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A SIMPLE COMBINATORIAL PROOF OF A
GENERALIZATION OF A RESULT OF POLO

FABRIZIO CASELLI

Abstract. We provide a simple combinatorial proof of, and generalize, a
theorem of Polo which asserts that for any polynomial P ∈ N[q] such that
P (0) = 1 there exist two permutations u and v in a suitable symmetric group
such that P is equal to the Kazhdan-Lusztig polynomial P vu .

1. Introduction

In [6] Kazhdan and Lusztig defined a family of polynomials with integer coeffi-
cients in order to construct a class of representations of the Hecke algebra associated
to any Coxeter group W . These polynomials are indexed by pairs of elements of
W and have become known as the Kazhdan-Lusztig polynomials of W . For an
introduction to these polynomials see [5, Chapter 7]. Kazhdan-Lusztig polynomi-
als always have constant term equal to 1 and it was conjectured in [6] that the
coefficients of these polynomials are non-negative. This has been proved if W is a
(possibly affine) Weyl group in [7], but is still open for arbitrary Coxeter groups.

In [10] Polo associated to each polynomial P with non-negative integer coeffi-
cients and constant term equal to 1 a pair of permutations (u, v) in a suitable sym-
metric group such that the Kazhdan-Lusztig polynomial indexed by (u, v) equals
P . The proof of this result uses the interpretation of the Kazhdan-Lusztig polyno-
mials in terms of intersection cohomology of Schubert varieties, considering certain
resolutions of singularities of Bott-Samelson type.

The main goal of this paper is to give a simple combinatorial proof of a general-
ization of this result. This is achieved by extending the methods introduced in [3]
and pushed further in [4]. More precisely, we consider a class of Kazhdan-Lusztig
polynomials, which includes those considered in [10]. This class of Kazhdan-Lusztig
polynomials is indexed by pairs of permutations (u, v) where v is an arbitrary al-
most unimodal permutation (see §3) and we establish a linear recursion for them.
These recursion relations allow us to compute these polynomials explicitly.

The paper is organized as follows. In the next section we collect some notation,
definitions and results that are needed in the sequel. Section 3 is devoted to the
proof of the main result (Theorem 3.6).
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2. Notation and preliminaries

In this section we collect some definitions and results that are used in the proofs
of this work.

We let N := {0, 1, 2, 3, . . .} be the set of non-negative integers. For n,m ∈ N,
we let [n,m] := {n, n+ 1, . . . ,m} (so [n,m] = ∅ if n > m), and [n] := [1, n]. For a
sequence i1, i2, . . . , in and j ∈ [n], we denote by i1, . . . , îj , . . . , in the subsequence
i1, . . . , ij−1, ij+1, . . . , in obtained by suppressing the entry ij .

Given a set T we let S(T ) be the set of all bijections of T . To simplify the
notation we denote by S(n) instead of S([n]) the symmetric group on n elements.
If σ ∈ S(n), then we write σ = σ1σ2 . . . σn to mean that σ(i) = σi for i ∈ [n], and
call this the one-line notation of σ, while we denote by si the (simple) transposition
(i, i+ 1). Given σ, τ ∈ S(T ), we let στ := σ ◦ τ , i.e., we compose permutations as
functions, from right to left.

Given σ ∈ S(n), the descent set of σ is

Des(σ) := {d ∈ [n− 1] : σd > σd+1} ,
and the length of σ is defined by the number of inversions

`(σ) := inv(σ) := # {(a, b) ∈ [n]× [n] : a < b, σa > σb} .
For example, if σ = 6 3 5 2 4 1, then Des(σ) = {1, 3, 5} and `(σ) = 12. If u, v ∈ S(n)
we also denote `(u, v) := `(v)− `(u).

Throughout this work we view S(n) as a poset ordered by the strong Bruhat
order. We are not going to define this order in the usual way (see [5, §5.9] for its
definition), but we shall use the following characterization of it (see, e.g., [1, §3.2]
or [9, Proposition 2.1.11]). For σ ∈ S(n) and 1 ≤ h ≤ k ≤ n, let σh,k be the h-th
entry in the increasing rearrangement of σ(1), . . . , σ(k). Then, for u, v ∈ S(n), we
have u ≤ v if and only if uh,k ≤ vh,k for all 1 ≤ h ≤ k ≤ n− 1.

For u, v ∈ S(n) we also write uC v to mean that u ≤ v and `(u, v) = 1.
The Kazhdan-Lusztig polynomials are polynomials with integer coefficients in-

dexed by the set of all pairs (u, v) of permutations, and we denote them by P vu (q).
We refer the reader to [5, Chapter 7] or to the original paper of Kazhdan and
Lusztig [6] for an introduction to this family of polynomials. It is well known that
P vu (q) equals 1 if either u = v or uCv and vanishes if and only if u � v. The degree
of a Kazhdan-Lusztig polynomial P vu , where u < v, is known to be smaller than or
equal to 1

2 (`(u, v) − 1) and the coefficient of q
1
2 (`(u,v)−1) (in the case where `(u, v)

is odd) is denoted by µ(u, v); in particular, we have µ(u, v) = 1 whenever u C v.
We also set µ(u, v) := 0 if `(u, v) is even.

In the computation of Kazhdan-Lusztig polynomials we will make use of the
following well-known relation that they satisfy (see, e.g., [6, (2.2.c)]).

Theorem 2.1 (Kazhdan-Lusztig). Let u, v ∈ S(n), u < v and d ∈ Des(v). Then

P vu (q) = q1−cP vsdusd (q) + qcP vsdu (q)−
∑

{z<vsd: d∈Des(z)}
q
`(z,v)

2 µ(z, vsd)P zu (q),

where c = 1 if d ∈ Des(u) and c = 0 otherwise.

The following result is a useful property of Kazhdan-Lusztig polynomials that
will be used repeatedly in the sequel (and that can be easily deduced from Theo-
rem 2.1) and we record it as a proposition for future reference (see [6, §2]).
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Proposition 2.2. Let u, v ∈ S(n), u ≤ v, and d ∈ Des(v). Then

P vu (q) = P vusd(q).

Remark 2.3. Proposition 2.2 implies directly that if z, w ∈ S(n), z < w, are such
that µ(z, w) 6= 0 and `(z, w) > 1, then Des(z) ⊇ Des(w).

If J is a set of simple reflections we denote by WJ the parabolic subgroup gen-
erated by J . For w ∈ S(n) we denote by wJ the element of minimal length in the
WJ -coset WJw, and we let wJ ∈WJ be defined by w = wJw

J .

Lemma 2.4. Let J be a set of simple reflections of S(n) and u, v ∈ S(n) be such
that uJ = vJ . Then

P vu (q) = P vJuJ (q).

Lemma 2.4 was first proved by Brenti in [2, Theorem 4.4] as an application of
an involved combinatorial interpretation of the coefficients of a related family of
polynomials, called the R̃-polynomials. Later, Polo sketched in [10, Lemma 2.6] a
straightforward proof of a generalization of this result, that holds for any Coxeter
group, as a simple application of the definition of Kazhdan-Lusztig polynomials in
terms of Hecke algebras.

For w ∈ S(n) we denote by w the permutation of S(n− 1) obtained from w by
suppressing the value n from its one-line notation. Similarly, we denote by w the
permutation of S(n−1) obtained from w by suppressing the value 1 and re-scaling.
For example, if w = 35214, then w = 3214 and w = 2413. The following proposition
is a special case of Lemma 2.4, and a simple recursive proof of it can also be found
in [4, Proposition 2.9].

Proposition 2.5. Let u, v ∈ S(n) be such that u−1(n) = v−1(n). Then

P vu (q) = P vu (q).

On the other hand, if u−1(1) = v−1(1), then

P vu (q) = P vu (q).

Remark 2.6. Note that if v−1(n) = i, then `(v) = `(v) + n − i. It follows that,
if u < v satisfy u−1(n) = v−1(n), then we have `(u, v) = `(u, v) and hence, by
Proposition 2.5, µ(u, v) = µ(u, v).

There are some special cases where the Kazhdan-Lusztig polynomials can be
computed explicitly. Let 1 < e1 < e2 < · · · < ei < n and fr < fr−1 < · · · < f1 be
the remaining elements in [2, n− 1], so that r = n− 2 − i. The following theorem
is the main result of [10] and will be generalized in §3.

Theorem 2.7 (Polo). Let e1, . . . , ei, f1, . . . , fr be as above. Then

P
e1e2 ... ei n f1...fr−1 1 fr
1 e1...ei−1eif1...fr−1 fr n

(q) = 1 +
∑

{j: ej>fr}
qej−j−1.

Theorem 2.7 implies the arbitrariness of Kazhdan-Lusztig polynomials. In fact,
let P (q) ∈ N[q] be such that P (0) = 1. Then P (q) = 1 +

∑i
j=1 q

aj for some
1 ≤ a1 ≤ a2 ≤ · · · ≤ ai. If we set ej = aj + j + 1, for j ∈ [i] and n = ai + i+ 2, we
have, by Theorem 2.7,

P
e1e2 ... ei n f1...fr−1 1 fr
1 e1...ei−1eif1...fr−1 fr n

(q) = P (q).
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3. Main result

Let v ∈ S(n). We say that v is unimodal if there exists an index i ∈ [n] such
that Des(v) = [i, n− 1]. For example, v = 35786421 is a unimodal permutation in
S(8).

The following result is a special case of [8] (see also [1, Theorem 8.1.1] and [9,
Theorem 3.7.5]). However, its proof is so simple, and in the spirit of this work, that
we have included it for completeness.

Lemma 3.1. Let u, v ∈ S(n), v be a unimodal permutation and u ≤ v. Then

P vu (q) = 1.

Proof. We proceed by induction on n, the statement being trivial for n = 1. Sup-
pose Des(v) = [i, n − 1] and hence v−1(n) = i. Then, since u ≤ v, we have
u−1(n) ≥ i. So, by repeated use of Proposition 2.2, we may assume that u−1(n) = i.
Hence, by Proposition 2.5, P vu (q) = P vu (q) and the claim follows by our induction
hypothesis, since v is also a unimodal permutation. �

We say that an element v ∈ S(n), n ≥ 2, is almost unimodal if the permutation
v ∈ S(n− 1) obtained from v by deleting 1 and re-scaling is unimodal.

When we also need to stress the fact that 1 appears in a given position in the
one-line notation of v, we say that v is (1 → j)-almost unimodal if it is almost
unimodal and v−1(1) = j .

For example, the permutation 2576143 is a (1 → 5)-almost unimodal permuta-
tion.

Note that a permutation v ∈ S(n) is unimodal if and only if it is either (1 →
1)-almost unimodal or (1 → n)-almost unimodal. With this terminology, Polo’s
theorem (Theorem 2.7) is concerned with Kazhdan-Lusztig polynomials P vu , where
v is a (1 → n − 1)-almost unimodal permutation, and the main goal of this paper
is to generalize this result to polynomials P vu , where v is a generic almost unimodal
permutation.

Lemma 3.2. Let j ∈ [n− 1] and z, w ∈ S(n), z < w, `(z, w) > 1, be such that w
is (1→ j)-almost unimodal and j ∈ Des(z). Then µ(z, w) = 0.

Proof. We proceed by induction on n, the result being clear for n = 2. So suppose
n ≥ 3 and let i := w−1(n).

If j < i− 1, then, by Remark 2.3, we may assume that [i, n− 1] ⊆ Des(z) and
the condition z < w forces z−1(n) = w−1(n) = i. Then, by Remark 2.6, we have
`(z, w) = `(z, w) and µ(z, w) = µ(z, w), and the claim follows from our induction
hypothesis since w is still (1→ j)-almost unimodal and j ∈ Des(z).

If j = i− 1, then, by Remark 2.3 and the hypothesis j ∈ Des(z), we may assume
that [i− 1, n− 1] ⊆ Des(z). But this is incompatible with z < w since w−1(n) = i
and the result again follows.

If j > i, then, by Remark 2.3 and the hypothesis j ∈ Des(z), we may assume
that [i, n − 1] ⊆ Des(z) so z−1(n) = w−1(n) = i. Then, by Remark 2.6, we have
`(z, w) = `(z, w) and µ(z, w) = mu(z, w), and we conclude again by our induction
hypothesis since w is (1→ j − 1)-almost unimodal and j − 1 ∈ Des(z). �

Let 1 < e1 < e2 < · · · < ei < n be fixed and let fr < fr−1 < · · · < f1 be the
remaining elements in [2, n − 1], so that r = n − i − 2. We also set f0 := n. For
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j ∈ [n] we let

(3.1) vj =


e1 . . . ej−1 1 ej . . . eif0 . . . fr, if j < i+ 1,
e1 . . . ei 1 f0 . . . fr, if j = i+ 1,
e1 . . . eif0 . . . fj−i−21fj−i−1 . . . fr, if j > i+ 1.

Note that vj is a generic (1 → j)-almost unimodal permutation and that, for
j ∈ [n− 1], vj+1sj = vj .

Lemma 3.3. Let j ≥ 1 and v be a (1→ j + 1)-almost unimodal permutation such
that j ≤ v−1(n). Suppose that u < v is such that u(1) = 1 and u(h+ 1) = v(h) for
h ∈ [j − 1], and let a := u(j + 1). Then

P vu (q) = 1 + (j − kj(a)− 1)q,

where, if we set v(0) := 0, kj(a) := max{l ∈ [0, j − 1] : v(l) < a}.

Proof. Without loss of generality we may assume that v = vj+1 (see equation (3.1)),
with j ≤ i+ 1. It follows that

u = 1 e1 . . . ej−1a ∗ · · · ∗,
where ∗ · · · ∗ stands for a suitable permutation of [n] \ {1, e1, . . . , ej−1, a}.

We proceed by induction on j. If j = 1, then kj(a) = 0 and the result follows
by Proposition 2.2 used with d = 1, Proposition 2.5 and Lemma 3.1.

Now suppose that j > 1. It is easy to check that

(3.2) {z C vj+1sj = vj : j ∈ Des(z)} = ∅.
If kj(a) = j − 1, then ej−1 < a and hence, by Theorem 2.1, Lemma 3.2 used with
w = vj , and (3.2), we have

P vj+1
u (q) = qP vjusj (q) + P vju (q)

= qP
e1e2...ej−1 1 ej ...eif0...fr
1 e1 ... ej−2 a ej−1∗ ··· ∗ (q) + P

e1e2...ej−1 1 ej ...eif0...fr
1 e1 ... ej−2ej−1∗ ··· ∗ (q).

The first term in the right-hand side is zero since usj � vj . So the result follows
by our induction hypothesis since u ≤ vj by the so-called lifting lemma (see, e.g.,
[5, Lemma 7.4 (b)]), and kj−1(ej−1) = j − 2.

Now let kj(a) < j − 1 and hence a < ej−1. We have usj ≤ vsj = vj , by the
lifting lemma (see, e.g., [5, Lemma 7.4 (a)]). We claim that we have also u ≤ vj .
In fact, in the notation of §2, we have vh,kj = vh,kj+1 for all k 6= j and all h ≤ k. The
claim follows since u ≤ vj+1 and uh,j = vh,jj for all h ≤ j. So, by Theorem 2.1,
Lemma 3.2 and (3.2), we have

P vj+1
u (q) = P vjusj (q) + qP vju (q)

= P
e1e2...ej−1 1 ej ...eif0...fr
1 e1 ... ej−2 a ej−1∗ ··· ∗ (q) + qP

e1e2...ej−1 1 ej ...eif0...fr
1 e1 ... ej−2ej−1∗ ··· ∗ (q)

= 1 + (j − 1− kj−1(a)− 1)q + q,

by our induction hypothesis, and the proof is complete, since kj−1(a) = kj(a). �
Now let u := 1 e1 . . . eif1 . . . frn and denote, for 0 ≤ h ≤ a ≤ r,

uh,a := usi+asi+a−1 · · · si+h+1,

i.e., uh,a = 1 e1 . . . eif1 . . . fh−1fafh . . . f̂a . . . frn (for h ≥ 1). For example, if e1 = 3,
e2 = 5 and n = 7, then (f0, f1, f2, f3) = (7, 6, 4, 2) and u1,2 = 1354627. Note that
uh,h = u for all h ≤ r and uh,asi+h = uh−1,a.
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For simplicity of notation we let

Fh,a := P vi+h+1
uh,a

(q) = P
e1...eif0f1...fh−1 1 fhfh+1 ... fr

1 e1... eif1...fh−1 fafh...f̂a...frn
(q).

Remark 3.4. Note that, for 0 ≤ h′ < h ≤ a ≤ r, we have P
vi+h′+1
uh,a (q) = Fh′,h′ . In

fact, since [i+ h+ 1, i+ a] ⊂ Des(vi+h′+1) we have, by Proposition 2.2,

P
vi+h′+1
uh,a (q) = P

vi+h′+1
uh,asi+h+1···si+a−1si+a(q) = P

vi+h′+1
u (q) = P

vi+h′+1
uh′,h′ (q) = Fh′,h′ .

The following result is a linear recursion satisfied by the polynomials Fh,a.

Theorem 3.5. Let 2 ≤ h ≤ a ≤ r. Then

Fh,a = Fh−1,a + qFh−1,h−1 − qFh−2,h−2 − (fh−2 − fh−1 − 1)q.

Proof. We want to deduce our statement using Theorem 2.1 with v = vi+h+1,
u = uh,a and d = i + h ∈ Des(vi+h+1). By Lemma 3.2, used with w = vi+h, the
sum appearing in Theorem 2.1 can be restricted in this case to the set

Z := {z C vi+h : i+ h ∈ Des(z)}.
The set Z is given by the permutations z obtained from vi+h by swapping 1 either
with fh−2 or with any of the entries ej such that fh−1 < ej < fh−2. So, if we let
ζj := e1 . . . ej−11ej+1 . . . eif0 . . . fh−2ejfh−1 . . . fr we have

Z = {vi+h−1} ∪ {ζj : fh−1 < ej < fh−2}.
Now note that ζj is (1 → j)-almost unimodal and that all the other hypothesis of
Lemma 3.3 are satisfied with v = ζj and u = uh,a (and j = j − 1). Thus, it follows
that P ζjuh,a (q) = 1.

So we may conclude that

Fh,a = P vi+h+1si+h
uh,asi+h

(q) + qP vi+h+1si+h
uh,a

(q)−
∑
z∈Z

qP zuh,a(q)

= P vi+huh−1,a
(q) + qP vi+huh,a (q)− qP vi+h−1

uh,a (q)−#{j : fh−1 < ej < fh−2} q.

Now P
vi+h
uh−1,a (q) = Fh−1,a by definition, while P vi+huh,a (q) = Fh−1,h−1 and P vi+h−1

uh,a (q)
= Fh−2,h−2, by Remark 3.4. The claim follows since, clearly, #{j : fh−1 < ej <
fh−2} = fh−2 − fh−1 − 1. �

Theorem 3.6. Suppose that either h = a = 0 or 1 ≤ h ≤ a ≤ r and let f0 := n
and f−1 := n+ 1. Then

Fh,a = 1 + (fh−1 − fa + h− 1− a) q +
h∑
k=2

(fh−k − fh−k+1 − 1) qk.

Proof. For h = a = 0 the claim is F0,0 = 1 and this follows directly from Lemma 3.3.
For h = 1 we have to show that F1,a = 1 + (n − fa − a)q. By Lemma 3.3 we
have F1,a = 1 + (i − ki+1(fa))q, where, setting e0 := 0, ki+1(fa) = max{l ∈
[0, i] : el < fa}, and we claim that these two expressions for F1,a agree. In
fact, since the entries in [n] which are smaller than or equal to fa are exactly
1, e1, . . . , eki+1(fa), fr, fr−1, . . . , fa, we have fa = 1 + ki+1(fa) + r − a+ 1, and the
claim follows, recalling that n = r + i + 2. So we may suppose h ≥ 2 and proceed
by induction on h.

By Theorem 3.5 we have

Fh,a = Fh−1,a + qFh−1,h−1 − qFh−2,h−2 − (fh−2 − fh−1 − 1) q.
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So, using our induction hypothesis, we can compute all the coefficients of Fh,a
by looking at the right-hand side of this equation. Note that an easy inductive
argument shows that deg(Fh,a) ≤ h. So, for k ∈ [0, h], we let ck be the coefficient
of qk in Fh,a. It is clear that c0 = 1. The coefficient of q in Fh,a is

c1 = (fh−2 − fa + h− 2− a) + 1− 1− (fh−2 − fh−1 − 1)
= (fh−1 − fa + h− 1− a}

and so it agrees with our statement.
For k ∈ [2, h− 1] the coefficient of qk in Fh,a is

ck = (fh−k−1 − fh−k − 1) + (fh−k − fh−k+1 − 1)− (fh−k−1 − fh−k − 1)
= fh−k − fh−k+1 − 1.

Finally, we have ch = f0 − f1 − 1, and the proof is complete. �

If h = a, Theorem 3.6 gets a much simpler form.

Corollary 3.7. For h = 0, . . . , r we have

Fh,h = 1 +
h∑
k=1

(fh−k − fh−k+1 − 1) qk.

In particular,

Fr,r = 1 +
r∑

k=1

(fr−k − fr−k+1 − 1) qk.

The second equality in Corollary 3.7 is an equivalent reformulation of Theo-
rem 2.7, that is, the result of Polo that we have referred to in the title of this
work.
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