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CHARACTER SHEAVES ON DISCONNECTED GROUPS, VI

G. LUSZTIG

ABSTRACT. We define the character sheaves on a connected component of a
reductive group and we show that the restriction functor takes a character
sheaf to a direct sum of character sheaves.

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
IL9] which attempts to develop a theory of character sheaves on G.

In Section 28 we define the character sheaves on a connected component of G
generalizing the definition in [L3l I, §2]. In Section 29 we prove a semisimplicity
property of the restriction functor, generalizing one in [L3l I, §3]. In Section 30 we
show that any character sheaf is admissible, generalizing a result in [L3, I, §4]. In
Section 31 we show that the restriction functor takes a character sheaf to a direct
sum of character sheaves, generalizing a result in [L3], I, §6].

We adhere to the notation of [L9] and [BBD]. Here is some additional notation.
If K € D(X) and A is a simple perverse sheaf on X we write A 4 K instead of
“A is a subquotient of PH!(K) for some i € Z.” Let M(X) be the subcategory of
D(X) whose objects are the perverse sheaves on X.

CONTENTS

28. Definition of character sheaves.

29. Restriction functor for character sheaves.
30. Admissibility of character sheaves.

31. Character sheaves and Hecke algebras.

28. DEFINITION OF CHARACTER SHEAVES

28.1. Let T be a torus. For any n € N, let 5,(T") be the category whose objects
are the local systems of rank 1 on T that are equivariant for the transitive T-action
z:t+— 2"t on T; let §(T) be the category whose objects are the local systems on
T that are in s, (T") for some n as above.

If f:T — T is a morphism of tori and £’ € s(T"), then f*L’ € s(T). The set
5(T) of isomorphism classes of objects in s(T") is an abelian group for tensor product
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of local systems. Let X = Hom(T, k*) (homomorphisms of algebraic groups). From
the definitions we see that

(a) k® & — k*E defines a group isomorphism X @ s(k*) — s(T).
We show that

(b) for L € s(T) there exists k € X and € € s(k*) such that L= k*E.
Indeed by (a) there exist k; € X, & € s(k*), (i € [1,m]) such that £ = @~ kI &;.
By 5.3 we have 5(k*) = Hom(ue (k*), Q}) = Q'/Z where Q' = UneNg 1z cQ.
Hence we can find € € s(k*), n; € Nj. such that & = %™ for ¢ € [1,m]. Then
L2Q", kiEP™ = *E where k = [[;- k] and (b) follows.

For any 7 € T define h, : T — T by h.(t) = 7¢t. We show that

(c)ifTreT,Les(T), then hKil = L.
Let n be such that £ € s,(T). Then for any z € T we have h,» L = L. We can find
z € T such that 2™ = 7. This proves (c).

28.2. Let L € s(T), let x,& be as in 28.1(b) and let n be the order of £ in s(k*).
Then £ € s,(k*). We show that the following two conditions for a morphism
f:T — T of tori are equivalent:

(i) ffL=L;

(ii) there exists k1 € X such that ko f = Kkk].
Condition (i) is equivalent to f*k*E = k*E, that is, (ko f)*E = k*E. Using the
injectivity of the map 28.1(a) we see that this is equivalent to (ko f) ® (n'/n) =
k@ (n'/n)in X @ Q'/Z (here n’ € Z,0 < n’ < n and n’/n is irreducible) which is
clearly equivalent to condition (ii).

Assuming that (i) and (ii) hold, we show that

(a) L is T-equivariant for the T-action to : t — f(to)tty " on T.
The map k : T — k* is compatible with the T-action (a) on T and the T-action
to : z — K1(tp)"z on k*. Hence to show that £ = x*&£ is T-equivariant it suffices
to show that £ is T-equivariant. Since the T-action on k* comes via x; from the
k*-action zp : z — 2§z on k*, it suffices to show that £ is k*-equivariant. This
holds since &€ € s, (k*).

28.3. G acts on [[ 5.3 B/Up by

z: (98UB)Bes — (9pUB)BeB

where ¢/ Uppy—1 = 2gpx 'Uypy-1. Let

T= (][ B/UsY
BeB
(fixed point set of G°). For any B’ € B we define fgr : T — B'/Up by
fBr((98UB)BeB) = gp'Up/. We use fp/ to transport the algebraic group structure
of B'/Up: to an algebraic group structure of T. This structure is independent of
the choice of B’. Thus T is naturally a torus over k. The G action on [[ .5 B/Up
induces a G/GP-action
D:t— D(t)

on T, respecting the algebraic group structure of T. We say that T is the canonical
torus of G°.

For w € W (see 26.1) there is a unique isomorphism T — T (denoted again by
w) such that for any (B, B") € B x B with pos(B, B’) = w we have a commutative
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diagram

T T

| .|

B//UBIA(BﬂB’)/(UBﬁUB/)%B/UB

where the isomorphisms in the bottom row are induced by the obvious inclusions.
We use this to identify W with a subgroup of the group Aut(T) of automorphisms
of the torus T. Let

W* = {wD;w € W,D € G/G} C Aut(T).

This is a subgroup of Aut(T) normalizing W since Dw = ep(w)D : T — T for any
D € G/G° w € W; here €p is as in 26.2.

Let (,) : Hom(k*, T) x Hom(T, k*) — Z be the standard pairing. Define subsets
R, R™ of Hom(T,k*) as follows. Let B € B and let T be a maximal torus of
B. Consider the isomorphism T — T (composition of fg : T — B/Up with
the obvious isomorphism B/Up = T). We require that the subset of Hom(T', k*)
corresponding to R (resp. RT) under this isomorphism is the set of roots of G°
with respect to T (resp. the set of roots of G° with respect to T such that the
corresponding root subgroup is contained in B). Let R~ = R— R*. For any a € R
there is a unique & € Hom(k*, T') and a unique s, € W such that (&, a) = 2 and
t = sq(t)d(a(t)) for all t € T. Then s2 =1 and for £ € s(T) we have

(a) L2 LRa™(a*L).
For £ € s(T) let
Re={a€ Rj&"L =2 Q}.

Pick « € Hom(T,k*),& € s(k*) such that £ = k*&; see 28.1(b). Let n € N be
the order of £ in s(k*). We show that

Ry ={a € R; (&, k) € nZ}.

Indeed, for & € R we have &*L = &*k*E = (ko @)*E = f*E where f : k* — k*
is z — 2{®*)  We now use the fact that, for s € Z, the inverse image of £ under
k* — k*,z — z° is Q; if and only if s € nZ.

Let

W ={aeW*(a )L =L}
Let W, be the subgroup of W generated by {s,;« € R.}. From (a) we see that
(b) W, C W3.

Moreover, W, is a normal subgroup of W4.

28.4. In the remainder of this section we fix a connected component D of G. Let
w e W. Let

W ={(B,£);B € B, € Ug\D/Up,pos(B,gBg~') = w for some/any g € £}.
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28.5. Let B* € B and let T be a maximal torus of B*. We set U* = Upg-,
Wi = NeoT)T.
We identify Wr = W by w < G®-orbit of (B*,wB*w™!) and T =T by

(a) tl < t,f,lU* = fB* (t)

For any w € W = W we fix a representative w of w in NgoT'; we assume that for
s € I, § belongs to the subgroup of G° generated by the two root subgroups of G°
with respect to T corresponding to s. We also assume that 1 = 1.

Any a € R becomes a root a of G° with respect to T and & becomes the
corresponding coroot k* — T. We fix d € NpB* N NpT. For w € W we have a
diagram

L35 538
where
% ={(hU*, g); hU* € G°/U*, g € wdT},
p(hU*,g) = (hB*h™ Y, hU*gU*h™ 1Y), p(hU*, g) = d 1~ 1yg.
Now ¢ is T-equivariant with respect to the T-action
to: (RU*, g) = (hty'U* togty ")

on 3% and the T-action to : Ad(d~ ") (to)ttg !t on T. Hence if £ € s(T) satisfies
Ad((wd)~1)*L = L, then ¢*L is a T-equivariant local system on 3%. (See 28.2(a).)
Since p is a principal T-bundle, there is a well-defined local system £ on 3% such
that p*L = ¢*L

28.6. Let w € W. Let £ € s(T) be such that wD € W{. We associate to £ a
local system £ of rank 1 on 3% as follows. Let B*,U*,T,d,w be as in 28.5. Using
the identification 7' = T in 28.5, we regard L as a local system in §(7"). Then L is
defined as in 28.5. We show that
(a) the isomorphism class of L is mdependent of the chozce of B*,T,w,d.

Let us replace B*,T 1, d by xB*z~', 2Tz ™", 2z, xdx~"! where x € GO Define
3 w'e,'p, 'L,’L in terms of this new ChOlce in the same way as 3D, o, p, L, L were
defined in terms of B*, T, d. We have a commutative diagram

T~ T L 3 L3y
-| g | -|
Ay s B 3w v 3%

D D

where b(t) = zta=1, c(hU*,g) = (ha=laU*x~1 zgz~1), a is given by 28.5(a) and
a’ is the analogous isomorphism defined in terms of xB*z~!, 2Tz~ instead of
B*,T. Then 'L = b*L, '¢*'L = ¢*¢*L and 'L = L. Hence to prove (a) it suffices
to show that if B*,T,w,d are replaced by B*, T, wtl,dtg where t1,t2 € T, then
the isomorphism class of £ does not change. Note that 3 , p remain unchanged
under the replacement above. However, the map ¢ defined in terms of B*, T, w, d
is replaced by the composition of ¢ with a left translation on 7. It remains to use
that the inverse image of £ under a left translation of T' is isomorphic to L; see
28.1(c).
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28.7. Let J be a subset of I. For any B € B we denote by Q;p the unique
parabolic in P; that contains B; we write U g instead of Ug, ,. Let w € W. Let

Z§,p=A{B,B',gU;p);B€B,B €B,ge D,gBg " = B',pos(B, B') = w}.
The map
C:ZéljJ,D_)BtDuv (BaB/ngLB)’_) (BaUBgUB)

is an affine space bundle. 3
Let £ € 5(T) be such that wD € W7. Then (*L is a local system on Zj;

denoted again by L.

28.8. Let w = (w1, ws,...,w,) be a sequence in W, let [w| = wjws ... w, and let

ZKJ,D :{(Bo,Bl, cee 7BragUJ,Bo)5Bi € B(i € [O,r]),g € D,gBog_l =By,
pos(B;—1, B;) = w;(i € [1,7])}.

We define a morphism
¢: 2y, 5 — 3% (Bo.Bi,.... By, gUsp,) — (Bo,Upynans ... n,nUg,)

where h; € GO(i € [1,r]) are such that B; = hiBohi_l, ho = 1, Ty is a maximal torus
of By, n; € NgoTy(i € [1,7]) are given by h;llhi € Up,n;Up, andn € NpByNNpTj
is given by h, lg € Ug,n.

This is independent of the choices. (Another choice for h;, g, Tp must be of the
form k. = hjuit;, g’ = gu',T" = uTou~! where u; € Up,(i € [1,7]), t; € To(i €
[1,7]), u € Up,, v € Uy p,. Define n},n’ in terms of this new choice in the same
way as n;, n were defined in terms of the original choice. We have n} = ut;llnitiu_l

-1

where tg = 1 and n’ = ut, 'nu~!. Hence njn}...n.n' = uniny...n,nu""! and

! ! !
Up,niny...n.n'Upg, = Up,nina...n.nUp,,

as required.) One checks that ( is an affine space bundle. Hence ZJ¥; |, is smooth,
connected.
Let £ € s(T) be such that [w]D € W$. The inverse image under ¢ of the local

system £ on 3[5"] is a local system on Z§"; ,, denoted again by L.
When w has a single term w, we have Z§¥, , = Z’, , and L defined above is
the same as £ defined in 28.7.

28.9. Let s = (s1, S2,...,8,) be a sequence in TU {1} and let

ZQS)7J7D :{(B07Bla e 7BragUJ,Bo);Bi S B(Z S [O,T]),g S DvgB0g71 - Brv
pos(B;_1,B;) =1 or s;(i € [1,7])}.

Let

T = (el rls; €T}
For any subset J C J° we consider the sequence sz = (s}, s5,...,s.) in TU {1}
given by s; = s;if i ¢ J and s, = 1if i € J; let [sy] = sish...s.. Then Z;f],D

see 28.8) is the locally closed subvariety of Z% defined by the conditions
0,J,D
B,_1=B;ific j,pOS(Bi_l,Bi) =s;if ¢ ¢ J.
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The sets Z;7, ,(J C J°) form a partition of Z5 ; ;. We have sy = s and the
corresponding piece ZQS)‘”JD = Z3 ; p is open dense in ZS s p- Let £ € s(T) be such

that [s]D € W*. Let £ be the local system on Z§ ; p defined as in 28.8. Let

L=1IC(Z; ;p, L) e D(Z§ ;.p),

Js={j¢€ N .. Sj...8r—18, €ep(Wg)}
= {] S j0;8182...5j...8281 EWL}.
Lemma 28.10. L is a constructible sheaf on ZQS)_JD, which is a local system on the
open subset UJCJS Z;f]D of qu) 7 p and is 0 on its complement. For any J C Js,
we have £_|Z;J >~ L (defined as in 28.8 in terms of s ).
,J,D
For this to make sense, we must verify that, if 7 C Js, then [s7]D € W$. This

follows from [s]|D € W% and s182...5;...5281 € W§ for all j € 7. (See 28.3(b).)
Let B*,U*, T, $;,d be as in 28.5. Let

7= ={(ho,h1, ..., hr,g) € G® x ... x G° x D;
h; ' h; € B*3;B* U B*(i € [1,7]), h; 'gho € NgB*}.
The map Z% — Z5 1 b
(@) (ho,ha,- . heyg) = (hoB*hg ' B R he BY R gU )
is a locally trivial fibration with connected, smooth fibres. For J C JY, the inverse

image under (a) of the subvariety ZS‘T]D of ZQS) s p is the subvariety Z’87 of zZs
defined by the conditions

hilhi € B*;B*(i € [1,7] — J),h; " h; € B*(i € J).

It suffices to prove the statement analogous to that in the lemma for the inverse
image under (a) of £. For J C J°, define 97 : 2’59 — T by
(ho,h1,..., hpryg) — dilé}lnlng co N

where n; € NgoT are given by h;_llhi e U*n;U* and n € NgB* N NgT is given by
hilghy € U*n. (We write $7 = §18,...5. for sy = (s),5,...,5.).) It suffices to
prove the following statements: .

IC(Z3,4py L) is a local system on the open subset \J ;- ;. Z'7 of Z® and is 0 on
its complement. R

For any J C Js, we have IC(Z%,4yL)| 7155 = Y75 L.
By the change of variables

utd = h, 'gho,y; = hi Y hi(i € 1,7 — 1)), yr = hy 2 ot
Z3 becomes
{(ho, 1, sy, ust) €EGY x ... x GO x U* x T y; € B*3;B*UB*(i € [1,7])}
and for 7 C J°, Z'S7 becomes the subset of 75 defined by the conditions
yi € B*$;B*(i € [1,r] = J),y; € B*(i € J).
Moreover, ¥ 7 becomes

(hOa Yi, oo Yry U, t) = dilé\}lnlng . nrd
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where n; € NgoT are given by y; € U*n;U*. Since hg,u,t now play passive roles,
we can omit them. Thus, we set

'Z2 ={(y1,-- yr) € (G°)syi € B*;B* U B*(i € [1,7])}
and, for 7 C J°, we set
1757 = {(y1,...,yr) € (GO)syi € B*$;B*(i € [1,r] — J),y;i € B*(i € J).

Let

/1/)3 : ,ZSJ - Tv (ylv s 7y7") = sFjlnln2 s Ny
where n; € NgoT are given by y; € U*n,U*. Let L' = (D™ ")*L € s(T) = s(T). Tt
suffices to prove the following statements:

(b) IC('Z%,"y3 L") is a local system on the open subset \J ., 'Z%7 of 'Z% and
is 0 on its complement.

(c) for any T C Js, we have IC('Z=," ;L) 725 = "% L. )

For j € J° let A; be the closure of the subvariety A? = '7%Gr of 'Z5. Clearly,
{Aj,j € J°} are smooth divisors with normal crossing in the smooth variety 'Z*.
Using [L3] I, 1.6], we see that to prove (b) it suffices to prove the following statement.

(b') For j € J°, the monodromy of "Y3 L' around the divisor A; is trivial if and
only if j € Js.

Let U; be the root subgroup of U* with respect to T' such that éjUjéj_l NnU* = {1}
and let = : k = U; be an isomorphism. Let o be the root of G° with respect
to T such that tx(a)t™* = z(a(t)a) for all t € T, a € k. For a € k we set
2'(a) = (51,...,éj_17$jx(a)éj—1,éj+17...,ér,n) € Z. Then z' : k* — Z is a cross
section to AY in Z; we have 2/(0) € A9, 2/(a) € Z — A9 for a # 0. For a # 0 we
have éﬂ:(@)é}l € U*$ja(a)U*. Hence

"Po(a'(a)) =881 85 1850(a)8 0. 8 = 5705 da)$j 40 - 8 = toB(a)
where 3 is the root of G° with respect to T that corresponds to the reflection
Sp...8j415j5j41...5, and ¢o is a fixed element of T'. We see that x'*'T/JSﬁ/ ~ 3l
Thus, 2/*'¢5L" = Q if and only if B L= Qp, that is, if s,...8j418;8j41...5 €
ep(Wp), that is, if j € Js. This proves (b').

We prove (c). Let £ be the local system IC(’ZS,%/);E’HUJ,CJS
that (c) is known in the case where J consists of one element. We now consider a
general J C Js. We argue by induction on the number of elements of 7. If J = 0,
(c) is obvious. Assume now that J # 0. We pick j € J. Let J' = J — {j}. Since
'Z37" is open dense in the smooth irreducible variety 'Z := 'Z57 U'Z37 there
is (up to isomorphism) at most one local system on 'Z whose restriction to ' Z57/
is isomorphic to 4%, £’. By our assumption (applied to sz instead of s), a local
system as in the previous sentence exists (we denote it by £) and its restriction to
'737 is isomorphic to "% L.

By the induction hypothesis we have L'|, ;s = "%, L. Thus L'z is a local
system whose restriction to 'Z%7’ is isomorphic to ‘)%, L. Hence L'z =& Tt
follows that the restriction of £L'| 7 to’Z57 is isomorphic to "% L. Thus, L'|igsq =
"% L. Thus (c) holds for J.

We see that it is enough to prove (c) in the case where [J has exactly one element.
It suffices to show that

(c) if £ € s(T) =s(T) and j € [1,7] satisfies SySp—1...8j...Sp—15r € W,
then there exists a local system F (necessarily unique up to isomorphism) on'Z =

g5 . Assume



384 G. LUSZTIG

1750 U 25 such that Flizso = '5L" and F|, g5y = "7 L.

This statement involves only the component G° of G. Hence to prove it, we may
assume that G = G°. Let G — G be a surjective homomorphism of connected
reductive groups whose kernel is a central torus in G and such that G has simply
connected derived group. The desired statement for G follows from the analogous
statement for G. Thus, we may assume that G = G° has simply connected derived
group. We may assume that £’ = k*€ where k € Hom(T, k*), £ € s(k*). Let m be
the order of £ in s(k*). By assumption, we have 5*£’ = Q; hence (3, k) = mm
with m; € Z. Since G has simply connected derived group, we can find k1 €
Hom(T,k*) such that (3, s1) = my. Then (3, ks;™) = 0. We have (kr] ™)*E =
k*E. Hence replacing k by xk] ™, we may assume that (B, k) = 0. Then there is a
unique homomorphism of algebraic groups x : B*$;B* U B* — k* such that

x(t) =r(51. .. S;ﬁltéjpi,l .. 8) forallteT.

Since §; is in the derived subgroup of B*$;B* U B*, we have x($;) = 1. Define a
morphism f :’Z — k* by

r o 1 .—1 1 1 .1
Flyi,yr) = x(85 78,21 - 81 mane . nj1ynj - NS L85 0)
o —1.—1 -1 ) o 1 -1

= X(Sj $1 1+ 81 MANZ .. MG 1MGNG41 TS 'sj+1)v

where n; € NgT are given by y; € U*n;U*. If y; € B*5;B*, we have
f(yl, RN TRIES n(é;l . s;_ﬁlsfls;_ll e éflnlng MM T4 . )
= r("Yo(y1, - yr))

If y; € B*, we have

f(yl, e Yr) = X(é;_ll .. éflnlng N FERY F1 AN .nTé;l .. 55_&1)
=r(s1... s;_:ls;_ll ... éflnlng coongoangngir - ..ne) = &Y (Y, - )

Hence the local system F = f *(€) on 'Z has the required properties. The lemma
is proved.

Lemma 28.11. In the setup of 28.9 assume that r > 2, that j € [2,7] and s;_1 =
s; € I Let Zy be the open subset of Zj |, defined by pos(B;j_2,B;) = s;. Let
s’ =(s1,82,...,8j-1,8j41,-.-,5¢). Defined: Z; — ZQS);LD by
(BO; Blv R BT?QUJ,BO) = (307 Bla o 7Bj*27 Bja BjJrlv R BrngJ,Bo)~
Let L be the local system on Zy 5 p associated to L as in 28.8; in the case where
j € Js, let L' be the analogous local system on qu)’JD associated to L. Let L1 be
the restriction of £ to Zy. If j € Js, then L1 = 6*L'. If j ¢ Js, then 6,L1 = 0.
Consider the union ZQS)‘”JD U Z;_{f]}D inside ZS s p- Recall that we may identify
B o 0D o, o,
ZQS),wJ,D = 25,100 Zo.3.0 = Zp.1.p- For
(B07 Bla o 7Bj—25 B_]a Bj+17 RS BTagUJ,Bo) S ZS:]}D;
F :{(BO; B17 s 7Bj—25 B7Bj7 Bj-i—la o 7BTagUJ,Bo); pOS(Bj—27 B) = Sy,
pos(B,Bj)=1or s;}
is a cross section to Z;_{}}D in ZSJD which intersects Z;{}}D in the point 7 de-
fined by B = B;. If j ¢ Js, then the proof of Lemma 28.10 shows that the
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restriction of £ to F — {r} = k* is a local system in s(k*) not isomorphic to
Q;. Hence H!(F — {n},£) = 0 for all i. Now F — {r} is the fibre of § at
(Bo, B1,...,Bj—2,B;,Bjt1,...,Br,gUsp,). We see that the cohomology with
compact support of any fibre of § with coefficients in £ is 0. Thus, &£ = 0 as
required.

Assuming that j € Js, the same argument shows that the restriction of £ to any
fibre of & is Q;. Hence £ = §*& where & is a local system of rank 1 on ZQS);LD. The
proof of Lemma 28.10 shows that there exists a local system F on ZS7J7D U ZS:J,D
such that ‘7:|ZS,J,D = £ and leS:J,D = ['. Let V be the open subset of ZSJ’D
defined by pos(Bi_1,B;) = s; if i € [1,7],i1 # j and pos(Bj_2, B;j) = s;. We have
V=2ZU ZS:J!D. Then F! := Fl|y is a local system on V such that F!|z, = L1
and F!|,. = L'. Define § : V — ZQS)TJD by the same formula as 8. Then F!,§*E

0,J,D sl
are local systems on V with the same restriction £; on the open dense subset Z;
of V. Hence F! = §*£. Since fl|ZalJD =L, 5*£|ZE/]D = &, we see that £/ = &.

Thus, £ 2 §*£'. The lemma is proved.

28.12. Let €p, Z;p be as in 26.2. Let £ € s(T). For w € W we define
72§ ;p — Z5p,(B,B,9UsB) — (Q1.8,Qcp(1),8,9U1B)

If w satisfies wD € W, we set K;’DL =mL € D(Z; p) where L is the local system
on Zy’; , defined in 28.7.

For a sequence w = (w1, wa, ..., w,) in W we define 7y, : ZQ‘)A,’J,D — Zjp by

(a) (BOa B17 ey B7"7gUJ,Bo) = (QJ,B()) QED(J),BMQUJ,B())-

If w satisfies wiws ... w,D € W%, we set KYDL =il € D(Zjp) where L is the
local system on ZXJ,D defined in 28.8.

For a sequence s = (s1,582,...,8.) in TU {1} we define 75 : 257J7D — Zjp by
(a). If s satisfies s1s2...5,D € WY, we set f(jg =7l € D(Z;,p) where L is as
in 28.9. Then

(b) K’j:g € D(Z;jp) is a semisimple complex.

This follows by applying the decomposition theorem [BBD), 5.4.5, 5.3.8] to the
proper map 7.

Proposition 28.13. Let £ € s(T) and let A be a simple perverse sheaf on Zjp.
The following conditions on A are equivalent:
(1) A Kj}uDﬁ for some w € W such that wD € W,
(i) A 4 K}VDE for some w = (w1, wa,...,w,) with w; € W, wjws ... w,D €
W9,
(iii) A - Kj:g for some s = (s1,52,...,8,) with s; € IU{1}, s152...5,D € W;
(iv) A - K’j:g for some s = (s1,52,...,5,) with s; € IU{1}, s152...5,D € W¥;
(v) A f(;g for some s = (s1,52,...,8;) with s; €I, s152...5,D € W{.

If in (ii), w reduces to a single element w, then K}VDL = K;j’DL Thus, (i) = (ii).

The implication (iii) = (ii) is trivial. We now prove that (ii) = (iii). Let w =
(w1, ws,...,w,) be a sequence in W such that wiws ... w,D € WY, and for some
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€ [1,7], let w}, w be elements of W such that w; = wjw}, l(w;) = l(w}) + I(w}]).

17710
Letw-(wl,.. W1, Why WY Wiy, ..., wy). The map

(B(),Bl7 .. .,Br+1,gUJ7BO) — (BQ,Bl, . 7Bi—1;Bi+1; . ,BT+1,gUJ7BO)

defines an isomorphism Z?D = ZY¥p compatible with the maps 7w, 7w and with

the local systems £ defined on ZJD7 Z¥p in terms of £ as in 28.8. Hence
w,L w,L
(a) K;p =Kip-

Applying (a) repeatedly we see that K }VDC is equal to K YID’L for some sequence w’
in I Thus, (i) = (iii).

We prove the equivalence of (iii) and (iv). Let s = (s1, s2, ..., s,) be a sequence
in TU {1} such that s1s2...5,D € W%. Let L be as in 28.9.

Define a sequence °Z D 1Z O ... of closed subsets of ZQS),J,D by

'z = U ZS{]D
JCIT%|T|>i
Let f*:'Z — ZXJ’D,f’i DiZ -z ZQS)J’D be the inclusions. The natural
distinguished triangle in D(Z; p)
(Tt f T Lo mat fE(F) Ly o [T ()L
gives rise for any ¢ > 0 to a long exact sequence in M(Z;p):
= PH @ D - D TH ()
JCTs3| T =i
(b)
ij(Tr ,f' (f* ) ) pH](T( 'fz+1(fz+1) Z) N @ ij+1(KLS];7D,£) -
JCJs
|T|=i
Here we have used the isomorphism ﬁ'syf/!i(f/i)* GBJCJs,IJI—% KS”’ which
follows from Lemma 28.10. Note that

(%) 7ot fO(fO) L = K5, et fi(f1)*L = 0 for i large.

We set m(s) = (i € [1,7];s; € I). If m(s) = 0, then ZSJD :ZSJD and Kj’g:
K;g Hence in this case we have A KS’D if and only if A - K;g It suffices to
Verlfy the following statement.

(c) Assume that s satisfies m(s) = m > 1 and that for any sequence s’ =
(sh,85,...,s,) in TU {1} with sis5...s.D € W% and with m(s') < m we have
A 7{K§DE Then A K;:g if and only if A K’j:g
Using (b) and our hypothesis we see that for any i > 0 we have A s f} (fz) L if
and only if A - 7‘rsgff+1(fi+1)*£ Applying this repeatedly for i = NN —1,...,1
(with N large) we see that A A 75 f1(f)*L. Using this, together with (b) we see
that A 4 K75 if and only if A + 7ig f0(f°)*L, that is, A 4 K37 (see (x)). This
proves (c). The equivalence of (iii) and (iv) is established.

The equivalence of (iv) and (v) is obvious.

Let s = (s1,82,...,8:) be a sequence in I such that sysy...s,.D € W7.. Assume
that > 2 and that, for some j € [2,7] we have s;_; = s;. We have a partition
Zyp = 21U 2 where Zy (vesp. Z3) is the open (resp. closed) subset of Z§ ; ,
defined by pos(Bj_2,B;) = s; (resp. by Bj_2 = Bj). Let w1, m2 be the restrictions
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of ms to Zy, Z5. The natural distinguished triangle (71'11£~, Kijﬁ, 7721£~) in D(Z;,p)
(where the restrictions of L from Zy ;. p t0 Z1,Zs are denoted again by [:) gives
rise to a long exact sequence in M(Z; p):

— PH(m1L) — PH'(K5) — PH' (ma£) — PH™ (mu L) —
Let ' = (s1,82,...,8j-1,5j41,---,5r), 8" = (81,82,...,8j-2,8j41,-..,5r). Then
§:(Bo,Bi1,...,Br,9UsB,) — (Bo,Bi1,...,Bj—2,Bj,Bjt1,...,Br,gU;B,)
makes Z; into a locally trivial k*-bundle over qu)’ 7.p and
(Bo,Bi,...,Br,gUsp,) — (Bo,Bi,...,Bj_2,Bjs1,..., Br,gUs5,)

makes Zs into a locally trivial affine line bundle over qu)li, p- The local system L on
Z5 is the inverse image of the local system L on qu)lz] p defined as in 28.8 in terms

of L. By 28.11, if j € s, the local system £ on Z is the inverse image under &
of the local system £ on Z@ J.D defined as in 28.8 in terms of £; if j ¢ Js, then

5L =0. Tt follows that

and, if j ¢ Js, we have 7 £ = 0. If j € Js, we have a natural distinguished
triangle (71, L, K3 [[ 1]], K;IDL) in D(Z;,p). Hence we have long exact sequences
in M(ZJ7D).

() .. = PH () — PHESS) — PHT2 (K (1) — PH (L) —

() ... —PH (nul) — PHI2(K55)(—1) = PHI(KS ) — PH™ (ru ) —
if j € Js, and isomorphisms
(t) PHY(K55) = PH' (K5 5)(~1)

if j ¢ Js.

We prove that (v) = (i). Assume that A - KjD where s = (s1,82,...,r)
is as in (v). We may assume that r is minimum possible. We want to show that
(i) holds. Assume first that I(s1s2...s,) < r. We show that this contradicts the
minimality of r. We can find j € [2,r] such that l(sjsﬁl .Sp) =1 —j+1and
I(sj-185...8r) <r—j+2. Wecan find s7,s",,,...,s, € Isuch that s}s’,,...s. =
$jSj41...8, =y and s;- =s;_1. Let

’r_ o / " __
U = (51,52, ,8j-1,5,85415-++550), W =(81,82,...,5j-1,¥)-

From (a) we have Kjg = K}IDL = K};:BC. Hence we may assume that s;_1 = s;.
If j ¢ Js, then (f) shows that A A Kj:lbﬁ; since the sequence s” has r — 2 terms,
this contradicts the minimality of . Assume now that j € J5. By the minimality
of r we have A A KleDL From (e) it follows that A A m;£. This, together with (d)
shows that A 4 K j//DC This again contradicts the minimality of r. We see that
I(s182...8:) = r. By (a), we have Kj:g = K}“DC where w = s152...5, and the
desired conclusion follows. Thus, we have (v) = (i). The proposition is proved.
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28.14. Let A be a simple perverse sheaf on Z;p and let £ € s(T). We write
Ae ZﬁD if A satisfies the equivalent conditions (i)—(v) in 28.13. We write A € Z; p

if A e ZAﬁD for some £ € s(T); we then say that A is a parabolic character sheaf
on Zjp (see [LI10)).

In the case where J = I we identify D = Z;p by g — (G°,G°,g); we write
Ae DA Ae D instead of A € ZAjD, Ae ZA]’D. We say that A is a character sheaf

onDif A€ D.
In the case where J = I we write K5, K3°, K%* instead of K75, Kjg, Kjg

28.15. Let A € Z;p. We can find n € Nf and £ € s, (T) such that A € ZﬁD.
We show that
(a) A is equivariant for the action
(va) : (Pv PlngP) = (xpx_lvxp/x_laxzngx_lUxP:c—l)

of H = DZgO x GO on Z5p.

We can find w € W such that wD € W and A mﬁ where £ is the local system
on Zé‘jJ’D defined in 28.7 and 7 : Zé‘jJ’D — Zjp is as in 28.12. Now H acts on
ZéljJ,D and on 3% by

(va) : (BaB,agUJ,B) = (mBmiaxB,xilaxzngmilUJ,szfl)a

(z,2) : (B,UpgUg) — (xBx ™', Uypp122"gx *Uypy—1)
and 7 and ¢ : Zy, , — 3} (see 28.7) are compatible with the H-actions. It
suffices to show that the local system £ on 3% (see 28.5) is H-equivariant. Let

g 3w 25 3% be as in 28.5. Now H acts on T by (z,z) : t — 2™t and on 3% by
(z,2) : (hU*,g) — (zhU*, z"g); note that ¢, p are compatible with the H-actions.
Using the definitions we see that it suffices to show that £ is H-equivariant. This
follows from the fact that £ € s,(T"). This proves (a).

28.16. Consider a sequence s = (s1, S2,...,8,) in TU {1} with s152...5,.D € W§,
s1 € JU{1}. Let s’ = (s2,83,...,8r,€p(s1)). We have s355...8.€p(s1)D €
51Ws1 = WY, where £’ = s7L € s(T). Now

(BO;Bla .. '7BragUJ,BO) — (BlvBQa v 7BrvgBlgilagUJ,Bl)

is a well-defined isomorphism Z; D = Z;I ; p Which restricts to an isomorphism
Z57J7D = ZQS);LD. Under these isomorphisms, the local system Lj on ZSJ,D defined
in 28.8 in terms of £ corresponds to the analogous local system £ on Zj ; ,, defined
in terms of £’. Similarly, the constructible sheaf £ = IC(ZS D ﬁ) corresponds to
the constructible sheaf £/ = IC (25’ JD L'). Tt follows that
£ L ’
(a) Kp =Kjp ,
— L — I7L/
(b) K?];D = K;,D .
28.17. Let £ € 5(T) and let s = (s1, s2,...,S) be a sequence in TU {1} such that

s182...8,D € W. Let m = (i € [1,r];s; # 1) + dim G/Uqg where Q € P;. For
any j € Z we have:

i S, LN\ AU m—7j /S, L
(a) PHI(KYp) = PH*™ 7 (K5p),
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i 1-8,L ~ —4 —s,ﬁ
(b) DH!(K7p)) = PH™ (K5p)
in M(Z;p). Now (a) is a special case of the “relative hard Lefschetz theorem”
[BBD), 6.2.10] applied to the projective morphism 75 : Z§ ; , — Z;p and to the
perverse sheaf £[m] on Z3 ; 1.

We prove (b). Define E,Z in terms of £ in the same way as £, £ are defined in
28.8, 28.9 in terms of L. Note that Verdier duality commutes with 7s; it is then

enough to show that D(L[m]) = L[m]. By the definition of £ it is enough to show
that £ = £. This follows from the definition of £.

28.18. Let £ € s(T). Using 28.17(b), we see that )
(a) if A e ZﬁD, then its Verdier dual ©(A) is in ZAﬁp'

28.19. Define an isomorphism 0 : Z; p — Zep(1),p-1 Dy
a(Qv Q/ngQ) = (Q/a Qvg_lUQ/)'

Let £ € (T) and let s = (s1, S2, ..., Sr) be a sequence in I such that syss...5,.D €
W¢. Let § = (sp,8p-1,...,51), L = (Qil)*ﬁ. We have s,8,_1...51D7 1 € A\
We have a commutative diagram

— 8 —~
ZS,J,D ’ ZQS),ED(J),Df1

! !

)
Zyp —— Zep(g),D1
where 9 is the isomorphism
(BO; Blv cee 7BrngJ,Bo) g (BT; Brfla ey BOagierD(J),BT)

and the verical maps are of type 28.12(a). Under the isomorphism 5, the con-
structible sheaf £ on Zj ; |, defined in 28.9 in terms of £ corresponds to the anal-

ogous constructible sheaf £’ on ZS en(J),D-1 defined in terms of £’. Tt follows that

=s,L o ir8,L
Kyp=10 KED(J),D—l'

We see alsoAthat R . R
(a) A€ Zip = A€ Zf np v A €Zf o = A €Zip.

29. RESTRICTION FUNCTOR FOR CHARACTER SHEAVES

29.1. Let D be a connected component of G and let P be a parabolic of G° such
that NpP # . Let L be a Levi of P. Let G’ = NgPNNgL, a reductive group with
G'% = L. Let D’ = G'ND, a connected component of G’. Let resp’ : D(D) — D(D')
be as in 23.3. Let a = dimUp. We write e : W — W instead of ep : W — W (see
26.2).

In this section we begin the study of resB (A) where A is a character sheaf on
D. One of the main results of this section is that resB (A) is a direct sum of shifts
of character sheaves on D’. (Here the words “shifts of” can be omitted but this
will only come after further work in Section 31.) The results in this section extend
results in the connected case that appeared in [L3, I, §3]. An obscure point in the
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proof in [L3], I, 3.5] (pointed out to me by J.G.M. Mars in 1985) is here removed
following in part [L11].

Let B be the variety of Borel subgroups of L. We show that the canon-
ical torus T of G® (see 28.3) is canonically isomorphic to the analogously de-
fined canonical torus TT of L. We define a map [[5.5B/Us — [sest B/Us
by (98UB)es — (hgUs)sepr where, for B € BT, hg is the image of gsy, under
the obvious homomorphism fUp — . This map restricts to a map T — T which
is an isomorphism of tori. We use this isomorphism to identify TT = T.

Similarly, the Weyl group W of G (see 26.1) contains the analogously defined
Weyl group W' of L as a subgroup. The imbedding W — W is obtained by
associating to the L-orbit of (3, 3") € Bf x Bf the G°-orbit of (8Up, B'Up) € B x B.
If J is the subset of W' analogous to the subset I of W, then the imbedding
W' — W restricts to an imbedding J C I. The length function of WT is just
the restriction of the length function of W. With the notation of 26.1, we have
W! = W. Define pos’ : Bt x Bf — W in terms of L in the same way as
pos : B x B — W was defined in terms of G°. For any Borel B of G° we set

PB = (PN B)Up,

a Borel of P.

Let YW be as in 26.1. Then y — Wy is a bijection "W = W ;\W. We
also have a bijection from the set of P-orbits on B (for the conjugation action) to
W ;\W: the P-orbit of B € B corresponds to the W ; coset of pos(PEZ,B) ¢ W.
Let v(y) be the P-orbit on B corresponding to W yy,y € W.

If y € W and s € I, there are three possibilities for ys:

(i) ys € W and I(ys) > I(y); then v(y) C v(ys) — v(ys).

(ii) ys € YW and I(ys) < l(y); then v(ys) C v(y) — v(y).

(iil) ys ¢ W then ysy~! € J and v(ys) = v(y).

For any y € W, g € D we have gv(y)g~! = v(e(y)).

Define a homomorphism 7 : NgP — G’ by 7(2w) = z where z € G',w € Up (see

1.26).

29.2. Until the end of 29.9 we fix a sequence s = (s1, 82,...,8,) in I and £ € s(T)
such that s1s2...s,D € Wg. Let Js C [1,7] be as in 28.9.
We write Z° instead of Zjj | |, (see 28.9). For 7 C [1,7] let

VA :{(Bo,Bl, .. .,Br,g) S ZS;Bi,1 =B;forieT,
pos(Bj_1,B;) = s; fori e [1,7] — T}.
We have a partition Z% = Uzrcp,g 257 Let
2" ={(Bo,By,...,Br,g) € Z%g € NpP}.

Define 7' : Z' — D' by (By, By, - .-, B, g) — 7(g). Any sequencey = (Yo, Y1, - - Yr)
in YW defines a locally closed subvariety

Zy ={(Bo,Bi,...,Br,g) € Z%g € NpP,B; € v(y;)(i € [0,7])}
of Z'. Clearly, Z;, = () unless y satisfies
(a) Yi = Yi—1 Or y; = yi—18; for all i € [1,7], e(yo) = y»-

Let iy : Z;, — 7% be the inclusion. Let Ty Zg, — D' be the restriction of 7.
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29.3. Until the end of 29.11 we fix a sequence y satisfying 29.2(a). We set

d(y) = a+14(i € [1,7);yi—18: € "W, 1(yi—15:) < U(yi—1)
=a+1(i € [1,r];yis: € "W, U (yisi) < U(ys)).

We show that these two definitions of d(y) are equivalent. Let

c=1(i € [Lr];yi1 = yi,visi € TW, 1(yi—1si) < U(yi1)),

=4 € [L,rlil(y) — l(yi—1) = —1),

" =4 € [Lr}l(y:) — l(yi-1) = 1).
The two definitions of d(y) are a+c+ ¢/, a+c+¢”. Hence it suffices to show that
d =" Clearly, I(y.) — l(yo) = ¢" — . Since y, = €(yo), we have I(y.) = l(yo)
hence ¢ = ¢, as required. An equivalent definition of d(y) is

d(y) = a+ (i € [1,r];v(yisi) Co(yi) — v(yi))
=a+t(i €1, r;v(yi—18:) Cv(yi-1) — v(¥i-1))-

We define a sequence (51, $2,...,8,) in TU {1} by
§i=s;ifyi1si € Wiy, 5 =1ifyi1s ¢ Wy,
Define t = (t1,t2,...,t,) by t; = yi_léiyi*l. Then t; € JU{1} and
ti=yi1siy; 'y ifyi1si € Woyia,ti = 1if yi1si @ Woyi1.
Let
Z% = {(Bo, B1,..., B, h) € BT x ... x B x D';pos’(B;_1,0:) = 1 or t;,
Br = hfBoh™'}.
This is a variety like ZS,I,D in 28.9 with G, D, s, I replaced by G', D', t, J. Define
p: Z;, — Z, (Bo,B1,...,B,g) — (ﬂ'(PBO),W(PBl), .. ,w(PBT), 7(g)).
Lemma 29.4. p is an iterated affine space bundle with fibres of dimension d(y).

Let F be the fibre of p over (8o, 81, - -, h) € Z*T. We show only that
(a) F is an iterated affine space bundle over a point and dim F' = d(y).
For any k € [0, r] let Fy, be the set of all sequences (By, Bi, ..., By) in B such that

pos(Bi—1,B;) =1 or s;(i € [1,k]), B; € v(y;)(i € [0, k]),ﬂ(PB”) = G;(i € [0, k).
Let F,41 = F. We have obvious maps

F:Fr-i-l Ert1 £ gFr—l &r1

LR,
It is easy to see that Fy = k!®o) and that &1 Frp1 — F is an affine space
bundle with fibres of dimension a — I(y,) = a — I(yo). Moreover, for i € [1,r],

(b) & : F; — F;_1 is an affine space bundle with fibres of dimension 1 if v(y;s;) C
v(y;) — v(yi) and of dimension 0, otherwise.
Now (a) follows from (b). This completes the proof.
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29.5. Let J = {i € [1,7];5; = 1}. We have J = 1 U J> where

T ={i € T;0(yiz1) Co(yi—18:) —v(yi-15:)},
Jo ={i e T;v(yi—18i) C m_ v(yi-1)}-

Let K° = {i € [1,7];¢; # 1}. We have
JNK’ =9.

Indeed, if i € J N K then § = 1 hence v(y;) # v(yi—18:),v(y;) = v(yi_1),
v(yi—1) # v(yi—18;) and t; € J,§; = 1 hence v(y;—15;) = v(yi—1), a contradiction.
We show:
(a) If i € K°, then v(yisi) = v(y:). Ifi € Jh, then v(y;) C v(yisi) — v(yisi). If
i € Ja, then v(yis;) C v(yi) —v(ys)-
Assume first that i € K°. Then t; # 1, v(yi_18;) = v(yi_1), si # 1. If v(y;) =
v(yi-1) we get v(yisi) = v(yi); if v(y:) = v(yi=15:) we get again v(yisi) = v(y:)-
Assume next that i € J;. Then v(y;—1) C v(yi—15:i) — v(yi—18:), 8 = 1, v(y;) #
v(yi—18i) hence v(y;) = v(yi—1) and v(y;) C v(yisi) — v(Yisi)-

Finally, assume that ¢ € Jo. Then v(y;—1s;) C v(yi—1) — v(yi—1), 5 = 1,
v(yi) # v(yi—1si) hence v(y;) = v(yi—1) and v(yis;) C v(yi) — v(Yi)-

29.6. For any subset I C K0 let

Zt}CT = {(507615 e 7ﬁT7h) € ZtT;pOST(ﬁi—laﬁi) = tz(z S [17T] - IC))
Bi—1 = Bi(i € K)}.

We shall write Z% instead of Z%T. We have Z*" = | |0 Z*T. Hence Z, =
Ukcxo Zy x where Zj, ;o = p~1(Z*T). We show that for (Bo, B,..., B, h) €
Z, i, conditions (i) and (ii) below are equivalent:

() Kud c{iel[l,r];Bi-c1=B;} CKUJ;

(ii) {i € KO n(PBi-1) = n(PBi)} = K.
Assume that (i) holds. If i € K, then by (i) we have B,_1 = B;, hence n(PBi-1) =
7(PPB?). Conversely, let i € K° be such that 7(PBi-1) = 7(P5¢). Using 29.4(b) we
see that B;_; = B; (since v(y;s;) ¢ v(yi) — v(yi), by 29.5(a)). Using (i) we see that
i€ KUJ. Since K°N J = 0 we deduce that i € K. We see that (i) = (ii).

Assume that (ii) holds. If i € K, then, by (ii), we have m(PBi-1) = 7(PPi); using
29.4(b) we see that B;_1 = B; (since v(y;8:) € v(yi) — v(y;), by 29.5(a)). If i € T,
then §; = 1, v(y;) # v(yi—18:), hence v(y;) = v(y;—1) and v(y;—1) # v(yi—18:)-
Then t; = 1 hence n(PPi-1) = 7(PB). Using 29.4(b) we see that B;_; = B; (since
v(yisi) € v(yi)—v(y:), by 29.5(a)). Thus, the first inclusion in (i) holds. Conversely,
if i € K°, B;_1 = B, then n(PBi-1) = n(PP%) and using (ii) we see that i € K. If

€1,7] — K% B;_1 = By, then t; = 1, v(y;_15;) # v(yi—1), v(y:) = v(yi_1) hence

v(yi) # v(yi—18i), §; = 1 hence ¢ € J. Thus the second inclusion in (i) holds. We
see that (ii) = (i).

The equivalence of (i) and (ii) can be also formulated as follows:

(a) ;,IC — |_| VALK S e Z)’,
J"T'CT2
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29.7. Let (Bo,B1,---, 0 k) € Z*<T and let F, Fy, & be as in 29.4. From 29.6(a)
we see that
= |_| (F N Z8c07iu7"),
T T'CT>2

Fori € [1,7], let F* = {(By, B1,...,B,,g) € F; B;_1 = B;}. We show:

(a) Fori € Jo, F' is a smooth hypersurface in F. For i € KU J; we have
Fi=F. Forie[l,r] — (KUJ) we have F* = ).
If F' # (), then, using F C Ugicg, Z27c00107" we see that i € KU J3 UJ' for some
J' C Jo; thus, i € KU J. In the rest of the proof we assume that 1 € KU J.

For each k € [i,r] let F{ be the set of all (By, Bi,...,By) € Fj such that
Bi_1 = B;. Let F!, | = F'. From the definitions we see that for k € [i + 1,7 + 1]
we have a cartesian diagram

F —— F,

l “

F,_, —— Fa

where the horizontal maps are inclusions.

Assume first that ¢ € J5. Using the cartesian diagram above, it suffices to
show that F} is a smooth hypersurface in F;. From 29.5(a) we see that v(y;s;) C
v(y;) — v(yi); hence & : F; — F;_ is an affine line bundle (see 29.4(b)). It suffices
to show that &; restricts to an isomorphism F! = F;_;. Let (B, B1,...,Bi_1) €
F;_1. Tt suffices to show that (By, B1,...,B;—1,B;,-1) € F;. Hence it suffices to
show that v(y;—1) = v(y;) and B;—1 = (;. Since i € J, we have §; = 1, hence
v(y;) # v(yi_1s;) hence v(y;) = v(y;_1) and t; = 1. Since pos'(B;_1,3;) = 1 or t;,
we see that §8;_1 = [;, as required.

Assume next that that ¢ € X U J;. Using the cartesian diagram above, it
suffices to show that F! = F;. From 29.5(a) we see that v(y;si) ¢ v(y;) — v(y:);
hence &; : F; — F;_; is an isomorphism (see 29.4(b)). It suffices to show that
& restricts to an isomorphism F} = F;_;. If i € Ji, this is shown exactly as
in the first part of the proof. Assume now that i € K. We have ¢; # 1, hence
v(yi—18;) = v(¥i—1) = v(y;). From the definitions we have §;_1 = ;. Hence
F! = F;_; as in the first part of the proof. This proves (a).

Lemma 29.8. The map p; : Z;,OZSJ — Z* (restriction of p) is an iterated affine
space bundle.

Let (8o, B1,- .., Br, h) € Zt. We show only that the fibre F of p; at (8o, 31, .. .,
Br, h) is an iterated affine space bundle over a point and

dimF = a+ (i € [1,7] — T;v(yisi) C v(ys) — v(yi)).
For any k € [0,7] let
F. ={(Bo, B1,...,By) € B¥"\;pos(B;_1, B;) = s;(i € [1,k],i ¢ J),
Bi1=Bi(i € [1,k]nJ),B; € v(y:)(i € [0,k]), 7(PP") = p;(i € [0,k])}.
Let F,,1 = F. We have obvious maps

F:Fr+1—>Fr—>F_}_1—>...—>FQ.
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It is easy to see that Fy = k') and that F,,; — F, is an affine space bundle with
fibres of dimension a — I(y,) = a — I(yo). Moreover, for i € [1,7], F; — F;_; is an
affine space bundle with fibres of dimension 1 if v(y;s;) C v(y;) — v(y:), ¢ ¢ J and
of dimension 0, otherwise. This completes the proof.

29.9. For k € [1,7] we set
Sy = SrSp—1...5k...Sr—15p, énk = 5p8r—1...Sk+15kSk+1 - Sr—15p.
Let I" be a subgroup of W such that
kell,r,sp =1 = s, €.
We show:
(a) Fori € [1,r] we have s,.; € T if and only if 3, € T.

2r,
We argue by induction on r —i. If r —i = 0, we have s, ; = 5
obvious. Assume now that r —¢ > 1. We have

ri SO the result is

kel[l,r—1],8, =1 = Sp_1% € Srlsp.

By the induction hypothesis we have s

r—1,i € srl'sp if and only if 5, _; ; € s,I's;.. If
S, = Sy, then s 3

= 8¢5, iSry 8y_1, = SrS, ;. Hence we have s, ; € I if and only
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ifs,; el If s, =1, then s, 4 ; = s, 5, 5,_1,; = 5, ;. Hence we have s, ; € I" if
and only if 3, , € I'. (We use that s, € I'.) This proves (a).

We show:

(b) If i € [1,r] and t; # 1, then tyt,—q1...t; .. . tr_1t, = yrér,iy,fl.
We argue by induction on r—i. If r—i = 0, we have t, # 1, hence t,, = y,_15,y, ' =
yr,lsry;ll. We see that y,.—1 = ¥,-5-$, = Y-S5 and t,, = y,,s,,y;1 as required.

Assume now that » — ¢ > 1. By the induction hypothesis the left-hand side of
the equality in (b) is tryr_1§r717iy;_11tr and the right-hand side is y,-5,3,_; ;5,4, ".
It then suffices to show that ¢,y,_1 = y,-5,; this follows from the definitions since
t. = t,-t. This proves (b).

29.10. We set y = yo. In the case where J C Js we set YL = Ad(y~1)*L € s(T)
and we show that

(a) t1t2...trQEW;£.

For i € [1,7] define u; € W by u; = ¢ (sy8—1...8;...8-—15.) if i € J and by
u=1ifi¢ J. If i € J, we have i € Js, hence u; € WP. Then

5152...5.D = s152...sp Dutug ... up € W,
We have 5155...5, = y ‘tity...t,y,, hence y~ tito.. .ty D € W¢. Since y, =
e(y) we have y,D = Dy, hence y~'t1t2...t,Dy € W% and (a) follows.
Using (a) we can define a constructible sheaf ¥£ on Zt and a complex K B:JL €
D(D') in terms of t,YL, G’ in the same way as £ on Z% and I_(]SD’C € D(D) are
defined in 28.12 in terms of s, £, G.

Lemma 29.11. (a) If J ¢ Js, then },is L = 0.
(b) If T C Ts, then &,i5 L = K, “[[—d(y)]].
Let 7y : Z*' — D' be the obvious projection. We have 7, = Ty p1 and pip*(YL) =

_ y
YL[[-d(y)]] (we use 29.4). Hence it suffices to prove:
(@) If I & Ts, then pi(i5 L) = 0.
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(b") If J C Js, then i;ﬁ_ =~ p*(YL).
We prove (a’). Let I be the fibre of p over a point of Z*<T(K c K°). We must
show that H}(F,L|r) = 0. (We write £ instead of i;ﬁ_.) If KUJe ¢ Js then
L|r =0 (we use 29.6(a) and 28.10) and the desired vanishing follows. Assume now
that KU J2 C Js but J ¢ Js. Using 29.6(a) and 28.10 we see that £|r is a local
system on

(F N ZScvgiva’)
T T 'CI2T'CTs

and is zero elsewhere. Hence L|r is a local system on F — Uiern-2 Fi (FJ as in
29.7) and is zero on Ujejzfjs F7. Let i be the largest number in J — Js. It suffices
to show that for any (Bo, Bi, ..., Bi—1) € F;_1 (see 29.4) we have H}(F',L|p/) = 0
where F’ is the fibre of the obvious map F' — F;_; at (Bo,Bi,...,B;—_1). Let
F'" = F'NF'. If Bj_1 = Bj for some j < i,j € Ja—Js, then F' C FJ and L|p: = 0;
the desired vanishing follows. Thus we may assume that pos(B;_1,B;) = s; for
all j < i,j € Jo — Js. Then L|p_pii is a local system and L|p: = 0. Let
F" be the fibre of Ez : E — Fi—l (see 294) at (B(),Bl,.. -aBi—l)- Let F”i =
{(Bo,Bi1,...,B;—1,Bi—1)}, a point on the affine line F”. Let u : F/ — F” be
the restriction of the obvious map F' — F;. Then u is an iterated affine space
bundle (see 29.4(a)), F'* = w=*(F""), and there is a well-defined local system & on
F" — F"" = k* such that £ € s(k*), L|p_pii = u*(£). Then H}(F' — F'' L) =
H}(k*, &) and it suffices to show that £ 2 Q;. It also suffices to show that L] _ i
has non-trivial monodromy around the smooth hypersurface F’* of F’. This is the
same as the monodromy of £|zs around the hypersurface Z5t:}. This monodromy
is non-trivial by 28.10(b"). This proves (a’).

We prove (b). We define W s in terms of G', W ;, YL in the same way as W
was defined in terms of G°, W, L. Let

Tt = {Z S [1,T];ti € J, tptp—1... ;... L1ty € E(WJ’yg)}
= {Z S [1,7‘];1‘,1' eJtot_ 1.t . t._1t, € G(Wyﬁ)}.

(The two definitions coincide since ¢,t,_1 ...t;...t,_1t, is a reflection in W ;.) We
show that

(c) Jo = TN K.
Using 29.9(b) it suffices to show that for ¢ € [1,7] such that ¢; # 1, we have
yrgr e §i+15i§i+1 e §ry;1 S G(Wy[,) — SpSp—1...8;...8-15p € G(WL).

Using 29.9(a), we see that it suffices to show that e 1 (y )Wy e 1(y,) = W, or
that YL = Ad(e!(y,71))*L. This follows from the definitions using y, = €(y).

Using 28.10 for G’ instead of G, we see that YL is a local system on Z! =
Ukca Z*<t and is zero on its complement in Z*f. Using 28.10 and 29.6(a) we see
that i;i is a local system on

72 _ U ZSKkugiug’ N0 Z;, - U Z;JC
J'CI2KCTs KCJt
and is zero on its complement in Z,. (We have used (c).) Since Z? is an iterated
affine space bundle over Z* (via p) and the restriction of i;E_ to any fibre of p : Z2 —
Z1 is a local system of rank 1 with finite monodromy of order invertible in k (hence
it is Q) we see that i} £|z2 = p*& for a well-defined local system € of rank 1 on Z'.
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It suffices to show that € 22 YL| ;1. Since Z! is smooth and Z*1 is open dense in Z?!,
it suffices to show that &| ze+ =2 YL| zet. Let Z® = Z57NZ},. This is a closed subset of
the open subset p~1(Z*") of Z,. Since the restriction of p is an iterated affine space
bundle p; : Z3 — Z* (see 29.8), it suffices to show that p}(E|zer) = pi(YL| 41 ).
Since p}(E€|ze+) = L|zs, it suffices to show that L|zs = pi(YL| ). Using 28.10,
once for G and once for G, we see that L] zs = L| 3, YL| 7o+ = YL where £ (on Z57)
is defined as in 28.8 in terms of G,s 7, £ and VL (on Z*1) is defined analogously in
terms of G’ t,YL. Thus it suffices to show that

(d) Llzs = pi(VL).
To prove (d), we choose B*,T,d and w (for w € W) as in 28.5, in such a way
that B* ¢ P,T C L. We have necessarily d € D'. Let ' = n(B*) € Bf. Let
U* = UB*,U]L = UBT. Let
Z ={(hoU*, iU*,... h,U*,g) € (G°/U*)"* x D;h; ' h; € B*5,B*
for i € [1,7],h,; 'gho € NgB*,g € NgP, h; € Py;U* for i € [0,7]},

2 ={(hU", mU",... . nUT,¢') € (L/UT) ! x D';
R, 7ihl e Bl BT for i e [1,r], h."g'hl € Ngp'}.
Define ¢ : Z — Z' by
(hoU*, haU*, ... h,U*, g) — (hyUT, hAUT, ... hlUT, ¢')

where h; € p;;U*,pi € P, = w(p;),g’ = n(g). (We show that hiUT is well
defined or equivalently that p,U* is well defined. It suffices to show that py;U* =
p'yU*,p,p € P = p'U* = pU*. Tt also suffices to show that PﬁyiU*yfl c U~
Since y; € "W and B* C P we have P¥B*i" = B* Hence PN g)iB*y;1 C B*.
Thus PNy U™y, !'is contained in the set of unipotent elements of B*, that is, in
U*.) We have a commutative diagram

z Sz
L
A AL
where a : (hoU*, hqU*, ..., h,U*,g) + (hoB*hy',haB*hi*, ... h.B*h; 1, g),
a : (hpUT, R U, .. LU, g') = (hoBYhy ™Y R BTR, Y, L RLBTRL L, g).
Since a is a locally trivial fibration with smooth connected fibres, to prove (d) it

suffices to prove that a*(£|zs) = a*pi(YL) or that a*(L|zs) = ¢*a’*(YL). Define
£E:Z—->T by

(hoU*, U™, ... hU*, g) = d~ (818, ... 58) " Tning .. .npem

where n; € NgoT are given by h;llhi e U*n;U* and n € NgB* N NgT is given by
h;tgho € U*n. Define & : 2’ — T by

(haUT, hllUT, ey h;UT,gl) — d_l(f:lt-g .. .t.r)_lﬁlﬁg R rP% 7
where n; € NpT are given by h;71’1h§ e Utp,UT and 71 € NgﬂJr N NgT is given
by h.~'g'hl € UTh. From the definitions we have

a*(L]zs) = €°L,a" (VL) = &Ad(y ™)L
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where £ € s(T) is as in 28.6. Therefore it suffices to show that
LAY L.
Define ¢ : Z — T by
(h()[]*7 hllj*7 ceey hTU*,g) — d_l(ilig .. .t.r)_lﬁlﬁg Lo nen

where h; € pigU*, p; € P, p;'\pi € U*n,U*, p;lgpy € U*n, n; € NiT, n €
NgB* N NgT. Then ¢ = £¢ and it suffices to show that

EL=gr AT L.
Using 28.1(c) it suffices to show that there exists ¢ € T such that

t&(z) = Ad(y~ )€/ (2) for all z € 2.

Let (ho, h1, .-, hr, g) € (GO)"T1 x D be such that z = (hoU*, h U*, ..., h,U*, g) €
Z. We define p;, n;,n, fi;, 0 in terms of h; as in the definition of £, ¢’. From h, tgh €
U*n, p;tgpo € U*n, we deduce g, *p; tgpoy € U*n, U*ngU* = U*y,nU*, hence
ny = yrn. We show that

n; = Yi—1ny; * for any i € [1,7].

From h; Y h; € Un;U*, p;ip; € Un,U*, we deduce gy, ',p; piyi € Un;U*,
hence yi,luniu’yi_l € U*n;U* for some u, v’ € U*. Assume first that ¢; # 1. Then

Yi = Yi-1,Yi—18i = ti¥i, L(yi—18:) = U(tiys) = Wyi—1) + 1 =1(y:) + 1,
hence
Yi—rungu' € U y_anU*, U nU*y; € U*ngy U™,

Thus, U*y;—1n;U* = U*n;y;U* and §;_1n; = n;9;, as required. Next, assume that
ti = 1,8; # 1. Then y; = y;—18; # yi—1, n; € T. If l(yi_lsi) = l(yi—l) + 1,
then ¢; _jun,u’ € U*y;_1n;U* and U*n;U*y; C U*ngy;U* so that Uty _1nU* =
U*n;y:U* and g;-1n; = 79, as required. If {(y;—18;) = l(yi—1) — 1, then l(siyjl) =
l(y;l) + 1. We have unm'gj;l € U*niyflU* and y;_llU*mU* C U*y;_llmU* SO
that U*ny; 'U* = U*y; Y, n;U* and ny; * = ;" 7, as required. Finally, assume
that §; = 1. Then t; = 1,y;-18; # ¥i—1 = ¥i, n; € T, 7y € T. We have 9;_1unu’ €
U*yi—1n;U* and U*n;U*y; C U*n;y;U* so that U*y,_1n,U* = U*n;y;U* and
Yi—1M; = M;Y;, as required.

We have
Ad(y N (2) = ¢ td ity .. £,)  Ring .. ReAY
=yt (Gda ) T gy D (Ginegs ) - G gy Dgen
=g td7! (t1ty ... t.) Ygning .. .nm
= td Y (5155...5,.) tniny ... n.n = t&(2)
where

t= yildil(flig .. .t'r)fly(§1§2 . §r)d
We have t € T. (Equivalently, y§182...8, = t1...ty,, which is clear from the
definitions.) This completes the proof of (d), hence that of (b’). The lemma is
proved.
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29.12. We consider the sequence Zy C Z; C ... of closed subsets of Z’ defined
by Z; = Uygc(y)SiZ;, where y is a sequence (yo,¥1,...,y,) of elements in /W
satisfying 29.2(a) and c(y) = > ,¢0,jdimv(y;). Let ki : Z; — Z'(i > 0) and
ki :Z;—Z;_1 — Z'(i > 1) be the inclusions. For any i > 1, the natural distinguished
triangle

(Tiki ki L, wkank! £, 7 (ki1 )1k}, L)

in D(D') gives rise to a long exact sequence in M(D'):

= PHIT R (ki )k, L) S @D PHI (R)L) —
yie(y)=i
(a) PHI (#kakt L) — PHI (7 (ki )iki_ L) S ..
We now prove the following result.

Lemma 29.13. (a) The maps 0 in 29.12(a) are zero.

(b) Fori > 0, mkak!L € D(D') is a semisimple complex; it is isomorphic to
Gay;c’(y)ﬁi_ﬁ;'!i;ﬁ' _

(c) 7L € D(D') is a semisimple complex; it is isomorphic to @y ﬁ;,!i;,E.

(c) is a special case of (b), for large 7. Assuming that (a) and the first assertion
of (b) are proved, we prove the second assertion of (b) as follows. Since both
complexes in question are semisimple (see 29.11 and 28.12(b)), it suffices to show
that they have the same P H7 for any j. Using (a) we see that 29.12(a) decomposes
into short exact sequences of semisimple objects in M(D’). Hence

PHI (wlkukiL) = PHI (7{ (ki ki, L) @ @D PHI (7L,

yie(y)=i

This proves the desired equality for ?H7 by induction on i. (The case where i = 0
is trivial.)

It remains to prove (a) and the first assertion of (b). By general principles,
we may assume that k is an algebraic closure of a finite field F,, that G, P, D
are defined over F, and that G is split over F,. By taking F, large enough, we
may assume that 29.12(a) and the isomorphisms in 29.11(a),(b) are realized in the
category of mixed complexes with £ pure of weight 0. Now I_(B,yOL in 29.11(b) is
pure of weight 0 (by Deligne’s theorem [D] 6.2.6]) since it is a direct image under
a proper map of ¥°£ which is pure of weight 0; after applying to it [[—d(y)]], it
remains pure of weight 0; see [BBD] 6.1.4]. Hence by 29.11, ﬁ;!(i;Z) is pure of
weight 0; it follows that

(d) @y;c(y):iij(ﬁ;!i;E_) is pure of weight j.

We now show by induction on i that P H (71 kyk} L) is pure of weight j for any i. For
i = 0 this follows from (d). If we assume that this holds for ¢ — 1 where ¢ > 1 then
the statement for ¢ follows from the statement for ¢ — 1 and 29.12(a) (using (d));
we also use the following fact: if K1 — Ko — K3 is an exact sequence of mixed
perverse sheaves with K1, K3 pure of weight j, then K5 is pure of weight j. Using
[BBD), 5.4.4] it follows that 7{kak; L is pure of weight 0. Using the decomposition
theorem [BBD), 5.4.5, 5.3.8] it follows that 7ik;k} L is a semisimple complex. The
vanishing of § in 29.12(a) follows from the fact that § is a morphism between two
pure perverse sheaves of different weights. The lemma is proved.
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Proposition 29.14. In D(D') we have resh (K% LY o @D, K% yOL[[ d(y)]] where
y runs over all sequences satisfying 29.2(a) such that {i e [1 r], 5 =1} C Js and

Si, t are defined in terms of y as in 29.3. In particular, resg (KBL) is a direct sum
of shifts of character sheaves on D'.

From the definitions we have resB (K%%) = /L. (We ignore the Tate twist (a).)
The result follows from 29.13(c) and 29.11.

Proposition 29.15. Let A be a character sheaf on D. Then resh A € D(D') is a
direct sum of shifts of character sheaves on D’.

We can find s, £ as in 29.2 such that A 4 K$*. Using 28.12(b) we see that
for some j € Z, A[—j] is a direct summand of I_(]SD’L. Hence resB A[—j] is a di-
rect summand of res D/(K' S’E), which is a semisimple complex by 29.14. It follows
that resh A is a semisimple complex. Now PH’(resP A) is a direct summand of

PHHI (resh (KSDL)) which, by 29.14, is a direct sum of character sheaves on D’.
Hence PH Z(resB'A) is a direct sum of character sheaves on D’. This completes the
proof.

30. ADMISSIBILITY OF CHARACTER SHEAVES

30.1. In this section we fix a connected component D of G. We write e : W — W
instead of ep : W — W (see 26.2).

Lemma 30.2. Let H = DZgO x GY. Let A be a simple perverse sheaf on D which is
cuspidal (see 23.8). Assume that there exists n € Ny, such that A is equivariant for
the H-action (z,x) : g — xz"gx~1 on D. Let Z = suppA, m = dim Z. There exists
a unique pair (S, E) where S is an isolated stratum S of D and & is an irreducible
cuspidal local system & € S(S) (up to isomorphism) such that A|—m] = IC(S,€)
extended by 0 on D — S.

The intersections of Z with the various strata of D form a finite partition of Z
into locally closed subsets. Since Z is irreducible, one of these intersections is open
dense in Z. Thus there exists (L,S) € A such that S C D and Y7, ¢ N Z is open
dense in Z. Let P be a parabolic of G° with Levi L such that S ¢ NgP. Let
a = dim Up. We can find an open dense smooth subset V' of Z and an irreducible
local system &£ on V such that A = IC(Z, £)[m] extended by 0 on D — Z. Replacing
if necessary V,€ by V. NYL s,Evny, s, we may assume that V' C Yz s. For any
h € H, the h-translate "V of V is an open dense smooth subset of Z. Hence
V' =U, "V is an open dense smooth subset of Z. Since V C Y. s and Y g is
H-stable, we have "V C Yy g for h € H hence V' C Yz s. Now A’ = A[-m]|v
is an H-equivariant intersection cohomology complex on V’ such that A’|y is a
local system and A’|.y is automatically a local system for any h € H. Since
U, "V is an open covering of V', we see that A’ is a local system on V. Replacing
V,E by V', A’, we see that we may assume in addition that V is H-stable and
£ is an H-equivariant local system on V. Define f : G° x (V. N S*) — V by
(y,9) — ygy~'. Then f is surjective since V C Yz, s. Moreover, f is a principal
bundle with group I' = {x € NgoL; xSz~ = S} which acts on G° x (V N S*) by
x: (y,9) — (yz~1 zgz~t). (We show this only at the level of sets. It suffices to
show that, if (y,g), (v, g’) are elements of V' N .S* such that ygy~! = y'¢g’y' !, then

the element z = ¢/ 1y € GO satisfies tLa~! = L,xS2~" = 5. We have zgz~! = ¢'.
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Since g € S*, g’ € S*, we have L = L(g) = L(g’) (see 3.9) and L(g’) = xL(g)x1,
hence zLz~! = L. Since xSz~ !, S are strata of NgL with a common element g,
we must have xSz~! = S, as required.) Since V is irreducible and T is of pure
dimension dim L, it follows that ¥V N .S* is non-empty, of pure dimension m — 2a:
we have

dim(V N S*) + dimG® = dimV + dimT = dim V + dim L = m + dim G° — 2a.
Let g € VN S*. Let U’ be the orbit of g under Up-conjugation. Since U’ is an
orbit of an action of a unipotent group on an affine variety, U’ is closed in D. We
have U’ C gUp. (Indeed if x € Up, then gz~ = g(g~'zg)z~! and g~ 'xg € Up
since g € NgP.) The isotropy group Up,q of g in Up is contained in

UpnN Zg(g) cUpnN Zg(gs) cUpn Zg(gs)o

(the last inclusion follows from 1.11). Since g € S*, we have Zg(gs)® C L hence
Upy C UpNL = {1}. Thus, Up, = {1}. We see that dimU’ = dimUp. Since
U’ is closed in gUp, we have U’ = gUp. Since V is stable under Up-conjugation
and U’ is the Up-orbit of g € V, it follows that U’ € V. Thus, gUp C V. Now
E|gup 1s a Up-equivariant local system (for the conjugation action of Up which
has trivial isotropy group). It follows that &|,y, = Qf for some ¢ > 1. Hence
H2%(gUp, ) # 0. Equivalently, Hf“’*m(gUp, A) #0.

For any i € Z, we denote by X the set of all Up-cosets R in NpP such that
Hi(R, A) # 0. Then, for any g € V N S*, we have gUp € X2¢~™. The map

Vns* — NDP/Up,g — gUp
is injective: if g,¢g’ € V. N S* and gUp = ¢'Up, then
gilgl S (ngﬁ NgL) NUp = {1}
(see 1.26), hence g = g’. We see that dim X2~™ > dim(V NS*) hence dim X2¢~™ >
m — 2a. Thus,
dim(suppH2* " (resB A)) > m — 2a
where D’ = NpPN NpL. If P # G°, then our assumption that A is cuspidal gives
dim(suppH?*~ " (resB A)) < m — 2a,

a contradiction. Thus, P = G% L = G° and S must be an isolated stratum of D,
so that Y7, ¢ = S. Since V' is H-stable, contained in S and S is a single H-orbit, it
follows that V' = S and & is an H-equivariant local system on S, that is, £ € S(S).
Using 23.3(a), we see that £ is a cuspidal local system. The lemma is proved.

30.3. For J C I such that e(J) = J, let
V]’D = {(P,gUp);P €ePs,gUp € NDP/UP}.

Let Py € Py. Since ¢(J) = J, NpPy is a connected component of NgPy and
Dy = NpPy/Up, is a connected component of NgPy/Up,. Consider the diagram

.D()<i GO XDOLVJ,D

where a(z,gUp,) = gUp,,b(z,gUp,) = (xPx~ !, 292U, py—1) with x € G, g €
NpPy. Then a, b are smooth morphisms with connected fibres; more precisely, b is a
principal Py-bundle where Py acts on G x Do by p : (z,gUp,) — (xp~t, pgp~Up,).
Let Ag be a perverse sheaf on Dy equivariant for the conjugation action of Py/Up, .
Then a* Ay = b* A} for a well-defined perverse sheaf A2 on Vj p.
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30.4. For any J C J' C I such that e(J) = J,e(J') = J' let V; 5 p be the variety
consisting of all pairs (P, gUg) where P € P;, gUg € NpP/Ug and Q is the unique
parabolic in Pj such that P C ). We have a diagram

Vip < Viyp 4, Vi b
where ¢(P, gUq) = (P,gUp),d(P,gUqg) = (Q, gUq). Define
f1.00:DVip) = D(Vyp),é5.00 : D(Vyr.p) — D(Vip)
by fJ7J/A =dic*A,é5 0 A = ad*A’. Define
fr0 :DWVyp) = DWVy p)esy : DVy p)—DVip)

by f]’J/A = fJ’]/A[Oé] = d!C*A,GJ’]/A/ = éJ’]/A/[Oé](Oé) where a = dnnPJ —
dim Py

Let Py € Py, P} € Py be such that Py C PJ. Let Dy = NpPy/Up,, D}, =
NpPy/Up;. We have a = dim Up, — dim Up;. We show:

(a) If A € M(Vyp) is of the form A = A} where Ay is a direct sum of admissible
simple perverse sheaves on Dy, then A’ := f; ;A is of the form A}’ where A} =

indgg A is a direct sum of admissible simple perverse sheaves on Dj,. In particular,
fJJ/A € M(V]/’D),

We have a commutative diagram

Dy - Vi . Va

e

1xr 1xs 1xt
GO x Dy +—— G x V; —— G x V —— G° x D

] [

C
Vip Viyo,0o —— Vi D

Here

= Pé/Upé X NDP()/Upé,

Vo = {(P,gUpé);P ePy,PC Pé,g S ]\IDID}7

b is as in 30.3, b’ is the analogous map (with Py replaced by Fj),

a,j, h,a’,r t are given by the second projection,

s(p'Upy,gUp;) = (0 Pop’ ", p'gp’ ~'Up;) where p’ € Pj,g € NpPy,

k(xz, P,gUp/) = (xPx’l,xgx’lpréx_l) where 2 € GO, (P, gUp:) € Va.
All morphisms in this diagram (except ¢, 1 x ¢, d) are smooth with connected fibres.
Moreover, s,b,k,b’ are principal bundles with group Py/U pys Po, Fy, Pj. We may
assume that Ag, A are simple. There is a well-defined simple perverse sheaf A; on
V5 such that r* Ay = s¥ A;. We have A} = t14;. Using the commutativity of the
diagram above we see that h* A; = k*(c* A). Since the squares (h,t,1 x t,a’) and
(1 x t,b',k,d) are cartesian, we have (1 x t)|h*XA; = a'*Ag, (1 x t)1k*(c*XA) =
V*d(c*XA) = b'*A’. Tt follows that a’* Ay = b’*A’. From 27.2(d) we see that
A = indgéAo is a direct sum of admissible simple perverse sheaves on D{. Hence
a’* Ag = b'* A’ is a direct sum of simple perverse sheaves on G° x D). Hence A’ is
a direct sum of simple perverse sheaves on V, p. This proves (a).

We show:
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(b) Let Co be a P}/Up,-equivariant simple perverse sheaf on Dfy and let C = Cj
be the corresponding simple perverse sheaf on Vy p. Then for any i € Z we have
PH(es ;C) = (”Hi(rengC'o))b (equality of perverse sheaves on Vi p).

/
0
We have a commutative diagram

Dy <f— V3 — Dj

d d |
GO x Dy < g0 x v X, G0 x Dy

e

c d
Vip «—— Voo —— Vpop

where a,b,a’, b, c,d are as above, V3 = NDP()/Upé, f, f" are the obvious maps, v is
the second projection and

m(xz, pUpy) = (xPoz™ ", zpz™ Uypprp—1).

From this commutative diagram we see that v* f*Co[dim Up;] = m*d*C (we use
that b"*C = a'*Co[dim Upy]). Since the squares (f',a,1 x f',v) and (v, f,1 x f,a’)
are cartesian, we have

a"fi(f*Co) = (L x f)w*(f*Co),b"aid"C = (1 x f')m™(d"C),
hence a* f{(f*Co)[dim Up;] = b*c1d*C. Thus,
1 Co)(—=a)[dim Upy] = b" (e 1,5 C)[-al(—a).

a*(resgé
Hence a* (resgz Co)[dim Up,] = b* (e, ;:C) and b* (e ;. C) = a*(resgz Cy),
PH'(b* (4,5 C)) = PH' (a* (resp? Cy)).
Using this and [L3], I, (1.8.1)], we have
V¥X(PH (e s 5 C)) = a*(pHi(rengCo)) = b*((pHi(resggCo))b).
Since B* is fully faithful [L3} I, (1.8.3)], we deduce the required equality P H’(e s, C)
= (PH'(resp;Co))’.
Lemma 30.5. Let A€ D(V;p),A' € D(Vy p). We have
Hompv, ,)(es,r A", A) = Homp(y,, ) (A, f7.0A).
Using the fact that d is proper (hence d. = di) and that ¢ is an affine space

bundle with fibres of dimension a (hence ¢'A = ¢*A[2a](a)), we have
Hom(cyd* A'[o](a), A) = Hom(d* A'[a](e), ¢! A) = Hom(d* A'[a](a), ¢* A[20)(c))
= Hom(d*A’, ¢* Ala]) = Hom(A', d.c* Ala]) = Hom(A', dic* Ala]).
The lemma is proved.
Theorem 30.6. Let A be a character sheaf on D.
(a) Let Py be a parabolic of G° such that NpPy # () and let Dy = NpPy/Up,,
a connected component of NoPo/Up,. Let Ay be a character sheaf on Dy. Then
indp, A € M(D).
(b) Let Py, Dy be as in (a). Then resh® A € D(Dg)=°.
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(¢) Let Py, Do be as in (a). Let Ay be a character sheaf on Dy. Then
HomD(DO)(resgoA, Ay) = Homp(py(A, indgoAl).
(d) There exist Py, Do as in (a) and a cuspidal character sheaf Ay on Dy such

that A is a direct summand of indgoAl.
(e) A is admissible.

If GO = {1}, the theorem is obvious. Assume now that dim G > 0 and that the
theorem is true when G is replaced by a reductive group of dimension < dim G.
The proof of the theorem for G assuming this inductive assumption is given in
30.7-30.11.

30.7. We show that 30.6(a) holds for G. If Py = G°, we have D = Dy, indBOAl =
Ay and the result is obvious. Assume now that Py # G°. By 30.6(e) for No Py /Up,,
A; is admissible on Dy. Using 27.2(d) we see that indgO Ay € M(D), as required.

30.8. We show that 30.6(b) holds for G. If Py = G°, we have resh°A = A €
M(Dy). Assume now that Py # G°. Let J be such that Py € P;. We identify
V1,0 = D in the obvious way. We show:

(a) PH'(ej1A) = 0 for i > 0.
Assume that this is not so; let i be the largest integer such that PH(e;1A) # 0.
Then i > 0 and there exists a nonzero morphism e;3A — PH'(e;1A)[—i]. Using
30.5 we deduce that

Homp p) (A, f11(PH' (e514)[~i])) # 0.
Using 30.4(b) we have

f11(PH' (e114)) = [11(("H' (resp’ A))’).
By 29.15, PH'(resB° A) is a finite direct sum of character sheaves on Dy hence,
by 30.6(e) for NgPy/Up, it is a finite direct sum of admissible complexes on Dj.
Using 30.4(a), we see that C' := f1((PH'(resD’A))?) € M(D). Thus we have
Homppy(A, Cl—i]) # 0 with A,C € M(D),i > 0. This contradicts [L3), II, 7.4].
Thus, (a) holds.

Using (a) and 30.4(b) we see that for i > 0 we have (PH’(res5° A))” = 0, hence

PHi(resb° A) = 0. Tt follows that resb’ A € D(Dy)=C. Thus, 30.6(b) holds for G.

30.9. We show that 30.6(c) holds for G. If Py = G, the result is obvious. Assume
now that Py # G°. Let J be as in 30.8. By 30.6(e) for NgPy/Up,, A; is admissible
on Dy. Let A% be the simple perverse sheaf on Vs p corresponding to A; as in 30.3.
From 30.4 we have

(a) indg0 Al = fJ’IA?, a*eJ,IA = b*resgoA,

where a, b are as in 30.3. We have
HomD(DO)(resgoA, A) = Homp(goxDO)(b*resgoA, VX A;)
= HOmD(GOXDO)(a*e]’IA, a*A%) = Homop (v, »)(es14, AY)
= Homp(p)(4, fJJAﬁ) = Homp(p)(4, indgoAl);

the first equality comes from [L3] I, (1.8.2)], and 30.6(b); the second equality comes
from (a); the third equality comes from [L3, I, (1.8.2)], and 30.8(a); the fourth
equality comes from 30.5; the fifth equality comes from (a). We see that 30.6(c)
holds for G.
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30.10. We show that 30.6(d) holds for A. If A is cuspidal, we can take P =
G° A, = A and the desired result holds. Thus, we may assume that A is not
cuspidal. Then there exist Py, Dg as in 30.6(a) such that P # G° and resb° A[—1] ¢
D(Dy)=0. Then P H'(resD° A) # 0 for some i > 0. By 30.6(b) we have ? H (resH° A)
=0 for all j > 0. It follows that PH°(resD°A) # 0 and there exists a non-zero
morphism res5° A — P HO(res5° A) in D(Dy). Since P HO(res5 A) is a direct sum of
character sheaves on Dy (see 29.15) it follows that there exists a character sheaf A
on Dy and a non-zero morphism resh’ A — Ay in D(Dy). Using 30.6(c) it follows
that there exists a non-zero morphism A — indgoAg in D(D). By 30.6(a) this is
a non-zero morphism in M(D). This must be injective since A is simple. By the
induction hypothesis, A, is a direct summand of a complex of the form indg‘l)Ag
where D1 = Np,Q/Ug, Q is a parabolic of N¢P/Up such that Np,Q # () and As
is a cuspidal character sheaf on D;. By the induction hypothesis, A3 is admissible.
By the transitivity property 27.3(a) we have indg0 (indg?Ag) = indglAg. Since
indg0 commutes with direct sums, we see that indgoAg is a direct summand of
indglAg. Hence A is isomorphic to a subobject of indglAg. From 27.2(d) we see

that indglAg is a semisimple perverse sheaf hence A is a direct summand of it.
Thus, 30.6(d) holds for G.

30.11. We show that 30.6(e) holds for A. Assume first that A is cuspidal. Then
A is admissible by 30.2, which is applicable in view of 28.15(a) with J = I. Next
assume that A is not cuspidal. Then, by 30.6(d) and its proof, we see that there exist
Py, Dy as in 30.6(a) and a cuspidal character sheaf A; on Dy such that Py # G° and
A is a direct summand of indg0 A;. By the induction hypothesis, A; is admissible.
Using 27.2(d) we see that A is admissible. Thus 30.6(e) holds. Theorem 30.6 is
proved.

Corollary 30.12. Let J C I and let X be a parabolic character sheaf on Zjp (see
§26). Then X is admissible in the sense of 26.3.

By [L10, 4.13] we have X = A where A is obtained from some t,C, A as in 26.3
except that A is a character sheaf on C' instead of being an admissible complex on
C. However, by 30.6(e), A is automatically admissible on C hence A is admissible
on Zj p, by the definition in 26.3.

31. CHARACTER SHEAVES AND HECKE ALGEBRAS

31.1. In this section we show that the restriction functor studied in §29 takes
a character sheaf to a direct sum of character sheaves (Theorem 31.14). In the
connected case this result appeared in [L3] I, §6] with a proof based on a connection
of character sheaves with Hecke algebras. The present proof in the general case is
an extension of the proof in [L3, I, §6], taking also into account the approach given
later by Mars and Springer [MS] §9].

31.2. Until the end of 31.13 we fix n € Nj.. We write s,, instead of s,(T). Let s,
be the set of isomorphism classes of objects in s,,. We have canonically
s, = Hom(y, (T), Qf)

(notation of 5.3). Thus |s,| = n¥™T < co. Now W* acts on 5, by a : A — a)
where A is the isomorphism class of £ € s, and a) is the isomorphism class of
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(a=Y)*L € 5,,. For A € 5, we set W = W, (see 28.3) where ) is the isomorphism
class of £ € s, (this is independent of the choice of L).

Let A = Z[v,v~1] where v is an indeterminate. We now introduce an associative
A-algebra H,,. (In Part VII it will be shown that H,, is closely related to the algebra
of double cosets of a finite Chevalley group with respect to a maximal unipotent
subgroup, studied in [Y].) We define H,, by the generators Ty, (w € W), 15x(A € 5,,)
and the relations

1,1y =1, for A € S, 1,1y =0 for A 75 N in S,

TwTw = Ty for w,w' € W with I(ww') = I(w) + I(w'),

Twly =101y forwe W A €es,,

T? = 02Ty + (v? - 1) E)\;SGWA T,1y for s €1,

Ty =3, L.

Note that 77 = Z)\ 1, is the unit element of H,, and that

(a) {Twlx;w € W X €5, } is an A-basis of H,.

In the case where n = 1, H,, is just the Iwahori-Hecke algebra attached to W and
the proof of (a) is standard (see for example [L12, 3.3]). The proof in the general
case is quite similar. Consider the free A-module M with basis

{IN,w, \; N €5,,,w e W,w\ =X}

If (a) is true, then M may be identified with H,, so that [\, w, A\] € M corresponds
to Twlx = IxTy € Hpj; hence M is naturally an (H,, H,) bimodule. Conversely,
if we can make M naturally into an (H,, H,) bimodule, then (a) can be easily
deduced. For any s € T we define A-linear maps m +— Tym and m — mTs of M
into itself by

TN, w, A = [sN, sw, A] if I(sw) = l(w) + 1,

Ts[N,w, A] = v2[sN, sw, A] + (v — 1)[sN,w, \] if [(sw) = l(w) — 1,8 € W/,

Ts[N,w, N = v2[sN, sw, \] if [(sw) = l(w) — 1,5 ¢ W,

N, w, \|Ts = [N, ws, sA] if l(ws) = (w) + 1,

N w, \Ts = 02N, ws, sA] + (v2 — 1)[N,w, s\] if [(ws) = l(w) — 1,5 € Wy,

N, w, \[Ts = v2[ N, ws, s\ if l(ws) = l(w) — 1,5 ¢ Wy.

For any NS s,, we define A-linear maps m +— 15m,m — ml5 of M into itself by

15\[)\/, w, )\] = 55\’)\/ [)\’, w, )\], [)\/, w, )\]15\ = 55\’)\[)\/, w, )\].

One shows that this defines an (H,,, H,) bimodule structure on M. We omit further
details.

Remark. In [MS| 3.3.1] an algebra structure on M (with A restricted in a fixed
W-orbit) is considered which is similar to the one above, coming from H,, but
differs from it in the following way: for s € I and X such that s ¢ Wy, [sA, s, \]?
is equal, in our definition, to v?[s), 1, A], while in the definition of [MS] it equals
[sA, 1, A].

31.3. We return to the general case. For s € I, T is invertible in H,,; we have
T7 =0 ?To+ (v 2 -1) > 1,
A SEW )
Moreover,
T =02+ (02 =1) Y T ML
A sEW )
It follows that T, is invertible in H,, for any w € W and that

Ty__llTUj_l1 = T(;q}u)_l it y,w € W, l(yw) = l(y) + I(w).
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For any w € W, A € 5, we have T;_llb\ = 1w/\T7;—11- Hence there is a unique ring
homomorphism ~: H,, — H,, such that T,, = Tuj,ll for all w € W, v1y = v~ ™1,
for all A and all m € Z. Note that:

(a) The square of : H, — Hy, is 1. In particular,” is an isomorphism of rings.
Indeed, the generators v, v, T,,(w € W) and 1, () € 5,,) are mapped to themselves
by the square of ~.

31.4. For any D € G/G°, the assignment 1y +— 1py, Ty — T, (w) defines an
automorphism of the algebra H,, denoted by h — ap(h). Let H, be the free left
H,-module with basis {[D]; D € G/G°}. We regard H, as an associative A-algebra
with unit 1 = [G°] such that (h[D])(k'[D']) = ha’, (W' )[DD'] for h,1' € H,,,D,D’ €
G/G°. We have ap(h) = [D]h[D]~! in H,,. Define a group involution : H,, — H,,
by h[D] = h[D] where h € H,, D € G/G° and~: H,, — H,, is as in 31.3. Then
~ H,— H,isa ring involution (we use the fact that™: H,, — H,, commutes with
CLD).

31.5. For s e TU{1},\ € 5, we set
C)S\ = (TS +u)1>\ = ].S)\(TS —l—u) € H,,
whereu =1if se WynNnIand u=0if s ¢ W) NI We have

(a) Ci=v2Csifsel, ClL=Cl.
If s = (s1,82,...,5-) is a sequence in TU {1} and A € 5,,, we set
Ci = (Cjzls,)\)(cjg?&)\) e (C§7) S HYL

One checks that
(b) the A-module of H,, is generated by the elements C§ with s, A as above.

31.6. If A is a simple perverse sheaf on an algebraic variety V and K is a perverse
sheaf on V', we write (A : K) for the multiplicity of A in a Jordan-Holder series of
K.
If k is an algebraic closure of F,, V has a fixed F,-rational structure and K is
a mixed complex on V', we denote by ”H]@(K ) the j-th subquotient of the weight
filtration of PH*(K) so that ”H]@(K) is a pure perverse sheaf of weight j; for A as
above, we set
Xo () = (1) (A: PH}(K))’ € A.
,J
We return to the general case. In the remainder of this section we fix a connected
component D of G. We write e : W — W instead of ep : W — W. Until the end
of 31.9, J denotes a subset of I and A denotes a fixed parabolic character sheaf on
ZJ7D. For
(a) A € 5,, and a sequence s = (s1,52,...,5,) in TU{1} with s152...5.DA = A,
we set
i 1-s,L j
7(s) = Z(A :PHY (K p))(—v) € A
JEZ

where L € s, is in the isomorphism class .
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Proposition 31.7. Let ¢o = dim G/Uqg where Q € Py. There is a unique A-linear
map ¢4 : H,[D] — A such that for any \ € s,, and any sequence s = (s1, 52, ..., 5,)
in TU {1} we have

CA(CSQ)\[D]) = v_co'yf(s) if $182...8. DX\ = ),
CHCHAID]) =0 if s182... 5, DX # .

Let X be the free A-module with basis [X,s, A] where s = (s1,82,...,8,) is a
sequence in TU {1} and A\, ) € s, are such that s;sa2...s,DA = X. Define an
A-linear map b : X — H,[D] by b[X,s,\] = C},[D]. Define an A-linear map
V:X — Aby V'[N,s,A] = v (s) if N = X, b/[N,s,A\] = 0if X' # A. Since b is
surjective (see 31.5(b)) we see that it suffices to prove the following statement.

(a) If € € ker(b), then & € ker(b').

By a standard argument [BBD, §6], to prove (a), we may assume that

(b) k is an algebraic closure of a finite field ¥y with ¢ —1 € nZ, G has a fizved
F-structure with Frobenius map F : G — G which induces the identity map on W
and on G/G° and the map t — t? on T.

Then each £ € s,, may be regarded as pure of weight 0 and each Kﬁ’g, Kﬁ’s’, K’fg
(as in 28.13) may be regarded as a mixed complex on Zjp. Define an A-linear
map (4 : H,[D] — A by

CH(TwlpalD)) = v X (KYp), if wDA = ),
M (Twlpa[D]) = 0 if wDX # A

where L € s, is in the isomorphism class .
Let A\, L,s,r be as in 31.6(a); we will show that

(c) X (KSE) = vl Ty, T, . .. Ty, 1pA[D)),

(d) X (K55) = voCA (Ch D).
We prove (c¢) by induction on r. We may assume that s; € I for all ¢. If r = 0, we
have K jg =K }g and the result is clear; we have

X (K575) = v ¢ (1pa[D)).
Assume that r > 1. Assume first that [(s1s2...s,) = r. Using 28.13(a) repeatedly
we have Kjg = KY}UDL where w = $182...8,. Then the right-hand side of (c) equals

v0CA(Tylpy); the result follows. Assume next that I(siss . ..s,) < r. We can find
j € [2,r] such that s;...s,_1s, is areduced expressionin W and s;_15; ... Sp—15, is
not a reduced expression. We can find s%,...,s;._q, s, in I such that s}...s,_;s,. =

Sj...Sp—18, and s;- = s;_1. Let

/ / /
U= (51,52, ,8j—1,8],+++15._1,5.)

As in the proof of the implication (v) = (i) in 28.13 we see that Kjg = K};é

Hence
L L
Xf(Kj,D) = Xf(K};,D)'
Moreover, both the right-hand side of (¢) and the analogous expression obtained
by replacing s by u are equal to

vl (T, ... Ty, Tsys;41...5, 10A[D)).
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Hence to prove the lemma for s it suffices to prove it for u. Thus we are reduced to
the case where s; = s;_1. In this case we will use the notation in 28.13(d),(e),(f).
If j ¢ Js, then from 28.13(f) we have Xf(K;g) = v2xf(Kj:/bL). In this case we
have
Toyy ToyLsyinsDrn = VP Ls; s, DA
since s; ¢ W s.Dx- Hence the right-hand side of (c) is equal to

Sjt1--

T

Sj+1

T

Sj+2

QUCO EA ( . Tq] )

Terlm[D])

which by the induction hypothesis is equal to v? ] (K ). Thus, (c) holds in this
case.
If j € Js, then from 28.13(d),(e) we have

s, L s L s’ L ~ s’ L
Xf(KJ,D) = xi (L) + v*x; (KJD ), v (KJD) Xo (mu L) + Xf(KJ,D ).

(Indeed since the weight filtrations are strictly compatible with morphisms [BBD|
5.3.5], the exact sequences 28.13(d),(e) remain exact when each P H® is replaced by
its pure subquotient of a fixed weight.) It follows that

s, L s L s'.C
Xo (K55) = Vx4 (K5 ) + (v = Dx{ (K5 ).
Using the induction hypothesis for s, s’ we see that

VXIS ) + (08 = Dy (K5 5) = v?u (T, o T, T, T, 1A [D))
+ (02 = D)ool MNTy, ... T, T, Ty 1px[D)).

Sj41

Substituting here
KUQ]-S]JA.A.S,,.Q)\ + (UQ - ]-)Tsj-,l 1SJ+1.A.S,.D)\ - TSJ 1T 1SJ+1.A.S,,.Q)\

which holds since s;_1 = s; € Wy, s, px, We see that v%&?(K}bﬁ) + (v? -

1)XA(KJD£) is equal to the right-hand side of (¢). Thus (c) holds.
We prove (d). We will use the notation in 28.13(b). Using 28.13(b) we get

X @ i) L) = X @ T YO+ YD xS
JCTs3| T =i
for any i. Summing these equalities over all i > 0 we find

s[, A s7,L
JCJTs

We now use (c) for each sz in the last sum. We see that Xf(f(;g) is a sum of 2%
terms (each term is v times a product of basis elements of H,, times [D]) where
k = |Js|. Clearly, the right-hand side of (d) is the sum of the same 2* terms. This
proves (d).

As in the proof of 29.14, K’j:g is pure of weight 0, hence pHi(Ki’ﬁ) equals
pHi(ijﬁ) if i = j and equals 0 if i # j. It follows that x: (KSL) 3 (s),
hence (d) implies '[\,s,\] = EA(CSQ)\)[D]) = C4(c[\ s, A]). Clearly, ¥'[N,s,\] =
CA(BIN, s, A]) if A # X (both sides are 0). We see that ' = (4 ob. Hence (a) holds.
The proposition is proved. The previous proof shows also that

(e) (A=A HL D) — A
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Lemma 31.8. Let Hj, be the subalgebra of Hy generated as an A-submodule by
{Twly;w € Wy, X\ € 5,}. For any h € Hy,,h' € H, we have (*(hh'[D]) =
¢H(I'[D]h).

By 31.5(b) and its analogue for H;,, we may assume that h = aq...ap_1,
W =apaptq ... a, where

_ (s . _
a; = CsHl...spleX for i € [1,p — 1],

a; =C5l  pyfori€lp,r];
here s = (s1,82,...,8-) is asequence in I, 1 < p <r, s; € Jfori e [l,p—1]
and M, A €s,. If 5,...5.D\ # DX or s1...5, 1D\ # \, then ¢4(hh/[D]) = 0 and
¢A(W[D]h) = 0. Thus we may assume that D)\ = Sp...spDX and sq ... sp,lgj\ =

A. Then we have
a; = Csi

oti1.5nDA for i € [1,7]

and s$182...5.- DX = . Hence I_(?]g is defined (with £ € s, in the isomorphism
class ). Let
8" = (Spy Spt1s-- Sy €(S1)y .oy €(Sp_1)),
let N =5sp_1...51) and let £ € 5, be in the isomorphism class A’. Then
SpSpi1---Sr€(s1) ... €(sp—1)DN = X,

hence f(j:f is defined. Using 28.16(b) p — 1 times, we have f(?ﬁ = Kj:g/. Hence
v (s) = v{(s’). By 31.7, we have (*(aias...a,[D]) = (*(a\d...al[D]) with a;
as above and

! Spti—1 _ Spti-1 _ ]
a; = Cs,,+7¢...sre(sl...sp_l)Q)\’ - Cspﬁ-...s,,Q)\ = Qp4i—1
forie[l,r—p+1],
1 _ ve(Sioripo1) _ e(Sicrgp-1) _ , -1
a; = Ce(si,,,.+p...sp,1)Q)\’ - CQS,;_T+,,...STQ/\ - [D]a’l*Ter*l[D]

for i € [r —p +2,7]. We have therefore (A (hh/[D]) = (4(h’'[D]h). The lemma is
proved.

Lemma 31.9. Let ~ : A — A be the ring homomorphism such that vt = v=t for

all t € Z. For any h € H,, we have (*(h[D]) = ¢A(h[D)).

Using 31.5(b) we may assume that h = C§ where s = (s1, s2, . . ., 5) is a sequence
inTand )\ € s,,. Using 31.5(a) we see that h = v~2"h. Hence it suffices to show that
CA(R[D]) = v=2"¢A(h[D)). If s18...5.-DX # A, then (*(h[D]) = 0 and the result
is obvious. Thus we may assume that s1ss...s.DX = X so that I_(?]g is defined
(with £ € s, in the isomorphism class ). By 31.7 we have ¢4(h[D]) = v=v{(s).
Hence it suffices to show that

7(8) = 072" (s)
where m = r + ¢p. Using 28.17(a) we have
W(s) =D (—0) (A PHI(KTE)) = Y (—v) (A PHPI(K55))
J J
=D (=) A PHI(KS)) = v (s).
J

The lemma is proved.
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Lemma 31.10. Let I CLy€ TW, s €I\ €5,. We have

(a) T,C% = W) Z C;)\'Tyﬁ

Y1
here §(y) is 1 if ys < y,ys € I'W and is 0 otherwise; the sum is taken over all
y1 € W N {y,ys} such that

ys ¢ Wiy,yhn =y = s € Wy
t;1 € IU{1} is defined by ys = t1y if ys € Wiy and t1 =1 if ys ¢ Wry.

If s ¢ Wy, ys > y, then both sides of (a) are equal to Tys1x. If s ¢ Wy, ys <y,
then both sides of (a) are equal to v2Tys1y. If s € Wy, ys > y, then both sides of
(a) are equal to (Tys +Ty)1n. If s € Wy, ys < y, then both sides of (a) are equal
to v3(Tys + Ty)1x. The lemma is proved.

Lemma 31.11. Let [ C Ly € TW_ )\ €5, and lets = (s1, 52, ..., 5,) be a sequence
in I. We have
TyC§/ = Z 'U26(y)C;TA/T =
y

here the sum is taken over all sequences y = (Yo,%1,- - -, ¥yr) in TW such that y = yo
and y; € {Yi—1,yi—18:i} fori € [1,r], t = (t1,t2,...,t,) is the sequence in I U {1}
defined by yi—18; = tiyi—1 if yi—18: € Wry;—1 and t; =1 if y;_18; ¢ Wry;_1; these
are subject to the requirement

ie[Lrti=lyic1=yi = 5 € Wy 52
moreover,
(a) §(y) =4(i € [1,7]; yim18i < Yim1,¥i—15: € "W).
This follows by applying r times Lemma 31.10.

31.12. Until the end of 31.14 we fix D, P,L,G’, D’ as in 29.1. Let I C I be such
that P € P;. Since the Weyl group of L is naturally the subgroup W of W and the
canonical torus of L may be identified with T as in 29.1, we may identify Hy ,, (as in
31.8 with I instead of J) with the A-algebra defined in terms of L in the same way as
H,, was defined in 31.2 in terms of G°. Note that H,, is naturally a left H; ,,-module
(using left multiplication). This H; ,-module is free with basis {T,;y € TW}. (The
elements 37T, where 8 runs through {T,,1x;w € Wy, A € 5,} and y € W, form
the A-basis 31.2(a) of H,,.) Applying to this basis the ring involution~: H,, — H,
which restricts to an involution of H; ,, we see that {Ty__l1 ;y € TW} is again a basis
of the left H; ,,-module H,,.

Lemma 31.13. Let A € s,, and let s = (s1,82,...,8,) be a sequence in I such that
$182...8: DX = X. Let L € s, be in the isomorphism class X\. Let m = r + dim G.
For any j € Z we have

PHI (vesp (K355)) = PH*™ 7 (resp) (K35)).

Let = be the set of all pairs (y,t) where y = (yo, %1, .- .,¥:) is a sequence in W
such that y, = €(yo) and y; € {yi—1,yi—18:} for i € [1,7], t = (t1,ta,...,t,) is the
sequence in I U {1} defined by y;—18; = t;yi—1 if yi—18i € Wyy,—1 and t; = 1 if
yi—18; ¢ Wry;_1; these are subject to the requirement

i€ [Lrl,ti=1Lyi1 =y = 5 € Wg,, D
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Using 29.14 we see that it suffices to show that for any j we have
@ PHI2A0) (10L) o @ PE2m—i—2A) (K0,
(y,t)€E (y,t)€E

Here both sides are semisimple complexes (see 28.12); hence it suffices to show that
for any character sheaf A’ on D’ we have

Z (—v)j(A’ . p ppi—2d(y) (K—Bfoﬁ))
(v,t)€E;j)
= Z (—v)i (A PE2m=i=2d() (I—(th,’lyoz)).
(v,t)€E;)
or equivalently
024 ) Z (—v)! (A Py (Kt yog))
(v,t)€E;j)
_ ,U2m,—2d(y) Z (—’U) (A ij (Kt yO[,)).
(¥v,t)EE;)
Using 31.7 for G’, A’,t instead of G, A, s, we see that it suffices to show
Z CA (Ctgyo,\[D])vdim L,U2d(y) — Z CA/(CtoO/\[D])vdimLUQd(y),lP
(y,t)eE (y,t)€E

Here ¢4 : Hj ,[D] — Ais defined as in 3.7 for G, A’ instead of G, A. We substitute
d(y) = d(y) + dim Up with 6(y) as in 31.11(a), and use DyoA = y, D and dim L +
2dim Up = dim G; we see that it suffices to show

¢ (¥[D]) = (Y (VD)

where ¥ = E (y.t)€= C;TQ/\UQ‘S(Y) € Hy,,. We write the matrix of right multiplica-
tion by Cp, in H, (an Hj ,-linear map) in the Hy ,-basis {T,;y € TW}:
(a) T,Chr = Z Gy Ty

y'elw
where y € W and a,, € Hj,. Using 31.11 (with X = D)) we see that
Z Ay c(yy = ¥ where y runs over T ‘W. Hence it suffices to show that

QY e D) = ¢ (3 ay e [D))o?
y y
Using 31.9 (for G’, A’ instead of G, A) we see that
CA, (Z Ay e(y) [D]) = CA/ (Z Ay e(y) [D])
y y

Hence it suffices to show that

ZC (ay,e(yD ZC (@y,cm)! D))v?

Applying ~ : H, — H, to the equality (a) and using C’Q)\ = v (), (see the
proof of Lemma 31.9) we obtain

_27"T CD)\* Z ayy/Tj 1+

y' elW
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Since {T};y € TW}, {Tg_ll;y € 'W} are two Hy ,-bases of H,,, we have
-1 -1
T, = ch’y/Ty’*l’ T@F1 = Zd%y/Ty’
Yy’ Y’

where 3,7’ run over W and Cyy' Ay, € Hypn. For any y we have

—p—1 _ —2rm—1,vs _ =27 s
E ay’y/Ty,,l =v Ty,l CQ/\ =v E dy’yNTy//CQ)\
/ "

y y

__ 21 __ 21 -1

=v E dy,y E :ay’ﬁleyl =v E :dy,y” E Ay .y E cylvy,Ty’*l’
y// yl y// yl y/

hence

-_—  —2r
Oyy =V E Ay oyt 1y, Cyy
vy
for any y,v’. Hence it suffices to show that

Z CA/ (aym(y) [D]) = Z CA/( Z dy,y”ay”,ylcyl,e(y) [D]).
Yy Y YY1

By 31.8 (for G’, A’ instead of G, A) we have

CA (d%y”ay’ﬁylcyhe(y) [D]) = CA (ay’ﬁylcyhdy) [D]dy,y”)'
Hence it suffices to show that

ZCA/ (ay,e(y)[D]) = CA/( Z Ay’ g1 Cylvﬁ(y)[D]dy,y”)'
Y

v,y 91

We have
—1 —1 —
Y detyew Tewy = Tiyy-n = [DIT, L [D]7
yl

=Y [Dldy,y [D) M DITy [D]™F = Y " [Dldy,y D] Tey),
Y’ Y’
hence de(y),e(y) = [D]dy,,[D]~'. Hence it suffices to show that
(b) D M (g [P) = ¢V ayr gy e dey).cwn D).
y Y,y
from the definitions, Zy Cyr e de(y),e(yry 18 1 if y1 = €(y”) and is 0, otherwise.

Hence (b) holds. The lemma is proved.

Theorem 31.14. Let D, P,L,G’', D’ be as in 29.1. Let A be a character sheaf on
D. Then resB A is a direct sum of character sheaves on D'.

We can find £ € s(T) and a sequence s=(s1, S2, . .., S;) in I such that syss...s.D
€ W¢ and such that A is a direct summand of PH*(K) for some i € Z, where

K = K;C[m], m =7+ dimG. Let K’ = resB (K). For any i, let

K; =PH(K),K! = resD (K;).
For any character sheaf A’ on D', let b; ; = (A’ : PHI(K])), bj = (A’ : PHI(K)).
From 28.12(b) we have

PH(K') =" H (@D resp) (K)[—i]) = €D HI ™ (i),

i
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hence b; = )", b;j—;. Using 31.13, which is applicable since £ € s, for some
n € Ny, we get b; = b_; for all j, hence

(a) OZZij :Zjbi,j—i :Z(Z—f—])b%]
J ij i.J

From 28.17(a) we have K; = K_;. It follows that b; ; = b_; ; so that Z” ib;; = 0.
Introducing this into (a) we find >, ; jb;; = 0. From 28.12(b) and 30.6(b) we see
that b;; = 0 for all j > 0. Therefore, we have 3, .. jb;; = 0. Since jb;; <0
for all terms of the previous sum, we must have jb; ; = 0 for all 4, j. It follows that
b;; = 0 for j # 0. Since, by 29.15, PHI(K) is a direct sum of character sheaves, it
follows that P HI(K!) = 0 for j # 0. In other words, for any i, K| is a perverse sheaf
on D’ which is a direct sum of character sheaves. Since A is a direct summand of
K; for some i, we see that resB A is a direct summand of resP (K;) = K/, hence
resB/A is a perverse sheaf on D’ which is a direct sum of character sheaves. The
theorem is proved.

Corollary 31.15. Let A be a character sheaf on D. Then A is cuspidal (see 23.3)
if and only if it is strongly cuspidal (see 23.3).

We may assume that A is cuspidal. Let P, L, D' be as in 31.14 such that P # G°.
Since A is cuspidal we have ?H'(resP'A) = 0 for all i > 0. By 31.14 we have
PHi(resP A) = 0 for all i # 0. Hence PH'(resB A) = 0 for all 4. It follows that
resB/A = 0. Thus, A is strongly cuspidal. The corollary is proved.
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