATIONS OF sln

AND SIMPLE SINGULARITIES OF TYPE An−1. II

IAIN GORDON AND DMITRIY RUMYNIN

Abstract. The aim of this paper is to show that the structures on K-theory
used to formulate Lusztig’s conjecture for subregular nilpotent sln-representa-
tions are, in fact, natural in the McKay correspondence. The main result is a
categorification of these structures. The no-cycle algebra plays the special role
of a bridge between complex geometry and representation theory in positive
characteristic.

1. Introduction

1.1. There are two approaches to studying a Kleinian singularity. On the one
hand, it is a quotient singularity C2/Γ for a finite subgroup Γ of SL2(C). On the
other hand, it is the inverse image π−1(0) where π is the restriction of the adjoint
quotient g → g/G of a simple Lie algebra g to a subregular special transversal
slice e + Z(f) where e, h, f is a subregular sl2-triple. As far as “classical” (resolu-
tions, semiuniversal deformations) geometry is concerned, the two approaches are
equivalent and one can move between these two approaches [20].

Certain recent advances, however, have taken place that are not so easily trans-
lated between these two approaches. In particular, the derived version of McKay
correspondence [3, 10] requires the finite groups realisation. On the other hand,
Lusztig’s conjecture about equivariant K-theory and reduced enveloping algebras
[12, 13] requires the Lie theoretic interpretation. The goal of this paper is to show
that in type A the McKay correspondence can be used to understand Lusztig’s
conjecture. The link is provided by the no–cycle algebra that the authors have
discovered on the proof of Premet’s conjecture [6].

1.2. The current paper is a logical continuation of [6] and the reader is mildly
encouraged to look at this paper first. Let us briefly explain the relation of the
present paper to other relevant work on Lusztig’s conjecture. In the case of a sub-
regular representations of type A, Jantzen proves Lusztig’s conjecture [9]. Lusztig
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notices a relation to geometry: his canonical basis in K-theory consists of Gonzalez-
Sprinberg-Verdier sheaves [14]. We go a little further and derive Lusztig’s pairing
and duality on K-theory from geometry.

There are two approaches to Lusztig’s general conjecture (that is, for any nilpo-
tent character). Bezrukavnikov, Mirkovic and the second author develop localiza-
tion techniques for D-modules in characteristic p and find an isomorphism between
the K-groups in Lusztig’s conjecture [2]. Alternatively, Premet suggests a possi-
ble relationship between quantisations of special transversal slices and subregular
representations of a simple Lie algebra [17]. We follow the second approach in this
paper and show that an isomorphism between K-groups can be deduced from the
McKay correspondence, preserving all relevant structure.

1.3. One of the main wonders of Lusztig’s conjecture is that it bridges complex al-
gebraic geometry and representation theory in characteristic p. One way to achieve
this may be to show that the geometry is independent of the characteristic, as done
in [2]. Here we use the alternative approach to show that the representation the-
ory (looked at from the right angle) is actually independent of the characteristic.
To achieve this goal we work with algebraic material over an algebraically closed
field L of characteristic p ≥ 0, where p does not divide n. The geometry is always
over C. In the final section we also work with an algebraically closed field K of
characteristic p, p > n.

1.4. Let H be the minimal desingularisation over C of a Kleinian singularity of
type A and let H0 be the corresponding exceptional divisor. Both H and H0 admit
an action of a two-dimensional torus, T . Lusztig has constructed an action of an
affine Iwahori-Hecke algebra on both KT (H) and KT (H0), the T -equivariant K-
groups of H and H0 respectively. Using Kapranov and Vasserot’s interpretation of
the McKay correspondence in terms of derived categories, [10], we show in Theorem
5.14 that the above action on KT (H0) admits a categorification in DT (H0), the
bounded derived category of T -equivariant sheaves on H0. This essentially means
thatDT (H0) admits an action of the affine braid group which specialises to Lusztig’s
Iwahori-Hecke algebra action on KT (H0). We also describe a form and a duality
on DT (H0) which specialise to those considered by Lusztig on KT (H0) in [12]. The
reader should beware that we do not concern ourselves with the existence of a braid
group action as described in [5]; in the literature, our action is sometimes referred
to as a weak action.

1.5. Reduced enveloping algebras appear only at the end of this paper, quanti-
sations of transversal slices and simple singularities not at all. In the preceding
paper [6], we show that the appropriate quotients of these are Morita equivalent
to the no-cycle algebra, CL(n). There is a natural bigrading on CL(n). In the
characteristic zero case there is a triangulated functor from D(CC(n) -grmod), the
bounded derived category of bigraded CC(n)-modules, to DT (H0). This functor
induces an isomorphism on K-theory, sending simple CC(n)-modules to the signed
basis of KT (H0) constructed by Lusztig in [15]. In the modular case, forgetting
half of the bigrading on CK(n), there is an isomorphism between the K-groups of
graded CK(n)-modules and of Uχ,λ-T0-modules for regular λ. Under this isomor-
phism the operations of wall-crossing functors on Uχ-modules correspond to the
generators of an Iwahori-Hecke algebra action, a characteristic p analogue of that



330 IAIN GORDON AND DMITRIY RUMYNIN

in 1.4. The category of bigraded CK(n)-modules is a mixed category lying over the
usual category of Uχ,λ-T0-modules.

1.6. The paper is organised as follows. In Section 2 we recall some preliminaries
on categories and Kleinian singularities. We remind the reader about equivariant
sheaves and Hilbert schemes in Section 3. In Section 4 we find a new interpretation
of Lusztig’s signed basis (in the subregular situation) and in Section 5 we prove
Theorem 5.14, on categorification. Section 6 ties together representation theory in
characteristic p with geometry over C.

2. Preliminaries

2.1. Let C be an abelian L-category and let G be a group acting on C. So, for every
g ∈ G, we have an exact shift functor, [g], together with isomorphisms [g] ◦ [g′] →
[gg′]. Sometimes in the literature such actions are called “weak” as opposed to
“strong” actions, which satisfy associativity constraints for these isomorphisms. We
do not use the term “weak” since we are not interested in associativity constraints.

We call C a G-category if an action of G on C is fixed. If C and D are both
G-categories, we say that the functor Φ : C → D is a G-functor if functors Φ ◦ [g]
and [g] ◦ Φ are isomorphic for every g ∈ G.

A G-functor Φ : C → D is a G-equivalence if there exists a G-functor Ψ : D → C
such that ΨΦ ∼= 1C and ΦΨ ∼= 1D. We say C and D are equivalent G-categories.
Note that an equivalence that is a G-functor need not be a G-equivalence [7, Section
5].

2.2. Let R =
⊕

g∈GRg be a G-graded (noetherian) algebra, that is RgRg′ ⊆ Rgg′ .
A G-graded R-module is an R-module, M , together with a L-space decomposition
M =

⊕
g∈GMg satisfying Rg ·Mg′ ⊆Mgg′ . The category of G-graded (finitely gen-

erated) R-modules, denoted R -Grmod (R -grmod) is an example of a G-category.
By definition, we have (M [g])g′ = Mg′g−1 for all g, g′ ∈ G.

If G acts on an algebra R by automorphisms then R -mod is another example of
a G-category. The group G acts by twisting.

2.3. Given X,Y ∈ C and g ∈ G, set Hom(X,Y )g = HomC(X [g], Y ). We define

Hom(X,Y ) =
⊕
g∈G

Hom(X,Y )g,

a G-graded vector space. The identification HomC(X [g], Y ) ∼= HomC(X [gg′], Y [g′])
yields a composition law for X,Y, Z ∈ C: Hom(Y, Z)g′ × Hom(X,Y )g →
Hom(X,Z)gg′ . This composition law is not associative in general. This requires
the associativity of the isomorphisms [g] ◦ [g′] → [gg′]. However, for the examples
appearing in 2.2, the space End(X) = Hom(X,X) becomes an associative G-graded
L-algebra and Hom(X,Y ) a G-graded End(X)-module. The functor Hom(X,−) is
a G-functor from C to End(X) -Grmod.

2.4. A triangulated G-category is a triangulated category with exact shift functors
[g], g ∈ G, and natural isomorphisms [g] ◦ [g′] → [gg′]. The bounded derived
category D(C) of an abelian G-category is a triangulated G-category. Analogous to
2.1, we have the notions of triangulated G-functors and equivalences of triangulated
G-categories.
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2.5. Let K(C) denote the Grothendieck group of C. The Grothendieck group of
D(C), denoted K ′(C), is defined to be the free abelian group generated by the
isomorphism classes of objects of D(C) subject to the relations [M ]− [M ′]− [M ′′]
for every distinguished triangle

M ′ −→M −→M ′′ −→M ′[1] .

Taking the Euler characteristic induces an isomorphism i : K ′(C)→ K(C).
Let C be a G-category. Since shift functors are exact, they induce an action of

Z[G], the group algebra of G, on both K(C) and K ′(C), which commutes with i.
From now on, we will identify K(C) and K ′(C).

2.6. Kleinian singularities. Let us assume ζ ∈ L is a primitive root of unity of
degree n. Set

Γ =
{
gi : g =

(
ζ 0
0 ζ−1

)}
,

a subgroup of SL2(L). The natural action of Γ on L2 induces an action on L[X,Y ]:
g ·X = ζX , g ·Y = ζ−1Y . The invariants of L[X,Y ] under this action are generated
by Xn, XY and Y n. Thus, the orbit space L2/Γ has co-ordinate ring

O(L2/Γ) = L[Xn, XY, Y n] ∼=
L[A,B,H ]
(AB −Hn)

.

The variety L2/Γ has an isolated singularity at 0, a Kleinian singularity of type
An−1.

3. Equivariant K-theory and Hilbert schemes

3.1. Equivariant sheaves. Let G be an affine algebraic group acting rationally on
a quasi-projective noetherian variety X . Let CohG(X) denote the abelian category
of G-equivariant coherent sheaves on X , [4, Chapter 5]. Let DG(X) denote the
bounded derived category of CohG(X).

Let f : X → Y be a G-equivariant map. If f is proper, then the right derived
functor of f∗ gives a pushforward

Rf∗ : DG(X) −→ DG(Y ).

Similarly, if f has finite Tor dimension (for example, if f is flat or if Y is smooth),
then the left derived functor of f∗ gives a pullback

Lf∗ : DG(Y ) −→ DG(X).

3.2. Let KG(X) denote the Grothendieck group of CohG(X), or equally, by 2.5, of
DG(X). The construction of 3.1 yields pushforward (respectively pullback) homo-
morphisms between the Grothendieck groups of X and Y for a proper (respectively
finite Tor dimension) G-equivariant map f : X → Y .

Let f : X → {pt} be projection to a point. Since CohG(pt) can be identified
with the category of finite dimensional G-modules, any G-module, say M , can be
pulled back to a G-equivariant locally free sheaf on X , f∗M . Since the operation
of tensoring by a locally free sheaf is exact we obtain a functor DG(X)→ DG(X)
associated to each G-module and therefore an action of KG(pt) = Rep(G), the
representation ring of G, on KG(X).
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3.3. Suppose Z is a closed G-stable subvariety of X . Let DG(X,Z) denote the
full subcategory of DG(X) whose objects are complexes with homology supported
on Z. If i : Z → X is the inclusion then Ri∗ : DG(Z) → DG(X,Z) is a functor
inducing an isomorphism of the Grothendieck groups.

3.4. Let B be the flag variety of the Lie algebra sln(L) [4]. As a set this consists of
all Borel subalgebras of sln(L), that is those subalgebras which are conjugate under
SLn(L) to the upper triangular matrices. The cotangent bundle of B is naturally
identified with the variety

Ñ = {(x, b) : x(b) = 0} ⊂ sln(L)∗ × B
where the first projection π1 becomes the moment map. The Springer fibre Bx is
the subvariety π−1

1 (x) of B.
Let us consider χ ∈ sln(L)∗ such that χ(Ei+1,i) = 1, i = 1, 2, . . . , n − 2 and

χ(X) = 0 if X is another elementary matrix or a diagonal matrix. There is a simple
way to parametrise Bχ, [20, Section 6.3]. Given a basis ui of Ln, let F(u1, . . . , un)
be a flag with the span of u1, . . . , uk as the k-dimensional space. Let vi be an
element of the standard basis of Ln so that Ei,jvj = vi. We introduce the flag

Fk,α = F(v1, v2, . . . , vk−1, vk + αvn, vn, vk+1, vk+2, . . . , vn−1)

for all (k, α) ∈ ({1, . . . , n − 1} × L) ∪ {(0, 0)}. The irreducible components of Bχ
are projective lines Πk, 1 ≤ k ≤ n− 1 where

Πk = {Fn−k,α | α ∈ L} ∪ {Fn−k−1,0}.
For 2 ≤ k ≤ n− 1 the components Πk−1 and Πk intersect transversally at a point
pk−1,k = Fn−k,0. Components Πi and Πj with |i− j| > 1 do not intersect.

Consider the following one-parameter subgroup of the diagonal matrices in
SLn(L),

T0 = {ν(τ) = τE1,1 + τE2,2 + · · ·+ τEn−1,n−1 + τ1−nEn,n : τ ∈ L∗}.
Notice that T0 stabilises Bχ, since ν(τ) · Fi,α = Fi,τ−nα.

3.5. Let us further assume that L = C. By the Jacobson-Morozov theorem there
exists an sl2-triple e, h, f ∈ sln(C) such that Tr(ex) = χ(x) for each x ∈ sln(C).
Let N be the variety of nilpotent elements in sln(C). Let

Vχ = {µ ∈ sln(C)∗ | ∀x ∈ sln(C) µ([x, f ]) = χ([x, f ])}.
By [20, Theorem 6.4 and Section 7.4] Vχ is a Kleinian singularity of type An−1 and
Λχ = π−1

1 (Vχ) is its minimal desingularisation with the exceptional fibre Bχ.

3.6. Equivariant line bundles on P1, [15, Section 5.4]. Fix k such that 1 ≤ k ≤
n−1 and suppose T = C∗×C∗ acts on P1 by (λ, µ)·(a : b) = ((λµ)ka : (λ−1µ)n−kb).
The following lemma can be proved by explicit calculation on the two standard
charts of P1.

Lemma. Let T act on P1 as above. For every collection of integers i, i′, j, j′ sat-
isfying i′ − j′ = nm and i − j = (2k − n)m for some integer m, there exists a
T -equivariant line bundle on P1, unique up to isomorphism, where (λ, µ) acts as
λj
′
µj on the fibre above (1 : 0) and as λi

′
µi on the fibre above (0 : 1). All such

T -equivariant line bundles arise in this way.

We will denote the above line bundle Oj
′,j;i′,i
k .
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3.7. Braid groups. The affine Braid group of type Ãn−1, denoted Bad, is the
group with generators T̃i for 0 ≤ i ≤ n−1, satisfying the braid relations T̃iT̃i+1T̃i =
T̃i+1T̃iT̃i+1 (we set T̃n = T̃0). There is a natural action of 〈σ〉 = Z/nZ on Bad given
by σ(T̃i) = T̃i+1. The extended affine Braid group is

B := Z/nZ nBad.

Let ι : B → B be the involution which sends T̃i to T̃−1
i and fixes σ.

3.8. Hecke algebras. Let A = Z[v±1]. Let A[B] be the group algebra of B over
A and let H, the extended affine Hecke algebra, be the quotient of A[B] by the ideal
generated by (T̃i + v−1)(T̃i − v) for 1 ≤ i ≤ n. The subalgebra generated by Ti
for 1 ≤ i ≤ n − 1 (respectively 1 ≤ i ≤ n) is the finite Hecke algebra (respectively
affine Hecke algebra) and denoted by Hfin (respectively Had).

The involution ι on B induces a ring automorphism on H, which we denote by
, sending v to v−1, T̃i to T̃−1

i = T̃i + (v−1 − v) and fixes σ.
There is a second presentation of H, [11], discovered by Bernstein. In this

presentation H is the A-algebra generated by T̃i, for 1 ≤ i ≤ n − 1, and θx, for
x ∈ P , the weight lattice of SLn(C). For the fundamental weight $n−1 we have
θ$n−1 = σT̃n−2T̃n−3 . . . T̃1T̃n = T̃n−1T̃n−2 . . . T̃2T̃1σ.

3.9. Since T = C∗ × C∗ we can identify Rep(T ) with Z[v′±1
, v±1]. The torus T

acts on Bχ and Λχ, [20, 7.5]. The T -action on Πk agrees with the k-th action
considered in 3.6, [15, 5.1]. There is an action of H on KT (Bχ), [12, Section 10].
We will denote this action by • always. The action of A arises from the action of
Rep(T ), whilst the action of T̃i for 1 ≤ i ≤ n− 1 is explained in [15, Sections 2,3].
For x ∈ P the action of θx is given by tensoring by certain line bundles on B, [15,
Section 2].

3.10. There is an involution,

β̃ : KT (Bχ) −→ KT (Bχ),

which is Z[v′±1]-linear and twists the action of H by the involution , [12, Propo-
sition 12.10].

Let † denote the A-algebra involution of A[v′±1] which sends v′ to v′−1 and let
δ denote the A-algebra anti-involution of H which fixes T̃i and sends σ to σ−1. By
[12, 12.16] there is a pairing

( | ) : KT (Bχ)×KT (Bχ)→ Z[v′±1
, v±1],

which, for F, F ′ ∈ KT (Bχ), p ∈ Z[v′±1
, v±1] and T̃ ∈ H, satisfies

(1) (p.F |F ′) = (F |p†.F ′) = p(F |F ′);
(2) (T̃ •F |F ′) = (F |δ(T̃ )•F ′);
(3) (F |F ′) = (F ′|F )†.

As in [13, 5.11] we define

B±Bχ = {F ∈ KT (Bχ) : β̃(F ) = F, (F |F ) ∈ 1 + Z[v′±1
, v−1]}.

Thanks to [15, Section 5] this set is a signed basis for the free A-module KT (Bχ).
Let pk−1,k denote the element in KT (Bχ) representing the skyscraper sheaf at

pk−1,k with trivial T -action. Abusing notation we will let Oj
′,j;i′,i
k denote the
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coherent sheaf on Bχ obtained by extension by zero of the T -equivariant line bundle
Oj
′,j;i′,i
k on Πk

∼= P1. For 1 ≤ k ≤ n− 1 set Ok = O0,−n+k;−n,−k
k . We define

On = p0,1 −
n−1∑
k=1

vn−kOk = pn−1,n −
n−1∑
k=1

v′
n
vkOk.

Then, by [15, Proposition 5.25], we have

B±Bχ = {±v′sOk : 1 ≤ k ≤ n, s ∈ Z}.

3.11. There is an explicit description of the action of Hfin on KT (Bχ) given in
[15, 5.11]. For 1 ≤ i, k ≤ n− 1 we have

T̃i•Ok =


vOk if i = k,

−v−1Ok −Ok±1 if i = k ± 1,
−v−1Ok otherwise,

whilst T̃i(p0,1) = −v−1p0,1 + δ1,i(−v′n + vn)O1. By [15, Lemma 5.24], for i ≥ j,
the pairing is given by

(3.1) (Oi,Oj) =


1 + v−2 if i = j,

−v′nv−1 if i = n and j = 1,
v−1 if j = i− 1,
0 otherwise.

3.12. The equivariant Hilbert scheme. Let Γ be the finite cyclic subgroup of
SL2(C) of order n, defined as in 2.6. Let H be the Γ-equivariant Hilbert scheme
of C2, [16, Chapter 4]. By definition the points of H are Γ-equivariant ideals of
C[X,Y ], I, such that C[X,Y ]/I is isomorphic to the regular representation of Γ.
The action of T on C[X,Y ] induced by (λ, µ) ·X = λµX and (λ, µ) · Y = λ−1µY ,
yields a T -action on H. There is a morphism

π : H −→ C2/Γ,

which, by [16, Theorem 4.1], is the minimal resolution of singularities of C2/Γ. Let
H0 denote the zero fibre π−1(0). There is a T -equivariant isomorphism between H
and Λχ which restricts to an isomorphism between H0 and Bχ.

3.13. Derived equivalences. Let Z = (H×C2/Γ C2)red. By definition we have a
commutative diagram

Z φ−−−−→ C2

η

y yσ
H π−−−−→ C2/Γ,

in which σ and η are finite, φ and π are proper and birational, and η is flat. Thanks
to [10, Theorem 1.4] the functor

Φ = (Rη∗ ◦ Lφ∗)Γ : DΓ(C2) −→ D(H)

is an equivalence of triangulated categories. Moreover, Φ restricts to an equivalence
between DΓ(C2, 0) and D(H,H0), [3, 9.1].
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Since φ and η are T -equivariant morphisms Φ can be lifted to an equivalence of
triangulated categories

Φ = (Rη∗ ◦ Lφ∗)Γ : DΓ×T (C2) −→ DT (H).

3.14. Let X be any T -equivariant quasi-projective variety and let pX : X → {pt}
be projection onto a point. Let v′ (respectively v) be the one-dimensional T -module
where (λ, µ).1 = λ (respectively (λ, µ).1 = µ). As in 3.2, pulling back yields a T -
equivariant line bundle which we denote by v′X (respectively vX). Observe that
tensoring by these line bundles realises an action of Z×Z on CohT (X) and DT (X),
making them into (triangulated) Z×Z-categories. We will denote the shift functors
by v′iXv

j
X for i, j ∈ Z. When there is no confusion as to which variety we mean, we

will suppress the subscript.
In particular, the above discussion applies to C2,H,H0 and Z.

Lemma. The equivalence Φ is a Z× Z-equivalence.

Proof. Let F ∈ DΓ×T (C2). We have the following natural isomorphisms

Rη∗ ◦ (Lφ∗(−⊗ vC2)) ∼= Rη∗ ◦ (Lφ∗(−)⊗ φ∗vC2) ∼= Rη∗ ◦ (Lφ∗(−)⊗ vZ)
∼= Rη∗ ◦ (Lφ∗(−)⊗ η∗vH) ∼= (Rη∗ ◦ Lφ∗(−))⊗ vH,

where the last isomorphism is the projection formula. The same equations hold for
v′, so Φ is a Z × Z-functor. Using the same formalism, one checks the inverse is
also a Z× Z-functor. �

3.15. Serre-Grothendieck duality. Let ωC2 (respectively ωH) be the canonical
line bundle of C2 (respectively H). As Γ×T -equivariant bundles we have ωC2 ∼= v2

C2 .
As T -equivariant bundles we have ωH

∼= v2
H [12, Proposition 11.10]. We have

contravariant isomorphisms of the derived categories DC2 and DH where

DC2 = RHomC2(−, ωC2 [2]), DH = RHomH(−, ωH[2]).

Here Hom denotes the sheaf of homomorphisms. Note that DH sends DT (H,H0)
to itself.

3.16. Skew group rings. The algebra RL = L[X,Y ] has a Z × Z-grading with
deg(X) = (1, 1) and deg(Y ) = (−1, 1). Since Γ acts on RL we can form the skew
group ring RL ∗ Γ. The Z × Z-grading can be extended to RL ∗ Γ by giving the
elements of Γ degree 0. We consider the category of finitely generated, bigraded
RL∗Γ-modules, denoted RL ∗Γ -grmod. As in 2.2 RL ∗Γ -grmod is a Z×Z-category.
As in 3.14, for i, j ∈ Z we will denote the associated shift functor by v′

i
vj . The

following lemma is standard.

Lemma. Taking global sections induces a Z× Z-equivalence of categories

Υ : RC ∗ Γ -grmod −→ CohΓ×T (C2).

3.17. Let τ : RL ∗ Γ → RL ∗ Γ be the anti-involution fixing RL and sending
g ∈ Γ to g−1. If M is a bigraded RL ∗ Γ-module, then τ ensures HomRL(M,RL) is
also. Serre-Grothendieck duality then induces the contravariant equivalence DL2 =
RHomRL(−, v2RL[2]) on D(RL ∗ Γ -grmod), the bounded derived category of RL ∗
Γ -grmod.

Let D0(RL ∗ Γ -grmod) be the bounded derived category of finitely generated,
bigradedRL∗Γ-modules which are (X,Y )-primary, that is, which are annihilated by
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some power of (X,Y ). If M is a complex in D0(RL∗Γ -grmod), then DL2(M) ∼= M∗,
the vector space dual of M , [21, (4.9)].

3.18. The results of this section can be summarised as follows.

Proposition. There exists a Z× Z-equivalence of triangulated categories

Ψ = DH ◦ Φ ◦DC2 ◦Υ : D(RC ∗ Γ -grmod) −→ DT (H),

which restricts to a Z× Z-equivalence between D0(RC ∗ Γ -grmod) and DT (H0).

4. The equivalence on K-theory

4.1. The simple Γ-modules are labelled by the elements of Z/nZ: the element g
acts on the i-th simple module as scalar multiplication by ζi. Associated to the
i-th simple Γ-module there are two bigraded RL ∗ Γ-modules: the one-dimensional
module Si which is annihilated by both X and Y , and the RL-projective cover
of Si, denoted Ri. As Γ × (L∗)2-equivariant sheaves on L2, these correspond to
the skyscraper sheaf supported at 0 and the trivial line bundle, with trivial (L∗)2-
structure and Γ-structure given by the i-th simple Γ-module. There is a Koszul
resolution relating the two types of module

(4.1) 0 −→ v2Ri
(X,−Y )t−−−−−→ v′

−1
vRi−1 ⊕ v′vRi+1

(Y,X)−−−−→ Ri −→ Si −→ 0.

By 3.15 we have D(Ri) = v2Rn−i[2] and D(Si) = Sn−i. Let K0(RL ∗ Γ -grmod) be
the Grothendieck group of D0(RL ∗ Γ -grmod).

4.2. We switch from a field L to complex numbers for the rest of this section. The
equivalence of Proposition 3.18 yields isomorphisms

Σ : K(RC ∗ Γ -grmod) −→ KT (H) and Σ0 : K0(RC ∗ Γ -grmod) −→ KT (H0).

Moreover, since the equivalence preserves Z × Z-action, both Σ and Σ0 are
Z[v′±1

, v±1]-module isomorphisms.

4.3. Tautological bundles on H. Since the projection η : Z → H is a flat
and finite Γ×T -equivariant morphism, the pushforward η∗OZ is naturally a Γ×T -
equivariant locally free sheaf, denoted E . The fibre of E above the ideal I ∈ H is the
vector space RC/I, the regular representation as a Γ-module. Now Γ-equivariance
allows us to decompose E into a direct sum of T -equivariant bundles

E =
⊕

1≤i≤n
Ei.

By definition, the fibre of Ei above I ∈ H is the i-th isotypic component of RC/I.
These are described in [15, 5.27].

Lemma. The equivalence Ψ sends Ri to E∨i , the dual of Ei.

Proof. Let πC2 : H × C2 → C2 be the projection map. Since there is a natural
isomorphism Lφ∗ ∼= OZ ⊗L π∗C2 , we have

Ψ(Ri) ∼= DH((Rη∗Lφ∗(v2
C2Rn−i[2]))Γ) ∼= DH((Rη∗(OZ ⊗L π∗C2(v2

C2Rn−i[2]))Γ)
∼= DH((v2

HE [2]⊗ Sn−i)Γ) ∼= DH(v2
HEi[2]) ∼= E∨i .

�
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4.4. Using the resolution (4.1) and Lemma 4.3 we find that under Ψ the module
Si is sent to the Koszul complex

(4.2) v2E∨i // v′−1
vE∨i−1 ⊕ v′vE∨i+1

// E∨i .

Proposition. For 1 ≤ i ≤ n we have Σ0([Si]) = v′
n−iOi.

Proof. In the non-equivariant setting the complex (4.2) was studied in [8]. It is
shown in [8, Propositions 6.2] that its homology vanishes in degrees 1 and 2 and is
OΠi(−1) in degree 0 if 1 ≤ i ≤ n− 1. Thus we have a quasi-isomorphism

v2E∨i //

��

v′
−1
vE∨i−1 ⊕ v′vE∨i+1

f //

��

E∨i

��
0 // 0 // E∨i / im f.

For 1 ≤ i ≤ n − 1 the bundle E∨i restricted to Πi is v′n−iOi[15, 5.27]. If i = n
a similar argument using [8, 6.4], shows that Σ0(Si) = DH(OH0). It remains to
prove that [DH(OH0)] = On.

For 1 ≤ k ≤ n− 1 let Bk be the subscheme of H0 consisting of the components
Π1, . . . ,Πk. Associated to this subscheme we have the maps of coherent sheaves
arising from the inclusions pk−1,k ∈ Πk ⊆ Bk and pk−1,k ∈ Bk−1 ⊂ Bk

OBk −→ OBk−1 ⊕OΠk −→ pk−1,k.

This is an exact sequence; so we have [OBk ] = [OBk−1 ] + [OΠk ]−pk−1,k. Induction
yields

[OH0 ] =
n−1∑
k=1

[OΠk ]−
n−2∑
k=1

pk,k+1.

By [15, 5.4] we have pk,k+1 = [OΠk+1 ] − [On,−n+2(k+1);0,0
k+1 ] and [OΠ1 ] = p0,1 +

[On,−n+2;0,0
1 ], which yields

[OH0 ] = p0,1 +
n−1∑
k=1

[On,−n+2k;0,0
k ] = p0,1 +

n−1∑
k=1

v′
n
vkOk.

By [15, Lemma 5.16] we have [DH(Ok)] = −v′nvn[Ok] and [DH(p0,1)] = p0,1. The
result follows. �

The proposition shows that the signed basis {±v′s[Si] : 1 ≤ i ≤ n, s ∈ Z} of the
free A-module K0(RC ∗Γ -grmod) is sent by Σ0 to B±Bχ . A similar statement is true
for Λχ, using Σ and Lemma 4.3.
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5. Categorification

We switch back to a general field L.

5.1. Braid group action. Given a pair of objects M,N ∈ D0(RL ∗Γ -grmod), the
functor RHomRL∗Γ(M,N) takes values in the derived category of bigraded, finite
dimensional L-vector spaces. We denote this category by BVL. In particular, given
the simple RL ∗ Γ-modules Si and Sj the resolution (4.1) shows

(5.1) RnHomRL∗Γ(Si, Sj) = ExtnRL∗Γ(Si, Sj)


L if n = 0 and i = j,

v′
±1
v−1L if n = 1 and i = j ± 1,

v−2L if n = 2 and i = j,

0 otherwise.

Given any complex C belonging to BVL and M ∈ D(RL∗Γ -grmod) we can form the
tensor product C⊗D ∈ D(RL ∗Γ -grmod) and the space of linear maps lin(C,M) ∈
D(RL ∗ Γ -grmod), [19, 2a]. Given a complex of complexes · · · → C−1 → C0 →
C1 → · · · we write

{· · · → C−1 → C0 → C1 → · · · }
to denote the associated total complex.

For 0 ≤ i ≤ n − 1 let τi : D0(RL ∗ Γ -grmod) → D0(RL ∗ Γ -grmod) be the
Z× Z-functor defined on objects by

τi(M) = {RHomRL∗Γ(Si,M)⊗ Si ev // M},

where ev is the evaluation map and M is in degree 0, [19, Definition 2.5]. In other
words, τi(M) is the mapping cone of ev. The various τi’s furnish an action of the
affine braid group, Bad, on D0(RL∗Γ -grmod), [19, Theorem 2.17 and Example 3.9].
For our purposes it is better to work with an adjusted action for 0 ≤ i ≤ n− 1,

τ̃i = DL2 ◦ τn−i ◦DL2 ◦ v−1 ◦ [1].

The Z× Z-equivalences τ̃i continue to satisfy the braid relations.

5.2. For i ∈ Z/nZ let M+
i (respectively M−i ) be the unique two-dimensional bi-

graded RL ∗ Γ-module with head isomorphic to Si and socle isomorphic to v′vSi+1

(respectively v′−1
vSi−1), where multiplication byX (respectively Y ) sends the head

to the socle.

Lemma. For i, j ∈ Z/nZ we have

τ̃i(Sj) =


vSj if i = j,

v−1M±j [1] if i = j ± 1,
v−1Sj [1] otherwise.

Proof. We first calculate τi. If i = j, then, using (4.1), we see that τj(Sj) equals
the complex

v2Rj
(X,−Y )t−−−−−→ v′

−1
vRj−1 ⊕ v′vRj+1

Y 0

X 0


−−−−−−→ Rj ⊕Rj

εj 0 0

εj X −Y

t
−−−−−−−−−−−→

→ Si ⊕ v′−1
v−1Rj−1 ⊕ v′v−1Rj+1

(0,Y,X)−−−−−→ v−2Rj .
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It is straightforward to check that this complex only has homology at its end term,
equal to v−2Sj . Therefore τj(Sj) = v−2Sj [1]. If i = j + 1 (the case i = j − 1 is
analogous) we find that τj+1(Sj) is the complex

v′vRj+1
(−X,Y )t−−−−−→ Rj ⊕ v′2Rj+2

(
εj 0
−Y −X

)
−−−−−−−→ Sj ⊕ v′v−1Rj+1.

Again, it is straightforward to check that this complex only has homology at its
end term. A basis for this homology group is {(1, 0), (0, 1)} ⊂ Sj ⊕ v′v−1Rj+1,
showing that this is the unique bigraded R ∗ Γ-module with head v′v−1Sj+1 and
socle Sj (multiplication by Y sends the head (0, 1) to the socle (1, 0)). Call this
Nj. If i 6= j, j ± 1, then τi(Sj) = Sj since the relevant Ext-group vanishes, (5.1).

The description of τ̃i follows immediately, noting that DL2(Nn−j) ∼= M−j thanks
to 3.17. �

5.3. Let ς be the automorphism of RL ∗ Γ which fixes X and Y and sends g to
ζg. Following 2.2, this induces an Z×Z-equivariant action of Z/nZ on the derived
category D(RL ∗ Γ -grmod). This satisfies ς ◦ τ̃i ◦ ς−1 ∼= τ̃i+1. Therefore we have
an action of the extended affine braid group B on D(RL ∗ Γ -grmod) via [T̃i] = τ̃i,
[σ] = ς.

5.4. The action of B on D0(RL ∗Γ -grmod) induces an action of A[B] on K0(RL ∗
Γ -grmod) which, by Lemma 5.2, satisfies

T̃i([Sj ]) =


v[Sj ] if i = j,

−v−1[Sj ]− v′±1[Sj±1] if i = j ± 1,
−v−1[Sj ] otherwise.

In particular, since (T̃i + v−1)(T̃i − v) acts as zero, this factors through an action
of H. The following proposition follows.

Proposition. The natural isomorphism Θ : K0(RL∗Γ -grmod)→K0(RC∗Γ -grmod)
is H-equivariant.

5.5. The action on KT (H0) referred to in the proposition comes from 3.9. The
proposition will be proved in the following six subsections, where we also identify
the full H-action.

Proposition. The isomorphism Σ0 : K0(RC ∗ Γ -grmod) → KT (H0) is Had-
equivariant.

5.6. Let us translate the action from K0(RC ∗ Γ -grmod) over to KT (H0). Using
Proposition 4.4 it is straightforward to check that we have

T̃i(Oj) =



vOj if i = j,

−v−1O1 − v′−nOn if i = n, j = 1,
−v−1On − v′nO1 if i = 1, j = n,

−v−1Oj −Oj±1 if i = j ± 1 is not as above,
−v−1Oj otherwise.

By 3.11 the action of Hfin here agrees with the •-action on Oj for 1 ≤ j ≤ n− 1.
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5.7. We first check that the actions of Hfin also agree on On. Thanks to 3.11 we
have

T̃1•On=−v−1p0,1 + (−v′n + vn)O1 − vnO1 − vn−2(−v−1O2 −O1)+
n−1∑
k=3

vn−k−1Ok

=−v−1p0,1 + (−v′n + vn−2)O1+
n−1∑
k=2

vn−k−1Ok − v−1On − v′nO1.

Similarly, for 2 ≤ i ≤ n− 2, we have T̃i•On − v−1On, whilst T̃n−1•On − v−1On −
On−1. This shows that Σ0 is Hfin-equivariant.

5.8. We now calculate the action of θ$n−1 = σT̃n−2T̃n−3 . . . T̃1T̃n in both cases.
Tensoring by the line bundle Ln−1,n on B, described in [15, 5.1], corresponds to
θ$n−1•. The T -equivariant structure of Ln−1,n is given in [15, 5.2] for 1 ≤ k ≤ n as
follows:

Ln−1,n|pk−1,k =

{
v′
n−1 if k = n,

v′
−1
v2−n if k < n.

In particular, if k < n then the restriction of Ln−1,n to Πk is the trivial line bundle
with equivariant structure v′−1

v2−n. We deduce for 1 ≤ k ≤ n− 2,

θ$n−1•Ok = Ln−1,n ⊗Ok = v′
−1
v2−nOk.

We have

θ$n−1•On−1 = Ln−1,n ⊗On−1 = [O−1,2−n;n−1,0
n−1 ]⊗ [O0,−1;−n,1−n

n−1 ]

= [O−1,1−n;−1,1−n
n−1 ] = v′

−1
v1−n[O0,0;0,0

n−1 ]

= v′
−1
v1−n(pn−1,n + [O0,0;−n,2−n

n−1 ]) = v′
−1
v1−n(pn−1,n + vOn−1)

= v′
−1
v1−n(pn−1,n −

n−1∑
k=1

v′
n
vkOk)

+
n−2∑
k=1

v′
n−1

vk+1−nOk + (v′n−1 + v′
−1
v2−n)On−1

= v′
n−1

v1−n(
n−1∑
k=1

viOi) + v′
−1
v2−nOn−1 + v′

−1
v1−nOn,

and similarly

θ$n−1•On = Ln−1,n ⊗ (p0,1 −
n−1∑
k=1

vn−kOk) = v′
−1
v2−np0,1 −

n−2∑
k=1

v′
−1
v2−kOk

− v(v′n−1
v1−n(

n−1∑
k=1

viOi) + v′
−1
v2−nOn−1 + v′

−1
v1−nOn)

−
n−2∑
k=1

v′
n−1

v2+k−nOk − v′n−1
vOn−1 = −v′n−1

v2−n(
n−2∑
k=1

vkOk).
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5.9. We calculate T̃n−2T̃n−3 . . . T̃1T̃0(Oi) for 1 ≤ i ≤ n. Note that T̃iT̃i−1(Oi) =
v−1Oi for 2 ≤ i ≤ n − 1, whilst T̃1T̃n(O1) = v′

−n
v−1On. It follows that, for

2 ≤ i ≤ n− 1,

(5.2) T̃n−2T̃n−3 . . . T̃1T̃0(Oi) = (−1)n−1v2−nOi−1,

whilst

(5.3) T̃n−2T̃n−3 . . . T̃1T̃0(O1) = (−1)n−1v′
−n
v2−nOn.

We have T̃j . . . T̃1T̃0(On−1) = (−1)j+1(v−j−1On−1 + v−jOn + v′
n
v−j

∑j
k=1 v

kOk)
for 1 ≤ j ≤ n− 3; this can be proved by induction. We deduce that

T̃n−2T̃n−3 . . . T̃1T̃0(On−1)

= T̃n−2((−1)n−2(v2−nOn−1 + v3−nOn + v′
n
v3−n

n−3∑
k=1

vkOk))

= (−1)n−1(v1−nOn−1 + v2−nOn + v′
n
v2−n

n−2∑
k=1

vkOk + v2−nOn−2).

(5.4)

Arguing by induction, we see that

T̃j . . . T̃1T̃0(On) = (−1)j(v1−jOn + v′
n
v−j+1

j∑
k=1

vkOk)

for 1 ≤ j ≤ n− 2. In particular,

(5.5) T̃n−2T̃n−3 . . . T̃1T̃0(On) = (−1)n−2(v3−nOn + v′
n
v3−n

n−2∑
k=1

vkOk).

5.10. To get θ$n−1 we must twist by the automorphism σ. This twist sends Si to
Si+1 so, by Proposition 4.4, sends Oi to v′

−1Oi+1 for 1 ≤ i ≤ n − 1 and On to
v′
n−1O1. Combining this with (5.2), (5.3), (5.4) and (5.5) yields

θ$n−1(Oi) =


(−1)n−1v′

−1
v2−nOi if 1 ≤ i ≤ n− 2

(−1)n−1(v′n−1
v1−n(

∑n−1
k=1 v

iOi)
+v′−1v2−nOn−1 + v′−1v1−nOn) if i = n− 1

(−1)n−2v′
n−1

v2−n(
∑n−2

k=1 v
kOk) if i = n.

5.11. Comparing 5.8 and 5.10 we see the actions of θ$n−1 differ by scalar multipli-
cation by (−1)n−1. Since θ$n−1 = T̃n−1T̃n−2 . . . T̃1σ and the actions of Hfin agree
we deduce that the actions of σ must differ by scalar multiplication by (−1)n−1.
Since T0 = σTn−1σ

−1 we deduce that the actions agree on Tn, and hence on Had,
proving Proposition 5.5.

There is an involution of H which fixes Had and sends σ to (−1)n−1σ. The
calculations show that the two module structures on KT (H0) are twists of each
other under this involution.
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5.12. Duality. Let ν be the automorphism of RL ∗ Γ which swaps X and Y and
sends g to g−1. As in 5.3 we can twist an object M ∈ RL ∗ Γ -grmod by ν where
we set

(Mν)i,j = M−i,j

for i, j ∈ Z. Twisting by ν commutes with DL2 by 3.17. There is a contravariant
self-equivalence

β̃ : D0(RL ∗ Γ -grmod) −→ D0(RL ∗ Γ -grmod)

which sends M to DL2(M)ν . Note that β̃(v′avbM) = v′
a
v−bβ̃(M) for a, b ∈ Z and

M ∈ D0(RL ∗ Γ -grmod). Moreover, β̃(Si) = Si for 1 ≤ i ≤ n.
Recall the involution ι on B, defined in 3.7.

Lemma. For all b ∈ B and M ∈ D0(RL∗Γ -grmod) we have β̃(b(M)) ∼= ι(b)(β̃(M)).

Proof. Given any object C ∈ BVL and M ∈ D(RL ∗ Γ -grmod) evaluation gives a
natural isomorphism lin(C,DL2(M)) −→ DL2(C⊗M) in D(RL∗Γ -grmod). Hence,
by [19, Section 2],

T−1
i (M) = { M ev′ // lin(RHomRL∗Γ(M,DL2Sn−i), DL2Sn−i) }

∼= {M −→ DL2(RHomRL∗Γ(M,DL2Sn−i)⊗ Sn−i)}
∼= {M −→ DL2(RHomRL∗Γ(Sn−i, DL2(M))⊗ Sn−i)}
∼= DL2({ (RHomRL∗Γ(Sn−i, DL2(M))⊗ Sn−i) ev // DL2(M) })
= DL2Tn−i(DL2(M)).

By construction ν ◦ Ti = Tn−i ◦ ν , so we deduce that β̃ ◦ Ti = T−1
i ◦ β̃. The same

statement with T̃i follows since

T̃i ◦ β̃ = DL2 ◦ Tn−i ◦DL2 ◦ v−1 ◦ [1] ◦ β̃ = β̃ ◦DL2 ◦ T−1
n−i ◦DL2 ◦ v ◦ [−1] = β̃ ◦ T̃−1

i .

Finally, since νσ = σ−1ν and (M∗)σ = (Mσ−1
)∗, we find that (DL2(Mσ))ν =

(DL2(M))σ
−1ν = (DL2(M)ν)σ, as required. �

5.13. A pairing. There is a pairing

( , ) : D(RL ∗ Γ -grmod)×D(RL ∗ Γ -grmod) −→ BVL,
given by (M,N) = RHomR∗Γ(β̃(N),M).

Recall from 3.10 the involution † on Z[v′±1
, v±1]. This induces an involution on

BVL which we denote also by †.

Lemma. The pairing satisfies the following properties:
1) (v′avbM,N) = (M, v′

−a
vbN) = v′

a
vb(M,N);

2) (TiM,N) = (M,TiN) and (σM,N) = (M,σ−1N);
3) (M,N) = (N,M)†.

Proof. Part 1 follows immediately from the variance properties of RHom and β̃.
By Lemma 5.12 we have

RHomRL∗Γ(β̃(N), Ti(M)) = RHomRL∗Γ(T−1
i (β̃(N)),M)

= RHomRL∗Γ(β̃(Ti(N)),M),

and

RHomRL∗Γ(β̃(N),Mσ) = RHomRL∗Γ(β̃(N)σ
−1
,M) = RHomRL∗Γ(β̃(Nσ),M),
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proving part 2. Finally, we have

RHomRL∗Γ(β̃(N),M) ∼= RHomRL∗Γ(DL2(M), DL2(β̃(N)))
∼= RHomRL∗Γ(DL2(M), Nν).

In RL ∗ Γ -grmod the identity provides an identification HomRL∗Γ(A,B) =
HomRL∗Γ(Aν , Bν)†, which, together with the above equation, proves part 3. �

5.14. The following theorem shows that the structures defined in this chapter give
a categorification of the action of Had on KT (Bχ) discussed in 3.9. It is clear
we can extend this to a categorification of the H-action. For more details about
categorification, see [1].

Theorem. The duality β̃ and pairing ( , ) on D0(RL ∗ Γ -grmod) induce a duality
and a pairing on K0(RL ∗ Γ -grmod), which, under the Had-module isomorphism
Σ0 ◦Θ, correspond to the duality and pairing defined in 3.10.

Proof. By construction β̃(v′avb[Si]) = v′av−b[Si] for a, b ∈ Z and 1 ≤ i ≤ n. The
claim about duality then follows from the sentence following the proof of Proposition
4.4.

The calculation of Ext-groups in (5.1) shows that

(Si, Sj) =


1 + v−2[−2] if j = i,

v′
±1
v−1[−1] if j = i± 1,

0 otherwise.

Calculating the image of this in KT (H′0) under Σ0◦Θ yields (3.1). Thus the pairings
agree since Claim 1 in Lemma 5.13 corresponds to 3.10(1). �

6. An application

Throughout this section we consider an algebraically closed field K of charac-
teristic p, p > n. More detailed explanations of enveloping algebras and their
representations can be found in the sister paper [6].

6.1. The no–cycle algebra is

CL(n) =
L[X,Y ]

(Xn, XY, Y n)
∗ Γ.

Since (Xn, XY, Y n) is a homogeneous ideal for the bigrading on L[X,Y ], (see 3.16),
there is a natural bigraded structure on CL(n). Forgetting the second Z-grading
yields CL(n) -grmod, the category of Z–graded CL(n)–modules. (The definition here
of the no–cycle algebra as a “skew coinvariant algebra” differs from the original
definition in [6, Section 3]. As remarked in [6, 3.2], however, the algebras are
bigraded isomorphic.)

6.2. Let λ be a regular weight and χ as defined in 3.4. Let Bχ,λ be the corre-
sponding block and Uχ,λ the full central quotient of the reduced enveloping algebra
Uχ(sln(K)), [6, 4.6 and 4.16]. By [6, Proposition 4.17], the category of Uχ,λ-T0-
modules is Z-equivalent to CK(n) -grmod. Under this equivalence, the simple
Uχ,λ-T0-module Li, [6, 4.12], corresponds to Sn−i. The duality D on Uχ,λ-T0 -mod
corresponds to β̃K.
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6.3. Let γi = T λµi ◦ T
µi
λ : Bχ,λ-T0 -mod −→ Bχ,λ-T0 -mod be the ith wall-crossing

functor. By the adjunction property, there is a natural transformation εi : γi → id,
which, as in [18, Section 3], induces a triangulated Z-functor T̃i on the bounded
derived category of Bχ,λ-T0 -mod.

The functor T̃i does not necessarily restrict to D(Uχ,λ-T0 -mod). However, there
is an isomorphism between K(Bχ,λ-T0 -mod) and K(Uχ,λ-T0 -mod). By transfer of
structure, the Z[v′±1]-linear operators T̃i act on K(Uχ,λ-T0 -mod).

Theorem. Let Bχ be the Springer fibre of χ over C. There is an Had-equivariant
isomorphism between K(Uχ,λ-T0 -mod) and KT0(Bχ) preserving duality.

Proof. It follows from 3.3 that there is an action of H on K(CK(n) -grmod), giv-
ing operators T̃i on K(CK(n) -grmod). Following [9, H.9], the isomorphism θ :
K(Uχ,λ-T0 -mod)→ K(CK(n) -grmod) commutes with the operators T̃i for 0 ≤ i ≤
n− 1. The theorem follows from Theorem 5.14 and the comments above. �
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