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REALISATION OF LUSZTIG CONES

PHILIPPE CALDERO, BETHANY MARSH, AND SOPHIE MORIER-GENOUD

Abstract. Let Uq(g) be the quantised enveloping algebra associated to a sim-
ple Lie algebra g over C. The negative part U− of Uq(g) possesses a canonical
basis B with favourable properties. Lusztig has associated a cone to a reduced

expression i for the longest element w0 in the Weyl group of g, with good prop-
erties with respect to monomial elements of B. The first author has associated
a subalgebra Ai of U−, compatible with the dual basis B∗, to each reduced
expression i. We show that, after a certain twisting, the string parametrisa-
tion of the adapted basis of this subalgebra coincides with the corresponding
Lusztig cone. As an application, we give explicit expressions for the generators
of the Lusztig cones.

1. Introduction

Let U = Uq(g) be the quantum group associated to a semisimple Lie algebra
g. The negative part U− of U has a canonical basis B with favourable properties
(see Kashiwara [14] and Lusztig [18, §14.4.6]). For example, via action on highest
weight vectors it gives rise to bases for all the finite-dimensional irreducible highest
weight U -modules. The dual canonical basis B∗ of the positive part U+ has good
multiplicative properties. Two elements of B∗ are said to be multiplicative if their
product also lies in B∗ up to a power of q.

The first author has shown that for each reduced expression i = (i1, i2, . . . , iN )
for the longest element w0 (see § 2.2) in the Weyl group of g, there is a corresponding
subalgebra Ai of U

+, known as a standard adapted subalgebra, with basis given
by Ai ∩ B∗, consisting entirely of elements which are pairwise multiplicative. The
subalgebras Ai are q-polynomial algebras, i.e., algebras given by generators and q-
commuting relations, with GK-dimension N = l(w0). Note that adapted algebras
were introduced for the Berenstein-Zelevinsky conjecture and are connected with
the larger theory of cluster algebras [11].

By a Lusztig cone of U , we mean the cone Li ⊆ NN associated by Lusztig (see [19,
§16]) to each reduced expression i for w0. In [19] these cones arise naturally from
the linear term of a nonhomogeneous quadratic form associated to i which is used
by Lusztig to give a positivity condition for a monomial

(1.1) F
(a1)
i1

F
(a2)
i2

· · ·F (aN )
iN

to lie in the canonical basis. Here the Fi are the standard generators of U−.
Monomials of this form with (a1, a2, . . . , aN ) lying in the Lusztig cone corresponding
to i lie in the canonical basis in types A1, A2 and A3 [19], in type A4 [21] and in
type B2 [30]; see also [26]. Counterexamples of M. Reineke [26] and N. H. Xi [31]
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show that this fails in general in type A5. Recently, R. Bedard [2] has analysed the
quadratic forms associated to these monomials and, as an application, was able to
compute some interesting examples in types D4, A5 and affine A1.

Note that Lusztig cones are used to describe regular functions on a reduced
real double Bruhat cell of the corresponding algebraic group [32], they have links
with primitive elements in the dual canonical basis (this can be seen using [4])
and therefore with the representation theory of affine Hecke algebras [17], and they
are known to correspond to regions of linearity of the Lusztig reparametrisation
functions (see [10]).

Given a reduced expression i for w0, elements of the dual canonical basis can be
parametrised via the string parametrisation in direction i (see [4, §2], [15] and [24,
§2]), which we denote by ci : B∗ → Ci, where Ci ⊆ NN is known as the string cone
corresponding to i.

Our main result is that the set of string parameters (in direction i) of a certain
twisting of the standard adapted subalgebra of the dual canonical basis correspond-
ing to i coincides with the Lusztig cone corresponding to i. The twisting is done
with the help of the Schützenberger involution. This gives a realisation of all Lusztig
cones in terms of the dual canonical basis. It also implies that all Lusztig cones are
simplicial (generalising results of Bedard [1] and the second author [22]), and en-
ables us to give an explicit description of their spanning vectors; see Theorem 8.10.

The paper is organised as follows. Sections 1 and 2 give preliminary results
on quantum groups and the canonical basis, including its parametrisations asso-
ciated to a reduced word, and adapted algebras. In Section 4, we introduce the
Schützenberger involution φ and its action on the dual canonical basis. In Section
5, we recall some facts on geometric lifting of the canonical basis in order to give
a formula which describes φ in terms of the parametrisation of the dual canonical
basis. A remarkable property is that, with a good choice of parametrisations, the
action of the Schützenberger involution on the dual canonical basis is given by an
affine map.

In Sections 6 and 7, we apply the results from previous sections to describe
explicitly the twisted standard adapted subalgebra associated to a reduced word i,
in terms of i-string parametrisation. By the multiplicative property of the adapted
subalgebra and the “affine map” property, this can be provided by an N×N matrix
and a column vector. A combinatorial argument, together with the known PBW-
parametrisation of the adapted basis of a standard adapted subalgebra, allows us to
prove the main theorem: in Section 8, we realise the Lusztig cones in terms of the
string parametrisation of twisted standard adapted subalgebras. As an application,
we give an explicit formula for the generators of the cones.

2. Notation and preliminaries

2.1. Let A = (aij)1≤i,j≤n be the Cartan matrix of a finite dimensional semi-simple
Lie algebra g over C. Let g = n− ⊕ h⊕ n be a triangular decomposition, where h is
a Cartan subalgebra and where n−, n are opposite maximal nilpotent subalgebras
of g. Let {αi}i be the set of simple roots of the root system Δ resulting from this
decomposition. The set of positive roots is denoted by Δ+.

Let P be the weight lattice generated by the fundamental weights �i, 1 ≤ i ≤ n.
Set P+ :=

∑
i Z≥0�i, endowed with the ordering

∑
i λi�i ≤

∑
i μi�i ⇔ λi ≤ μi.

The Weyl group W is generated by the reflections si corresponding to the simple
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roots. We denote by 〈 , 〉 the W -invariant form on P ; we have aij = 〈αj , α
∨
i 〉 for all

i, j, where the α∨
i ’s are the simple coroots.

For n a nonnegative integer and α a positive root, we set qα = q〈α,α〉/2, [n]α =
qnα−q−n

α

qα−q−1
α

, [n]α! = [n]α[n− 1]α . . . [1]α.

2.2. Let W be the Weyl group of g, with Coxeter generators s1, s2, . . . , sn and
corresponding length function. An expression si1si2 · · · sim for an element of w is
called reduced if it is of minimal length; we identify such an expression with the
tuple i = (i1, i2, . . . , im). Set N := dim n. It is known that N is the length of the
longest element w0 of the Weyl group. Let R be the set of reduced expressions for
w0.

Fix i in R. Let Li be the set of points (c1, . . . , cN ) ∈ ZN
≥0 with the following

property : for any two indices p < p′ in {1, . . . , N} such that ip = ip′ = i and iq �= i
whenever p < q < p′, we have

cp + cp′ +
∑

p<q<p′

aip,iqcq ≤ 0.

The cone Li is the so-called Lusztig cone associated to the reduced expression
i. This is defined in [19, §16] for the simply-laced case. We use here a natural
generalisation to the general case which also appears implicitly (for type B2) in [30].

2.3. Let d be an integer such that 〈P, P 〉 ⊂ (2/d)Z. Let q be a indeterminate and
set K = C(q1/d). We define the simply connected quantised enveloping K-algebra
Uq(g) as in [12]. Set di = 〈αi, αi〉/2 and qi = qdi for all i. Let Uq(n), resp. Uq(n

−),
be the subalgebra generated by the canonical generators Ei := Eαi

, resp. Fi := Fαi
,

of positive, resp. negative, weights, subject to the quantum Serre relations. For
all λ in P , let Kλ be the corresponding element in the algebra U0

q = K[P ] of the
torus of Uq(g) and Ki := Kαi

. We have the triangular decomposition Uq(g) =
Uq(n

−)⊗ U0
q ⊗ Uq(n). Set

Uq(b) = Uq(n)⊗ U0
q , Uq(b

−) = Uq(n
−)⊗ U0

q .

The algebra Uq(g) is endowed with a structure of Hopf algebra with comultipli-
cation Δ, antipode S and augmentation ε given by

ΔEi = Ei ⊗ 1 +Ki ⊗ Ei, ΔFi = Fi ⊗K−1
i + 1⊗ Fi, ΔKλ = Kλ ⊗Kλ,

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Kλ) = K−λ,

ε(Ei) = ε(Fi) = 0, ε(Kλ) = 1.

Let ( , ) be the Hopf bilinear form, [27], on Uq(b)× Uq(b
−), uniquely defined by

(Ei, Fj) = δij(1− q2i )
−1, 1 ≤ i, j ≤ n,

(XKλ, Y Kμ) = q〈λ,μ〉(X,Y ), X ∈ Uq(n), Y ∈ Uq(n
−).

2.4. In this section, we define automorphisms of the quantised enveloping algebra
and the Poincaré-Birkhoff-Witt basis. The automorphisms Ti, 1 ≤ i ≤ n, as in [18],
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are given by

Ti(Ei) = −K−1
i Fi,

Ti(Ej) =
∑

k+l=−aij

(−1)k
q−k
αi

[k]αi
![l]αi

!
Ek

i EjE
l
i , 1 ≤ i, j ≤ n, i �= j,

Ti(Fi) = −EiKi,

Ti(Fj) =
∑

k+l=−aij

qkαi

[l]αi
![k]αi

!
F l
iFjF

k
i , 1 ≤ i, j ≤ n, i �= j,

Ti(Kαj
) = Ksi(αj), 1 ≤ i, j ≤ n.

It is known that the Ti’s define a braid action on Uq(g). Fix i = (i1, . . . , iN ) in
R. For each k, 1 ≤ k ≤ N , set βk := si1 . . . sik−1

(αk). It is well known that
{βk, 1 ≤ k ≤ N} is the set of positive roots and that

β1 < β2 < . . . < βN

defines a so-called convex ordering on Δ+. This ordering identifies the semigroup

ZΔ+

≥0 with the semigroup ZN
≥0. In the sequel, we denote by {ek, 1 ≤ k ≤ N} the

natural basis of this semigroup.
For all k, define Ei

βk
= Eβk

= Ti1 . . . Tik−1
(Eαik

). For all t = (ti) ∈ ZN
≥0,

set Ei(t) = E(t) := E
(t1)
β1

. . . E
(tN )
βN

, where E
(tk)
βk

:= 1
[tk]βk

!E
tk
βk
. It is known that

{E(t), t ∈ ZN
≥0} is a basis of Uq(n) called the Poincaré-Birkhoff-Witt basis, in short

PBW-basis, associated to the reduced expression i. In the same way, we can define
the PBW-basis {F (t), t ∈ ZN

≥0} of Uq(n
−).

We define now the automorphisms ¯ (over C), ω (over K), and the antiautomor-
phism σ (over K) of Uq(g) by

Ēi = Ei, K̄i = K−1
i , F̄i = Fi, q̄ = q−1, 1 ≤ i ≤ n,

ω(Ei) = Fi, ω(Ki) = K−1
i , ω(Fi) = Ei, ω(q) = q, 1 ≤ i ≤ n,

σ(Ei) = Ei, σ(Ki) = K−1
i , σ(Fi) = Fi, σ(q) = q, 1 ≤ i ≤ n.

Note that ω is a coalgebra antiautomorphism.

2.5. For any (left) Uq(g)-module M , and any weight μ in P , let Mμ = {m ∈ M :

Kλ.m = q〈λ,μ〉m, ∀λ ∈ P} be the subspace of M of weight μ. For all λ in P+ let
Vq(λ) be the simple Uq(g)-module with highest weight λ and highest weight vector
vλ. The module Vq(λ) satisfies the Weyl character formula. For λ in P+, Vq(λ)

∗

is naturally endowed with a structure of right Uq(g)-module. Let ηλ be its weight
element such that ηλ(vλ) = 1. For λ, μ in P+, the module Vq(λ)⊗ Vq(μ), endowed
with the diagonal action of Uq(g), has a unique component of type Vq(λ+μ). Hence
the restriction map provides a map rλ,μ : Vq(λ)

∗ ⊗ Vq(μ)
∗ � (Vq(λ) ⊗ Vq(μ))

∗ →
Vq(λ+ μ)∗. Since P+ is a free abelian semigroup, one may assume that the vλ are
normalised such that rλ,μ(ηλ ⊗ ημ) = ηλ+μ, λ, μ ∈ P+; see [12, 9.1.10].

Set R+ :=
⊕

λ∈P+ Vq(λ)
∗ ⊗ vλ. The space R+ can be equipped with a structure

of algebra by the multiplication rule: (ξ ⊗ vλ).(ξ
′ ⊗ vλ′) = rλ,λ′(ξ ⊗ ξ′) ⊗ vλ+λ′ ,

ξ ∈ Vq(λ)
∗, ξ′ ∈ Vq(λ

′)∗.
Let j be the map R+ → Uq(b

−)∗, ξ ⊗ vλ �→ ξ(?vλ), ξ ∈ Vq(λ)
∗. The following

lemma is standard, we give a proof for completion.
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Lemma 2.1. The map j is an embedding of algebras.

Proof. The map j is a morphism of vector spaces. Now, for λ, λ′ in P+, η in Vq(λ),
η′ in Vq(λ

′), and b in Uq(b
−):

j((η ⊗ vλ)(η
′ ⊗ vλ′))(b) = rλ,λ′(η ⊗ η′)(b.vλ+λ′) = (η ⊗ η′)(b.(vλ ⊗ vλ′))

= η(b(1).vλ)η
′(b(2).vλ′) = (j(η ⊗ vλ).j(η

′ ⊗ vλ′))(b),

using the Sweedler notation. Hence, j is an algebra morphism.
Now, we prove that j is an embedding. Suppose that j(

∑
k ηk ⊗ vλk

) = 0 for
a nonzero element

∑
k ηk ⊗ vλk

in R+. One may assume that the λk are distinct
in P+ and that η1 is nonzero. Let v ∈ Vq(λ1) be such that η1(v) �= 0. Since⊕

k Vq(λk) is a semisimple Uq(g)-module, the Jacobson density theorem asserts
that there exists an a in Uq(g) such that a.vλ1

= v and a.vλk
= 0 for k �= 1.

By the triangular decomposition, one may assume that a is in Uq(b
−). We have

j(
∑

k ηk ⊗ vλk
)(a) = η1(v) �= 0. This yields a contradiction. �

Define the map

β : Uq(b) → Uq(b
−)∗, β(u)(v) = (u, v).

Then we have:

Theorem 2.2 ([7]). The map β is an injective antihomomorphism of algebras
which maps Kλ to ηλ ⊗ vλ ∈ R+ ⊆ Uq(b

−)∗. There exists a unique subspace Eλ of
Uq(n) such that β(EλKλ) = Vq(λ)

∗ ⊗ vλ.

3. Recollection on canonical bases and adapted algebras

The recollection on canonical bases is from [5]. Results on adapted algebras can
be found in [8] and [9].

3.1. The following theorem defines the canonical basis and its Lusztig parametri-
sation; see [20, Proposition 8.2].

Theorem 3.1 ([20]). Fix i in R. For all t in ZN
≥0, there exists a unique element

b = bi(t) in Uq(n
−) such that b̄ = b and b − F i(t) ∈ q−1

∑
Z[q−1]F i(t′). The map

t �→ bi(t) defines a bijection from ZN
≥0 to a basis B of Uq(n

−). The basis B does not
depend on the choice of i.

The basis B is called the canonical (or global) basis and the map bi : t �→ bi(t)
is the Lusztig parametrisation of B associated to the reduced expression i. We can
define the action of the Kashiwara operators on the canonical basis as follows: for
1 ≤ i ≤ n, there exists a unique injective map f̃i : B → B, such that for all i with
i1 = i, we have

f̃i(bi(t1, t2, . . . , tN )) = bi(t1 + 1, t2, . . . , tN ).

For 1 ≤ i ≤ n, let ẽi : B → B ∪ {0} be such that ẽi(b) = b′ if there exists b′ such

that f̃i(b
′) = b and ẽi(b) = 0 if not.

Let εi(b) =max{k, ẽki (b) �= 0} and let E : B → P+, b �→
∑

i εi(b)�i. Now, the
basis B is stable under σ. For all λ in P+, set B(λ) = {b ∈ B, E(σ(b)) ≤ λ}.

A nice theorem of compatibility of the canonical basis with the Weyl modules
Vq(λ) can be stated as follows:

Theorem 3.2 ([13]). Fix λ in P+. Then, for b in B, we have b ·vλ �= 0 if and only
if b ∈ B(λ). Moreover, B(λ) · vλ is a basis of Vq(λ).
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In the sequel, we will identify B(λ) with its image in Vq(λ).

3.2. We now introduce the string parametrisation of the canonical basis and the
various transition maps.

Fix a reduced expression i in R and b in B. The string of b in the direction i is
the sequence of integers ci(b) := (t1, . . . , tN ) defined recursively by

t1 = εi1(b), t2 = εi2(ẽ
t1
i1
(b)), . . . , tN = εiN (ẽ

tN−1

iN−1
. . . ẽt1i1 (b)).

The map ci defines a bijection from B onto the set of integral points of a rational
convex polyhedral cone Ci in RN .

We can now define

Ri′

i = (bi′)
−1 ◦ bi : ZN

≥0 → ZN
≥0,

R−i′

−i = ci′ ◦ (ci)−1 : Ci → Ci′ ,

Ri′

−i = (bi′)
−1 ◦ (ci)−1 : Ci → ZN

≥0,

R−i′

i = ci′ ◦ bi : ZN
≥0 → Ci′ .

3.3. Let B∗ ⊂ Uq(n) be the basis dual to B with respect to the form ( , ) on Uq(n)×
Uq(n

−). We call it the dual canonical basis. For b in B, we denote by b∗ the
corresponding element in B∗. Since we work with the dual canonical basis, in the
sequel we shall regard bi as a map from ZN

≥0 to B∗ (rather than B), using the

identification b ↔ b∗. Similarly, we shall regard ci as a map from B∗ to ZN
≥0.

The set B∗ is stable under σ “up to a power of q”. To be more precise, for b in
B, there exists an integer m such that σ(b∗) = qmσ(b)∗.

For λ in P+ and b in B(λ), let πλ(b)
∗ be the element of Vq(λ)

∗ such that
πλ(b)

∗(b′.vλ) = δb,b′ , for all b′ ∈ B(λ), where δ is the Kronecker symbol. It is
easily seen from the definitions that:

Lemma 3.3. For all λ in P+ and b in B(λ), we have β(b∗Kλ) = πλ(b)
∗ ⊗ vλ.

In the notation, we will sometimes omit πλ.
The lemma implies that the spaces Eλ defined by Theorem 2.2 are compatible

with the dual canonical basis. By the Weyl character formula, for all w in W and
λ in P+, there is a unique element of B∗ ∩Eλ with weight λ−wλ. We denote this
element by b∗w,λ and the corresponding element in the canonical basis by bw,λ.

In the sequel, {πλ(b)
∗⊗vλ, b ∈ B(λ), λ ∈ P+} will be called dual canonical basis

of R+. By a misuse of language, its Lusztig, resp. string, parametrisation will be
the Lusztig, resp. string, parametrisation of the corresponding element b in B(λ).

3.4. Two elements of the dual canonical basis are called multiplicative if their prod-
uct is an element of the dual canonical basis, up to a power of q. By [25], multi-
plicative elements q-commute. We start with the definition of adapted algebras.

Definition 3.4. A subalgebra A of Uq(n), resp. R
+, is called adapted if

1) the intersection of A and the dual canonical basis is a basis of A, called
adapted basis,

2) the elements of this basis are pairwise multiplicative.

We define standard adapted subalgebras of R+, associated to a fixed reduced
expression i for w0; see [8].
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Set yλ := ηλ ⊗ vλ. Let Ai be the subalgebra of R+ generated by yi := y�i
,

1 ≤ i ≤ n, and cik := b∗si1 ...sik ,�ik
⊗ v�ik

, 1 ≤ k ≤ N . (This notation is standard,

but shouldn’t be confused with ci which is used for the string parametrisation).
Using the antihomomorphism β, we obtain from [8] the following proposition:

Proposition 3.5. Fix i ∈ R. The algebra Ai is an adapted subalgebra of R+ and
the adapted basis is given by monomials in the yi and the cik, up to a power of q.

As σ is an antiautomorphism which preserves the dual canonical basis up to a
power of q, we can now define another family of adapted algebras by twisting the
standard ones.

Note that σ(bsi1 ...sik ,�ik
) ∈ B(μk), where μk := E(bsi1 ...sik ,�ik

). Let Aσ
i be the

subalgebra generated by the yi, 1 ≤ i ≤ n, and the ciσk := σ(bsi1 ...sik ,�ik
)∗ ⊗ vμk

,

1 ≤ k ≤ N . These elements q-commute by 2.2. Moreover, by 3.3 and [8, 2.2], we
have

Proposition 3.6. Fix i ∈ R. Then,

(i) the algebra Aσ
i is an adapted subalgebra of R+,

(ii) the adapted basis is given by monomials in the yi and the ciσk , up to a power
of q,

(iii) the Lusztig parametrisation of yi is zero,
(iv) the Lusztig parametrisation of ciσk is

∑
el where l runs over {l ≤ k, il = ik}.

3.5. In this section, we are concerned with the lowest weight vectors in R+. For
all λ in P+, set λ∗ := −w0λ. Let vw0λ be the unique element of weight w0λ in the
canonical basis of Vq(λ). Then, zλ := v∗w0λ

⊗ vλ is an element of the dual canonical

basis of R+. It is known (see [8]) that these elements belong to all of the standard
adapted algebras defined in the section above.

Lemma 3.7. The elements zλ, λ ∈ P+ satisfy zλzμ = zλ+μ, λ, μ ∈ P+.

Proof. Let b, b′ be two elements of the canonical basis of Uq(n
−), with b ∈ B(λ).

By [9, Proposition 3.1], we have b′∗b∗ ∈ q−〈λ,ν′〉B∗, where ν′ is the weight of b′∗.
Applying this formula when b∗, resp. b′∗, is the element of B(λ)∗, resp. B(μ)∗,

of weight λ+ λ∗, resp. μ+ μ∗, and using Theorem 2.2, we obtain that

zμzλ = q−〈λ,μ+μ∗〉q〈λ,μ+μ∗〉zλ+μ = zλ+μ.

This proves the lemma. �
In the sequel, we set zi = z�i

.

4. The Schützenberger involution

We can now define an involution φ of R+ by twisting the dual Weyl modules
by the automorphism ω. This involution generalises the Schützenberger involu-
tion ([28]), up to a diagram automorphism.

4.1. Let M be a Uq(g)-module. With the help of the automorphism ω, we define a
twisted Uq(g)-module structure on M∗ via

x.ξ(m) = ξ(ω(x)m), ξ ∈ M∗, x ∈ Uq(g), m ∈ M.

Let M∗
ω be the space M∗ endowed with this Uq(g)-module structure.

Fix λ in P+. Then, Vq(λ)
∗
ω is a simple right module. By dualising [18, Chap

XXI], we obtain
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Proposition 4.1. The module Vq(λ)
∗
ω is isomorphic to Vq(λ

∗)∗. There exists a
unique right Uq(g)-module isomorphism φλ which sends the dual canonical basis of
Vq(λ)

∗
ω to the dual canonical basis of Vq(λ

∗)∗. It sends highest weight vectors to
lowest weight vectors and conversely.

4.2. We define a map φ : R+ → R+, such that

φ(ξ ⊗ vλ) = φλ(ξ)⊗ vλ∗ , ξ ∈ Vq(λ)
∗, λ ∈ P+,

where φλ is as above. Then

Proposition 4.2. The map φ is an involutive antiautomorphism of the algebra R+

which preserves the dual canonical basis of R+.

Proof. Recall that ω is involutive. So, by Proposition 4.1, φλ∗φλ is the identity and
this implies that φ is involutive.

Now, let R+
λ be the λ-component of R+, which is isomorphic to Vq(λ)

∗ as a right
Uq(g)-module. As noted in 2.4, ω is a coalgebra antiautomorphism. Hence, the
map m:

m : R+
λ ⊗R+

μ → R+
λ+μ, m(a⊗ b) = φ−1(φ(b)φ(a))

is a morphism of right Uq(g)-modules, where R+
λ ⊗R+

μ is endowed with the diagonal
action. Using Lemma 3.7, we obtain

m(yλ ⊗ yμ) = φ−1(zλ+μ) = yλ+μ = yλyμ.

As dimHomUq(g)(R
+
λ ⊗ R+

μ , R
+
λ+μ) = 1, this proves that m is the multiplication

of R+ and thus that φ is an algebra antiautomorphism. The last assertion of the
proposition is clear by Proposition 4.1. �

Corollary 4.3. Fix a reduced expression i in R. Then, φ(Aσ
i ) is an adapted sub-

algebra of R+.

The aim of the remaining sections is to prove that the Lusztig cone Li is the
i-string parametrisation of the adapted basis of φ(Aσ

i ). We note that this is given
by monomials in the zi and the φ(ciσk ) up to a power of q.

5. Geometric lifting and parametrisation

We fix a dominant weight λ. In this section, we study the geometric lifting of
the morphism φλ. By using results of [5], we obtain an explicit formula for the
morphism b−1

i φλc
−1
i which gives the Lusztig parametrisation t′ = (t′1, · · · , t′N ) of

the element φλ(b) in terms of the string t = (t1, · · · , tN ) of b, where b is in the dual
canonical basis of R+.

5.1. We give here notation and recollection of [5]. Let G be the semisimple simply
connected complex Lie group with Lie algebra g. For all i, 1 ≤ i ≤ n, we denote
by ϕi : SL2 ↪→ G the canonical embedding corresponding to the simple root αi.
Consider the one-parameter subgroups of G defined by

xi(t) = ϕi

(
1 t
0 1

)
, yi(t) = ϕi

(
1 0
t 1

)
, t ∈ C,

and

tα
∨
i = ϕi

(
t 0
0 t−1

)
, t ∈ C∗.



466 PHILIPPE CALDERO, BETHANY MARSH, AND SOPHIE MORIER-GENOUD

The xi(t), (resp. yi(t), t
α∨

i ) generate subgroups N , (resp. N−, H). We have the
following commutation relations:

tα
∨
i xj(t

′) = xj(t
aij t′)tα

∨
i , tα

∨
i yj(t

′) = yj(t
−aij t′)tα

∨
i .(5.1)

We define two involutive antiautomorphisms of G, x → xT and x → xι, by

xi(t)
T = yi(t), yi(t)

T = xi(t), (tα
∨
i )T = tα

∨
i ,

xi(t)
ι = xi(t), yi(t)

ι = yi(t), (tα
∨
i )ι = t−α∨

i .

The first one is called transposition and the second one is called inversion.
Let G0 := N−HN be the set of elements in G which have a (unique) gaussian

decomposition; we write x = [x]−[x]0[x]+ for the gaussian decomposition of x in
G0.

For all reduced expressions i = (i1, . . . , iN ) and all N -tuples t = (t1, . . . , tN ) in
CN , we set:

xi(t) := xi1(t1) · · ·xiN (tN ), and x−i(t) := yi1(t1)t
−α∨

i1
1 · · · yiN (tN )t

−α∨
iN

N .

The xi and the x−i parametrise subvarieties of G.

Theorem 5.1 ([5]). There exists a subvariety of G, Le,w0

>0 , resp. Lw0,e
>0 , such that

for all i in R, the map xi, resp. x−i, is a bijection from RN
>0 to Le,w0

>0 , resp. Lw0,e
>0 .

We denote by R̃i′

i := x−1
i′ ◦ xi and R̃−i′

−i := x−1
−i′ ◦ x−i the transition maps. A

remarkable result of [5] asserts that R̃i′

i (respectively, R̃−i′

−i ) is a geometric lifting

of the map Ri′

i (respectively, R−i′

−i ), which was defined in the first section. Let’s be
more precise.

By using results on semifields (see [3]), the authors define the so-called tropicali-
sation, denoted by [.]Trop. The map [.]Trop is from the semifield Q>0(t1, . . . , tN ) to
the set of maps ZN → Z. The elements of Q>0(t1, . . . , tN ) are called subtraction-free
rational expressions in the t1, . . . , tN . Tropicalising a subtraction-free expression
means replacing the multiplication by the operation a� b := a+ b and the sum by
the operation a⊕ b = min(a, b). We give an example from [3].

Example 5.2. Let x, y be two indeterminates and set f = x2 − xy + y2. Then,

f is a subtraction-free expression because f = x3+y3

x+y . We have [f ]Trop : Z2 → Z,

with
[f ]Trop(m,n) = Min(3m, 3n)−Min(m,n) = Min(2m, 2n).

A geometric lifting is an element of the inverse image of this map. We can see
in the example above that it is in general not unique.

The following theorem is a result of [5]. Recall that the Langlands dual of G is
the semisimple Lie group G∨ corresponding to the transpose Cartan matrix AT .
We can identify the simple roots (resp. coroots) of G∨ with the simple coroots
(resp. roots) of G. The Weyl groups are naturally identified. In the theorem, the
notation (.)∨ means that we consider the applications defined in the same way but
for G∨, and the notation [.]Trop is the componentwise tropicalisation.

Theorem 5.3. Fix two reduced expressions i, i′ in R. Then (R̃i′

i )
∨, resp. (R̃−i′

−i )
∨,

is a geometric lifting of Ri′

i , resp. R−i′

−i :

(i) [(R̃i′

i )
∨(t)]Trop = Ri′

i (t), (ii) [(R̃−i′

−i )
∨(t)]Trop = R−i′

−i (t).
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5.2. Let ζ : Lw0,e
>0 → Le,w0

>0 be the map defined by

ζ(x) := [xιT ]+.

By 5.1, we obtain that the map ζ is well defined and

Proposition 5.4. Let i = (i1, · · · , iN ) be a reduced expression for w0, and suppose
(t′1, · · · , t′N ) = (x−1

i ◦ ζ ◦ x−i)(t1, · · · , tN ), ti ∈ C. Then, we have

t′k = t−1
k

∏
j>k

t
−aijik

j .

The following theorem and its corollary are a result of [23] but we give here a
sketch of the proof. The description of the geometric lifting of φλ can be given in
terms of parametrisations:

Theorem 5.5. Fix two reduced expressions i, i′ in R. Then, (x−1
i ◦ ζ ◦ x−i′)

∨(t)
is a subtraction-free expression and

b−1
i φλc

−1
i′ (t) = [(x−1

i ◦ ζ ◦ x−i′)
∨(t)]Trop + b−1

i φλ(ηλ).

Set (l1, · · · , lN ) := b−1
i φλ(ηλ). We obtain the following tropicalised formula:

Corollary 5.6. For (t′1, · · · , t′N ) = b−1
i φλc

−1
i (t1, · · · , tN ),

t′k = lk − tk −
∑
j>k

aikij tj .

Remark 5.7. It is remarkable that this formula is affine. This is only true in the
case i = i′. In general, the tropical term in the right-hand side of Theorem 5.5 is
piecewise linear.

Sketch of the proof. By Proposition 5.4, (x−1
i ◦ ζ ◦x−i) is a subtraction-free expres-

sion. The first assertion of the theorem is obtained by composing with R̃i
i′ .

Let φi,i′ : Ci′ → ZN be a family of maps labelled by two reduced expressions i
and i′ such that the three following conditions are satisfied:

(1) φi,i′(0, · · · , 0) = b−1
i φλ(ηλ),

(2) φi,i′ = Ri
i′′ ◦ φi′′,i′ = φi,i′′ ◦R−i′′

−i′ ,
(3) for φi,i(t1, · · · , tN ) = (t′1, · · · , t′N ), t′1 + t1 and t′k, k �= 1, depend only on

t2, · · · , tN .

The theorem follows from the proposition:

Proposition 5.8. [23] We have,

(i) (φi,i′) is a family satisfying (1), (2), (3) if and only if

φi,i′ = b−1
i φλc

−1
i′ .

(ii) The family (φi,i′) defined by

φi,i′(t) = [(x−1
i ◦ ζ ◦ x−i′)

∨(t)]Trop + b−1
i φλ(ηλ)

satisfies the conditions (1), (2), (3).
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6. From the PBW-parametrisation to the string parametrisation

Let i = (i1, · · · , iN ) be a reduced expression for w0. Our aim in this section is
to describe the map u �→ ciφλbi(u), using Proposition 5.4 and Theorem 5.5.

Let S be the complex rational map extending

(t1, t2, . . . , tN ) �→ (u1, u2, . . . , uN ) = (x−1
i ◦ ζ ◦ x−i)

∨(t1, t2, . . . , tN ).

Then Theorem 5.5 states that S(t) is a subtraction-free expression and that

b−1
i φλc

−1
i (t) = [S(t)]Trop + b−1

i φλ(ηλ).

Proposition 5.4 gives an explicit expression for S(t) (although note that we need to
take the expression for the dual root system by the definition of S).

Moreover, S is clearly birational. We first explain how to invert S.

Lemma 6.1. Let (u1, u2, . . . , uN )∈CN . Then S−1(u1, u2, . . . , uN )=(t1, t2, . . . , tN )
∈ CN , where, for 1 ≤ k ≤ N , we have

(6.1) tk = u−1
k

∏
j>k

u
〈sik+1

···sij−1
αij

,α∨
ik

〉
j .

Proof. We note that, by Proposition 5.4, if (t1, t2, . . . , tN )∈CN and S(t1, t2, . . . , tN )
= (u1, u2, . . . , uN ) ∈ CN , then, for 1 ≤ k ≤ N , we have

(6.2) uk = t−1
k

∏
j>k

t
−aikij

j .

Since this map is a monomial transformation of CN , it is sufficient to show that
substituting the expression (6.2) for uk in terms of the tj into the right-hand side
of equation (6.1) reduces to the left-hand side. Noting that

〈sik+1
· · · sij−1

αij , α
∨
ik
〉 = 〈αij , sij−1

· · · sik+1
α∨
ik
〉,

we obtain (
t−1
k

∏
l>k

t
−aik,il

l

)−1 ∏
j>k

⎛⎝t−1
j

∏
l>j

t
−aij ,il

l

⎞⎠〈αij
,sij−1

···sik+1
α∨

ik
〉

.

It is clear that the exponent of tk in this expression is 1, and that, if l < k, then
the exponent of tl is zero. So we consider the case where l > k. The exponent of tl
is given by

aik,il +

⎛⎝ ∑
l>j>k

−aij ,il〈αij , sij−1
· · · sik+1

α∨
ik
〉

⎞⎠− 〈αil , sil−1
· · · sik+1

α∨
ik
〉.

Since sij (αil) = αil − aij ,ilαij , this is equal to

〈αil , α
∨
ik
〉 +

⎛⎝ ∑
l>j>k

〈sij (αil), sij−1
· · · sik+1

α∨
ik
〉 − 〈αil , sij−1

· · · sik+1
α∨
ik
〉

⎞⎠
− 〈αil , sil−1

· · · sik+1
α∨
ik
〉.

The sum telescopes to give

〈αil , α
∨
ik
〉+ 〈αil , sil−1

· · · sik+1
α∨
ik
〉 − 〈αil , α

∨
ik
〉 − 〈αil , sil−1

· · · sik+1
α∨
ik
〉 = 0,

and we are done. �
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Proposition 6.2. Fix a reduced expression i for w0, and let u = (u1, u2, . . . , uN ) ∈
ZN
≥0. Then

ciφλbi(u) = [(S−1)(u)]Trop + ciφλ(ηλ),

where S−1(u) is as in Lemma 6.1.

Proof. By Theorem 5.5, we have that

(6.3) b−1
i φλc

−1
i (t) = [S(t)]trop + b−1

i φλ(ηλ).

It follows that
ciφλ∗bi(u) = [S−1(u− b−1

i φλ(ηλ))]Trop,

noting that φλ∗φλ is the identity map. We note that S is an invertible monomial
map, so its tropicalisation is linear. Hence

ciφλ∗bi(u) = [S−1(u)]Trop − [S−1(b−1
i φλ(ηλ))]Trop.

Substituting t = ciφλ∗(ηλ∗) into (6.3), we obtain

0 = b−1
i ηλ∗ = [S(ciφλ∗(ηλ∗))]Trop + b−1

i φλ(ηλ).

Hence
[S−1(b−1

i φλ(ηλ))]Trop = −ciφλ∗(ηλ∗).

Hence we have
ciφλ∗bi(u) = [S−1(u)]Trop + ciφλ∗(ηλ∗),

giving the required result (since λ �→ λ∗ is an involution). �

We can compute the constant term in this formula as follows:

Lemma 6.3. Let i be a reduced expression for w0. Then ci(φληλ)=(v1, v2, . . . , vN ),
where, for 1 ≤ k ≤ N , we have

vk = 〈sik−1
· · · si1λ, α∨

ik
〉.

Proof. This follows from [18, 28.1.4], since we are computing the string of the lowest
weight vector in Vq(λ

∗)∗. �

We remark that φλ(ηλ) = zλ∗ , so this lemma is computing the string cizλ∗ .

7. The string parametrisation of a twisted

standard adapted subalgebra

Recall (see Corollary 4.3) that the monomials in the elements z1, z2, . . . , zn and
the elements φ(ciσk ), k = 1, 2, . . . , N , form an adapted basis for the twisted standard
adapted subalgebra φAσ

i of R+. Our aim is to compute the string parameters of
these elements. We therefore use Proposition 6.2 to apply the map ciφμk

bi to the

element b−1
i (ciσk ), for each 1 ≤ k ≤ N ; see 3.4. These last vectors were described in

Proposition 3.6(iv).

7.1. For convenience, we define a matrix V with columns given by these vectors.

Definition 7.1. Let MN (Z) denote the ring of N×N matrices with integer entries.
Let V = (Vjk) ∈ MN (Z) be defined by

Vjk =

{
1 j ≤ k, if ij = ik,
0 otherwise.

Let vk denote the kth column of V ; this is b−1
i (ciσk ) by Proposition 3.6(iv).
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7.2. In order to apply Proposition 6.2 to compute ciφμk
bi(vk), for each 1 ≤ k ≤ N ,

we first need to apply (S−1)Trop to vk.
By Lemma 6.1, we have that (S−1)Trop(u1, u2, . . . , uN ) = (t1, t2, . . . , tN ), where

tk = −uk +
∑
j>k

〈sik+1
· · · sij−1

αij , α
∨
ik
〉uj .

=

N∑
j=1

Tkjuj ,

where T = (Tjk) is the matrix defining the linear map (S−1)Trop. We have

Tjk =

⎧⎨⎩
−1 j = k,

〈sij+1
· · · sik−1

αik , α
∨
ij
〉 j < k,

0 otherwise.

We note that T is the inverse of the matrix S defining the linear map STrop.

Definition 7.2. Let C = (Cjk) ∈ MN (Z) be the matrix given by

Cjk =

{
〈sij+1

· · · sik�ik , α
∨
ij
〉 j ≤ k,

0 otherwise.

We have:

Lemma 7.3. Let S, V and C be the matrices defined above. Then we have S−1V =
−C.

Proof. We have that (S−1V )jl =
∑

j≤k≤l TjkVkl, and is zero if j > l. If j ≤ l, then,

using that 〈 , 〉 is W -invariant,

(7.1) (S−1V )jl = TjjVjl +
∑

j<k≤l,ik=il

〈sik−1
· · · sij+1

α∨
ij , αil〉.

Note that TjjVjl = −δij ,il . Now, by calculating explicitly the coefficient of α∨
il
in

sil · · · sijα∨
ij
, we find that it is equal to the right-hand side of 7.1. Hence,

(S−1V )jl = 〈�il , sil · · · sijα∨
ij 〉 = −〈sij+1

· · · sil�il , α
∨
ij 〉,

which is equal to −Cjl as required. �
We have the following corollary:

Corollary 7.4. The entries of C are nonnegative.

Proof. In proof of Lemma 7.3, we noted that Cjl is equal to the negative of the
coefficient of α∨

il
in the negative coroot sil · · · sijα∨

ij
. �

7.3. We now would like to compute ciφμk
bi(vk) for each k (note that the vk are the

columns of V ). In the following lemma we set εl(c
i
k) = εl(bsi1 ...sik ,�ik

) by a misuse
of notation.

Lemma 7.5. For 1 ≤ l ≤ n and 1 ≤ k ≤ N , we have

εl(c
i
k) =

{
−〈si1 · · · sik�ik , α

∨
l 〉 if 〈si1 · · · sik�ik , α

∨
l 〉 ≤ 0,

0 otherwise.

In particular,

μk =
∑

1≤l≤n,〈si1 ···sik�ik
,α∨

l 〉≤0

−〈si1 · · · sik�ik , α
∨
l 〉�l.
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Proof. This follows from the definition of the cik and [18, 28.1.4] (and sl2-representa-
tion theory). �

Let ck be the kth column of C = −S−1V , and let pk = ci(φμk
ημk

). Let P be
the matrix with columns pk, k = 1, 2, . . . , N .

Lemma 7.6. For 1 ≤ k ≤ N , we have

ciφμk
bi(vk) = −ck + pk.

In particular, the entries of −C + P are nonnegative.

Proof. This follows immediately from Proposition 6.2 and Lemma 7.3. �

As a consequence, we have:

Proposition 7.7. Let i be any reduced expression for w0. Then ciφ(A
σ
i ) coincides

with the nonnegative integer span of the columns of −C + P and the strings ci(zi),
1 ≤ i ≤ n.

Proof. By Proposition 3.6, ciφ(A
σ
i ) is the nonnegative integer span of the ciφμk

bi(vk)
together with the strings ci(zi), 1 ≤ i ≤ n. Since ci(b

∗b′∗) = ci(b
∗) + ci(b

′∗) when
the elements b∗ and b′∗ of the dual canonical basis are multiplicative [4, Cor. 3.3],
the proposition follows from Lemma 7.6 and Corollary 4.3. �

7.4. We also note the following formula for the entries of P :

Lemma 7.8. For 1 ≤ j, k ≤ N , we have

Pjk =
∑

1≤l≤n,〈si1 ···sik�ik
,α∨

l 〉≤0

−〈si1 · · · sik�ik , α
∨
l 〉〈sij−1

· · · si1�l, α
∨
ij 〉.

Proof. By definition Pjk is the jth entry of ci(φμk
ημk

). Hence, the lemma results
from Lemma 7.5 and Lemma 6.3. �

7.5. We will next show that some of the columns of −C + P are entirely zero, and
therefore can be neglected in Proposition 7.7.

Definition 7.9. Given k ∈ {1, 2, . . . , N}, we set k(1) = min{j : j > k, ij = ik},
i.e., the first occurrence of ik to the right of ik in i. If there is no such occurrence,
we set k(1) = N + 1.

Lemma 7.10. Suppose that k(1) = N + 1. Then, for j = 1, 2, . . . , N , we have
Pjk = Cjk, i.e., the kth column of P coincides with the kth column of C.

Proof. We have

Cjk =

{
〈sij+1

· · · sik�ik , α
∨
ij
〉 j ≤ k,

0 j > k.

Since k(1) = N + 1, we have

Cjk = 〈sij+1
· · · siN�ik , α

∨
ij 〉,



472 PHILIPPE CALDERO, BETHANY MARSH, AND SOPHIE MORIER-GENOUD

(in either case). By Lemma 7.5,

μk =
∑

1≤l≤n,〈si1 ···sik�ik
,α∨

l 〉≤0

−〈si1 · · · sik�ikα
∨
l 〉�l

=
∑

1≤l≤n,〈si1 ···siN �ik
,α∨

l 〉≤0

−〈si1 · · · siN�ikα
∨
l 〉�l

=
∑

1≤l≤n,〈w0�ik
,α∨

l 〉≤0

−〈w0�ik , α
∨
l 〉�l

= −w0�ik .

Hence, by Lemma 6.3

Pjk = −〈sij−1
· · · si1w0�ik , α

∨
ij 〉

= −〈sij · · · siN�ik , α
∨
ij 〉

= 〈sij+1
· · · siN�ik , α

∨
ij 〉

= Cjk.

�

7.6. We replace the zero columns in −C +P with vectors which we will see are the
strings of the elements z1, z2, . . . , zn, in order to obtain a matrix whose nonnega-
tive integer span is the set of string parameters of the twisted standard adapted
subalgebra of R+ corresponding to i. We call this matrix X:

Definition 7.11. Let X = (Xjk) ∈ MN (Z) be the matrix defined as follows:

Xjk =

{
〈sij−1

· · · si1�ik , α
∨
ij
〉, k(1) = N + 1,

−Cjk + Pjk, otherwise.

We note that the Pjk are given by Lemma 7.8, and that the Cjk are given in
Definition 7.2. Also, it follows from Lemma 6.3 that if k(1) = N + 1, then the kth
column of X is the string ciz�∗

ik
.

We have:

Proposition 7.12. Let i be any reduced expression for w0. Then ciφ(A
σ
i ) coincides

with the nonnegative integer span of the columns of X. In particular, the entries
of X are nonnegative.

Proof. We note that the matrix X is the same as −C+P , except that if 1 ≤ k ≤ N
and k(1) = N + 1, then the kth column (which is zero by Lemma 7.10) is replaced
by the string of z�∗

ik
. The result now follows from Proposition 7.7. �

8. Lusztig cones and twisted standard adapted subalgebras

In this section, we will show that the cone of string parameters of ciφ(A
σ
i ), given

by the nonnegative integer span of the columns of X, coincides with the Lusztig
cone corresponding to i. At the same time we will show that the Lusztig cones are
simplicial.
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8.1. First we define a matrix L̃ whose rows include the defining inequalities of
the Lusztig cone corresponding to i as a subset of NN . This matrix will later be
modified to a matrix defining the Lusztig cone as a subset of ZN .

Definition 8.1. Let L̃ ∈ MN (Z) be the matrix defined by

L̃jk =

⎧⎨⎩
−1 k = j or k = j(1),

−aij ,ik j < k < j(1),
0 otherwise.

Remark 8.2. Let r̃j denote the jth row of L̃. The defining inequalities of the Lusztig
cone Li (as a subset of ZN

≥0) are those inequalities of the form r̃j · c ≥ 0 for those

j such that j(1) ≤ N .

8.2. We will next show how this matrix is related to the matrices S and V already

considered, i.e., that V −1S = L̃. This will have the consequence that L̃S−1V = I,
in particular, showing that the columns of S−1V satisfy the defining inequalities of
the Lusztig cone corresponding to i. We recall from Proposition 5.4 that STrop is
defined by the matrix S = (Sjk) ∈ MN (Z) where

Sjk =

⎧⎨⎩
−1 j = k,

−aij ,ik j < k,
0 otherwise.

We next need to compute the inverse of the matrix V .

Lemma 8.3. Let W = (Wjk) ∈ MN (Z) be the matrix defined as follows:

Wjk =

⎧⎨⎩
1 j = k,
−1 j < k, k = j(1),
0 otherwise.

Then W = V −1.

Proof. We show that WV = I, the identity matrix. The j, l-entry of WV is given

by Zjl =
∑N

k=1WjkVkl. For this to be nonzero, we must have j ≤ k ≤ l and k = j
or k = j(1). There are 5 cases:

Case (a): If l < j, then clearly Zjl = 0.
Case (b): If l = j, then Zjl = Zjj = WjjVjj = 1 · 1 = 1.
Case (c): If j < l < j(1), then Zjl = WjjVjl = 1 · 0 = 0.
Case (d): If l = j(1), then Zjl = WjjVj,j(1)+Wj,j(1)Vj(1),j(1) = 1·1+(−1)·1 = 0.
Case (e): If l > j(1), then Zjl = WjjVjl +Wj,j(1)Vj(1),l = Vjl − Vj(1),l = 0 since

Vjl = Vj(1),l. �

Lemma 8.4. Let V, S and L̃ be the matrices as defined above. Then V −1S = L̃.

Proof. The j, l-entry of V −1S is given by Yjl =
∑N

k=1WjkSkl. To be nonzero, we
must have j ≤ k ≤ l and k = j or k = j(1). As before, we have the 5 cases:

Case (a): If l < j, then clearly Yjl = 0.
Case (b): If l = j, then Yjl = Yjj = WjjSjj = 1 · (−1) = −1.
Case (c): If j < l < j(1), then Yjl = WjjSjl = Sjl = −aij ,il .
Case (d): If l = j(1), then Yjl = Yj,j(1) = WjjSj,j(1) + Wj,j(1)Sj(1),j(1) = 1 ·

(−2) + (−1) · (−1) = −1.
Case (e): If l > j(1), then Yjl = WjjSjl + Wj,j(1)Sj(1),l = Sjl − Sj(1),l =

−aij ,il + aij(1),il = −aij ,il + aij ,il = 0.
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We see that Yjl = L̃jl in every case. �

8.3. We now define a slightly altered version of the matrix L̃, whose rows will
eventually be seen as the defining inequalities of the Lusztig cone as a subset of
ZN . We will also see that this matrix is the inverse of the matrix X.

Definition 8.5. Let L = (Ljk) ∈ MN (Z) be the matrix defined as follows:

Ljk =

⎧⎪⎪⎨⎪⎪⎩
−1 k = j or k = j(1),

−aij ,ik j < k < j(1),
1 j(1) = N + 1, si1si2 · · · sik−1

(αik) = αij ,
0 otherwise.

First, we show how some rows of L are related to the strings of lowest weight
vectors:

Lemma 8.6. Let

v = ci(φληλ) = (v1, v2, . . . , vN ),

as in Lemma 6.3. Suppose that 1 ≤ j ≤ j(1) ≤ N . Let rj be the jth row of L.
Then we have rj · v = 0.

Proof. Recall that for k = 1, 2, . . . , N , we have

vk = 〈sik−1
· · · si1λ, α∨

ik
〉,

by Lemma 6.3. We have

rj · v = −vj − vj(1) −
∑

j<k<j(1)

aij ,ikvk

= −〈sij−1
· · · si1λ, α∨

ij 〉 − 〈sij(1)−1
· · · si1λ, α∨

ij 〉 −
∑

j<k<j(1)

aij ,ik〈sik−1
· · · si1λ, α∨

ik
〉.

We note that

sik(α
∨
ij ) = α∨

ij − 〈αik , α
∨
ij 〉α

∨
ik

= α∨
ij − aij ,ikα

∨
ik
,

so

rj · v = −〈sij−1
· · · si1λ, α∨

ij 〉 − 〈sij(1)−1
· · · si1λ, α∨

ij 〉

+
∑

j<k<j(1)

〈sik−1
· · · si1λ, sik(α∨

ij )− α∨
ij 〉

= −〈sij−1
· · · si1λ, α∨

ij 〉 − 〈sij(1)−1
· · · si1λ, α∨

ij 〉
+〈sij(1)−1

· · · si1λ, α∨
ij 〉 − 〈sij · · · si1λ, α∨

ij 〉 = 0,

the sum telescoping. �

Next, we show that some entries of −C + P = S−1V + P are zero:

Lemma 8.7. Suppose that 1 ≤ j ≤ N and that si1si2 · · · sij−1
(α∨

ij
) = α∨

r is a

simple coroot. Then

Pjk = Cjk.

Proof. We note that, by Lemma 7.8,

Pjk =

{
−〈si1 · · · sik�ik , α

∨
r 〉 〈si1 · · · sik�ik , α

∨
r 〉 ≤ 0,

0 〈si1 · · · sik�ik , α
∨
r 〉 > 0,
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using the fact that 〈�l, α
∨
r 〉 = δlr. Suppose first that j ≤ k. Then:

〈si1 · · · sik�ik , α
∨
r 〉 = 〈sij+1

· · · sik�ik , sij · · · si1α∨
r 〉

= 〈sij+1
· · · sik�ik , sijα

∨
ij
〉

= −〈sij+1
· · · sik�ik , α

∨
ij 〉

= −Cjk ≤ 0,

by Corollary 7.4. So Pjk = Cjk. If j > k, then

〈si1 · · · sik�ik , α
∨
r 〉 = 〈�ik , sik · · · si1α∨

r 〉
= 〈sij−1

· · · sik+1
�ik , sij−1

· · · sik+1
sik · · · si1α∨

r 〉
= 〈sij−1

· · · sik+1
�ik , α

∨
ij 〉

= 〈�ik , sik+1
· · · sij−1

α∨
ij 〉 ≥ 0,

since sik+1
· · · sij+1

α∨
ij

is a positive coroot. It follows that Pjk = 0 = Cjk. �

Remark 8.8. We note that the condition

si1 · · · sik(α∨
ij ) = α∨

r

is equivalent to the condition

si1 · · · sik(αij ) = αr.

Second, this result shows that (S−1V + P )jk = 0 under this assumption, by
Lemma 7.3.

8.4. We can now prove the following, as we have all the pieces we need:

Proposition 8.9. Let L and X be the matrices defined as above, so that the non-
negative integer span of the columns of X is the cone of the string parameters of the
twisted standard adapted subalgebra corresponding to i. Then LX = I, the identity
matrix.

Proof. Denote by xk the kth column of X. Suppose first that 1 ≤ j ≤ j(1) ≤ N ,
and that 1 ≤ k ≤ k(1) ≤ N . Then rj (the jth row of L) is the same as the jth row

of L̃. By Lemma 8.4, L̃S−1V = I. Hence rj · (−ck) = δjk, since −ck is the kth
column of S−1V . By Lemma 8.6, rj ·pk = 0 (where pk is the kth column of P ). It
follows (from the definition of X) that rj · xk = δjk.

If 1 ≤ j ≤ j(1) ≤ N and k(1) = N + 1, then xk = ciz
∗
�ik

. By Lemma 8.6, we

have that rj · xk = 0 (as required, noting that we must have j �= k).
If j(1) = N + 1, then let 1 ≤ l ≤ N be defined by si1 · · · sil−1

αil = αij . Then
Ljl = 1 is the only nonzero entry in rj . It follows that rj .xk = Xlk.

Case (a): Suppose that k(1) ≤ N . Then Xlk = −Clk + Plk = 0 by Lemma 8.7.
Case (b): Suppose that k(1) = N + 1. Then

Xlk = 〈sil−1
· · · si1�ik , α

∨
il
〉

= 〈�ik , si1 · · · sil−1
α∨
il
〉

= 〈�ik , α
∨
ij 〉

= δj,k,

as required (noting that j(1) = k(1) = N + 1).
The proposition is proved. �
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If c = (c1, c2, . . . , cN ) ∈ ZN , we write c ≥ 0 to denote ck ≥ 0 for k = 1, 2, . . . , N .
We have the following consequences.

Theorem 8.10. The Lusztig cone Li is simplicial, defined by the matrix L:

Li = {c ∈ ZN : Lc ≥ 0}.

It coincides with the nonnegative integer span of the columns of the matrix X (see
Definition 7.11).

Proof. By Proposition 7.12, the entries of X are nonnegative. By Proposition 8.9,
XL = I, so nonnegative integer combinations of the rows of L are of the form
(0, 0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the kth position) and therefore correspond to
inequalities of the form ck ≥ 0. So

{c ∈ ZN : Lc ≥ 0} ⊆ NN .

Since the inequalities corresponding to rows of L are either defining inequalities of
Li or inequalities of the form ck ≥ 0, the claimed equality follows, and it is then
immediate that Li is spanned by the columns of L−1 = X. �

Remark 8.11. The fact that Li is simplicial was already known for quiver-compatible
reduced expressions for w0 for g simply laced [1] and for all reduced expressions for
w0 in type An [22].

And we have:

Theorem 8.12. Let i be any reduced expression for w0. Let Li denote the Lusztig
cone corresponding to i. Let φ(Aσ

i ) denote the twisted standard adapted subalgebra
corresponding to i. Then

ci(φ(A
σ
i )) = Li.

Proof. This follows from Proposition 7.12 and Theorem 8.10. �

Example 8.13. Suppose that g = sl4(C) (type A3). Let i = (2, 3, 2, 1, 2, 3), a
reduced expression for w0. Then we have

V =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , T =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 −1 1 0 −1 1
0 −1 −1 −1 0 1
0 0 −1 −1 1 0
0 0 0 −1 −1 −1
0 0 0 0 −1 −1
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

C = −TV =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , P =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 1 0
1 1 1 1 1 0
0 0 1 1 0 0
1 1 1 1 1 1
1 1 0 0 1 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The matrix X of spanning vectors of the Lusztig cone corresponding to i and the
defining matrix L are given by:

X =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1 0
1 0 0 0 1 1
0 0 0 0 0 1
1 1 1 1 1 1
1 1 0 1 1 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , L = X−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 1 −1 0 0 0
0 −1 1 0 1 −1
0 0 −1 1 −1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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