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SUBFIELD SYMMETRIC SPACES FOR
FINITE SPECIAL LINEAR GROUPS

TOSHIAKI SHOJI AND KARINE SORLIN

Abstract. Let G be a connected algebraic group defined over a finite field Fq .
For each irreducible character ρ of G(Fqr ), we denote by mr(ρ) the multiplicity
of 1G(Fq) in the restriction of ρ to G(Fq). In the case where G is reductive with

connected center and is simple modulo center, Kawanaka determined m2(ρ)
for almost all cases, and then Lusztig gave a general formula for m2(ρ). In
the case where the center of G is not connected, such a result is not known.
In this paper we determine m2(ρ), up to some minor ambiguity, in the case
where G is the special linear group.

We also discuss, for any r ≥ 2, the relationship between mr(ρ) with the
theory of Shintani descent in the case where G is a connected algebraic group.

0. Introduction

Let G be a connected reductive group defined over a finite field Fq with Frobenius
map F . We consider the finite group GF 2

and its subgroup GF . The quotient
space GF 2

/GF is regarded as an analogue of the symmetric space, and is called the
subfield symmetric space over a finite field. The determination of spherical functions
of GF 2

/GF is almost equivalent to the determination of irreducible characters of
the Hecke algebra H(GF 2

, GF ). For a class function f on GF 2
, we denote by m2(f)

the inner product of f with the induced character IndGF2

GF 1. The classification of
irreducible characters of H(GF 2

, GF ) and the determination of their degrees are
equivalent to the determination of m2(ρ) for all irreducible characters ρ of GF 2

.
In [K2], Kawanaka computed m2(ρ) in the case where G is a classical group

with connected center, or in the case where ρ is unipotent and the characteristic
is good. Extending Kawanaka’s result, Lusztig gave in [L3] a closed formula for
m2(ρ) valid for any G which has the connected center and is simple modulo its
center. He expects that his formula is still valid for G with disconnected center. In
turn, Henderson studied in [H] the spherical functions of GF 2

/GF by making use
of the theory of perverse sheaves, and described them in the case where G = GLn,
in which case H(GF 2

, GF ) is abelian.
In this paper, we consider G = SLn with the standard Fq-structure, which is

the first example of the disconnected center case. Based on the parametrization of
irreducible characters and the description of almost characters in [S3] (which is valid
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under some restriction on p, for example, p ≥ 2n), we determine m2(ρ) (Theorem
5.3) for any irreducible characters, up to some minor ambiguity. In particular, we
have m2(ρ) ∈ {0, 1, 2}. We discuss the relationship between our result and Lusztig’s
conjectural formula.

Kawanaka’s main idea for the computation of m2(ρ), beside the use of the results
of Lusztig on m2(RT (θ)), is to connect it with the twisted Frobenius-Schur indicator
through the twisting operator. In Section 1, we generalize Kawanaka’s result, and
discuss a connection of m2(ρ) with Shintani descent. This leads to a formula for
m2(Rx) where Rx is an almost character of GF 2

, which is regarded as a counterpart
of Lusztig’s formula for m2(χA) in [L3, 7], where χA is the characteristic function of
character sheaves. In Section 1, we also discuss a more general situation. We define
mr(ρ) as the multiplicity of an irreducible character ρ of GF r

with the induced
character IndGFr

GF 1 for any integer r ≥ 2. We give some formula (Theorem 1.14)
for mr(Rx), although it is not so effective as the m2 case.

The subsequent sections are devoted to the computation of m2(ρ) for the case
where G = SLn. We obtain the results by applying the results in Section 1, together
with the computation of m2(ρ̃|GF2 ) for irreducible characters ρ̃ of GLn(Fq2).

Acknowledgment. The authors are grateful to the referee for the careful reading,
and the suggestion to improve the ambiguity of the sign contained in the first draft
of this paper.

Some notation. All the representations considered in this paper are over Q̄l. For
a finite group Γ , we denote by Irr Γ the set of irreducible characters of Γ . If δ is an
automorphism of Γ , we denote by (Irr Γ )δ the set of F -stable irreducible characters
of Γ .

Assume that Γ is an abelian group. In this case, we also use the notation Γ∧

to denote the set of irreducible characters of Γ , which coincides with the group
Hom(Γ, Q̄∗

l ). If δ is an automorphism of Γ , we denote by Γ∧
δ the subgroup of Γ∧

consisting of δ-fixed irreducible characters of Γ . Also in this case, we denote by Γδ

the largest quotient of Γ on which δ acts trivially, i.e., Γδ is the quotient of Γ by
the subgroup generated by g−1δ(g) for g ∈ Γ . Don’t confuse Γ∧

δ with (Γ∧)δ for a
finite group Γ∧. The group (Γ∧)δ does not occur in this paper.

Contents

1. G(Fq)-invariants in G(Fqr )-modules and Shintani descent.
2. Parametrization of irreducible characters of SLn(Fq2 ).
3. Almost characters of SLn(Fq2).
4. Determination of m2(ρṡ,E |GF2 ).
5. Determination of m2(ρ) for ρ ∈ Irr SLn(Fq2).

1. G(Fq)-invariants in G(Fqr )-modules and Shintani descent

1.1. For any finite group Γ and an automorphism F : Γ → Γ , we denote by Γ/∼F

the set of F -twisted conjugacy classes in Γ , where x, y ∈ Γ are F -twisted conjugate
if there exists z ∈ Γ such that y = z−1xF (z). In the case where F acts trivially on
Γ , the set Γ/∼F coincides with the set of conjugacy classes in Γ , which we denote
by Γ/∼.
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For a connected algebraic group X defined over Fq, and two Frobenius maps
F1, F2 on X such that F1F2 = F2F1, we define a norm map

NF1/F2 : XF1/∼F2→ XF2/∼F−1
1

as follows: for x ∈ XF1 , we choose α ∈ X such that x = α−1F2(α), and put
x′ = F1(α)α−1. Then x′ ∈ XF2 and the correspondence x → x′ induces a bijective
map NF1/F2 , which we call the norm map from XF1/∼F2 to XF2/∼F−1

1
.

For a finite set Y , we denote by C(Y ) the Q̄l-space of all Q̄l-valued functions on
Y . Then the norm map NF1/F2 induces a linear isomorphism

ShF1/F2 = N∗−1
F1/F2

: C(XF1/∼F2) → C(XF2/∼F−1
1

),

which is called the Shintani descent from XF1 to XF2 .

1.2. Let G be a connected algebraic group defined over a finite field Fq with
Frobenius map F . We fix a positive integer r, and consider the group H = G×· · ·×G
(r-factors). H is endowed with the natural Frobenius map given by (g1, . . . , gr) �→
(F (g1), . . . , F (gr)), which we also denote by F . Let F ′ = Fω : H → H be a twisted
Frobenius map on H , where ω : H → H, (g1, . . . , gr) �→ (gr, g1, . . . , gr−1) is the
cyclic permutation of factors. Since ωr = 1 and Fω = ωF , we have (F ′)rm = F rm

for any m ≥ 1.

Lemma 1.3. The map GF rm → HF rm

, x → (x, 1, . . . , 1) induces a bijection

(1.3.1) f : GF rm

/∼F r → HF rm

/∼F ′ .

Proof. Take x = (x1, . . . , xr), y = (y1, . . . , yr) ∈ HF rm

. If x and y are in the same
class, there exists z = (z1, . . . , zr) such that yi = z−1

i xiF (zi−1) for i ∈ Z/rZ. Now
assume that x = (x1, 1, . . . , 1). Then z−1xF ′(z) = (y1, 1, . . . , 1) for z ∈ GF rm

if and
only if z = (z1, F (z1), . . . , F r−1(z1)). Moreover, in this case, y1 = z−1

1 x1F
r(z1).

This shows that the map f is well defined, and is injective. It is easy to see that
each F ′-conjugacy class in HF rm

contains a representative of the form (x1, 1, . . . , 1).
Hence f is surjective. �

1.4. For each x ∈ GF rm

, k ≥ 1, we put Nk(x) = xF (x) · · ·F k−1(x). Then the
map GF rm → GF rm

, x �→ Nk(x) induces a map GF rm

/∼F → GF rm

/∼F k , which we
also denote by Nk. Let ∆(H) � G be the diagonal subgroup of H . The inclusion
∆(H)F rm

↪→ HF rm

induces a map d : ∆(H)F rm

/∼F → HF rm

/∼F ′ . Then we have
a commutative diagram

(1.4.1)

GF rm

/∼F r
f−−−−→ HF rm

/∼F ′

Nr

� �d

GF rm

/∼F
f0−−−−→ ∆(H)F rm

/∼F ,

where f0 is the bijection induced from the isomorphism G
∼−→ ∆(H). This follows

from the following relation for x ∈ GF rm

,

(Nr(x), 1, . . . , 1) = y−1(x, x, . . . , x)F ′(y)

with y = (1, N1(x), N2(x), . . . , Nr−1(x)).
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1.5. Concerning the norm maps, we have the following commutative diagram:

(1.5.1)

GF rm

/∼F r

NF rm/F r

−−−−−−→ GF r

/∼

Nr

� �j

GF rm

/∼F

NF rm/F−−−−−−→ GF/∼,

where j is the map induced from the inclusion GF ↪→ GF r

. We show (1.5.1). Let
x̂ = GF rm

and take α ∈ G such that x̂ = α−1F (α). Then NF rm/F (x̂) is represented
by x = F rm(α)α−1. On the other hand, since x̂′ = Nr(x̂) = α−1F r(α), we see that
NF rm/F r(x̂′) is represented by F rm(α)α−1 which coincides with j(x). This shows
the commutativity.

1.6. Let σ′ = F ′|HF rm , and H̃F rm

be the semidirect product of HF rm

with the
cyclic group〈σ′〉 of order rm generated by σ′. For a character χ of GF rm

, we define
the character F (χ) by F (χ)(F (g)) = χ(g), and similarly for H . An irreducible
character ψ of HF rm

is F ′-stable if and only if ψ is of the form that

(1.6.1) ψ = χ ⊗ F (χ) ⊗ · · · ⊗ F r−1(χ)

for some F r-stable irreducible character χ on GF rm

. Let Vi (1 ≤ i ≤ r) be an
irreducible GF rm

-module for the irreducible character F i−1(χ). Then there exists
a linear isomorphism Ti : Vi → Vi+1 such that Ti ◦ g = F (g) ◦ Ti for any g ∈ GF rm

with Vr+1 = V1 and that (TrTr−1 · · ·T1)m = 1. Let ψ be as in (1.6.1). Then ψ is
afforded by the HF rm

-module V1 ⊗ V2 ⊗ · · · ⊗ Vr. Let us define an action of σ′ on
V1 ⊗ · · · ⊗ Vr by

σ′ = ω ◦ (T1 ⊗ T2 ⊗ · · · ⊗ Tr),

where ω is the cyclic permutation of factors given by

ω(x1 ⊗ x2 ⊗ · · · ⊗ xr) = xr ⊗ x1 ⊗ · · · ⊗ xr−1.

Then we have σ′ ◦h = F ′(h)◦σ′ for h ∈ HF rm

, and so V1⊗· · ·⊗Vr can be extended
to an H̃F rm

-module. We denote by ψ̃ the corresponding extension of ψ to H̃F rm

.
Let σ = F |GF rm , and we consider GF rm〈σ〉 the semidirect product of GF rm

with
the cyclic group 〈σ〉 of order rm generated by σ. We define an action of σr on
V1 by σr = TrTr−1 · · ·T1. Then σr ◦ g = F r(g) ◦ σr for any g ∈ GF rm

, and the
GF rm

-module V1 can be extended to a GF rm〈σr〉-module Ṽ1. We denote by χ̃ the
corresponding extension of χ to GF rm〈σr〉. We show the following lemma.

Lemma 1.7. Let h = (g, 1, . . . , 1) ∈ HF rm

with g ∈ GF rm

. Let χ be an F r-stable
irreducible character of GF rm

. Then for ψ = χ⊗F (χ)⊗· · ·⊗F r−1(χ) ∈ Irr HF rm

,
we have

ψ̃(hσ′) = χ̃(gσr).

Proof. Let v
(1)
1 , . . . , v

(1)
n be a basis of V1. We define a basis v

(i+1)
1 , . . . , v

(i+1)
n of Vi+1

inductively by v
(i+1)
j = Ti(v

(i)
j ) for i = 1, 2, . . . r − 1. Then we have

Tr(v
(r)
j ) = Tr · · ·T1(v

(1)
j ) = σrv

(1)
j .

It follows that

hσ′ · v(1)
i1

⊗ v
(2)
i2

⊗ · · · ⊗ v
(r)
ir

= (gσrv
(1)
ir

) ⊗ v
(2)
i1

⊗ · · · ⊗ v
(r)
ir−1

,
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and we have

ψ̃(hσ′) = Tr (hσ′, V1 ⊗ · · · ⊗ Vr) = Tr (gσr, V1) = χ̃(gσr).

This proves the lemma. �
1.8. Let χ be an F r-stable irreducible character of GF rm

, and χ̃ be its extension to
GF rm〈σr〉 as in the previous lemma. Let GF rm

σr/∼ be a set of conjugacy classes in
GF rm〈σr〉 contained in the coset GF rm

σr . Under the natural bijection GF rm

/∼F r�
GF rm

σr/∼ via x ↔ xσr , we have an isomorphism C(GF rm

/∼F r) � C(GF rm

σr/∼).
Thus χ̃|GF rmσr defines an element in the space C(GF rm

/∼F r). Put

R
(m)
χ̃ = ShF rm/F r(χ̃|GF rmσr ).

Hence R
(m)
χ̃ is a class function on GF r

. We have the following formula.

Proposition 1.9. Under the notation as above,

(1.9.1) |GF rm

|−1
∑

ĝ∈GF rm

χ̃(Nr(ĝ)σr) = |GF |−1
∑

g∈GF

R
(m)
χ̃ (g).

Proof. Take ĝ ∈ GF rm

. Write ĝ as ĝ = α−1F (α) and put g = F rm(α)α−1. Then
g ∈ GF , and we see that χ̃(Nr(ĝ)σr) = R

(m)
χ̃ (g) by (1.5.1). Moreover, it is known

that
�{x ∈ GF rm | x−1ĝF (x) = ĝ} = �{y ∈ GF | y−1gy = g}.

The formula (1.9.1) is immediate from these two facts. �

1.10. Let c
(m)
r (χ̃) be the left-hand side of (1.9.1), i.e.,

(1.10.1) c(m)
r (χ̃) = |GF rm

|−1
∑

ĝ∈GFrm

χ̃(Nr(ĝ)σr).

Then c
(m)
r (χ̃) is a generalization of the twisted Frobenius-Schur indicator discussed

in Kawanaka and Matsuyama [KM]. In the case where m = 1, we simply write
c
(1)
r (χ̃) as cr(χ). Note that in this case, the extension does not enter the formula,

and we have
cr(χ) = |GF r

|−1
∑

g∈GF r

χ(Nr(g)).

If r = 2, c2(χ) coincides with the Frobenius-Schur indicator defined in [KM].
Let us define, for a class function f of GF r

,

(1.10.2) mr(f) =〈f, IndGF r

GF 1〉 = |GF |−1
∑

x∈GF

f(x).

Then the identity (1.9.1) can be rewritten as

(1.10.3) c(m)
r (χ̃) = mr(R

(m)
χ̃ ).

We note that (1.10.3) is a generalization of the formula due to Kawanaka [K2,
(1.1)]. In fact, in the case where m = 1, the Shintani descent ShF r/F r coincides
with the inverse of the twisting operator t∗1 on C(GF r

/∼) given in [K2], and so we
have R

(1)
χ = t∗−1

1 χ. Then (1.10.3) implies the following.

Corollary 1.11. Let the notation be as above. Then we have cr(χ) = mr(t∗−1
1 χ).

In the case where r = 2, this formula is nothing but the formula (1.1) in [K2].
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1.12. By Lemma 1.7, χ̃(Nr(ĝ)σr) = ψ̃(hσ′) with h = (Nr(ĝ), 1, . . . , 1) ∈ HF rm

.
As in 1.4, h is F ′-conjugate to (ĝ, . . . , ĝ) ∈ ∆(H)F rm

, and so

ψ̃(hσ′) = ψ̃((ĝ, . . . , ĝ)σ′).

On the other hand, under the isomorphism ∆(H)F rm � GF rm

, V1 ⊗ · · · ⊗ Vr is
an GF rm

-module, and its character χF (χ) · · ·F r−1(χ) is F -stable. Moreover, we
have σ′ ◦ g = F (g) ◦ σ′ on V1 ⊗ · · · ⊗ Vr for any g ∈ GF rm

. This implies that the
action of σ′ defines a structure of GF rm〈σ〉-module on V1 ⊗ · · · ⊗ Vr, where σ acts
by σ′ on it. We denote the character of this module by ψ̃0, which is an extension
of χF (χ) · · ·F r−1(χ). Thus, we have

ψ̃((ĝ, . . . , ĝ)σ′) = ψ̃0(ĝσ).

Now (1.9.1) can be rewritten as

(1.12.1) mr(R
(m)
χ̃ ) = |GF rm |−1

∑
ĝ∈GF rm

ψ̃0(ĝσ).

1.13. Let k be a positive integer. We define an inner product on C(GF k

σ/∼) by

〈f, h〉GF k σ = |GF k

|−1
∑

x∈GFk

f(xσ)h(xσ)

for f, h ∈ C(GF k

σ/∼). Then the following orthogonality relations are known.
For any F -stable irreducible characters χ, χ′ of GF k

and their extensions χ̃, χ̃′ to
GF k〈σ〉,

(1.13.1) 〈χ̃, χ̃′〉GF k σ =

{
θ(σ) if χ̃ = θ ⊗ χ̃′ with θ ∈ Irr 〈σ〉,
0 if χ′ = χ.

Here in the left-hand side, χ̃, χ̃′ are regarded as functions on GF rm

σ by restriction.
For any f ∈ C(GF k

σ/∼), we put

M̃k(f) =〈f, 1̃〉
GF k σ

= |GF k |−1
∑

x∈GFk

f(xσ),

where 1̃ means the restriction of the unit character of GF k〈σ〉 to GF k

σ. We also
put, for a class function h of GF k

,

Mk(h) =〈h, 1〉 GF k = |GF k |−1
∑

x∈GF k

h(x).

The following statement is immediate from (1.13.1).

(1.13.2) Let ρ be an F -stable character of GF k

, and ρ̃ its extension to G̃F k

. Then
we have |M̃k(ρ̃)| ≤ Mk(ρ). Moreover, if Mk(ρ) = 1, then M̃k(ρ̃) is a k-th root of
unity.

We have the following theorem.

Theorem 1.14. Let χ be an F r-stable irreducible character of GF rm

, and χ̃ an ex-
tension of χ to GF rm〈σr〉. Let ψ̃0 be the extension of χF (χ) · · ·F r−1(χ) to GF rm〈σ〉
as in 1.12. Put ShF rm/F r (χ̃|GF rm σr ) = R

(m)
χ̃ .
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(i) We have c
(m)
r (χ̃) = mr(R

(m)
χ̃ ) = M̃rm(ψ̃0). In particular,

|mr(R
(m)
χ̃ )| ≤ Mrm(χF (χ) · · ·F r−1(χ)).

Furthermore, if Mrm(χF (χ) · · ·F r−1(χ)) = 1, we have |mr(R
(m)
χ̃ )| = 1.

(ii) Assume that r = 2. Then there exists a 2m-th root of unity ζ such that

m2(R
(m)
χ̃ ) =

{
ζ if χ = F (χ),
0 otherwise,

where χ is the complex conjugate of the character χ.

Proof. The equality mr(R
(m)
χ̃ ) = M̃rm(ψ̃0) in (i) follows from (1.12.1). The in-

equality in (i) follows from (1.13.2). Assume that r = 2. Then we have

M2m(χF (χ)) =〈χF (χ), 1〉GF2m =〈F (χ), χ〉GF2m =

{
1 if F (χ) = χ,

0 otherwise.

So the assertion (ii) follows from (1.13.2). This proves the theorem. �

1.15. In the case where r = 2, we determine the quantity ζ = c
(m)
2 (χ̃) more

explicitly. Let χ be an F 2-stable irreducible character of GF 2m

and χ̃ its extension
to GF 2m〈σ2〉 as in the theorem. Let us assume that F (χ) = χ. We follow the setting
in 1.6. In particular, V1 (resp. V2) is a GF 2m

-module affording χ (resp. F (χ)). Since

F (χ) = χ, the subspace W = (V1 ⊗V2)GF2m

of GF 2m

-invariant vectors in V1 ⊗V2 is
of dimension 1. The map σ′ : V1⊗V2 → V1⊗V2, v1⊗v2 �→ T2(v2)⊗T1(v1) preserves
the space W , and the eigenvalue of σ′ on W coincides with ζ = c

(m)
2 (χ̃). The map

σ2 = T2T1 : V1 → V1 extends the GF 2m

-module V1 to the GF 2m〈σ2〉-module Ṽ1

affording the character χ̃.
The GF 2m

-module V2 can be identified with V1 by replacing the action of g ∈
GF 2m

by F (g). Under this identification, we may take T1 = IdV1 and T2 = σ2 on
V1. Hence we have σ′(v1⊗v2) = σ2(v2)⊗v1. Now the averaging operator V1⊗V2 →
W, v �→ |GF 2m |−1

∑
g∈GF2m g · v determines a bilinear form B : V1 × V1 → Q̄l (up

to scalar) having the following properties:

B(g · v1, F (g) · v2) = B(v1, v2) for g ∈ GF 2m

, v1, v2 ∈ V1,(1.15.1)

B(σ2(v2), v1) = ζB(v1, v2) for v1, v2 ∈ V1.

Conversely, if there exists such a bilinear form on V1, this form coincides with B

up to scalar. Hence ζ determines the value c
(m)
2 (χ̃).

The extension χ̃ of χ is determined by the choice of T1, T2 such that (T2T1)m =
IdV1 . If we replace T1 by a scalar multiple ξT1 for an m-th root of unity ξ, it gives
a different extension of χ̃′ of χ. By changing χ̃ by χ̃′, the eigenvalue ζ of σ′ on
W is replaced by ξζ. Summing up the above arguments, we have the following
refinement of Theorem 1.14, which is a generalization of Theorem 2.1.3 in [K2].

Corollary 1.16. Let χ be an F 2-stable irreducible character of GF 2m

and χ̃ an
extension of χ to GF 2m〈σ2〉.
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(i) We have

c
(m)
2 (χ̃) =

{
ζ if F (χ) = χ,

0 otherwise,

where ζ is an 2m-th root of unity.
(ii) Assume that F (χ) = χ. Let ζ0 be a primitive 2m-th root of unity in Q̄l.

Then there exists a unique extension χ̃ of χ such that c
(m)
2 (χ̃) = 1 or ζ0.

Let V1 be the GF 2m〈σ2〉-module affording χ̃. Then c
(m)
2 (χ̃) = 1 (resp ζ0)

if and only if there exists a non-zero bilinear form B(·, ·) on V1 satisfying
(1.15.1) with ζ = 1 (resp. ζ = ζ0).

1.17. In the case where G is a connected reductive group with connected center,
Lusztig defined in [L1] almost characters of GF . In the case where G is a special lin-
ear group SLn with F of split type, almost characters are also formulated in [S3]. In
either case, the set of almost characters coincides with the set of ShF m/F (χ̃|GF mσ),
up to an m-th root of unity multiple, for sufficiently divisible m, where χ runs
over all the F -stable irreducible characters of GF m

. We denote by Rχ the almost
character of GF corresponding to χ. As a corollary to Theorem 1.14, we have the
following result.

Corollary 1.18. Assume that G is either a connected reductive group with con-
nected center, or SLn with F of split type. Let Rχ be the almost character of GF 2

associated to an F 2-stable irreducible character χ of GF 2m

. Then we have

(1.18.1) m2(Rχ) =

{
ζ if F (χ) = χ,

0 otherwise,

where ζ is a certain 2m-th root of unity.

Remark 1.19. In [L3, Prop. 7.2], Lusztig proved a formula concerning the charac-
teristic functions of character sheaves as follows. Let A be an F 2-stable character
sheaf of a connected reductive group G. We denote by χA,φA ∈ C(GF 2

/∼) the char-
acteristic function of A with respect to an isomorphism φA : (F 2)∗A ∼−→ A. Then
under the assumption that q is sufficiently large (and that χA,φA can be written as
a linear combination of irreducible characters with cyclotomic integer coefficients),
there exists a choice of φA such that

(1.19.1) m2(χA,φA) =

{
(−1)dim supp A if F ∗(A) � DA,

0 otherwise,

where DA is the Verdier dual of A. Since the proof depends on the asymptotic
behavior of q → ∞, the condition on q is considerably large. In the case where G
has a connected center, using the description of m2(χ) for any irreducible character
χ of GF 2

in [L3], (1.18.1) can be verified directly. In [S2], it was shown that almost
characters coincide with the characteristic functions of character sheaves whenever
G has a connected center. A similar result was also shown in [S4] for SLn with
F of split type. Hence the formula (1.18.1) is a counter part of (1.19.1) to almost
characters, which works without any assumption on q. Also, Theorem 1.14 (ii) is
regarded as an extension of (1.19.1) to arbitrary connected algebraic groups.
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1.20. As a special case of the situation discussed in Theorem 1.14 (i), we consider
the case where G = GLn with the standard or non-standard Frobenius map F over
Fq. Irreducible characters of GF r

are described as follows. Let G∗ � GLn be the
dual group of G. For each F r-stable semisimple class {s}, choose a representative
s ∈ G∗F r

. Let T ∗ be a maximally split maximal torus in ZG∗(s). Let W =
NG∗(T ∗)/T ∗ be the Weyl group of G∗, and put Ws = {w ∈ W | w(s) = s}. Then
Ws is the Weyl group of ZG∗(s), and F r acts naturally on Ws, which we denote by
δ. Let (Irr Ws)δ be the set of F r-stable irreducible representations of Ws. For each
E ∈ (Irr Ws)δ, we fix an extension Ẽ of E to the semidirect group Ws〈δ〉, where
〈δ〉 is the infinite cyclic group with generator δ. Put

Rs,Ẽ = |Ws|−1
∑

w∈Ws

Tr (wδ, Ẽ)RT∗
w
(s),

where RT∗
w
(s) denotes the Deligne-Lusztig character RTw (θ) under the natural cor-

respondence (s, T ∗
w) ↔ (θ, Tw).

It is known, under a suitable choice of the extension, ±Rs,Ẽ gives rise to an
irreducible character of GF r

, which we denote by ρs,E . Then the set Irr GF r

of
irreducible characters of GF r

is given as

Irr GF r

=
∐
{s}

{ρs,E | E ∈ (Irr Ws)δ},

where {s} runs over F r-stable semisimple conjugacy classes in G∗.
Let (s, T ∗) be as above. We choose an F r-stable maximal torus T of G which

is dual to T ∗, and let B be a Borel subgroup of G containing T . We choose an
integer m > 0 such that Fmr leaves B invariant. One can find a linear character θ
of T F rm

corresponding to s ∈ T ∗F rm

. Then we have

EndGF rm

(
IndGF rm

BF rm θ̃
)
� Q̄l[Ws],

where θ̃ is the lift of θ to the linear character of BF rm

. Let us denote by χθ,E the

irreducible constituent of IndGF rm

BF rm θ̃ corresponding to E ∈ Irr Ws. Then χθ,E is
F r-stable if and only if E ∈ (Irr Ws)δ, and in which case, ShF rm/F r (χ̃θ,E|GF rm σr )
coincides with ρs,E up to a scalar multiple. Thus under this setting, Theorem 1.14
(i) can be rewritten as follows.

Corollary 1.21. Let G = GLn with the standard or non-standard Frobenius map
F . Then for each ρs,E ∈ Irr GF r

, we have

mr(ρs,E) ≤ Mrm(χθ,EF (χθ,E) · · ·F r−1(χθ,E)).

Moreover, if Mrm(χθ,EF (χθ,E) · · ·F r−1(χθ,E)) = 1, we have mr(ρs,E) = 1.

2. Parametrization of irreducible characters of SLn(Fq2 )

2.1. In the remainder of this paper, we assume that G̃ = GLn and G = SLn with
Frobenius maps F with respect to the standard Fq-structures. We assume that p
is large enough so that the results in [S3] can be applied. (Although there is no
assumption for p in [S3], it should be changed. Actually, Kawanaka’s construction
of generalized Gelfand-Graev characters of GLn or SLn requires no assumptions
for p. However, our construction (cf. [S3, 2.3]) depends on the Dynkin-Kostant
theory, which requires that p is not too small.) For example, p ≥ 2n is enough in
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our case. Let G̃∗ (resp. G∗) be the dual group of G̃ (resp. G). Then G̃∗ � GLn,
and G∗ � G̃∗/Z̃∗, where Z̃∗ is the center of G̃∗. The inclusion map G ↪→ G̃ induces
a natural surjection π : G̃∗ → G∗. As in the case of G̃, the set Irr GF 2

is partitioned
as

Irr GF 2
=

∐
{s}

E(GF 2
, {s}),

where {s} runs over F 2-stable semisimple classes in G∗. Take s such that F 2(s) = s.
Let T ∗ be an F 2-stable maximal torus of ZG∗(s) such that T ∗ is contained in an
F 2-stable Borel subgroup of ZG∗(s). Let T̃ ∗ be an F 2-stable maximal torus of
G̃∗ such that π(T̃ ∗) = T ∗. Then W = NG̃∗(T̃ ∗)/T̃ ∗ is naturally identified with
NG∗(T ∗)/T ∗. Put

Ws = NZG∗ (s)(T ∗)/T ∗, W 0
s = NZ0

G∗ (s)(T
∗)/T ∗.

Then W 0
s is the Weyl group of Z0

G∗(s). Now Ws can be decomposed as Ws �
W 0

s � Ωs, where Ωs = ZG∗(s)/Z0
G∗(s) is a cyclic group. If we choose ṡ ∈ T̃ ∗ such

that π(ṡ) = s, then W 0
s is naturally identified with Wṡ = {w ∈ W | w(ṡ) = ṡ}.

F 2 acts naturally on Ws. We denote by δ this action and consider the semidirect
product Ws〈δ〉, where δwδ−1 = F 2(w). δ stabilizes W 0

s and Ωs.

2.2. For each E ∈ Irr W 0
s , let Ωs(E) be the stabilizer of E in Ωs. Assume that

the Ωs-orbit of E is δ-stable. Put

Ω̃s(E) = {u ∈ Ωs | uδE = E}.
Then one can write Ω̃s(E) = Ωs(E)a for some a ∈ Ωs. Since Ωs is abelian, Ωs(E)
is δ-stable, and Ωs(E) acts on Ω̃s(E) by (z, u) �→ z−1uδ(z) for z ∈ Ωs(E) and
u ∈ Ω̃s(E). We denote by Ω̃s(E)δ the set of equivalent classes under this action.
It is easy to see that Ω̃s(E)δ can be identified with the set Ωs(E)δa, where Ωs(E)δ

is the largest quotient of Ωs(E) on which δ acts trivially. Let IrrW 0
s be the set of

Ωs-orbits in the set Irr W 0
s . We denote by (IrrW 0

s )δ the set of δ-stable orbits in
Irr W 0

s . By abuse of notation, (IrrW 0
s )δ means also a set of representatives for the

δ-stable Ωs-orbits in Irr W 0
s .

For each pair (s, E) with E ∈ (IrrW 0
s )δ, put

Ms,E = Ωδ
s(E)∧ × Ω̃s(E)δ,

where Ωδ
s = {u ∈ Ωs, δ(u) = u} and Ωδ

s(E) is the stabilizer of E in Ωδ
s, and Ωδ

s(E)∧

is the set of irreducible characters of Ωδ
s(E). It is known by [S3] that there exists a

natural bijection

(2.2.1) E(GF 2
, {s}) =

∐
E∈(Irr W 0

s )δ

Ms,E .

We denote by ρη,z the irreducible character of GF 2
corresponding to (η, z) ∈ Ms,E .

The above parametrization satisfies the following properties. The set of G∗F 2
-

conjugacy classes in the set {s}F 2
is in bijection with (Ωs)δ. For each x ∈ (Ωs)δ,

take a representative ẋ ∈ Ωs, and let ẍ ∈ ZG∗(s) be a representative of ẋ ∈ Ωs =
ZG∗(s)/Z0

G∗(s). Choose gx ∈ G∗ such that g−1
x F 2(gx) = ẍ, and put sx = gxsg−1

x .
Then F 2(sx) = sx, and gxT ∗g−1

x = T ∗
x is a maximally split torus in ZG∗(sx). We

define W 0
sx

in a similar way as W 0
s . Under the isomorphism W 0

s → W 0
sx

induced
by ad gx, the action of ẋδ on W 0

s is transferred to the action of F 2 on W 0
sx

. Hence
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each ẋδ-stable irreducible character E′ of W 0
s determines the F 2-stable irreducible

character E′′ of W 0
sx

. Take an F 2-stable element ṡx such that π(ṡx) = sx. We
consider the irreducible character ρṡx,E′′ of G̃F 2 as in 1.20, which we denote by
ρṡx,E′ , by abuse of the notation.

It is known from [S3, (4.4.2)] that there exists a natural bijection

(2.2.2) f :
∐

E∈(Irr W 0
s )δ

Ω̃s(E)δ �
∐

x∈(Ωs)δ

(Irr W 0
s )ẋδ/Ωδ

s,

where in the right-hand side, (Irr W 0
s )ẋδ/Ωδ

s means the set of Ωδ
s-orbits of ẋδ-stable

irreducible characters of W 0
s . The bijection is described as follows. Take E in a

δ-stable Ωs-orbit in Irr W 0
s . For each ẏ ∈ Ω̃s(E), there exists ẋ ∈ Ωs and z ∈ Ωs

such that ẏ = z−1ẋδ(z), where ẋ is one of the representatives of (Ωs)δ chosen above.
Then Ex = zE ∈ (Irr W 0

s )ẋδ. The correspondence (E, y) �→ (x, Ex) gives rise to
the required bijection f .

Under the above setting, we have

(2.2.3) ρṡx,Ex |GF2 =
∑

η∈Ωδ
s(E)∧

ρη,y.

Let Tsx,Ex be the set of irreducible characters occurring in the restriction of
ρṡx,Ex to GF 2

. We also denote by T s,E the set of ρη,y for (η, y) ∈ Ms,E . Then
(2.2.2) implies that

T s,E =
∐

(x,Ex)

Tsx,Ex ,

where (x, Ex) runs over all the pairs corresponding to (y, E) with y ∈ Ω̃s(E)δ under
the map f .

Remark 2.3. In [S3, 4.5], the parameter set Ms,E is defined as Ωδ
s(E)∧ × Ωs(E)δ.

Since Ω̃s(E)δ = Ωs(E)δa, this set is in bijection with Ms,E in this paper. However,
the bijection depends on the choice of a ∈ Ωs, and the definition of Ms,E in this
paper is more convenient for later applications.

2.4. We describe the decomposition of ρṡx,Ex |GF2 in (2.2.3) more precisely. It is
known by [L2] that Tsx,Ex is in bijective correspondence with Ωδ

s(E)∧. This bijec-
tion is given as follows. The abelian group G̃F 2

/GF 2
acts transitively on Tsx,Ex

by the conjugation action. Also its dual group (G̃F 2
/GF 2

)∧ acts on Irr G̃F 2
by

(θ, ρ̃) �→ θ ⊗ ρ̃ for a linear character θ ∈ (G̃F 2
/GF 2

)∧ and ρ̃ ∈ Irr G̃F 2
. Then

for ρ0 ∈ Tsx,Ex , the stabilizer of ρ0 in G̃F 2
/GF 2

and the stabilizer of ρṡx,Ex

in (G̃F 2
/GF 2

)∧ are orthogonal to each other under the natural duality pairing
G̃F 2

/GF 2 × (G̃F 2
/GF 2

)∧ → Q̄l (cf. [L2, 9]). Let I(ρṡx,Ex) be the stabilizer of
ρṡx,Ex in (G̃F 2

/GF 2
)∧. Then, under the choice of ρ0, the set Tsx,Ex is in natural

bijection with I(ρṡx,Ex)∧.
We show that I(ρṡx,Ex) is isomorphic to Ωδ

s(E). First note that there exists a
natural isomorphism

(2.4.1) Z̃∗F 2
� Hom(G̃F 2

/GF 2
, Q̄∗

l ) = (G̃F 2
/GF 2

)∧.
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If z is an element in Z̃∗F 2
corresponding to θ ∈ (G̃F 2

/GF 2
)∧ under the above

isomorphism, then θ maps E(G̃F 2
, {ṡx}) onto E(G̃F 2

, {zṡx}). Put

Z̃∗F 2

sx
= {z ∈ Z̃∗F 2 | zṡx is conjugate to ṡx under G̃∗},

which does not depend on the choice of ṡx for sx. Then, under the identification
in (2.4.1), I(ρṡx,Ex) is regarded as a subgroup of Z̃∗F 2

sx
. Here we have a natural

isomorphism

(2.4.2) ωsx : Ωδ
s = Ωxδ

s � ZG∗(s)ẍF 2
/Z0

G∗(s)ẍF 2
→ Z̃∗F 2

sx

defined as follows. For z̄ ∈ Ωxδ
s , take a representative z ∈ ZG∗(s)ẍF 2

of z̄, and
choose ż ∈ G̃∗ẍF 2

such that π(ż) = z. Then gx(ṡ−1żṡż−1) ∈ Z̃∗F 2

sx
, and the map

z̄ �→ gx(ṡ−1żṡż−1) induces a well-defined isomorphism ωsx since π(ZG̃∗(ṡx)) =
Z0

G∗(sx). Now under the identification in (2.4.1), (2.4.2), we may see that I(ρṡx,Ex)
is a subgroup of Ωδ

s, and in fact, I(ρṡx,Ex) coincides with the stabilizer of Ex in Ωδ
s.

Thus we have I(ρṡx,Ex) = Ωδ
s(Ex) = Ωδ

s(E).

2.5. The bijection between Tsx,Ex and Ωδ
s(E)∧ given in 2.4 depends on the choice

of ρ0 ∈ Tsx,Ex . We have to choose a specific ρ0 for each Tsx,Ex . This problem is
reduced to a certain special case, and is solved by the aid of generalized Gelfand-
Graev characters.

Let g be the Lie algebra of G with Frobenius map F . We have a bijection
log : Guni → gnil by v �→ v − 1, where Guni (resp. gnil) is the unipotent variety
of G (resp. nilpotent variety of g). Let N be a nilpotent element in gF . By
Dynkin-Kostant theory, there exists a natural grading g =

⊕
i∈Z gi associated to

N . Let ui =
⊕

j≥i gj . Then one can find an F -stable parabolic subgroup P = LU1

associated to N , where L is an F -stable Levi subgroup of P with Lie L = g0, and
U1 is the unipotent radical of P with Lie U1 = u1. Moreover, we have N ∈ g2. Let
k be an algebraic closure of Fq. It is known by Kawanaka (see [K1]), that there
exists an F -stable subspace u (u1.5 in the notation of [S3]) of u1 containing u2 and
an F -equivariant linear map λ : u → k satisfying the following. There exists an
F -stable connected unipotent subgroup U of U1 such that log(U) = u and that the
map λ ◦ log : U → k turns out to be an F -stable homomorphism of U . We define
a linear character ΛN of UF 2

by ΛN = ψ2 ◦ λ ◦ log, where ψ2 : Fq2 → Q̄∗
l is the

additive character defined by ψ2 = ψ◦Tr Fq2 /Fq
for a non-trivial additive character

ψ : Fq → Q̄∗
l . The generalized Gelfand-Graev character ΓN of GF 2

associated to
N is defined as

ΓN = IndGF2

UF2 ΛN .

The character ΓN depends only on the GF 2
-conjugacy class of N .

We now consider the following special setting for the set Ms,E determined by
the pair (s, E).

(2.5.1) W 0
s is isomorphic to Sb × · · · × Sb (t-times) with b = n/t, and Ωs �〈w0〉,

where w0 is an element of order t in Ws permuting the factors of W 0
s transitively.

Moreover, E ∈ Irr W 0
s is of the form

E = E1 � E1 � · · · � E1 with E1 ∈ Irr Sb.

Then E is Ωs-stable, and we have Ωs = Ωs(E).
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Now it is known from Lusztig ([L1, 13.4], see [S3, 2.9] for a brief description)
that there exists a map ρ �→ Oρ from Irr G̃F to the set of nilpotent orbits in Lie G̃.
We take N ∈ gF , a nilpotent element (in Jordan normal form) contained in Oρ, for
ρ = ρṡ,E . (To be more explicit, Oρ is a nilpotent orbit corresponding to the partition
of n dual to µ ∪ · · · ∪ µ (t-times), where µ is a partition of n/t corresponding to
E1). Then it is known that there exists a unique irreducible character ρ0 such that
ρ0 occurs both in ΓN and in ρṡx,Ex |GF2 . By using this ρ0, one obtains a bijection
Tsx,Ex ↔ Ωδ

s(E)∧ as in 2.4. This is the parametrization given in (2.2.3), where if
(x, Ex) corresponds to (E, y) by (2.2.2), then ρη,y corresponds to η ∈ Ωδ

s(E)∧.
By the arguments in [S3, 4.5], the parametrization of Tsx,Ex in the general case is

reduced to the case given in (2.5.1). Accordingly, ρ0 is determined for each Tsx,Ex .
However, note that this parametrization still depends on the choice of a nilpotent
element N in g. In what follows, we assume that

(2.5.2) Each nilpotent element N ∈ gF is taken to be a Jordan normal form.

2.6. In order to apply the results in Section 1, we need to know the condition
when F (ρ) = ρ for an irreducible character ρ of GF 2

. We return to the setting in
2.2, and further assume that F (s) = s−1. Then F acts on Ws, preserving W 0

s and
Ωs. We denote this action by γ, so that γ2 = δ. Note that if ρ′ belongs to Ms,E ,
then ρ′ belongs to Ms−1,E since E ∈ Irr W 0

s is self dual. Also, F (ρ′) belongs to
MF (s),F (E). Hence if ρ as above belongs to Ms,E , the Ωs-orbit of E turns out
to be γ-stable. It follows that γ leaves Ω̃s(E) invariant, and induces an action on
Ω̃s(E)δ. We denote by Ω̃s(E)γ

δ the set of γ-fixed points in Ω̃s(E)δ. γ acts also on
the set Ωδ

s(E)∧. We denote by Ωδ
s(E)∧−γ the set of η ∈ Ωδ

s(E)∧ such that γ(η) = η.
We put, for E ∈ (Irr W 0

s )γ ,

M0

s,E = Ωδ
s(E)∧−γ × Ω̃s(E)γ

δ .

We have the following proposition.

Proposition 2.7. Let ρη,y be the irreducible character of GF 2
corresponding to

(η, y) ∈ Ms,E. Assume that F (s) = s−1.
(i) If the Ωs-orbit of E is not γ-stable, then F (ρη,y) = ρη,y.
(ii) Assume that the Ωs-orbit of E is γ-stable. Then F (ρη,y) = ρη,y if and only

if (η, y) ∈ M0

s,E .

The proposition will be proved in 2.11 after some preliminaries. First we note
that

Lemma 2.8. For each N , we have F (ΓN ) = ΓN , and ΓN = ΓN .

Proof. The fact that F (ΓN ) = ΓN can be checked directly for any N ∈ gF since
UF 2

is F -stable and ΛN is also F -stable. On the other hand, it follows from the
definition that we have ΓN = Γ−N . So, in order to show the lemma, it is enough
to see that N is conjugate to −N under GF 2

. Since N is given by a Jordan
normal form, this is reduced to the case where N is regular nilpotent. Assume that
N is a regular nilpotent element given in the Jordan normal form. There exists
g = diag(a,−a, . . . , (−1)n−1a) ∈ G̃ such that gNg−1 = −N . Then g ∈ GF 2

if and
only if a ∈ Fq2 and (−1)kan = 1 with k = [n/2]. We can set a = 1 if k is even, and
set a = −1 if k is odd and n is odd. So, assume that n is even and k is odd, i.e.,



500 TOSHIAKI SHOJI AND KARINE SORLIN

n = 2k. In this case, we may take a ∈ Fq2 such that a2 = −1. Thus we can always
find g ∈ GF 2

, and the lemma follows. �

As a corollary, we have

Corollary 2.9. Let ρṡx,Ex ∈ Irr G̃F 2
and ρ0 ∈ Irr GF 2

be as in 2.5. Assume that
F (ρṡx,Ex)|GF2 = ρṡx,Ex |GF2 . Then we have F (ρ0) = ρ0.

Proof. The parametrization of Irr GF 2
in terms of the set Ms,E is reduced to the

special case where Ms,E is given by (2.5.1) through the steps (b) and (c) in [S3, 4.5].
Since the steps (b) and (c) are compatible with the F action and with taking duals,
the assertion is reduced to the case of (2.5.1). In this case, we have F (ΓN ) = ΓN by
Lemma 2.8. Note that the F -action and taking duals preserve the inner product.
Since ρ0 is the unique irreducible character such that

〈ΓN , ρ0〉GF2 =〈ρsx,Ex , ρ0〉GF2 = 1,

the corollary follows. �

Lemma 2.10. Assume that the set Ms,E satisfies the assumption of Proposition
2.7 (ii). Take y ∈ Ω̃s(E)δ and assume that (E, y) ↔ (x, Ex) under the map in
(2.2.2). Then F (ρṡx,Ex)|GF2 = ρṡx,Ex |GF2 if and only if y ∈ Ω̃s(E)γ

δ .

Proof. We may choose ẏ ∈ Ω̃s(E) as a representative of x ∈ (Ωs)δ, so we may
assume that Ex = E. Then Tsx,Ex = Tsy,E corresponds to the set Ωδ

s(E)∧ ×
{y} under the correspondence Ts,E ↔ Ms,E (cf. (2.2.3)). It is easy to see, for
any pair (s1, E1), that F (ρṡ1,E1) = ρF (ṡ1),F (E1), where F (E1) is the character
of WF (s1) corresponding to E1 under the isomorphism Ws1 � WF (s1). On the
other hand, we have ρṡ1,E1 = ρṡ−1

1 ,E1
since Ws1 = Ws−1

1
and E1 is self dual. It

follows that F (ρṡy ,E) = ρF (ṡ−1
y ),F (E). By our assumption, F (s−1) = s. Hence we

have F (s−1
y ) ∈ T ∗

γ(y) and F (E) ∈ (Irr W 0
s )γ(y)δ. This implies that F (Tsy,E) =

Tsγ(y),F (E) = Tsγ(y),uE for some u ∈ Ωs since the Ωs-orbit of E is F -stable. Since
Tsγ(y),uE = Tsy,E if and only if γ(y) = y in Ω̃s(E)δ, the lemma is proved. �

2.11. We shall prove Proposition 2.7. The assertion (i) follows from 2.6. We show
(ii). Take (η, y) ∈ Ms,E . If γ(y) = y, then F (ρη,y) = ρη,y by Lemma 2.10. So,
assume that y ∈ Ω̃s(E)γ

δ . Let ρṡx,Ex be the character of G̃F 2
containing ρη,y. Again

by Lemma 2.10, we have F (ρṡx,Ex) = ρṡx,Ex . Let ρ0 ∈ GF 2
be as in 2.5. Then by

Corollary 2.9, we have F (ρ0) = ρ0. If we write ρη,y = gρ0 with g ∈ G̃F 2
, we have

F (ρη,y) = F (g)ρ0. Now the action of F induces an action on (G̃F 2
/GF 2

)∧ which
is compatible with the natural pairing G̃F 2

/GF 2 × (G̃F 2
/GF 2

)∧ → Q̄∗
l . Then F

stabilizes the subgroup I(ρṡx,Ex).
The argument in 2.4 show that the condition F (ρη,y) = ρη,y is described by

investigating the action of F on I(ρṡx,Ex). We follow the notation in 2.4. I(ρṡx,Ex)
is regarded as a subgroup of Z̃∗F 2

. If we denote by ω̃sx the map Ωδ
s → Z̃∗F 2

obtained
as the composite of ωsx and the inclusion Z̃∗F 2

sx
↪→ Z̃∗F 2

, then ω̃sx(Ωδ
s(Ex)) coincides

with I(ρṡx,Ex). We note the following.
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(2.11.1) Assume that x ∈ (Ωs)δ is γ-stable. Then the following diagram commutes:

Ωδ
s

ω̃sx−−−−→ Z̃∗F 2

−γ

� �F=γ

Ωδ
s

ω̃sx−−−−→ Z̃∗F 2
,

where −γ : Ωδ
s → Ωδ

s is the map defined by z �→ γ(z)−1.

We show (2.11.1). Take z ∈ Ωδ
s. Since F (s) = s−1, we have

γ(ω̃sx(z)) = F (gx(ṡ−1żṡż−1)) = F (gx)(ṡF (ż)ṡ−1F (ż)−1).

On the other hand, since x is γ-stable, ω̃sx coincides with ω̃sγ(x) , and we have

ω̃sx(−γ(z)) = F (gx)(ṡ−1F (ż)−1ṡF (ż)) = F (gx)(ṡF (ż)ṡ−1F (ż)−1).

since ṡ−1F (ż)−1ṡF (ż) is in the center Z̃∗ of G̃∗. Hence (2.11.1) holds.
Now (2.11.1) shows that the F -action on I(ρṡx,Ex) is transferred to the −γ

action on Ωδ
s(E). Hence under the parametrization Tsx,Ex ↔ Ωδ

s(E) × {y} given
by ρη,y ↔ (η, y), we see that F (ρη,y) = ρη,y if and only if η is −γ stable, i.e.,
η ∈ Ωδ

s(E)∧−γ . This proves the proposition.

3. Almost characters of SLn(Fq2)

3.1. We shall parametrize F 2-stable irreducible characters of GF 2m

for a suffi-
ciently divisible integer m. Let s be an F 2-stable semisimple element in G∗. We
assume that m is large enough so that F 2m acts trivially on W 0

s and Ωs. We denote
by M(m)

s,E the set which parametrizes irreducible characters of GF 2m

corresponding

to Ms,E in the previous section. Hence, M(m)

s,E = Ωs(E)∧ × Ωs(E). Since s is
F 2-stable, one can define a map δ = F 2 : Ws → Ws as before. If the Ωs-orbit of E
is F 2-stable, then δ stabilizes Ωs(E). For a pair (s, E) such that E ∈ (IrrW 0

s )δ, we
define a subset Ms,E of M(m)

s,E by

Ms,E = Ωs(E)∧δ × Ωs(E)δ,

where Ωs(E)∧δ is the set of δ-stable irreducible characters in Ωs(E)∧. We denote
by E(GF 2m

, {s})F 2
the subset of F 2-stable irreducible characters in E(GF 2m

, {s}).
Then by [S3, (4.6.1)] it is known that under the parametrization in (2.2.1) for GF 2m

,
we have

E(GF 2m

, {s})F 2
=

∐
E∈(Irr Ws)δ

Ms,E .

We denote by ρ
(m)
η,z the F 2-stable irreducible character of GF 2m

corresponding to
(η, z) ∈ Ms,E .

In the case where F (s) = s−1, one can define a map γ = F : Ws → Ws preserving
Ωs and W 0

s , and such that δ = γ2 as before. We denote by Ωs(E)γ the γ-fixed point
subgroup of Ωs(E), and by Ωs(E)∧−γ the set of η ∈ Ωs(E)∧ such that γ(η) = η.
Then we define a subset M0

s,E of Ms,E by

M0
s,E = Ωs(E)∧−γ × Ωs(E)γ .

The following proposition can be proved in a similar way as in Proposition 2.7.
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Proposition 3.2. Let ρ
(m)
x be an F 2-stable irreducible character of GF 2m

corre-
sponding to x ∈ Ms,E. Assume that F (s) = s−1.

(i) If the Ωs-orbit of E is not F -stable, then F (ρ(m)
x ) = ρ

(m)
x .

(ii) Assume that the Ωs-orbit of E is F -stable. Then F (ρ(m)
x ) = ρ

(m)
x if and

only if x ∈ M0
s,E.

3.3. Following [S3, 4.6], we define almost characters of GF 2
. For a given Ω̃s(E)δ,

we choose a = aE ∈ Ω̃s(E) and write it as Ω̃s(E)δ = Ωs(E)δaE . For x = (η, z) ∈
Ms,E and y = (η′, z′aE) ∈ Ms,E , we define a pairing {x, y} ∈ Q̄∗

l by

{x, y} = |Ωs(E)δ|−1η(z′)η′(z).

Then we define a class function Rx of GF 2
by

(3.3.1) Rx =
∑

y∈Ms,E

{x, y}ρy.

Rx are called almost characters of GF 2
. Note that the definition of the pairing

{ , } depends on the choice of aE ∈ Ω̃s(E)δ. If aE is replaced by a′ = b−1aE

with b ∈ Ωs(E)δ, then Rx is replaced by η(b)Rx. Hence the almost character Rx is
determined uniquely up to a root of unity multiple.

It is easy to see that (3.3.1) can be converted to the form

(3.3.2) ρy = |Ωs(E)δ|−2
∑

x∈Ms,E

{x, y}−1Rx.

The following result describes the Shintani descent of irreducible characters of
GF 2m

. Here we write the restriction of F 2 on GF 2m

as δ instead of σ2, in connection
with the previous section.

Theorem 3.4 ([S3, Theorem 4.7]). Let ρ
(m)
x be an F 2-stable irreducible character

of GF 2m

corresponding to x ∈ Ms,E, and choose an extension ρ̃
(m)
x to GF 2m〈δ〉.

Then
ShF 2m/F 2(ρ̃(m)

x |GF2mδ) = µxRx,

where µx is a root of unity depending on the extension ρ̃
(m)
x and on the choice of

aE.

Combining Theorem 3.4 with Proposition 3.2, we have the following refinement
of Corollary 1.18.

Corollary 3.5. Let Ms,E be such that F (s) = s−1 and that the Ωs-orbit of E is
F -stable. Then

m2(Rx) =

{
ζx if x ∈ M0

s,E ,

0 otherwise,

where ζx is a certain root of unity.

The following result describes the action of twisting operators on almost char-
acters. In the special case where F 2 acts trivially on the center, this was proved
by Bonnafé [B, Théorème 5.5.4]. We note that this result can also be derived from
the property of character sheaves, by making use of Lusztig’s conjecture for SLn,
which will be discussed in [S4].
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Theorem 3.6. For any x = (η, z) ∈ Ms,E, we have

t∗1(Rx) = η(z)−1Rx.

The theorem will be proved in 3.15 after some preliminaries. First we recall some
general properties of twisting operators.

Lemma 3.7. Let Γ be a connected algebraic group defined over Fq with Frobenius
map F , and H a connected F -stable subgroup of Γ . Then the twisting operator t∗1
commutes with the induction IndΓ F

HF .

Proof. It is clear that t∗1 commutes with the restriction functor ResΓ F

HF . Moreover,
t∗1 is an isometry with respect to the inner product on C(HF/∼) and C(Γ F/∼).
The lemma follows from these two facts. �

3.8. Let Γ be as in the lemma. For each integer m > 0, we consider the group
Γ F m

, and its semidirect product Γ̃ F m

= Γ F m〈σ〉, where σ is the restriction of F
on Γ F m

, and 〈σ〉 is the cyclic group of order m with generator σ. Then the twisting
operator t∗1 : C(Γ F/∼) → C(Γ F/∼) can be lifted to the operator

τ∗−1
1 : C(Γ F m

σ/∼) → C(Γ F m

σ/∼)

in the following way. We define a map τ1 : Γ F m

σ/∼ → Γ F m

σ/∼ by τ1(xσ) =
(xσ)1−m, and define τ∗

1 by its transpose. It is shown in [S1, Lemma 4.2] that, under
the condition that m is sufficiently divisible, τ∗

1 is an isomorphism and satisfies the
following commutative diagram:

(3.8.1)

C(Γ F m

σ/∼)
τ∗
1−−−−→ C(Γ F m

σ/∼)

ShF m/F

� �ShF m/F

C(Γ F/∼)
t∗1←−−−− C(Γ F/∼).

We have the following result.

Theorem 3.9 ([S1, Theorem 4.7]). Let ρ̃ be an extension of an F -stable irreducible
character of Γ F m

to Γ̃ F m

. Then for an appropriate choice of (sufficiently divisible)
m, there exists a root of unity λ such that

τ∗
1 (ρ̃|Γ F mσ) = λ(ρ̃|Γ F mσ).

The following related result seems to be worth mentioning, although it is not
used later. In [S1], under some condition on p, the notion of almost characters was
established for any connected algebraic group Γ . Then in view of (3.8.1) together
with Theorem 3.9, we have

Corollary 3.10. For each almost character Rx of Γ F , there exists a root of unity
λx such that

t∗1(Rx) = λxRx.

The following result was proved by Digne and Michel, which holds for any con-
nected reductive groups.

Proposition 3.11 ([DM]). Let H be an F -stable Levi subgroup of a parabolic sub-
group of a connected reductive group Γ . Then the Lusztig induction RΓ

H :C(HF/∼)
→ C(Γ F/∼) commutes with the twisting operator t∗1.
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3.12. We now return to our original setting, and consider G = SLn. The modi-
fied generalized Gelfand-Graev characters were introduced by Kawanaka (see [K1]),
which is a refinement of generalized Gelfand-Graev characters. The modified gen-
eralized Gelfand-Graev characters are used in [S3] to parametrize irreducible char-
acters of SLn. Here we discuss the action of twisting operators on the modified
generalized Gelfand-Graev characters. We follow the notation in 2.5 (but replacing
F 2 by F ).

By [S3, 2.6], we may choose u so that u is L-stable. Let Aλ = ZL(λ)/Z0
L(λ).

Then by [S3, 2.7], we have

Aλ � AG(N) = ZG(N)/Z0
G(N).

In particular, Aλ is an abelian group. F acts naturally on Aλ, and we consider the
quotient group (Aλ)F of Aλ. Put

M = (Aλ)F × (AF
λ )∧.

For each pair (c, ξ) ∈ M one can define a modified generalized Gelfand-Graev
character Γc,ξ as follows. For c ∈ Aλ, we choose a representative ċ ∈ ZL(λ). Then
we find αc ∈ L such that α−1

c F (αc) = ċ. We define a linear map λc : u → k by
λc = λ ◦ Ad α−1

c , and define a linear character Λc = ψ ◦ λc ◦ log on UF . Since
ZL(λc)F = ZL(Λc)F , the linear character Λc can be extended to a linear character
on ZL(λc)F UF trivial on Z0

L(λc)F , which we denote also by Λc. On the other
hand, since Aλ is abelian, we can define a linear character ξ� of ZL(λc)F trivial on
Z0

L(λc)F by

ξ� : ZL(λc)F → (ZL(λc)/Z0
L(λc))F � AċF

λ = AF
λ → Q̄∗

l ,

where the last step is given by ξ : AF
λ → Q̄∗

l . We denote by the same symbol ξ� the
lift of ξ� to ZL(λc)F UF under the homomorphism ZL(λc)F UF → ZL(λc)F . Under
these settings we define Γc,ξ by

Γc,ξ = IndGF

ZL(λc)F UF (ξ� ⊗ Λc).

3.13. We choose m large enough so that Fm acts trivially on Aλ. Replacing F by
Fm, we have a modified generalized Gelfand-Graev character Γ

(m)
(c,ξ) on GF m

. Now
the parameter set M is replaced by Aλ × (Aλ)∧. We denote by M the subset of
Aλ × (Aλ)∧ defined by

M = AF
λ × (Aλ)∧F ,

where (Aλ)∧F is the set of F -stable irreducible characters of Aλ. Following [S3, 1.8],
we construct, for each (c, ξ) ∈ M, an F -stable modified generalized Gelfand-Graev
character Γ

(m)
c,ξ , and its extension to GF m〈σ〉, where σ = F |GF m . For c ∈ AF

λ , we

choose ċ ∈ LF . We construct the linear character Λ
(m)
c of UF m

as in 3.12, i.e., we
choose βc ∈ L such that β−1

c Fm(βc) = ċ, and define λc by λc = λ ◦ Ad β−1
c , and

put Λ
(m)
c = ψm ◦ λc ◦ log, where ψm = ψ ◦ Tr Fqm /Fq

. Put ĉ = βcF (β−1
c ) ∈ LF m

.

Then Λ
(m)
c turns out to be ĉF -stable.

On the other hand, it can be checked that ĉF acts on ZL(λc) commuting with
Fm, and that under the isomorphism

adβ−1
c : ZL(λc)F m

/Z0
L(λc)F m

� ZL(λ)ċF m

/Z0
L(λ)ċF m

� Aλ,
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the action of ĉF on ZL(λc)F m

is transferred to the action of F on Aλ. Hence if we
take ξ ∈ (Aλ)∧F , it produces a ĉF -stable linear character ξ� on ZL(λc)F m

. It follows
that ξ� ⊗ Λ

(m)
c is ĉF -stable for (c, ξ) ∈ M, and we conclude that Γ

(m)
c,ξ is F -stable.

Put ĉ0 = (ĉσ)m ∈ LF m

. We note that ĉ0 ∈ ZL(λc)F m

= ZL(Λ(m)
c )F m

. In fact,
since Λ

(m)
c is ĉF -stable, it is stable by (ĉσ)m = ĉ0. We also note that

β−1
c ĉ0βc ≡ ċ−1 (mod Z0

L(λ)ċF m

)

since (ĉσ)m = βcF
m(β−1

c ) and ċ = β−1
c Fm(βc). In particular, we have

(3.13.1) ξ�(ĉ0) = ξ(c−1).

Put Mc = ZL(λc)F m

and M0
c = Z0

L(λc)F m

. We consider a subgroup McU
F m〈ĉσ〉

of GF m〈σ〉 generated by McU
F m

and ĉσ. Since ξ� ∈ M∧
c is ĉF -stable, and (ĉσ)m =

ĉ0 ∈ Mc, ξ� may be extended to a linear character ξ̃� of Mc〈ĉσ〉 in m distinct ways.
The extension ξ̃� is determined by the value ξ̃�(ĉσ) = µc,ξ, where µc,ξ is any m-th
root of ξ�(ĉ0).

We fix an extension ξ̃� of ξ� to Mc〈ĉσ〉. Since McU
F m〈ĉσ〉 is the semidirect

product of Mc〈ĉσ〉 with UF m

, ξ̃� may be regarded as a character of McU
F m〈ĉσ〉.

On the other hand, since Λ̃
(m)
c is ĉσ-stable, it can be extended to a linear character

on McU
F m〈ĉσ〉 by Λ̃

(m)
c (ĉσ) = 1. Thus we have a character ξ̃�⊗Λ̃

(m)
c of McU

F m〈ĉσ〉
which is an extension of ξ� ⊗ Λ

(m)
c on McU

F m

. We put

Γ̃
(m)
c,ξ = IndGFm 〈σ〉

McUF m〈ĉσ〉(ξ̃
� ⊗ Λ̃(m)

c ).

Then Γ̃
(m)
c,ξ gives rise to an extension of Γ

(m)
c,ξ to GF m〈σ〉. Note that µ−1

c,ξ Γ̃
(m)
c,ξ |GF m σ

depends only on the choice of (c, ξ).
Now we have the following result.

Proposition 3.14. Let the notation be as above. We have

τ∗
1 (Γ̃ (m)

c,ξ |GF mσ) = ξ(c)(Γ̃ (m)
c,ξ |GF m σ)

for an appropriate choice of (sufficiently divisible) m.

Proof. The following proof is an analogy of the argument in [S1, Corollary 5.10].
Put H = LU . Then H is an F -stable connected subgroup of G. For each (c, ξ) ∈ M,
we denote by θ the linear character ξ� ⊗ Λ

(m)
c of McU

F m

, and by θ̃ its extension
ξ̃� ⊗ Λ̃

(m)
c to McU

F m〈ĉσ〉. We put H̃F m

= HF m〈σ〉, V = McU
F m

, and Ṽ =
McU

F m〈ĉσ〉. We consider the induced characters

ρc,ξ = IndHF m

V θ, ρ̃c,ξ = IndH̃F m

Ṽ
θ̃.

Then ρc,ξ is an F -stable character of HF m

, and ρ̃c,ξ is an extension of ρc,ξ to H̃F m

.
Moreover, ρc,ξ is irreducible by [S3, Lemma 1.7]. Note that

Γ̃
(m)
c,ξ |GF mσ = IndGFm

σ
HF mσ(ρ̃c,ξ|HF mσ).

In order to prove the proposition, we have only to show the following formula since
τ∗
1 commutes with the induction IndGF m

σ
HF mσ by Lemma 3.7 and (3.8.1).

(3.14.1) τ∗
1 (ρ̃c,ξ|HF m σ) = ξ(c)(ρ̃c,ξ|HF mσ).
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We show (3.14.1). We choose m so that m is a multiple of some fixed integer A,
where A is divisible by |Aλ|p, and that m − 1 is prime to the order of H̃F m

. The
existence of such m is shown in [S1, Lemma 4.8]. Then the map f : H̃F m →
H̃F m

, g �→ g1−m is a bijection, and τ1 is obtained by restricting f to HF m

σ. Since
f stabilizes the conjugacy classes, it induces an isomorphism f∗ : C(H̃F m

/∼) →
C(H̃F m

/∼). The map f∗ stabilizes the space C(Ṽ/∼), and we denote by f∗
Ṽ

the

restriction of f∗ on Ṽ . We note that

(3.14.2) f∗
Ṽ

(θ̃) is a linear character of Ṽ such that f∗
Ṽ

(θ̃)|V = θ.

In fact, since f induces a homomorphism on H̃F m

modulo the commutator sub-
group, f∗

Ṽ
maps linear characters to linear characters. We show that the restriction

of f∗
Ṽ

(θ̃) on V coincides with θ. Since λ ◦ log : U → k is a homomorphism of
algebraic groups and m is divisble by p, λ(gm) = 0 for g ∈ U . This implies that
Λ

(m)
c (g1−m) = Λ

(m)
c (g) for g ∈ UF m

. On the other hand, since m is divisible
by |Aλ|, ξ�(g1−m) = ξ�(g) for g ∈ Mc. It follows that θ(g1−m) = θ(g) for any
g ∈ V = McU

F m

, and the claim follows.
Now it is easy to see that f∗ commutes with the induction

IndH̃F m

Ṽ
: C(Ṽ/∼) → C(H̃F m

/∼).

Thus f∗(ρ̃c,ξ) is also an extension of ρc,ξ to H̃F m

. Now the extension of θ to θ̃

is characterized by the value θ̃(ĉσ), and it determines the extension ρ̃c,ξ. Since
f(ĉσ) = (ĉσ)1−m = ĉσ · ĉ−1

0 , we see that

f∗
Ṽ

(ξ̃� ⊗ Λ̃(m)
c )(ĉσ) = ξ�(ĉ−1

0 ) · ξ̃� ⊗ Λ̃(m)
c (ĉσ)

= ξ(c) · ξ̃� ⊗ Λ̃(m)
c (ĉσ)

by (3.13.1). This proves (3.14.1), and so the proposition follows. �

3.15. We are in a position to prove Theorem 3.6. We apply the previous results to
our situation by replacing F by F 2. By [S3, 4.5], the parametrization of irreducible
characters, ρη′,z′ ↔ (η′, z′) ∈ Ms,E are divided into three steps. Accordingly, the
parametrization of almost characters Rη,z ↔ (η, z) ∈ Ms,E are divided similarly.
The cases (b) and (c) in [loc. cit.] are reduced to the case (a) via Harish-Chandra in-
duction and Lusztig induction. Since the twisting operator commutes with Lusztig
induction by Proposition 3.11, the proof of Theorem 3.6 is reduced to the case (a),
i.e., the case where (s, E) satisfies the condition (2.5.1).

So, assume that (s, E) is as above. In this case, irreducible characters belonging
to Ms,E and almost characters belonging to Ms,E are characterized by modified
generalized Gelfand-Graev characters as follows. Let ρṡ,E be an irreducible char-
acter of G̃F 2

for some ṡ ∈ G̃∗ such that π(ṡ) = s, and let N be a nilpotent element
such that the nilpotent orbit ON containing N coincides with the orbit O associ-
ated to ρṡ,E (see e.g., [S3, 2.9]). Let Aλ be the finite group given in 3.12. For a
certain quotient group Aλ of Aλ with F 2-action, we put

Ms,N = A
δ

λ × (Aλ)∧δ ,

where δ is the action of F 2 on Aλ and on (Aλ)∧ as before. Let (T (m)
s,E )F 2

be the set
of F 2-stable irreducible characters of GF 2m

belonging to Ms,E . Then there exists
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a parametrization Ms,N ↔ (T (m)
s,E )F 2

via (c, ξ) ↔ ρ
(m)
c,ξ satisfying the following

properties. Put M̃s,N = Aδ
λ × (Aλ)∧δ . Since M̃s,N is a subset of Aδ

λ × (Aλ)∧δ , one
can define an F 2-stable character Γ

(m)
c,ξ of GF 2m

for each pair (c, ξ) ∈ Ms,N (see

3.13). Let ϕ : M̃s,N → Ms,N be the natural projection. Then for (c, ξ) ∈ M̃s,N

and (c′, ξ′) ∈ Ms,N , we have the following (cf. [S3, Corollary 2.21]).

(3.15.1) 〈Γ (m)
c,ξ , ρ

(m)
c′,ξ′〉 =

{
1 if ϕ(c, ξ) = (c′, ξ′),
0 otherwise.

Assume that ϕ(c, ξ) = (c′, ξ′), i.e., ξ = ξ′ and c′ is the image of c under the
map Aλ → Aλ. Let Γ̃

(m)
c,ξ and ρ̃

(m)
c′,ξ′ be extensions of Γ

(m)
c,ξ and ρ

(m)
c′,ξ′ to GF 2m〈δ〉,

respectively. Now by Proposition 3.14, Γ̃
(m)
c,ξ |GF2mδ is an eigenfunction for τ∗

1 with

eigenvalue ξ(c). Since ρ
(m)
c′,ξ′ occurs in the decomposition of Γ

(m)
c,ξ with multiplicity

1 by (3.15.1), by applying Theorem 3.9 we see that

(3.15.2) τ∗
1 (ρ̃(m)

c′,ξ′ |GF2m δ) = ξ′(c′)(ρ̃(m)
c′,ξ′ |GF2m δ).

(Note that ξ(c) = ξ′(c′)). The set (T (m)
s,E )F 2

is also parametrized by the set Ms,E

via ρ
(m)
η,z ↔ (η, z) ∈ Ms,E . Here we need the following fact.

Lemma 3.16. The bijection Ms,N ↔ Ms,E, (c′, ξ′) ↔ (η, z) parametrizing the set
(T (m)

s,E )F 2
satisfies the property that ξ′(c′) = η(z).

Assuming Lemma 3.16, we continue the proof of the theorem. By the lemma,
we have

τ∗
1 (ρ̃(m)

η,z |GF2m δ) = η(z)(ρ̃(m)
η,z |GF2m δ).

Now the theorem follows from Theorem 3.4, in view of the commutativity of t∗−1
1

and τ∗
1 given in (3.8.1). This completes the proof of Theorem 3.6 modulo Lemma

3.16.

3.17. We shall prove Lemma 3.16. Here we use the results from [S3]. See 2.20,
Corollary 2.21 and 4.11 in [S3] for details. Ms,E is a subset of M(m)

s,E = Ω∧
s × Ωs,

and Ms,N is a subset of M(m)

s,N = Aλ×A
∧
λ , where M(m)

s,N is a set parametrizing T (m)
s,E .

Hence it is enough to show a similar fact for Ms,E and Ms,N with respect to GF ,
assuming that F acts trivially on Ωs and on Aλ. Thus we have Ms,E = Ω∧

s × Ωs,
Ms,N = Aλ × A

∧
λ , and there exists a bijection Ms,E � Ms,N through bijections

Ω∧
s � Aλ, Ωs � A

∧
λ . Now for x ∈ Ωs, we have an irreducible character ρṡx,E of G̃F ,

and it is decomposed in terms of the parameter set Ms,N ,

(3.17.1) ρṡx,E |GF =
∑

c∈Aλ

ρc,ξx .

(Compare this with (2.2.3). Here Ex = E by our assumption that Ωs(E) = Ωs).
ξx ∈ A

∧
λ is uniquely determined by x ∈ Ωs. The map h : Ωs → A

∧
λ , x �→ ξx, is

described as follows (cf. [S3, 2.13]). There exists an F -stable Levi subgroup M̃ of
a parabolic subgroup of G̃ (depending on the pair (s, E)) such that ZL̃(λ) ⊂ M̃ ,
and that ṡx is contained in the center Z(M̃∗) of the dual group M̃∗. We choose
m large enough so that ṡx ∈ Z(M̃∗)F m

, and let θ̂′x be the corresponding linear
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character of M̃F m

. Then the restriction θ̂x of θ̂′x to ZL̃(λ)F m

is F -stable, and we
put θx = ShF m/F (θ̂x), which is a linear character of ZL̃(λ)F . Then the restriction
of θx to Z0

L(λ)F is trivial, and the restriction of θx to ZL(λ)F induces a character
of AF

λ = Aλ (see Lemma 2.18 and Theorem 2.16 in [S3]). This character factors
through Aλ, which gives ξx ∈ A

∧
λ . The map h gives a bijection Ωs � A

∧
λ . Now

by our assumption, s is F -stable, and F acts trivially on Ωs. This implies, by [S3,
Lemma 2.18] that ξ1 (the case where x = 1) is the trivial character of Aλ. Let us
write ṡx = ṡzx with zx ∈ Z̃∗. Since ṡx is xF -stable, we have

(3.17.2) ṡ−1ẋṡẋ−1 = zxF (zx)−1,

where ẋ ∈ NG∗(T ∗) is a representative of x ∈ Ωs ⊂ Ws. We may assume that
zx ∈ Z̃∗F m

. Let ψ̂′
x be the linear character of G̃∗F m

corresponding to zx. Then
it follows from the above discussion that the restriction ψ̂x of ψ̂′

x to ZL̃(λ)F m

is
F -stable, and we obtain a linear character ψx = ShF m/F (ψ̂x) of ZL̃(λ)F . Since
ξ1 = 1, we see that ξx is obtained from the restriction of ψx to ZL(λ)F .

Next, we shall describe the bijection between Aλ and Ω∧
s . There exists a sur-

jective homomorphism f1 : G̃F /GF → Aλ defined as follows (cf. [S3, 2.19]). For
g ∈ G̃F , we can write g = g1z, with g1 ∈ G, z ∈ Z̃. Then g−1

1 F (g1) ∈ Z, and it
determines an element in Aλ = ZL(λ)/Z0

L(λ), and so an element in Aλ, which is
unique up to F -conjugacy. Since F acts trivially on Aλ, this gives a well-defined
map f1 : G̃F /GF → Aλ. On the other hand, we construct f2 : G̃F /GF → Ω∧

s as fol-
lows. From (3.17.2), we have ṡ−1ẋṡẋ−1 ∈ Z̃∗F (we may choose ẋ ∈ NG∗(T ∗)F ), and
this defines a well-defined injective homomorphism f∗

2 : Ωs → Z̃∗F , x �→ ṡ−1ẋṡẋ−1.
Since Z̃∗F � (G̃F /GF )∧, we have a surjective map f2 as the transpose of f∗

2 . Then
Ker f1 = Ker f2, and these maps induce the bijection Aλ � Ω∧

s .
Now the parametrization is given as follows. There exists a unique ρ0 ∈ Irr GF

such that ρ0 occurs in ρṡx,E |GF and in ΓN . In our parametrization, ρ0 = ρ1,ξx = ρ1,x

((1, ξx) ∈ Ms,N , (1, x) ∈ Ms,E). Then any ρ contained in ρṡx,E |GF is obtained as
gρ0 with g ∈ G̃F /GF . We then have ρ = ρc,ξx = ρη,x with c = f1(g) and η = f2(g).
Thus, in order to prove the lemma, it is enough to show

(3.17.3) f∗
1 ◦ h = f∗

2 ,

where f∗
1 : A

∧
λ → Z̃∗F is the transpose of f1.

Take x ∈ Ωs, and let θ be the linear character of G̃F corresponding to f∗
2 (x) ∈

Z̃∗F . For g = g1z ∈ G̃F , put y = g−1
1 F (g1) ∈ Z ⊂ Z̃F . Take ŷ ∈ Z̃F m

such that
NF m/F (ŷ) = y. Then (3.17.3) is deduced from the formula

(3.17.4) θ(g) = ψ̂′
x(ŷ)

for g ∈ G̃F /GF . We show (3.17.4). Since G̃F /GF � T̃ F /T F , we may assume that
g ∈ T̃ F and g1 ∈ T . Take α ∈ F̄∗

q such that det g = αn. Then z = Diag(α, . . . , α)
and g1 = z−1g. Since f∗

2 (g) ∈ Z̃∗F , by considering the restriction of θ on T̃ F , we
see that there exists a homomorphism ω : F∗

q → Q̄∗
l such that

(3.17.5) θ(g) = ω(deg g) = ω(αn).

Let θ̂ be a character of G̃F m

such that θ = ShF m/F (θ̂). It is checked that for any
ĝ ∈ T̃ F m

, one can write θ̂(ĝ) = ω̂(det ĝ), where ω̂ is a character of F∗
qm such that
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ShF m/F (ω̂) = ω. Then by (3.17.2), we have

(3.17.6) θ̂ = ψ̂′
xF (ψ̂′

x)−1.

On the other hand, y ∈ ZF is expressed as

y = g−1
1 F (g1) = zF (z−1) = Diag(α1−q, . . . , α1−q).

Take β ∈ F̄∗
q such that α=βqm−1, and put α̂=βq−1. Then ŷ=Diag(α̂1−q, . . . , α̂1−q).

By making use of (3.17.6), we have

ψ̂′
x(ŷ) = θ̂(Diag(α̂, . . . , α̂)) = ω̂(α̂n) = ω(αn).

Comparing this with (3.17.5), we see that (3.17.4) holds. Thus Lemma 3.16 is
proved.

4. Determination of m2(ρṡ,E|GF2 )

4.1. Assume that s is F 2-stable, and the pair (s, T ∗) is given as in Section 2. Let
ρṡ,E be an irreducible character of G̃F 2

as in 1.20. In this section, we shall compute
the value m2(ρṡ,E |GF2 ). Now ρṡ,E is given as

(4.1.1) ρṡ,E = εG̃∗εZ
G̃∗ (ṡ)|Wṡ|−1

∑
w∈Wṡ

Tr (wδ, Ẽ)RT̃∗
w
(ṡ),

where εH = (−1)Fq2−rank(H) for any reductive group H , and Ẽ is a certain extension
of E ∈ (Irr Wṡ)δ to Wṡ〈δ〉. Therefore we compute the value m2(RT̃∗

w
(ṡ)) for each

w ∈ Wṡ.
We consider the isomorphism Z̃∗F 2 � (G̃F 2

/GF 2
)∧ as in (2.4.1), and a similar

one by replacing F 2 by F . By the property of the dual torus, we have the following
commutative diagram:

(4.1.2)

Z̃∗F 2 ∼−−−−→ (G̃F 2
/GF 2

)∧

NF2/F

� �Res

Z̃∗F ∼−−−−→ (G̃F /GF )∧,

where Res is the restriction of the character of G̃F 2
/GF 2

on G̃F /GF , and NF 2/F is
the norm map z → zF (z). The norm map is also described as in 1.1. By using this,
it is easy to see that KerNF 2/F coincides with the subset {z−1F (z) | z ∈ Z̃∗F 2},
and so Z̃∗F can be identified with (Z̃∗F 2

)F via the map zF (z) ↔ z for z ∈ (Z̃∗F 2
)F .

First we note the following general fact.

Lemma 4.2. Let χ be a class function of G̃F 2
. Then

m2(χ|GF2 ) =
∑

θ∈(G̃F /GF )∧

m2(χ ⊗ θ̃),

where θ̃ is a character of G̃F 2
/GF 2

, regarded as a linear character of G̃F 2
, which

is an extension of θ via the inclusion G̃F /GF ↪→ G̃F 2
/GF 2

.
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Proof. By the Frobenius reciprocity, we have

〈χ|GF2 , IndGF2

GF 1〉 =〈χ, IndG̃F2

GF 1〉

=〈χ, IndG̃F2

G̃F

(
IndG̃F

GF 1
)
〉

=〈χ,
∑

θ∈(G̃F /GF )∧

IndG̃F2

G̃F θ〉 .

But for any linear character θ̃ of G̃F 2
such that θ̃|G̃F = θ, we have

〈χ, IndG̃F2

G̃F θ〉 =〈χ ⊗ θ̃−1, IndG̃F2

G̃F 1〉 = m2(χ ⊗ θ̃−1).

Thus the lemma is proved. �

By applying the above formula to the class function RT̃∗
w
(ṡ) of G̃F 2

,

Lemma 4.3. We have

(4.3.1) m2(RT̃∗
w
(ṡ)|GF2 ) =

∑
z∈(Z̃∗F2 )F

m2(RT̃∗
w
(ṡż)),

where ż is a representative of z in Z̃∗F 2
.

Proof. By 4.1, (Z̃∗F 2
)F is isomorphic to (G̃F /GF )∧. We denote by θ the character

of G̃F /GF corresponding to z ∈ (Z̃∗F 2
)F . Then by (4.1.2), the representative

ż ∈ Z̃∗F 2
corresponds to a linear character θ̃ of G̃F 2

/GF 2
, which is an extension

of θ. Now it is known that RT̃∗
w
(ṡ) ⊗ θ̃ = RT̃∗

w
(ṡż). Hence the lemma follows from

Lemma 4.2. �

We have the following proposition.

Proposition 4.4. Let s be an element in T ∗
w such that F 2(s) = s.

(i) Assume that the G∗F 2
-orbit of s does not contain s′ such that F (s′) = s′

−1.
Then m2(RT̃∗

w
(ṡ)|GF2 ) = 0 for any ṡ ∈ T̃ ∗

w such that π(ṡ) = s.

(ii) Assume that F (s) = s−1. Then there exists ṡ ∈ T̃ ∗
w such that π(ṡ) = s and

that F (ṡ) = ṡ−1, and we have

(4.4.1) m2(RT̃∗
w
(ṡ)|GF2 ) =

∑
x∈Ω−γ

s

m2(RT̃∗
w
(ṡzx)),

where Ω−γ
s = {x ∈ Ωs | γ(x) = x−1} is the subgroup of Ωδ

s, and zx ∈ Z̃∗F 2

is a representative of an element in (Z̃∗F 2
)F such that zxF (zx) = ωs(x)

under the map ωs : Ωδ
s → Z̃∗F 2

ṡ ⊂ Z̃∗F 2
(see 2.4).

Proof. First we show (i). It is known that RT̃∗
w
(ṡ)|GF2 coincides with the Deligne-

Lusztig character RT∗
w
(s) of GF 2

. Then by [L3, 2.7 (a)], we have m2(RT∗
w
(s)) = 0.

(Note that in [loc. cit.], it is assumed that the center of G is connected. However,
the above fact holds without this assumption, by 2.3 and 2.6 (b) in [loc. cit.]).
Thus (i) holds.

Next we show (ii). Assume that F (s) = s−1. Take ṡ1 ∈ T̃ ∗ such that π(ṡ1) = s.
Then there exists some z ∈ Z̃∗ such that F (ṡ1) = ṡ−1

1 z for some z ∈ Z̃∗. Take
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z1 ∈ Z̃∗ � Gm such that z = z1F (z1) = zq+1
1 , and put ṡ = ṡ1z1. Then π(ṡ) = s

and F (ṡ) = ṡ−1 as asserted.
Take ṡ as above, and consider the formula (4.3.1). Again by [L3, Lemma 2.8],

we may only consider, in the sum of the right-hand side of (4.3.1), z ∈ (Z̃∗F 2
)F

such that F (ṡż) is conjugate to (ṡż)−1 in G̃∗. Here we note that

(4.4.2) F (ṡż) is conjugate to (ṡż)−1 if and only if there exists x ∈ Ω−γ
s such that

żF (ż) = ωs(x).
We show (4.4.2). Assume that x ∈ Ω−γ

s , and let ẋ be an element in G̃∗ such that
π(ẋ) is a representative of x. Then by (2.11.1), ωs(x) = ṡ−1ẋṡẋ−1 ∈ Z̃∗F 2

is γ-
stable, i.e., ωs(x) ∈ Z̃∗F . Hence by (4.1.2) there exists ż ∈ Z̃∗F 2

such that ωs(x) =
żF (ż). It follows that ṡż = ẋṡẋ−1F (ż)−1, and we have F (ṡż) = ẋ−1(ṡż)−1ẋ. This
shows that F (ṡż) is conjugate to (ṡż)−1 in G̃∗. Conversely, assume that F (ṡż) is
conjugate to (ṡż)−1 in G̃∗. Then there exists ẋ ∈ G̃∗ such that F (ṡż) = ẋ−1(ṡż)−1ẋ.
Clearly π(ẋ) ∈ ZG∗(s), and its image in Ωs determines an element x ∈ Ωs. Since
ṡ(żF (ż)) = ẋṡẋ−1, we have żF (ż) ∈ Z̃∗F 2

s . Moreover, żF (ż) is γ-stable. Hence by
(2.4.2) and (2.11.1), we see that x ∈ Ω−γ

s . This proves (4.4.2).
Since ωs(x) ∈ Z̃∗F , ż ∈ Z̃∗F 2

such that żF (ż) = ωs(x) has a unique image on
(Z̃∗F 2

)F � Z̃∗F by (4.1.2). We choose zx from such ż for each x. Then the formula
(4.4.1) is immediate from (4.4.2). �

By using Lusztig’s formula in [L3], we shall compute the right-hand side of (4.4.1)
explicitly. We show

Lemma 4.5. Under the notation in Proposition 4.4 (ii), we have

m2(RT̃∗
w
(ṡzx)) = �{u ∈ Wṡ | w = u(xγu)}.

Proof. Take ẋ ∈ NG̃∗(T̃ ∗) whose image in W is a representative of x ∈ Ω−γ
s . We

note that one can choose ẋ such that F (ẋ) = ẋ−1. In fact, take any x′ ∈ NG̃∗(T̃ ∗)
in the inverse image of x. Since γ(x) = x−1, we have x′F (x′) = t ∈ T̃ ∗. We can
find t1 ∈ T̃ ∗ such that t−1

1 F 2(t1) = t. Then ẋ = t1x
′F (t1)−1 satisfies the required

condition.
Take g ∈ G̃∗ such that g−1F (g) = ẋ. Put s′ = g(ṡzx), T̃ ′ = gT̃ ∗ and W ′ =

NG̃∗(T̃ ′)/T̃ ′. Then F (s′) = s′
−1, F (T̃ ′) = T̃ ′, and s′ ∈ T̃ ′. Moreover, we have

g−1F 2(g) = ẋF (ẋ) = 1, and so g ∈ G̃∗F 2
. We have an isomorphism f : W

∼−→ W ′

via ad g, and we see that the pair (s′, T̃ ′
f(w)) is G̃∗F 2

-conjugate to the pair (ṡzx, T̃ ∗
w),

where T̃ ′
f(w) is an F 2-stable maximal torus obtained from T̃ ′ by twisting by f(w) ∈

W ′.
It follows that

(4.5.1) RT̃∗
w
(ṡzx) = RT̃ ′

f(w)
(s′).

If we put W ′
s′ = {w′ ∈ W ′ | w′(s′) = s′}, f induces an isomorphism Wṡ

∼−→ W ′
s′ .

Now it is known by [L3, Lemma 2.8, (b)] that

(4.5.2) m2(RT̃ ′
f(w)

(s′)) = �{y ∈ W ′
s′ | f(w) = yF (y)}.
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Hence, by (4.5.1) and (4.5.2), we have

m2(RT̃w
(ṡzx)) = �{u ∈ Wṡ | f(w) = f(u)F (f(u))}

= �{u ∈ Wṡ | w = u(xγu)},
since F ◦ f = f ◦ ẋF . This proves the lemma. �

We are in a position to determine m2(ρṡ,E |GF2 ).

Theorem 4.6. Let ρṡ,E be an irreducible character of G̃F 2
as before, and put

s = π(ṡ).

(i) If s is not G∗F 2
-conjugate to s′ such that F (s′) = s′

−1, then m2(ρṡ,E|GF2 )
= 0.

(ii) Assume that F (s) = s−1. Then we have

m2(ρṡ,E |GF2 ) =

{
|Ω−γ

s (E)| if there exists x ∈ Ω−γ
s such that xγE = E ,

0 otherwise,

where Ω−γ
s (E) is the stabilizer of E in Ω−γ

s .

Proof. ρṡ,E is given as in (4.1.1). Thus (i) is immediate from Proposition 4.4 (i).
We show (ii). So, assume that F (s) = s−1. Since RT̃∗

w(ṡ)|GF2 does not depend on
the choice of a representative ṡ of s, we may assume that ṡ satisfies the property
that F (ṡ) = ṡ−1. Then εG̃∗εZ

G̃∗ (s) = 1 by [L3, 1.5 (b)]. Hence by (4.4.1) together
with Lemma 4.5, we have

m2(ρṡ,E |GF2 ) = |Wṡ|−1
∑

w∈Wṡ

Tr(wδ, Ẽ)m2(RT̃∗
w
(ṡ)|GF2 )

= |Wṡ|−1
∑

w∈Wṡ

Tr (wδ, Ẽ)
∑

x∈Ω−γ
s

m2(RT̃∗
w
(ṡzx))

= |Wṡ|−1
∑

x∈Ω−γ
s

∑
w∈Wṡ

Tr (wδ, Ẽ)�{u ∈ Wṡ | w = u(xγu)}.

Now by Lemma 2.11 in [L3] (see also the formula in the proof of Proposition
2.13 there), one can write∑

E′∈(Wṡ)∧xγ

Tr (wδ, Ẽ′) = �{u ∈ Wṡ | w = u(xγu)},

where (Wṡ)∧xγ is the set of xγ-stable characters of Wṡ, and the extension Ẽ′ of E′

is chosen to be realized over Q. (Note that (xγ)2 = δ since x ∈ Ω−γ
s ). It follows

that

m2(ρṡ,E |GF2 ) =
∑

x∈Ω−γ
s

∑
E′∈(Wṡ)∧xγ

|Wṡ|−1
∑

w∈Wṡ

Tr (wδ, Ẽ)Tr (wδ, Ẽ′).

But since

|Wṡ|−1
∑

w∈Wṡ

Tr (wδ, Ẽ)Tr (wδ, Ẽ′) =

{
1 if Ẽ = Ẽ′,

0 if E = E′,

(here the extension Ẽ is chosen to be over Q, see [L1, 3.2]), we have

m2(ρṡ,E |GF2 ) = �{x ∈ Ω−γ
s | xγE = E }.
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If there exists x1 such that x1γE = E, then {x ∈ Ω−γ
s | xγE = E} = Ω−γ

s (E)x1.
Thus the theorem is proved. �

We shall apply the formula in the theorem to the case ρṡx,Ex . First we note the
following.

Lemma 4.7. Assume that F (s) = s−1. Let sx be an element corresponding to
x ∈ (Ωs)δ. Then the G∗F 2

-class of sx contains an element s′ such that F (s′) = s′
−1

if and only if there exists u ∈ Ωs such that uγ(u) gives a representative of x in Ωs.

Proof. Let ẍ ∈ ZG∗(s) be an element such that its image to Ωs gives a representative
of x. Let s′ be an element contained in the G∗F 2

-class of sx. Then s′ can be
obtained as s′ = gs for some g ∈ G∗ such that g−1F 2(g) = ẍ. It is easy to see that
F (s′) = s′

−1 if and only if g−1F (g) ∈ ZG∗(s). Assume that g−1F (g) ∈ ZG∗(s).
Then we have uγ(u) ∈ Ωs gives a representative of x if we put u as the image
of g−1F (g) in Ωs. Conversely, assume that there exists u ∈ Ωs as in the lemma,
and let u̇ be its representative in ZG∗(s). Then s′ = gs for g ∈ G∗ such that
g−1F (g) = u̇ satisfies the property F (s′) = s′

−1. �

4.8. We prepare a notation. Let s be a semisimple element such that F (s) = s−1,
and E ∈ Irr W 0

s such that the Ωs-orbit of E is γ-stable. We define a subset Ω̃s(E)+δ
(resp. Ωs(E)+δ ) of Ω̃s(E)δ (resp. of Ωs(E)δ) by

Ω̃s(E)+δ = the image of {uγ(u) | u ∈ Ωs,
uγE = E} into Ω̃s(E)δ,

Ωs(E)+δ = the image of {vγ(v) | v ∈ Ωs(E)} into Ωs(E)δ.

Then we can see that there exists aE ∈ Ωs such that

(4.8.1) Ω̃s(E)+δ = Ωs(E)+δ aE .

In fact, since the Ωs-orbit of E is γ-stable, there exists b ∈ Ωs such that bγE = E.
Then aE = bγ(b) is contained in Ω̃s(E), and we have Ω̃s(E) = Ωs(E)aE . (4.8.1)
follows from this.

As a corollary to Theorem 4.6, we have the following.

Corollary 4.9. Assume that s is semisimple in G∗ such that F (s) = s−1, and that
E ∈ (IrrW 0

s )δ. Take y ∈ Ω̃s(E)δ and let (E, y) ↔ (x, Ex) be as in (2.2.2). Then
we have

(i) If the Ωs-orbit of E is not γ-stable, then m2(ρṡx,Ex |GF2 ) = 0.
(ii) Assume that the Ωs-orbit of E is γ-stable. Then

m2(ρṡx,Ex |GF2 ) =

{
|Ω−γ

s (E)| if y ∈ Ω̃s(E)+δ ,

0 otherwise.

Proof. Assume that m2(ρṡx,Ex |GF2 ) = 0. Then sx is G∗F 2
-conjugate to some s′

such that F (s′) = s′−1 by Theorem 4.6. Since x and y are in the same class in
(Ωs)δ, there exists u ∈ Ωs such that the image of uF (u) to (Ωs)δ coincides with y,
by Lemma 4.7. Let u̇ ∈ ZG∗(s) be a representative of u. Then there exists g ∈ G∗

such that g−1F (g) = u̇. We see that g−1F 2(g) = u̇F (u̇) gives a representative of y
as its image on Ωs, which we denote by ẏ ∈ Ωs. Then as discussed in (2.2.2), there
exists z ∈ Ωs such that ẏ = z−1ẋδ(z), and we have Ex = zE ∈ (Irr W 0

s )ẋδ. Put
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g1 = gż−1, where ż ∈ ZG∗(s) is a representative of z ∈ Ωs. Then g−1
1 F 2(g1) gives

ẋ as its image to Ωs, and so we may assume that sx = g1s.
Now ad g1 gives an isomorphism W 0

s → W 0
sx

, and by this isomorphism, Ex ∈
(Irr W 0

s )ẋδ is sent to E′′ ∈ (Irr W 0
sx

)F 2
. ρṡx,Ex is defined as ρṡx,E′′ (cf. 2.2). Here

ad g1 : W 0
s → W 0

sx
is factored as

W 0
s

ad ż−1

−−−−→ W 0
s

ad g−−−−→ W 0
sx

.

In the first isomorphism, Ex ∈ (Irr W 0
s )ẋδ is sent to E ∈ (Irr W 0

s )ẏδ. Moreover,
in the second isomorphism, the actions F, F 2 on W 0

sx
is transfered to the actions

uF, yF 2 on W 0
s . Then by Theorem 4.6, applied to ρṡ,E ∈ Irr G(u̇F )2 with (u̇F )(s) =

s−1, m2(ρṡx,Ex |GF2 ) = 0 is equivalent to the condition that there exists h ∈ Ω−uγ
s =

Ω−γ
s such that huγE = E. In particular, the Ωs-orbit of E is γ-stable. Since

huγ(hu) = uγ(u) = y, this implies that y ∈ Ω̃s(E)+δ . Moreover, in that case
m2(ρṡx,Ex |GF2 ) is given by the formula as claimed in the corollary. Conversely,
assume that y ∈ Ω̃s(E)+δ . Then there exists u̇ ∈ ZG∗(s) such that the image of
u̇F (u̇) to Ωs gives a representative of y. Take g ∈ G∗ such that g−1F (g) = u̇. Then
a similar argument as above implies, by Theorem 4.6, that m2(ρṡx,Ex |GF2 ) = 0.
This proves the corollary. �

5. Determination of m2(ρ) for ρ ∈ Irr SLn(Fq2 )

5.1. In this section, we shall determine m2(ρ) for all irreducible characters of GF 2
.

Our strategy is to compute m2 for almost characters of GF 2
first, and then derive

the formula for m2(ρ) from it.
First we prepare some notation. Let s be an F 2-stable semisimple element in

G∗, and E an δ-stable irreducible character of W 0
s . We recall two sets Ms,E =

Ωδ
s(E)∧ × Ω̃s(E)δ and Ms,E = Ωs(E)∧δ × Ωs(E)δ. Assuming that F (s) = s−1 and

that the Ωs-orbit of E is F -stable, we define subsets Ωδ
s(E)∧− ⊂ Ωδ

s(E)∧−γ ⊂ Ωδ
s(E)∧

by

Ωδ
s(E)∧−γ = {θ ∈ Ωδ

s(E)∧ | γ(θ) = θ−1},
Ωδ

s(E)∧− = {θ−1γ(θ) | θ ∈ Ωδ
s(E)∧}.

We also consider subsets Ω̃s(E)+δ ⊂ Ω̃s(E)γ
δ ⊂ Ω̃s(E)δ, where

Ω̃s(E)γ
δ = {u ∈ Ω̃s(E)δ | γ(u) = u},

and Ω̃s(E)+δ is defined as in 4.8. We define subsets Ωs(E)+δ ⊂ Ωs(E)γ
δ ⊂ Ωs(E)δ in

a similar way as above.
Put

|Ωs(E)δ| = t, |Ωs(E)γ | = d, |Ωs(E)−γ | = d′.

Then we see easily that

|Ωδ
s(E)∧| = |Ωs(E)δ| = t,

|Ωδ
s(E)∧γ | = |Ωs(E)γ

δ | = d,

|Ωδ
s(E)∧−γ | = |Ωs(E)−γ

δ | = d′.

Since Ωs(E)δ is a cyclic group, Ωs(E)δ is written as a product of Ωs(E)γ and
Ωs(E)−γ . If t = |Ωs(E)δ| is even, Ωs(E)δ contains a unique element of order 2. In
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that case Ωs(E)γ and Ωs(E)−γ have a non-trivial intersection, and so t = dd′/2. If
t is odd, then Ωs(E)δ = Ωs(E)γ × Ωs(E)−γ , and so t = dd′.

There is a surjective homomorphism Ωδ
s(E)∧ → Ωδ

s(E)∧− given by θ → θ−1γ(θ),
whose kernel is given by Ωδ

s(E)∧γ . It follows that Ωδ
s(E)∧− is a subgroup of Ωδ

s(E)∧−γ

of order t/d. Hence we have

(5.1.1) [Ωδ
s(E)∧−γ : Ωδ

s(E)∧−] =

{
1 if t = dd′,

2 if t = dd′/2.

Similarly, we have a surjective homomorphism Ωs(E)δ → Ωs(E)+δ given by z �→
zγ(z) with kernel Ωs(E)−γ

δ . It follows that Ωs(E)+δ is a subgroup of Ωs(E)γ
δ of

degree t/d′. Hence we have

(5.1.2) [Ωs(E)γ
δ : Ωs(E)+δ ] =

{
1 if t = dd′,

2 if t = dd′/2.

The following result describes the values of m2 for almost characters of GF 2
.

Theorem 5.2. Assume that s is a semisimple element in G∗F 2
, and E is an

irreducible character of W 0
s such that Ωs-orbit of E is δ-stable. Let Rη,z be an

almost character associated to (η, z) ∈ Ms,E. Then

(i) Assume that s is not G∗-conjugate to an element s′ such that F (s′) = s′
−1.

Then m2(Rη,z) = 0.
(ii) Assume that F (s) = s−1. If the Ωs-orbit of E is not γ-stable, then

m2(Rη,z) = 0.
(iii) Assume that F (s) = s−1, and that the Ωs-orbit of E is γ-stable.

(a) Assume that |Ωs(E)δ| is odd. Then we have

m2(Rη,z) =

{
1 if η ∈ Ωs(E)∧−γ and z ∈ Ωs(E)γ ,

0 otherwise.

(b) Assume that |Ωs(E)δ| is even. Then we have

m2(Rη,z) =


1 if η ∈ Ωs(E)∧−γ and z ∈ Ωs(E)+,

ε if η ∈ Ωs(E)∧−γ and z ∈ Ωs(E)γ − Ωs(E)+,

0 otherwise,

where ε = c2(ρ1,z′′
0
) = ±1 for any z′′0 ∈ Ω̃s(E)γ

δ − Ω̃s(E)+δ .

Proof. We show (i). By Theorem 4.6 (i), m2(ρṡx,Ex |GF2 ) = 0 for any x ∈ (Ωs)δ. It
follows that m2(ρη′,z′) = 0 for any (η′, z′) ∈ Ms,E . Hence m2(Rη,z) = 0 for any
(η, z) ∈ Ms,E .

A similar proof works for the assertion (ii) since m2(ρṡx,Ex) = 0 for any x ∈ (Ωs)δ

by Corollary 4.9 (i).
We show (iii) by computing m2(Rη,z) for (η, z) ∈ Ms,E . By Theorem 3.6, we

have m2(Rη,z) = η(z)−1m2(t∗−1
1 Rη,z). By the definition of Rη,z, together with

Corollary 1.11, applied to the case where r = 2, we have

(5.2.1) m2(Rη,z) = η(z)−1
∑

(η′,z′a)∈Ms,E

{(η, z), (η′, z′)}c2(ρη′,z′a).
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with a = aE . Moreover, by Corollary 1.16 (applied to the case where m = 1, see
also [K2, Theorem 2.1.3]), together with Proposition 2.7, we have

(5.2.2) c2(ρη′,z′a) =

{
±1 if (η′, z′) ∈ Ωδ

s(E)∧−γ × Ωs(E)γ
δ ,

0 otherwise.

We note the following.

(5.2.3) Assume that z′ ∈ Ωs(E)+δ . Then c2(ρη′,z′a) = 1 for any η′ ∈ Ωδ
s(E)∧−γ .

We show (5.2.3). Let (x, Ex) correspond to (E, z′) via f in (2.2.2). Then we
have m2(ρṡx,Ex |GF2 ) = |Ωs(E)−γ | by Corollary 4.9. Since the twisting operator t∗1
acts trivially on ρṡx,Ex , we have c2(ρṡx.Ex |GF2 ) = |Ωs(E)−γ | by Corollary 1.11. On
the other hand, ρṡx,Ex |GF2 can be decomposed as in (2.2.3). Hence by (5.2.2), we
have

c2(ρṡx,Ex |GF2 ) =
∑

η′∈Ωδ
s(E)∧−γ

c2(ρη′,z′a).

Since |Ωs(E)−γ | = |Ωδ
s(E)∧−γ | = d′, we can conclude that c2(ρη′,z′a) = 1, and (5.2.3)

follows.
We now compute m2(Rη,z). In view of (5.2.2), the formula (5.2.1) can be written

as

(5.2.4) m2(Rη,z) = η(z)−1|Ωδ
s(E)|−1

∑
(η′,z′)∈Ωδ

s(E)∧−γ×Ωs(E)γ
δ

η(z′)η′(z)c2(ρη′,z′a).

First consider the case where t is odd, i.e., the case where t = dd′. Then by (5.1.2),
we have Ωs(E)γ

δ = Ωs(E)+δ . It follows by (5.2.3) that

m2(Rη,z) = η(z)−1|Ωδ
s(E)|−1

∑
(η′,z′)∈Ωδ

s(E)∧−γ×Ωs(E)γ
δ

η(z′)η′(z).

This implies that m2(Rη,z) = 0 unless η is trivial on Ωs(E)γ
δ and z ∈ Ωδ

s(E) is such
that η′(z) = 1 for any η′ ∈ Ωδ

s(E)∧−γ . But since Ωδ
s(E)∧−γ = Ωδ

s(E)∧−, the condition
for z is equivalent to the condition that z ∈ Ωs(E)γ . Similarly, since Ωs(E)γ

δ =
Ωs(E)+δ , the condition for η is equivalent to the condition that η ∈ Ωs(E)∧−γ . Now
assume that η ∈ Ωδ

s(E)∧−γ and z ∈ Ωs(E)γ . Since |Ωδ
s(E)| = |Ωδ

s(E)∧−γ | × |Ωs(E)γ
δ |,

and η(z) = 1, (5.2.4) implies that m2(Rη,z) = 1. This proves (a) of (iii).
Next we consider the case where t is even, i.e., the case where t = dd′/2. In this

case, Ωδ
s(E)∧− is an index two subgroup of Ωδ

s(E)∧−γ , and Ωs(E)+δ is an index two
subgroup of Ωs(E)γ

δ . We fix η′
0 ∈ Ωδ

s(E)∧−γ − Ωδ
s(E)∧− and z′0 ∈ Ωs(E)γ

δ − Ωs(E)+δ .
Then by using (5.2.3), (5.2.4) can be written as

(5.2.5) m2(Rη,z) = η(z)−1|Ωδ
s(E)|−1

∑
(η′,z′)∈Ωδ

s(E)∧−×Ωs(E)+δ

η(z′)η′(z)Aη′,z′ ,

where

Aη′,z′ = 1 + η′
0(z) + η(z′0)c2(ρη′,z′z′

0a) + η(z′0)η
′
0(z)c2(ρη′η′

0,z′z′
0a).

It is known by Corollary 3.5 that

(5.2.6) |m2(Rη,z)| =

{
1 if (η, z) ∈ Ωs(E)∧−γ × Ωs(E)γ ,

0 otherwise.
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We now assume that m2(Rη,z) = 0. Hence η ∈ Ωs(E)∧−γ and z ∈ Ωs(E)γ . We
note that η ∈ Ωs(E)∧ is contained in Ωs(E)∧−γ if and only if η is trivial on Ωs(E)+δ .
Similarly, η′ ∈ Ωδ

s(E)∧ is contained in Ωδ
s(E)∧− if and only if η′ is trivial on Ωs(E)γ .

In particular, we have η(z′) = η′(z) = 1 for any (η′, z′) ∈ Ωδ
s(E)∧− × Ωs(E)+δ in the

sum in (5.2.5). Since η(z), η′
0(z), η(z′0) take values ±1, we see that m2(Rη,z) ∈ Q.

This implies that m2(Rη,z) = ±1 by (5.2.6).
We shall consider the two cases, whether z ∈ Ωs(E)γ is contained in ∈ Ωs(E)+

or not. First assume that z ∈ Ωs(E)+. Then η(z) = 1, η′
0(z) = 1 and η(z′0) = ±1.

Since |Ωδ
s(E)∧−| × |Ωs(E)+δ | = t/2, it follows from (5.2.5) that

m2(Rη,z)t = t +
∑

(η′,z′)

η(z′0)(c2(ρη′,z′z′
0a) + c2(ρη′e′

0,z′z′
0a)).

Let C be the sum part of this formula. Then we have −t ≤ C ≤ t. Since m2(Rη,z) =
±1, this forces that C = 0, and we have m2(Rη,z) = 1.

Next assume that z ∈ Ωs(E)γ − Ωs(E)+. Since z−1z′0 ∈ Ωs(E)+δ , we have
η(z−1z′0) = 1. Moreover, η′

0(z) = −1. Hence by (5.2.5), we can write

m2(Rη,z)t =
∑

(η′,z′)

(c2(ρη′,z′z′
0a) − c2(ρη′η′

0,z′z′
0a)).

But since ∑
(η′,z′)

|c2(ρη′,z′z′
0a) − c2(ρη′η′

0,z′z′
0a)| ≤ t = |m2(Rη,z)t|,

we see that c2(ρη′,z′z′
0a) = −c2(ρη′η′

0,z′z′
0a) has a common value for any (η′, z′),

which coincides with c2(ρ1,z′
0a) = −c2(ρη′

0,z′
0a). This implies that m2(Rη,z) =

c2(ρ1,z′
0a) = ε. By putting z′′0 = z′0a, we obtain the theorem. �

We can now easily translate Theorem 5.2 to the form on m2(ρ) for irreducible
characters ρ.

Theorem 5.3. Assume that s is a semisimple element in G∗F 2
, and that E ∈

Irr W 0
s is such that the Ωs-orbit of E is δ-stable. Let ρη′,ζ′′ be an irreducible char-

acter of GF 2
associated to (η′, z′′) ∈ Ms,E. Then

(i) Assume that s is not G∗-conjugate to an element s′ such that F (s′) = s′
−1.

Then m2(ρη′,z′′) = 0.
(ii) Assume that F (s) = s−1. If the Ωs-orbit of E is not γ-stable, then

m2(ρη′,z′′) = 0.
(iii) Assume that F (s) = s−1 and that the Ωs-orbit of E is γ-stable.

(a) Assume that |Ωs(E)δ| is odd. Then we have

m2(ρη′,z′′) =

{
1 if η′ ∈ Ωδ

s(E)∧−γ and z′′ ∈ Ω̃s(E)γ
δ ,

0 otherwise.

(b) Assume that |Ωs(E)δ| is even. Then we have

m2(ρη′,z′′) =


1 + ε if η′ ∈ Ωδ

s(E)∧− and z′′ ∈ Ω̃s(E)+δ ,

1 − ε if η′ ∈ Ωδ
s(E)∧−γ − Ωδ

s(E)∧− and z′′ ∈ Ω̃s(E)+δ ,

0 otherwise,

where ε = c2(ρ1,z′′
0
) = ±1 for any z′′0 ∈ Ω̃s(E)γ

δ − Ω̃s(E)+δ .
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Proof. The assertion (i) and (ii) are already shown in the proof of Theorem 5.2.
We show (iii). First assume that |Ωs(E)δ| is odd. Then (3.3.2) implies, in view of
Theorem 5.2, that

m2(ρη′,z′a) = |Ωs(E)δ|−1
∑

(η,z)∈Ωs(E)∧−γ×Ωs(E)γ

η(z′)−1η′(z)−1.

It follows that m2(ρη′,z′a) = 0 unless η′ is trivial on Ωs(E)γ , and η(z′) = 1 for any
η ∈ Ωs(E)∧−γ , and in which case m2(ρη′,z′a) = 1. But this condition is equivalent
to the condition that η′ ∈ Ωδ

s(E)∧−γ and z′ ∈ Ωs(E)+δ . By replacing z′a by z′′, we
obtain (a).

Next assume that |Ωs(E)δ| is even. Let us fix z0 ∈ Ωs(E)γ −Ωs(E)+. Again by
Theorem 5.2, we have

m2(ρη′,z′a) = |Ωs(E)δ |−1
∑

(η,z)∈Ωs(E)∧−γ×Ωs(E)+

η(z′)−1η′(z)−1(1 + η′(z0)−1ε).

It follows that m2(ρη′,z′a) = 0 unless η′ is trivial on Ωδ
s(E)+ and η(z′) = 1 for any

η ∈ Ωs(E)∧−γ , and in which case m2(ρη′,z′a) = 1 + η′(z0)−1ε. The condition for
z′ is the same as before, and η′ is trivial on Ωδ

s(E)+ if and only if η′ ∈ Ωδ
s(E)∧−γ .

Moreover,

η′(z0) =

{
1 if η′ ∈ Ωδ

s(E)∧−,

−1 if η′ ∈ Ωδ
s(E)∧−γ − Ωδ

s(E)∧−.

Hence (b) holds, and the theorem is proved. �
Remark 5.4. In [L3], Lusztig gave a uniform description of m2(ρ) for any irre-
ducible character ρ of GF 2

in the case where G is a connected reductive group with
connected center. He expects that his formulation will be extended also to the
disconnected center case. We shall compare our results with Lusztig’s conjectural
description. Take (η, z) ∈ Ms,E . For z ∈ Ω̃s(E)δ, take a representative ż ∈ Ωs(E)
of z, and put

√
z = the image of {y ∈ Ωs | yγE = E, (yγ)2 = żδ} into Ωs(E)δ.

Then Ωs(E)δ acts on
√

z by the F -twisted conjugation. We denote by
√

z the
corresponding permutation representation also. Let [η :

√
z] the multiplicity of η

in this permutation representation. Now assume that F (s) = s−1 and that the
Ωs-orbit of E is F -stable. Then we have the following.

(5.4.1) Assume that (η, z) ∈ Ωδ
s(E)∧− × Ω̃s(E)+δ . Then we have

[η :
√

z] =

{
1 if |Ωs(E)δ| is odd,

2 if |Ωs(E)δ| is even.

If (η, z) /∈ Ωδ
s(E)∧− × Ω̃s(E)+δ , then we have [η :

√
z] = 0.

In fact, in our setting, Ω̃s(E)+δ is the set of z ∈ Ω̃s(E)δ such that
√

z = ∅.
Hence if z /∈ Ω̃s(E)+δ , then

√
z = ∅, and so [η :

√
z] = 0. If z ∈ Ω̃s(E)+δ , then√

z = Ωs(E)−γ
δ y for some y ∈

√
z. Let χ be the character of the representation

√
z.

Then χ(u) = |Ωs(E)−γ
δ | if u ∈ Ωs(E)γ and χ(u) = 0 otherwise. It follows that

[η :
√

z] =

{
|Ωs(E)−γ

δ ||Ωs(E)γ |/|Ωs(E)δ| if η ∈ Ωδ
s(E)∧−,

0 otherwise.
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(5.4.1) follows from this.
In the connected center case, [η :

√
z] gives the value m2(ρ). In our situation, by

comparing with Theorem 5.3, we see that [η :
√

z] coincides with m2(ρη,z) if and
only if ε = 1. As an example of SL2 shows (see 5.7), Lusztig’s formula does not
hold in general, as far as we use the parametrization of Irr GF 2

based on the choice
of N ∈ gF as in (2.5.2), i.e., N is given by Jordan normal form. However, as the
referee pointed out, this discrepancy can be removed (at least for (s, E) treated in
Lemma 5.6), by choosing N ∈ gF 2

such that F (N) = −N instead of (2.5.2) (see
the discussion in Lemma 5.6).

5.5. We shall determine the value ε explicitly in certain special cases. We assume
that (s, E) satisfies the property in (2.5.1). In that case, we have a bijection Ms,E �
Ms,N for a nilpotent element N ∈ gF (cf. [S3, 4.5]). We have Ωs(E) = Ωs, and
Ms,E = (Ωδ

s)
∧× (Ω̃s)δ. Moreover, Ms,N = (Aλ)δ × (A

δ

λ)∧, and the above bijection
is given through bijections (Ωδ

s)
∧ � (Aλ)δ and (Ω̃s)δ � (A

δ

λ)∧. (Compare with
Lemma 3.7). These bijections can be explicitly described in a similar way as in
Lemma 3.7. Now there exists g ∈ G such that gN = −N . Take α ∈ G such that
α−1F (α) = g, and put N ′ = αN . Then we have F (N ′) = −N ′. Since N ′ ∈ gF 2

,
one can write N ′ = Nc1 for a c1 ∈ (Aλ)δ. By the isomorphism (Aλ)δ � (Ωδ

s)
∧, c1

determines a unique element η1 ∈ (Ωδ
s)∧. The following result was inspired by the

comment of the referee. We are very grateful to the referee for this.

Lemma 5.6. Assume that (s, E) is as in (2.5.1), and that we are in a setting in
(iii), (b) in Theorem 5.3. Let η1 ∈ (Ωδ

s)
∧ be as in 5.5. Then we have η1 ∈ (Ωδ

s)
∧

−γ ,
and

ε =

{
1 if η1 ∈ (Ωδ

s)
∧
−,

−1 if η1 ∈ (Ωδ
s)

∧
−γ − (Ωδ

s)
∧
−.

Proof. We consider the generalized Gelfand-Graev character ΓN ′ = IndGF2

UF2 (Λc1).
Since F (N ′) = −N ′, we see that Λc1 is a linear character of UF 2

such that F (Λc1) =
Λc1 . Then there exists a basis of the representation ΓN ′ such that the corresponding
matrix R(g) satisfies the property (*) that R(F (g)) coincides with the complex
conjugate of R(g) for all g ∈ GF 2

. Let ρ be an irreducible character of GF 2
such

that F (ρ) = ρ. Then the representation obtained as the ρ-isotypic part of ΓN ′ also
satisfies this property. It follows that if ρ has multiplicity one in ΓN ′ , then ρ is
afforded by a matrix representation satisfying the property (*) as above. Now it
is known by [KM], for any ρ ∈ Irr GF 2

, that c2(ρ) = 1 if and only if ρ is afforded
by a representation satisfying (*). Summing up the above argument, we see that
c2(ρ) = 1 if 〈ΓN ′ , ρ〉 = 1.

Now by our parametrization, ρc1,ξx ((c1, ξx) ∈ Ms,N ) is the unique character
of GF 2

appearing in ΓN ′ and in ρṡx,E with multiplicity one. By Ms,N � Ms,E ,
(c1, ξx) ↔ (η1, x), this implies that c2(ρη1,x) = 1 for any x ∈ (Ω̃s)δ. We use the
notation in the proof of Theorem 5.2. By (5.2.2), we know that c2(ρη′,z′a) = 0
unless η′ ∈ (Ωδ

s)∧−γ for (η′, z′a) ∈ Ms,E . It follows that η1 ∈ (Ωδ
s)∧−γ . In the last

part of the proof of Theorem 5.2, we know that c2(ρη′,z′z′
0a) = −c2(ρη′η′

0,z′z′
0a) has

a common value for any (η′, z′) ∈ (Ωδ
s)

∧
− × (Ωs)+δ , which coincides with ε. So if
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η1 ∈ (Ωδ
s)

∧
− (resp. η1 /∈ (Ωδ

s)
∧
−), then η1 = η′ (resp. η1 = η′η′

0) for some η′, and we
have ε = 1 (resp. ε = −1), respectively. This proves the lemma. �

5.7. We give an example in the case where G = SL2 and G̃ = GL2. Assume that
p is odd, and let ṡ = Diag(1,−1) be a regular semisimple element in G̃∗ and put
s = π(ṡ). Then we have Ws = Ωs � Z/2Z, on which F acts trivially. We consider
the pair (s, E), where E is the trivial character of W 0

s = {1}. Then (s, E) satisfies
the property (2.5.1), and we have Ms,E = Ω∧

s × Ωs. Since F (s) = s = s−1, and
|Ωs| = 2, we see that the pair (s, E) falls in the class (iii), (b) in Theorem 5.2. We
have (Ωs)∧−γ = Ω∧

s , and (Ωs)∧− = {1}.

On the other hand, for ρ = ρṡ,E ∈ Irr G̃F 2
, Oρ = ON , where N =

(
0 1
0 0

)
is

a regular nilpotent element in gF . We have Aλ � Z/2Z on which F acts trivially.
Put t = Diag(α, α−1) ∈ G, then tN = α2N . We choose α ∈ Fq such that α2 =
−1. Take g ∈ G such that g−1F (g) = t. Then N ′ = gN satisfies the relation
F (N ′) = −N ′. We can choose g = Diag(β, β−1) such that βq−1 = α. Then
g−1F 2(g) = Diag(γ, γ−1), where

γ = βq2−1 = αq+1 =

{
1 if q ≡ 3 (mod 4),
−1 if q ≡ 1 (mod 4).

It follows that N ′ = Nc1 with c1 ∈ Aλ � {±1}, where c1 = 1 (resp. c1 = −1) if
q ≡ 3 (mod 4) (resp. q ≡ 1 (mod 4)), respectively. Thus under the isomorphism
Aλ � Ω∧

s , c1 corresponds to η1 ∈ Ω∧
s = {±1}. In view of Lemma 5.6, we conclude

that

(5.7.1) ε =

{
1 if q ≡ 3 (mod 4),
−1 if q ≡ 1 (mod 4).
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