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CHARACTER SHEAVES ON DISCONNECTED GROUPS, V

G. LUSZTIG

ABSTRACT. We prove orthogonality formulas for the characteristic functions
of certain complexes on a connected component of a reductive group.

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
IL9] which attempts to develop a theory of character sheaves on G.

Section 23 is a generalization of results in [L3] II, §7]. It is a preparation for the
proof of the orthogonality formulas for certain characteristic functions in Section
24 which generalize those in [L3], II, §9, §10]. Section 25 describes the cohomology
sheaves of a class of complexes which includes the admissible complexes on G. In
particular, we show that these cohomology sheaves restricted to any stratum of
G are local systems of a particular kind. In the connected case this reduces to a
strengthening of [IL3] 1T, 14.2(a)]. In Section 26 we give a variant of the definition
of parabolic character sheaves in [[L10)] in terms of admissibile complexes. Note that
even if one is only interested in parabolic character sheaves of connected groups,
one cannot avoid using the theory of character sheaves on disconnected groups. In
Section 27 we discuss the induction functor. The present treatment differs from
that in the connected case, given in [L3, I, §4].

We adhere to the notation of [L9]. Here is some additional notation. If D, H
are subsets of a group, we set NpH = {y € D;yHy~! = H}. If k is an algebraic
closure of a finite field F,, F' : Y — Y is the Frobenius map for an F,-rational
structure on an algebraic variety Y, £ is a local system on Y and € : F*& = &
is an isomorphism, we denote by € : F*£ — £ the unique isomorphism such that
for any y € Y, € : gp(y) — ffy is the transpose inverse to € : Ep(,y — &,. If
X is an algebraic variety, X’ is a closed irreducible subvariety of X, F is a local
system on an open dense smooth subvariety X{, of X’ and A € D(X) is IC(X',F)
extended by 0 on X — X', let A = IC(X', F) extended by 0 on X — X’. We have
A =D(A)[-2dim X']. If X, X', X}, are defined over F, with Frobenius map F and
a: F*A =5 A is an isomorphism which restricts to € : F*F = F over Xy, we
denote by & : F*A — A the unique isomorphism which restricts to é : F*F = F
over Xj.
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If f: X — Y is a smooth morphism between algebraic varieties with connected
fibres of dimension J, we set f¥ A = f*A[§] for any A € D(Y). Let D(X)=0 be as
in [L3, I, 1.3]. Let M(X) be the category of perverse sheaves on X.

If D is a connected component of G, a simple perverse sheaf A on D is said to
be admissible if A, regarded as a simple perverse sheaf on G, zero on G — D, is
admissible in the sense of 6.7.

CONTENTS

23. Strongly cuspidal local systems.
24. Orthogonality.

25. Properties of cohomology sheaves.
26. The variety Z; p.

27. Induction.

23. STRONGLY CUSPIDAL LOCAL SYSTEMS

23.1. Let S be an isolated stratum of G and let £ € S(S). Let Ko = IC(S,€).
Let D be the connected component of G that contains S.
If P is a parabolic of G° such that S C NgP and R is a Up-coset in NgP, let

dr = dim S — dim P 2%, — dim(P/Up — orbit of R/Up in NgP/Up).

We show that conditions (i) and (ii) below are equivalent:

(i) € is a cuspidal local system;

(ii) for any P, R as above such that P # G° and any irreducible component €

of SN R of dimension dr/2, the restriction of £ to some/any smooth open dense
subset of € has no direct summand Q;.
Let €y be a smooth open dense subset of €. We have HI%(€, &) = HIr (&, £) and,
by Poincaré duality, the last vector space is isomorphic to H°(€y, £ ), a vector space
whose dimension is the multiplicity of Q; in a decomposition of £ le, as a direct
sum of irreducible local systems. It remains to note that, by 6.2, Hi® (SN R,E) =
@D, Hi% (€, E) where € runs over the irreducible components of SN R of dimension
dR/Z.

Since condition (ii) for £ is equivalent to condition (ii) for £, we deduce:

(a) & is cuspidal if and only if £ is cuspidal.

23.2. Let S,&, D, P be as in 23.1; assume that P # G°. We show:

(a) if R,dr are as in 23.1 and H((S — S) N R, Kg) # 0, then i < dg.
Indeed, there exist /,i” and a stratum S; C S — S with ¢ = ¢/ +4” and HZ;/(Sl N
R, H"Ky) # 0. By 6.2 we have dim(S; N R) < (dim S} — dim S + dg)/2. Since
i’ < 2dim(S;NR) we have i’ < dim S; —dim S+ dg. Since H" K, # 0 at all points
of S1, we have i’ < dim S — dim S;. Hence

i=i4+4" <dimS; —dimS +dr +dimS — dim S;

and ¢ < dg, as required.

Next we show that: 4

(b) if R,dr are as in 23.1, the natural map Hi(S N R, &) L5 HI(S N R, Ky) is
an isomorphism for i > dgy.
Indeed, from (a) we see that j; is surjective for ¢ = dr and an isomorphism for
i > dgr. Moreover, for i = dp, the kernel of j; equals the image of the natural
map f : HI®R7Y((S — S) N R, Kog) — HI®(SNR,E). It is enough to show that
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f =0. We argue as in the proof of 8.3(b). We may assume that k is an algebraic
closure of a finite field F,, that G has a fixed F,-structure with Frobenius map
F : G — G, that P,R and any stratum in S are defined over F, and that we
are given an isomorphism F*& =5 &£ which makes £ into a local system of pure
weight 0. Then HIr=1((S — S) N R, Ky), HiR(S N R, £) have natural Frobenius
endomorphisms compatible with f. To show that f = 0 it is enough to show that

(*) HIR(S N R, E) is pure of weight dg;

(+x) Hir=1((S — S) N R, Kp) is mixed of weight < dp — 1.

Now (x) is clear since dim(S N R) < dr/2 (see 6.2). We prove (xx). As in the
proof of (a), it is enough to show that for any stratum S; C S — S and any 7', "
such that i’ + 4" = dg — 1, H” (S1 N R, H" K{) is mixed of weight < dr — 1. By
Gabber’s theorem [BBD| 5.3.2], the local system H" Ko on S; is mixed of weight
< i". Using Deligne’s theorem [BBD, 5.1.14(i)] we deduce that H (S "R, H"" Ko)
is mixed of weight < i’ +4"” = dg — 1. This completes the proof of (b).

We show that for S, &, P conditions (i) and (ii) below are equivalent:

(i) for any Up-coset R in NgP we have HI® (SN R,E) =0, dg as in 25.1;

(ii) for any i, the set X; = {R € NgP/Up; H(S N R, Ko) # 0} has dimension

<dim S —i.
Consider the set of all Up-cosets R in NgP such that SN R # (). On this set we
have a PZ2, x P/Up-action (z,p) : R — zpRp~! which has only finitely many
orbits and has some orbit of dimension dim S — dr. Also, this action leaves stable
each of the subsets X; in (ii).

Assume that (ii) holds. Let R € NgP/Up. Assume that HI® (SN R, &) # 0. By
(b) we have R € X; with ¢ = dg. Hence the orbit of R is contained in X;. It follows
that dim &; > dim S — dr contradicting (ii). Thus, (i) holds.

Conversely, assume that (i) holds. To establish (ii), we assume that ¢ is such
that X; # 0; it is enough to show that for any DZgO x P/Up-orbit n in X; we have
dimn < dim S—i. If R € p we have dimn = dim S —dg. Hence it is enough to show
that dim S — dr < dim S — ¢ or that i < dr. Assume that i > dg. Since X; # 0,
we have Hi(S N R, Ky) # 0 for some R hence by (b) we have Hi(S N R, &) # 0. If
i > dpg, this is impossible, by 6.2. If i = dg, this is impossible since (i) holds. Thus
we have ¢ < dg and (ii) holds.

23.3. In the setup of 23.1 we say that & is clean if IC(S,E)|g_g = 0. We say that
& € 8(9) is strongly cuspidal if for any parabolic P of G° such that P # G°, S C
NgP and any Up-coset R in NgP we have H(SN R, Ko) = 0 for all 4.

From the equivalence of (i) and (ii) in 23.2 we see that:

if € is strongly cuspidal, then £ is cuspidal.

If £ is assumed to be clean, then the condition that £ is strongly cuspidal is equiv-
alent to the following condition: for any parabolic P of G® such that P # G%, S C
NgP and any Up-coset R in NgP we have Hi(S N R,E) = 0 for all i.

Let D be a connected component of G and let P be a parabolic of G° such
that NpP # (. Let #’ : NpP — NpP/Up be the obvious map. Now NpP/Up
is a connected component of NoP/Up. Let i : NpP — D be the inclusion. Let
o = dim Up. Define a functor resgDP/UP :D(D) — D(NpUp/Up) by

resgDP/UPA =mi* A(a).
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Let L be a Levi of P. Let G’ = NgP N NgL, a reductive group with G’ = L. Let
D’ = G'ND, a connected component of G'. Define a homomorphism 7 : Ng P — G’
by 7(2w) = z for z € NgP N NgL, w € Up (see 1.26). The restriction of 7 to
NpP — D' is denoted again by m. We may identify N P/Up = G', NpP/Up = D’
via 7. Then resgD PIUP hecomes the functor

resD : D(D) — D(D")

given by resB' A = mi*A(a).
Let A be a perverse sheaf on D. We say that A is cuspidal if

resh A[—1] € D(D')=°
for any P, L, D’ as above with P # GY. We say that A is strongly cuspidal if
resh (A) =0

for any P, L, D’ as above with P # G°. Clearly, if A is strongly cuspidal, then it is
cuspidal.

Let S,€ be as in 23.1. Let A = IC(S,€)[dim S] regarded as a perverse sheaf
on D, zero on D — S. Clearly, A is strongly cuspidal if and only if £ is a strongly
cuspidal local system. We show:

(a) A is cuspidal if and only if € is a cuspidal local system.

By the equivalence of (i) and (ii) in 23.2, the condition that £ is a cuspidal local
system is that, for any P, L, D’ be as above with P # G° and any j € Z we have

dim (suppH? (resD/A[— dim S5])) < dim S —j

or equivalently dim(suppH (resB A)) < —j, that is, dim(suppH? (resB A[—1])) <
—j. This is the same as res3 A[—1] € D(D’)<C. This proves (a).

23.4. Let £ € 8(9). Let s € S5 and let G’ = Zg(s). Let ¢ be a G'%-conjugacy
class in ¥V = {v € G’; v unipotent, sv € S}. Let § be the connected component of
G’ that contains c. Let £ be the inverse image of £ under 5Zg,oc — 5,9 — sg.
Then & € S(S') where S' = °2%,,c. Let Ko = IC(S,€),K{, = IC(5',&'). We
show:

(a) € is clean (with respect to G) if and only if £ is clean (with respect to G').
Let £” be the inverse image of £ under V — S,v — sv. Since V is a smooth
equidimensional variety (it admits a transitive action of an algebraic group), the
complex IC(V,E") € D(V) is well defined.

Using 1.22 we see that 7 : S — Sy,g — ¢, is a morphism of algebraic vari-
eties. Now DZgO x G° acts on S and S, compatibly with 7 so that the action
on S, is transitive. Since the fibre 771(s) may be identified with V, we see that
IC(V,&") = h*Ky where h : V — S, v — sv. It follows that & is clean if and only
if IC(V,E")|p_y =0. We have V = Llie[1,m) € where c; are G'%-conjugacy classes.
Hence IC(V,&") = Dicii,m 1C(€i, E"e,). Thus, IC(V,E")|yp_y = 0 if and only
if IC(€;,E"|¢;)|e;—e; = 0 for all . By the homogeneity of V this is equivalent to
the condition that IC(€,&"|¢)|e—ec = 0. (We have ¢ = ¢; for some 4.) This last
condition is equivalent to the condition that Kj|g _g = 0. This proves (a).

We show:

(b) If £ is strongly cuspidal (with respect to G), then &' is strongly cuspidal (with
respect to G').
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Let @ be a parabolic of G’° such that Q # G'°,S’ C Ng/@Q. We must show
that for any z € °2%,,,u € €N Q we have H(zulUg, K) = 0 for all i. We may
assume that z = 1 and we must show that H(uUg N ¢, K{) = 0 for all i. Since
Hi(uUgNe, K{) is a direct summand of H:(uUgNV, IC(V,E")), it is enough to show
that Hi(uUg NV, IC(V,E")) = 0 for all i. Since IC(V,£") = h*K, it is enough
to show that Hi(suUg N sV, Kp) = 0 for all i. We have sullg N sV = sullp N S
hence it is enough to show that Hi(sulg NS, Ko) = 0 for all i. By 1.18(a) we can
find a parabolic P of G° such that PN G'® = Q and su € NgP. Clearly, P # G°.
Let f: suUp NS — sUp NS, be the restriction of 7 : § — S,. Now Up acts by
conjugation on sul/p NS and on sUp NSy compatibly with f; moreover, this action
is transitive on sUp NS5 (see 19.3(a)). We have f~1(s) = sulp NS hence we must
only show that H!(f~1(s), Ko) = 0 for all i. The Leray spectral sequence of f is:

EY? = HP(sUpN Ss, HIfiKy) = HPY(suUpnN S, Kp).

The last vector space is zero since £ is strongly cuspidal. Thus, E%:? = 0 for all p, g.
Now H?f1 K, is a Up-equivariant local system on sUp NSy and sUp NS, = Up/Up:
is an affine space. Hence EY? = 0 for p # 2dimUp/Up,. This implies that
EP? = EP:1 for all p, ¢; it follows that EY'? = 0 for all p, ¢ so that H?fi Ky, = 0 for
all ¢. Taking the stalk at s we see that HI(f~!(s), Ko) = 0 for all ¢ and (b) is
proved.

We show:

(c) Assume that S = DZgoc where ¢ is a unipotent G°-conjugacy class. Let
L e SPZL) be alocal system of rank 1. If € is strongly cuspidal, then €@ (LRQ;)
is strongly cuspidal.
We have IC(S,€ @ (LR Q) = Ko ® (LK Q) since S = PZ%, x . Let P be a
parabolic of G° such that P # G°, S C NgP. Let z € DZgo,u € ¢. We know that
Hi(zuUp N S, Ky) = 0. We must show that H:(zuUp N S, Ko ® (LK Q,)) = 0.
It is enough to show that (£ X Q;)|.,u,ng = Qi This follows from the fact that
(L®Q)|ourpns = £ ® Qi where L, is the stalk of £ at 2.

This argument shows also that, in the setup of (c):

(d) if € is clean, then £ ® (LXK Q) is clean.

23.5. Let S, D be as in 23.1. Assume that there exists a non-zero cuspidal local
system in S(S). Let £,&" € S(S) be such that the local system £ @ £” has no
direct summand isomorphic to Q;. We show that
(a) HY(S, &' ® &") =0 for all i.

It is enough to show that, if £ € S(9) is irreducible and € % Qy, then H:(S,&) =0
for all i. Let H = DZgO x GY. We can find n € Ny such that £ is equivariant
for the transitive H-action (z,z) : ¢ — z2"gz~! on S. Let y € S and let H,
be the stabilizer of y in H for this action. Let S = H/Hg. Define f : S — S
by f(z,2) = z2z"yx~! (a principal Hy/Hg—covering where H, acts on S by right
multiplication). Now & is a direct summand of the local system fiQ,. It is enough
to show that H(S, 1Q;) = H(S,Q;) for all i or equivalently that Hy/Hg acts
trivially on HX(S,Q;). Let H = Pzl x (GY/PZ2Y;). Define f' : H — S by
(z,2P 220) — (z,2)HJ. Now f’ is a fibration with fibres isomorphic to Hy /({1} x
PzY) = Za(y)°/P 2%, which by 10.2 is isomorphic to an affine space of dimension
say a. Hence we have H!(S,Q;) = H*?%(H,Q;). Also the H,/HJ-action on S is
compatible under f’ with the H,/({1} x P22, )-action on H by right multiplication.
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It is enough to show that H,/({1} x PZ2,) acts trivially on H:™2*(H, Q). This
follows from the fact that the H,/({1} x PZ2,)-action on H is the restriction of
an action of the connected group H/({1} x PZ%,) and a connected group must act
trivially in cohomology. This proves (a).

23.6. Let (L',S"),(L",S") € A. Assume that & € S(5') and £ € S(S”) are
strongly cuspidal relative to Ng L', NgL" respectively. Let K, = IC(5',&"), K} =
IC(58",&"). We regard K} (resp. K(/) as a complex on NgL' (resp. NgL") zero
outside S’ (resp. S”). To L',S',&" (vesp. L",S",E") we attach & € D(Yyr s)
(resp. R” € D(Yp» 1)) in the same way as & = IC(Y g, mE) was attached to
L,S,€ in 5.6. We regard &, 8" as complexes on G, zero outside Yz g/, Yrn g»
respectively.

Proposition 23.7. Assume that for any n € G° such that n~*L'n = L", hence
n"INgL'n = NgL", we have H(NgL', K\, ® Ad(n=Y)*K() = 0 for all i. (This
condition is automatically verified if L', L" are not G°-conjugate.) Then Hi(G, & ®
R") =0 for all i.

The proof is quite similar to (but simpler than) that in 7.8. Let P’ (resp. P”) bea
parabolic of GY with Levi L’ (resp. L") such that S’ C NgP’ (resp. S” C NgP").
Let X', X" K' € D(X'),K"” € D(X"),3 be as in 7.4. We may regard 3 as a
subvariety of X’ x X" via the imbedding (g,2'P’, 2" P") — ((g,2'P’), (g,z" P")).
The inverse image of K/ X K" € D(X’ x X”) under this imbedding is a complex
K ¢ D(3). Using a description of &, 8" as in 5.7 we see that & @ 8 = (prl)gf(
where pry : 3 — G is the first projection. It follows that Hi (G, & ® &) = Hi(3, K)
for all i. Hence it is enough to show that H:(3, K’) =0 for all i. For any G%-orbit
Eon G°/P' ' x G°/P" let £3 = {(g,2'P', 2" P") € 3; (2’ P', 2" P") € E}. Using the
partition of 3 into the finitely many locally closed subvarieties ¥3 we see that it is
enough to show that H:(¥3, K) = 0 for all i and any E as above. Using the spectral
sequence of the fibration proz : 3 — E, (g,2'P', 2" P") + (2' P', 2" P") we see that
it is enough to show that for any (2/,2”) € G° x G° such that (' P/, 2" P") € E we
have H!(V, K) = 0 for all i where V is the fibre of prog at (z/P’, 2" P"). We identify
V={g€G;z'Lgx' € S'Up:, 2" tga" € S"Upn} and define j : V — S’ x S” by

j(g) = (8" — component of 2’ ~'ga’, §” — component of 2’ ' ga").

Then K|y may be identified with j* (K} K K{/) and we must show that

HIWV,j*(K{ R K{)) =0 for all i.

Let Q,Q", M',M", %/, %", F' | F" be as in 7.8. Let K, = IC(X',F'), K =
IC(X",F"). Asin 7.8, V is fibred over

Vi ={(" ', 2) € (M'NUgr) x (M"NUg) x (M' N M");zu" € &', 2u' € 2"}
with all fibres isomorphic to Ug:NUg. Since Ug:NUg is an affine space we see that
it is enough to show that Hi(Vy, j*(K{ R KY)) = 0 for all i where j : V; — %/ x &/
is defined by j(u”,u’, z) = (21", 2u').

Assume first that Q’, Q" have no common Levi. Let ps : Vi — M’ N M” be
the third projection. It is enough to show that for any z € M’ N M” we have
Hi(ps ' (2), 7*(K§ R KY)) = 0 for all i. Now jz ' (2) is a product R’ x R" where R’
(resp. R") is the set of all elements in (M’ N NgQ")NY' (resp. (M" N NaQ')NE")
whose image under M’ N NgQ" — M’ N M" (resp. M" N NgQ' — M’ N M”) is
equal to z. We are reduced to showing that H (R, K}) ® H. (R",K{) = 0 for all
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1',4"”. Since @', Q" have no common Levi, we see that either M’ N Q" is a proper
parabolic of M’ or M" N Q' is a proper parabolic of M”. In the first case we have
H!(R',K}) = 0 for all 7' since F" is strongly cuspidal in S(X'). In the second case
we have HY'(R",K{) = 0 for all i" since F" is strongly cuspidal in S(X”). Thus
the desired vanishing result holds in our case.

Assume next that @, Q" have a common Levi. Then M' = M", M'NUqg» = {1},
M" N Ug = {1} and we may identify V; = ¥’ N ¥”. We must only show that
Hi{(3' NS K, @ KY)) =0 for all i. As in 7.8 we can find v/ € Upr,v" € Upn such
that, setting n = v'~lz’~1z"v"” € G°, we have n~'L'n = L”. Then the desired
vanishing result is equivalent to H:(NgL', K ® Ad(n=1)*K{/) = 0 for all 4, which
is part of our assumptions. The proposition is proved.

24. ORTHOGONALITY

24.1. In this section we assume that k is an algebraic closure of a finite field F,
and that G has a fixed F-rational structure with Frobenius map F': G — G.

24.2. Let L be a Levi of a parabolic of G°. Let § be a connected component of
N¢L such that § C N&L. Assume that F'(L) = L, F(§) = ¢ and that the F-stable
torus Z = 929 is F,-split, that is, F(z) = 29 for all z € Z. We show that
(a) there exists a parabolic P of G° with Levi L such that F(P) = P.

We can find x € Hom(k*, Z) such that Zgo(x(k*)) = Zgo(Z). Let g € §. Define
X', X" € Hom(k*, Z) by x'(a) = gx(a)g™", X"(a) = F(x(a? ). To x,x',x" we
attach parabolics Py, Py, Py» of G® as in 1.16. Let P = P,. From the definitions
we have P\, = gPg~', P,» = F(P). Since x(k*) C Zgo(g) we have x' = x. Since
Z is F-split, we have x"(a) = X(aq_l)q = x(a) for any a hence x” = x. Thus,
gPg~! = P,F(P) = P. It follows that § C NgP. Now Zgo(x(k*)) is a Levi of P
and Zgo(Z) = L by 1.10(a). Hence L is a Levi of P. This proves (a).

24.3. Let (L', 5),(L",S") € A. Assume that &' € S(5') and &" € S(S”) are
strongly cuspidal relative to NgL', NgL” respectively. Assume that F(L') =
L' F(S) = S F(L") = L",F(S") = S” and that we are given isomorphisms
€ F*E & € FrE" =5 £ Let &, & be as in 23.6 and let ¢/ : F*& = &,
¢" : F*&" = & be the isomorphisms induced by €, ¢”. Let 6’ (resp. 6”) be the
connected component of NgL' (resp. NgL”) that contains S’ (resp. S”). As-
sume that either L', L are not G°-conjugate or that £& and £” are clean (relative
to NgL',NgL"). Let © = {n € G°F;n~'L'n = L, n"1S'n = S”}. With these
assumptions we state:

Lemma 24.4.

GO X (9)xare (9)
geGF

(a) = [LFIHLEITY DD xene (W)xer e (n” ym).

n€ed yes'r

The proof is given in 24.7-24.12.
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24.5. Let (L',S"),(L",S") € A. Let ¢ (resp. §") be the connected component of
NgL' (resp. NgL”) that contains S’ (resp. S”). Assume that S’ =% 29,¢/, 8" =
0" 29,,¢" where ¢’ is a unipotent L’-conjugacy class and c¢” is a unipotent L’-
conjugacy class. Let F’ (resp. F") be an L’- (resp. L”-) equivariant local system
on ¢ (resp. c”) such that Q; X F' (resp. Q; X F”) is a strongly cuspidal local
system relative to NgL' (resp. NgL”). Assume that F(L') = L/, F(c¢') = ¢/,
F(L") = L", F(c") = ¢” and that we are given isomorphisms € : F*F' = F',
e F*F" = F'. Assume that either L', L” are not G°-conjugate or that Q; X F’
and Q; X F” are clean (relative to NgL', NgL"). Let © be as in 24.3. With these
assumptions we state:

Lemma 24.6.
G Z Qr G 7 ,e(WQLr G e 7 e (U)
w€GF ;unip.
(a) = [LFIPHEEITEY D N xE e ()xFe e (0 yn).
ned yec'F

The proof is given (together with that of Lemma 24.4) in 24.7-24.12.

24.7. We prove Lemma 24.4 assuming that L', L” are not G°-conjugate. Let ® :
Hi{(G, & @ &) = HY(G,8 @ K") be the composition

H(G, R o/ S H(G FReFR) S H(G & @8/

(the first map is induced by F' : G — @G, the second map is induced by ¢’ ®
¢"). By the Grothendieck trace formula, the left-hand side of 24.4(a) is equal to
>, (=1)itr(®, HI(G, & ® &”)). This is zero since H}(G, & ® &) = 0 for all 4, by
23.7. The right-hand side of 24.4(a) is also zero, by our assumption. Thus Lemma
24.4 is proved in the present case.

24.8. We prove Lemma 24.4 under the following assumptions:
! 1" .
S =92%¢,8"=929,c" where §',8',c',c” are as in 24.5;
for some/any ¢ € ¢/, 5’|5/ZOIC, has no direct summand isomorphic to Qy;
L —
for some/any ¢ € ¢”, £"|s» zo . is isomorphic to QY for some N.
L

By 24.7 we may assume that L, L’ are G’-conjugate. Then &£’ ,&” are clean. We
show that the left-hand side of 24.4(a) is zero. As in 24.7 it is enough to show
that H(G, & ® &”) = 0 for all i. Using 23.7, it is enough to show that for any
n € GY such that n='L'n = L” we have H.(NgL', K} ® Ad(n=1)*K(/) = 0 for
all i. The last equality is clear if n=15'n # S” (in this case n='S'n N S" = 0
and we have K} ® Ad(n=Y)*K{} = 0 since &',&" are clean). Assume now that
n=18'n = S”. Then K)® Ad(n~1)*K[ is the local system & @ Ad(n=1)*€"” on
S" extended by 0 on NgL' — S’. Hence it is enough to show that H!(S',&’ ®
Ad(n=1)*€”) = 0 for all 4. This follows from 23.5(a) since, by our assumption,
the local system £ ® Ad(n~!)*&” has no direct summand isomorphic to Q;. Next
we show that the right-hand side of 24.4(a) is zero. It is enough to show that for
any n € © the sum Zyes,p Xere'(Y)xer e (n"tyn) is zero. By the Grothendieck
trace formula, this sum is an alternating sum of traces of the Frobenius map on
Hi(S', & ® Ad(n~1)*E"). As we have seen above, this vector space is zero. Thus
Lemma 24.4 is proved in the present case.
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24.9. We prove Lemma 24.4 under the following assumption: there exist parabolics
P’ P" of GO with Levi L', L" respectively such that S’ ¢ NgP’,S" C NgP”,
F(P)=P F(P") =P

By 24.7 we may assume that L, L’ are G%-conjugate. Then &',&" are clean.
Define X%,,& (resp. X4.,E") in terms of L', P',S", & (resp. L",P" 5" ") in
the same way as Xg,& were defined in terms of L, P, S,€ in 5.6. Using 5.7 and
the cleanness of £, E” we see that & = f/&', & = f/'" where f': X§ — G, f":
X§, — G are given by the first projection. Note that X{,, X§,,, f’, f” are naturally

defined over F, and there are obvious isomorphisms F*&' = &' F*&" = &
induced by €, ¢”. Tt follows that

Xﬁ’,¢/(g) = Z ngyﬁl(wl(x'flgx/)),
I/P’FEGOF/P/F;I’flgI’ES/UP/

X8, ¢ (g) = Z XE e (71'//(J,/,/I—lgl‘ll))7
I”P”FEGOF/P”F;I”_lgIHES”UpH
where 7/ : (S'Up/)F — S'F 7" (§8"Upn)F — S"F are the obvious projections (see
1.26). Hence the left-hand side of 24.4(a) is

(a) |GOF|—1|P/F|—1|PIIF|—1 Z h(l‘/,.ﬁ”)
x’,x”EGOF

where
ha',2") = > xero (' (@~ ga’))xen o (7" (2" ga))
gevry
and V = {g € G;2'~'ga’ € S'Upr, 2" tga" € S"Upn}.

Assume first that 2/ P’'z’~1, 2" P”2"”~! have no common Levi. In this case we
show that h(z’,z"”) = 0. By the Grothendieck trace formula, h(z',z") is equal to
an alternating sum of traces of Frobenius on H’(V, K) (notation as in the proof
of 23.7). By the proof of 23.7, in our case we have H:(V, K) = 0 for all i. (The
relevant part of the proof of 23.7 does not make use of the assumptions in the first
sentence of 23.7; it only uses the strong cuspidality of £',E"”.) Thus h(z’,2") = 0,
as desired.

Assume now that 2/, z” € GO are such that Q' = 2’P'a’~1,Q" = 2" P"z"~!
have a common Levi M’ = M" (we may assume that M’ = M" is F-stable). We
can find v' € UL,,v"” € Uk, such that, setting n = v'~12/~12"v"” € G°F, we have
n~!L'n = L"”. Also, n is uniquely determined by z’,z”. Let ¥/, X" be strata of
NegM' = NgM" as in 7.8. As in 7.8, we have a natural map V — X' N X" with
fibres isomorphic to Ug N Ugr = Up: N Uppry-1. In particular, V = 0 unless
Y'NY" £ ( or equivalently, ¥’ = X/ or equivalently, n=18'n = S”. If this last
condition is satisfied, we have

h(l‘/,.ﬁ”) = |U11§’ n Urf‘P”n*1| Z XE',e (y)XS”,e” (n_lyn)'
yeSs'F
It is then enough to show that
(2, 2") € GOF x GOF; 2/ ~1a" € UEWUE,)
= |GOF | P F L LU O U

This is immediate. Thus Lemma 24.4 is proved in the present case.
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24.10. We show that Lemma 24.4 holds for G under the assumption that Lemma
24.6 holds when G is replaced by Zg(s) for any semisimple element s of G¥'. We
evaluate the left-hand side of 24.4(a) using the “character formula” 16.14. We have

GO X (@)X e (9) = GO > >
geGF s€GFsemis. g’ 2" eGF
x/flsx/ES;
xl’—lsxllesl.l
d/7d// s

|Za ()7 |72 L ML L PIL T T f (s, 0 2 )

where
L;, _ J,‘/L/J)/_l e ZG(S)O, Lg” — J)NLNJ?”_l ) Zg(s)o,
d’ runs over the set of F-stable L’ ,-conjugacy classes contained in
{v € Zg(s); v unipotent, 2’ ~lsvz’ € S'},
d” runs over the set of F-stable L, -conjugacy classes contained in
{v € Zg(s);v unipotent, 2" ~tsva’” € S"},

fs, 2/, d\d") = > Qu,zaanr, e, (WQLy, za(s).ar .57, e, (1)-

u€Zg(s)”
uunip.

Here F!, is the inverse image of £ under d' — S’,v — a/“lsva/, FV, is the
inverse image of £” under d” — S”,v — 2" "lsvz”, and €, : F*F., = F!, e/, :

F*F!, — F/, are induced by €, €”. Using our assumption we have

fs,2 o, d',d") = | Za(s)" ||| LT
(a) X Z Z XF!, e, (’U)X}—;/N o (n~vn).

ne€Zg(s)’F wved'F
n_lL;/’ﬂ:Lg//
n~'d'n=d"

To be able to apply our assumption, we use 23.4(a),(b). We also use the following
fact.

For s,x’,2" as above and for n € Zg(s)?, the condition n='L!,n = L, is
equivalent to n ‘o' Lz’ ~'n = 2" La".
Indeed, since S’ is an isolated stratum of NgL’ and z'~1sz’ € S,, we see using 18.2
that 2’ ~1sz’ is isolated in NgL'. Hence s is isolated in Ng(2'L'z'~1). Tt follows
that s is isolated in Ng(n~'2z/L'z’~!n). Similarly, s is isolated in Ng(z"L"z"~1).
By the injectivity of the map a in 21.3 (for s instead of g) we see that

n—lx/L/xlfln N Z(S)O _ x//L//x//—l N ZG(S)O PN nillelxliln _ x//L//x//—17
that is, n™'L/,n = L, < n~'a'L'a’“In =2 L"2" !, as required. We have

1 1

X7, e, (V) = Xerer (2" sva'), XF, el (n"ton) = xer e (2" tsn ona”).
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Note also that the condition n='d’n = d” implies n= 2’8’2’ ~In = 2" 8"2"~1. We
see that

|GOF|71 Z Xﬁ’,(lV (g)Xﬁ”,(i)” (g)
geGF
_ |G0F|71|L/F|71|L//F|71 Z |ZG(S)OF|71
s€GF semis.
I’,I”EGOF,d/
@' "tsz' €S
x//flsxlles‘;/

n€Za(s)°F ved'F

—1 ’7 =1 1" rn_rr—1
n~xz'L'x n=xz""L

- ’ r 1 — " "1 —
n" 'S’z “ln=a"8"z" "1

/—1 1—1,,—1,./

We now make the change of variable (z/,z”,n) — (2/,n,n'),n'~t = 2" n"1a’.
The condition n~'2’L’'2'~'n = x”L"2" ! becomes n/ ' L'n’ = L"; the condition
n~l2'S'x' ~in = 2”S"x" =1 becomes n'~1S'n’ = S” (thus, n’ € ©). The condition
x"""1sz” € S becomes n' 12’ “Insn~la'n’ € n'~1S.n/, that is, 2’ “1sa’ € S.. Our

sum becomes

|GOF|—1|L/F|—1|L//F|—1 Z |Zg(S)OF|_1
s€GF semis.
x/EGOF
z' lsz' €S
Z Z Xgl’e/(xlflsvx/)xgn’eu (n' "'z’ "tsva'n’).
n€Za(s)°F veZg(s)F ;v unip.
n'€© 2z’ “lsva’es’

/—1 !/

By the change of variable (s,z’,v) — (s',2,v") where s’ = o'~ lsz’ € S/, v/ =

2" tvr’ € Zg(s') Ns’~1S’ our sum becomes

|L/F|—1|L//F|—1 Z Z Xg/,gl(S/U/)Xg/gen(n/_ls/v/n/)
s'eStF v eZa(s")F ;v unip.
nlee v/esl—ls/

= |L/F|_1|LNF|_1 Z Z XS’,E’(y)XE”,e”(nl_lyn/)7

n/e@ yES’F

as required.

24.11. We show that Lemma 24.6 holds for G under the assumption that Lemma
24.6 holds when G is replaced by Zg(s) for any semisimple element s of G such
that dim Zg(s) < dim G (that is, s ¢ Zg(GY)).

Let £ € S(*29,), £" € S(°" 29, be local systems of rank 1 with given iso-
morphisms /@ F*L' = L'/« F*L" = L7 Let & = L'KF € 8(9),
E"=L"RF"eSS"). Let € =/ K& : F*& & =1/ Re": F*£" = &,
Note that £, E" are strongly cuspidal by 23.4(c) and that, if L', L” are not G°-
conjugate, then &£,&"” are clean by 23.4(d). For this £',&"” we can still try to

carry out the argument in 24.10 but now we can only use 24.6(a) for s such that
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s ¢ Zg(G®). We obtain:

IGO17E Y xarwr(9)xsr 0 (9)
geGF

—ILFIPHLTEITN YD Y xene(w)xen e (n” yn)

n€ed yes'rF

— |GOF | Z Z

s€Zc(G%)Fsemis. ',z €GF ,d’,d"”
x'_lsx'ES;
x//flsx//esl/g/

|ZG(5)OF|_2|L;,F||L/F|_1|L;',,F||L”F|_1

( Z QL;/;ZG(S)yd/,]:;/ ;6;, (U)QL;/,, ’ZG(S):d”,.F:,,,eg,, (u)
u€EZc(s)F ;unip.
— | Za(s)°F || Ly P LL Y

neZa(s)°F

n~'L!,n=L",
n~td'n=d"
(a) Z XF!, €, (U)X]:;/,,,e;/,, (n"twn))

vEd/F

(notation of 24.10.) For each s,2’,2” in the right-hand side of (a) we have s =

¥ lsx' € ¥ 29, Similarly, s € 9 29,. In particular, we have s € G° hence
s€ Zgo and Zg(s)? =GO, L, =a'L'a’~, L, = 2" L"2" 1. Also we necessarily
have d’ = 2/c’2’~1, d” = 2”'¢” 2" ~1. We see that the right-hand side of (a) is

|GOF|—1 § : 2 :
S€EZ50NY" 29,10 29, a2 EGOT

|G0F|_2( Z QL’,ZG(S),C/,}—’,E/(U)QL”,ZG(S),c”,f”,g”(u)

u€Zg(s)F ;unip.

_ |G0F||L/F|—1|L//F|—1 Z Z X]:ggf(U)X]:/gg//(xll_ln_lxlvn))
neGoF vece' P
n_lz'L'z'_ln:x” //I“_l

—1, 7 0 = "
n xr cx 1n:c

or, equivalently,
|G0F|71 §
s€Z50nY 22,n9" 29,

( Z QL za(s),c 7, (WL z6(s),c, 7 e (W)

u€Zc(s)F junip.

(b) —|GOFILF)THL T Y Y xe () e (0 o).

n’€0 yec'F

Let D’ (resp. D”) be the connected component of G that contains §’ (resp. 6”) For
each s in the sum we have D' C Zg(s), D" C Zg(s); moreover, Q. 7. (s),c/, 7, (U) =
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0 unless w € D" and Qr 7. (s),e”, 77,z (u) = 0 unless u € D”. We see that

Z QL za(s),c 7, (WRLY z6(s),c, 7 e (W)

u€Zg(s)F junip.

= Z QL’,G,C’,]:’,E’ (U)QL//’G’CII7‘FII7EII (u)

u€GF ;unip.

Hence (a) becomes

GO I7E Y xar o (9)xsr 00 (9)
geGF

— [PPSO Xene ()xer o (nT yn)

ned yes'F
= |G| H(Zq N 2), N 20,)

( Z Qr.c.e,7,e (WL G e 7 e (W)
u€GF ;unip.

() =[G TITILTITE Y D Y xme (0)xen (0 on)),

n'€0yee' ¥

Hence to prove the equality 24.6(a) it is enough to show that the left-hand side of
(¢) is zero. In order to do so, we are free to choose L', L,/ /" in a convenient way.

Assume first that 5,22{, # {1}. Then we can find a non-trivial character 6’ :
5122{? — Qj and £,/ as above such that x.,, = 6. We have £ % Q;. Let
L£" = Q; and take any /. With these choices, 24.8 shows that the left-hand side of
(c) is zero.

Assume next that 5”225 # {1}. Since L', L” play a symmetrical role, we see as
in the previous paragraph that the left-hand side of (c) is zero.

Finally, assume that % 207 = {1} and °" 29 = {1}. Then the F-stable tori
5'2’2,, 8" 29, are necessarily Fy-split and ¢ = 2. Using 24.2(a) we can find parabol-
ics P/, P" of G° with Levi L', L” such that F(P') = P',F(P") = P”. Then 24.9
shows that the left-hand side of (c) is zero. Thus Lemma 24.6 is proved in the
present case.

24.12. Clearly, the arguments in 24.10, 24.11 provide an inductive proof of Lemmas
24.4, 24.6.

24.13. In the setup of 24.3, assume that £, " are irreducible. Let
O, ={neGFn'I'n=L"n"15n=S8"Ad(n"1)*&" = £}.

If n € O(&,E"), the local system & = £ @ Ad(n~1)*£" is canonically of the form
Q®E where & € S (S) has no direct summand Q;. The isomorphisms €, ¢’ induce
an isomorphism F' *€ =5 € which respects the summand Q; and induces on it ¢(n)
times the obvious isomorphism F*Q; = Q;. Here ((n) € Q} is well defined.

We show that, if n € ©(E",") and ng € GF, ng'L'ng = L', ng*S'ng = 5,
Ad(ngh)*E" =2 &', then ngn € O(E, ") satisfies

(a) ¢(non) = n(ng ")¢(n)
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where n(ng ') is as in 21.6. Let a : Ad(ng')*E’ == &' be an isomorphism. We have
an isomorphism

Ad(ngh)* (&' ® Ad(n~1)*&)
= Ad(ng )& @ Ad(n"'ng ')€" 22 & @ Ad(n" ng ) E"
which must carry the summand Ad(ny')*(Q;) to the summand Q;. Let z € S'F.
Leteje & , ,efe&’ | be such that ). el ® e belongs to the stalk of
ng TNo n~lng znon
the summand Q; of Ad(ny')*&'®@Ad(n"Ing')*E” at 2. Then 3, a(e])®e! belongs
to the stalk of the summand Q; of & ® Ad(n~'ng)*E" at . By definition,

Y e ®e(el) = ¢(n) Z e,y €(ale)) @ (ef) = C(non) Y ale)) @ ef,

% % %

We deduce
> dlale)) @ (e]) =n(ngNa@ 1)) €(e) @ €"(e)))

= nlng (e @ (Y ¢ @ ef)

and (a) follows.
From (a) we deduce: B
(b) if (L', S",E") is effective (see 21.6), then ¢ : O(E',E") — Qf is constant.

Lemma 24.14. Assume thatn € ©. Then }_ o X&' (Y)Xer e (n~'yn) equals
C(n)qdim S’ —dim L'|L/F|
ifn €O &) and 0, otherwise.

In the following proof we write S instead of S” and ¢ for the connected component
of NgL' that contains S. By the Grothendieck trace formula, our sum is an alter-
nating sum of traces of the Frobenius map on H’(S, €) where £ = & @ Ad(n~1)*E".
Ifn ¢ ©(& "), then & has no direct summand isomorphic to Q;, hence by 23.5(a),
Hi(S",€) = 0. Thus we may assume that n € ©(E’,£"). Then we have canonically
E=Q,® & asin 24.13. As in the proof of 23.5(a) we have H.(S, 6:1) = 0 for all 1,
hence H(S,€) = Hi(S,Q;). By the definition of ¢(n) in 24.13 we see that the sum
in the lemma is equal to {(n)Y",(—1)"tr(F*, H(S,Q:)). Let f : S — S be as in
23.5 (for a fixed y € S and for Ng L', § instead of G, D). Then S, f are defined over
F, and from the proof of 23.5 we see that tr(F*, H:(S,Q;)) = tr(F*, H (S, Q))).
Hence our sum is equal to

C(n) Y (=1 te(F, HY(S, Qu) = ((n)| S| = ¢(n)|° 227|171 2o (9)°F |

By 10.2, Z1(y)°/° 2, is a (connected) unipotent group. Hence

|622F||ZL,(y)OF|—1 _ qdnnﬁzg,—dimzy(y)o _ qdim S—dim L'

The lemma is proved.
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Proposition 24.15. In the setup of 24.3 and assuming that £',E" are irreducible
and (L',S",&"),(L",S",E") are effective, the sum

GO X (9)xsa 0 (9)
geGF
is 0 if O(E',E") =0 and is equal to
Cqtm S Ao (e €M) /1L
where ¢ = ((n) (see 24.13) for anyn € O(E',E") if ©(E',E") # 0.
This follows from the results in 24.4, 24.13, 24.14.
Proposition 24.16. In the setup of 24.5 let &' = QXF' € §(5), &" = QRF" €

~

S(S")y and let € = 1XE : F*& 5 & ' =1Re& : F*&" = £". Assume that
F',F" are irreducible. Then the sum

GOFIT YT QuigeFe (WQrraenFrer (u)

wEGF ;unip.
is 0 if ©(E',E") =0 and is equal to
g s (e, &)L 2|
where ¢ = ((n) (defined as in 24.13 in terms of € ,€"”) for any n € O(E',E") if
e, e #0.
If n € O (see 24.3) we have clearly

> xre@xFre (T yn) = 17200170 YT xero(y)xer e (n yn).
yEC'F yES’F
The last sum can be evaluated using the results in 24.13, 24.14. (In our case,
(L',S8, &), (L", 5", E") are automatically effective; see 21.8.) We introduce this in
Lemma 24.6. The proposition follows.

24.17. Let A € A(G) (see 21.18) and let a : F*A = A be an isomorphism. We
have A = IC(Y, A) (extended by 0 on G —Y) where Y is the closure of a stratum
Y.s, (L,S) € A and A is an irreducible local system on Y which is a direct
summand of m& (here £ € S(S) is irreducible cuspidal and 7, € are as in 5.6). By
21.19, 21.20 we can assume that F'(L) = L, F(S) = S and F*€ = £. We consider
also A/ € A(G) and o/ : F*A" =5 A'. Let L', S',&, A, Y' 7/’ play the same role
for A" as L, S,E, A, Y, & for A. (In particular, A’ = IC(Y', A') extended by 0 on
G-Y' F(L')=L,F(S) =5 F¢& =€) Wefixe: F*¢ = & ¢ : F*& = &
Let
LT, 8%, 6%, N, Guoy LY, S, EY, €%, 7, B, by, iy Vi, Ri, b5

be associated with L, S, &, e as in 21.6 and let

DD &Y 6 nly, gl LY S € B B i Vi, R
be associated in an analogous way to L', S’, &’ €. From 21.6(c) we have
(a) Xaw,gw = D e, tr(0wti, Vi)X g 0,
for any effective w € I'. We multiply both sides of (a) by [T|~'tr(s; 'b,, V;) and
sum over all effective w € I'. Using 20.4(c) we obtain
X8R, = |F|71 Z tr(bj_lb;lvv})Xﬁ’”’,¢’”’
weT;eff.
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for any j € [1,r]. Similarly,
_ /1—1 1 =137 —1 !
Xﬁ;,,¢;, = |F | Z tI‘(Lj/ bw/ 7‘/j/)Xﬁ/w/’¢/’w/
w’' €T eff.
for any j’ € [1,r']. It follows that

0F|—1
GO Y Xy, (@)X, 00, (9)
geGF

=[N YD Y (e eyt Vite(d T, T V)
weleff. w €l ;eff.
(b) <GS X g (9)X g g (9)
geGF
for any j € [1,7],7" € [1,7].

Proposition 24.18. Assume that é:l &' are strongly cuspidal. Assume also that
either L, L' are not G°-conjugate or £, &' are clean. Then

G171 Xaa(9)xarar(9)

geGF
is 0 if A’ % A and is ¢ S—dimL 4 A = A and o = .
We may assume that A = &;,a = ¢;, A" = &),,a' = ¢/, for some j € [1,7],

j e [,r'). If (L,S,€),(L,S",&") are not G%-conjugate, the result follows from
24.17(b) since by 24.15 we have

|GOF|71 Z XRw, pw (g)Xﬁlwl7¢lwl (g) =0
geGF

for any effective w, w’.

Thus we may assume that (L, S, &), (L', S",£") are G%-conjugate. We may also
assume that L = L', S = 8/ = £ =¢é. Wehave I' =,V =T, & = (&),
7r!’6~" = (mg)v. Taking transpose we may identify E' = E as vector spaces but
with opposed algebra structures. Then E/, = E -1 for any w € T' and we may
assume that b/, € E! corresponds to b,' € E,-1. The simple E' modules are
V! = V;* (dual space) with E’-action given by taking transpose. We take ¢} to
be the transpose inverse of t;. We have 1’ = r, &, = (&), ¢, = (¢;). We take
nt, = Ny, ghy = Gw. Then L' = LW S/ = §w g'v = (W), ¢ = (e¥). Moreover,
forwe T, (L*,SY,EY) is effective if and only if (LY, S™, (E™)) is effective.

Let w,w’ € I'. We compute

Ay, = t(n € GF.in~1L"n = L“”,nflswn = Sw/,Ad(n*I)*(Ew/)*§ (&Y.
Setting g.,'ng.’ = n we see that
w,w = f(n € T5 F(gung,)) = gung,') = #(n € T;n,' F(n)n, = n)
= Z |A50|

yel’
wT P (y)w'=y

where A, is the L-coset in I' defined by y and Fy : A, — A, is Fy(n) =
Nyl F(n)ny, . Now LY acts freely on A, by I3 : n +— lj xn = g lligyn; this
action satisfies Fy(ly * n) = F(l1) x Fo(n). It follows that |[Af°| = |L*F| and
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| LVF |7 = $(y € T;w L F(y)w' = y). Using this and 24.15 we see that for any
effective w,w’ € I':

GOFITE D xawgw (9)Xgrur g (9)
geGF
_ qdim SidimLaw7w/|LwF|71 — Cw7w'qdim37dimLﬁ(y c F; wle(y)w/ — y)
Here (o € Qj is defined as follows (assuming that {y € T;w™ ' F(y)w' = y} # 0):
for any n € G°F' such that
n L% = LY n7lSYn =S¥, Ad(n ) (Y )y = £V,

€”, (¢*'Y induce an isomorphism F*(£¥ @ Ad(n~1)*(E¥')) — £¥ @ Ad(n~1)*(EY'Y
which on the summand Q; of £* @ Ad(n')*(£¥'Y is (uw times the obvious iso-
morphism F*Q; = Q. ~

For n as above we set g;,'ng,, = n € I and let y be the image of n in I'. Let
g € S, let (en) be a basis of & and let (¢;) be the dual basis of £. We have
an isomorphism b, : Ad(n~1)*€ = €. Taking transpose inverse we obtain an
isomorphism ‘b, " : Ad(n~1)*€ =5 £. This restricts to ot En-1gn — &, and
S, en @ thy(é;) belongs to the stalk of the summand Q; of £ ® Ad(n™1)*£ at g.
We have

" @ Ad(gun g, ") (€)= Ad(g,,")7(€ ® Ad(n™1)E),
hence Y, e, ® 'by, (&) belongs to the stalk of the summand Q; of
€Y ® Ad(gum g, ") (€'Y
at gwggy' € S*. Assuming that g,gg," € S*F we see from the definitions that
> € (en) @ € ("by(en)) = Cuwr Y en @ 'by(n) € £y @ Eq-1gn,
h h
hence
> " e(bwen) @ e(tby by (En)) = Cwwr Y en @ 'by(En) € Ey @ En-1gn.
h h
Applying e ! ® ¢! to both sides and using ¢ 1%b, = *(.71(b,))é~! we obtain
> " bwen @ byt by (En) = Cur D€ Hen) @ 1(TH(by))E (én).
h h

Setting e}, = e (en), €, = € *(én) we see that (e},), (€),) are dual bases of Ep(y),
Er(y) and we have

Z bwen ® tb;}tby(éh) = Cw,w’ Z e/h ® t(l,il(by))é,h S 8F(g) ® gvp(nflgn).
h h
Applying 1 ® t(.71(b,)) ! to both sides gives

waeh ® t(fl(by))iltb;/ltby(éh)) = Guw,w’ Z e, ® ¢, € Er(g) ® gF(g)'
h h

Let €} = byen, € = b, é,. Then (e})), (€}) are dual bases of

gnwgn;l = gF(g)’ gnwgn;l = gF(g)’
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hence ), e}, ®@é;, =3, e ®é,. We see that
Z t -1 —1tp—1tp (5 Z tp—1
buwen ® (L (by)) bw’ by(eh) = <w,w’ bpen ® bw €h.
h h

This shows that

t(Lil(by))iltb;/ltby(éh) = <w,w’tb;1éh S g

1
Naw gNw

for all h. Thus * (¢t (by)) b,/ by = Cuur'by" as linear maps &, .~ — &, hence
0y )buwrby = G lyibuw as linear maps £, —1 — ;. Tt follows that

by )bk, =t by € B

w,w’
for any y € T such that w™1F(y)w’ = y. In our case, 24.17(b) becomes
GOFIE D Xy (@OXs, 0, (@) = 0172 Y0 (0,1 V)

geGF w,w’ €T eff.
X tr(Cw,w’bw’Lj/, V'j/)qdimsfdimLu(y c I‘;wilF(y)w' — y)

:qdimS—dilel-\'—Q Z Ztr(b;le_l,Vj)tr(L_l(by_l)bwbyaj/,ij).

weTseff. yel'
We have
tr(v ™ (by Dbwbytr, Vir) = tr(je™ (b, )bwby, Vi),
tr(by_lbj’bwbyv Vir) = tr(jebw, Vi),
hence

0F|—1
GOFI7D 2 Xsy0,(9)Xss, 01, (9)
geGF
:qdimS—diInL|1—\|—1 Z tr(b_lb-il,‘/j)t]f'(bj/bw,‘/}/)

w "y
weT;eff.

which by 20.4(c),(b) equals g™ S—dimL if j — 4/ and 0, otherwise. The proposition
is proved.

24.19. Assume that we are in the setup of 24.17. Let ¢ (rep. 0’) be the connected
component of NgL (resp. NgL') that contains S (resp. S’). Assume that S =
12%¢,8" = ‘S/Zg,c' where c is a unipotent L-conjugacy class and ¢’ is a unipotent
L’-conjugacy class. Assume that &€ = Q;XF, & = QX F’ where F (resp. F') is an
irrreducible L- (resp. L'-)equivariant local system on ¢ (resp. c¢’). Let € : F*F = F
(resp. & : F*F' = F') be the restriction of € (resp. €). For w € T let §* be the
connected component of Ng(L™) that contains S™. Let j € [1,7],5" € [1,7/]. We

can state the following variant of Proposition 24.18.

Proposition 24.20. Assume that g: E' are strongly cuspidal. Assume also that
either L, L' are not GO-conjugate or £,&' are clean.

(a) If (L,c, F), (L', c',F') are not G°-conjugate, then

|C¥OF|_1 ZuEGF;unip‘ Xﬁja‘ﬁj (u)Xﬁ/j/@/j/ (U’) =0.
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(b) Assume that L=1L',c=c,F = F,é= €’,ﬁ;, = (&), ¢;, = (¢j). Then

Fl—
G D X (Wxsy, g, (0)
wEGF ;unip.
= || Z tr( _1b L V) tr(bytye, V)2 298|~ qtim S—dim L.

wel

As in 24.17 we have
0F |—1
G Z X8&j,¢; (U)Xﬁ;,@;, (u)

u€GF ;unip.
=IO D e g Vit T, T V)
wel w el
<GP Y X g (W)Xt gt ().
w€GF ;unip.

(All elements of T',T” are effective in this case.) In the setup of (a), we have
G ST g () g (1) = 0
u€GF ;unip.

by 24.16 and (a) follows.
In the setup of (b) we have I' =T". As in the proof of 24.18 we have (using 24.16
instead of 24.15):

|GOF|71 Z X&w, pw (U)Xﬁ,u,/@,w/ (u)

u€GF ;unip.
= G ™S 29[y € D Py’ = ).
Hence

GO D Xy WX, () = (D172 D0t by, V)t (b, Vi)

wEGF junip. w,w’€r

XCw,w dim S— d1mL|(6“’ZO )F| 1jj(y€I‘ w IF( )w/:y).

As in the proof of 24.18 we may replace tr(Cuy,w't;b,
follows.

Vi) by tr(t; by, V) and (b)

w’

25. PROPERTIES OF COHOMOLOGY SHEAVES

25.1. Let D be a connected component of G. Let (L,S),(L',S’) € A with S C
D,S"cD. Let 7 : YL,S — Y, s =Y be asin 3.13 and let 7’ : Y/Lgsf — Y s be
the analogous map. For any £ € S(5), the local system mE on Y is defined as in
5.6; similarly, for any £ € S(S’), the local syatem 7€ on Y7, g is defined.

Proposition 25.2. Let & € S(S'). Let & € D(D) be IC(Yyr 5,E"), extended by
zero on D — Y, . Let A € D(D) be a direct summand of & Then for any i € Z,
there exists £ € S(S) such that the constructible sheaf H'Aly is a local system
isomorphic to a direct summand of the local system mE.

The proof is given in 25.9.



CHARACTER SHEAVES ON DISCONNECTED GROUPS, V 365

25.3. Let Z = DZgO. We show:

(a) Let & be a G°-equivariant local system on an isolated stratum C of D. Assume

that there exists n € Ny and a Z-orbit F' in C such that E|p is Z-equivariant for
the action z : f+— 2™ f on F. Then £ € §(C).
We may assume that G is generated by D and that £ is indecomposable. We have
a canonical direct sum decomposition of £ such that each summand restricted to
any Z-orbit in C is an isotypical local system isomorphic to a direct sum of copies
of a fixed Z-equivariant local system of rank 1. Since £ is indecomposable, it is
equal to one of these summands. Thus, if F' is a Z-orbit in C', we may assume
that &|p = LP* where £ is a Z-equivariant local system of rank 1 on F. Asin 5.3
we can find & € S(C) of rank 1 such that &|p = L. Let £ = E®EF. Then €
is a GO-equivariant local system on C such that £|p = Q?Bk. Since G° permutes
transitively the fibres of C' — C’ (as in 5.3) we see that the restriction of £ to any
fibre of C' — C" is = Q ka. As in 5.3, we see that there is a well defined local system
&’ on C’ whose inverse image under C — C’ is £. Moreover, £’ is automatically
GP-equivariant. It follows that £ € S(C). Since £ = £ ® & and &; € S(C), we see
that £ € S(C).

25.4. Let n > 1 be such that £ € §,(5”). From the definitions we see that

(a) & is Z x G%equivariant for the action (z,z) — g — xz"gz~' on D.

Let H = H'RK, a constructible sheaf on D. Let & be the connected component of
NgL such that S C §. Let T =229 .

We have a canonical map S — Ss, ¢ — gs and Ss is a single orbit for the
T x L-action (z,2) : y — zzyz~'. Let s be the set of T-cosets in S;. Then
L acts transitively on s. We fix a T-coset 7 on S;. Let R = {g € S;gs € 7},
R* = {g € S*;gs € 7} = RN S*. Then R* is open in R. By the proof of
3.11, R* is dense in R. Now R is a single orbit for the group 7 x Np7 acting by
(2,1) : g = lzgl~1. Hence R is smooth, equidimensional. Let s € 7. Then Z(s)°
is independent of the choice of s: it is Np(7)" = Z.(7)°. Hence R is a union of
finitely many orbits of 7 x Z(7)°.

Lemma 25.5. Let s € 7. Then
(a) RC Zg(s).
(b) Any connected component of 'R contains some unipotent element.

We can find y € S with y; = s. We have y € R and ys = sy. Let ¢y € R. We
have 3y’ = lzyl~! where | € L,l17'sl = 2’s, z,2' € T. We must show that sy’ = y’s,
or that slzyl™' = lzyl~'s, or that {“!slzy = zyl~'sl, or that z’'szy = zyz's, or
that z'zsy = zz'ys, or that sy = ys. This proves (a). We prove (b). Let g € R.
Then gs = zs for some z € 7. Let ¢’ = 271g. Then g, = 2~ !g, = 5. Hence ¢’ = su
where u is unipotent in Zg(s). Now 7R = R hence ¢’, g are in the same connected
component of R. Hence the connected component of g in R contains an element ¢’
such that s~1g’ is unipotent. This proves (b).

Lemma 25.6. There exists a local system F on R and n € Ny such that F is
T x Zr,(1)°-equivariant for the action (z,z) — g+ x2"gr~ and F|r+ = H

Let Ry be a connected component of R which is a 7 x Zp(s)-orbit in R. Let
R} = R*N R, an open dense subset of R;. It is enough to show:

there exists a local system Fi on Ri and n € Ny such that Fi is T X Zp(7)°-
equivariant for the action (z,z) — g+ z2"gz~! and Fy r; = H|r;-

R* -
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Let 7* be the set of all s € 7 such that s = y, for some y € S*. By the proof
of 3.11 we have 7* # 0. Let s € 7*. Let 6; be the connected component of
Zner(s) such that Ry C sé;. By 25.5(b), d; contains some unipotent element.
By 16.12(b) we can find an open subset U of ; containing all unipotents of 41,
such that e*(8]qy) is isomorphic to the restriction to U of K where K is a direct
sum of finitely many objects K* € D(d;) each one of the same type as & (for
Zc(s) instead of G). (Here € : U — sl is g — sg.) By an analogue of 25.4(a),
each K% is 01 ch(s)o x Za(s)-equivariant hence 7 x Z(7)%-equivariant for an
action as in the lemma. (We have Zg(s)? = Z1(s)? = Z.(7)°, since s € 7* and
6lzgc(8)o = ‘Slsz(S)o = Tnor(y) = °2) = T, since y € Ry,ys = s is isolated
in NoL.) Then H'K is a T x Zy(7)%-equivariant constructible sheaf on §; whose
restriction to U is = H'(e*(R|sw)). Let Fi be the inverse image of H'K|, 15,
under Ry — s 'Ry, g — s 'g. This is a 7 x Zp(7)°-equivariant constructible
sheaf on R;. Since R; is a single orbit, we see that F; is a 7 x Zz(7)°-equivariant
local system on R;. We have Fi|y = H|y where V = Ry N sU, an open subset
of Ry containing {g € Ri;g9s = s}. We summarize: for any s € 7* there exists
an open subset V(s) of Ry and a 7 x Z(7)%-equivariant local system Fs on R;
such that {g € Ri;9s = s} C V(s) and Fs|ys) = Hly). If g € R, then g € Ry
and g; € 7 hence g € V(gs). Thus R} C R’ where R' = (J,,.V(s) C Ri.
The constructible sheaf H| g is a local system when restricted to any of the open
sets V(s) that cover R’. Hence H|g is a local system. Let s € 7* be such that
V(s) # 0. The local systems H| g/, Fs|r have isomorphic restrictions to V(s) hence
H|r = Fs|r- (Note that R’ is smooth, irreducible, since R; is smooth, irreducible.
Hence H|r = IC(R', H|y(s)) = IC(R', Fsly(s)) = Fs|rr.) Since R C R, it follows
that H|ry = Fs|ry. We set F = F,. Then F has the required properties. The
lemma is proved.

Lemma 25.7. There exists £ € S(S) such that €

S EH|S*,

Define p : S — s by g — (7 — coset of g5). Let p’ : S* — s be the restriction of
p. Then p, p’ are L-equivariant maps with L acting transitively on s and R (resp.
R*) is a fibre of p (resp. p’). Since H|g~ is an L-equivariant constructible sheaf
whose restriction to any fibre of p’ is a local system (see 25.6), we see that H|g-
is an L-equivariant local system. Hence K := IC(S, H|g+) € D(S) is well defined.
Let K’ = IC(R,H|g-). Using the L-homogeneity of s we see that for any j € Z we
have H/K|gr = H/K' and H/K is an L-equivariant constructible sheaf. From 25.6
we see that K’ is a local system on R. In particular, H/ K’ = 0 for j > 0. Since
for j > 0, H/ K is an L-equivariant constructible sheaf on S whose restriction to R
is 0, we see that H/ K = 0. Similarly, since H'K is an L-equivariant constructible
sheaf on S whose restriction to R is a local system, we see that HK is a local
system. Thus, K = H°K is a local system £ on S whose restriction to S* is H|g-.
Since £ = IC(S, H|s+) and H|g~ is L-equivariant, we see that £ is L-equivariant.
Since £|g = K' and K’ is T-equivariant, we may apply 25.3(a) with G, C replaced
by NgL, S and we see that £ € S(S). The lemma is proved.

Lemma 25.8. Let Y =Yy 5. Define € :Y — D by &(g,2L) = g. Then &H = €
where £ is defined in terms of € € S(S) of Lemma 25.7.

Let Y = {(g,2) € D x G% 2 gz € S*}. Defineb:Y — Sand ¥/ : ¥ — S*
by (g9,2) — 2 'gx. Define ¢ : Y — D by ¢(g,z) = g. By the definition of £ we
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have b*E = b'*(E|g+) = '*(H|g~). Define r: ¥ — G x D by (g,2) — (x,2 *gz).
Define p1,p2 : G° x D — D by pi(z,d) = d,p2(z,d) = xdz~!. Since H is a G-
equivariant constructible sheaf on D, we have piH = p3H, hence r*piH = r*piH.
Thus, b'*(H|s+) = ¢*H. Tt follows that ¢*H = b*E. As in 5.6, define a : ¥ — Y
by (g,2) — (g,xL). We have ¢*H = a*(£*H),b*E = a*E. Hence a*(£*H) = a*€.
Since a*€ is a local system, we see that a*(§*H) is a local system. Since a is a
principal L-bundle it follows that £*H is a local system and that &*H = €. The
lemma is proved.

25.9. We now prove Proposition 25.2. We may assume that A =K. Let j: Y — D
be the inclusion. With notation in 25.8 we have 7*j*H = £*H hence m*j*H = E.
Since 7 is a finite unramified covering and € is a local system, it follows that j*H is
a local system. Since Q; is a direct summand of m7*Q;, we see that j*H is a direct

summand of (j*H) ® (m7*Q;) = mn*(j*H) = m&. Proposition 25.2 is proved.

Lemma 25.10. Let (L,S),(L',S") € A. Assume that Y1, g C Yy, g.

(a) For any L-conjugacy class C in S and any L'-conjugacy class C' in S’ we
have dim L' — dim C’ > dim L — dim C.

(b) For any G°-conjugacy class ¢ in Y, s and any G°-conjugacy class ¢’ in Y/ g
we have dimc¢’ < dimc.

We prove (a). By 7.2(c) we may assume that L’ = GY. Then S’ is as isolated
stratum of G and S’ C Y where Y = Ysr. Leta=ap g,0: Y - abeasin 7.2.
Set a = o(C") € a. By 7.16(b), Y has pure dimension dim G°/L + dim C. Since
C' C Y® we have dim ¢’ < dim G°/L + dim C, as required.

We prove (b). Let g € ¢,¢’ € ¢/. We can assume that g € S*,¢' € S™*. Let
C be the L-conjugacy class of g; let C’ be the L’-conjugacy class of g’. By the
definition of S* we have Zg(g)° = Z1(g)° hence dim Zgo(g) = dim Z1(g) so that
dimec = dimG°/L + dim C. Similarly, dimc¢’ = dim G°/L’ + dim C’. Hence (b)
follows from (a).

25.11. For (L,S) € A let 1 s be the union of all G%-conjugacy classes in Y7, s

whose dimension equals the dimension of some/any G-conjugacy class in Y7, s.

(See 3.4.) From 3.15 and 3.4 we see that T, g is a union of strata of G. Clearly,
(a) YL,S C TL,S C YL,S-

Lemma 25.12. For (L,S) € A, T, 5 is open dense in Y s.

The fact that it is dense follows from 25.11(a). It remains to show that Y5 —
%r.sis closed in Y7, s. Since Y7 g is a union of strata (see 3.15) and T, g is a union
of strata (by definition) it is enough to verify the following statement:

Yo CYrLs—%ps, Y50 CYpnsn = Y50 CYp s —%p 5.

Let ¢ (resp. c’,c”) be a GYconjugacy class in Yy, g (resp. Y/ g/, Y g). Using
Lemma 25.10 we see that dim ¢’ < dime, dimc¢’ < dimc”. Hence dimc’ < dimece
and Y7, v C Yy ¢ — % 5. The lemma is proved.

25.13. Let (L,S) € A and let P be a parabolic of G with Levi L such that
S C NgP. Let T =% 5. Let ¢ : X — }_/L,S be as in 3.14. For any stratum S’
of NgP N NgL such that S € S let Xg/ be as in 5.6. Let X = ¢~1(%) and let
¥’ X — T be the restriction of 1. We show:

(a) X C Xg;
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(b) ¥’ has finite fibres;

(c) X is smooth.
Let g € T. We must show that ¢~1(g) N Xg/ is empty if S’ # S and is finite if
S’ = S. By 4.4(b), dim(x"1(g9) N Xg/) < (dim G°/L — dim ¢; 4+ dim C”)/2 where ¢;
is the GY-conjugacy class of g and C’ is any L-conjugacy class in S’. Let C be an
L-conjugacy class in S. We have dim C’ < dim C' with strict inequality if S” # S.
Hence dim(y~1(g) N Xg/) < (dim G°/L — dim ¢; + dim C') /2 with strict inequality
if S’ # 5. As in the proof of 25.10 we have dim G°/L + dim C' = dim ¢ where c
is a GY-conjugacy class in Y7, 5. Also dime = dime; by the choice of g. Thus
dim(x~1(g) N Xg/) < 0 with strict inequality if S’ # S. This completes the proof
of (a),(b).

Using (a) and Lemma 25.12 we see that X is an open subset of Xg which is
smooth. Hence (c) holds.

Proposition 25.14. Let (L,S) € A, let £ € S(S) and let T = T s. Then
IC(YL,S,W!5)|3 s a constructible sheaf.

Let € be the local system on Xg defined in 5.6. Using 5.7 it is enough to show
that 9 (IC(X,€))|z is a constructible sheaf or equivalently that {(IC(X,&)|x)
is a constructible sheaf. Since X C Xg (see 25.13(a)) we have IC(X,E)|x = &|x
and it is enough to show that 1{(£|x) is a constructible sheaf. This is clear from
25.13(b).

26. THE VARIETY Z;p

26.1. Let B be the variety of Borel subgroups of G°. Let W be the set of G°-
orbits on B x B (G° acts by conjugation on both factors). For B, B’ € B we write
pos(B, B') = w if the G%orbit of (B, B') is w. There is a unique group structure
on W such that whenever B, B’, B” € B have a common maximal torus, we have
pos(B, B")pos(B’, B”) = pos(B,B”). Then W is a finite Coxeter group (called
the Weyl group) with length function [ : W — N which attaches to a G°-orbit its
dimension minus dim . Let < be the standard partial order of the Coxeter group
W. Let I = {w e W;l(w) =1}. For J C Ilet W be the subset of W generated
by J; let W7 (resp. “W) be the set of all w € W such that [(ws) > l(w) (resp.
I(sw) > l(w)) for all s € J. Let w9 be the unique element of maximal length in
W . For J,J' c1let "W/ =7 WnW7'.

If P is a parabolic of G°, the set of all w € W such that w = pos(B, B’) for
some B,B" € B,B C P,B’ C P is of the form W for a well-defined J C I; we
then say that P has type J. For J C I let P; be the set of all parabolics of type
J of GO. For P € P;,Q € Pk there is a well-defined element u = pos(P,Q) € W
such that u < pos(B, B’) for any B,B’ € B,B C P, B’ C Q and u = pos(B1, B})
for some By,By € B,B; C P,B] C Q.

26.2. In the remainder of this section we fix a connected component D of G. There
is a unique isomorphism ep : W — W such that ep(I) = I and such that

geD,PcP; = gPg'e Pepn)-
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Let J C I. Following [B], let 7(J, ep) be the set of all sequences (J,,, wy,)n>0 Wwhere
Jn, C T and w,, € W are such that

J=JyDJ1DJ2D...,
Jp=Jp_1 N eBl(wn_lJn_lw;il) forn>1,
w,y, € eo(Jn)Wn for n >0,
wp € W, gywn—1Wy,_, forn > 1.

Then 7 (J,ep) is a finite set. B
For (P, P") € Py X Pe, ) let Ap(P,P') ={g € D;gPg~' = P'}. Let Ap(P, P')
= []p/\flp(lj7 P/) = AD(P7 P/)/Up. Let
Zyip={(P,P',7);P€Ps, P € P € Ap(P,P)}.
Following [L.10} 3.11], to any (P, P’,~) € Z; p we associate an element (J,, Wy )n>0
€ 7(J,ep) and two sequences of parabolics P, P'™, (n > 0) by the requirements:

PO=P P°=PP" =P NP YUprn-1r € Pepsy,
P"=g 'P"gcP; g€, w, =pos(P" P").
We write (Jp, wn)n>0 = B (P, P',v). For t € T(J,ep) let
¢ ZJ,D = {(Pa P/KY) S ZJ,D;BI(Pa P/a’Y) = t}

Then (* Z1,D)teT (J,ep) 18 a partition of Z; p into locally closed subvarieties. Now
GYactson Z;p by h: (P,P',y) — (hPh=',hP'h=! hyh~1'). This action preserves
each of the pieces *Z; p.

n—1

26.3. Let t = (J,, wn)n>0 € T7(J,ep). For r > 0, J,, w, are independent of r; we
denote them by Jo,, w. Then

wIsow ™t = ep(Ja), w € LU=IWo

Let Ry = {(Q,Q",7) € Zs_.p,pos(Q,Q) = w}. We choose Q € P;_,Q €
Pep (. such that pos(Q’,Q) = w. We can find a common Levi L for @ and Q'.
Let

C={9eDiglg ' =L,gQy ' =Q'}={9€ DigLg ' = L,pos(9Qg ™", Q) = w}.
Let A be a simple perverse sheaf on C' which is admissible in the sense of 6.7 (this
makes sense since C is a connected component of the reductive group NgL). Then A
is L-equivariant for the conjugation action of L hence it is also (QNQ’)-equivariant
where QNQ’ acts via its quotient (QNQ’)/Uong’ = L. Hence there is a well-defined
simple perverse sheaf A’ on G x g/ C (here QNQ’ acts on GY by right translation)
such that j*X A’ = pr;A in the obvious diagram G° xgng C LGOxC 0 We
may regard A’ as a simple perverse sheaf on Ry via the isomorphism

(a) G xqno' C = R, (g,¢) = (9Qg ", 9Q'9™", gUqrcUqg™").

Define 94 : *Z;p — Ry by (P, P',v) — (P, P'",4Up-) where r > 0 and P", P'"
are attached to (P, P’,v) as in 26.2. Now G° acts on Ry by h : (Q,Q,7) —
(h(:?h’l, hQ'h=", hy'h~") and ¥ is G-equivariant. By [L10, 3.12], ¥ is an iterated
affine space bundle. Let A = 9*A’, a simple perverse sheaf on tZ5p. Let A be

the simple perverse sheaf on Z; p whose support is the closure in Z; p of supp(A4)
and whose restriction to *Z; p is A. A simple perverse sheaf on *Z; p is said to
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be admissible if it is of the form A for some A as above. This concept does not
depend on the choice of @, Q’, L since any two such triples are G%-conjugate. Note
that A — Aisa bijection between the set of isomorphism classes of simple perverse
sheaves on C that are admissible and the set of isomorphism classes of simple
perverse sheaves on *Z; p that are admissible. A simple perverse sheaf on Z; p is
said to be admissible if it is of the form A for some t € T(J,ep) and some A as
above. Note that (t, A) — A is a bijection between the set of pairs consisting of an
element of 7(J,ep) and an isomorphism class of a simple perverse sheaf on *Z; p
that is admissible and the set of isomorphism classes of simple perverse sheaves on
Zj,p that are admissible.

When J =1, then T (J,ep) consists of a single element t = (J,, wy)n>0 Where
Jn =TL,w, =1 for all n. Now Zp p consists of all triples (G°, G, g) with g € D. We
identify Z1 p = D in the obvious way. A simple perverse sheaf on Zt p is admissible
in the sense just defined if and only if it is admissible on D in the sense of 6.7.

26.4. In this and the next subsection we assume that k is an algebraic closure
of a finite field F, and that G has a fixed Fg-rational structure with Frobenius
map F' : G — G. There are induced maps F' : B — B, ' : W — W, the last
map restricts to a bijection F' : I — I. Let J C I be such that F(J) = J. Then
F : G — G induces a map F : Py — P;. We assume that F(D) = D. Then
ep : I — I commutes with F hence F(ep(J)) = ep(J). Hence F : G — G induces
amap F: P,y = Pepn)-

For (P, P') € Py X P, (s) we have g € Ap(P,P") = F(g) € Ap(F(P),F(P"))
and g — F(g) induces a map F : Ap(P,P') — Ap(F(P),F(P")). Define F :
Zjp — Zyp by F(P,P',y) = (F(P),F(P'),F(v)); this is the Frobenius map for
an F,-rational structure on Z; p. The GO-action on Z 5 p restricts to a GOF _action
on ZiD. Let U be the vector space of functions Zf}jD — Q that are constant on
G F-orbits.

Theorem 26.5. Let Ay be a set of representatives for the isomorphism classes
of admissible simple perverse sheaves K on Zjp such that F*K = K. For each

K € Aj we choose an isomorphism o : F*K = K. The characteristic functions
XK,o (one for each K € Ay) form a Qq-basis of U.

~

In this proof we write Z,*Z instead of Z;p,*Z;p. Define F : T(J,ep) —
T(J,ep) by (Jn,wn)n>0 — (F(Jn), F(wn))n>0. For any t € T(J,ep) we have
F(tZ) = F® Z. In particular, we have Z7 = I—lteT(J,eD);F(t)=t tZF where tZF =
tZ N ZE. Tt follows that U = DBicrsen)re)=t YU where *U is the vector space
of functions *ZF — Q; that are constant on G°"-orbits. (We identify any such
function with a function Z¥ — Q; which is zero on the complement of *Z¥".)

For any integer t let Z<; = UteT(J,eD);|t\§ttZ where [t| = dim*Z. This is a
closed subvariety of Z since |J, *Z is a partition of Z into finitely many locally
closed subvarieties. Moreover, if [t| = ¢, then *Z U Z<;_1 is a closed subvariety of
Z.

Let U<; be the vector space of functions th — Q that are constant on
G F-orbits. (We identify any such function with a function Z¥ — Q; which
is zero on the complement of *ZF.) We have U<y C U<y C ... and U<, =

Deerren)rw=t <t U-
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Now let K € Ajy. Since the sets *Z N supp(K) form a partition of supp(K)
into finitely many locally closed subsets, there is a unique t € 7 (J,ep) such that
tZ N supp(K) is open dense in supp(K). Since F*K = K we have necessarily
F(t) =t. Let t = [t|. Since *Z Nsupp(K) C *Z and *Z U Z<;_; is closed, we see
that the closure of *Z N supp(K) is contained in *Z U Z<;_1. Thus, supp(K) C
*Z U Z<i—1. Hence we can write uniquely Xx.o = Xk, + Xfi,o Where X , is the
restriction of Xk o to *Z (extended by 0 on Z —*Z) and x% , € U<;—1. Note
that xx,a, XlK,a are contained in U<; and they are equal modulo U<;_;. Thus, in
order to prove that the functions y k » form a basis of U it is enough to prove that
the functions Xll(,a form a basis of U. More precisely, we will show that, for any
t € T(J,ep)¥, the functions X/K,a with K € A; such that *Z N supp(K) is open
dense in supp(K), form a basis of *U. An equivalent statement is:

(a) For anyt € T (J,ep)F let * Ay be a set of representatives for the isomorphism

classes of admissible simple perverse sheaves K' on *Z such that F*K' = K'. For
each K' € * Ay we choose an isomorphism o : F*K' =5 K'. Then the characteris-
tic functions Xk« (one for each K' € *A;) form a Q-basis of *U.
Let R = Ry, Q,Q',L,C be as in 26.3. Then R is defined over F,, with Frobe-
nius map F : Ry — Ry, (Q,Q,7) — (F(Q), F(Q'), F(7')). We may assume that
FQ)=Q,F(Q)=Q,F(L)=L" Then F(C) = C. The map ¥; : *Z — R in
26.3 is GY-equivariant and commutes with F.

We show that ¢ induces a bijection between the set of G¥-orbits on *Z and
the set of GO%-orbits on R. Now ¥y is a composition

r

1 2
t 9 ¢ 9 9 ¢,
Z‘]’D—> IZJI’D—>...—> ZJ,MD:R

where t; = (J,, W )n>i, *9(P, P',v) = (P!, P'Y,yUp1) (notation of 26.2) and 4 is
defined for ¢ > 2 just like 19 with t;_; instead of t. Each “J is G%-equivariant and
commutes with F. Hence it is enough to show that *¢ induces a bijection between
the set of GOF-orbits on *-1Z and the set of GOF-orbits on *Z. We may assume
that i = 1. Let @ be the fibre of 19 at some F-rational point (P, P',%) € © Z;, p.
It is enough to show that ®f # () and that ®F is contained in a single G°F-orbit.
Since ® is an affine space (see [L10,, 3.12(b)]) defined over F, it must contain some
F-fixed point (P, P’,~). By [L10, 3.8], ® is a homogeneous Up NP’ space (the action
being the restriction of the G%-action on *Z) and the isotropy group of (P, P, ) is
Up NUp: (see [L10, 3.9]). Since Up N P',Up N Up: are connected, it follows that
(Up N P acts transitively on ®'; thus, ®" is contained in a single G°F-orbit, as
required.

Using this and the definitions, we see that (a) would be a consequence of the
following statement:

Let A’ be a set of representatives for the isomorphism classes of admissible simple
perverse sheaves A on C such that F*A = A. For each A € A" we choose an
isomorphism o : F*A = A; we define A’ (a simple perverse sheaf on R) as in 26.3
and let o : F*A" =5 A’ be the isomorphism induced by . Then the characteristic
functions xar.ar (one for each A € A') form a Q-basis of the vector space of
functions RY — Qq that are constant on GOF -orbits.

This is an immediate consequence of 21.21 applied to NgL instead of G. The
theorem is proved.
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27. INDUCTION

27.1. Let D be a connected component of G and let P be a parabolic of G° such
that NpP # (). Let 7' : Np P — NpP/Up be the obvious map. Note that Np P/Up
is a connected component of NgP/Up. Consider the diagram

NpP/Up & Vi %V %D

where
Vi ={(9,7) € G x Gz tgx € NpP},
Vo ={(g9,2P) € G x G°/P;x"1gx € NpP},
a(g,x) = n'(z7 gx),d'(g,2) = (9,2P),a"(g,aP) = g.

Then a (resp. a’) is a smooth morphism with connected fibres of dimension dim P+
2dimUp (resp. dim P). To any A € M(NpP/Up) which is P/Up-equivariant for
the conjugation action of P/Up we associate a complex indﬁD pupA € D(D) as
follows. The complex a*A € M(V;) is P-equivariant for the action p : (g,z) —
(g,zp~1) of P on V;. Since a’ is a principal P-bundle, there is a well-defined complex
Ay € M(Vz) such that a* A = a’* A; and a well-defined complex A} € D(V3) such
that a* A = a’*A]. Then A} = A;[—2a] where a = dim Up. We set

indgpp/Up (A) = ai' Ay = a A} [2a].

Let L be a Levi of P. Let G’ = NgP N NgL, a reductive group with G’° = L.
Let D' = G’ N D, a connected component of G’. Define a homomorphism ¢ :
NgP — G’ by £(2w) = z where z € G',w € Up (see 1.26). We identify NoP/Up =
G',NpP/Up = D’ via &. Then indﬁDp/Up may be viewed as a procedure which
associates to any A € M(D’) which is L-equivariant for the conjugation action
of L, a complex indB, A = a/’A; = a]A}[2a] € D(D) where a : V; — D' is
a(g,r) = &(x~tgr) and A; € M(Ve), A} € D(Va) are given by a¥A = a'* Ay,
a*A = a* A

27.2. Let L' be a Levi of a parabolic of L. Let S be an isolated stratum of Ng/L'
such that S C D and S normalizes some parabolic of L with Levi L’. Then S is
also an isolated stratum of NgL’ such that S normalizes some parabolic of G° with
Levi L'. We have a commutative diagram in which all squares except the top two
are cartesian:

G = g g
@ @ ﬁ
Yy —— 7, —=— 7
ST
vtz bz, ¥

w | al p|

D' a 1% a Vo a D

Here

S ={g€ S;Zc(9s)° C L'},
Y'={(g,IL') € G' x L) L';17 gl € §"*},
S*={g€S;Za(g:)° C L'},
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={(g,2L") € G x G°/L';27 1 gx € S*},

{(g,I1L',z) € G x xL/L' x G% 1~ 1m_1gfcl € S"*Up},
(9,2L'Up) € G X GO/(L’Up) r~ gz € S"*Up},

(g9,1) € G" x Lyl~tgl € §'*},
(
(

g,l,2) € G x xL x G%1~ 1x’lgxl € S"*Up},
g,2Up) € G x G°/Up;x~tgw € S"*Up},
(g,l,a?) (E(l‘ gm) l),c (g,l,x) (g,l‘lUP)

b(g,IL',x) = (£(z~ " gx), L), 0 (g,IL',x) = (g, I L'Up),
k(g,(EL/) = (g,xL'Up),qo(g,l) = (galL/)vql(gvlvx) = (g,lL’,x),
(J2(Q,UUP) = (gva,UP)aPO(galL/) = gvpl(gvlL,ax) = (gax)a
pa(g,vL'Up) = (g,vP),70(g,1) = 1" g,

and r1(g,l,x) = s1 € 8", 12(g,vUp) = s2 € §'* are defined by

=1
=1
Zl—{
=1

l_la:_lgxl S slUp,v_lgv € s9Up.

Let Y/ = (e, 197171, a locally closed smooth irreducible subvariety of D'; see
3.16, 3.17. Let Y{ = a=1(Y”’), a locally closed smooth irreducible subvariety of V;
which is P-stable since Y is stable under L-conjugacy (we use that a is smooth
with connected fibres). Then Y{ = a’~1(Yy) where YJ is a well-defined locally
closed smooth irreducible subvariety of Va. Let Y = (J, o 25 *2~1 alocally closed
smooth irreducible subvariety of D. Let Y'Y/, Y], Y be the closure of Y'Y/, Yy, Y
in D', V4, Vo, D. Then o/~ (Y2) = Y1 = a=}(Y’). Let

W ={ne NL';nSn' =n}/L', W= {n € NgoL';nSn"' =n}/L'.

Then W' C W are finite groups. Now W' acts freely on Y’, Z1, Z, by

n:(g,IL") — (g,In"1L"),n: (9,1l ) — (g,In 1L, x),

n:(g,zL'Up) — (g,an"1L'Up).
These actions are compatible with v & 74 LA Z5. By 3.13, po : Y - Y'isa
principal W’ -bundle. It follows that p; : Z; — Y{ and ps : Zo — Y3 are principal
W'-bundles.

Now W acts freely on Y by n : (g,zL") — (g,an~*L’). From 3.13 we see that
p:Y =Y, (g,zL ) — g is a principal W-bundle. From the definitions we see that

(a) the restriction of the W-action on Y to the subgroup W' is compatible via
k:Y — Zy with the W'-action on Zs.
Let £ € S(S). Let € be the local system on Y defined as in 5.6 (with G, L/, S
instead of G, L S) Define local system E.6,E onY’ Zl,Zg (respectlvely) by

@& = &, qtE = i€, q282 = r3E. We have b*&' = & = b/*&. Hence
(pl)gb*é" (pl).b’*é'g = (pl)‘El. Now (po)‘é' ,(pg)‘é'g are local systems on Y’ Yy
and a*(po)gg" = a’*(pg)!gg = (pl)!gl as local systems on Y{. We have E = k*&,.
Let

=IC(Y", (po)!g )[dle’] K, =1I1C(Y{, (pl)ugl)[dlm 7],

Ky =1C(Yy, (pg)!ég)[dlm Zy), K = IC(Y, pvé’)[dlm Y]
regarded as perverse sheaves on D', Vi, Vo, D, zeroon D' =Y’ Vi =Y/ Vo—Y] D-Y
respectively. Since a,a’ are smooth morphisms with connected fibres, we see that
a*K' = K, = a/*K, in M(V;). Hence

(b) indB, (K") = a/' K>.
We show that

(c) af Ky = K canonically.
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Let P’ be a parabolic of L with Levi L’ such that S C Ng/P’. Then P| = P'Up
is a parabolic of G with Levi L’ such that S C NgP{. We have a commutative
diagram with cartesian squares

Yy’ 71 Zs
Jjo l J1 l J2 l
X' Z ° X

Here

X' ={(g9,IP") € G' x L/P';17'gl € SUp.},

X ={(g9,vP]) € G x G°/P[;v"gv € SUp,},

Z ={(g,IP',xz) € G x xL/P'x G% 1 'a~ gal € SUp;},

e(g,IP',z) = (&(z~ ' gx),IP"), ¢ (g, P, x) = (g,2lP)),

tO(gle/) = gvtl(gvlp/vx) = (gvx)7t2(g7vpl/) = (g,vP),

jo(g,lL/) - (gvlp/)ajl(gall’lax) = (g,lP/,x),jg(g,xL'Up) = (g,g;Pll),
Since jo is an open imbedding (by 5.5) we see that ji, jo are open imbeddings. We
identify Y, Z1, Z» with open subsets of X', Z, X via jo,j1,j2. The composition
Y — Zy 25 X is the map (9,zL") — (g,zP{) which is an open imbedding by 5.5.
Since Z, is an open subset of X via jo, we see that Y may be identified with an
open subset of Zy via k. Since e, e’ are smooth morphisms with connected fibres,
we see that

XIC(X',EN[dim X') = IC(Z,&))[dim Z] = ¢ *IC(X, &)[dim X] in M(Z).
From 5.7 we see that K’ = (o), IC(X’,£’)[dim X’]. Hence
K1 = (61 IC(Z,&)[dim Z], Ky = (t2) IC(X, &) [dim X].

Since £ = &5, we have IC(X, &) = IC(X,E) and Ky = (o) IC(X, E)[dim X].
The composition a’t; : X — D is (g,vP]) — g. Using 5.7 we have af Ky =
(a”"to) IC(X, E)[dim X] = K. This proves (c).

Define E = @,,c)y Ew as in 7.10 (for G, L', S, € instead of G, L, S,£). Define
E' =@, E,, in the same way (for G', L', S, £ instead of G, L, S,£). Then E is
naturally an algebra and E’ is a subalgebra of E. Since a, a’ are smooth morphisms
with connected fibres, we see that

E' = End((po):€') = End(K() = End(K;) = End(K>).

Now aj’ defines a ring homomorphism End(K5) — End(a’K3). Thus ay K2 becomes
an E’-module. On the other hand, E = End(X). Using (a) and the definitions we
see that the restriction of the E-module structure of K to E’ corresponds under (c)
to the E’-module structure on ay Ks.

Let T' be a subgroup of W’ and let Ep. = @, . E;,, a subalgebra of E’, hence
of E. Let p be a Ef.-module of finite dimension over Q,. Let

K'(p) = Hom, (p, K') € M(D'), K, (p) = Homss, (p, K1) € M(VA),

K>(p) = Homgy (p, K2) € M(V2), K(p) = Homg, (p, K) € M(D).
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Then a*K'(p) = K1(p) = a’* K2(p) and
(@) indB, (K'(p)) = o/ Kalp) = K(p) € M(D).

27.3. Let P,L,G’', D, D’ be as in 27.1. Let Q be a parabolic of L with Levi M such
that Np:Q # 0. Let G = NovQ N Ng'M. Then G”° = M, Np,Q is a connected
component of No@Q and D” = G” N D’ is a connected component of G”. Let
R = QUp, a parabolic of G° with Levi M. We have R C P and NpR # (). (Indeed,
D" C NpR; more precisely, Np RN NpM = D"”.) Note that No RN NgM contains
G" as a subgroup of finite index and both have D" as a connected component.

Let M’ be a Levi of a parabolic of M. Let S be an isolated stratum of Ng» M’
such that S C D and S normalizes some parabolic of M with Levi M’. Then S
is also an isolated stratum of Ng/ M’ such that S normalizes some parabolic of L
with Levi M’. Moreover, S is an isolated stratum of NgM’ such that S normalizes
some parabolic of G° with Levi M’. Let

§" ={g € S;Zan(gs)° € M'},

Y" = {(g,mM’') € G" x M/M';m~'gn € S"*},

S = {g € S; ZG’(QS)O c M,}v

Y'={(g9,1L') € G’ x L/M';1" gl € S},

5 = {9 € 8: Za(g.)° C M},

Y ={(g,zM') € G x G°/M"; " gz € S*}.
Let

V" =Upeny mS"m™ LY = Ui 1S™17LY = Upeqo 28" 271
Define 3 R

P Y Y Y =Y p:Y =Y
by the first projection. Let

W' ={ne NyM';nSn=t =n}/M’,

W' ={ne€ N,M';nSn~t =n}/M’,

W ={né€ NgoM';nSn~t =n}/M'.
Then W’ C W' C W are finite groups. As in 3.13, p” is a principal W”-bundle, p’
is a principal W’ -bundle, p is a principal W-bundle. Let £ € S§(5). Define a local
system € on Y as 5.6 (with G, M’, S instead of G, L, S). Define a local system &’
on Y’ as 5.6 (with G/, M, S instead of G, L, S). Define a local system £” on Y as
5.6 (with G”, M’, S instead of G, L, S). Then p{'€”, pi€ ,p€ is a local system on
Y” Y'Y respectively. We regard

K" = IC(Y”,pf’ ~/')[dim }7//]7

K' = IC(Y', p&)[dim Y],

K =1C(Y,pé&)[dim Y],
as perverse sheaves on D", D', D respectively, zero on D" —Y" D' —-Y' D —-Y.
Define E = @,y Ew as in 7.10 (for G, M’', S, € instead of G, L, S, ). Define in
the same way E' = @, E;, (for G', M', S, € instead of G, L, S,£) and E” =
Den By, (for G, M, S, € instead of G, L, S, £). Then E is naturally an algebra,
E’ is a subalgebra of E and E” is a subalgebra of E’. We have naturally

E’ = End(K"),E = End(K’),E = End(K).

Thus, K”,K', K are naturally E’-modules. Let p be a finite dimensional E”-
module over Q. Let

K" (p) = Homg» (p, K) € M(D"),

K'(p) = Homp (p, K') € M(D'),
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K (p) = Homg (p, K) € M(D).
Applying 27.2(d) with G',Q, M, M’ instead of G, P,L, L' and T' = W" we have

indp., (K" (p)) = K'(p) € M(D").
Applying 27.2(d) with G, P, L, M’ instead of G, P,L, L’ and T' = W’ we have
indp, (K'(p)) = K(p) € M(D).
Applying 27.2(d) with G, R, M, M' instead of G, P, L, L’ and T' = W" we have
ind5, (K" (p)) = K(p) € M(D').
Hence we have the following transitivity formula:

(a) indB, (indB., (K" (p))) = indD, (K" (p))-
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