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CHARACTER SHEAVES ON DISCONNECTED GROUPS, V

G. LUSZTIG

Abstract. We prove orthogonality formulas for the characteristic functions
of certain complexes on a connected component of a reductive group.

Introduction

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
[L9] which attempts to develop a theory of character sheaves on G.

Section 23 is a generalization of results in [L3, II, §7]. It is a preparation for the
proof of the orthogonality formulas for certain characteristic functions in Section
24 which generalize those in [L3, II, §9, §10]. Section 25 describes the cohomology
sheaves of a class of complexes which includes the admissible complexes on G. In
particular, we show that these cohomology sheaves restricted to any stratum of
G are local systems of a particular kind. In the connected case this reduces to a
strengthening of [L3, III, 14.2(a)]. In Section 26 we give a variant of the definition
of parabolic character sheaves in [L10] in terms of admissibile complexes. Note that
even if one is only interested in parabolic character sheaves of connected groups,
one cannot avoid using the theory of character sheaves on disconnected groups. In
Section 27 we discuss the induction functor. The present treatment differs from
that in the connected case, given in [L3, I, §4].

We adhere to the notation of [L9]. Here is some additional notation. If D,H
are subsets of a group, we set NDH = {γ ∈ D; γHγ−1 = H}. If k is an algebraic
closure of a finite field Fq, F : Y → Y is the Frobenius map for an Fq-rational
structure on an algebraic variety Y , E is a local system on Y and ε : F ∗E ∼−→ E
is an isomorphism, we denote by ε̌ : F ∗Ě → Ě the unique isomorphism such that
for any y ∈ Y , ε̌ : ĚF (y) → Ěy is the transpose inverse to ε : EF (y) → Ey. If
X is an algebraic variety, X ′ is a closed irreducible subvariety of X , F is a local
system on an open dense smooth subvariety X ′0 of X ′ and A ∈ D(X) is IC(X ′,F)
extended by 0 on X −X ′, let Ǎ = IC(X ′, F̌) extended by 0 on X −X ′. We have
Ǎ = D(A)[−2 dimX ′]. If X,X ′, X ′0 are defined over Fq with Frobenius map F and
α : F ∗A ∼−→ A is an isomorphism which restricts to ε : F ∗F ∼−→ F over X0, we
denote by α̌ : F ∗Ǎ → Ǎ the unique isomorphism which restricts to ε̌ : F ∗F̌ ∼−→ F̌
over X0.
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If f : X → Y is a smooth morphism between algebraic varieties with connected
fibres of dimension δ, we set fFA = f∗A[δ] for any A ∈ D(Y ). Let D(X)≤0 be as
in [L3, I, 1.3]. Let M(X) be the category of perverse sheaves on X .

If D is a connected component of G, a simple perverse sheaf A on D is said to
be admissible if A, regarded as a simple perverse sheaf on G, zero on G − D, is
admissible in the sense of 6.7.

Contents

23. Strongly cuspidal local systems.
24. Orthogonality.
25. Properties of cohomology sheaves.
26. The variety ZJ,D.
27. Induction.

23. Strongly cuspidal local systems

23.1. Let S be an isolated stratum of G and let E ∈ S(S). Let K0 = IC(S̄, E).
Let D be the connected component of G that contains S.

If P is a parabolic of G0 such that S ⊂ NGP and R is a UP -coset in NGP , let

dR = dimS − dimDZ0
G0 − dim(P/UP − orbit of R/UP in NGP/UP ).

We show that conditions (i) and (ii) below are equivalent:
(i) E is a cuspidal local system;
(ii) for any P,R as above such that P 6= G0 and any irreducible component C

of S ∩ R of dimension dR/2, the restriction of Ě to some/any smooth open dense
subset of C has no direct summand Q̄l.
Let C0 be a smooth open dense subset of C. We have HdR

c (C, E) ∼= HdR
c (C0, E) and,

by Poincaré duality, the last vector space is isomorphic to H0(C0, Ě), a vector space
whose dimension is the multiplicity of Q̄l in a decomposition of Ě |C0 as a direct
sum of irreducible local systems. It remains to note that, by 6.2, HdR

c (S ∩R, E) ∼=⊕
C
HdR
c (C, E) where C runs over the irreducible components of S ∩R of dimension

dR/2.
Since condition (ii) for E is equivalent to condition (ii) for Ě , we deduce:
(a) E is cuspidal if and only if Ě is cuspidal.

23.2. Let S, E , D, P be as in 23.1; assume that P 6= G0. We show:
(a) if R, dR are as in 23.1 and Hi

c((S̄ − S) ∩R,K0) 6= 0, then i < dR.
Indeed, there exist i′, i′′ and a stratum S1 ⊂ S̄ − S with i = i′ + i′′ and Hi′

c (S1 ∩
R,Hi′′K0) 6= 0. By 6.2 we have dim(S1 ∩ R) ≤ (dimS1 − dimS + dR)/2. Since
i′ ≤ 2 dim(S1∩R) we have i′ ≤ dimS1−dimS+dR. Since Hi′′K0 6= 0 at all points
of S1, we have i′′ < dimS − dimS1. Hence

i = i′ + i′′ < dimS1 − dimS + dR + dimS − dimS1

and i < dR, as required.
Next we show that:
(b) if R, dR are as in 23.1, the natural map Hi

c(S ∩ R, E)
ji−→ Hi

c(S̄ ∩ R,K0) is
an isomorphism for i ≥ dR.
Indeed, from (a) we see that ji is surjective for i = dR and an isomorphism for
i > dR. Moreover, for i = dR, the kernel of ji equals the image of the natural
map f : HdR−1

c ((S̄ − S) ∩ R,K0) → HdR
c (S ∩ R, E). It is enough to show that
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f = 0. We argue as in the proof of 8.3(b). We may assume that k is an algebraic
closure of a finite field Fq, that G has a fixed Fq-structure with Frobenius map
F : G → G, that P,R and any stratum in S̄ are defined over Fq and that we
are given an isomorphism F ∗E ∼−→ E which makes E into a local system of pure
weight 0. Then HdR−1

c ((S̄ − S) ∩ R,K0), HdR
c (S ∩ R, E) have natural Frobenius

endomorphisms compatible with f . To show that f = 0 it is enough to show that
(∗) HdR

c (S ∩R, E) is pure of weight dR;
(∗∗) HdR−1

c ((S̄ − S) ∩R,K0) is mixed of weight ≤ dR − 1.
Now (∗) is clear since dim(S ∩ R) ≤ dR/2 (see 6.2). We prove (∗∗). As in the
proof of (a), it is enough to show that for any stratum S1 ⊂ S̄ − S and any i′, i′′

such that i′ + i′′ = dR − 1, Hi′

c (S1 ∩ R,Hi
′′
K0) is mixed of weight ≤ dR − 1. By

Gabber’s theorem [BBD, 5.3.2], the local system Hi′′K0 on S1 is mixed of weight
≤ i′′. Using Deligne’s theorem [BBD, 5.1.14(i)] we deduce that Hi′

c (S1∩R,Hi
′′
K0)

is mixed of weight ≤ i′ + i′′ = dR − 1. This completes the proof of (b).
We show that for S, E , P conditions (i) and (ii) below are equivalent:
(i) for any UP -coset R in NGP we have HdR

c (S ∩R, E) = 0, dR as in 23.1;
(ii) for any i, the set Xi = {R ∈ NGP/UP ;Hi

c(S̄ ∩ R,K0) 6= 0} has dimension
< dimS − i.
Consider the set of all UP -cosets R in NGP such that S̄ ∩ R 6= ∅. On this set we
have a DZ0

G0 × P/UP -action (z, p) : R 7→ zpRp−1 which has only finitely many
orbits and has some orbit of dimension dimS − dR. Also, this action leaves stable
each of the subsets Xi in (ii).

Assume that (ii) holds. Let R ∈ NGP/UP . Assume that HdR
c (S ∩R, E) 6= 0. By

(b) we have R ∈ Xi with i = dR. Hence the orbit of R is contained in Xi. It follows
that dimXi ≥ dimS − dR contradicting (ii). Thus, (i) holds.

Conversely, assume that (i) holds. To establish (ii), we assume that i is such
that Xi 6= ∅; it is enough to show that for any DZ0

G0 ×P/UP -orbit η in Xi we have
dim η < dimS−i. If R ∈ η we have dim η = dimS−dR. Hence it is enough to show
that dimS − dR < dimS − i or that i < dR. Assume that i ≥ dR. Since Xi 6= ∅,
we have H i

c(S̄ ∩R,K0) 6= 0 for some R hence by (b) we have Hi
c(S ∩R, E) 6= 0. If

i > dR, this is impossible, by 6.2. If i = dR, this is impossible since (i) holds. Thus
we have i < dR and (ii) holds.

23.3. In the setup of 23.1 we say that E is clean if IC(S̄, E)|S̄−S = 0. We say that
E ∈ S(S) is strongly cuspidal if for any parabolic P of G0 such that P 6= G0, S ⊂
NGP and any UP -coset R in NGP we have Hi

c(S̄ ∩R,K0) = 0 for all i.
From the equivalence of (i) and (ii) in 23.2 we see that:
if E is strongly cuspidal, then E is cuspidal.

If E is assumed to be clean, then the condition that E is strongly cuspidal is equiv-
alent to the following condition: for any parabolic P of G0 such that P 6= G0, S ⊂
NGP and any UP -coset R in NGP we have Hi

c(S ∩R, E) = 0 for all i.
Let D be a connected component of G and let P be a parabolic of G0 such

that NDP 6= ∅. Let π′ : NDP → NDP/UP be the obvious map. Now NDP/UP
is a connected component of NGP/UP . Let i : NDP → D be the inclusion. Let
α = dimUP . Define a functor resNDP/UPD : D(D)→ D(NDUP /UP ) by

resNDP/UPD A = π′!i
∗A(α).
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Let L be a Levi of P . Let G′ = NGP ∩NGL, a reductive group with G′0 = L. Let
D′ = G′∩D, a connected component of G′. Define a homomorphism π : NGP → G′

by π(zω) = z for z ∈ NGP ∩ NGL, ω ∈ UP (see 1.26). The restriction of π to
NDP → D′ is denoted again by π. We may identify NGP/UP = G′, NDP/UP = D′

via π. Then resNDP/UPD becomes the functor

resD
′

D : D(D)→ D(D′)

given by resD
′

D A = π!i
∗A(α).

Let A be a perverse sheaf on D. We say that A is cuspidal if

resD
′

D A[−1] ∈ D(D′)≤0

for any P,L,D′ as above with P 6= G0. We say that A is strongly cuspidal if

resD
′

D (A) = 0

for any P,L,D′ as above with P 6= G0. Clearly, if A is strongly cuspidal, then it is
cuspidal.

Let S, E be as in 23.1. Let A = IC(S̄, E)[dimS] regarded as a perverse sheaf
on D, zero on D − S̄. Clearly, A is strongly cuspidal if and only if E is a strongly
cuspidal local system. We show:

(a) A is cuspidal if and only if E is a cuspidal local system.
By the equivalence of (i) and (ii) in 23.2, the condition that E is a cuspidal local
system is that, for any P,L,D′ be as above with P 6= G0 and any j ∈ Z we have

dim(suppHj(resD
′

D A[− dimS])) < dimS − j

or equivalently dim(suppHj(resD
′

D A)) < −j, that is, dim(suppHj(resD
′

D A[−1])) ≤
−j. This is the same as resD

′

D A[−1] ∈ D(D′)≤0. This proves (a).

23.4. Let E ∈ S(S). Let s ∈ Ss and let G′ = ZG(s). Let c be a G′0-conjugacy
class in V = {v ∈ G′; v unipotent, sv ∈ S}. Let δ be the connected component of
G′ that contains c. Let E ′ be the inverse image of E under δZ0

G′0c → S, g 7→ sg.
Then E ′ ∈ S(S′) where S′ = δZ0

G′0c. Let K0 = IC(S̄, E),K ′0 = IC(S̄′, E ′). We
show:

(a) E is clean (with respect to G) if and only if E ′ is clean (with respect to G′).
Let E ′′ be the inverse image of E under V → S, v 7→ sv. Since V is a smooth
equidimensional variety (it admits a transitive action of an algebraic group), the
complex IC(V̄ , E ′′) ∈ D(V̄) is well defined.

Using 1.22 we see that π : S̄ → Ss, g 7→ gs is a morphism of algebraic vari-
eties. Now DZ0

G0 × G0 acts on S̄ and Sc compatibly with π so that the action
on Sc is transitive. Since the fibre π−1(s) may be identified with V̄ , we see that
IC(V̄ , E ′′) = h∗K0 where h : V̄ → S̄, v 7→ sv. It follows that E is clean if and only
if IC(V̄ , E ′′)|V̄−V = 0. We have V =

⊔
i∈[1,m] ci where ci are G′0-conjugacy classes.

Hence IC(V̄ , E ′′) =
⊕

i∈[1,m] IC(c̄i, E ′′|c̄i). Thus, IC(V̄ , E ′′)|V̄−V = 0 if and only
if IC(c̄i, E ′′|c̄i)|c̄i−ci = 0 for all i. By the homogeneity of V this is equivalent to
the condition that IC(c̄, E ′′|c̄)|c̄−c = 0. (We have c = ci for some i.) This last
condition is equivalent to the condition that K ′0|S̄′−S̄′ = 0. This proves (a).

We show:
(b) If E is strongly cuspidal (with respect to G), then E ′ is strongly cuspidal (with

respect to G′).
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Let Q be a parabolic of G′0 such that Q 6= G′0, S′ ⊂ NG′Q. We must show
that for any z ∈ δZ0

G′0 , u ∈ c̄ ∩ Q we have Hi
c(zuUQ,K ′0) = 0 for all i. We may

assume that z = 1 and we must show that Hi
c(uUQ ∩ c̄,K ′0) = 0 for all i. Since

H i
c(uUQ∩c̄,K ′0) is a direct summand ofHi

c(uUQ∩V̄ , IC(V̄ , E ′′)), it is enough to show
that H i

c(uUQ ∩ V̄, IC(V̄ , E ′′)) = 0 for all i. Since IC(V̄ , E ′′) = h∗K0, it is enough
to show that H i

c(suUQ ∩ sV̄ ,K0) = 0 for all i. We have suUQ ∩ sV̄ = suUQ ∩ S̄
hence it is enough to show that H i

c(suUQ ∩ S̄,K0) = 0 for all i. By 1.18(a) we can
find a parabolic P of G0 such that P ∩G′0 = Q and su ∈ NGP . Clearly, P 6= G0.
Let f : suUP ∩ S̄ → sUP ∩ Ss be the restriction of π : S̄ → Ss. Now UP acts by
conjugation on suUP ∩ S̄ and on sUP ∩Ss compatibly with f ; moreover, this action
is transitive on sUP ∩Ss (see 19.3(a)). We have f−1(s) = suUQ ∩ S̄ hence we must
only show that H i

c(f−1(s),K0) = 0 for all i. The Leray spectral sequence of f is:

Ep,q2 = Hp
c (sUP ∩ Ss,Hqf!K0) =⇒ Hp+q

c (suUP ∩ S̄,K0).

The last vector space is zero since E is strongly cuspidal. Thus, Ep,q∞ = 0 for all p, q.
Now Hqf!K0 is a UP -equivariant local system on sUP ∩Ss and sUP ∩Ss ∼= UP /UP ′

is an affine space. Hence Ep,q2 = 0 for p 6= 2 dimUP /UP ′ . This implies that
Ep,q2 = Ep,q∞ for all p, q; it follows that Ep,q2 = 0 for all p, q so that Hqf!K0 = 0 for
all q. Taking the stalk at s we see that Hq

c (f−1(s),K0) = 0 for all q and (b) is
proved.

We show:
(c) Assume that S = DZ0

G0c where c is a unipotent G0-conjugacy class. Let
L ∈ S(DZ0

G0) be a local system of rank 1. If E is strongly cuspidal, then E⊗(L�Q̄l)
is strongly cuspidal.
We have IC(S̄, E ⊗ (L � Q̄l)) = K0 ⊗ (L � Q̄l) since S̄ ∼= DZ0

G0 × c̄. Let P be a
parabolic of G0 such that P 6= G0, S ⊂ NGP . Let z ∈ DZ0

G0 , u ∈ c̄. We know that
H i
c(zuUP ∩ S̄,K0) = 0. We must show that Hi

c(zuUP ∩ S̄,K0 ⊗ (L � Q̄l)) = 0.
It is enough to show that (L � Q̄l)|zuUP∩S̄ ∼= Q̄l. This follows from the fact that
(L� Q̄l)|zuUP∩S̄ = Lz ⊗ Q̄l where Lz is the stalk of L at z.

This argument shows also that, in the setup of (c):
(d) if E is clean, then E ⊗ (L� Q̄l) is clean.

23.5. Let S,D be as in 23.1. Assume that there exists a non-zero cuspidal local
system in S(S). Let E ′, E ′′ ∈ S(S) be such that the local system E ′ ⊗ E ′′ has no
direct summand isomorphic to Q̄l. We show that

(a) Hi
c(S, E ′ ⊗ E ′′) = 0 for all i.

It is enough to show that, if E ∈ S(S) is irreducible and E 6∼= Q̄l, then Hi
c(S, E) = 0

for all i. Let H = DZ0
G0 × G0. We can find n ∈ N∗k such that E is equivariant

for the transitive H-action (z, x) : g 7→ xzngx−1 on S. Let y ∈ S and let Hy

be the stabilizer of y in H for this action. Let S̃ = H/H0
y . Define f : S̃ → S

by f(z, x) = xznyx−1 (a principal Hy/H
0
y -covering where Hy acts on S̃ by right

multiplication). Now E is a direct summand of the local system f!Q̄l. It is enough
to show that H i

c(S, f!Q̄l) = Hi
c(S, Q̄l) for all i or equivalently that Hy/H

0
y acts

trivially on H i
c(S̃, Q̄l). Let H̄ = DZ0

G0 × (G0/DZ0
G0). Define f ′ : H̄ → S̃ by

(z, xDZ0
G0) 7→ (z, x)H0

y . Now f ′ is a fibration with fibres isomorphic to H0
y/({1}×

DZ0
G0) ∼= ZG(y)0/DZ0

G0 which by 10.2 is isomorphic to an affine space of dimension
say a. Hence we have Hi

c(S̃, Q̄l) = Hi+2a
c (H̄, Q̄l). Also the Hy/H

0
y -action on S̃ is

compatible under f ′ with the Hy/({1}×DZ0
G0)-action on H̄ by right multiplication.
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It is enough to show that Hy/({1} × DZ0
G0) acts trivially on Hi+2a

c (H̄, Q̄l). This
follows from the fact that the Hy/({1} × DZ0

G0)-action on H̄ is the restriction of
an action of the connected group H/({1}×DZ0

G0) and a connected group must act
trivially in cohomology. This proves (a).

23.6. Let (L′, S′), (L′′, S′′) ∈ A. Assume that E ′ ∈ S(S′) and E ′′ ∈ S(S′′) are
strongly cuspidal relative to NGL′, NGL′′ respectively. Let K ′0 = IC(S̄′, E ′), K ′′0 =
IC(S̄′′, E ′′). We regard K ′0 (resp. K ′′0 ) as a complex on NGL

′ (resp. NGL′′) zero
outside S̄′ (resp. S̄′′). To L′, S′, E ′ (resp. L′′, S′′, E ′′) we attach K′ ∈ D(ȲL′,S′)
(resp. K′′ ∈ D(ȲL′′,S′′)) in the same way as K = IC(ȲL,S , π!Ẽ) was attached to
L, S, E in 5.6. We regard K′,K′′ as complexes on G, zero outside ȲL′,S′ , ȲL′′,S′′

respectively.

Proposition 23.7. Assume that for any n ∈ G0 such that n−1L′n = L′′, hence
n−1NGL

′n = NGL
′′, we have Hi

c(NGL
′,K ′0 ⊗ Ad(n−1)∗K ′′0 ) = 0 for all i. (This

condition is automatically verified if L′, L′′ are not G0-conjugate.) Then Hi
c(G,K′⊗

K′′) = 0 for all i.

The proof is quite similar to (but simpler than) that in 7.8. Let P ′ (resp. P ′′) be a
parabolic of G0 with Levi L′ (resp. L′′) such that S′ ⊂ NGP ′ (resp. S′′ ⊂ NGP ′′).
Let X ′, X ′′,K ′ ∈ D(X ′),K ′′ ∈ D(X ′′),Z be as in 7.4. We may regard Z as a
subvariety of X ′ ×X ′′ via the imbedding (g, x′P ′, x′′P ′′) 7→ ((g, x′P ′), (g, x′′P ′′)).
The inverse image of K ′ �K ′′ ∈ D(X ′ × X ′′) under this imbedding is a complex
K̃ ∈ D(Z). Using a description of K′,K′′ as in 5.7 we see that K′ ⊗ K′′ = (pr1)!K̃

where pr1 : Z→ G is the first projection. It follows that Hi
c(G,K′⊗K′′) = Hi

c(Z, K̃)
for all i. Hence it is enough to show that Hi

c(Z, K̃) = 0 for all i. For any G0-orbit
E on G0/P ′×G0/P ′′ let EZ = {(g, x′P ′, x′′P ′′) ∈ Z; (x′P ′, x′′P ′′) ∈ E}. Using the
partition of Z into the finitely many locally closed subvarieties EZ we see that it is
enough to show that H i

c(
EZ, K̃) = 0 for all i and any E as above. Using the spectral

sequence of the fibration pr23 : EZ→ E, (g, x′P ′, x′′P ′′) 7→ (x′P ′, x′′P ′′) we see that
it is enough to show that for any (x′, x′′) ∈ G0×G0 such that (x′P ′, x′′P ′′) ∈ E we
have H i

c(V , K̃) = 0 for all i where V is the fibre of pr23 at (x′P ′, x′′P ′′). We identify
V = {g ∈ G;x′−1gx′ ∈ S̄′UP ′ , x′′−1gx′′ ∈ S̄′′UP ′′} and define j : V → S̄′ × S̄′′ by

j(g) = (S̄′ − component of x′−1gx′, S̄′′ − component of x′′−1gx′′).

Then K̃|V may be identified with j∗(K ′0 �K ′′0 ) and we must show that
H i
c(V , j∗(K ′0 �K ′′0 )) = 0 for all i.

Let Q′, Q′′,M ′,M ′′,Σ′,Σ′′,F ′,F ′′ be as in 7.8. Let K̂ ′0 = IC(Σ̄′,F ′), K̂ ′′0 =
IC(Σ̄′′,F ′′). As in 7.8, V is fibred over

V1 = {(u′′, u′, z) ∈ (M ′ ∩ UQ′′)× (M ′′ ∩ UQ′)× (M̃ ′ ∩ M̃ ′′); zu′′ ∈ Σ̄′, zu′ ∈ Σ̄′′}
with all fibres isomorphic to UQ′∩UQ′′ . Since UQ′∩UQ′′ is an affine space we see that
it is enough to show that Hi

c(V1, j̄
∗(K̂ ′0� K̂ ′′0 )) = 0 for all i where j̄ : V1 → Σ̄′× Σ̄′′

is defined by j̄(u′′, u′, z) = (zu′′, zu′).
Assume first that Q′, Q′′ have no common Levi. Let p̃3 : V1 → M̃ ′ ∩ M̃ ′′ be

the third projection. It is enough to show that for any z ∈ M̃ ′ ∩ M̃ ′′ we have
H i
c(p̃
−1
3 (z), j̄∗(K̂ ′0 � K̂ ′′0 )) = 0 for all i. Now p̃−1

3 (z) is a product R′ ×R′′ where R′

(resp. R′′) is the set of all elements in (M̃ ′∩NGQ′′)∩ Σ̄′ (resp. (M̃ ′′∩NGQ′)∩ Σ̄′′)
whose image under M̃ ′ ∩ NGQ′′ → M̃ ′ ∩ M̃ ′′ (resp. M̃ ′′ ∩ NGQ′ → M̃ ′ ∩ M̃ ′′) is
equal to z. We are reduced to showing that Hi′

c (R′, K̂ ′0)⊗Hi′′

c (R′′, K̂ ′′0 ) = 0 for all
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i′, i′′. Since Q′, Q′′ have no common Levi, we see that either M ′ ∩ Q′′ is a proper
parabolic of M ′ or M ′′ ∩Q′ is a proper parabolic of M ′′. In the first case we have
H i′

c (R′, K̂ ′0) = 0 for all i′ since F ′ is strongly cuspidal in S(Σ′). In the second case
we have H i′′

c (R′′, K̂ ′′0 ) = 0 for all i′′ since F ′′ is strongly cuspidal in S(Σ′′). Thus
the desired vanishing result holds in our case.

Assume next that Q′, Q′′ have a common Levi. Then M ′ = M ′′, M ′∩UQ′′ = {1},
M ′′ ∩ UQ′ = {1} and we may identify V1 = Σ̄′ ∩ Σ̄′′. We must only show that
H i
c(Σ̄′ ∩ Σ̄′′, K̂ ′0⊗ K̂ ′′0 )) = 0 for all i. As in 7.8 we can find v′ ∈ UP ′ , v′′ ∈ UP ′′ such

that, setting n = v′−1x′−1x′′v′′ ∈ G0, we have n−1L′n = L′′. Then the desired
vanishing result is equivalent to Hi

c(NGL′,K ′0 ⊗ Ad(n−1)∗K ′′0 ) = 0 for all i, which
is part of our assumptions. The proposition is proved.

24. Orthogonality

24.1. In this section we assume that k is an algebraic closure of a finite field Fq
and that G has a fixed Fq-rational structure with Frobenius map F : G→ G.

24.2. Let L be a Levi of a parabolic of G0. Let δ be a connected component of
NGL such that δ ⊂ N•GL. Assume that F (L) = L,F (δ) = δ and that the F -stable
torus Z = δZ0

L is Fq-split, that is, F (z) = zq for all z ∈ Z. We show that
(a) there exists a parabolic P of G0 with Levi L such that F (P ) = P .

We can find χ ∈ Hom(k∗,Z) such that ZG0(χ(k∗)) = ZG0(Z). Let g ∈ δ. Define
χ′, χ′′ ∈ Hom(k∗,Z) by χ′(a) = gχ(a)g−1, χ′′(a) = F (χ(aq

−1
)). To χ, χ′, χ′′ we

attach parabolics Pχ, Pχ′ , Pχ′′ of G0 as in 1.16. Let P = Pχ. From the definitions
we have Pχ′ = gPg−1, Pχ′′ = F (P ). Since χ(k∗) ⊂ ZG0(g) we have χ′ = χ. Since
Z is Fq-split, we have χ′′(a) = χ(aq

−1
)q = χ(a) for any a hence χ′′ = χ. Thus,

gPg−1 = P, F (P ) = P . It follows that δ ⊂ NGP . Now ZG0(χ(k∗)) is a Levi of P
and ZG0(Z) = L by 1.10(a). Hence L is a Levi of P . This proves (a).

24.3. Let (L′, S′), (L′′, S′′) ∈ A. Assume that E ′ ∈ S(S′) and E ′′ ∈ S(S′′) are
strongly cuspidal relative to NGL

′, NGL
′′ respectively. Assume that F (L′) =

L′, F (S′) = S′, F (L′′) = L′′, F (S′′) = S′′ and that we are given isomorphisms
ε′ : F ∗E ′ ∼−→ E ′, ε′′ : F ∗E ′′ ∼−→ E ′′. Let K′,K′′ be as in 23.6 and let φ′ : F ∗K′ ∼−→ K′,
φ′′ : F ∗K′′ ∼−→ K′′ be the isomorphisms induced by ε′, ε′′. Let δ′ (resp. δ′′) be the
connected component of NGL′ (resp. NGL

′′) that contains S′ (resp. S′′). As-
sume that either L′, L′′ are not G0-conjugate or that E ′ and E ′′ are clean (relative
to NGL

′, NGL
′′). Let Θ = {n ∈ G0F ;n−1L′n = L′′, n−1S′n = S′′}. With these

assumptions we state:

Lemma 24.4.

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g)

= |L′F |−1|L′′F |−1
∑
n∈Θ

∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n−1yn).(a)

The proof is given in 24.7–24.12.
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24.5. Let (L′, S′), (L′′, S′′) ∈ A. Let δ′ (resp. δ′′) be the connected component of
NGL

′ (resp. NGL′′) that contains S′ (resp. S′′). Assume that S′ = δ′Z0
L′c
′, S′′ =

δ′′Z0
L′′c
′′ where c′ is a unipotent L′-conjugacy class and c′′ is a unipotent L′′-

conjugacy class. Let F ′ (resp. F ′′) be an L′- (resp. L′′-) equivariant local system
on c′ (resp. c′′) such that Q̄l � F ′ (resp. Q̄l � F ′′) is a strongly cuspidal local
system relative to NGL

′ (resp. NGL
′′). Assume that F (L′) = L′, F (c′) = c′,

F (L′′) = L′′, F (c′′) = c′′ and that we are given isomorphisms ε̄′ : F ∗F ′ ∼−→ F ′,
ε̄′′ : F ∗F ′′ ∼−→ F ′′. Assume that either L′, L′′ are not G0-conjugate or that Q̄l�F ′
and Q̄l � F ′′ are clean (relative to NGL′, NGL′′). Let Θ be as in 24.3. With these
assumptions we state:

Lemma 24.6.

|G0F |−1
∑

u∈GF ;unip.

QL′,G,c′,F ′,ε̄′(u)QL′′,G,c′′,F ′′,ε̄′′(u)

= |L′F |−1|L′′F |−1
∑
n∈Θ

∑
y∈c′F

χF ′,ε̄′(y)χF ′′,ε̄′′(n−1yn).(a)

The proof is given (together with that of Lemma 24.4) in 24.7-24.12.

24.7. We prove Lemma 24.4 assuming that L′, L′′ are not G0-conjugate. Let Φ :
H i
c(G,K′ ⊗ K′′) ∼−→ Hi

c(G,K′ ⊗ K′′) be the composition

Hi
c(G,K

′ ⊗ K′′) ∼−→ Hi
c(G,F

∗K′ ⊗ F ∗K′′) ∼−→ Hi
c(G,K

′ ⊗ K′′)

(the first map is induced by F : G → G, the second map is induced by φ′ ⊗
φ′′). By the Grothendieck trace formula, the left-hand side of 24.4(a) is equal to∑
i(−1)itr(Φ, Hi

c(G,K
′ ⊗ K′′)). This is zero since Hi

c(G,K
′ ⊗ K′′) = 0 for all i, by

23.7. The right-hand side of 24.4(a) is also zero, by our assumption. Thus Lemma
24.4 is proved in the present case.

24.8. We prove Lemma 24.4 under the following assumptions:
S′ = δ′Z0

L′c
′, S′′ = δ′′Z0

L′′c
′′ where δ′, δ′, c′, c′′ are as in 24.5;

for some/any c′ ∈ c′, E ′|δ′Z0
L′c
′ has no direct summand isomorphic to Q̄l;

for some/any c′′ ∈ c′′, E ′′|δ′′Z0
L′′c

′′ is isomorphic to Q̄N
l for some N .

By 24.7 we may assume that L,L′ are G0-conjugate. Then E ′, E ′′ are clean. We
show that the left-hand side of 24.4(a) is zero. As in 24.7 it is enough to show
that H i

c(G,K
′ ⊗ K′′) = 0 for all i. Using 23.7, it is enough to show that for any

n ∈ G0 such that n−1L′n = L′′ we have Hi
c(NGL

′,K ′0 ⊗ Ad(n−1)∗K ′′0 ) = 0 for
all i. The last equality is clear if n−1S′n 6= S′′ (in this case n−1S′n ∩ S′′ = ∅
and we have K ′0 ⊗ Ad(n−1)∗K ′′0 = 0 since E ′, E ′′ are clean). Assume now that
n−1S′n = S′′. Then K ′0 ⊗ Ad(n−1)∗K ′′0 is the local system E ′ ⊗ Ad(n−1)∗E ′′ on
S′ extended by 0 on NGL

′ − S′. Hence it is enough to show that Hi
c(S′, E ′ ⊗

Ad(n−1)∗E ′′) = 0 for all i. This follows from 23.5(a) since, by our assumption,
the local system E ′ ⊗Ad(n−1)∗E ′′ has no direct summand isomorphic to Q̄l. Next
we show that the right-hand side of 24.4(a) is zero. It is enough to show that for
any n ∈ Θ the sum

∑
y∈S′F χE′,ε′(y)χE′′,ε′′(n−1yn) is zero. By the Grothendieck

trace formula, this sum is an alternating sum of traces of the Frobenius map on
H i
c(S′, E ′ ⊗ Ad(n−1)∗E ′′). As we have seen above, this vector space is zero. Thus

Lemma 24.4 is proved in the present case.
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24.9. We prove Lemma 24.4 under the following assumption: there exist parabolics
P ′, P ′′ of G0 with Levi L′, L′′ respectively such that S′ ⊂ NGP

′, S′′ ⊂ NGP
′′,

F (P ′) = P ′, F (P ′′) = P ′′.
By 24.7 we may assume that L,L′ are G0-conjugate. Then E ′, E ′′ are clean.

Define X ′S′ , Ē ′ (resp. X ′′S′′ , Ē ′′) in terms of L′, P ′, S′, E ′ (resp. L′′, P ′′, S′′, E ′′) in
the same way as XS, Ē were defined in terms of L,P, S, E in 5.6. Using 5.7 and
the cleanness of E ′, E ′′ we see that K′ = f ′! Ē ′,K′′ = f ′′! Ē ′′ where f ′ : X ′S′ → G, f ′′ :
X ′′S′′ → G are given by the first projection. Note that X ′S′ , X

′′
S′′ , f

′, f ′′ are naturally
defined over Fq and there are obvious isomorphisms F ∗Ē ′ ∼−→ Ē ′, F ∗Ē ′′ ∼−→ Ē ′′
induced by ε′, ε′′. It follows that

χK′,φ′(g) =
∑

x′P ′F∈G0F /P ′F ;x′−1gx′∈S′UP ′

χE′,ε′(π′(x′−1gx′)),

χK′′,φ′′(g) =
∑

x′′P ′′F∈G0F /P ′′F ;x′′−1gx′′∈S′′UP ′′

χE′′,ε′′(π′′(x′′−1gx′′)),

where π′ : (S′UP ′)F → S′F , π′′ : (S′′UP ′′)F → S′′F are the obvious projections (see
1.26). Hence the left-hand side of 24.4(a) is

(a) |G0F |−1|P ′F |−1|P ′′F |−1
∑

x′,x′′∈G0F

h(x′, x′′)

where
h(x′, x′′) =

∑
g∈V F

χE′,ε′(π′(x′−1gx′))χE′′,ε′′(π′′(x′′−1gx′′))

and V = {g ∈ G;x′−1gx′ ∈ S′UP ′ , x′′−1gx′′ ∈ S′′UP ′′}.
Assume first that x′P ′x′−1, x′′P ′′x′′−1 have no common Levi. In this case we

show that h(x′, x′′) = 0. By the Grothendieck trace formula, h(x′, x′′) is equal to
an alternating sum of traces of Frobenius on Hi

c(V , K̃) (notation as in the proof
of 23.7). By the proof of 23.7, in our case we have Hi

c(V , K̃) = 0 for all i. (The
relevant part of the proof of 23.7 does not make use of the assumptions in the first
sentence of 23.7; it only uses the strong cuspidality of E ′, E ′′.) Thus h(x′, x′′) = 0,
as desired.

Assume now that x′, x′′ ∈ G0F are such that Q′ = x′P ′x′−1, Q′′ = x′′P ′′x′′−1

have a common Levi M ′ = M ′′ (we may assume that M ′ = M ′′ is F -stable). We
can find v′ ∈ UFP ′ , v′′ ∈ UFP ′′ such that, setting n = v′−1x′−1x′′v′′ ∈ G0F , we have
n−1L′n = L′′. Also, n is uniquely determined by x′, x′′. Let Σ′,Σ′′ be strata of
NGM

′ = NGM
′′ as in 7.8. As in 7.8, we have a natural map V → Σ′ ∩ Σ′′ with

fibres isomorphic to UQ′ ∩ UQ′′ ∼= UP ′ ∩ UnP ′′n−1 . In particular, V = ∅ unless
Σ′ ∩ Σ′′ 6= ∅ or equivalently, Σ′ = Σ′′ or equivalently, n−1S′n = S′′. If this last
condition is satisfied, we have

h(x′, x′′) = |UFP ′ ∩ UFnP ′′n−1 |
∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n−1yn).

It is then enough to show that

]((x′, x′′) ∈ G0F ×G0F ;x′−1x′′ ∈ UFP ′nUFP ′′)
= |G0F ||P ′F ||P ′′F ||L′F |−1|L′′F |−1|UFP ′ ∩ UFnP ′′n−1 |.

This is immediate. Thus Lemma 24.4 is proved in the present case.
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24.10. We show that Lemma 24.4 holds for G under the assumption that Lemma
24.6 holds when G is replaced by ZG(s) for any semisimple element s of GF . We
evaluate the left-hand side of 24.4(a) using the “character formula” 16.14. We have

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g) = |G0F |−1
∑

s∈GF semis.

∑
x′,x′′∈G0F

x′−1sx′∈S′s
x′′−1sx′′∈S′′s

d′,d′′

|ZG(s)0F |−2|L′x′F ||L′F |−1|L′′x′′F ||L′′F |−1f(s, x′, x′′,d′,d′′)

where
L′x′ = x′L′x′−1 ∩ ZG(s)0, L′′x′′ = x′′L′′x′′−1 ∩ ZG(s)0,
d′ runs over the set of F -stable L′x′-conjugacy classes contained in
{v ∈ ZG(s); v unipotent, x′−1svx′ ∈ S′},
d′′ runs over the set of F -stable L′′x′′-conjugacy classes contained in
{v ∈ ZG(s); v unipotent, x′′−1svx′′ ∈ S′′},

f(s, x′, x′′,d′,d′′) =
∑

u∈ZG(s)F

uunip.

QL′
x′ ,ZG(s),d′,F ′

x′ ,ε
′
x′

(u)QL′′
x′′ ,ZG(s),d′′,F ′′

x′′ ,ε
′′
x′′

(u).

Here F ′x′ is the inverse image of E ′ under d′ → S′, v 7→ x′−1svx′, F ′′x′′ is the
inverse image of E ′′ under d′′ → S′′, v 7→ x′′−1svx′′, and ε′x′ : F ∗F ′x′

∼−→ F ′x′ , ε′′x′′ :
F ∗F ′′x′′

∼−→ F ′′x′′ are induced by ε′, ε′′. Using our assumption we have

f(s, x′, x′′,d′,d′′) = |ZG(s)0F ||L′x′F |−1|L′′x′′F |−1

×
∑

n∈ZG(s)0F

n−1L′x′n=L′′x′′
n−1d′n=d′′

∑
v∈d′F

χF ′
x′ ,ε
′
x′

(v)χF ′′
x′′ ,ε

′′
x′′

(n−1vn).(a)

To be able to apply our assumption, we use 23.4(a),(b). We also use the following
fact.

For s, x′, x′′ as above and for n ∈ ZG(s)0, the condition n−1L′x′n = L′′x′′ is
equivalent to n−1x′Lx′−1n = x′′Lx′′.
Indeed, since S′ is an isolated stratum of NGL′ and x′−1sx′ ∈ Ss, we see using 18.2
that x′−1sx′ is isolated in NGL

′. Hence s is isolated in NG(x′L′x′−1). It follows
that s is isolated in NG(n−1x′L′x′−1n). Similarly, s is isolated in NG(x′′L′′x′′−1).
By the injectivity of the map a in 21.3 (for s instead of g) we see that

n−1x′L′x′−1n ∩ Z(s)0 = x′′L′′x′′−1 ∩ ZG(s)0 ↔ n−1x′L′x′−1n = x′′L′′x′′−1,

that is, n−1L′x′n = L′′x′′ ↔ n−1x′L′x′−1n = x′′L′′x′′−1, as required. We have

χF ′
x′ ,ε
′
x′

(v) = χE′,ε′(x′−1svx′), χF ′′
x′′ ,ε

′′
x′′

(n−1vn) = χE′′,ε′′(x′′−1sn−1vnx′′).
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Note also that the condition n−1d′n = d′′ implies n−1x′S′x′−1n = x′′S′′x′′−1. We
see that

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g)

= |G0F |−1|L′F |−1|L′′F |−1
∑

s∈GF semis.
x′,x′′∈G0F ,d′

x′−1sx′∈S′s
x′′−1sx′′∈S′′s

|ZG(s)0F |−1

∑
n∈ZG(s)0F

n−1x′L′x′−1n=x′′L′′x′′−1

n−1x′S′x′−1n=x′′S′′x′′−1

∑
v∈d′F

χE′,ε′(x′−1svx′)χE′′,ε′′(x′′−1sn−1vnx′′).

We now make the change of variable (x′, x′′, n) 7→ (x′, n, n′), n′−1 = x′′−1n−1x′.
The condition n−1x′L′x′−1n = x′′L′′x′′−1 becomes n′−1L′n′ = L′′; the condition
n−1x′S′x′−1n = x′′S′′x′′−1 becomes n′−1S′n′ = S′′ (thus, n′ ∈ Θ). The condition
x′′−1sx′′ ∈ S′′s becomes n′−1x′−1nsn−1x′n′ ∈ n′−1S′sn

′, that is, x′−1sx′ ∈ S′s. Our
sum becomes

|G0F |−1|L′F |−1|L′′F |−1
∑

s∈GF semis.
x′∈G0F

x′−1sx′∈S′s

|ZG(s)0F |−1

∑
n∈ZG(s)0F

n′∈Θ

∑
v∈ZG(s)F ;v unip.

x′−1svx′∈S′

χE′,ε′(x′−1svx′)χE′′,ε′′(n′−1x′−1svx′n′).

By the change of variable (s, x′, v) 7→ (s′, x′, v′) where s′ = x′−1sx′ ∈ S′s, v
′ =

x′−1vx′ ∈ ZG(s′) ∩ s′−1S′ our sum becomes

|L′F |−1|L′′F |−1
∑

s′∈S′sF
n′∈Θ

∑
v′∈ZG(s′)F ;v′unip.

v′∈s′−1S′

χE′,ε′(s′v′)χE′′,ε′′(n′−1s′v′n′)

= |L′F |−1|L′′F |−1
∑
n′∈Θ

∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n′−1yn′),

as required.

24.11. We show that Lemma 24.6 holds for G under the assumption that Lemma
24.6 holds when G is replaced by ZG(s) for any semisimple element s of GF such
that dimZG(s) < dimG (that is, s /∈ ZG(G0)).

Let L′ ∈ S(δ
′Z0
L′), L′′ ∈ S(δ

′′Z0
L′′) be local systems of rank 1 with given iso-

morphisms ι′ : F ∗L′ ∼−→ L′, ι′′ : F ∗L′′ ∼−→ L′′. Let E ′ = L′ � F ′ ∈ S(S′),
E ′′ = L′′ � F ′′ ∈ S(S′′). Let ε′ = ι′ � ε̄′ : F ∗E ′ ∼−→ E ′, ε′′ = ι′′ � ε̄′′ : F ∗E ′′ ∼−→ E ′′.
Note that E ′, E ′′ are strongly cuspidal by 23.4(c) and that, if L′, L′′ are not G0-
conjugate, then E ′, E ′′ are clean by 23.4(d). For this E ′, E ′′ we can still try to
carry out the argument in 24.10 but now we can only use 24.6(a) for s such that
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s /∈ ZG(G0). We obtain:

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g)

− |L′F |−1|L′′F |−1
∑
n∈Θ

∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n−1yn)

= |G0F |−1
∑

s∈ZG(G0)F semis.

∑
x′,x′′∈G0F ,d′,d′′

x′−1sx′∈S′s
x′′−1sx′′∈S′′s

|ZG(s)0F |−2|L′x′F ||L′F |−1|L′′x′′F ||L′′F |−1

(
∑

u∈ZG(s)F ;unip.

QL′
x′ ,ZG(s),d′,F ′

x′ ,ε
′
x′

(u)QL′′
x′′ ,ZG(s),d′′,F ′′

x′′ ,ε
′′
x′′

(u)

− |ZG(s)0F ||L′x′F |−1|L′′x′′F |−1
∑

n∈ZG(s)0F

n−1L′x′n=L′′x′′
n−1d′n=d′′∑

v∈d′F

χF ′
x′ ,ε
′
x′

(v)χF ′′
x′′ ,ε

′′
x′′

(n−1vn))(a)

(notation of 24.10.) For each s, x′, x′′ in the right-hand side of (a) we have s =
x′−1sx′ ∈ δ′Z0

L′ . Similarly, s ∈ δ′′Z0
L′′ . In particular, we have s ∈ G0 hence

s ∈ ZG0 and ZG(s)0 = G0, L′x′ = x′L′x′−1, L′′x′′ = x′′L′′x′′−1. Also we necessarily
have d′ = x′c′x′−1, d′′ = x′′c′′x′′−1. We see that the right-hand side of (a) is

|G0F |−1
∑

s∈ZG0∩δ′Z0
L′∩δ

′′Z0
L′′

∑
x′,x′′∈G0F

|G0F |−2(
∑

u∈ZG(s)F ;unip.

QL′,ZG(s),c′,F ′,ε̄′(u)QL′′,ZG(s),c′′,F ′′,ε̄′′(u)

− |G0F ||L′F |−1|L′′F |−1
∑

n∈G0F

n−1x′L′x′−1n=x′′L′′x′′−1

n−1x′c′x′−1n=c′′

∑
v∈c′F

χF ′,ε̄′(v)χF ′′,ε̄′′(x′′−1n−1x′vn))

or, equivalently,

|G0F |−1
∑

s∈ZG0∩δ′Z0
L′∩δ

′′Z0
L′′

(
∑

u∈ZG(s)F ;unip.

QL′,ZG(s),c′,F ′,ε̄′(u)QL′′,ZG(s),c′′,F ′′,ε̄′′(u)

− |G0F ||L′F |−1|L′′F |−1
∑
n′∈Θ

∑
v∈c′F

χF ′,ε̄′(v)χF ′′,ε̄′′(n′−1vn′)).(b)

Let D′ (resp. D′′) be the connected component of G that contains δ′ (resp. δ′′) For
each s in the sum we have D′⊂ZG(s), D′′⊂ZG(s); moreover, QL′,ZG(s),c′,F ′,ε̄′(u)=
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0 unless u ∈ D′ and QL′′,ZG(s),c′′,F ′′,ε̄′′(u) = 0 unless u ∈ D′′. We see that∑
u∈ZG(s)F ;unip.

QL′,ZG(s),c′,F ′,ε̄′(u)QL′′,ZG(s),c′′,F ′′,ε̄′′(u)

=
∑

u∈GF ;unip.

QL′,G,c′,F ′,ε̄′(u)QL′′,G,c′′,F ′′,ε̄′′(u).

Hence (a) becomes

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g)

− |L′F |−1|L′′F |−1
∑
n∈Θ

∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n−1yn)

= |G0F |−1](ZG0 ∩ δ′Z0
L′ ∩ δ

′′Z0
L′′)

(
∑

u∈GF ;unip.

QL′,G,c′,F ′,ε̄′(u)QL′′,G,c′′,F ′′,ε̄′′(u)

− |G0F ||L′F |−1|L′′F |−1
∑
n′∈Θ

∑
v∈c′F

χF ′,ε̄′(v)χF ′′,ε̄′′(n′−1vn′)).(c)

Hence to prove the equality 24.6(a) it is enough to show that the left-hand side of
(c) is zero. In order to do so, we are free to choose L′,L′′, ι′, ι′′ in a convenient way.

Assume first that δ′Z0F
L′ 6= {1}. Then we can find a non-trivial character θ′ :

δ′Z0F
L′ → Q̄∗l and L′, ι′ as above such that χL′,ι′ = θ′. We have L′ 6∼= Q̄l. Let

L′′ = Q̄l and take any ι′′. With these choices, 24.8 shows that the left-hand side of
(c) is zero.

Assume next that δ
′′Z0F

L′′ 6= {1}. Since L′, L′′ play a symmetrical role, we see as
in the previous paragraph that the left-hand side of (c) is zero.

Finally, assume that δ′Z0F
L′ = {1} and δ′′Z0F

L′′ = {1}. Then the F -stable tori
δ′Z0

L′ ,
δ′′Z0

L′′ are necessarily Fq-split and q = 2. Using 24.2(a) we can find parabol-
ics P ′, P ′′ of G0 with Levi L′, L′′ such that F (P ′) = P ′, F (P ′′) = P ′′. Then 24.9
shows that the left-hand side of (c) is zero. Thus Lemma 24.6 is proved in the
present case.

24.12. Clearly, the arguments in 24.10, 24.11 provide an inductive proof of Lemmas
24.4, 24.6.

24.13. In the setup of 24.3, assume that E ′, E ′′ are irreducible. Let

Θ(E ′, E ′′) = {n ∈ G0F ;n−1L′n = L′′, n−1S′n = S′′,Ad(n−1)∗E ′′ ∼= Ě ′}.

If n ∈ Θ(E ′, E ′′), the local system Ê = E ′ ⊗ Ad(n−1)∗E ′′ is canonically of the form
Q̄l⊕Ê1 where Ê1 ∈ S(S) has no direct summand Q̄l. The isomorphisms ε′, ε′′ induce
an isomorphism F ∗Ê ∼−→ Ê which respects the summand Q̄l and induces on it ζ(n)
times the obvious isomorphism F ∗Q̄l

∼−→ Q̄l. Here ζ(n) ∈ Q̄∗l is well defined.
We show that, if n ∈ Θ(E ′, E ′′) and n0 ∈ G0F , n−1

0 L′n0 = L′, n−1
0 S′n0 = S′,

Ad(n−1
0 )∗E ′ ∼= E ′, then n0n ∈ Θ(E ′, E ′′) satisfies

(a) ζ(n0n) = η(n−1
0 )ζ(n)
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where η(n−1
0 ) is as in 21.6. Let α : Ad(n−1

0 )∗E ′ ∼−→ E ′ be an isomorphism. We have
an isomorphism

Ad(n−1
0 )∗(E ′ ⊗Ad(n−1)∗E ′′)

= Ad(n−1
0 )∗E ′ ⊗Ad(n−1n−1

0 )∗E ′′ α⊗−−→ E ′ ⊗Ad(n−1n−1
0 )∗E ′′

which must carry the summand Ad(n−1
0 )∗(Q̄l) to the summand Q̄l. Let x ∈ S′F .

Let e′i ∈ E ′n−1
0 xn0

, e′′i ∈ E ′′n−1n−1
0 xn0n

be such that
∑

i e
′
i ⊗ e′′i belongs to the stalk of

the summand Q̄l of Ad(n−1
0 )∗E ′⊗Ad(n−1n−1

0 )∗E ′′ at x. Then
∑
i α(e′i)⊗e′′i belongs

to the stalk of the summand Q̄l of E ′ ⊗Ad(n−1n−1
0 )∗E ′′ at x. By definition,∑

i

ε′(e′i)⊗ ε′′(e′′i ) = ζ(n)
∑
i

e′i ⊗ e′′i ,
∑
i

ε′(α(e′i))⊗ ε′′(e′′i ) = ζ(n0n)
∑
i

α(e′i)⊗ e′′i ,

ε′(α(e′i)) = η(n−1
0 )α(ε′(e′i)).

We deduce ∑
i

ε′(α(e′i))⊗ ε′′(e′′i ) =η(n−1
0 )(α⊗ 1)(

∑
i

ε′(e′i)⊗ ε′′(e′′i ))

= η(n−1
0 )ζ(n)(α ⊗ 1)(

∑
i

e′i ⊗ e′′i )

and (a) follows.
From (a) we deduce:
(b) if (L′, S′, E ′) is effective (see 21.6), then ζ : Θ(E ′, E ′′)→ Q̄∗l is constant.

Lemma 24.14. Assume that n ∈ Θ. Then
∑

y∈S′F χE′,ε′(y)χE′′,ε′′(n−1yn) equals

ζ(n)qdim S′−dimL′ |L′F |

if n ∈ Θ(E ′, E ′′) and 0, otherwise.

In the following proof we write S instead of S′ and δ for the connected component
of NGL′ that contains S. By the Grothendieck trace formula, our sum is an alter-
nating sum of traces of the Frobenius map on Hi

c(S, Ê) where Ê = E ′⊗Ad(n−1)∗E ′′.
If n /∈ Θ(E ′, E ′′), then Ê has no direct summand isomorphic to Q̄l, hence by 23.5(a),
H i
c(S′, Ê) = 0. Thus we may assume that n ∈ Θ(E ′, E ′′). Then we have canonically
Ê = Q̄l ⊕ Ê1 as in 24.13. As in the proof of 23.5(a) we have Hi

c(S, Ê1) = 0 for all i,
hence H i

c(S, Ê) = Hi
c(S, Q̄l). By the definition of ζ(n) in 24.13 we see that the sum

in the lemma is equal to ζ(n)
∑

i(−1)itr(F ∗, Hi
c(S, Q̄l)). Let f : S̃ → S be as in

23.5 (for a fixed y ∈ SF and for NGL′, δ instead of G,D). Then S̃, f are defined over
Fq and from the proof of 23.5 we see that tr(F ∗, Hi

c(S, Q̄l)) = tr(F ∗, Hi
c(S̃, Q̄l)).

Hence our sum is equal to

ζ(n)
∑
i

(−1)itr(F ∗, Hi
c(S̃, Q̄l)) = ζ(n)|S̃F | = ζ(n)|δZ0F

L′ ||L′F ||ZL′(y)0F |−1.

By 10.2, ZL′(y)0/δZ0
L′ is a (connected) unipotent group. Hence

|δZ0F
L′ ||ZL′(y)0F |−1 = qdim δZ0

L′−dimZL′ (y)0
= qdimS−dimL′ .

The lemma is proved.
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Proposition 24.15. In the setup of 24.3 and assuming that E ′, E ′′ are irreducible
and (L′, S′, E ′), (L′′, S′′, E ′′) are effective, the sum

|G0F |−1
∑
g∈GF

χK′,φ′(g)χK′′,φ′′(g)

is 0 if Θ(E ′, E ′′) = ∅ and is equal to

ζqdimS′−dimL′ |Θ(E ′, E ′′)|/|L′F |
where ζ = ζ(n) (see 24.13) for any n ∈ Θ(E ′, E ′′) if Θ(E ′, E ′′) 6= ∅.

This follows from the results in 24.4, 24.13, 24.14.

Proposition 24.16. In the setup of 24.5 let E ′ = Q̄l�F ′ ∈ S(S′), E ′′ = Q̄l�F ′′ ∈
S(S′′) and let ε′ = 1 � ε̄′ : F ∗E ′ ∼−→ E ′, ε′′ = 1 � ε̄′′ : F ∗E ′′ ∼−→ E ′′. Assume that
F ′,F ′′ are irreducible. Then the sum

|G0F |−1
∑

u∈GF ;unip.

QL′,G,c′,F ′,ε̄′(u)QL′′,G,c′′,F ′′,ε̄′′(u)

is 0 if Θ(E ′, E ′′) = ∅ and is equal to

ζqdimS−dimL′ |Θ(E ′, E ′′)||L′F |−1|δ
′
Z0F
L′ |−1

where ζ = ζ(n) (defined as in 24.13 in terms of ε′, ε′′) for any n ∈ Θ(E ′, E ′′) if
Θ(E ′, E ′′) 6= ∅.

If n ∈ Θ (see 24.3) we have clearly∑
y∈c′F

χF ′,ε̄′(y)χF ′′,ε̄′′(n−1yn) = |δ
′
Z0F
L′ |−1

∑
y∈S′F

χE′,ε′(y)χE′′,ε′′(n−1yn).

The last sum can be evaluated using the results in 24.13, 24.14. (In our case,
(L′, S′, E ′), (L′′, S′, E ′′) are automatically effective; see 21.8.) We introduce this in
Lemma 24.6. The proposition follows.

24.17. Let A ∈ A(G) (see 21.18) and let α : F ∗A ∼−→ A be an isomorphism. We
have A = IC(Ȳ ,A) (extended by 0 on G− Ȳ ) where Ȳ is the closure of a stratum
YL,S, (L, S) ∈ A and A is an irreducible local system on Ȳ which is a direct
summand of π!Ẽ (here E ∈ S(S) is irreducible cuspidal and π, Ẽ are as in 5.6). By
21.19, 21.20 we can assume that F (L) = L,F (S) = S and F ∗E ∼= E . We consider
also A′ ∈ A(G) and α′ : F ∗A′ ∼−→ A′. Let L′, S′, E ′,A′, Ȳ ′, π′! Ẽ ′ play the same role
for A′ as L, S, E ,A, Ȳ , π!Ẽ for A. (In particular, A′ = IC(Ȳ ′,A′) extended by 0 on
G− Ȳ ′, F (L′) = L′, F (S′) = S′, F ∗E ′ ∼= E ′.) We fix ε : F ∗E ∼−→ E , ε′ : F ∗E ′ ∼−→ E ′.
Let

Γ̃,Γ,Kw, φw, nw, gw, Lw, Sw, Ew, εw, r,E, bw, ιi, Vi,Ki, φi
be associated with L, S, E , ε as in 21.6 and let

Γ̃′,Γ′,K′w
′
, φ′w

′
, n′w′ , g

′
w′ , L

′w′ , S′w
′
, E ′w′ , ε′w′ , r′,E′, b′w′ , ι′i′ , V ′i′ ,K′i′ , φ′i′

be associated in an analogous way to L′, S′, E ′, ε′. From 21.6(c) we have
(a) χKw,φw =

∑
i∈[1,r] tr(bwιi, Vi)χKi,φi

for any effective w ∈ Γ. We multiply both sides of (a) by |Γ|−1tr(ι−1
j b−1

w , Vj) and
sum over all effective w ∈ Γ. Using 20.4(c) we obtain

χKj ,φj = |Γ|−1
∑

w∈Γ;eff.

tr(ι−1
j b−1

w , Vj)χKw ,φw
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for any j ∈ [1, r]. Similarly,

χK′
j′ ,φ

′
j′

= |Γ′|−1
∑

w′∈Γ′;eff.

tr(ι′j′
−1b′w′

−1, V ′j′)χK′w′ ,φ′w′

for any j′ ∈ [1, r′]. It follows that

|G0F |−1
∑
g∈GF

χKj ,φj (g)χK′
j′ ,φ

′
j′

(g)

= |Γ|−1|Γ′|−1
∑

w∈Γ;eff.

∑
w′∈Γ′;eff.

tr(ι−1
j b−1

w , Vj)tr(ι′j′
−1b′w′

−1, V ′j′ )

× |G0F |−1
∑
g∈GF

χKw ,φw(g)χ
K′w′ ,φ′w′ (g)(b)

for any j ∈ [1, r], j′ ∈ [1, r′].

Proposition 24.18. Assume that Ě , E ′ are strongly cuspidal. Assume also that
either L,L′ are not G0-conjugate or Ě , E ′ are clean. Then

|G0F |−1
∑
g∈GF

χA,α(g)χA′,α′(g)

is 0 if A′ 6∼= Ǎ and is qdimS−dimL if A′ = Ǎ and α′ = α̌.

We may assume that A = Kj , α = φj , A
′ = K′j′ , α

′ = φ′j′ for some j ∈ [1, r],
j′ ∈ [1, r′]. If (L, S, Ě), (L′, S′, E ′) are not G0-conjugate, the result follows from
24.17(b) since by 24.15 we have

|G0F |−1
∑
g∈GF

χKw,φw(g)χK′w′ ,φ′w′ (g) = 0

for any effective w,w′.
Thus we may assume that (L, S, Ě), (L′, S′, E ′) are G0-conjugate. We may also

assume that L = L′, S = S′, Ě = E ′, ε′ = ε̌. We have Γ̃′ = Γ̃,Γ′ = Γ, Ẽ ′ = (Ẽ )̌,
π′! Ẽ ′ = (π!Ẽ )̌. Taking transpose we may identify E′ = E as vector spaces but
with opposed algebra structures. Then E′w = Ew−1 for any w ∈ Γ and we may
assume that b′w ∈ E′w corresponds to b−1

w ∈ Ew−1 . The simple E′ modules are
V ′i = V ∗i (dual space) with E′-action given by taking transpose. We take ι′i to
be the transpose inverse of ιi. We have r′ = r,K′i = (Ki)̌, φ′i = (φi )̌. We take
n′w = nw, g

′
w = gw. Then L′w = Lw, S′w = Sw, E ′w = (Ew )̌, ε′w = (εw )̌. Moreover,

for w ∈ Γ, (Lw, Sw, Ew) is effective if and only if (Lw, Sw, (Ew )̌ ) is effective.
Let w,w′ ∈ Γ. We compute

aw,w′ = ](n ∈ G0F ;n−1Lwn = Lw
′
, n−1Swn = Sw

′
,Ad(n−1)∗(Ew

′
)̌ ∼= (Ew )̌ ).

Setting g−1
w ngw′ = n we see that

aw,w′ = ](n ∈ Γ̃;F (gwng−1
w′ ) = gwng−1

w′ ) = ](n ∈ Γ̃;n−1
w F (n)nw′ = n)

=
∑
y∈Γ

w−1F (y)w′=y

|∆F0
y |

where ∆y is the L-coset in Γ̃ defined by y and F0 : ∆y → ∆y is F0(n) =
n−1
w F (n)nw′ . Now Lw acts freely on ∆y by l1 : n 7→ l1 ∗ n = g−1

w l1gwn; this
action satisfies F0(l1 ∗ n) = F (l1) ∗ F0(n). It follows that |∆F0

y | = |LwF | and
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aw,w′|LwF |−1 = ](y ∈ Γ;w−1F (y)w′ = y). Using this and 24.15 we see that for any
effective w,w′ ∈ Γ:

|G0F |−1
∑
g∈GF

χKw ,φw(g)χK′w′ ,φ′w′ (g)

= qdimS−dimLaw,w′|LwF |−1 = ζw,w′q
dimS−dimL](y ∈ Γ;w−1F (y)w′ = y).

Here ζw,w′ ∈ Q̄∗l is defined as follows (assuming that {y ∈ Γ;w−1F (y)w′ = y} 6= ∅):
for any n ∈ G0F such that

n−1Lwn = Lw
′
, n−1Swn = Sw

′
,Ad(n−1)∗(Ew′ )̌ ∼= (Ew )̌,

εw, (εw
′
)̌ induce an isomorphism F ∗(Ew ⊗Ad(n−1)∗(Ew′ )̌)→ Ew ⊗Ad(n−1)∗(Ew′ )̌

which on the summand Q̄l of Ew ⊗ Ad(n−1)∗(Ew′ )̌ is ζw,w′ times the obvious iso-
morphism F ∗Q̄l

∼−→ Q̄l.
For n as above we set g−1

w ngw′ = n ∈ Γ̃ and let y be the image of n in Γ. Let
g ∈ S, let (eh) be a basis of Eg and let (ěh) be the dual basis of Ěg. We have
an isomorphism by : Ad(n−1)∗E ∼−→ E . Taking transpose inverse we obtain an
isomorphism tb−1

y : Ad(n−1)∗Ě ∼−→ Ě . This restricts to tb−1
y : Ěn−1gn

∼−→ Ěg and∑
h eh ⊗ tby(ěh) belongs to the stalk of the summand Q̄l of E ⊗ Ad(n−1)∗Ě at g.

We have

Ew ⊗Ad(gw′n−1g−1
w )∗(Ew′ )̌ = Ad(g−1

w )∗(E ⊗Ad(n−1)∗Ě),

hence
∑

h eh ⊗ tby(ěh) belongs to the stalk of the summand Q̄l of

Ew ⊗Ad(gw′n−1g−1
w )∗(Ew′ )̌

at gwgg−1
w ∈ Sw. Assuming that gwgg−1

w ∈ SwF we see from the definitions that∑
h

εw(eh)⊗ ε̌w′(tby(ěh)) = ζw,w′
∑
h

eh ⊗ tby(ěh) ∈ Eg ⊗ Ěn−1gn,

hence ∑
h

ε(bweh)⊗ ε̌(tb−1
w′

tby(ěh)) = ζw,w′
∑
h

eh ⊗ tby(ěh) ∈ Eg ⊗ Ěn−1gn.

Applying ε−1 ⊗ ε̌−1 to both sides and using ε̌−1tby = t(ι−1(by))ε̌−1 we obtain∑
h

bweh ⊗ tb−1
w′

tby(ěh) = ζw,w′
∑
h

ε−1(eh)⊗ t(ι−1(by))ε̌−1(ěh).

Setting e′h = ε−1(eh), ě′h = ε̌−1(ěh) we see that (e′h), (ě′h) are dual bases of EF (g),
ĚF (g) and we have∑

h

bweh ⊗ tb−1
w′

tby(ěh) = ζw,w′
∑
h

e′h ⊗ t(ι−1(by))ě′h ∈ EF (g) ⊗ ĚF (n−1gn).

Applying 1⊗ t(ι−1(by))−1 to both sides gives∑
h

bweh ⊗ t(ι−1(by))−1tb−1
w′

tby(ěh)) = ζw,w′
∑
h

e′h ⊗ ě′h ∈ EF (g) ⊗ ĚF (g).

Let e′′h = bweh, ě
′′
h = tb−1

w ěh. Then (e′′h), (ě′′h) are dual bases of

Enwgn−1
w

= EF (g), Ěnwgn−1
w

= ĚF (g),
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hence
∑

h e
′
h ⊗ ě′h =

∑
h e
′′
h ⊗ ě′′h. We see that∑

h

bweh ⊗ t(ι−1(by))−1tb−1
w′

tby(ěh) = ζw,w′
∑
h

bweh ⊗ tb−1
w ěh.

This shows that

t(ι−1(by))−1tb−1
w′

tby(ěh) = ζw,w′
tb−1
w ěh ∈ Ěnwgn−1

w

for all h. Thus t(ι−1(by))−1tb−1
w′

tby = ζw,w′
tb−1
w as linear maps Ěnwgn−1

w
→ Ěg hence

ι−1(by)bw′b−1
y = ζ−1

w,w′bw as linear maps Enwgn−1
w
→ Eg. It follows that

ι−1(by)bw′b−1
y = ζ−1

w,w′bw ∈ E

for any y ∈ Γ such that w−1F (y)w′ = y. In our case, 24.17(b) becomes

|G0F |−1
∑
g∈GF

χKj ,φj (g)χK′
j′ ,φ

′
j′

(g) = |Γ|−2
∑

w,w′∈Γ;eff.

tr(b−1
w ι−1

j , Vj)

× tr(ζw,w′bw′ιj′ , Vj′)qdimS−dimL](y ∈ Γ;w−1F (y)w′ = y)

= qdimS−dimL|Γ|−2
∑

w∈Γ;eff.

∑
y∈Γ

tr(b−1
w ι−1

j , Vj)tr(ι−1(b−1
y )bwbyιj′ , Vj′ ).

We have

tr(ι−1(b−1
y )bwbyιj′ , Vj′ ) = tr(ιj′ ι−1(b−1

y )bwby, Vj′ ),

tr(b−1
y ιj′bwby, Vj′ ) = tr(ιj′bw, Vj′ ),

hence

|G0F |−1
∑
g∈GF

χKj ,φj(g)χK′
j′ ,φ

′
j′

(g)

= qdimS−dimL|Γ|−1
∑

w∈Γ;eff.

tr(b−1
w ι−1

j , Vj)tr(ιj′bw, Vj′ )

which by 20.4(c),(b) equals qdimS−dimL if j = j′ and 0, otherwise. The proposition
is proved.

24.19. Assume that we are in the setup of 24.17. Let δ (rep. δ′) be the connected
component of NGL (resp. NGL

′) that contains S (resp. S′). Assume that S =
δZ0

Lc, S′ = δ′Z0
L′c
′ where c is a unipotent L-conjugacy class and c′ is a unipotent

L′-conjugacy class. Assume that E = Q̄l�F , E ′ = Q̄l�F ′ where F (resp. F ′) is an
irrreducible L- (resp. L′-)equivariant local system on c (resp. c′). Let ε̄ : F ∗F ∼−→ F
(resp. ε̄′ : F ∗F ′ ∼−→ F ′) be the restriction of ε (resp. ε′). For w ∈ Γ let δw be the
connected component of NG(Lw) that contains Sw. Let j ∈ [1, r], j′ ∈ [1, r′]. We
can state the following variant of Proposition 24.18.

Proposition 24.20. Assume that Ě , E ′ are strongly cuspidal. Assume also that
either L,L′ are not G0-conjugate or Ě , E ′ are clean.

(a) If (L, c, F̌), (L′, c′,F ′) are not G0-conjugate, then
|G0F |−1

∑
u∈GF ;unip. χKj ,φj (u)χK′

j′ ,φ
′
j′

(u) = 0.



364 G. LUSZTIG

(b) Assume that L = L′, c = c′, F̌ = F ′, ˇ̄ε = ε̄′,K′j′ = (Kj′ )̌, φ′j′ = (φj′ )̌. Then

|G0F |−1
∑

u∈GF ;unip.

χKj ,φj(u)χK′
j′ ,φ

′
j′

(u)

= |Γ|
∑
w∈Γ

tr(ι−1
j b−1

w , Vj)tr(bwιj′ , Vj′ )|δ
wZ0F

Lw |−1qdimS−dimL.

As in 24.17 we have

|G0F |−1
∑

u∈GF ;unip.

χKj ,φj(u)χK′
j′ ,φ

′
j′

(u)

= |Γ|−1|Γ′|−1
∑
w∈Γ

∑
w′∈Γ′

tr(ι−1
j b−1

w , Vj)tr(ι′j′
−1b′w′

−1, V ′j′)

× |G0F |−1
∑

u∈GF ;unip.

χKw,φw(u)χK′w′ ,φ′w′ (u).

(All elements of Γ,Γ′ are effective in this case.) In the setup of (a), we have

|G0F |−1
∑

u∈GF ;unip.

χKw ,φw(u)χK′w′ ,φ′w′ (u) = 0

by 24.16 and (a) follows.
In the setup of (b) we have Γ = Γ′. As in the proof of 24.18 we have (using 24.16

instead of 24.15):

|G0F |−1
∑

u∈GF ;unip.

χKw ,φw(u)χK′w′ ,φ′w′ (u)

= ζw,w′q
dimS−dimL|δ

w

Z0F
Lw |−1](y ∈ Γ;w−1F (y)w′ = y).

Hence

|G0F |−1
∑

u∈GF ;unip.

χKj ,φj (u)χK′
j′ ,φ

′
j′

(u) = |Γ|−2
∑

w,w′∈Γ

tr(ι−1
j b−1

w , Vj)tr(ιj′bw′ , Vj′ )

× ζw,w′qdimS−dimL|(δwZ0
Lw)F |−1](y ∈ Γ;w−1F (y)w′ = y).

As in the proof of 24.18 we may replace tr(ζw,w′ιj′b′w′ , Vj′ ) by tr(ιj′bw, Vj′ ) and (b)
follows.

25. Properties of cohomology sheaves

25.1. Let D be a connected component of G. Let (L, S), (L′, S′) ∈ A with S ⊂
D,S′ ⊂ D. Let π : ỸL,S → YL,S = Y be as in 3.13 and let π′ : ỸL′,S′ → YL′,S′ be
the analogous map. For any E ∈ S(S), the local system π!Ẽ on Y is defined as in
5.6; similarly, for any E ′ ∈ S(S′), the local syatem π′! Ẽ ′ on YL′,S′ is defined.

Proposition 25.2. Let E ′ ∈ S(S′). Let K ∈ D(D) be IC(ȲL′,S′ , Ẽ ′), extended by
zero on D − ȲL′,S′ . Let A ∈ D(D) be a direct summand of K. Then for any i ∈ Z,
there exists E ∈ S(S) such that the constructible sheaf HiA|Y is a local system
isomorphic to a direct summand of the local system π!Ẽ.

The proof is given in 25.9.
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25.3. Let Z = DZ0
G0 . We show:

(a) Let E be a G0-equivariant local system on an isolated stratum C of D. Assume
that there exists n ∈ N∗k and a Z-orbit F in C such that E|F is Z-equivariant for
the action z : f 7→ znf on F . Then E ∈ S(C).
We may assume that G is generated by D and that E is indecomposable. We have
a canonical direct sum decomposition of E such that each summand restricted to
any Z-orbit in C is an isotypical local system isomorphic to a direct sum of copies
of a fixed Z-equivariant local system of rank 1. Since E is indecomposable, it is
equal to one of these summands. Thus, if F is a Z-orbit in C, we may assume
that E|F = L⊕k where L is a Z-equivariant local system of rank 1 on F . As in 5.3
we can find E1 ∈ S(C) of rank 1 such that E1|F ∼= L. Let E = E ⊗ E∗1 . Then E
is a G0-equivariant local system on C such that E|F ∼= Q̄⊕kl . Since G0 permutes
transitively the fibres of C → C′ (as in 5.3) we see that the restriction of E to any
fibre of C → C′ is ∼= Q̄⊕kl . As in 5.3, we see that there is a well defined local system
E ′ on C′ whose inverse image under C → C′ is E . Moreover, E ′ is automatically
G0-equivariant. It follows that E ∈ S(C). Since E = E ⊗ E1 and E1 ∈ S(C), we see
that E ∈ S(C).

25.4. Let n ≥ 1 be such that E ′ ∈ Sn(S′). From the definitions we see that
(a) K is Z ×G0-equivariant for the action (z, x) 7→ g 7→ xzngx−1 on D.

Let H = HiK, a constructible sheaf on D. Let δ be the connected component of
NGL such that S ⊂ δ. Let T = δZ0

L .
We have a canonical map S → Ss, g 7→ gs and Ss is a single orbit for the

T × L-action (z, x) : y 7→ xzyx−1. Let s be the set of T -cosets in Ss. Then
L acts transitively on s. We fix a T -coset τ on Ss. Let R = {g ∈ S; gs ∈ τ},
R∗ = {g ∈ S∗; gs ∈ τ} = R ∩ S∗. Then R∗ is open in R. By the proof of
3.11, R∗ is dense in R. Now R is a single orbit for the group T × NLτ acting by
(z, l) : g 7→ lzgl−1. Hence R is smooth, equidimensional. Let s ∈ τ . Then ZL(s)0

is independent of the choice of s: it is NL(τ)0 = ZL(τ)0. Hence R is a union of
finitely many orbits of T × ZL(τ)0.

Lemma 25.5. Let s ∈ τ . Then
(a) R ⊂ ZG(s).
(b) Any connected component of s−1R contains some unipotent element.

We can find y ∈ S with ys = s. We have y ∈ R and ys = sy. Let y′ ∈ R. We
have y′ = lzyl−1 where l ∈ L, l−1sl = z′s, z, z′ ∈ T . We must show that sy′ = y′s,
or that slzyl−1 = lzyl−1s, or that l−1slzy = zyl−1sl, or that z′szy = zyz′s, or
that z′zsy = zz′ys, or that sy = ys. This proves (a). We prove (b). Let g ∈ R.
Then gs = zs for some z ∈ T . Let g′ = z−1g. Then g′s = z−1gs = s. Hence g′ = su
where u is unipotent in ZG(s). Now T R = R hence g′, g are in the same connected
component of R. Hence the connected component of g in R contains an element g′

such that s−1g′ is unipotent. This proves (b).

Lemma 25.6. There exists a local system F on R and n ∈ N∗k such that F is
T × ZL(τ)0-equivariant for the action (z, x) 7→ g 7→ xzngx−1 and F|R∗ ∼= H|R∗ .

Let R1 be a connected component of R which is a T × ZL(s)0-orbit in R. Let
R∗1 = R∗ ∩R, an open dense subset of R1. It is enough to show:

there exists a local system F1 on R1 and n ∈ N∗k such that F1 is T × ZL(τ)0-
equivariant for the action (z, x) 7→ g 7→ xzngx−1 and F1|R∗1 ∼= H|R∗1 .
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Let τ∗ be the set of all s ∈ τ such that s = ys for some y ∈ S∗. By the proof
of 3.11 we have τ∗ 6= ∅. Let s ∈ τ∗. Let δ1 be the connected component of
ZNGL(s) such that R1 ⊂ sδ1. By 25.5(b), δ1 contains some unipotent element.
By 16.12(b) we can find an open subset U of δ1 containing all unipotents of δ1,
such that ε∗(K|sU ) is isomorphic to the restriction to U of K̃ where K̃ is a direct
sum of finitely many objects K̃k ∈ D(δ1) each one of the same type as K (for
ZG(s) instead of G). (Here ε : U → sU is g 7→ sg.) By an analogue of 25.4(a),
each K̃k is δ1Z0

ZG(s)0 × ZG(s)0-equivariant hence T × ZL(τ)0-equivariant for an
action as in the lemma. (We have ZG(s)0 = ZL(s)0 = ZL(τ)0, since s ∈ τ∗ and
δ1Z0

ZG(s)0 = δ1Z0
ZL(s)0 = TNGL(y) = δZ0

L = T , since y ∈ R1, ys = s is isolated
in NGL.) Then HiK̃ is a T × ZL(τ)0-equivariant constructible sheaf on δ1 whose
restriction to U is ∼= Hi(ε∗(K|sU )). Let F1 be the inverse image of HiK̃|s−1R1

under R1 → s−1R1, g 7→ s−1g. This is a T × ZL(τ)0-equivariant constructible
sheaf on R1. Since R1 is a single orbit, we see that F1 is a T ×ZL(τ)0-equivariant
local system on R1. We have F1|V ∼= H|V where V = R1 ∩ sU , an open subset
of R1 containing {g ∈ R1; gs = s}. We summarize: for any s ∈ τ∗ there exists
an open subset V(s) of R1 and a T × ZL(τ)0-equivariant local system Fs on R1

such that {g ∈ R1; gs = s} ⊂ V(s) and Fs|V(s)
∼= H|V(s). If g ∈ R∗1, then g ∈ R1

and gs ∈ τ∗ hence g ∈ V(gs). Thus R∗1 ⊂ R′ where R′ =
⋃
s∈τ∗ V(s) ⊂ R1.

The constructible sheaf H|R′ is a local system when restricted to any of the open
sets V(s) that cover R′. Hence H|R′ is a local system. Let s ∈ τ∗ be such that
V(s) 6= ∅. The local systems H|R′ ,Fs|R′ have isomorphic restrictions to V(s) hence
H|R′ ∼= Fs|R′ . (Note that R′ is smooth, irreducible, since R1 is smooth, irreducible.
Hence H|R′ = IC(R′,H|V(s)) ∼= IC(R′,Fs|V(s)) = Fs|R′ .) Since R∗1 ⊂ R′, it follows
that H|R∗1 ∼= Fs|R∗1 . We set F = Fs. Then F has the required properties. The
lemma is proved.

Lemma 25.7. There exists E ∈ S(S) such that E|S∗ ∼= H|S∗ .
Define ρ : S → s by g 7→ (T − coset of gs). Let ρ′ : S∗ → s be the restriction of

ρ. Then ρ, ρ′ are L-equivariant maps with L acting transitively on s and R (resp.
R∗) is a fibre of ρ (resp. ρ′). Since H|S∗ is an L-equivariant constructible sheaf
whose restriction to any fibre of ρ′ is a local system (see 25.6), we see that H|S∗
is an L-equivariant local system. Hence K := IC(S,H|S∗) ∈ D(S) is well defined.
Let K′ = IC(R,H|R∗). Using the L-homogeneity of s we see that for any j ∈ Z we
have HjK|R = HjK′ and HjK is an L-equivariant constructible sheaf. From 25.6
we see that K ′ is a local system on R. In particular, HjK′ = 0 for j > 0. Since
for j > 0, HjK is an L-equivariant constructible sheaf on S whose restriction to R
is 0, we see that HjK = 0. Similarly, since H0K is an L-equivariant constructible
sheaf on S whose restriction to R is a local system, we see that H0K is a local
system. Thus, K = H0K is a local system E on S whose restriction to S∗ is H|S∗ .
Since E = IC(S,H|S∗) and H|S∗ is L-equivariant, we see that E is L-equivariant.
Since E|R = K′ and K′ is T -equivariant, we may apply 25.3(a) with G,C replaced
by NGL, S and we see that E ∈ S(S). The lemma is proved.

Lemma 25.8. Let Ỹ = ỸL,S. Define ξ : Ỹ → D by ξ(g, xL) = g. Then ξ∗H ∼= Ẽ
where Ẽ is defined in terms of E ∈ S(S) of Lemma 25.7.

Let Ŷ = {(g, x) ∈ D × G0;x−1gx ∈ S∗}. Define b : Ŷ → S and b′ : Ŷ → S∗

by (g, x) 7→ x−1gx. Define c : Ŷ → D by c(g, x) = g. By the definition of E we
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have b∗E = b′∗(E|S∗) ∼= b′∗(H|S∗). Define r : Ŷ → G0 ×D by (g, x) 7→ (x, x−1gx).
Define p1, p2 : G0 × D → D by p1(x, d) = d, p2(x, d) = xdx−1. Since H is a G0-
equivariant constructible sheaf on D, we have p∗1H ∼= p∗2H, hence r∗p∗1H ∼= r∗p∗2H.
Thus, b′∗(H|S∗) ∼= c∗H. It follows that c∗H ∼= b∗E . As in 5.6, define a : Ŷ → Ỹ

by (g, x) 7→ (g, xL). We have c∗H = a∗(ξ∗H), b∗E = a∗Ẽ . Hence a∗(ξ∗H) ∼= a∗Ẽ .
Since a∗Ẽ is a local system, we see that a∗(ξ∗H) is a local system. Since a is a
principal L-bundle it follows that ξ∗H is a local system and that ξ∗H ∼= Ẽ . The
lemma is proved.

25.9. We now prove Proposition 25.2. We may assume that A = K. Let j : Y → D
be the inclusion. With notation in 25.8 we have π∗j∗H = ξ∗H hence π∗j∗H = Ẽ .
Since π is a finite unramified covering and Ẽ is a local system, it follows that j∗H is
a local system. Since Q̄l is a direct summand of π!π

∗Q̄l, we see that j∗H is a direct
summand of (j∗H)⊗ (π!π

∗Q̄l) = π!π
∗(j∗H) = π!Ẽ . Proposition 25.2 is proved.

Lemma 25.10. Let (L, S), (L′, S′) ∈ A. Assume that YL′,S′ ⊂ ȲL,S.
(a) For any L-conjugacy class C in S and any L′-conjugacy class C′ in S′ we

have dimL′ − dimC′ ≥ dimL− dimC.
(b) For any G0-conjugacy class c in YL,S and any G0-conjugacy class c′ in YL′,S′

we have dim c′ ≤ dim c.

We prove (a). By 7.2(c) we may assume that L′ = G0. Then S′ is as isolated
stratum of G and S′ ⊂ Ȳ where Y = YS,L. Let a = aL,S , σ : Ȳ → a be as in 7.2.
Set a = σ(C′) ∈ a. By 7.16(b), Ȳ a has pure dimension dimG0/L + dimC. Since
C′ ⊂ Ȳ a we have dimC′ ≤ dimG0/L+ dimC, as required.

We prove (b). Let g ∈ c, g′ ∈ c′. We can assume that g ∈ S∗, g′ ∈ S′∗. Let
C be the L-conjugacy class of g; let C′ be the L′-conjugacy class of g′. By the
definition of S∗ we have ZG(g)0 = ZL(g)0 hence dimZG0(g) = dimZL(g) so that
dim c = dimG0/L + dimC. Similarly, dim c′ = dimG0/L′ + dimC′. Hence (b)
follows from (a).

25.11. For (L, S) ∈ A let TL,S be the union of all G0-conjugacy classes in ȲL,S
whose dimension equals the dimension of some/any G0-conjugacy class in YL,S.
(See 3.4.) From 3.15 and 3.4 we see that TL,S is a union of strata of G. Clearly,

(a) YL,S ⊂ TL,S ⊂ ȲL,S.

Lemma 25.12. For (L, S) ∈ A, TL,S is open dense in ȲL,S.

The fact that it is dense follows from 25.11(a). It remains to show that ȲL,S −
TL,S is closed in ȲL,S . Since ȲL,S is a union of strata (see 3.15) and TL,S is a union
of strata (by definition) it is enough to verify the following statement:

YL′′,S′′ ⊂ ȲL,S − TL,S, YL′,S′ ⊂ ȲL′′,S′′ =⇒ YL′,S′ ⊂ ȲL,S − TL,S.

Let c (resp. c′, c′′) be a G0-conjugacy class in YL,S (resp. YL′,S′ , YL′′,S′′). Using
Lemma 25.10 we see that dim c′′ < dim c, dim c′ ≤ dim c′′. Hence dim c′ < dim c
and YL′,S′ ⊂ ȲL,S − TL,S. The lemma is proved.

25.13. Let (L, S) ∈ A and let P be a parabolic of G0 with Levi L such that
S ⊂ NGP . Let T = TL,S. Let ψ : X → ȲL,S be as in 3.14. For any stratum S′

of NGP ∩ NGL such that S′ ⊂ S̄ let XS′ be as in 5.6. Let X = ψ−1(T) and let
ψ′ : X→ T be the restriction of ψ. We show:

(a) X ⊂ XS ;



368 G. LUSZTIG

(b) ψ′ has finite fibres;
(c) X is smooth.

Let g ∈ T. We must show that ψ−1(g) ∩ XS′ is empty if S′ 6= S and is finite if
S′ = S. By 4.4(b), dim(ψ−1(g)∩XS′) ≤ (dimG0/L−dim c1 + dimC′)/2 where c1

is the G0-conjugacy class of g and C′ is any L-conjugacy class in S′. Let C be an
L-conjugacy class in S. We have dimC′ ≤ dimC with strict inequality if S′ 6= S.
Hence dim(ψ−1(g) ∩XS′) ≤ (dimG0/L− dim c1 + dimC)/2 with strict inequality
if S′ 6= S. As in the proof of 25.10 we have dimG0/L + dimC = dim c where c
is a G0-conjugacy class in YL,S. Also dim c = dim c1 by the choice of g. Thus
dim(ψ−1(g) ∩XS′) ≤ 0 with strict inequality if S′ 6= S. This completes the proof
of (a),(b).

Using (a) and Lemma 25.12 we see that X is an open subset of XS which is
smooth. Hence (c) holds.

Proposition 25.14. Let (L, S) ∈ A, let E ∈ S(S) and let T = TL,S. Then
IC(ȲL,S , π!Ẽ)|T is a constructible sheaf.

Let Ē be the local system on XS defined in 5.6. Using 5.7 it is enough to show
that ψ!(IC(X, Ē))|T is a constructible sheaf or equivalently that ψ′!(IC(X, Ē)|X)
is a constructible sheaf. Since X ⊂ XS (see 25.13(a)) we have IC(X, Ē)|X = Ē |X
and it is enough to show that ψ′!(Ē |X) is a constructible sheaf. This is clear from
25.13(b).

26. The variety ZJ,D

26.1. Let B be the variety of Borel subgroups of G0. Let W be the set of G0-
orbits on B × B (G0 acts by conjugation on both factors). For B,B′ ∈ B we write
pos(B,B′) = w if the G0-orbit of (B,B′) is w. There is a unique group structure
on W such that whenever B,B′, B′′ ∈ B have a common maximal torus, we have
pos(B,B′)pos(B′, B′′) = pos(B,B′′). Then W is a finite Coxeter group (called
the Weyl group) with length function l : W → N which attaches to a G0-orbit its
dimension minus dimB. Let ≤ be the standard partial order of the Coxeter group
W. Let I = {w ∈W; l(w) = 1}. For J ⊂ I let WJ be the subset of W generated
by J ; let WJ (resp. JW) be the set of all w ∈ W such that l(ws) > l(w) (resp.
l(sw) > l(w)) for all s ∈ J . Let w0

J be the unique element of maximal length in
WJ . For J, J ′ ⊂ I let JWJ′ = JW ∩WJ′ .

If P is a parabolic of G0, the set of all w ∈ W such that w = pos(B,B′) for
some B,B′ ∈ B, B ⊂ P,B′ ⊂ P is of the form WJ for a well-defined J ⊂ I; we
then say that P has type J . For J ⊂ I let PJ be the set of all parabolics of type
J of G0. For P ∈ PJ , Q ∈ PK there is a well-defined element u = pos(P,Q) ∈W
such that u ≤ pos(B,B′) for any B,B′ ∈ B, B ⊂ P , B′ ⊂ Q and u = pos(B1, B

′
1)

for some B1, B
′
1 ∈ B, B1 ⊂ P,B′1 ⊂ Q.

26.2. In the remainder of this section we fix a connected component D of G. There
is a unique isomorphism εD : W→W such that εD(I) = I and such that

g ∈ D,P ∈ PJ =⇒ gPg−1 ∈ PεD(J).
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Let J ⊂ I. Following [B], let T (J, εD) be the set of all sequences (Jn, wn)n≥0 where
Jn ⊂ I and wn ∈W are such that

J = J0 ⊃ J1 ⊃ J2 ⊃ . . . ,
Jn = Jn−1 ∩ ε−1

D (wn−1Jn−1w
−1
n−1) for n ≥ 1,

wn ∈ εD(Jn)WJn for n ≥ 0,
wn ∈WεD(Jn)wn−1WJn−1 for n ≥ 1.

Then T (J, εD) is a finite set.
For (P, P ′) ∈ PJ ×PεD(J) let AD(P, P ′) = {g ∈ D; gPg−1 = P ′}. Let ĀD(P, P ′)

= UP ′\AD(P, P ′) = AD(P, P ′)/UP . Let

ZJ,D = {(P, P ′, γ);P ∈ PJ , P ′ ∈ PεD(J), γ ∈ ĀD(P, P ′)}.
Following [L10, 3.11], to any (P, P ′, γ) ∈ ZJ,D we associate an element (Jn, wn)n≥0

∈ T (J, εD) and two sequences of parabolics Pn, P ′n, (n ≥ 0) by the requirements:

P ′0 = P ′, P 0 = P, P ′n = (Pn−1 ∩ P ′n−1)UP ′n−1 ∈ PεD(Jn),

Pn = g−1P ′ng ∈ PJn , g ∈ γ, wn = pos(P ′n, Pn).
We write (Jn, wn)n≥0 = β′(P, P ′, γ). For t ∈ T (J, εD) let

t ZJ,D = {(P, P ′, γ) ∈ ZJ,D;β′(P, P ′, γ) = t}.
Then (t ZJ,D)t∈T (J,εD) is a partition of ZJ,D into locally closed subvarieties. Now
G0 acts on ZJ,D by h : (P, P ′, γ) 7→ (hPh−1, hP ′h−1, hγh−1). This action preserves
each of the pieces tZJ,D.

26.3. Let t = (Jn, wn)n≥0 ∈ T (J, εD). For r � 0, Jr, wr are independent of r; we
denote them by J∞, w. Then

wJ∞w
−1 = εD(J∞), w ∈ εD(J∞)WJ∞ .

Let Rt = {(Q̃, Q̃′, γ′) ∈ ZJ∞,D, pos(Q̃′, Q̃) = w}. We choose Q ∈ PJ∞ , Q′ ∈
PεD(J∞) such that pos(Q′, Q) = w. We can find a common Levi L for Q and Q′.
Let

C = {g ∈ D; gLg−1 = L, gQg−1 = Q′} = {g ∈ D; gLg−1 = L, pos(gQg−1, Q) = w}.
Let A be a simple perverse sheaf on C which is admissible in the sense of 6.7 (this
makes sense since C is a connected component of the reductive groupNGL). Then A
is L-equivariant for the conjugation action of L hence it is also (Q∩Q′)-equivariant
where Q∩Q′ acts via its quotient (Q∩Q′)/UQ∩Q′ = L. Hence there is a well-defined
simple perverse sheaf A′ on G0×Q∩Q′C (here Q∩Q′ acts on G0 by right translation)

such that jFA′ = prF2 A in the obvious diagram G0×Q∩Q′ C
j←− G0×C pr2−−→ C. We

may regard A′ as a simple perverse sheaf on Rt via the isomorphism

(a) G0 ×Q∩Q′ C ∼−→ Rt, (g, c) 7→ (gQg−1, gQ′g−1, gUQ′cUQg
−1).

Define ϑt : tZJ,D → Rt by (P, P ′, γ) 7→ (P r, P ′r, γUP r) where r � 0 and P r, P ′r

are attached to (P, P ′, γ) as in 26.2. Now G0 acts on Rt by h : (Q̃, Q̃′, γ′) 7→
(hQ̃h−1, hQ̃′h−1, hγ′h−1) and ϑt is G0-equivariant. By [L10, 3.12], ϑt is an iterated
affine space bundle. Let Ã = ϑFA′, a simple perverse sheaf on tZJ,D. Let Â be
the simple perverse sheaf on ZJ,D whose support is the closure in ZJ,D of supp(Ã)
and whose restriction to tZJ,D is Ã. A simple perverse sheaf on tZJ,D is said to
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be admissible if it is of the form Ã for some A as above. This concept does not
depend on the choice of Q,Q′, L since any two such triples are G0-conjugate. Note
that A 7→ Ã is a bijection between the set of isomorphism classes of simple perverse
sheaves on C that are admissible and the set of isomorphism classes of simple
perverse sheaves on tZJ,D that are admissible. A simple perverse sheaf on ZJ,D is
said to be admissible if it is of the form Â for some t ∈ T (J, εD) and some A as
above. Note that (t, A) 7→ Â is a bijection between the set of pairs consisting of an
element of T (J, εD) and an isomorphism class of a simple perverse sheaf on tZJ,D
that is admissible and the set of isomorphism classes of simple perverse sheaves on
ZJ,D that are admissible.

When J = I, then T (J, εD) consists of a single element t = (Jn, wn)n≥0 where
Jn = I, wn = 1 for all n. Now ZI,D consists of all triples (G0, G0, g) with g ∈ D. We
identify ZI,D = D in the obvious way. A simple perverse sheaf on ZI,D is admissible
in the sense just defined if and only if it is admissible on D in the sense of 6.7.

26.4. In this and the next subsection we assume that k is an algebraic closure
of a finite field Fq and that G has a fixed Fq-rational structure with Frobenius
map F : G → G. There are induced maps F : B → B, F : W → W; the last
map restricts to a bijection F : I → I. Let J ⊂ I be such that F (J) = J . Then
F : G → G induces a map F : PJ → PJ . We assume that F (D) = D. Then
εD : I→ I commutes with F hence F (εD(J)) = εD(J). Hence F : G→ G induces
a map F : PεD(J) → PεD(J).

For (P, P ′) ∈ PJ×PεD(J) we have g ∈ AD(P, P ′) =⇒ F (g) ∈ AD(F (P ), F (P ′))
and g 7→ F (g) induces a map F : ĀD(P, P ′) → ĀD(F (P ), F (P ′)). Define F :
ZJ,D → ZJ,D by F (P, P ′, γ) = (F (P ), F (P ′), F (γ)); this is the Frobenius map for
an Fq-rational structure on ZJ,D. The G0-action on ZJ,D restricts to a G0F -action
on ZFJ,D. Let U be the vector space of functions ZFJ,D → Q̄l that are constant on
G0F -orbits.

Theorem 26.5. Let AJ be a set of representatives for the isomorphism classes
of admissible simple perverse sheaves K on ZJ,D such that F ∗K ∼= K. For each
K ∈ AJ we choose an isomorphism α : F ∗K ∼−→ K. The characteristic functions
χK,α (one for each K ∈ AJ) form a Q̄l-basis of U.

In this proof we write Z, tZ instead of ZJ,D, tZJ,D. Define F : T (J, εD) ∼−→
T (J, εD) by (Jn, wn)n≥0 7→ (F (Jn), F (wn))n≥0. For any t ∈ T (J, εD) we have
F (tZ) = F (t)Z. In particular, we have ZF =

⊔
t∈T (J,εD);F (t)=t

tZF where tZF =
tZ ∩ ZF . It follows that U =

⊕
t∈T (J,εD);F (t)=t

tU where tU is the vector space
of functions tZF → Q̄l that are constant on G0F -orbits. (We identify any such
function with a function ZF → Q̄l which is zero on the complement of tZF .)

For any integer t let Z≤t =
⋃

t∈T (J,εD);|t|≤t
tZ where |t| = dim tZ. This is a

closed subvariety of Z since
⋃

t
tZ is a partition of Z into finitely many locally

closed subvarieties. Moreover, if |t| = t, then tZ ∪ Z≤t−1 is a closed subvariety of
Z.

Let U≤t be the vector space of functions ZF≤t → Q̄l that are constant on
G0F -orbits. (We identify any such function with a function ZF → Q̄l which
is zero on the complement of tZF .) We have U≤0 ⊂ U≤1 ⊂ . . . and U≤t =⊕

t∈T (J,εD);F (t)=t,|t|≤t
tU.
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Now let K ∈ AJ . Since the sets tZ ∩ supp(K) form a partition of supp(K)
into finitely many locally closed subsets, there is a unique t ∈ T (J, εD) such that
tZ ∩ supp(K) is open dense in supp(K). Since F ∗K ∼= K we have necessarily
F (t) = t. Let t = |t|. Since tZ ∩ supp(K) ⊂ tZ and tZ ∪ Z≤t−1 is closed, we see
that the closure of tZ ∩ supp(K) is contained in tZ ∪ Z≤t−1. Thus, supp(K) ⊂
tZ ∪ Z≤t−1. Hence we can write uniquely χK,α = χ′K,α + χ′′K,α where χ′K,α is the
restriction of χK,α to tZ (extended by 0 on Z − tZ) and χ′′K,α ∈ U≤t−1. Note
that χK,α, χ′K,α are contained in U≤t and they are equal modulo U≤t−1. Thus, in
order to prove that the functions χK,α form a basis of U it is enough to prove that
the functions χ′K,α form a basis of U. More precisely, we will show that, for any
t ∈ T (J, εD)F , the functions χ′K,α with K ∈ AJ such that tZ ∩ supp(K) is open
dense in supp(K), form a basis of tU. An equivalent statement is:

(a) For any t ∈ T (J, εD)F let tAJ be a set of representatives for the isomorphism
classes of admissible simple perverse sheaves K ′ on tZ such that F ∗K ′ ∼= K ′. For
each K ′ ∈ tAJ we choose an isomorphism α′ : F ∗K ′ ∼−→ K ′. Then the characteris-
tic functions χK′,α′ (one for each K ′ ∈ tAJ) form a Q̄l-basis of tU.
Let R = Rt, Q,Q

′, L, C be as in 26.3. Then R is defined over Fq, with Frobe-
nius map F : Rt → Rt, (Q̃, Q̃′, γ′) 7→ (F (Q̃), F (Q̃′), F (γ′)). We may assume that
F (Q) = Q,F (Q′) = Q′, F (L) = L′. Then F (C) = C. The map ϑt : tZ → R in
26.3 is G0-equivariant and commutes with F .

We show that ϑt induces a bijection between the set of G0F -orbits on tZ and
the set of G0F -orbits on R. Now ϑt is a composition

tZJ,D
1ϑ−→ t1ZJ1,D

2ϑ−→ . . .
rϑ−→ trZJr,D = R

where ti = (Jn, wn)n≥i, 1ϑ(P, P ′, γ) = (P 1, P ′1, γUP 1) (notation of 26.2) and iϑ is
defined for i ≥ 2 just like 1ϑ with ti−1 instead of t. Each iϑ is G0-equivariant and
commutes with F . Hence it is enough to show that iϑ induces a bijection between
the set of G0F -orbits on ti−1Z and the set of G0F -orbits on tiZ. We may assume
that i = 1. Let Φ be the fibre of 1ϑ at some Fq-rational point (P̃ , P̃ ′, γ̃) ∈ t1ZJ1,D.
It is enough to show that ΦF 6= ∅ and that ΦF is contained in a single G0F -orbit.
Since Φ is an affine space (see [L10, 3.12(b)]) defined over Fq, it must contain some
F -fixed point (P, P ′, γ). By [L10, 3.8], Φ is a homogeneous UP ∩P ′ space (the action
being the restriction of the G0-action on tZ) and the isotropy group of (P, P ′, γ) is
UP ∩ UP ′ (see [L10, 3.9]). Since UP ∩ P ′, UP ∩ UP ′ are connected, it follows that
(UP ∩P ′)F acts transitively on ΦF ; thus, ΦF is contained in a single G0F -orbit, as
required.

Using this and the definitions, we see that (a) would be a consequence of the
following statement:

Let A′ be a set of representatives for the isomorphism classes of admissible simple
perverse sheaves A on C such that F ∗A ∼= A. For each A ∈ A′ we choose an
isomorphism α : F ∗A ∼−→ A; we define A′ (a simple perverse sheaf on R) as in 26.3
and let α′ : F ∗A′ ∼−→ A′ be the isomorphism induced by α. Then the characteristic
functions χA′,α′ (one for each A ∈ A′) form a Q̄l-basis of the vector space of
functions RF → Q̄l that are constant on G0F -orbits.
This is an immediate consequence of 21.21 applied to NGL instead of G. The
theorem is proved.
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27. Induction

27.1. Let D be a connected component of G and let P be a parabolic of G0 such
thatNDP 6= ∅. Let π′ : NDP → NDP/UP be the obvious map. Note that NDP/UP
is a connected component of NGP/UP . Consider the diagram

NDP/UP
a←− V1

a−→ V2
a′−→ D

where
V1 = {(g, x) ∈ G×G0;x−1gx ∈ NDP},
V2 = {(g, xP ) ∈ G×G0/P ;x−1gx ∈ NDP},
a(g, x) = π′(x−1gx), a′(g, x) = (g, xP ), a′′(g, xP ) = g.

Then a (resp. a′) is a smooth morphism with connected fibres of dimension dimP+
2 dimUP (resp. dimP ). To any A ∈ M(NDP/UP ) which is P/UP -equivariant for
the conjugation action of P/UP we associate a complex indDNDP/UPA ∈ D(D) as
follows. The complex aFA ∈ M(V1) is P -equivariant for the action p : (g, x) 7→
(g, xp−1) of P on V1. Since a′ is a principal P -bundle, there is a well-defined complex
A1 ∈ M(V2) such that aFA = a′FA1 and a well-defined complex A′1 ∈ D(V2) such
that a∗A = a′∗A′1. Then A′1 = A1[−2α] where α = dimUP . We set

indDNDP/UP (A) = a′′! A1 = a′′! A
′
1[2α].

Let L be a Levi of P . Let G′ = NGP ∩ NGL, a reductive group with G′0 = L.
Let D′ = G′ ∩ D, a connected component of G′. Define a homomorphism ξ :
NGP → G′ by ξ(zω) = z where z ∈ G′, ω ∈ UP (see 1.26). We identify NGP/UP =
G′, NDP/UP = D′ via ξ. Then indDNDP/UP may be viewed as a procedure which
associates to any A ∈ M(D′) which is L-equivariant for the conjugation action
of L, a complex indDD′A = a′′! A1 = a′′! A

′
1[2α] ∈ D(D) where a : V1 → D′ is

a(g, x) = ξ(x−1gx) and A1 ∈ M(V2), A′1 ∈ D(V2) are given by aFA = a′FA1,
a∗A = a′∗A′1.

27.2. Let L′ be a Levi of a parabolic of L. Let S be an isolated stratum of NG′L′

such that S ⊂ D and S normalizes some parabolic of L with Levi L′. Then S is
also an isolated stratum of NGL′ such that S normalizes some parabolic of G0 with
Levi L′. We have a commutative diagram in which all squares except the top two
are cartesian:

S′∗
=←−−−− S′∗ −−−−→ S′∗

r0

x r1

x r2

x
Ŷ ′

c←−−−− Ẑ1
c−−−−→ Ẑ2

q0

y q1

y q2

y
Ỹ ′

b←−−−− Z1
b−−−−→ Z2

k←−−−− Ỹ

p0

y p1

y p2

y
D′

a←−−−− V1
a−−−−→ V2

a′−−−−→ D
Here
S′∗ = {g ∈ S;ZG′(gs)0 ⊂ L′},
Ỹ ′ = {(g, lL′) ∈ G′ × L/L′; l−1gl ∈ S′∗},
S∗ = {g ∈ S;ZG(gs)0 ⊂ L′},
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Ỹ = {(g, xL′) ∈ G×G0/L′;x−1gx ∈ S∗},
Z1 = {(g, lL′, x) ∈ G××L/L′ ×G0; l−1x−1gxl ∈ S′∗UP },
Z2 = {(g, xL′UP ) ∈ G×G0/(L′UP );x−1gx ∈ S′∗UP },
Ŷ ′ = {(g, l) ∈ G′ × L; l−1gl ∈ S′∗},
Ẑ1 = {(g, l, x) ∈ G××L×G0; l−1x−1gxl ∈ S′∗UP },
Ẑ2 = {(g, xUP ) ∈ G×G0/UP ;x−1gx ∈ S′∗UP },
c(g, l, x) = (ξ(x−1gx), l), c′(g, l, x) = (g, xlUP ),
b(g, lL′, x) = (ξ(x−1gx), lL′), b′(g, lL′, x) = (g, xlL′UP ),
k(g, xL′) = (g, xL′UP ), q0(g, l) = (g, lL′), q1(g, l, x) = (g, lL′, x),
q2(g, vUP ) = (g, vL′UP ), p0(g, lL′) = g, p1(g, lL′, x) = (g, x),
p2(g, vL′UP ) = (g, vP ), r0(g, l) = l−1gl,

and r1(g, l, x) = s1 ∈ S′∗, r2(g, vUP ) = s2 ∈ S′∗ are defined by

l−1x−1gxl ∈ s1UP , v
−1gv ∈ s2UP .

Let Y ′ =
⋃
l∈L lS

′∗l−1, a locally closed smooth irreducible subvariety of D′; see
3.16, 3.17. Let Y ′1 = a−1(Y ′), a locally closed smooth irreducible subvariety of V1

which is P -stable since Y ′ is stable under L-conjugacy (we use that a is smooth
with connected fibres). Then Y ′1 = a′−1(Y ′2) where Y ′2 is a well-defined locally
closed smooth irreducible subvariety of V2. Let Y =

⋃
x∈G0 xS∗x−1, a locally closed

smooth irreducible subvariety of D. Let Ȳ ′, Ȳ ′1 , Ȳ
′

2 , Ȳ be the closure of Y ′, Y ′1 , Y
′

2 , Y
in D′, V1, V2, D. Then a′−1(Ȳ2) = Ȳ1 = a−1(Ȳ ′). Let

W ′ = {n ∈ NLL′;nSn−1 = n}/L′, W = {n ∈ NG0L′;nSn−1 = n}/L′.

Then W ′ ⊂ W are finite groups. Now W ′ acts freely on Ỹ ′, Z1, Z2 by
n : (g, lL′) 7→ (g, ln−1L′), n : (g, lL′, x) 7→ (g, ln−1L′, x),
n : (g, xL′UP ) 7→ (g, xn−1L′UP ).

These actions are compatible with Ỹ ′
b←− Z1

b−→ Z2. By 3.13, p0 : Ỹ ′ → Y ′ is a
principal W ′-bundle. It follows that p1 : Z1 → Y ′1 and p2 : Z2 → Y ′2 are principal
W ′-bundles.

Now W acts freely on Ỹ by n : (g, xL′) 7→ (g, xn−1L′). From 3.13 we see that
p : Ỹ → Y, (g, xL′) 7→ g is a principal W-bundle. From the definitions we see that

(a) the restriction of the W-action on Ỹ to the subgroup W ′ is compatible via
k : Ỹ → Z2 with the W ′-action on Z2.
Let E ∈ S(S). Let Ẽ be the local system on Ỹ defined as in 5.6 (with G,L′, S

instead of G,L, S). Define local system Ẽ ′, Ẽ1, Ẽ2 on Ỹ ′, Z1, Z2 (respectively) by
q∗0 Ẽ ′ = r∗0E , q∗1 Ẽ1 = r∗1E , q∗2 Ẽ2 = r∗2E . We have b∗Ẽ ′ = Ẽ1 = b′∗Ẽ2. Hence
(p1)!b

∗Ẽ ′ = (p1)!b
′∗Ẽ2 = (p1)!Ẽ1. Now (p0)!Ẽ ′, (p2)!Ẽ2 are local systems on Y ′, Y ′2

and a∗(p0)!Ẽ ′ = a′∗(p2)!Ẽ2 = (p1)!Ẽ1 as local systems on Y ′1 . We have Ẽ = k∗Ẽ2.
Let
K ′ = IC(Ȳ ′, (p0)!Ẽ ′)[dim Ỹ ′],K1 = IC(Ȳ ′1 , (p1)!Ẽ1)[dimZ1],
K2 = IC(Ȳ ′2 , (p2)!Ẽ2)[dimZ2],K = IC(Ȳ , p!Ẽ)[dim Ỹ ],

regarded as perverse sheaves on D′, V1, V2, D, zero on D′−Ȳ ′, V1−Ȳ ′1 , V2−Ȳ ′2 , D−Ȳ
respectively. Since a, a′ are smooth morphisms with connected fibres, we see that
aFK ′ = K1 = a′FK2 in M(V1). Hence

(b) indDD′(K
′) = a′′! K2.

We show that
(c) a′′! K2 = K canonically.
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Let P ′ be a parabolic of L with Levi L′ such that S ⊂ NG′P
′. Then P ′1 = P ′UP

is a parabolic of G0 with Levi L′ such that S ⊂ NGP
′
1. We have a commutative

diagram with cartesian squares

Ỹ ′
b←−−−− Z1

b−−−−→ Z2

j0

y j1

y j2

y
X ′

e←−−−− Z
e−−−−→ X

t0

y t1

y t2

y
D′

a←−−−− V1
a′−−−−→ V2

Here
X ′ = {(g, lP ′) ∈ G′ × L/P ′; l−1gl ∈ S̄UP ′},
X = {(g, vP ′1) ∈ G×G0/P ′1; v−1gv ∈ S̄UP ′1},
Z = {(g, lP ′, x) ∈ G××L/P ′ ×G0; l−1x−1gxl ∈ S̄UP ′1},
e(g, lP ′, x) = (ξ(x−1gx), lP ′), e′(g, lP ′, x) = (g, xlP ′1),
t0(g, lP ′) = g, t1(g, lP ′, x) = (g, x), t2(g, vP ′1) = (g, vP ),
j0(g, lL′) = (g, lP ′), j1(g, lL′, x) = (g, lP ′, x), j2(g, xL′UP ) = (g, xP ′1).

Since j0 is an open imbedding (by 5.5) we see that j1, j2 are open imbeddings. We
identify Ỹ ′, Z1, Z2 with open subsets of X ′, Z,X via j0, j1, j2. The composition
Ỹ −→ Z2

j2−→ X is the map (g, xL′) 7→ (g, xP ′1) which is an open imbedding by 5.5.
Since Z2 is an open subset of X via j2, we see that Ỹ may be identified with an
open subset of Z2 via k. Since e, e′ are smooth morphisms with connected fibres,
we see that

eFIC(X ′, Ẽ ′)[dimX ′] = IC(Z, Ẽ1)[dimZ] = e′FIC(X, Ẽ2)[dimX ] in M(Z).

From 5.7 we see that K ′ = (t0)!IC(X ′, Ẽ ′)[dimX ′]. Hence

K1 = (t1)!IC(Z, Ẽ1)[dimZ],K2 = (t2)!IC(X, Ẽ2)[dimX ].

Since Ẽ = Ẽ2|Ỹ , we have IC(X, Ẽ2) = IC(X, Ẽ) and K2 = (t2)!IC(X, Ẽ)[dimX ].
The composition a′′t2 : X → D is (g, vP ′1) 7→ g. Using 5.7 we have a′′! K2 =
(a′′t2)!IC(X, Ẽ)[dimX ] = K. This proves (c).

Define E =
⊕

w∈W Ew as in 7.10 (for G,L′, S, E instead of G,L, S, E). Define
E′ =

⊕
w∈W′ E

′
w in the same way (for G′, L′, S, E instead of G,L, S, E). Then E is

naturally an algebra and E′ is a subalgebra of E. Since a, a′ are smooth morphisms
with connected fibres, we see that

E′ = End((p0)!Ẽ ′) = End(K0) = End(K1) = End(K2).

Now a′′! defines a ring homomorphism End(K2)→ End(a′′! K2). Thus a′′! K2 becomes
an E′-module. On the other hand, E = End(K). Using (a) and the definitions we
see that the restriction of the E-module structure of K to E′ corresponds under (c)
to the E′-module structure on a′′! K2.

Let Γ be a subgroup of W ′ and let E′Γ =
⊕

w∈Γ E′w, a subalgebra of E′, hence
of E. Let ρ be a E′Γ-module of finite dimension over Q̄l. Let
K ′(ρ) = HomE′Γ

(ρ,K ′) ∈ M(D′),K1(ρ) = HomE′Γ
(ρ,K1) ∈M(V1),

K2(ρ) = HomE′Γ
(ρ,K2) ∈ M(V2),K(ρ) = HomE′Γ

(ρ,K) ∈M(D).
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Then aFK ′(ρ) = K1(ρ) = a′FK2(ρ) and

(d) indDD′(K
′(ρ)) = a′′! K2(ρ) = K(ρ) ∈ M(D).

27.3. Let P,L,G′, D,D′ be as in 27.1. Let Q be a parabolic of L with Levi M such
that ND′Q 6= ∅. Let G′′ = NG′Q ∩NG′M . Then G′′0 = M , ND′Q is a connected
component of NG′Q and D′′ = G′′ ∩ D′ is a connected component of G′′. Let
R = QUP , a parabolic of G0 with Levi M . We have R ⊂ P and NDR 6= ∅. (Indeed,
D′′ ⊂ NDR; more precisely, NDR∩NDM = D′′.) Note that NGR∩NGM contains
G′′ as a subgroup of finite index and both have D′′ as a connected component.

Let M ′ be a Levi of a parabolic of M . Let S be an isolated stratum of NG′′M ′

such that S ⊂ D and S normalizes some parabolic of M with Levi M ′. Then S
is also an isolated stratum of NG′M ′ such that S normalizes some parabolic of L
with Levi M ′. Moreover, S is an isolated stratum of NGM ′ such that S normalizes
some parabolic of G0 with Levi M ′. Let
S′′∗ = {g ∈ S;ZG′′(gs)0 ⊂M ′},
Ỹ ′′ = {(g,mM ′) ∈ G′′ ×M/M ′;m−1gn ∈ S′′∗},
S′∗ = {g ∈ S;ZG′(gs)0 ⊂M ′},
Ỹ ′ = {(g, lL′) ∈ G′ × L/M ′; l−1gl ∈ S′∗},
S∗ = {g ∈ S;ZG(gs)0 ⊂M ′},
Ỹ = {(g, xM ′) ∈ G×G0/M ′;x−1gx ∈ S∗}.

Let
Y ′′ =

⋃
m∈M mS′′∗m−1, Y ′ =

⋃
l∈L lS

′∗l−1, Y =
⋃
x∈G0 xS∗x−1.

Define
p′′ : Ỹ ′′ → Y ′′, p′ : Ỹ ′ → Y ′, p : Ỹ → Y

by the first projection. Let
W ′′ = {n ∈ NMM ′;nSn−1 = n}/M ′,
W ′ = {n ∈ NLM ′;nSn−1 = n}/M ′,
W = {n ∈ NG0M ′;nSn−1 = n}/M ′.

Then W ′′ ⊂ W ′ ⊂ W are finite groups. As in 3.13, p′′ is a principal W ′′-bundle, p′

is a principal W ′-bundle, p is a principal W-bundle. Let E ∈ S(S). Define a local
system Ẽ on Ỹ as 5.6 (with G,M ′, S instead of G,L, S). Define a local system Ẽ ′
on Ỹ ′ as 5.6 (with G′,M ′, S instead of G,L, S). Define a local system Ẽ ′′ on Ỹ ′′ as
5.6 (with G′′,M ′, S instead of G,L, S). Then p′′! Ẽ ′′, p′!Ẽ ′, p!Ẽ is a local system on
Y ′′, Y ′, Y respectively. We regard
K ′′ = IC(Ȳ ′′, p′′! Ẽ ′′)[dim Ỹ ′′],
K ′ = IC(Ȳ ′, p′!Ẽ ′)[dim Ỹ ′],
K = IC(Ȳ , p!Ẽ)[dim Ỹ ],

as perverse sheaves on D′′, D′, D respectively, zero on D′′ − Ȳ ′′, D′ − Ȳ ′, D − Ȳ .
Define E =

⊕
w∈W Ew as in 7.10 (for G,M ′, S, E instead of G,L, S, E). Define in

the same way E′ =
⊕

w∈W′ E
′
w (for G′,M ′, S, E instead of G,L, S, E) and E′′ =⊕

w∈W′′ E
′′
w (for G′′,M ′, S, E instead of G,L, S, E). Then E is naturally an algebra,

E′ is a subalgebra of E and E′′ is a subalgebra of E′. We have naturally

E′′ = End(K ′′),E′ = End(K ′),E = End(K).

Thus, K ′′,K ′,K are naturally E′′-modules. Let ρ be a finite dimensional E′′-
module over Q̄l. Let
K ′′(ρ) = HomE′′(ρ,K ′′) ∈M(D′′),
K ′(ρ) = HomE′′(ρ,K ′) ∈ M(D′),
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K(ρ) = HomE′′(ρ,K) ∈M(D).
Applying 27.2(d) with G′, Q,M,M ′ instead of G,P, L, L′ and Γ =W ′′ we have

indD
′

D′′(K
′′(ρ)) = K ′(ρ) ∈M(D′).

Applying 27.2(d) with G,P, L,M ′ instead of G,P, L, L′ and Γ =W ′′ we have

indDD′(K
′(ρ)) = K(ρ) ∈ M(D).

Applying 27.2(d) with G,R,M,M ′ instead of G,P, L, L′ and Γ =W ′′ we have

indDD′′(K
′′(ρ)) = K(ρ) ∈ M(D′).

Hence we have the following transitivity formula:

(a) indDD′(indD
′

D′′(K
′′(ρ))) = indDD′′(K

′′(ρ)).
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