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CHARACTER SHEAVES ON DISCONNECTED GROUPS, VI

G. LUSZTIG

Abstract. We define the character sheaves on a connected component of a
reductive group and we show that the restriction functor takes a character
sheaf to a direct sum of character sheaves.

Introduction

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
[L9] which attempts to develop a theory of character sheaves on G.

In Section 28 we define the character sheaves on a connected component of G
generalizing the definition in [L3, I, §2]. In Section 29 we prove a semisimplicity
property of the restriction functor, generalizing one in [L3, I, §3]. In Section 30 we
show that any character sheaf is admissible, generalizing a result in [L3, I, §4]. In
Section 31 we show that the restriction functor takes a character sheaf to a direct
sum of character sheaves, generalizing a result in [L3, I, §6].

We adhere to the notation of [L9] and [BBD]. Here is some additional notation.
If K ∈ D(X) and A is a simple perverse sheaf on X we write A a K instead of
“A is a subquotient of pHi(K) for some i ∈ Z.” Let M(X) be the subcategory of
D(X) whose objects are the perverse sheaves on X .
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28. Definition of character sheaves

28.1. Let T be a torus. For any n ∈ N∗k, let sn(T ) be the category whose objects
are the local systems of rank 1 on T that are equivariant for the transitive T -action
z : t 7→ znt on T ; let s(T ) be the category whose objects are the local systems on
T that are in sn(T ) for some n as above.

If f : T → T ′ is a morphism of tori and L′ ∈ s(T ′), then f∗L′ ∈ s(T ). The set
s(T ) of isomorphism classes of objects in s(T ) is an abelian group for tensor product
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378 G. LUSZTIG

of local systems. Let X = Hom(T,k∗) (homomorphisms of algebraic groups). From
the definitions we see that

(a) κ⊗ E 7→ κ∗E defines a group isomorphism X ⊗ s(k∗) ∼−→ s(T ).
We show that

(b) for L ∈ s(T ) there exists κ ∈ X and E ∈ s(k∗) such that L ∼= κ∗E.
Indeed by (a) there exist κi ∈ X , Ei ∈ s(k∗), (i ∈ [1,m]) such that L ∼=

⊗m
i=1 κ

∗
i Ei.

By 5.3 we have s(k∗) = Hom(µ∞(k∗), Q̄∗l ) ∼= Q′/Z where Q′ =
⋃
n∈N∗k

1
nZ ⊂ Q.

Hence we can find E ∈ s(k∗), ni ∈ N∗k such that Ei ∼= E⊗ni for i ∈ [1,m]. Then
L ∼=

⊗m
i=1 κ

∗
i E⊗ni ∼= κ∗E where κ =

∏m
i=1 κ

ni
i and (b) follows.

For any τ ∈ T define hτ : T → T by hτ (t) = τt. We show that
(c) if τ ∈ T,L ∈ s(T ), then h∗τL ∼= L.

Let n be such that L ∈ sn(T ). Then for any z ∈ T we have hznL ∼= L. We can find
z ∈ T such that zn = τ . This proves (c).

28.2. Let L ∈ s(T ), let κ, E be as in 28.1(b) and let n be the order of E in s(k∗).
Then E ∈ sn(k∗). We show that the following two conditions for a morphism
f : T → T of tori are equivalent:

(i) f∗L ∼= L;
(ii) there exists κ1 ∈ X such that κ ◦ f = κκn1 .

Condition (i) is equivalent to f∗κ∗E ∼= κ∗E , that is, (κ ◦ f)∗E ∼= κ∗E . Using the
injectivity of the map 28.1(a) we see that this is equivalent to (κ ◦ f) ⊗ (n′/n) =
κ⊗ (n′/n) in X ⊗Q′/Z (here n′ ∈ Z, 0 < n′ ≤ n and n′/n is irreducible) which is
clearly equivalent to condition (ii).

Assuming that (i) and (ii) hold, we show that
(a) L is T -equivariant for the T -action t0 : t 7→ f(t0)tt−1

0 on T .
The map κ : T → k∗ is compatible with the T -action (a) on T and the T -action
t0 : z 7→ κ1(t0)nz on k∗. Hence to show that L = κ∗E is T -equivariant it suffices
to show that E is T -equivariant. Since the T -action on k∗ comes via κ1 from the
k∗-action z0 : z 7→ zn0 z on k∗, it suffices to show that E is k∗-equivariant. This
holds since E ∈ sn(k∗).

28.3. G acts on
∏
B∈B B/UB by

x : (gBUB)B∈B 7→ (g′BUB)B∈B

where g′xBx−1UxBx−1 = xgBx
−1UxBx−1 . Let

T = (
∏
B∈B

B/UB)G
0

(fixed point set of G0). For any B′ ∈ B we define fB′ : T ∼−→ B′/UB′ by
fB′((gBUB)B∈B) = gB′UB′ . We use fB′ to transport the algebraic group structure
of B′/UB′ to an algebraic group structure of T. This structure is independent of
the choice of B′. Thus T is naturally a torus over k. The G action on

∏
B∈B B/UB

induces a G/G0-action
D : t 7→ D(t)

on T, respecting the algebraic group structure of T. We say that T is the canonical
torus of G0.

For w ∈W (see 26.1) there is a unique isomorphism T ∼−→ T (denoted again by
w) such that for any (B,B′) ∈ B × B with pos(B,B′) = w we have a commutative
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diagram

T

fB′

��

w // T

fB
��

B′/UB′ (B ∩B′)/(UB ∩ UB′)∼oo ∼ // B/UB

where the isomorphisms in the bottom row are induced by the obvious inclusions.
We use this to identify W with a subgroup of the group Aut(T) of automorphisms
of the torus T. Let

W• = {wD;w ∈W, D ∈ G/G0} ⊂ Aut(T).

This is a subgroup of Aut(T) normalizing W since Dw = εD(w)D : T→ T for any
D ∈ G/G0, w ∈W; here εD is as in 26.2.

Let 〈, 〉 : Hom(k∗,T)×Hom(T,k∗)→ Z be the standard pairing. Define subsets
R,R+ of Hom(T,k∗) as follows. Let B ∈ B and let T be a maximal torus of
B. Consider the isomorphism T ∼−→ T (composition of fB : T ∼−→ B/UB with
the obvious isomorphism B/UB

∼−→ T ). We require that the subset of Hom(T,k∗)
corresponding to R (resp. R+) under this isomorphism is the set of roots of G0

with respect to T (resp. the set of roots of G0 with respect to T such that the
corresponding root subgroup is contained in B). Let R− = R−R+. For any α ∈ R
there is a unique α̌ ∈ Hom(k∗,T) and a unique sα ∈W such that 〈α̌, α〉 = 2 and
t = sα(t)α̌(α(t)) for all t ∈ T. Then s2

α = 1 and for L ∈ s(T) we have

(a) L ∼= s∗αL⊗ α∗(α̌∗L).

For L ∈ s(T) let

RL = {α ∈ R; α̌∗L ∼= Q̄l}.

Pick κ ∈ Hom(T,k∗), E ∈ s(k∗) such that L ∼= κ∗E ; see 28.1(b). Let n ∈ N∗k be
the order of E in s(k∗). We show that

RL = {α ∈ R; 〈α̌, κ〉 ∈ nZ}.

Indeed, for α ∈ R we have α̌∗L = α̌∗κ∗E = (κ ◦ α̌)∗E = f∗E where f : k∗ → k∗

is z 7→ z〈α̌,κ〉. We now use the fact that, for s ∈ Z, the inverse image of E under
k∗ → k∗, z → zs is Q̄l if and only if s ∈ nZ.

Let

W•
L = {a ∈W•; (a−1)∗L ∼= L}.

Let WL be the subgroup of W generated by {sα;α ∈ RL}. From (a) we see that

(b) WL ⊂W•
L.

Moreover, WL is a normal subgroup of W•
L.

28.4. In the remainder of this section we fix a connected component D of G. Let
w ∈W. Let

ZwD = {(B, ξ);B ∈ B, ξ ∈ UB\D/UB, pos(B, gBg−1) = w for some/any g ∈ ξ}.
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28.5. Let B∗ ∈ B and let T be a maximal torus of B∗. We set U∗ = UB∗ ,
WT = NG0T/T .

We identify WT = W by w↔ G0-orbit of (B∗, ẇB∗ẇ−1) and T = T by

(a) t1 ↔ t, t1U
∗ = fB∗(t).

For any w ∈WT = W we fix a representative ẇ of w in NG0T ; we assume that for
s ∈ I, ṡ belongs to the subgroup of G0 generated by the two root subgroups of G0

with respect to T corresponding to s. We also assume that 1̇ = 1.
Any α ∈ R becomes a root α of G0 with respect to T and α̌ becomes the

corresponding coroot k∗ → T . We fix d ∈ NDB∗ ∩ NDT . For w ∈ W we have a
diagram

T
φ←− Ẑ

w
D

ρ−→ Z
w
D

where
ẐwD = {(hU∗, g);hU∗ ∈ G0/U∗, g ∈ ẇdT },

ρ(hU∗, g) = (hB∗h−1, hU∗gU∗h−1), φ(hU∗, g) = d−1ẇ−1g.

Now φ is T -equivariant with respect to the T -action

t0 : (hU∗, g) 7→ (ht−1
0 U∗, t0gt

−1
0 )

on ẐwD and the T -action t0 : Ad(d−1ẇ−1)(t0)tt−1
0 on T . Hence if L ∈ s(T ) satisfies

Ad((ẇd)−1)∗L ∼= L, then φ∗L is a T -equivariant local system on ẐwD. (See 28.2(a).)
Since ρ is a principal T -bundle, there is a well-defined local system L̃ on ZwD such
that ρ∗L̃ = φ∗L.

28.6. Let w ∈ W. Let L ∈ s(T) be such that wD ∈ W•
L. We associate to L a

local system L̃ of rank 1 on ZwD as follows. Let B∗, U∗, T, d, ẇ be as in 28.5. Using
the identification T = T in 28.5, we regard L as a local system in s(T ). Then L̃ is
defined as in 28.5. We show that

(a) the isomorphism class of L̃ is independent of the choice of B∗, T, ẇ, d.
Let us replace B∗, T, ẇ, d by xB∗x−1, xTx−1, xẇx−1, xdx−1 where x ∈ G0. Define
′ẐwD,

′φ, ′ρ, ′L, ′L̃ in terms of this new choice in the same way as ẐwD, φ, ρ,L, L̃ were
defined in terms of B∗, T, ẇ, d. We have a commutative diagram

T a−−−−→ T
φ←−−−− ẐwD

ρ−−−−→ ZwD

=

y b

y c

y =

y
T a′−−−−→ xTx−1

′φ←−−−− ′ẐwD
′ρ−−−−→ ZwD

where b(t) = xtx−1, c(hU∗, g) = (hx−1xU∗x−1, xgx−1), a is given by 28.5(a) and
a′ is the analogous isomorphism defined in terms of xB∗x−1, xTx−1 instead of
B∗, T . Then ′L = b∗L, ′φ∗′L = c∗φ∗L and ′L̃ = L̃. Hence to prove (a) it suffices
to show that if B∗, T, ẇ, d are replaced by B∗, T, ẇt1, dt2 where t1, t2 ∈ T , then
the isomorphism class of L̃ does not change. Note that ẐwD, ρ remain unchanged
under the replacement above. However, the map φ defined in terms of B∗, T, ẇ, d
is replaced by the composition of φ with a left translation on T . It remains to use
that the inverse image of L under a left translation of T is isomorphic to L; see
28.1(c).
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28.7. Let J be a subset of I. For any B ∈ B we denote by QJ,B the unique
parabolic in PJ that contains B; we write UJ,B instead of UQJ,B . Let w ∈W. Let

Zw∅,J,D = {(B,B′, gUJ,B);B ∈ B, B′ ∈ B, g ∈ D, gBg−1 = B′, pos(B,B′) = w}.

The map
ζ : Zw∅,J,D → ZwD, (B,B′, gUJ,B) 7→ (B,UBgUB)

is an affine space bundle.
Let L ∈ s(T) be such that wD ∈ W•

L. Then ζ∗L̃ is a local system on Zw∅,J,D
denoted again by L̃.

28.8. Let w = (w1, w2, . . . , wr) be a sequence in W, let [w] = w1w2 . . . wr and let

Zw
∅,J,D ={(B0, B1, . . . , Br, gUJ,B0);Bi ∈ B(i ∈ [0, r]), g ∈ D, gB0g

−1 = Br,

pos(Bi−1, Bi) = wi(i ∈ [1, r])}.

We define a morphism

ζ : Zw
∅,J,D → Z

[w]
D , (B0, B1, . . . , Br, gUJ,B0) 7→ (B0, UB0n1n2 . . . nrnUB0)

where hi ∈ G0(i ∈ [1, r]) are such that Bi = hiB0h
−1
i , h0 = 1, T0 is a maximal torus

ofB0, ni ∈ NG0T0(i ∈ [1, r]) are given by h−1
i−1hi ∈ UB0niUB0 and n ∈ NDB0∩NDT0

is given by h−1
r g ∈ UB0n.

This is independent of the choices. (Another choice for hi, g, T0 must be of the
form h′i = hiuiti, g

′ = gu′, T ′ = uT0u
−1 where ui ∈ UB0(i ∈ [1, r]), ti ∈ T0(i ∈

[1, r]), u ∈ UB0 , u′ ∈ UJ,B0 . Define n′i, n
′ in terms of this new choice in the same

way as ni, n were defined in terms of the original choice. We have n′i = ut−1
i−1nitiu

−1

where t0 = 1 and n′ = ut−1
r nu−1. Hence n′1n

′
2 . . . n

′
rn
′ = un1n2 . . . nrnu

−1 and

UB0n
′
1n
′
2 . . . n

′
rn
′UB0 = UB0n1n2 . . . nrnUB0 ,

as required.) One checks that ζ is an affine space bundle. Hence Zw
∅,J,D is smooth,

connected.
Let L ∈ s(T) be such that [w]D ∈W•

L. The inverse image under ζ of the local
system L̃ on Z

[w]
D is a local system on Zw

∅,J,D denoted again by L̃.
When w has a single term w, we have Zw

∅,J,D = Zw∅,J,D and L̃ defined above is
the same as L̃ defined in 28.7.

28.9. Let s = (s1, s2, . . . , sr) be a sequence in I ∪ {1} and let

Z̄s
∅,J,D ={(B0, B1, . . . , Br, gUJ,B0);Bi ∈ B(i ∈ [0, r]), g ∈ D, gB0g

−1 = Br,

pos(Bi−1, Bi) = 1 or si(i ∈ [1, r])}.

Let
J 0 = {j ∈ [1, r]; sj ∈ I}.

For any subset J ⊂ J 0 we consider the sequence sJ = (s′1, s
′
2, . . . , s

′
r) in I ∪ {1}

given by s′i = si if i /∈ J and s′i = 1 if i ∈ J ; let [sJ ] = s′1s
′
2 . . . s

′
r. Then ZsJ

∅,J,D
(see 28.8) is the locally closed subvariety of Z̄s

∅,J,D defined by the conditions

Bi−1 = Bi if i ∈ J , pos(Bi−1, Bi) = si if i /∈ J .
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The sets ZsJ
∅,J,D(J ⊂ J 0) form a partition of Z̄s

∅,J,D. We have s∅ = s and the
corresponding piece Zs∅

∅,J,D = Zs
∅,J,D is open dense in Z̄s

∅,J,D. Let L ∈ s(T) be such
that [s]D ∈W•

L. Let L̃ be the local system on Zs
∅,J,D defined as in 28.8. Let

L̄ = IC(Z̄s
∅,J,D, L̃) ∈ D(Z̄s

∅,J,D),

Js = {j ∈ J 0; srsr−1 . . . sj . . . sr−1sr ∈ εD(WL)}
= {j ∈ J 0; s1s2 . . . sj . . . s2s1 ∈WL}.

Lemma 28.10. L̄ is a constructible sheaf on Z̄s
∅,J,D, which is a local system on the

open subset
⋃
J⊂Js

ZsJ
∅,J,D of Z̄s

∅,J,D and is 0 on its complement. For any J ⊂ Js,
we have L̄|ZsJ

∅,J,D
∼= L̃ (defined as in 28.8 in terms of sJ ).

For this to make sense, we must verify that, if J ⊂ Js, then [sJ ]D ∈W•
L. This

follows from [s]D ∈W•
L and s1s2 . . . sj . . . s2s1 ∈W•

L for all j ∈ J . (See 28.3(b).)
Let B∗, U∗, T, ṡj, d be as in 28.5. Let

Z̃s ={(h0, h1, . . . , hr, g) ∈ G0 × . . .×G0 ×D;

h−1
i−1hi ∈ B∗ṡiB∗ ∪B∗(i ∈ [1, r]), h−1

r gh0 ∈ NGB∗}.

The map Z̃s → Z̄s
∅,J,D,

(a) (h0, h1, . . . , hr, g) 7→ (h0B
∗h−1

0 , h1B
∗h−1

1 , . . . , hrB
∗h−1
r , gUJ,h0B∗h

−1
0

)

is a locally trivial fibration with connected, smooth fibres. For J ⊂ J 0, the inverse
image under (a) of the subvariety ZsJ

∅,J,D of Z̄s
∅,J,D is the subvariety Z ′sJ of Z̃s

defined by the conditions

h−1
i−1hi ∈ B∗ṡiB∗(i ∈ [1, r]− J ), h−1

i−1hi ∈ B∗(i ∈ J ).

It suffices to prove the statement analogous to that in the lemma for the inverse
image under (a) of L̄. For J ⊂ J 0, define ψJ : Z ′sJ → T by

(h0, h1, . . . , hr, g) 7→ d−1ṡ−1
J n1n2 . . . nrn

where ni ∈ NG0T are given by h−1
i−1hi ∈ U∗niU∗ and n ∈ NGB∗ ∩NGT is given by

h−1
r gh0 ∈ U∗n. (We write ṡJ = ṡ′1ṡ

′
2 . . . ṡ

′
r for sJ = (s′1, s

′
2, . . . , s

′
r).) It suffices to

prove the following statements:
IC(Z̃s, ψ∗∅L) is a local system on the open subset

⋃
J⊂Js

Z ′sJ of Z̃s and is 0 on
its complement.

For any J ⊂ Js, we have IC(Z̃s, ψ∗∅L)|Z′sJ ∼= ψ∗JL.
By the change of variables

utd = h−1
r gh0, yi = h−1

i−1hi(i ∈ [1, r − 1]), yr = h−1
r−1hrt,

Z̃s becomes

{(h0, y1, . . . , yr, u, t) ∈ G0 × . . .×G0 × U∗ × T ; yi ∈ B∗ṡiB∗ ∪B∗(i ∈ [1, r])}
and for J ⊂ J 0, Z ′sJ becomes the subset of Z̃s defined by the conditions

yi ∈ B∗ṡiB∗(i ∈ [1, r]− J ), yi ∈ B∗(i ∈ J ).

Moreover, ψJ becomes

(h0, y1, . . . , yr, u, t) 7→ d−1ṡ−1
J n1n2 . . . nrd
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where ni ∈ NG0T are given by yi ∈ U∗niU∗. Since h0, u, t now play passive roles,
we can omit them. Thus, we set

′Z̄s = {(y1, . . . , yr) ∈ (G0)r; yi ∈ B∗ṡiB∗ ∪B∗(i ∈ [1, r])}
and, for J ⊂ J 0, we set

′ZsJ = {(y1, . . . , yr) ∈ (G0)r; yi ∈ B∗ṡiB∗(i ∈ [1, r]− J ), yi ∈ B∗(i ∈ J ).

Let
′ψJ : ′ZsJ → T, (y1, . . . , yr) 7→ ṡ−1

J n1n2 . . . nr

where ni ∈ NG0T are given by yi ∈ U∗niU∗. Let L′ = (D−1)∗L ∈ s(T) = s(T ). It
suffices to prove the following statements:

(b) IC(′Z̄s, ′ψ∗∅L′) is a local system on the open subset
⋃
J⊂Js

′ZsJ of ′Z̄s and
is 0 on its complement.

(c) for any J ⊂ Js, we have IC(′Z̄s, ′ψ∗∅L′)|′ZsJ ∼= ′ψ∗JL′.
For j ∈ J 0 let ∆j be the closure of the subvariety ∆0

j = ′Zs{j} of ′Z̄s. Clearly,
{∆j, j ∈ J 0} are smooth divisors with normal crossing in the smooth variety ′Z̄s.
Using [L3, I, 1.6], we see that to prove (b) it suffices to prove the following statement.

(b′) For j ∈ J 0, the monodromy of ′ψ∗∅L′ around the divisor ∆j is trivial if and
only if j ∈ Js.
Let Uj be the root subgroup of U∗ with respect to T such that ṡjUj ṡ−1

j ∩U∗ = {1}
and let x : k ∼−→ Uj be an isomorphism. Let α be the root of G0 with respect
to T such that tx(a)t−1 = x(α(t)a) for all t ∈ T , a ∈ k. For a ∈ k we set
x′(a) = (ṡ1, . . . , ṡj−1, ṡjx(a)ṡ−1

j , ṡj+1, . . . , ṡr) ∈ Z. Then x′ : k∗ → Z is a cross
section to ∆0

j in Z; we have x′(0) ∈ ∆0
j , x

′(a) ∈ Z −∆0
j for a 6= 0. For a 6= 0 we

have ṡjx(a)ṡ−1
j ∈ U∗ṡjα̌(a)U∗. Hence

′ψ∅(x′(a)) = ṡ−1ṡ1 . . . ṡj−1ṡjα̌(a)ṡj+1 . . . ṡr = ṡ−1
r . . . ṡ−1

j+1α̌(a)ṡj+1 . . . ṡr = t0β̌(a)

where β is the root of G0 with respect to T that corresponds to the reflection
sr . . . sj+1sjsj+1 . . . sr and t0 is a fixed element of T . We see that x′∗′ψ∗∅L′ ∼= β̌∗L′.
Thus, x′∗′ψ∗∅L′ ∼= Q̄l if and only if β̌∗L′ ∼= Q̄l, that is, if sr . . . sj+1sjsj+1 . . . sr ∈
εD(WL), that is, if j ∈ Js. This proves (b′).

We prove (c). Let L′ be the local system IC(′Z̄s, ′ψ∗∅L′)|⋃J′⊂Js
′Z

sJ′ . Assume
that (c) is known in the case where J consists of one element. We now consider a
general J ⊂ Js. We argue by induction on the number of elements of J . If J = ∅,
(c) is obvious. Assume now that J 6= ∅. We pick j ∈ J . Let J ′ = J − {j}. Since
′ZsJ′ is open dense in the smooth irreducible variety ′Z := ′ZsJ′ ∪ ′ZsJ , there
is (up to isomorphism) at most one local system on ′Z whose restriction to ′ZsJ′

is isomorphic to ′ψ∗J ′L′. By our assumption (applied to sJ ′ instead of s), a local
system as in the previous sentence exists (we denote it by E) and its restriction to
′ZsJ is isomorphic to ′ψ∗JL′.

By the induction hypothesis we have L′|′ZsJ′
∼= ′ψ∗J ′L′. Thus L′|′Z is a local

system whose restriction to ′ZsJ′ is isomorphic to ′ψ∗J ′L′. Hence L′|′Z ∼= E . It
follows that the restriction of L′|′Z to ′ZsJ is isomorphic to ′ψ∗JL′. Thus, L′|′ZsJ ∼=
′ψ∗JL′. Thus (c) holds for J .

We see that it is enough to prove (c) in the case where J has exactly one element.
It suffices to show that

(c′) if L′ ∈ s(T) = s(T ) and j ∈ [1, r] satisfies srsr−1 . . . sj . . . sr−1sr ∈ WL′ ,
then there exists a local system F (necessarily unique up to isomorphism) on ′Z =
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′Zs∅ ∪ ′Zs{j} such that F|′Zs∅ ∼= ′ψ∗∅L′ and F|′Zs{j} ∼= ′ψ∗{j}L′.
This statement involves only the component G0 of G. Hence to prove it, we may
assume that G = G0. Let G̃ → G be a surjective homomorphism of connected
reductive groups whose kernel is a central torus in G̃ and such that G̃ has simply
connected derived group. The desired statement for G follows from the analogous
statement for G̃. Thus, we may assume that G = G0 has simply connected derived
group. We may assume that L′ = κ∗E where κ ∈ Hom(T,k∗), E ∈ s(k∗). Let m be
the order of E in s(k∗). By assumption, we have β̌∗L′ ∼= Q̄l hence 〈β̌, κ〉 = mm1

with m1 ∈ Z. Since G has simply connected derived group, we can find κ1 ∈
Hom(T,k∗) such that 〈β̌, κ1〉 = m1. Then 〈β̌, κκ−m1 〉 = 0. We have (κκ−m1 )∗E ∼=
κ∗E . Hence replacing κ by κκ−m1 , we may assume that 〈β̌, κ〉 = 0. Then there is a
unique homomorphism of algebraic groups χ : B∗ṡjB∗ ∪B∗ → k∗ such that

χ(t) = κ(ṡ−1
r . . . ṡ−1

j+1tṡj+1 . . . ṡr) for all t ∈ T.
Since ṡj is in the derived subgroup of B∗ṡjB∗ ∪ B∗, we have χ(ṡj) = 1. Define a
morphism f̃ : ′Z → k∗ by

f̃(y1, . . . , yr) = χ(ṡ−1
j ṡ−1

j−1 . . . ṡ
−1
1 n1n2 . . . nj−1yjnj+1 . . . nr ṡ

−1
r . . . ṡ−1

j+1)

= χ(ṡ−1
j ṡ−1

j−1 . . . ṡ
−1
1 n1n2 . . . nj−1njnj+1 . . . nr ṡ

−1
r . . . ṡ−1

j+1),

where ni ∈ NGT are given by yi ∈ U∗niU∗. If yj ∈ B∗ṡjB∗, we have

f̃(y1, . . . , yr) = κ(ṡ−1
r . . . ṡ−1

j+1ṡ
−1
j ṡ−1

j−1 . . . ṡ
−1
1 n1n2 . . . nj−1njnj+1 . . . nr)

= κ(′ψ∅(y1, . . . , yr)).

If yj ∈ B∗, we have

f̃(y1, . . . , yr) = χ(ṡ−1
j−1 . . . ṡ

−1
1 n1n2 . . . nj−1njnj+1 . . . nr ṡ

−1
r . . . ṡ−1

j+1)

= κ(ṡ−1
r . . . ṡ−1

j+1ṡ
−1
j−1 . . . ṡ

−1
1 n1n2 . . . nj−1njnj+1 . . . nr) = κ(′ψ{j}(y1, . . . , yr)).

Hence the local system F = f̃∗(E) on ′Z has the required properties. The lemma
is proved.

Lemma 28.11. In the setup of 28.9 assume that r ≥ 2, that j ∈ [2, r] and sj−1 =
sj ∈ I. Let Z1 be the open subset of Zs

∅,J,D defined by pos(Bj−2, Bj) = sj. Let
s′ = (s1, s2, . . . , sj−1, sj+1, . . . , sr). Define δ : Z1 → Zs′

∅,J,D by

(B0, B1, . . . , Br, gUJ,B0) 7→ (B0, B1, . . . , Bj−2, Bj , Bj+1, . . . , Br, gUJ,B0).

Let L̃ be the local system on Zs
∅,J,D associated to L as in 28.8; in the case where

j ∈ Js, let L̃′ be the analogous local system on Zs′

∅,J,D associated to L. Let L̃1 be
the restriction of L̃ to Z1. If j ∈ Js, then L̃1

∼= δ∗L̃′. If j /∈ Js, then δ!L̃1 = 0.

Consider the union Z
s∅
∅,J,D ∪ Z

s{j}
∅,J,D inside Z̄s

∅,J,D. Recall that we may identify
Z

s∅
∅,J,D = Zs

∅,J,D, Zs{j}
∅,J,D = Zs′

∅,J,D. For

(B0, B1, . . . , Bj−2, Bj, Bj+1, . . . , Br, gUJ,B0) ∈ Zs′

∅,J,D,

F ={(B0, B1, . . . , Bj−2, B,Bj , Bj+1, . . . , Br, gUJ,B0); pos(Bj−2, B) = sj ,

pos(B,Bj) = 1 or sj}

is a cross section to Z
s{j}
∅,J,D in Z̄s

∅,J,D which intersects Zs{j}
∅,J,D in the point π de-

fined by B = Bj . If j /∈ Js, then the proof of Lemma 28.10 shows that the
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restriction of L̃ to F − {π} ∼= k∗ is a local system in s(k∗) not isomorphic to
Q̄l. Hence Hi

c(F − {π}, L̃) = 0 for all i. Now F − {π} is the fibre of δ at
(B0, B1, . . . , Bj−2, Bj , Bj+1, . . . , Br, gUJ,B0). We see that the cohomology with
compact support of any fibre of δ with coefficients in L̃ is 0. Thus, δ!L̃ = 0 as
required.

Assuming that j ∈ Js, the same argument shows that the restriction of L̃1 to any
fibre of δ is Q̄l. Hence L̃ = δ∗E where E is a local system of rank 1 on Zs′

∅,J,D. The
proof of Lemma 28.10 shows that there exists a local system F on Zs

∅,J,D ∪ Zs′

∅,J,D
such that F|Zs

∅,J,D
= L̃ and F|Zs′

∅,J,D
= L̃′. Let V be the open subset of Z̄s

∅,J,D
defined by pos(Bi−1, Bi) = si if i ∈ [1, r], i 6= j and pos(Bj−2, Bj) = sj . We have
V = Z1 ∪ Zs′

∅,J,D. Then F1 := F|V is a local system on V such that F1|Z1 = L̃1

and F1|Zs′
∅,J,D

= L̃′. Define δ̃ : V → Zs′

∅,J,D by the same formula as δ. Then F1, δ̃∗E
are local systems on V with the same restriction L̃1 on the open dense subset Z1

of V . Hence F1 ∼= δ̃∗E . Since F1|Zs′
∅,J,D

= L̃′, δ̃∗E|Zs′
∅,J,D

= E , we see that L̃′ ∼= E .

Thus, L̃ ∼= δ∗L̃′. The lemma is proved.

28.12. Let εD, ZJ,D be as in 26.2. Let L ∈ s(T). For w ∈W we define

π : Zw∅,J,D → ZJ,D, (B,B′, gUJ,B) 7→ (QJ,B, QεD(J),B′ , gUJ,B).

If w satisfies wD ∈W•
L, we set Kw,L

J,D = π!L̃ ∈ D(ZJ,D) where L̃ is the local system
on Zw∅,J,D defined in 28.7.

For a sequence w = (w1, w2, . . . , wr) in W we define πw : Zw
∅,J,D → ZJ,D by

(a) (B0, B1, . . . , Br, gUJ,B0) 7→ (QJ,B0 , QεD(J),Br , gUJ,B0).

If w satisfies w1w2 . . . wrD ∈W•
L, we set Kw,L

J,D = πw!L̃ ∈ D(ZJ,D) where L̃ is the
local system on Zw

∅,J,D defined in 28.8.
For a sequence s = (s1, s2, . . . , sr) in I ∪ {1} we define π̄s : Z̄s

∅,J,D → ZJ,D by
(a). If s satisfies s1s2 . . . srD ∈W•

L, we set K̄s,L
J,D = π̄s!L̄ ∈ D(ZJ,D) where L̄ is as

in 28.9. Then
(b) K̄s,L

J,D ∈ D(ZJ,D) is a semisimple complex.
This follows by applying the decomposition theorem [BBD, 5.4.5, 5.3.8] to the
proper map π̄.

Proposition 28.13. Let L ∈ s(T) and let A be a simple perverse sheaf on ZJ,D.
The following conditions on A are equivalent:

(i) A a Kw,L
J,D for some w ∈W such that wD ∈W•

L;
(ii) A a Kw,L

J,D for some w = (w1, w2, . . . , wr) with wi ∈ W, w1w2 . . . wrD ∈
W•
L;
(iii) A a Ks,L

J,D for some s = (s1, s2, . . . , sr) with si ∈ I∪{1}, s1s2 . . . srD ∈W•
L;

(iv) A a K̄s,L
J,D for some s = (s1, s2, . . . , sr) with si ∈ I∪{1}, s1s2 . . . srD ∈W•

L;
(v) A a K̄s,L

J,D for some s = (s1, s2, . . . , sr) with si ∈ I, s1s2 . . . srD ∈W•
L.

If in (ii), w reduces to a single element w, then Kw,L
J,D = Kw,L

J,D . Thus, (i) =⇒ (ii).
The implication (iii) =⇒ (ii) is trivial. We now prove that (ii) =⇒ (iii). Let w =
(w1, w2, . . . , wr) be a sequence in W such that w1w2 . . . wrD ∈W•

L, and for some
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i ∈ [1, r], let w′i, w
′′
i be elements of W such that wi = w′iw

′′
i , l(wi) = l(w′i) + l(w′′i ).

Let w̃ = (w1, . . . , wi−1, w
′
i, w
′′
i , wi+1, . . . , wr). The map

(B0, B1, . . . , Br+1, gUJ,B0) 7→ (B0, B1, . . . , Bi−1, Bi+1, . . . , Br+1, gUJ,B0)

defines an isomorphism Zw̃
J,D

∼−→ Zw
J,D compatible with the maps πw̃, πw and with

the local systems L̃ defined on Zw̃
J,D, Z

w
J,D in terms of L as in 28.8. Hence

(a) Kw̃,L
J,D = Kw,L

J,D .

Applying (a) repeatedly we see that Kw,L
J,D is equal to Kw′,L

J,D for some sequence w′

in I. Thus, (ii) =⇒ (iii).
We prove the equivalence of (iii) and (iv). Let s = (s1, s2, . . . , sr) be a sequence

in I ∪ {1} such that s1s2 . . . srD ∈W•
L. Let L̄ be as in 28.9.

Define a sequence 0Z ⊃ 1Z ⊃ . . . of closed subsets of Z̄s
∅,J,D by

iZ =
⋃

J⊂J 0;|J |≥i
ZsJ
∅,J,D.

Let f i : iZ → Z̄w
∅,J,D, f

′i : iZ − i+1Z → Z̄s
∅,J,D be the inclusions. The natural

distinguished triangle in D(ZJ,D)

(π̄s!f
′i
!(f
′i)∗L̄, π̄s!f

i
! (f i)∗L̄, π̄s!f

i+1
! (f i+1)∗L̄)

gives rise for any i ≥ 0 to a long exact sequence in M(ZJ,D):

. . .→ pHj−1(π̄s!f
i+1
! (f i+1)∗L̄)→

⊕
J⊂Js;|J |=i

pHj(KsJ ,L
J,D )

→ pHj(π̄s!f
i
! (f i)∗L̄)→ pHj(π̄s!f

i+1
! (f i+1)∗L̄)→

⊕
J⊂Js
|J |=i

pHj+1(KsJ ,L
J,D )→ . . . .

(b)

Here we have used the isomorphism π̄s!f
′i
!(f
′i)∗L̄ =

⊕
J⊂Js;|J |=iK

sJ ,L
J,D which

follows from Lemma 28.10. Note that
(∗) π̄s!f

0
! (f0)∗L̄ = K̄s,L

J,D, π̄s!f
i
! (f i)∗L̄ = 0 for i large.

We set m(s) = ](i ∈ [1, r]; si ∈ I). If m(s) = 0, then Zs
∅,J,D = Z̄s

∅,J,D and Ks,L
J,D =

K̄s,L
J,D. Hence in this case we have A a Ks,L

J,D if and only if A a K̄s,L
J,D. It suffices to

verify the following statement.
(c) Assume that s satisfies m(s) = m ≥ 1 and that for any sequence s′ =

(s′1, s′2, . . . , s′r) in I ∪ {1} with s′1s
′
2 . . . s

′
rD ∈ W•

L and with m(s′) < m we have
A 6a Ks′,L

J,D . Then A a Ks,L
J,D if and only if A a K̄s,L

J,D.
Using (b) and our hypothesis we see that for any i > 0 we have A a π̄s!f

i
! (f i)∗L̄ if

and only if A a π̄s!f
i+1
! (f i+1)∗L̄. Applying this repeatedly for i = N,N − 1, . . . , 1

(with N large) we see that A 6a π̄s!f
1
! (f1)∗L̄. Using this, together with (b) we see

that A a Ks,L
J,D if and only if A a π̄s!f

0
! (f0)∗L̄, that is, A a K̄s,L

J,D (see (∗)). This
proves (c). The equivalence of (iii) and (iv) is established.

The equivalence of (iv) and (v) is obvious.
Let s = (s1, s2, . . . , sr) be a sequence in I such that s1s2 . . . srD ∈W•

L. Assume
that r ≥ 2 and that, for some j ∈ [2, r] we have sj−1 = sj . We have a partition
Zs
∅,J,D = Z1 ∪ Z2 where Z1 (resp. Z2) is the open (resp. closed) subset of Zs

∅,J,D
defined by pos(Bj−2, Bj) = sj (resp. by Bj−2 = Bj). Let π1, π2 be the restrictions



CHARACTER SHEAVES ON DISCONNECTED GROUPS, VI 387

of πs to Z1, Z2. The natural distinguished triangle (π1!L̃,Ks,L
J,D, π2!L̃) in D(ZJ,D)

(where the restrictions of L̃ from Zs
∅,J,D to Z1, Z2 are denoted again by L̃) gives

rise to a long exact sequence in M(ZJ,D):

. . .→ pHi(π1!L̃)→ pHi(Ks,L
J,D)→ pHi(π2!L̃)→ pHi+1(π1!L̃)→ . . . .

Let s′ = (s1, s2, . . . , sj−1, sj+1, . . . , sr), s′′ = (s1, s2, . . . , sj−2, sj+1, . . . , sr). Then

δ : (B0, B1, . . . , Br, gUJ,B0) 7→ (B0, B1, . . . , Bj−2, Bj, Bj+1, . . . , Br, gUJ,B0)

makes Z1 into a locally trivial k∗-bundle over Zs′

∅,J,D and

(B0, B1, . . . , Br, gUJ,B0) 7→ (B0, B1, . . . , Bj−2, Bj+1, . . . , Br, gUJ,B0)

makes Z2 into a locally trivial affine line bundle over Zs′′

∅,J,D. The local system L̃ on
Z2 is the inverse image of the local system L̃ on Zs′′

∅,J,D defined as in 28.8 in terms
of L. By 28.11, if j ∈ Js, the local system L̃ on Z1 is the inverse image under δ
of the local system L̃ on Zs′

∅,J,D defined as in 28.8 in terms of L; if j /∈ Js, then
δ!L̃ = 0. It follows that

π2!L̃ = Ks′′,L
J,D [[−1]]

and, if j /∈ Js, we have π1!L̃ = 0. If j ∈ Js, we have a natural distinguished
triangle (π1!L̃,Ks′,L

J,D [[−1]],Ks′,L
J,D ) in D(ZJ,D). Hence we have long exact sequences

in M(ZJ,D):

(d) . . .→ pHi(π1!L̃)→ pHi(Ks,L
J,D)→ pHi−2(Ks′′,L

J,D )(−1)→ pHi+1(π1!L̃)→ . . . ,

(e) . . .→ pHi(π1!L̃)→ pHi−2(Ks′,L
J,D )(−1)→ pHi(Ks′,L

J,D )→ pHi+1(π1!L̃)→ . . . ,

if j ∈ Js, and isomorphisms

(f) pHi(Ks,L
J,D) ∼−→ pHi−2(Ks′′,L

J,D )(−1)

if j /∈ Js.
We prove that (v) =⇒ (i). Assume that A a Ks,L

J,D where s = (s1, s2, . . . , sr)
is as in (v). We may assume that r is minimum possible. We want to show that
(i) holds. Assume first that l(s1s2 . . . sr) < r. We show that this contradicts the
minimality of r. We can find j ∈ [2, r] such that l(sjsj+1 . . . sr) = r − j + 1 and
l(sj−1sj . . . sr) < r−j+2. We can find s′j , s

′
j+1, . . . , s

′
r ∈ I such that s′js

′
j+1 . . . s

′
r =

sjsj+1 . . . sr = y and s′j = sj−1. Let

u′ = (s1, s2, . . . , sj−1, s
′
j , s
′
j+1, . . . , s

′
r), u′′ = (s1, s2, . . . , sj−1, y).

From (a) we have Ks,L
J,D = Ku′,L

J,D = Ku′′,L
J,D . Hence we may assume that sj−1 = sj .

If j /∈ Js, then (f) shows that A a Ks′′,L
J,D ; since the sequence s′′ has r − 2 terms,

this contradicts the minimality of r. Assume now that j ∈ Js. By the minimality
of r we have A 6a Ks′,L

J,D . From (e) it follows that A 6a π1!L̃. This, together with (d)

shows that A a Ks′′,L
J,D . This again contradicts the minimality of r. We see that

l(s1s2 . . . sr) = r. By (a), we have Ks,L
J,D = Kw,L

J,D where w = s1s2 . . . sr and the
desired conclusion follows. Thus, we have (v) =⇒ (i). The proposition is proved.
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28.14. Let A be a simple perverse sheaf on ZJ,D and let L ∈ s(T). We write
A ∈ ẐLJ,D if A satisfies the equivalent conditions (i)–(v) in 28.13. We write A ∈ ẐJ,D
if A ∈ ẐLJ,D for some L ∈ s(T); we then say that A is a parabolic character sheaf
on ZJ,D (see [L10]).

In the case where J = I we identify D = ZJ,D by g 7→ (G0, G0, g); we write
A ∈ D̂L, A ∈ D̂ instead of A ∈ ẐLJ,D, A ∈ ẐJ,D. We say that A is a character sheaf
on D if A ∈ D̂.

In the case where J = I we write Kw,L
D ,Ks,L

D , K̄s,L
D instead of Kw,L

J,D , Ks,L
J,D, K̄s,L

J,D.

28.15. Let A ∈ ẐJ,D. We can find n ∈ N∗k and L ∈ sn(T) such that A ∈ ẐLJ,D.
We show that

(a) A is equivariant for the action

(z, x) : (P, P ′, gUP ) 7→ (xPx−1, xP ′x−1, xzngx−1UxPx−1)

of H = DZ0
G0 ×G0 on ZJ,D.

We can find w ∈W such that wD ∈W•
L and A a π!L̃ where L̃ is the local system

on Zw∅,J,D defined in 28.7 and π : Zw∅,J,D → ZJ,D is as in 28.12. Now H acts on
Zw∅,J,D and on ZwD by

(z, x) : (B,B′, gUJ,B) 7→ (xBx−1, xB′x−1, xzngx−1UJ,xBx−1),

(z, x) : (B,UBgUB) 7→ (xBx−1, UxBx−1xzngx−1UxBx−1)

and π and ζ : Zw∅,J,D → ZwD (see 28.7) are compatible with the H-actions. It
suffices to show that the local system L̃ on ZwD (see 28.5) is H-equivariant. Let

T
φ←− ẐwD

ρ−→ ZwD be as in 28.5. Now H acts on T by (z, x) : t 7→ znt and on ẐwD by
(z, x) : (hU∗, g) 7→ (xhU∗, zng); note that φ, ρ are compatible with the H-actions.
Using the definitions we see that it suffices to show that L is H-equivariant. This
follows from the fact that L ∈ sn(T ). This proves (a).

28.16. Consider a sequence s = (s1, s2, . . . , sr) in I ∪ {1} with s1s2 . . . srD ∈W•
L,

s1 ∈ J ∪ {1}. Let s′ = (s2, s3, . . . , sr, εD(s1)). We have s2s3 . . . srεD(s1)D ∈
s1W•

Ls1 = W•
L′ where L′ = s∗1L ∈ s(T). Now

(B0, B1, . . . , Br, gUJ,B0) 7→ (B1, B2, . . . , Br, gB1g
−1, gUJ,B1)

is a well-defined isomorphism Z̄s
∅,J,D

∼−→ Z̄s′

∅,J,D which restricts to an isomorphism
Zs
∅,J,D

∼−→ Zs′

∅,J,D. Under these isomorphisms, the local system L̃ on Zs
∅,J,D defined

in 28.8 in terms of L corresponds to the analogous local system L̃′ on Zs′

∅,J,D defined
in terms of L′. Similarly, the constructible sheaf L̄ = IC(Z̄s

∅,J,D, L̃) corresponds to
the constructible sheaf L̄′ = IC(Z̄s′

∅,J,D, L̃′). It follows that

(a) Ks,L
J,D = Ks′,L′

J,D ,

(b) K̄s,L
J,D = K̄s′,L′

J,D .

28.17. Let L ∈ s(T) and let s = (s1, s2, . . . , sr) be a sequence in I ∪ {1} such that
s1s2 . . . srD ∈ W•

L. Let m = ](i ∈ [1, r]; si 6= 1) + dimG/UQ where Q ∈ PJ . For
any j ∈ Z we have:

(a) pHj(K̄s,L
J,D) ∼= pH2m−j(K̄s,L

J,D),
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(b) D(pHj(K̄s,L
J,D)) ∼= pH2m−j(K̄s,Ľ

J,D)

in M(ZJ,D). Now (a) is a special case of the “relative hard Lefschetz theorem”
[BBD, 6.2.10] applied to the projective morphism π̄s : Z̄s

∅,J,D → ZJ,D and to the
perverse sheaf L̄[m] on Z̄s

∅,J,D.

We prove (b). Define ˜̌L, Ľ in terms of Ľ in the same way as L̃, L̄ are defined in
28.8, 28.9 in terms of L. Note that Verdier duality commutes with π̄s; it is then
enough to show that D(L̄[m]) = Ľ[m]. By the definition of L̄ it is enough to show

that ˇ̃L = ˜̌L. This follows from the definition of L̃.

28.18. Let L ∈ s(T). Using 28.17(b), we see that
(a) if A ∈ ẐLJ,D, then its Verdier dual D(A) is in ẐĽJ,D.

28.19. Define an isomorphism ∂ : ZJ,D
∼−→ ZεD(J),D−1 by

∂(Q,Q′, gUQ) = (Q′, Q, g−1UQ′).

Let L ∈ s(T) and let s = (s1, s2, . . . , sr) be a sequence in I such that s1s2 . . . srD ∈
W•
L. Let s̃ = (sr, sr−1, . . . , s1),L′ = (D−1)∗L. We have srsr−1 . . . s1D

−1 ∈ W•
L′ .

We have a commutative diagram

Z̄s
∅,J,D

∂̃−−−−→ Z̄ s̃
∅,εD(J),D−1y y

ZJ,D
∂−−−−→ ZεD(J),D−1

where ∂̃ is the isomorphism

(B0, B1, . . . , Br, gUJ,B0) 7→ (Br, Br−1, . . . , B0, g
−1UεD(J),Br )

and the verical maps are of type 28.12(a). Under the isomorphism ∂̃, the con-
structible sheaf L̄ on Z̄s

∅,J,D defined in 28.9 in terms of L corresponds to the anal-
ogous constructible sheaf L̄′ on Z̄ s̃

∅,εD(J),D−1 defined in terms of L′. It follows that

K̄s,L
J,D = ∂∗K̄ s̃,L′

εD(J),D−1 .

We see also that
(a) A ∈ ẐLJ,D =⇒ ∂!A ∈ ẐL

′

∅,εD(J),D−1 ; A′ ∈ ẐL′∅,εD(J),D−1 =⇒ ∂∗A′ ∈ ẐLJ,D.

29. Restriction functor for character sheaves

29.1. Let D be a connected component of G and let P be a parabolic of G0 such
that NDP 6= ∅. Let L be a Levi of P . Let G′ = NGP ∩NGL, a reductive group with
G′0 = L. LetD′ = G′∩D, a connected component ofG′. Let resD

′

D : D(D)→ D(D′)
be as in 23.3. Let α = dimUP . We write ε : W→W instead of εD : W→W (see
26.2).

In this section we begin the study of resD
′

D (A) where A is a character sheaf on
D. One of the main results of this section is that resD

′

D (A) is a direct sum of shifts
of character sheaves on D′. (Here the words “shifts of ” can be omitted but this
will only come after further work in Section 31.) The results in this section extend
results in the connected case that appeared in [L3, I, §3]. An obscure point in the
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proof in [L3, I, 3.5] (pointed out to me by J.G.M. Mars in 1985) is here removed
following in part [L11].

Let B† be the variety of Borel subgroups of L. We show that the canon-
ical torus T of G0 (see 28.3) is canonically isomorphic to the analogously de-
fined canonical torus T† of L. We define a map

∏
B∈B B/UB →

∏
β∈B† β/Uβ

by (gBUB)B∈B 7→ (hβUβ)β∈B† where, for β ∈ B†, hβ is the image of gβUP under
the obvious homomorphism βUP → β. This map restricts to a map T→ T† which
is an isomorphism of tori. We use this isomorphism to identify T† = T.

Similarly, the Weyl group W of G0 (see 26.1) contains the analogously defined
Weyl group W† of L as a subgroup. The imbedding W† → W is obtained by
associating to the L-orbit of (β, β′) ∈ B†×B† the G0-orbit of (βUP , β′UP ) ∈ B×B.
If J is the subset of W† analogous to the subset I of W, then the imbedding
W† → W restricts to an imbedding J ⊂ I. The length function of W† is just
the restriction of the length function of W. With the notation of 26.1, we have
W† = WJ . Define pos† : B† × B† → WJ in terms of L in the same way as
pos : B × B →W was defined in terms of G0. For any Borel B of G0 we set

PB = (P ∩B)UP ,

a Borel of P .
Let JW be as in 26.1. Then y 7→ WJy is a bijection JW ∼−→ WJ\W. We

also have a bijection from the set of P -orbits on B (for the conjugation action) to
WJ\W: the P -orbit of B ∈ B corresponds to the WJ coset of pos(PB, B) ∈W.
Let v(y) be the P -orbit on B corresponding to WJy, y ∈W.

If y ∈ JW and s ∈ I, there are three possibilities for ys:
(i) ys ∈ JW and l(ys) > l(y); then v(y) ⊂ v(ys)− v(ys).
(ii) ys ∈ JW and l(ys) < l(y); then v(ys) ⊂ v(y)− v(y).
(iii) ys /∈ JW; then ysy−1 ∈ J and v(ys) = v(y).

For any y ∈W, g ∈ D we have gv(y)g−1 = v(ε(y)).
Define a homomorphism π : NGP → G′ by π(zω) = z where z ∈ G′, ω ∈ UP (see

1.26).

29.2. Until the end of 29.9 we fix a sequence s = (s1, s2, . . . , sr) in I and L ∈ s(T)
such that s1s2 . . . srD ∈W•

L. Let Js ⊂ [1, r] be as in 28.9.
We write Z̄s instead of Z̄s

∅,I,D (see 28.9). For T ⊂ [1, r] let

ZsT ={(B0, B1, . . . , Br, g) ∈ Z̄s;Bi−1 = Bi for i ∈ T ,
pos(Bi−1, Bi) = si for i ∈ [1, r]− T }.

We have a partition Z̄s =
⊔
T ⊂[1,r] Z

sT . Let

Z̄ ′ = {(B0, B1, . . . , Br, g) ∈ Z̄s; g ∈ NDP}.
Define π̄′ : Z̄ ′ → D′ by (B0, B1, . . . , Br, g) 7→ π(g). Any sequence y=(y0, y1, . . . , yr)
in JW defines a locally closed subvariety

Z̄ ′y = {(B0, B1, . . . , Br, g) ∈ Z̄s; g ∈ NDP,Bi ∈ v(yi)(i ∈ [0, r])}

of Z̄ ′. Clearly, Z̄ ′y = ∅ unless y satisfies

(a) yi = yi−1 or yi = yi−1si for all i ∈ [1, r], ε(y0) = yr.

Let iy : Z̄ ′y → Z̄s be the inclusion. Let π̄′y : Z̄ ′y → D′ be the restriction of π̄′.
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29.3. Until the end of 29.11 we fix a sequence y satisfying 29.2(a). We set

d(y) = α+ ](i ∈ [1, r]; yi−1si ∈ JW, l(yi−1si) < l(yi−1)

= α+ ](i ∈ [1, r]; yisi ∈ JW, l(yisi) < l(yi)).

We show that these two definitions of d(y) are equivalent. Let
c = ](i ∈ [1, r]; yi−1 = yi, yisi ∈ JW, l(yi−1si) < l(yi−1)),
c′ = ](i ∈ [1, r]; l(yi)− l(yi−1) = −1),
c′′ = ](i ∈ [1, r]; l(yi)− l(yi−1) = 1).

The two definitions of d(y) are α+ c+ c′, α+ c+ c′′. Hence it suffices to show that
c′ = c′′. Clearly, l(yr) − l(y0) = c′′ − c′. Since yr = ε(y0), we have l(yr) = l(y0)
hence c′ = c′′, as required. An equivalent definition of d(y) is

d(y) = α+ ](i ∈ [1, r]; v(yisi) ⊂ v(yi)− v(yi))

= α+ ](i ∈ [1, r]; v(yi−1si) ⊂ v(yi−1)− v(yi−1)).

We define a sequence (s̃1, s̃2, . . . , s̃r) in I ∪ {1} by

s̃i = si if yi−1si ∈WJyi, s̃i = 1 if yi−1si /∈WJyi.

Define t = (t1, t2, . . . , tr) by ti = yi−1s̃iy
−1
i . Then ti ∈ J ∪ {1} and

ti = yi−1siy
−1
i−1 if yi−1si ∈WJyi−1, ti = 1 if yi−1si /∈WJyi−1.

Let

Z̄t† = {(β0, β1, . . . , βr, h) ∈ B† × . . .× B† ×D′; pos†(βi−1, βi) = 1 or ti,

βr = hβ0h
−1}.

This is a variety like Z̄s
∅,I,D in 28.9 with G,D, s, I replaced by G′, D′, t, J . Define

ρ : Z̄ ′y → Z̄t†, (B0, B1, . . . , Br, g) 7→ (π(PB0), π(PB1), . . . , π(PBr ), π(g)).

Lemma 29.4. ρ is an iterated affine space bundle with fibres of dimension d(y).

Let F be the fibre of ρ over (β0, β1, . . . , βr, h) ∈ Z̄t†. We show only that
(a) F is an iterated affine space bundle over a point and dimF = d(y).

For any k ∈ [0, r] let Fk be the set of all sequences (B0, B1, . . . , Bk) in B such that

pos(Bi−1, Bi) = 1 or si(i ∈ [1, k]), Bi ∈ v(yi)(i ∈ [0, k]), π(PBi) = βi(i ∈ [0, k]).

Let Fr+1 = F . We have obvious maps

F = Fr+1
ξr+1−−−→ Fr

ξr−→ Fr−1
ξr−1−−−→ . . .

ξ1−→ F0.

It is easy to see that F0
∼= kl(y0) and that ξr+1 : Fr+1 → Fr is an affine space

bundle with fibres of dimension α− l(yr) = α− l(y0). Moreover, for i ∈ [1, r],
(b) ξi : Fi → Fi−1 is an affine space bundle with fibres of dimension 1 if v(yisi) ⊂

v(yi)− v(yi) and of dimension 0, otherwise.
Now (a) follows from (b). This completes the proof.
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29.5. Let J = {i ∈ [1, r]; s̃i = 1}. We have J = J1 t J2 where

J1 = {i ∈ J ; v(yi−1) ⊂ v(yi−1si)− v(yi−1si)},
J2 = {i ∈ J ; v(yi−1si) ⊂ v(yi−1)− v(yi−1)}.

Let K0 = {i ∈ [1, r]; ti 6= 1}. We have

J ∩K0 = ∅.

Indeed, if i ∈ J ∩ K0, then s̃i = 1 hence v(yi) 6= v(yi−1si), v(yi) = v(yi−1),
v(yi−1) 6= v(yi−1si) and ti ∈ J, s̃i = 1 hence v(yi−1si) = v(yi−1), a contradiction.

We show:
(a) If i ∈ K0, then v(yisi) = v(yi). If i ∈ J1, then v(yi) ⊂ v(yisi) − v(yisi). If

i ∈ J2, then v(yisi) ⊂ v(yi)− v(yi).
Assume first that i ∈ K0. Then ti 6= 1, v(yi−1si) = v(yi−1), si 6= 1. If v(yi) =
v(yi−1) we get v(yisi) = v(yi); if v(yi) = v(yi−1si) we get again v(yisi) = v(yi).

Assume next that i ∈ J1. Then v(yi−1) ⊂ v(yi−1si)− v(yi−1si), s̃i = 1, v(yi) 6=
v(yi−1si) hence v(yi) = v(yi−1) and v(yi) ⊂ v(yisi)− v(yisi).

Finally, assume that i ∈ J2. Then v(yi−1si) ⊂ v(yi−1) − v(yi−1), s̃i = 1,
v(yi) 6= v(yi−1si) hence v(yi) = v(yi−1) and v(yisi) ⊂ v(yi)− v(yi).

29.6. For any subset K ⊂ K0 let

ZtK† = {(β0, β1, . . . , βr, h) ∈ Z̄t†; pos†(βi−1, βi) = ti(i ∈ [1, r]−K),

βi−1 = βi(i ∈ K)}.

We shall write Zt† instead of Zt∅†. We have Z̄t† =
⊔
K⊂K0 ZtK†. Hence Z̄ ′y =⊔

K⊂K0 Z ′y,K where Z ′y,K = ρ−1(ZtK†). We show that for (B0, B1, . . . , Br, h) ∈
Z ′y,K, conditions (i) and (ii) below are equivalent:

(i) K ∪ J1 ⊂ {i ∈ [1, r];Bi−1 = Bi} ⊂ K ∪ J ;
(ii) {i ∈ K0;π(PBi−1) = π(PBi)} = K.

Assume that (i) holds. If i ∈ K, then by (i) we have Bi−1 = Bi, hence π(PBi−1) =
π(PBi). Conversely, let i ∈ K0 be such that π(PBi−1) = π(PBi). Using 29.4(b) we
see that Bi−1 = Bi (since v(yisi) 6⊂ v(yi)− v(yi), by 29.5(a)). Using (i) we see that
i ∈ K ∪ J . Since K0 ∩ J = ∅ we deduce that i ∈ K. We see that (i) =⇒ (ii).

Assume that (ii) holds. If i ∈ K, then, by (ii), we have π(PBi−1) = π(PBi); using
29.4(b) we see that Bi−1 = Bi (since v(yisi) 6⊂ v(yi)− v(yi), by 29.5(a)). If i ∈ J1,
then s̃i = 1, v(yi) 6= v(yi−1si), hence v(yi) = v(yi−1) and v(yi−1) 6= v(yi−1si).
Then ti = 1 hence π(PBi−1) = π(PBi). Using 29.4(b) we see that Bi−1 = Bi (since
v(yisi) 6⊂ v(yi)−v(yi), by 29.5(a)). Thus, the first inclusion in (i) holds. Conversely,
if i ∈ K0, Bi−1 = Bi, then π(PBi−1) = π(PBi) and using (ii) we see that i ∈ K. If
i ∈ [1, r] − K0, Bi−1 = Bi, then ti = 1, v(yi−1si) 6= v(yi−1), v(yi) = v(yi−1) hence
v(yi) 6= v(yi−1si), s̃i = 1 hence i ∈ J . Thus the second inclusion in (i) holds. We
see that (ii) =⇒ (i).

The equivalence of (i) and (ii) can be also formulated as follows:

(a) Z ′y,K =
⊔

J ′;J ′⊂J2

ZsK∪J1∪J′ ∩ Z̄ ′y.
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29.7. Let (β0, β1, . . . , βr, h) ∈ Z̄tK† and let F, Fk, ξk be as in 29.4. From 29.6(a)
we see that

F =
⊔

J ′;J ′⊂J2

(F ∩ ZsK∪J1∪J′ ).

For i ∈ [1, r], let F i = {(B0, B1, . . . , Br, g) ∈ F ;Bi−1 = Bi}. We show:
(a) For i ∈ J2, F i is a smooth hypersurface in F . For i ∈ K ∪ J1 we have

F i = F . For i ∈ [1, r]− (K ∪ J ) we have F i = ∅.
If F i 6= ∅, then, using F ⊂

⋃
J ′⊂J2

ZsK∪J1∪J′ , we see that i ∈ K∪J1 ∪J ′ for some
J ′ ⊂ J2; thus, i ∈ K ∪ J . In the rest of the proof we assume that i ∈ K ∪ J .

For each k ∈ [i, r] let F ik be the set of all (B0, B1, . . . , Bk) ∈ Fk such that
Bi−1 = Bi. Let F ir+1 = F i. From the definitions we see that for k ∈ [i + 1, r + 1]
we have a cartesian diagram

F ik −−−−→ Fky ξk

y
F ik−1 −−−−→ Fk−1

where the horizontal maps are inclusions.
Assume first that i ∈ J2. Using the cartesian diagram above, it suffices to

show that F ii is a smooth hypersurface in Fi. From 29.5(a) we see that v(yisi) ⊂
v(yi)− v(yi); hence ξi : Fi → Fi−1 is an affine line bundle (see 29.4(b)). It suffices
to show that ξi restricts to an isomorphism F ii

∼−→ Fi−1. Let (B0, B1, . . . , Bi−1) ∈
Fi−1. It suffices to show that (B0, B1, . . . , Bi−1, Bi−1) ∈ Fi. Hence it suffices to
show that v(yi−1) = v(yi) and βi−1 = βi. Since i ∈ J , we have s̃i = 1, hence
v(yi) 6= v(yi−1si) hence v(yi) = v(yi−1) and ti = 1. Since pos†(βi−1, βi) = 1 or ti,
we see that βi−1 = βi, as required.

Assume next that that i ∈ K ∪ J1. Using the cartesian diagram above, it
suffices to show that F ii = Fi. From 29.5(a) we see that v(yisi) 6⊂ v(yi) − v(yi);
hence ξi : Fi → Fi−1 is an isomorphism (see 29.4(b)). It suffices to show that
ξi restricts to an isomorphism F ii

∼−→ Fi−1. If i ∈ J1, this is shown exactly as
in the first part of the proof. Assume now that i ∈ K. We have ti 6= 1, hence
v(yi−1si) = v(yi−1) = v(yi). From the definitions we have βi−1 = βi. Hence
F ii

∼−→ Fi−1 as in the first part of the proof. This proves (a).

Lemma 29.8. The map ρ1 : Z̄ ′y∩ZsJ → Zt† (restriction of ρ) is an iterated affine
space bundle.

Let (β0, β1, . . . , βr, h) ∈ Zt†. We show only that the fibre F̄ of ρ1 at (β0, β1, . . . ,
βr, h) is an iterated affine space bundle over a point and

dim F̄ = α+ ](i ∈ [1, r]− J ; v(yisi) ⊂ v(yi)− v(yi)).

For any k ∈ [0, r] let

F̄k ={(B0, B1, . . . , Bk) ∈ Bk+1; pos(Bi−1, Bi) = si(i ∈ [1, k], i /∈ J ),

Bi−1 = Bi(i ∈ [1, k] ∩ J ), Bi ∈ v(yi)(i ∈ [0, k]), π(PBi) = βi(i ∈ [0, k])}.

Let F̄r+1 = F̄ . We have obvious maps

F̄ = F̄r+1 → F̄r → F̄r−1 → . . .→ F̄0.
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It is easy to see that F̄0
∼= kl(y0) and that F̄r+1 → F̄r is an affine space bundle with

fibres of dimension α − l(yr) = α − l(y0). Moreover, for i ∈ [1, r], F̄i → F̄i−1 is an
affine space bundle with fibres of dimension 1 if v(yisi) ⊂ v(yi) − v(yi), i /∈ J and
of dimension 0, otherwise. This completes the proof.

29.9. For k ∈ [1, r] we set

sr,k = srsr−1 . . . sk . . . sr−1sr, s̃r,k = s̃r s̃r−1 . . . s̃k+1sks̃k+1 . . . s̃r−1s̃r.

Let Γ be a subgroup of W such that

k ∈ [1, r], s̃k = 1 =⇒ sr,k ∈ Γ.

We show:
(a) For i ∈ [1, r] we have sr,i ∈ Γ if and only if s̃r,i ∈ Γ.

We argue by induction on r − i. If r − i = 0, we have sr,i = s̃r,i so the result is
obvious. Assume now that r − i ≥ 1. We have

k ∈ [1, r − 1], s̃k = 1 =⇒ sr−1,k ∈ srΓsr.
By the induction hypothesis we have sr−1,i ∈ srΓsr if and only if s̃r−1,i ∈ srΓsr. If
s̃r = sr, then sr−1,i = srsr,isr, s̃r−1,i = sr s̃r,isr. Hence we have sr,i ∈ Γ if and only
if s̃r,i ∈ Γ. If s̃r = 1, then sr−1,i = srsr,isr, s̃r−1,i = s̃r,i. Hence we have sr,i ∈ Γ if
and only if s̃r,i ∈ Γ. (We use that sr ∈ Γ.) This proves (a).

We show:
(b) If i ∈ [1, r] and ti 6= 1, then trtr−1 . . . ti . . . tr−1tr = yrs̃r,iy

−1
r .

We argue by induction on r−i. If r−i = 0, we have tr 6= 1, hence tr = yr−1s̃ry
−1
r =

yr−1sry
−1
r−1. We see that yr−1 = yr s̃rsr = yrsr s̃r and tr = yrsry

−1
r as required.

Assume now that r − i ≥ 1. By the induction hypothesis the left-hand side of
the equality in (b) is tryr−1s̃r−1,iy

−1
r−1tr and the right-hand side is yrs̃r s̃r−1,is̃ry

−1
r .

It then suffices to show that tryr−1 = yrs̃r; this follows from the definitions since
tr = t−1

r . This proves (b).

29.10. We set y = y0. In the case where J ⊂ Js we set yL = Ad(y−1)∗L ∈ s(T)
and we show that

(a) t1t2 . . . trD ∈W•
yL.

For i ∈ [1, r] define ui ∈ W by ui = ε−1(srsr−1 . . . si . . . sr−1sr) if i ∈ J and by
ui = 1 if i /∈ J . If i ∈ J , we have i ∈ Js, hence ui ∈W•

L. Then

s̃1s̃2 . . . s̃rD = s1s2 . . . srDu1u2 . . . ur ∈W•
L.

We have s̃1s̃2 . . . s̃r = y−1t1t2 . . . tryr, hence y−1t1t2 . . . tryrD ∈ W•
L. Since yr =

ε(y) we have yrD = Dy, hence y−1t1t2 . . . trDy ∈W•
L and (a) follows.

Using (a) we can define a constructible sheaf yL̄ on Z̄t† and a complex K̄t,yL
D′ ∈

D(D′) in terms of t, yL, G′ in the same way as L̄ on Z̄s and K̄s,L
D ∈ D(D) are

defined in 28.12 in terms of s,L, G.

Lemma 29.11. (a) If J 6⊂ Js, then π̄′y!i
∗
yL̄ = 0.

(b) If J ⊂ Js, then π̄′y!i
∗
yL̄ = K̄t,yL

D′ [[−d(y)]].

Let π̄t : Z̄t† → D′ be the obvious projection. We have π̄′y! = π̄t!ρ! and ρ!ρ
∗(yL̄) =

yL̄[[−d(y)]] (we use 29.4). Hence it suffices to prove:
(a′) If J 6⊂ Js, then ρ!(i∗yL̄) = 0.
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(b′) If J ⊂ Js, then i∗yL̄ ∼= ρ∗(yL̄).
We prove (a′). Let F be the fibre of ρ over a point of ZtK†(K ⊂ K0). We must
show that H∗c (F, L̄|F ) = 0. (We write L̄ instead of i∗yL̄.) If K ∪ J2 6⊂ Js then
L̄|F = 0 (we use 29.6(a) and 28.10) and the desired vanishing follows. Assume now
that K ∪ J2 ⊂ Js but J 6⊂ Js. Using 29.6(a) and 28.10 we see that L̄|F is a local
system on ⊔

J ′;J ′⊂J2;J ′⊂Js

(F ∩ ZsK∪J1∪J′ )

and is zero elsewhere. Hence L̄|F is a local system on F −
⋃
j∈J2−Js

F j (F j as in
29.7) and is zero on

⋃
j∈J2−Js

F j . Let i be the largest number in J2−Js. It suffices
to show that for any (B0, B1, . . . , Bi−1) ∈ Fi−1 (see 29.4) we have H∗c (F ′, L̄|F ′) = 0
where F ′ is the fibre of the obvious map F → Fi−1 at (B0, B1, . . . , Bi−1). Let
F ′i = F ′∩F i. If Bj−1 = Bj for some j < i, j ∈ J2−Js, then F ′ ⊂ F j and L̄|F ′ = 0;
the desired vanishing follows. Thus we may assume that pos(Bj−1, Bj) = sj for
all j < i, j ∈ J2 − Js. Then L̄|F ′−F ′i is a local system and L̄|F ′i = 0. Let
F ′′ be the fibre of ξi : Fi → Fi−1 (see 29.4) at (B0, B1, . . . , Bi−1). Let F ′′i =
{(B0, B1, . . . , Bi−1, Bi−1)}, a point on the affine line F ′′. Let u : F ′ → F ′′ be
the restriction of the obvious map F → Fi. Then u is an iterated affine space
bundle (see 29.4(a)), F ′i = u−1(F ′′i), and there is a well-defined local system E on
F ′′ − F ′′i ∼= k∗ such that E ∈ s(k∗), L̄|F ′−F ′i = u∗(E). Then H∗c (F ′ − F ′i, L̄) ∼=
H∗c (k∗, E) and it suffices to show that E 6∼= Q̄l. It also suffices to show that L̄|F ′−F ′i
has non-trivial monodromy around the smooth hypersurface F ′i of F ′. This is the
same as the monodromy of L̄|Zs around the hypersurface Zs{i} . This monodromy
is non-trivial by 28.10(b′). This proves (a′).

We prove (b′). We define WJ,yL in terms of G′,WJ ,
yL in the same way as WL

was defined in terms of G0,W,L. Let

Jt = {i ∈ [1, r]; ti ∈ J, trtr−1 . . . ti . . . tr−1tr ∈ ε(WJ,yL)}
= {i ∈ [1, r]; ti ∈ J, trtr−1 . . . ti . . . tr−1tr ∈ ε(WyL)}.

(The two definitions coincide since trtr−1 . . . ti . . . tr−1tr is a reflection in WJ .) We
show that

(c) Jt = Js ∩ K0.

Using 29.9(b) it suffices to show that for i ∈ [1, r] such that ti 6= 1, we have

yrs̃r . . . s̃i+1sis̃i+1 . . . s̃ry
−1
r ∈ ε(WyL)↔ srsr−1 . . . si . . . sr−1sr ∈ ε(WL).

Using 29.9(a), we see that it suffices to show that ε−1(y−1
r )WyLε

−1(yr) = WL or
that yL = Ad(ε−1(y−1

r ))∗L. This follows from the definitions using yr = ε(y).
Using 28.10 for G′ instead of G, we see that yL̄ is a local system on Z1 =⋃
K⊂Jt

ZtK† and is zero on its complement in Z̄t†. Using 28.10 and 29.6(a) we see
that i∗yL̄ is a local system on

Z2 =
⋃

J ′⊂J2;K⊂Js

ZsK∪J1∪J′ ∩ Z̄ ′y =
⋃
K⊂Jt

Z ′y,K

and is zero on its complement in Z̄ ′y. (We have used (c).) Since Z2 is an iterated
affine space bundle over Z1 (via ρ) and the restriction of i∗yL̄ to any fibre of ρ : Z2 →
Z1 is a local system of rank 1 with finite monodromy of order invertible in k (hence
it is Q̄l) we see that i∗yL̄|Z2 = ρ∗E for a well-defined local system E of rank 1 on Z1.
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It suffices to show that E ∼= yL̄|Z1 . Since Z1 is smooth and Zt† is open dense in Z1,
it suffices to show that E|Zt† ∼= yL̄|Zt† . Let Z3 = ZsJ ∩Z̄ ′y. This is a closed subset of
the open subset ρ−1(Zt†) of Z2. Since the restriction of ρ is an iterated affine space
bundle ρ1 : Z3 → Zt† (see 29.8), it suffices to show that ρ∗1(E|Zt†) ∼= ρ∗1(yL̄|Zt†).
Since ρ∗1(E|Zt†) = L̄|Z3 , it suffices to show that L̄|Z3 ∼= ρ∗1(yL̄|Zt†). Using 28.10,
once for G and once for G′, we see that L̄|Z3 = L̃|Z3 , yL̄|Zt† = yL̃ where L̃ (on ZsJ )
is defined as in 28.8 in terms of G, sJ ,L and yL̃ (on Zt†) is defined analogously in
terms of G′, t, yL. Thus it suffices to show that

(d) L̃|Z3 ∼= ρ∗1(yL̃).

To prove (d), we choose B∗, T, d and ẇ (for w ∈ W) as in 28.5, in such a way
that B∗ ⊂ P, T ⊂ L. We have necessarily d ∈ D′. Let β† = π(B∗) ∈ B†. Let
U∗ = UB∗ , U

† = Uβ† . Let

Z ={(h0U
∗, h1U

∗, . . . , hrU
∗, g) ∈ (G0/U∗)r+1 ×D;h−1

i−1hi ∈ B∗ ˙̃siB∗

for i ∈ [1, r], h−1
r gh0 ∈ NGB∗, g ∈ NGP, hi ∈ P ẏiU∗ for i ∈ [0, r]},

Z ′ = {(h′0U †, h′1U †, . . . , h′rU †, g′) ∈ (L/U †)r+1 ×D′;
h′i−1

−1h′i ∈ β† ṫiβ† for i ∈ [1, r], h′r
−1g′h′0 ∈ NGβ†}.

Define ζ : Z → Z ′ by

(h0U
∗, h1U

∗, . . . , hrU
∗, g) 7→ (h′0U

†, h′1U
†, . . . , h′rU

†, g′)

where hi ∈ piẏiU
∗, pi ∈ P, h′i = π(pi), g′ = π(g). (We show that h′iU

† is well
defined or equivalently that piU∗ is well defined. It suffices to show that pẏiU∗ =
p′ẏiU

∗, p, p′ ∈ P =⇒ p′U∗ = pU∗. It also suffices to show that P ∩ ẏiU∗ẏ−1
i ⊂ U∗.

Since yi ∈ JW and B∗ ⊂ P we have P ẏiB
∗ẏ−1
i = B∗. Hence P ∩ ẏiB∗ẏ−1

i ⊂ B∗.
Thus P ∩ ẏiU∗ẏ−1

i is contained in the set of unipotent elements of B∗, that is, in
U∗.) We have a commutative diagram

Z ζ−−−−→ Z ′

a

y a′
y

Z3 ρ1−−−−→ Zt†

where a : (h0U
∗, h1U

∗, . . . , hrU
∗, g) 7→ (h0B

∗h−1
0 , h1B

∗h−1
1 , . . . , hrB

∗h−1
r , g),

a′ : (h′0U
†, h′1U

†, . . . , h′rU
†, g′) 7→ (h′0β

†h′0
−1, h′1β

†h′1
−1, . . . , h′rβ

†h′r
−1, g′).

Since a is a locally trivial fibration with smooth connected fibres, to prove (d) it
suffices to prove that a∗(L̃|Z3) ∼= a∗ρ∗1(yL̃) or that a∗(L̃|Z3) ∼= ζ∗a′∗(yL̃). Define
ξ : Z → T by

(h0U
∗, h1U

∗, . . . , hrU
∗, g) 7→ d−1(ṡ′1ṡ

′
2 . . . ṡ

′
r)
−1n1n2 . . . nrn

where ni ∈ NG0T are given by h−1
i−1hi ∈ U∗niU∗ and n ∈ NGB∗ ∩NGT is given by

h−1
r gh0 ∈ U∗n. Define ξ1 : Z ′ → T by

(h′0U
†, h′1U

†, . . . , h′rU
†, g′) 7→ d−1(ṫ1ṫ2 . . . ṫr)−1n̄1n̄2 . . . n̄rn̄

where n̄i ∈ NLT are given by h′i−1
−1h′i ∈ U †n̄iU † and n̄ ∈ NGβ† ∩ NGT is given

by h′r−1g′h′0 ∈ U †n̄. From the definitions we have

a∗(L̃|Z3) = ξ∗L, a′∗(yL̃) = ξ∗1Ad(ẏ−1)∗L
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where L ∈ s(T ) is as in 28.6. Therefore it suffices to show that

ξ∗L ∼= ζ∗ξ∗1Ad(ẏ−1)∗L.

Define ξ′ : Z → T by

(h0U
∗, h1U

∗, . . . , hrU
∗, g) 7→ d−1(ṫ1 ṫ2 . . . ṫr)−1n̄1n̄2 . . . n̄rn̄

where hi ∈ piẏiU
∗, pi ∈ P , p−1

i−1pi ∈ U∗n̄iU
∗, p−1

r gp0 ∈ U∗n̄, n̄i ∈ NLT , n̄ ∈
NGB

∗ ∩NGT . Then ξ′ = ξ1ζ and it suffices to show that

ξ∗L ∼= ξ′∗Ad(ẏ−1)∗L.

Using 28.1(c) it suffices to show that there exists t ∈ T such that

tξ(z) = Ad(ẏ−1)ξ′(z) for all z ∈ Z.

Let (h0, h1, . . . , hr, g) ∈ (G0)r+1 ×D be such that z = (h0U
∗, h1U

∗, . . . , hrU
∗, g) ∈

Z. We define pi, ni, n, n̄i, n̄ in terms of hi as in the definition of ξ, ξ′. From h−1
r gh0 ∈

U∗n, p−1
r gp0 ∈ U∗n̄, we deduce ẏ−1

r p−1
r gp0ẏ ∈ U∗n, U∗n̄ẏU∗ = U∗ẏrnU

∗, hence
n̄ẏ = ẏrn. We show that

n̄i = ẏi−1niẏ
−1
i for any i ∈ [1, r].

From h−1
i−1hi ∈ U∗niU

∗, p−1
i−1pi ∈ U∗n̄iU

∗, we deduce ẏ−1
i−1p

−1
i−1piẏi ∈ U∗niU

∗,
hence ẏi−1uniu

′ẏ−1
i ∈ U∗n̄iU∗ for some u, u′ ∈ U∗. Assume first that ti 6= 1. Then

yi = yi−1, yi−1si = tiyi, l(yi−1si) = l(tiyi) = l(yi−1) + 1 = l(yi) + 1,

hence
ẏi−1uniu

′ ∈ U∗ẏi−1niU
∗, U∗n̄iU

∗ẏi ⊂ U∗n̄iẏiU∗.
Thus, U∗ẏi−1niU

∗ = U∗n̄iẏiU
∗ and ẏi−1ni = n̄iẏi, as required. Next, assume that

ti = 1, s̃i 6= 1. Then yi = yi−1si 6= yi−1, n̄i ∈ T . If l(yi−1si) = l(yi−1) + 1,
then ẏi−1uniu

′ ∈ U∗ẏi−1niU
∗ and U∗n̄iU

∗ẏi ⊂ U∗n̄iẏiU
∗ so that U∗ẏi−1niU

∗ =
U∗n̄iẏiU

∗ and ẏi−1ni = n̄iẏi, as required. If l(yi−1si) = l(yi−1)−1, then l(siy−1
i ) =

l(y−1
i ) + 1. We have uniu′ẏ−1

i ∈ U∗niẏ
−1
i U∗ and ẏ−1

i−1U
∗n̄iU

∗ ⊂ U∗ẏ−1
i−1n̄iU

∗ so
that U∗niẏ−1

i U∗ = U∗ẏ−1
i−1n̄iU

∗ and niẏ
−1
i = ẏ−1

i−1n̄i, as required. Finally, assume
that s̃i = 1. Then ti = 1, yi−1si 6= yi−1 = yi, ni ∈ T , n̄i ∈ T . We have ẏi−1uniu

′ ∈
U∗ẏi−1niU

∗ and U∗n̄iU
∗ẏi ⊂ U∗n̄iẏiU

∗ so that U∗ẏi−1niU
∗ = U∗n̄iẏiU

∗ and
ẏi−1ni = n̄iẏi, as required.

We have

Ad(ẏ−1)ξ′(z) = ẏ−1d−1(ṫ1ṫ2 . . . ṫr)−1n̄1n̄2 . . . n̄rn̄ẏ

= ẏ−1d−1(ṫ1ṫ2 . . . ṫr)−1(ẏn1ẏ
−1
1 )(ẏ1n2ẏ

−1
2 ) . . . (ẏr−1nr ẏ

−1
r )ẏrn

= ẏ−1d−1(ṫ1ṫ2 . . . ṫr)−1ẏn1n2 . . . nrn

= td−1( ˙̃s1
˙̃s2 . . . ˙̃sr)−1n1n2 . . . nrn = tξ(z)

where
t = ẏ−1d−1(ṫ1ṫ2 . . . ṫr)−1ẏ( ˙̃s1

˙̃s2 . . . ˙̃sr)d.

We have t ∈ T . (Equivalently, ys̃1s̃2 . . . s̃r = t1 . . . tryr, which is clear from the
definitions.) This completes the proof of (d), hence that of (b′). The lemma is
proved.
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29.12. We consider the sequence Z0 ⊂ Z1 ⊂ . . . of closed subsets of Z̄ ′ defined
by Zi =

⋃
y;c(y)≤i Z̄

′
y where y is a sequence (y0, y1, . . . , yr) of elements in JW

satisfying 29.2(a) and c(y) =
∑

i∈[0,r] dim v(yi). Let ki : Zi → Z̄ ′(i ≥ 0) and
k′i : Zi−Zi−1 → Z̄ ′(i ≥ 1) be the inclusions. For any i ≥ 1, the natural distinguished
triangle

(π̄′!k
′
i!k
′
i
∗L̄, π̄′!ki!k∗i L̄, π̄′!(ki−1)!k

∗
i−1L̄)

in D(D′) gives rise to a long exact sequence in M(D′):

. . .→ pHj−1(π̄′!(ki−1)!k
∗
i−1L̄) δ−→

⊕
y;c(y)=i

pHj(π̄′y!i
∗
yL̄)→

pHj(π̄′!ki!k
∗
i L̄)→ pHj(π̄′!(ki−1)!k

∗
i−1L̄) δ−→ . . . .(a)

We now prove the following result.

Lemma 29.13. (a) The maps δ in 29.12(a) are zero.
(b) For i ≥ 0, π̄′!ki!k

∗
i L̄ ∈ D(D′) is a semisimple complex; it is isomorphic to⊕

y;c(y)≤i π̄
′
y!i
∗
yL̄.

(c) π̄′!L̄ ∈ D(D′) is a semisimple complex; it is isomorphic to
⊕

y π̄
′
y!i
∗
yL̄.

(c) is a special case of (b), for large i. Assuming that (a) and the first assertion
of (b) are proved, we prove the second assertion of (b) as follows. Since both
complexes in question are semisimple (see 29.11 and 28.12(b)), it suffices to show
that they have the same pHj for any j. Using (a) we see that 29.12(a) decomposes
into short exact sequences of semisimple objects in M(D′). Hence

pHj(π̄′!ki!k
∗
i L̄) ∼= pHj(π̄′!(ki−1)!k

∗
i−1L̄)⊕

⊕
y;c(y)=i

pHj(π̄′y!i
∗
yL̄).

This proves the desired equality for pHj by induction on i. (The case where i = 0
is trivial.)

It remains to prove (a) and the first assertion of (b). By general principles,
we may assume that k is an algebraic closure of a finite field Fq, that G,P,D
are defined over Fq and that G0 is split over Fq. By taking Fq large enough, we
may assume that 29.12(a) and the isomorphisms in 29.11(a),(b) are realized in the
category of mixed complexes with L pure of weight 0. Now K̄t,y0L

D′ in 29.11(b) is
pure of weight 0 (by Deligne’s theorem [D, 6.2.6]) since it is a direct image under
a proper map of y0L̄ which is pure of weight 0; after applying to it [[−d(y)]], it
remains pure of weight 0; see [BBD, 6.1.4]. Hence by 29.11, π̄′y !(i∗yL̄) is pure of
weight 0; it follows that

(d)
⊕

y;c(y)=i
pHj(π̄′y!i

∗
yL̄) is pure of weight j.

We now show by induction on i that pHj(π̄′!ki!k
∗
i L̄) is pure of weight j for any i. For

i = 0 this follows from (d). If we assume that this holds for i− 1 where i ≥ 1 then
the statement for i follows from the statement for i − 1 and 29.12(a) (using (d));
we also use the following fact: if K1 → K2 → K3 is an exact sequence of mixed
perverse sheaves with K1,K3 pure of weight j, then K2 is pure of weight j. Using
[BBD, 5.4.4] it follows that π̄′!ki!k

∗
i L̄ is pure of weight 0. Using the decomposition

theorem [BBD, 5.4.5, 5.3.8] it follows that π̄′!ki!k
∗
i L̄ is a semisimple complex. The

vanishing of δ in 29.12(a) follows from the fact that δ is a morphism between two
pure perverse sheaves of different weights. The lemma is proved.
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Proposition 29.14. In D(D′) we have resD
′

D (K̄s,L
D ) ∼=

⊕
y K̄

t,y0L
D′ [[−d(y)]] where

y runs over all sequences satisfying 29.2(a) such that {i ∈ [1, r], s̃i = 1} ⊂ Js and
s̃i, t are defined in terms of y as in 29.3. In particular, resD

′

D (K̄s,L
D ) is a direct sum

of shifts of character sheaves on D′.

From the definitions we have resD
′

D (K̄s,L
D ) ∼= π̄′!L̄. (We ignore the Tate twist (α).)

The result follows from 29.13(c) and 29.11.

Proposition 29.15. Let A be a character sheaf on D. Then resD
′

D A ∈ D(D′) is a
direct sum of shifts of character sheaves on D′.

We can find s,L as in 29.2 such that A a K̄s,L
D . Using 28.12(b) we see that

for some j ∈ Z, A[−j] is a direct summand of K̄s,L
D . Hence resD

′

D A[−j] is a di-
rect summand of resD

′

D (K̄s,L
D ), which is a semisimple complex by 29.14. It follows

that resD
′

D A is a semisimple complex. Now pHi(resD
′

D A) is a direct summand of
pHi+j(resD

′

D (K̄s,L
D )) which, by 29.14, is a direct sum of character sheaves on D′.

Hence pHi(resD
′

D A) is a direct sum of character sheaves on D′. This completes the
proof.

30. Admissibility of character sheaves

30.1. In this section we fix a connected component D of G. We write ε : W→W
instead of εD : W→W (see 26.2).

Lemma 30.2. Let H = DZ0
G0×G0. Let A be a simple perverse sheaf on D which is

cuspidal (see 23.3). Assume that there exists n ∈ N∗k such that A is equivariant for
the H-action (z, x) : g 7→ xzngx−1 on D. Let Z = suppA, m = dimZ. There exists
a unique pair (S, E) where S is an isolated stratum S of D and E is an irreducible
cuspidal local system E ∈ S(S) (up to isomorphism) such that A[−m] = IC(S̄, E)
extended by 0 on D − S̄.

The intersections of Z with the various strata of D form a finite partition of Z
into locally closed subsets. Since Z is irreducible, one of these intersections is open
dense in Z. Thus there exists (L, S) ∈ A such that S ⊂ D and YL,S ∩ Z is open
dense in Z. Let P be a parabolic of G0 with Levi L such that S ⊂ NGP . Let
a = dimUP . We can find an open dense smooth subset V of Z and an irreducible
local system E on V such that A = IC(Z, E)[m] extended by 0 on D−Z. Replacing
if necessary V, E by V ∩ YL,S, E|V ∩YL,S , we may assume that V ⊂ YL,S. For any
h ∈ H , the h-translate hV of V is an open dense smooth subset of Z. Hence
V ′ =

⋃
h
hV is an open dense smooth subset of Z. Since V ⊂ YL,S and YL,S is

H-stable, we have hV ⊂ YL,S for h ∈ H hence V ′ ⊂ YL,S . Now A′ = A[−m]|V
is an H-equivariant intersection cohomology complex on V ′ such that A′|V is a
local system and A′|hV is automatically a local system for any h ∈ H . Since⋃
h
hV is an open covering of V ′, we see that A′ is a local system on V ′. Replacing

V, E by V ′, A′, we see that we may assume in addition that V is H-stable and
E is an H-equivariant local system on V . Define f : G0 × (V ∩ S∗) → V by
(y, g) 7→ ygy−1. Then f is surjective since V ⊂ YL,S . Moreover, f is a principal
bundle with group Γ = {x ∈ NG0L;xSx−1 = S} which acts on G0 × (V ∩ S∗) by
x : (y, g) 7→ (yx−1, xgx−1). (We show this only at the level of sets. It suffices to
show that, if (y, g), (y′, g′) are elements of V ∩S∗ such that ygy−1 = y′g′y′−1, then
the element x = y′−1y ∈ G0 satisfies xLx−1 = L, xSx−1 = S. We have xgx−1 = g′.
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Since g ∈ S∗, g′ ∈ S∗, we have L = L(g) = L(g′) (see 3.9) and L(g′) = xL(g)x−1,
hence xLx−1 = L. Since xSx−1, S are strata of NGL with a common element g,
we must have xSx−1 = S, as required.) Since V is irreducible and Γ is of pure
dimension dimL, it follows that V ∩ S∗ is non-empty, of pure dimension m − 2a:
we have

dim(V ∩ S∗) + dimG0 = dimV + dim Γ = dimV + dimL = m+ dimG0 − 2a.

Let g ∈ V ∩ S∗. Let U ′ be the orbit of g under UP -conjugation. Since U ′ is an
orbit of an action of a unipotent group on an affine variety, U ′ is closed in D. We
have U ′ ⊂ gUP . (Indeed if x ∈ UP , then xgx−1 = g(g−1xg)x−1 and g−1xg ∈ UP
since g ∈ NGP .) The isotropy group UP,g of g in UP is contained in

UP ∩ ZG(g) ⊂ UP ∩ ZG(gs) ⊂ UP ∩ ZG(gs)0

(the last inclusion follows from 1.11). Since g ∈ S∗, we have ZG(gs)0 ⊂ L hence
UP,g ⊂ UP ∩ L = {1}. Thus, UP,g = {1}. We see that dimU ′ = dimUP . Since
U ′ is closed in gUP , we have U ′ = gUP . Since V is stable under UP -conjugation
and U ′ is the UP -orbit of g ∈ V , it follows that U ′ ⊂ V . Thus, gUP ⊂ V . Now
E|gUP is a UP -equivariant local system (for the conjugation action of UP which
has trivial isotropy group). It follows that E|gUP ∼= Q̄c

l for some c ≥ 1. Hence
H2a
c (gUP , E) 6= 0. Equivalently, H2a−m

c (gUP , A) 6= 0.
For any i ∈ Z, we denote by X i the set of all UP -cosets R in NDP such that

H i
c(R,A) 6= 0. Then, for any g ∈ V ∩ S∗, we have gUP ∈ X 2a−m. The map

V ∩ S∗ → NDP/UP , g 7→ gUP

is injective: if g, g′ ∈ V ∩ S∗ and gUP = g′UP , then

g−1g′ ∈ (NGP ∩NGL) ∩ UP = {1}
(see 1.26), hence g = g′. We see that dimX 2a−m ≥ dim(V ∩S∗) hence dimX 2a−m ≥
m− 2a. Thus,

dim(suppH2a−m(resD
′

D A)) ≥ m− 2a
where D′ = NDP ∩NDL. If P 6= G0, then our assumption that A is cuspidal gives

dim(suppH2a−m(resD
′

D A)) < m− 2a,

a contradiction. Thus, P = G0, L = G0 and S must be an isolated stratum of D,
so that YL,S = S. Since V is H-stable, contained in S and S is a single H-orbit, it
follows that V = S and E is an H-equivariant local system on S, that is, E ∈ S(S).
Using 23.3(a), we see that E is a cuspidal local system. The lemma is proved.

30.3. For J ⊂ I such that ε(J) = J , let

VJ,D = {(P, gUP );P ∈ PJ , gUP ∈ NDP/UP }.
Let P0 ∈ PJ . Since ε(J) = J , NDP0 is a connected component of NGP0 and
D0 = NDP0/UP0 is a connected component of NGP0/UP0 . Consider the diagram

D0
a←− G0 ×D0

b−→ VJ,D

where a(x, gUP0) = gUP0 , b(x, gUP0) = (xPx−1, xgx−1UxPx−1) with x ∈ G0, g ∈
NDP0. Then a, b are smooth morphisms with connected fibres; more precisely, b is a
principal P0-bundle where P0 acts on G0×D0 by p : (x, gUP0) 7→ (xp−1, pgp−1UP0).
Let A0 be a perverse sheaf on D0 equivariant for the conjugation action of P0/UP0 .
Then aFA0 = bFA[0 for a well-defined perverse sheaf A[0 on VJ,D.
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30.4. For any J ⊂ J ′ ⊂ I such that ε(J) = J, ε(J ′) = J ′ let VJ,J′,D be the variety
consisting of all pairs (P, gUQ) where P ∈ PJ , gUQ ∈ NDP/UQ and Q is the unique
parabolic in PJ′ such that P ⊂ Q. We have a diagram

VJ,D
c←− VJ,J′,D

d−→ VJ′,D

where c(P, gUQ) = (P, gUP ), d(P, gUQ) = (Q, gUQ). Define

f̃J,J′ : D(VJ,D)→ D(VJ′,D), ẽJ,J′ : D(VJ′,D)→ D(VJ,D)

by f̃J,J′A = d!c
∗A, ẽJ,J′A

′ = c!d
∗A′. Define

fJ,J′ : D(VJ,D)→ D(VJ′,D), eJ,J′ : D(VJ′,D)→ D(VJ,D)

by fJ,J′A = f̃J,J′A[α] = d!c
FA, eJ,J′A′ = ẽJ,J′A

′[α](α) where α = dimPJ −
dimPJ′ .

Let P0 ∈ PJ , P ′0 ∈ PJ′ be such that P0 ⊂ P ′0. Let D0 = NDP0/UP0 , D
′
0 =

NDP
′
0/UP ′0 . We have α = dimUP0 − dimUP ′0 . We show:

(a) If A ∈M(VJ,D) is of the form A = A[0 where A0 is a direct sum of admissible
simple perverse sheaves on D0, then A′ := fJ,J′A is of the form A′0

[ where A′0 =
indD

′
0

D0
A0 is a direct sum of admissible simple perverse sheaves on D′0. In particular,

fJ,J′A ∈ M(VJ′,D).
We have a commutative diagram

D0 V1
roo s // V2

t // D′0

G0 ×D0

a

OO

b

��

G0 × V1
1×r

oo

j

OO

1×s
// G0 × V2

h

OO

1×t
//

k

��

G0 ×D′0

a′

OO

b′

��

VJ,D VJ,J′,D
coo d // VJ′,D

Here
V1 = P ′0/UP ′0 ×NDP0/UP ′0 ,
V2 = {(P, gUP ′0);P ∈ PJ , P ⊂ P ′0, g ∈ NDP},
b is as in 30.3, b′ is the analogous map (with P0 replaced by P ′0),
a, j, h, a′, r, t are given by the second projection,
s(p′UP ′0 , gUP ′0) = (p′P0p

′−1, p′gp′−1UP ′0) where p′ ∈ P ′0, g ∈ NDP0,
k(x, P, gUP ′) = (xPx−1, xgx−1UxP ′0x−1) where x ∈ G0, (P, gUP ′) ∈ V2.

All morphisms in this diagram (except t, 1× t, d) are smooth with connected fibres.
Moreover, s, b, k, b′ are principal bundles with group P0/UP ′0 , P0, P

′
0, P

′
0. We may

assume that A0, A are simple. There is a well-defined simple perverse sheaf A1 on
V2 such that rFA0 = sFA1. We have A′0 = t!A1. Using the commutativity of the
diagram above we see that hFA1 = kF(cFA). Since the squares (h, t, 1× t, a′) and
(1 × t, b′, k, d) are cartesian, we have (1 × t)!h

FA1 = a′FA0, (1 × t)!k
F(cFA) =

b′Fd!(cFA) = b′FA′. It follows that a′FA0 = b′FA′. From 27.2(d) we see that
A′0 = indD

′
0

D0
A0 is a direct sum of admissible simple perverse sheaves on D′0. Hence

a′FA0 = b′FA′ is a direct sum of simple perverse sheaves on G0 ×D′0. Hence A′ is
a direct sum of simple perverse sheaves on VJ′,D. This proves (a).

We show:
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(b) Let C0 be a P ′0/UP ′0-equivariant simple perverse sheaf on D′0 and let C = C[0
be the corresponding simple perverse sheaf on VJ′,D. Then for any i ∈ Z we have
pHi(eJ,J′C) = (pHi(resD0

D′0
C0))[ (equality of perverse sheaves on VJ,D).

We have a commutative diagram

D0
f ′←−−−− V3

f−−−−→ D′0

a

x v

x a′
x

G0 ×D0
1×f ′←−−−− G0 × V3

1×f−−−−→ G0 ×D′0
b

y m

y b′
y

VJ,D
c←−−−− VJ,J′,D

d−−−−→ VJ′,D

where a, b, a′, b′, c, d are as above, V3 = NDP0/UP ′0 , f, f ′ are the obvious maps, v is
the second projection and

m(x, pUP ′0) = (xP0x
−1, xpx−1UxP ′0x−1).

From this commutative diagram we see that v∗f∗C0[dimUP ′0 ] = m∗d∗C (we use
that b′∗C = a′∗C0[dimUP ′0 ]). Since the squares (f ′, a, 1× f ′, v) and (v, f, 1× f, a′)
are cartesian, we have

a∗f ′! (f
∗C0) = (1× f ′)!v

∗(f∗C0), b∗c!d∗C = (1× f ′)!m
∗(d∗C),

hence a∗f ′! (f
∗C0)[dimUP ′0 ] = b∗c!d

∗C. Thus,

a∗(resD0
D′0
C0)(−α)[dimUP ′0 ] = b∗(eJ,J′C)[−α](−α).

Hence a∗(resD0
D′0
C0)[dimUP0 ] = b∗(eJ,J′C) and bF(eJ,J′C) = aF(resD0

D′0
C0),

pHi(bF(eJ,J′C)) = pHi(aF(resD0
D′0
C0)).

Using this and [L3, I, (1.8.1)], we have

bF(pHi(eJ,J′C)) = aF(pHi(resD0
D′0
C0)) = bF((pHi(resD0

D′0
C0))[).

Since βF is fully faithful [L3, I, (1.8.3)], we deduce the required equality pHi(eJ,J′C)
= (pHi(resD0

D′0
C0))[.

Lemma 30.5. Let A ∈ D(VJ,D), A′ ∈ D(VJ′,D). We have

HomD(VJ,D)(eJ,J′A′, A) = HomD(VJ′,D)(A′, fJ,J′A).

Using the fact that d is proper (hence d∗ = d!) and that c is an affine space
bundle with fibres of dimension α (hence c!A = c∗A[2α](α)), we have

Hom(c!d∗A′[α](α), A) = Hom(d∗A′[α](α), c!A) = Hom(d∗A′[α](α), c∗A[2α](α))

= Hom(d∗A′, c∗A[α]) = Hom(A′, d∗c∗A[α]) = Hom(A′, d!c
∗A[α]).

The lemma is proved.

Theorem 30.6. Let A be a character sheaf on D.
(a) Let P0 be a parabolic of G0 such that NDP0 6= ∅ and let D0 = NDP0/UP0 ,

a connected component of NGP0/UP0 . Let A1 be a character sheaf on D0. Then
indDD0

A1 ∈ M(D).
(b) Let P0, D0 be as in (a). Then resD0

D A ∈ D(D0)≤0.
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(c) Let P0, D0 be as in (a). Let A1 be a character sheaf on D0. Then
HomD(D0)(resD0

D A,A1) = HomD(D)(A, indDD0
A1).

(d) There exist P0, D0 as in (a) and a cuspidal character sheaf A1 on D0 such
that A is a direct summand of indDD0

A1.
(e) A is admissible.

If G0 = {1}, the theorem is obvious. Assume now that dimG > 0 and that the
theorem is true when G is replaced by a reductive group of dimension < dimG.
The proof of the theorem for G assuming this inductive assumption is given in
30.7–30.11.

30.7. We show that 30.6(a) holds for G. If P0 = G0, we have D = D0, indDD0
A1 =

A1 and the result is obvious. Assume now that P0 6= G0. By 30.6(e) for NGP0/UP0 ,
A1 is admissible on D0. Using 27.2(d) we see that indDD0

A1 ∈ M(D), as required.

30.8. We show that 30.6(b) holds for G. If P0 = G0, we have resD0
D A = A ∈

M(D0). Assume now that P0 6= G0. Let J be such that P0 ∈ PJ . We identify
VI,D = D in the obvious way. We show:

(a) pHi(eJ,IA) = 0 for i > 0.
Assume that this is not so; let i be the largest integer such that pHi(eJ,IA) 6= 0.
Then i > 0 and there exists a nonzero morphism eJ,IA → pHi(eJ,IA)[−i]. Using
30.5 we deduce that

HomD(D)(A, fJ,I(pHi(eJ,IA)[−i])) 6= 0.

Using 30.4(b) we have

fJ,I(pHi(eJ,IA)) = fJ,I((pHi(resD0
D A))[).

By 29.15, pHi(resD0
D A) is a finite direct sum of character sheaves on D0 hence,

by 30.6(e) for NGP0/UP0 it is a finite direct sum of admissible complexes on D0.
Using 30.4(a), we see that C := fJ,I((pHi(resD0

D A))[) ∈ M(D). Thus we have
HomD(D)(A,C[−i]) 6= 0 with A,C ∈ M(D), i > 0. This contradicts [L3, II, 7.4].
Thus, (a) holds.

Using (a) and 30.4(b) we see that for i > 0 we have (pHi(resD0
D A))[ = 0, hence

pHi(resD0
D A) = 0. It follows that resD0

D A ∈ D(D0)≤0. Thus, 30.6(b) holds for G.

30.9. We show that 30.6(c) holds for G. If P0 = G0, the result is obvious. Assume
now that P0 6= G0. Let J be as in 30.8. By 30.6(e) for NGP0/UP0 , A1 is admissible
on D0. Let A[1 be the simple perverse sheaf on VJ,D corresponding to A1 as in 30.3.
From 30.4 we have

(a) indDD0
A1 = fJ,IA

[
1, a
FeJ,IA = bFresD0

D A,

where a, b are as in 30.3. We have

HomD(D0)(resD0
D A,A1) = HomD(G0×D0)(bFresD0

D A, bFA1)

= HomD(G0×D0)(aFeJ,IA, aFA[1) = HomD(VJ,D)(eJ,IA,A[1)

= HomD(D)(A, fJ,IA[1) = HomD(D)(A, indDD0
A1);

the first equality comes from [L3, I, (1.8.2)], and 30.6(b); the second equality comes
from (a); the third equality comes from [L3, I, (1.8.2)], and 30.8(a); the fourth
equality comes from 30.5; the fifth equality comes from (a). We see that 30.6(c)
holds for G.
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30.10. We show that 30.6(d) holds for A. If A is cuspidal, we can take P =
G0, A1 = A and the desired result holds. Thus, we may assume that A is not
cuspidal. Then there exist P0, D0 as in 30.6(a) such that P 6= G0 and resD0

D A[−1] /∈
D(D0)≤0. Then pHi(resD0

D A) 6= 0 for some i ≥ 0. By 30.6(b) we have pHj(resD0
D A)

= 0 for all j > 0. It follows that pH0(resD0
D A) 6= 0 and there exists a non-zero

morphism resD0
D A→ pH0(resD0

D A) in D(D0). Since pH0(resD0
D A) is a direct sum of

character sheaves on D0 (see 29.15) it follows that there exists a character sheaf A2

on D0 and a non-zero morphism resD0
D A → A2 in D(D0). Using 30.6(c) it follows

that there exists a non-zero morphism A → indDD0
A2 in D(D). By 30.6(a) this is

a non-zero morphism in M(D). This must be injective since A is simple. By the
induction hypothesis, A2 is a direct summand of a complex of the form indD0

D1
A3

where D1 = ND0Q/UQ, Q is a parabolic of NGP/UP such that ND0Q 6= ∅ and A3

is a cuspidal character sheaf on D1. By the induction hypothesis, A3 is admissible.
By the transitivity property 27.3(a) we have indDD0

(indD0
D1
A3) = indDD1

A3. Since
indDD0

commutes with direct sums, we see that indDD0
A2 is a direct summand of

indDD1
A3. Hence A is isomorphic to a subobject of indDD1

A3. From 27.2(d) we see
that indDD1

A3 is a semisimple perverse sheaf hence A is a direct summand of it.
Thus, 30.6(d) holds for G.

30.11. We show that 30.6(e) holds for A. Assume first that A is cuspidal. Then
A is admissible by 30.2, which is applicable in view of 28.15(a) with J = I. Next
assume thatA is not cuspidal. Then, by 30.6(d) and its proof, we see that there exist
P0, D0 as in 30.6(a) and a cuspidal character sheaf A1 on D0 such that P0 6= G0 and
A is a direct summand of indDD0

A1. By the induction hypothesis, A1 is admissible.
Using 27.2(d) we see that A is admissible. Thus 30.6(e) holds. Theorem 30.6 is
proved.

Corollary 30.12. Let J ⊂ I and let X be a parabolic character sheaf on ZJ,D (see
§26). Then X is admissible in the sense of 26.3.

By [L10, 4.13] we have X = Â where Â is obtained from some t, C,A as in 26.3
except that A is a character sheaf on C instead of being an admissible complex on
C. However, by 30.6(e), A is automatically admissible on C hence Â is admissible
on ZJ,D, by the definition in 26.3.

31. Character sheaves and Hecke algebras

31.1. In this section we show that the restriction functor studied in §29 takes
a character sheaf to a direct sum of character sheaves (Theorem 31.14). In the
connected case this result appeared in [L3, I, §6] with a proof based on a connection
of character sheaves with Hecke algebras. The present proof in the general case is
an extension of the proof in [L3, I, §6], taking also into account the approach given
later by Mars and Springer [MS, §9].

31.2. Until the end of 31.13 we fix n ∈ N∗k. We write sn instead of sn(T). Let sn
be the set of isomorphism classes of objects in sn. We have canonically

sn = Hom(µn(T), Q̄∗l )

(notation of 5.3). Thus |sn| = ndim T < ∞. Now W• acts on sn by a : λ 7→ aλ
where λ is the isomorphism class of L ∈ sn and aλ is the isomorphism class of
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(a−1)∗L ∈ sn. For λ ∈ sn we set Wλ = WL (see 28.3) where λ is the isomorphism
class of L ∈ sn (this is independent of the choice of L).

Let A = Z[v, v−1] where v is an indeterminate. We now introduce an associative
A-algebraHn. (In Part VII it will be shown that Hn is closely related to the algebra
of double cosets of a finite Chevalley group with respect to a maximal unipotent
subgroup, studied in [Y].) We define Hn by the generators Tw(w ∈W), 1λ(λ ∈ sn)
and the relations

1λ1λ = 1λ for λ ∈ sn, 1λ1λ′ = 0 for λ 6= λ′ in sn,
TwTw′ = Tww′ for w,w′ ∈W with l(ww′) = l(w) + l(w′),
Tw1λ = 1wλTw for w ∈W, λ ∈ sn,
T 2
s = v2T1 + (v2 − 1)

∑
λ;s∈Wλ

Ts1λ for s ∈ I,
T1 =

∑
λ 1λ.

Note that T1 =
∑
λ 1λ is the unit element of Hn and that

(a) {Tw1λ;w ∈W, λ ∈ sn} is an A-basis of Hn.
In the case where n = 1, Hn is just the Iwahori-Hecke algebra attached to W and
the proof of (a) is standard (see for example [L12, 3.3]). The proof in the general
case is quite similar. Consider the free A-module M with basis

{[λ′, w, λ];λ, λ′ ∈ sn, w ∈W, wλ = λ′}.
If (a) is true, then M may be identified with Hn so that [λ′, w, λ] ∈M corresponds
to Tw1λ = 1λ′Tw ∈ Hn; hence M is naturally an (Hn, Hn) bimodule. Conversely,
if we can make M naturally into an (Hn, Hn) bimodule, then (a) can be easily
deduced. For any s ∈ I we define A-linear maps m 7→ Tsm and m 7→ mTs of M
into itself by
Ts[λ′, w, λ] = [sλ′, sw, λ] if l(sw) = l(w) + 1,
Ts[λ′, w, λ] = v2[sλ′, sw, λ] + (v2 − 1)[sλ′, w, λ] if l(sw) = l(w)− 1, s ∈Wλ′ ,
Ts[λ′, w, λ] = v2[sλ′, sw, λ] if l(sw) = l(w)− 1, s /∈Wλ′ ,
[λ′, w, λ]Ts = [λ′, ws, sλ] if l(ws) = l(w) + 1,
[λ′, w, λ]Ts = v2[λ′, ws, sλ] + (v2 − 1)[λ′, w, sλ] if l(ws) = l(w)− 1, s ∈Wλ,
[λ′, w, λ]Ts = v2[λ′, ws, sλ] if l(ws) = l(w)− 1, s /∈Wλ.

For any λ̃ ∈ sn we define A-linear maps m 7→ 1λ̃m,m 7→ m1λ̃ of M into itself by
1λ̃[λ′, w, λ] = δλ̃,λ′ [λ

′, w, λ], [λ′, w, λ]1λ̃ = δλ̃,λ[λ′, w, λ].
One shows that this defines an (Hn, Hn) bimodule structure on M . We omit further
details.

Remark. In [MS, 3.3.1] an algebra structure on M (with λ restricted in a fixed
W -orbit) is considered which is similar to the one above, coming from Hn, but
differs from it in the following way: for s ∈ I and λ such that s /∈ Wλ, [sλ, s, λ]2

is equal, in our definition, to v2[sλ, 1, λ], while in the definition of [MS] it equals
[sλ, 1, λ].

31.3. We return to the general case. For s ∈ I, Ts is invertible in Hn; we have

T−1
s = v−2Ts + (v−2 − 1)

∑
λ;s∈Wλ

1λ.

Moreover,
T−1
s T−1

s = v−2 + (v−2 − 1)
∑

λ;s∈Wλ

T−1
s 1λ.

It follows that Tw is invertible in Hn for any w ∈W and that

T−1
y−1T

−1
w−1 = T−1

(yw)−1 if y, w ∈W, l(yw) = l(y) + l(w).
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For any w ∈W, λ ∈ sn we have T−1
w−11λ = 1wλT−1

w−1. Hence there is a unique ring
homomorphism¯: Hn → Hn such that Tw = T−1

w−1 for all w ∈ W, vm1λ = v−m1λ
for all λ and all m ∈ Z. Note that:

(a) The square of¯: Hn → Hn is 1. In particular,¯ is an isomorphism of rings.
Indeed, the generators v, v−1, Tw(w ∈W) and 1λ(λ ∈ sn) are mapped to themselves
by the square of ¯.

31.4. For any D ∈ G/G0, the assignment 1λ 7→ 1Dλ, Tw 7→ TεD(w) defines an
automorphism of the algebra Hn denoted by h 7→ aD(h). Let H̃n be the free left
Hn-module with basis {[D];D ∈ G/G0}. We regard H̃n as an associative A-algebra
with unit 1 = [G0] such that (h[D])(h′[D′]) = haiD(h′)[DD′] for h, h′ ∈ Hn, D,D

′ ∈
G/G0. We have aD(h) = [D]h[D]−1 in H̃n. Define a group involution¯: H̃n → H̃n

by h[D] = h[D] where h ∈ Hn, D ∈ G/G0 and ¯: Hn → Hn is as in 31.3. Then
¯: H̃n → H̃n is a ring involution (we use the fact that¯: Hn → Hn commutes with
aD).

31.5. For s ∈ I ∪ {1}, λ ∈ sn, we set

Csλ = (Ts + u)1λ = 1sλ(Ts + u) ∈ Hn,

where u = 1 if s ∈Wλ ∩ I and u = 0 if s /∈Wλ ∩ I. We have

(a) Csλ = v−2Csλ if s ∈ I, C1
λ = C1

λ.

If s = (s1, s2, . . . , sr) is a sequence in I ∪ {1} and λ ∈ sn, we set

Cs
λ = (Cs1s2...srλ)(Cs2s3...srλ) . . . (Csrλ ) ∈ Hn.

One checks that
(b) the A-module of Hn is generated by the elements Cs

λ with s, λ as above.

31.6. If A is a simple perverse sheaf on an algebraic variety V and K is a perverse
sheaf on V , we write (A : K) for the multiplicity of A in a Jordan-Hölder series of
K.

If k is an algebraic closure of Fq, V has a fixed Fq-rational structure and K is
a mixed complex on V , we denote by pHi

j(K) the j-th subquotient of the weight
filtration of pHi(K) so that pHi

j(K) is a pure perverse sheaf of weight j; for A as
above, we set

χAv (K) =
∑
i,j

(−1)i(A : pHi
j(K))vj ∈ A.

We return to the general case. In the remainder of this section we fix a connected
component D of G. We write ε : W →W instead of εD : W →W. Until the end
of 31.9, J denotes a subset of I and A denotes a fixed parabolic character sheaf on
ZJ,D. For

(a) λ ∈ sn and a sequence s = (s1, s2, . . . , sr) in I ∪ {1} with s1s2 . . . srDλ = λ,
we set

γAλ (s) =
∑
j∈Z

(A : pHj(K̄s,L
J,D))(−v)j ∈ A

where L ∈ sn is in the isomorphism class λ.



CHARACTER SHEAVES ON DISCONNECTED GROUPS, VI 407

Proposition 31.7. Let c0 = dimG/UQ where Q ∈ PJ . There is a unique A-linear
map ζA : Hn[D]→ A such that for any λ ∈ sn and any sequence s = (s1, s2, . . . , sr)
in I ∪ {1} we have

ζA(Cs
Dλ[D]) = v−c0γAλ (s) if s1s2 . . . srDλ = λ,

ζA(Cs
Dλ[D]) = 0 if s1s2 . . . srDλ 6= λ.

Let X be the free A-module with basis [λ′, s, λ] where s = (s1, s2, . . . , sr) is a
sequence in I ∪ {1} and λ, λ′ ∈ sn are such that s1s2 . . . srDλ = λ′. Define an
A-linear map b : X → Hn[D] by b[λ′, s, λ] = Cs

Dλ[D]. Define an A-linear map
b′ : X → A by b′[λ′, s, λ] = v−c0γAλ (s) if λ′ = λ, b′[λ′, s, λ] = 0 if λ′ 6= λ. Since b is
surjective (see 31.5(b)) we see that it suffices to prove the following statement.

(a) If ξ ∈ ker(b), then ξ ∈ ker(b′).
By a standard argument [BBD, §6], to prove (a), we may assume that

(b) k is an algebraic closure of a finite field Fq with q − 1 ∈ nZ, G has a fixed
Fq-structure with Frobenius map F : G→ G which induces the identity map on W
and on G/G0 and the map t 7→ tq on T.
Then each L ∈ sn may be regarded as pure of weight 0 and each KL,wJ,D ,K

L,w
J,D , K̄

L,s
J,D

(as in 28.13) may be regarded as a mixed complex on ZJ,D. Define an A-linear
map ζ̃A : Hn[D]→ A by

ζ̃A(Tw1Dλ[D]) = v−c0χAv (Kw,L
J,D ), if wDλ = λ,

ζ̃A(Tw1Dλ[D]) = 0 if wDλ 6= λ

where L ∈ sn is in the isomorphism class λ.
Let λ,L, s, r be as in 31.6(a); we will show that

(c) χAv (Ks,L
J,D) = vc0 ζ̃A(Ts1Ts2 . . . Tsr1Dλ[D]),

(d) χAv (K̄s,L
J,D) = vc0 ζ̃A(Cs

Dλ[D]).

We prove (c) by induction on r. We may assume that si ∈ I for all i. If r = 0, we
have Ks,L

J,D = K1,L
J,D and the result is clear; we have

χAv (K1,L
J,D) = vc0 ζ̃A(1Dλ[D]).

Assume that r ≥ 1. Assume first that l(s1s2 . . . sr) = r. Using 28.13(a) repeatedly
we have Ks,L

J,D = Kw,L
J,D where w = s1s2 . . . sr. Then the right-hand side of (c) equals

vc0 ζ̃A(Tw1Dλ); the result follows. Assume next that l(s1s2 . . . sr) < r. We can find
j ∈ [2, r] such that sj . . . sr−1sr is a reduced expression in W and sj−1sj . . . sr−1sr is
not a reduced expression. We can find s′j , . . . , s

′
r−1, s

′
r in I such that s′j . . . s

′
r−1s

′
r =

sj . . . sr−1sr and s′j = sj−1. Let

u = (s1, s2, . . . , sj−1, s
′
j , . . . , s

′
r−1, s

′
r).

As in the proof of the implication (v) =⇒ (i) in 28.13 we see that Ks,L
J,D = Ku,L

J,D .
Hence

χAv (Ks,L
J,D) = χAv (Ku,L

J,D).

Moreover, both the right-hand side of (c) and the analogous expression obtained
by replacing s by u are equal to

vc0 ζ̃A(Ts1 . . . Tsj−1Tsjsj+1...sr1Dλ[D]).



408 G. LUSZTIG

Hence to prove the lemma for s it suffices to prove it for u. Thus we are reduced to
the case where sj = sj−1. In this case we will use the notation in 28.13(d),(e),(f).

If j /∈ Js, then from 28.13(f) we have χAv (Ks,L
J,D) = v2χAv (Ks′′,L

J,D ). In this case we
have

Tsj−1Tsj1sj+1...srDλ = v21sj+1...srDλ

since sj /∈Wsj+1...srDλ. Hence the right-hand side of (c) is equal to

v2vc0 ζ̃A(Ts1 . . . Tsj−2Tsj+1Tsj+2Tsr1Dλ[D])

which by the induction hypothesis is equal to v2χAv (Ks′′,L
J,D ). Thus, (c) holds in this

case.
If j ∈ Js, then from 28.13(d),(e) we have

χAv (Ks,L
J,D) = χAv (π1!L̃) + v2χAv (Ks′′,L

J,D ), v2χAv (Ks′,L
J,D ) = χAv (π1!L̃) + χAv (Ks′,L

J,D ).

(Indeed since the weight filtrations are strictly compatible with morphisms [BBD,
5.3.5], the exact sequences 28.13(d),(e) remain exact when each pHi is replaced by
its pure subquotient of a fixed weight.) It follows that

χAv (Ks,L
J,D) = v2χAv (Ks′′,L

J,D ) + (v2 − 1)χAv (Ks′,L
J,D ).

Using the induction hypothesis for s′′, s′ we see that

v2χAv (Ks′′,L
J,D ) + (v2 − 1)χAv (Ks′,L

J,D ) = v2vc0 ζ̃A(Ts1 . . . Tsj−2Tsj+1Tsr1Dλ[D])

+ (v2 − 1)vc0 ζ̃A(Ts1 . . . Tsj−1Tsj+1 . . . Tsr1Dλ[D]).

Substituting here

v21sj+1...srDλ + (v2 − 1)Tsj−11sj+1...srDλ = Tsj−1Tsj1sj+1...srDλ

which holds since sj−1 = sj ∈ Wsj+1...srDλ, we see that v2χAv (Ks′′,L
J,D ) + (v2 −

1)χAv (Ks′,L
J,D ) is equal to the right-hand side of (c). Thus (c) holds.

We prove (d). We will use the notation in 28.13(b). Using 28.13(b) we get

χAv (π̄s!f
i
! (f i)∗L̄) = χAv (π̄s!f

i+1
! (f i+1)∗L̄) +

∑
J⊂Js;|J |=i

χAv (KsJ ,L
J,D )

for any i. Summing these equalities over all i ≥ 0 we find

χAv (K̄s,L
J,D) =

∑
J⊂Js

χAv (KsJ ,L
J,D ).

We now use (c) for each sJ in the last sum. We see that χAv (K̄s,L
J,D) is a sum of 2k

terms (each term is vc0 times a product of basis elements of Hn times [D]) where
k = |Js|. Clearly, the right-hand side of (d) is the sum of the same 2k terms. This
proves (d).

As in the proof of 29.14, K̄s,L
J,D is pure of weight 0, hence pHi

j(K̄
s,L
J,D) equals

pHi(K̄s,L
J,D) if i = j and equals 0 if i 6= j. It follows that χAv (K̄s,L

J,D) = γAλ (s),
hence (d) implies b′[λ, s, λ] = ζ̃A(Cs

Dλ)[D]) = ζ̃A(c[λ, s, λ]). Clearly, b′[λ′, s, λ] =
ζ̃A(b[λ′, s, λ]) if λ 6= λ′ (both sides are 0). We see that b′ = ζ̃A ◦ b. Hence (a) holds.
The proposition is proved. The previous proof shows also that

(e) ζA = ζ̃A : Hn[D]→ A.
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Lemma 31.8. Let HJ,n be the subalgebra of Hn generated as an A-submodule by
{Tw1λ;w ∈ WJ , λ ∈ sn}. For any h ∈ HJ,n, h

′ ∈ Hn we have ζA(hh′[D]) =
ζA(h′[D]h).

By 31.5(b) and its analogue for HJ,n, we may assume that h = a1 . . . ap−1,
h′ = apap+1 . . . ar where

ai = Csi
si+1...sp−1Dλ̃

for i ∈ [1, p− 1],

ai = Csisi+1...srDλ
for i ∈ [p, r];

here s = (s1, s2, . . . , sr) is a sequence in I, 1 ≤ p ≤ r, si ∈ J for i ∈ [1, p − 1]
and λ, λ̃ ∈ sn. If sp . . . srDλ 6= Dλ̃ or s1 . . . sp−1Dλ̃ 6= λ, then ζA(hh′[D]) = 0 and
ζA(h′[D]h) = 0. Thus we may assume that Dλ̃ = sp . . . srDλ and s1 . . . sp−1Dλ̃ =
λ. Then we have

ai = Csisi+1...srDλ
for i ∈ [1, r]

and s1s2 . . . srDλ = λ. Hence K̄s,L
J,D is defined (with L ∈ sn in the isomorphism

class λ). Let
s′ = (sp, sp+1, . . . , sr, ε(s1), . . . , ε(sp−1)),

let λ′ = sp−1 . . . s1λ and let L′ ∈ sn be in the isomorphism class λ′. Then

spsp+1 . . . srε(s1) . . . ε(sp−1)Dλ′ = λ′,

hence K̄s′,L′
J,D is defined. Using 28.16(b) p− 1 times, we have K̄s,L

J,D = K̄s′,L′
J,D . Hence

γAλ (s) = γAλ′(s
′). By 31.7, we have ζA(a1a2 . . . ar[D]) = ζA(a′1a

′
2 . . . a

′
r[D]) with ai

as above and

a′i = C
sp+i−1

sp+i...srε(s1...sp−1)Dλ′ = C
sp+i−1
sp+i...srDλ

= ap+i−1

for i ∈ [1, r − p+ 1],

a′i = C
ε(si−r+p−1)

ε(si−r+p...sp−1)Dλ′ = C
ε(si−r+p−1)
Dsi−r+p...srDλ

= [D]ai−r+p−1[D]−1

for i ∈ [r − p + 2, r]. We have therefore ζA(hh′[D]) = ζA(h′[D]h). The lemma is
proved.

Lemma 31.9. Let ¯ : A → A be the ring homomorphism such that vt = v−t for
all t ∈ Z. For any h ∈ Hn we have ζA(h[D]) = ζA(h[D]).

Using 31.5(b) we may assume that h = Cs
λ where s = (s1, s2, . . . , sr) is a sequence

in I and λ ∈ sn. Using 31.5(a) we see that h = v−2rh. Hence it suffices to show that
ζA(h[D]) = v−2rζA(h[D]). If s1s2 . . . srDλ 6= λ, then ζA(h[D]) = 0 and the result
is obvious. Thus we may assume that s1s2 . . . srDλ = λ so that K̄s,L

J,D is defined
(with L ∈ sn in the isomorphism class λ). By 31.7 we have ζA(h[D]) = v−c0γAλ (s).
Hence it suffices to show that

γAλ (s) = v−2mγAλ (s)

where m = r + c0. Using 28.17(a) we have

γAλ (s) =
∑
j

(−v)−j(A : pHj(K̄s,L
J,D)) =

∑
j

(−v)−j(A : pH2m−j(K̄s,L
J,D))

=
∑
j

(−v)j−2m(A : pHj(K̄s,L
J,D)) = v−2mγAλ (s).

The lemma is proved.
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Lemma 31.10. Let I ⊂ I, y ∈ IW, s ∈ I, λ′ ∈ sn. We have

(a) TyC
s
λ′ = v2δ(y)

∑
y1

Ct1y1λ′
Ty1 ;

here δ(y) is 1 if ys < y, ys ∈ IW and is 0 otherwise; the sum is taken over all
y1 ∈ IW ∩ {y, ys} such that

ys /∈WIy, y1 = y =⇒ s ∈Wλ′ ;

t1 ∈ I ∪ {1} is defined by ys = t1y if ys ∈WIy and t1 = 1 if ys /∈WIy.

If s /∈Wλ′ , ys > y, then both sides of (a) are equal to Tys1λ′ . If s /∈Wλ′ , ys < y,
then both sides of (a) are equal to v2Tys1λ′ . If s ∈Wλ′ , ys > y, then both sides of
(a) are equal to (Tys + Ty)1λ′ . If s ∈Wλ′ , ys < y, then both sides of (a) are equal
to v2(Tys + Ty)1λ′ . The lemma is proved.

Lemma 31.11. Let I ⊂ I, y ∈ IW, λ′ ∈ sn and let s = (s1, s2, . . . , sr) be a sequence
in I. We have

TyC
s
λ′ =

∑
y

v2δ(y)Ct
yrλ′Tyr ;

here the sum is taken over all sequences y = (y0, y1, . . . , yr) in IW such that y = y0

and yi ∈ {yi−1, yi−1si} for i ∈ [1, r], t = (t1, t2, . . . , tr) is the sequence in I ∪ {1}
defined by yi−1si = tiyi−1 if yi−1si ∈WIyi−1 and ti = 1 if yi−1si /∈WIyi−1; these
are subject to the requirement

i ∈ [1, r], ti = 1, yi−1 = yi =⇒ si ∈Wsi+1...srλ′ ;

moreover,

(a) δ(y) = ](i ∈ [1, r]; yi−1si < yi−1, yi−1si ∈ IW).

This follows by applying r times Lemma 31.10.

31.12. Until the end of 31.14 we fix D,P, L,G′, D′ as in 29.1. Let I ⊂ I be such
that P ∈ PI . Since the Weyl group of L is naturally the subgroup WI of W and the
canonical torus of L may be identified with T as in 29.1, we may identify HI,n (as in
31.8 with I instead of J) with the A-algebra defined in terms of L in the same way as
Hn was defined in 31.2 in terms of G0. Note that Hn is naturally a left HI,n-module
(using left multiplication). This HI,n-module is free with basis {Ty; y ∈ IW}. (The
elements βTy where β runs through {Tw1λ;w ∈ WI , λ ∈ sn} and y ∈ IW, form
the A-basis 31.2(a) of Hn.) Applying to this basis the ring involution¯: Hn → Hn

which restricts to an involution of HI,n we see that {T−1
y−1 ; y ∈ IW} is again a basis

of the left HI,n-module Hn.

Lemma 31.13. Let λ ∈ sn and let s = (s1, s2, . . . , sr) be a sequence in I such that
s1s2 . . . srDλ = λ. Let L ∈ sn be in the isomorphism class λ. Let m = r + dimG.
For any j ∈ Z we have

pHj(resD
′

D (K̄s,L
D )) ∼= pH2m−j(resD

′

D (K̄s,L
D )).

Let Ξ be the set of all pairs (y, t) where y = (y0, y1, . . . , yr) is a sequence in IW
such that yr = ε(y0) and yi ∈ {yi−1, yi−1si} for i ∈ [1, r], t = (t1, t2, . . . , tr) is the
sequence in I ∪ {1} defined by yi−1si = tiyi−1 if yi−1si ∈ WIyi−1 and ti = 1 if
yi−1si /∈WIyi−1; these are subject to the requirement

i ∈ [1, r], ti = 1, yi−1 = yi =⇒ si ∈Wsi+1...srDλ.
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Using 29.14 we see that it suffices to show that for any j we have⊕
(y,t)∈Ξ

pHj−2d(y)(K̄t,y0L
D′ ) ∼=

⊕
(y,t)∈Ξ

pH2m−j−2d(y)(K̄t,y0L
D′ ).

Here both sides are semisimple complexes (see 28.12); hence it suffices to show that
for any character sheaf A′ on D′ we have∑

(y,t)∈Ξ;j

(−v)j(A′ : pHj−2d(y)(K̄t,y0L
D′ ))

=
∑

(y,t)∈Ξ;j

(−v)j(A′ : pH2m−j−2d(y)(K̄t,y0L
D′ )).

or equivalently

v2d(y)
∑

(y,t)∈Ξ;j

(−v)j(A′ : pHj(K̄t,y0L
D′ ))

= v2m−2d(y)
∑

(y,t)∈Ξ;j

(−v)−j(A′ : pHj(K̄t,y0L
D′ )).

Using 31.7 for G′, A′, t instead of G,A, s, we see that it suffices to show∑
(y,t)∈Ξ

ζA
′
(Ct

Dy0λ[D])vdimLv2d(y) =
∑

(y,t)∈Ξ

ζA′(Ct
Dy0λ

[D])vdimLv2d(y)v2m.

Here ζA
′

: HI,n[D]→ A is defined as in 3.7 for G′, A′ instead of G,A. We substitute
d(y) = δ(y) + dimUP with δ(y) as in 31.11(a), and use Dy0λ = yrDλ and dimL+
2 dimUP = dimG; we see that it suffices to show

ζA
′
(Ψ[D]) = ζA′(Ψ[D])v2r

where Ψ =
∑

(y,t)∈ΞC
t
yrDλ

v2δ(y) ∈ HI,n. We write the matrix of right multiplica-
tion by Cs

Dλ in Hn (an HI,n-linear map) in the HI,n-basis {Ty; y ∈ IW}:

(a) TyC
s
Dλ =

∑
y′∈IW

ay,y′Ty′

where y ∈ IW and ay,y′ ∈ HI,n. Using 31.11 (with λ′ = Dλ) we see that∑
y ay,ε(y) = Ψ where y runs over IW. Hence it suffices to show that

ζA
′
(
∑
y

ay,ε(y)[D]) = ζA′(
∑
y

ay,ε(y)[D])v2r.

Using 31.9 (for G′, A′ instead of G,A) we see that

ζA′(
∑
y

ay,ε(y)[D]) = ζA
′
(
∑
y

ay,ε(y)[D]).

Hence it suffices to show that∑
y

ζA
′
(ay,ε(y)[D]) =

∑
y

ζA
′
(ay,ε(y)[D])v2r .

Applying ¯ : Hn → Hn to the equality (a) and using Cs
Dλ = v−2rCs

Dλ (see the
proof of Lemma 31.9) we obtain

v−2rT−1
y−1C

s
Dλ =

∑
y′∈IW

ay,y′T
−1
y′−1 .
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Since {Ty; y ∈ IW}, {T−1
y−1; y ∈ IW} are two HI,n-bases of Hn, we have

Ty =
∑
y′

cy,y′T
−1
y′−1 , T−1

y−1 =
∑
y′

dy,y′Ty′

where y, y′ run over IW and cy,y′ , dy,y′ ∈ HI,n. For any y we have∑
y′

ay,y′T
−1
y′−1 = v−2rT−1

y−1C
s
Dλ = v−2r

∑
y′′

dy,y′′Ty′′C
s
Dλ

= v−2r
∑
y′′

dy,y′′
∑
y1

ay′′,y1Ty1 = v−2r
∑
y′′

dy,y′′
∑
y1

ay′′,y1

∑
y′

cy1,y′T
−1
y′−1 ,

hence
ay,y′ = v−2r

∑
y′′,y1

dy,y′′ay′′,y1cy1,y′

for any y, y′. Hence it suffices to show that∑
y

ζA
′
(ay,ε(y)[D]) =

∑
y

ζA
′
(
∑
y′′,y1

dy,y′′ay′′,y1cy1,ε(y)[D]).

By 31.8 (for G′, A′ instead of G,A) we have

ζA
′
(dy,y′′ay′′,y1cy1,ε(y)[D]) = ζA

′
(ay′′,y1cy1,ε(y)[D]dy,y′′).

Hence it suffices to show that∑
y

ζA
′
(ay,ε(y)[D]) = ζA

′
(
∑

y,y′′,y1

ay′′,y1cy1,ε(y)[D]dy,y′′).

We have ∑
y′

dε(y),ε(y′)Tε(y′) = T−1
ε(y)−1 = [D]T−1

y−1 [D]−1

=
∑
y′

[D]dy,y′ [D]−1[D]Ty′ [D]−1 =
∑
y′

[D]dy,y′ [D]−1Tε(y′),

hence dε(y),ε(y′) = [D]dy,y′ [D]−1. Hence it suffices to show that

(b)
∑
y

ζA
′
(ay,ε(y)[D]) = ζA

′
(
∑

y,y′′,y1

ay′′,y1cy1,ε(y)dε(y),ε(y′′)[D]).

from the definitions,
∑

y cy1,ε(y)dε(y),ε(y′′) is 1 if y1 = ε(y′′) and is 0, otherwise.
Hence (b) holds. The lemma is proved.

Theorem 31.14. Let D,P, L,G′, D′ be as in 29.1. Let A be a character sheaf on
D. Then resD

′

D A is a direct sum of character sheaves on D′.

We can find L ∈ s(T) and a sequence s=(s1, s2, . . . , sr) in I such that s1s2 . . . srD
∈ W•

L and such that A is a direct summand of pHi(K) for some i ∈ Z, where
K = K̄s,L

D [m], m = r + dimG. Let K ′ = resD
′

D (K). For any i, let

Ki = pHi(K),K ′i = resD
′

D (Ki).

For any character sheaf A′ on D′, let bi,j = (A′ : pHj(K ′i)), bj = (A′ : pHj(K ′)).
From 28.12(b) we have

pHj(K ′) = pHj(
⊕
i

resD
′

D (Ki)[−i]) =
⊕
i

pHj−i(K ′i),
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hence bj =
∑

i bi,j−i. Using 31.13, which is applicable since L ∈ sn for some
n ∈ N∗k, we get bj = b−j for all j, hence

(a) 0 =
∑
j

jbj =
∑
i,j

jbi,j−i =
∑
i,j

(i+ j)bi,j .

From 28.17(a) we have Ki = K−i. It follows that bi,j = b−i,j so that
∑

i,j ibi,j = 0.
Introducing this into (a) we find

∑
i,j jbi,j = 0. From 28.12(b) and 30.6(b) we see

that bi,j = 0 for all j > 0. Therefore, we have
∑
i,j;j≤0 jbi,j = 0. Since jbi,j ≤ 0

for all terms of the previous sum, we must have jbi,j = 0 for all i, j. It follows that
bi,j = 0 for j 6= 0. Since, by 29.15, pHj(K ′i) is a direct sum of character sheaves, it
follows that pHj(K ′i) = 0 for j 6= 0. In other words, for any i, K ′i is a perverse sheaf
on D′ which is a direct sum of character sheaves. Since A is a direct summand of
Ki for some i, we see that resD

′

D A is a direct summand of resD
′

D (Ki) = K ′i, hence
resD

′

D A is a perverse sheaf on D′ which is a direct sum of character sheaves. The
theorem is proved.

Corollary 31.15. Let A be a character sheaf on D. Then A is cuspidal (see 23.3)
if and only if it is strongly cuspidal (see 23.3).

We may assume that A is cuspidal. Let P,L,D′ be as in 31.14 such that P 6= G0.
Since A is cuspidal we have pHi(resD

′

D A) = 0 for all i ≥ 0. By 31.14 we have
pHi(resD

′

D A) = 0 for all i 6= 0. Hence pHi(resD
′

D A) = 0 for all i. It follows that
resD

′

D A = 0. Thus, A is strongly cuspidal. The corollary is proved.
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