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A DIAGRAMMATIC APPROACH TO CATEGORIFICATION

OF QUANTUM GROUPS I

MIKHAIL KHOVANOV AND AARON D. LAUDA

Abstract. To each graph without loops and multiple edges we assign a family
of rings. Categories of projective modules over these rings categorify U−

q (g),
where g is the Kac-Moody Lie algebra associated with the graph.

1. Introduction

The goal of this paper is to categorify U− = U−
q (g), for an arbitrary simply-

laced Kac-Moody algebra g. Here U− stands for the quantum deformation of the
universal enveloping algebra of the “lower-triangular” subalgebra of g.

Following the discovery of quantum groups Uq(g) by Drinfeld [12] and Jimbo [18],
Ringel [41] found a Hall algebra interpretation of the negative half U− of the quan-
tum group in the simply-laced Dynkin case. Lusztig [31], [32], [33] gave a geometric
interpretation of U− and produced a canonical basis there via a sophisticated ap-
proach which required the full strength of the theory of l-adic perverse sheaves.
Kashiwara [19] defined a crystal basis of U− at 0, a graph equipped with extra
data, and in [20] constructed the so-called global crystal basis of U−. Grojnowski
and Lusztig [16] proved that the global crystal basis and the canonical basis are the
same. The canonical basis B of U− gives rise to bases in all irreducible integrable
U -representations. Lusztig [34] also produced an idempotent version U̇ of U and
defined a basis there.

The work of Ariki [1] can be viewed as a categorification of the restricted dual of

U−(g) for g = slN and g = ŝlN and a categorification of all irreducible integrable
representations of these Lie algebras (see also [27], [2], [3], [37]). An integral ver-
sion of the restricted dual of U−(g) becomes the sum of Grothendieck groups of
suitable blocks of affine Hecke algebra representations. An earlier work of Zelevin-
sky [47] can be understood in this context as a parametrization of basis elements of
U−(g)∗ via certain irreducible representations of affine Hecke algebras. Irreducible
integrable representations of U(g) become Grothendieck groups of Ariki-Koike cy-
clotomic Hecke algebras, which are certain finite-dimensional quotient algebras of
affine Hecke algebras.

Grojnowski [14] found a purely algebraic way to understand these categorifica-
tions via a generalization of Kleshchev’s methods for studying modular representa-
tions of the symmetric group [22], [23], [24]. This approach was further developed
by Grojnowski and Vazirani [17], Vazirani [45], [46], Brundan and Kleshchev [8]
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and others. It is explained by Kleshchev in [25] in the context of degenerate affine
Hecke algebras.

In this paper we introduce graded algebras categorifying U−
q (g), for an arbitrary

simply-laced g. We start with an unoriented graph Γ without loops and multiple
edges. Let I be the set of vertices of Γ. The bilinear Cartan form on N[I] is given
on the basis elements i, j ∈ I by

i · j =

⎧⎪⎨⎪⎩
2 if i = j,

−1 if i and j are joined by an edge,

0 otherwise.

The algebra U− over Q(q), the negative (or positive) half of the quantum universal
enveloping algebra, has generators θi, i ∈ I, and defining relations

θiθj = θjθi if i · j = 0,

(q + q−1)θiθjθi = θ2i θj + θjθ
2
i if i · j = −1.

The algebra U− contains a subring Af , which is the Z[q, q−1]-lattice generated by

all products of quantum divided powers θ
(a)
i . The canonical basis B is a basis of

Af viewed as a free Z[q, q−1]-module.
In Section 2 of this paper to each graph Γ as above we assign a family of graded

rings R(ν), over ν ∈ N[I]. The rings are defined geometrically, via braid-like plane
diagrams which consist of interacting strings labelled by vertices of the graph. We
prove basic results about these rings, then switch from the ground ring Z to a
field k to simplify the study of R(ν)-modules. We show that the representation
theory of R(ν) categorifies the integral form Af of U−. We consider the cate-
gory R(ν)−pmod of finitely-generated graded left projective R(ν)-modules and its
Grothendieck group K0(R(ν)). Let R =

⊕
ν R(ν) and define

K0(R) =
⊕

ν∈N[I]

K0(R(ν)).

Induction and restriction functors coming from the inclusions R(ν)⊗R(ν′) ⊂ R(ν+
ν′) give rise to the multiplication and comultiplication homomorphisms

K0(R)⊗K0(R) −→ K0(R), K0(R) −→ K0(R)⊗K0(R),

which satisfy the same properties as those for Af . We define a homomorphism of
Z[q, q−1]-algebras γ : Af−→K0(R) that also respects comultpiplication and takes a

divided powers product element θ = θ
(a1)
i1

. . . θ
(ar)
ir

to the image of a certain projec-
tive module Pθ in the Grothendieck group.

The quantum Gabber-Kac theorem implies that γ is injective. By mirroring for
the case of rings R(ν) the methods of Kleshchev, Grojnowski, and Vazirani, who
studied socles of induction and restriction applied to irreducible representations,
we show that the homomorphism γ is surjective for any graph Γ and any field k.
The main result of the paper is the following theorem.

Theorem 1.1. γ : Af−→K0(R) is an isomorphism of N[I]-graded twisted bialge-
bras.

The term “twisted bialgebras” is used above, since the comultiplication in Af
and K0(R) becomes an algebra homomorphism only after the multiplication in the
tensor squares Af

⊗2 and K0(R)⊗2 is twisted by powers of q.
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We conjecture that, when Γ is a tree and k = C, the isomorphism γ takes
canonical basis elements to the images of indecomposable projective modules in
K0(R). When the graph is a single vertex, this conjecture is almost trivial. We
verify the conjecture in a simple case of the graph Γ with two vertices and one edge,
with all canonical basis elements being monomials.

The rings R(ν) should be linked to Lusztig’s geometric realization of Af :

Conjecture 1.2. If k = C and graph Γ is a tree, the algebra R(ν) is Morita equiva-
lent to the algebra of equivariant ext groups ExtGν

(L,L), where Gν =
∏

i∈I GL(νi)
and L is the sum of simple perverse sheaves Lb, over all b ∈ Bν , in Lusztig’s
geometric realization of Af .

This conjecture should follow from an isomorphism between R(ν) and a suitable
convolution algebra. When Γ contains cycles, it is possible to modify R(ν) by
introducing “monodromies” around the cycles, and the conjecture is likely to hold
for a modified version of R(ν).

Our results hint at the relation between representation theory of affine Hecke
algebras for GL(n) when q is not a root of unity and representations of R(ν) when
the graph Γ is a chain. We conjecture that completions of affine Hecke algebras
along suitable maximal central ideals are Morita equivalent (or even isomorphic) to
completions of R(ν) along the grading. The above conjectures, if true, would link
Lusztig’s geometrization of U− with Ariki’s categorification of U− and its restricted
dual for q = 1 and Γ = An.

We arrived at the definition of rings R(ν) from computations involving homo-
morphisms of bimodules over cohomology rings of partial flag varieties. The bi-
modules themselves are the cohomology groups of partial and iterated flag varieties
that give correspondences for the action of generators ei and fi of quantum slN

in the Beilinson-Lusztig-MacPherson geometric model [4] of quantum slN . This
model was given a categorical interpretation by Grojnowski and Lusztig [15] and
later reinterpreted, for N = 2, via translation and Zuckerman functors in [6], with
various generalizations constructed in [13], [44], [48], and in a very recent striking
work [49].

In Section 3.4 we define certain quotient algebras of R(ν) and conjecture that
their categories of modules categorify irreducible integrable representations of Uq(g).
A straightforward generalization of our constructions and results from algebras R(ν)
and their quotient algebras in the simply-laced case to that of an arbitrary sym-
metrizable Kac-Moody algebra g will be presented in a follow-up paper.

In the paper [9] Chuang and Rouquier defined sl(2)-categorifications, substanti-
ated them with many diverse examples, and applied them to the modular represen-
tation theory. Partially inspired by [9] and [10], the second author suggested and

investigated a categorification of Lusztig’s idempotent completion U̇ of quantum
sl(2) in [28], [29]. A definition of a categorification of U̇q(g) for any simply-laced
g can be obtained by combining the diagrammatic relations of R(ν) with those of

U̇-categorification in [28].
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In his recent talk, R. Rouquier [42] defined sl(N) and affine sl(N)-categorifica-
tions and outlined a conjectural program that aims to vastly generalize his prior
work with J. Chuang [9] on sl(2)-categorifications. We expect Rouquier’s and our
approaches to be closely related. R. Rouquier informed us that a signed version of
rings R(ν) appears in his categorification [43] of U(g) for a simply-laced g.

2. Rings R(ν) and their properties

2.1. Definitions. We fix a graph Γ, not necessarily finite, with a set of vertices I
and unoriented edges EΓ. We require that Γ has no loops and multiple edges. By
N[I] we denote the commutative semigroup freely generated by vertices of Γ and
for ν ∈ N[I] we write

(2.1) ν =
∑
i∈I

νi · i , νi ∈ N, N = {0, 1, 2, . . . }.

Let |ν| =
∑

νi ∈ N, and Supp(ν) = {i | νi �= 0}. We define a bilinear form on Z[I]
by i · i = 2, i · j = −1 if i and j are connected by an edge, and i · j = 0 otherwise.
In the basis {i}i∈I of vertices the bilinear form is given by the Cartan matrix of Γ.

To Γ we associate a diagrammatic calculus of planar diagrams. We consider
collections of arcs on the plane connecting m points on one horizontal line with m
points on another horizontal line. The position of m points on the line is fixed once
and for all (for instance, we could take points {1, 2, . . . ,m} ∈ R). Arcs have no
critical points when projected to the y-axis of the plane (a condition reminiscent
of braids). Each arc is labelled by a vertex of Γ. Arcs can intersect, but no triple
intersections are allowed. An arc can carry dots. An example of such a diagram is

(2.2)

i j i k

•

•
•

•

where i, j, k are vertices of Γ and the label of an arc is written at the bottom of the
arc. We allow isotopies that do not change the combinatorial type of the diagram
and do not create critical points for the projection onto the z-axis:

i j i kk

∼

i j i kk
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We proceed by allowing finite linear combinations of these diagrams with integral
coefficients, modulo the following local relations:

i j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j,

i j

if i · j = 0,

i

•

j

+

j

•

i

if i · j = −1.

(2.3)

•

i j

= •
i j

•

i j

= •
i j

for i �= j(2.4)

•

i i

− •
i i

=

i i

(2.5)

•
i i

−
•

i i

=

i i

(2.6)

i j k

=

i j k

unless i = k and i · j = −1(2.7)

i j i

−

i j i

=

i j i

if i · j = −1(2.8)

Fix ν ∈ N[I]. Let Seq(ν) be the set of all sequences of vertices i = i1 . . . im
where ik ∈ I for each k and vertex i appears νi times in the sequence. The length
m of the sequence is equal to |ν| and the cardinality of Seq(ν) is equal to

(
ν

νi,νj ,...

)
,

taken over all i ∈ I. For instance,

Seq(2i+ j) = {iij, iji, jii}.
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Each diagram D as described above determines the two sequences bot(D) and
top(D) in Seq(ν) for some ν. The sequence bot(D) is given by reading the labels
of arcs of D at the bottom position from left to right. We define top(D) likewise.
For instance, for the diagram in (2.2), bot(D) = ijik and top(D) = jiki. We often
abbreviate sequences with many equal consecutive terms, and write in1

1 . . . inr
r for

i1 . . . i1i2 . . . i2 . . . ir . . . ir, where n1 + · · ·+ nr = m.
Define the ring R(ν) as follows:

(2.9) R(ν) =
⊕

i ,j∈Seq(ν)

jR(ν)i

as an abelian group, where jR(ν)i is the abelian group of all linear combinations of
diagrams with bot(D) = i and top(D) = j modulo the relations (2.3)–(2.7). The
product in R(ν) is given by concatenation (see the left diagram in (2.11) below),

(2.10) kR(ν)j ⊗ jR(ν)i → kR(ν)i ,

and xy = 0 for x ∈ lR(ν)k and y ∈ jR(ν)i if k �= j .

(2.11)

k

j

i i1 i2

. . .

im

By construction, R(ν) is an associative ring. For each i ∈ Seq(ν) the diagram
1i ∈ iR(ν)i shown on the right of (2.11) is an idempotent, 12i = 1i , x1i = x for all
x ∈ jR(ν)i and 1ix = x for all x ∈ iR(ν)j , for all j . Furthermore, 1 =

∑
i∈Seq(ν) 1i

is the unit element of R(ν). We turn R(ν) into a graded ring by declaring degrees
of the generators to be

(2.12) deg

⎛⎝
i

•
⎞⎠ = 2, deg

⎛⎜⎝
i j

⎞⎟⎠ = −i · j.

Let

(2.13) Pi =
⊕

j∈Seq(ν)

jR(ν)i , jP =
⊕

i∈Seq(ν)

jR(ν)i .

Pi is a left graded projective R(ν)-module and jP is a right graded projective
R(ν)-module.

Flipping a diagram on a horizontal axis induces a grading–preserving anti-involu-
tion ψ of R(ν) which takes jR(ν)i to iR(ν)j and 1i to 1i . Flipping a diagram on
a vertical axis and simultaneously taking

i i

to −
i i

(in other words, multiplying the diagram by (−1)s where s is the number of times
equally labelled strands intersect) is an involution σ of R(ν) which commutes with
ψ.
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Sometimes it is convenient to convert from graphical to algebraic notation. For
a sequence i = i1i2 . . . im ∈ Seq(ν) and 1 ≤ k ≤ m we denote

xk,i :=

i1

. . . •

ik

. . .

im

(2.14)

with the dot positioned on the k-th strand counting from the left, and

δk,i :=

i1

. . .

ik ik+1

. . .

im

(2.15)

The symmetric group Sm acts on Seq(ν), m = |ν| by permutations. Transposition
sk = (k, k + 1) switches entries ik, ik+1 of i . Thus, δk,i ∈ sk(i)R(ν)i . The relations
(2.3) become

(2.16) δk,sk(i)δk,i =

⎧⎨⎩ 0 if ik = ik+1,
1i if ik · ik+1 = 0,

xk,i + xk+1,i if ik · ik+1 = −1.

Other defining relations for R(ν) can be similarly rewritten.

2.2. Examples.

1) ν = 0. We have R(0) = Z, with the unit element given by the empty diagram.
2) ν = i for some vertex i. Then a diagram is a line with some number of dots on

it. Hence, R(i) ∼= Z[x1,i], where in our notation x1,i denotes a line labelled i
with one dot on it.

i

•

3) ν = mi for some vertex i. The only sequence in Seq(mi) is im = ii . . . i. Every
strand in the diagram is labelled by i, and the local relations are

i i

= 0

i i i

=

i i i

(2.17)

•

i i

− •
i i

=

i i

(2.18)

•
i i

−
•

i i

=

i i

(2.19)

R(mi) is isomorphic to the nil-Hecke ring NHm, which is the unital ring of endo-
morphisms of the abelian group Z[x1, . . . , xm] generated by the endomorphisms
of multiplication by x1, . . . , xm and the divided difference operators

∂a(f(x)) =
f(x)− saf(x)

xa − xa+1
, 1 ≤ a ≤ m− 1,
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where sa transposes xa and xa+1 in the polynomial f(x). The defining relations
are

xaxb = xbxa,
∂axb = xb∂a if |a− b| > 1, ∂a∂b = ∂b∂a if |a− b| > 1,
∂2
a = 0, ∂a∂a+1∂a = ∂a+1∂a∂a+1,

xa∂a − ∂axa+1 = 1, ∂axa − xa+1∂a = 1.

In the above equations xa stands for the operator of multiplication by xa.
The defining relations are exactly our graphical equations on identically-colored
strands, with the relations in the first two rows corresponding to isotopies of
diagrams.

The nil-Hecke ring is related to the theory of Schubert varieties; see [26],
[7]. The nil-Coxeter ring is the subring of NHm generated by ∂1, . . . , ∂m−1; see
[39, Chapter 2], [21]. Divided differences go back to Newton; in the context of
representation theory they appeared in [5], [11].

The center of NHm is the ring of symmetric polynomials in x1, . . . , xm, and
NHm is isomorphic to the ring of m!×m! matrices with coefficients in Z(NHm),
see [36]. Here we consider NHm as a graded ring, with deg(∂a) = −2 and
deg(xa) = 2. The graded nil-Hecke ring plays a fundamental role in the cate-
gorification of Lusztig’s quantum sl2 defined by the second author [28].

For each permutation w ∈ Sm let ∂w = ∂a1
. . . ∂ar

, where sa1
. . . sar

is a
minimal presentation of w, so that r = l(w). This element does not depend on
the choice of presentation.

Define em = xm−1
1 xm−2

2 . . . xm−1∂w0
, where w0 is the longest permutation.

This element is an idempotent of degree 0. We will also use the idempotent
ψ(em) given by reflecting the diagram of em on the horizontal axis,

ψ(em) = ∂w0
xm−1
1 xm−2

2 . . . xm−1.

NHmψ(em) is a left NHm-module isomorphic to the polynomial representation
of NHm. The polynomial representation is, up to isomorphism and grading
shifts, the unique graded indecomposable projective NHm-module. The module
NHmψ(em) is nontrivial in even nonnegative degrees only.

The regular representation of NHm decomposes as the sum of m! copies of
the polynomial representation. Taking the grading into account and denoting

by Pm the module NHmψ(em) with the grading shifted down by m(m−1)
2 , we

get a direct sum decomposition of graded modules,

NHm
∼= P [m]!

m .

Here [m]! = [m][m−1] . . . [1] is the quantum factorial, [m] = qm−q−m

q−q−1 , andMf or

M⊕f , for a graded module M and a Laurent polynomial f =
∑

faq
a ∈ Z[q, q−1],

denotes the direct sum over a ∈ Z, of fa copies of M{a}.
We denote by Pi,m the corresponding indecomposable graded projective mod-

ule over R(mi) and by ei,m the idempotent corresponding to em under the iso-
morphism R(mi) ∼= NHm. As a graded abelian group, Pi,m is nontrivial in

degrees −m(m−1)
2 + 2N.
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Letting mP be the right graded projective module emNHm{−m(m−1)
2 }, we

have a decomposition of graded right NHm-modules

NHm
∼= mP [m]!.

We denote by i,mP the corresponding indecomposable graded projective right
R(mi)-module. Idempotents ei,m and ψ(ei,m) have the following diagrammatic
presentation for m = 3:

(2.20) ei,3 =

i i i

•
•

•

ψ(ei,3) =

i i i

•
•

•

The quotient of Z[x1, . . . , xm] by the ideal of symmetric polynomials is a repre-
sentation Lm of NHm which becomes irreducible upon tensoring with any field
k. Over k, any graded irreducible representation of NHm is isomorphic to Lm,
up to a grading shift. We denote the corresponding irreducible representation

of R(mi) by L(im). It is nonzero in degrees 0, 2, . . . , m(m−1)
2 . The representa-

tion L(im) is isomorphic to the representation induced from the one-dimensional
graded module L over k[x1, . . . , xm] (on which x1, . . . , xm necessarily act triv-
ially).

Lemma 2.1. The common 0-eigenspace of operators x1, . . . , xm on L(im) ∼=
Ind(L) is exactly 1⊗ L. All Jordan blocks of xm on L(im) are of size m.

Proof. Due to the uniqueness of the irreducible module L(im), it is isomor-
phic to the module induced from the trivial representation of the subring of
NHm generated by the divided differences ∂1, . . . , ∂m and symmetric polynomi-
als in x1, . . . , xm. This induced representation is isomorphic, as a k[x1, . . . , xm]-
module, to the quotient of k[x1, . . . , xm] by the ideal generated by symmetric
polynomials without the constant term, and to the cohomology ring of the full
flag variety. The lemma follows from the standard facts of this quotient ring. �

4) ν = i+ j and i · j = 0. Seq(i+ j) = {ij, ji}. The ring R(ν) is isomorphic to the
ring of 2 × 2 matrices with coefficients in Z[x1, x2]. The isomorphism is given
on generators by

i j

↔
(

1 0
0 0

)
j i

↔
(

0 0
0 1

)

i j

↔
(

0 0
1 0

)
j i

↔
(

0 1
0 0

)

i

•

j

↔
(

x1 0
0 0

)
i j

• ↔
(

x2 0
0 0

)
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5) ν = i1+ · · ·+ im and ik · i� = 0 for all k �= �. Then R(ν) is isomorphic to the ring
of m!×m! matrices with coefficients in Z[x1, . . . , xm]. To see the isomorphism,
enumerate the rows and columns by elements of Seq(ν) and send the element

j 1i to the elementary (j , i)-matrix.
6) ν = ν′ + ν′′ such that i · j = 0 for any i ∈ Supp(ν′) and j ∈ Supp(ν′′). In this

case R(ν) is isomorphic to the matrix algebra of size
( |ν|
|ν′|,|ν′′|

)
with coefficients in

R(ν′)⊗Z R(ν′′). Indeed, except for crossings, there are no interactions between
strands from ν′ and strands from ν′′. A pair i ∈ Seq(ν′), j ∈ Seq(ν′′) defines
the sequence i j ∈ Seq(ν′ + ν′′) and

(2.21) i jRi j
∼= R(ν′)⊗R(ν′′),

since we can pull apart the i and j strands in any diagram D with i j = top(D) =
bot(D), using that ik · j� = 0, for all k and �.

7) ν = i+ j and i · j = −1. We can identify R(i+ j) with the ring of 2× 2 matrices
with coefficients in Z[x1, x2] such that the bottom left coefficient is divisible by
x1 + x2:

i j

↔
(

1 0
0 0

)
j i

↔
(

0 0
0 1

)

i j

↔
(

0 0
x1 + x2 0

)
j i

↔
(

0 1
0 0

)

i

•

j

↔
(

x1 0
0 0

)
i j

• ↔
(

x2 0
0 0

)

Remark 2.2. If i · j = −1, then the elements

i j i

and −

i j i

(2.22)

are mutually orthogonal idempotents in R(2i+ j). For instance,
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⎛⎜⎜⎜⎜⎝
i j i

⎞⎟⎟⎟⎟⎠
2

=

i j i

(2.3) •

i j i

+
•

i j i

(2.3)
•

i j i

(2.6)

•
i j i

+

i j i

(2.3)

i j i

(2.23)

Equation (2.7) can be viewed as a decomposition of the idempotent 1iji into
the sum of two orthogonal idempotents. Equation (2.8) can be thought of as
allowing triple intersections for certain ijk.

2.3. A faithful representation and a basis of R(ν). Action of R(ν) on the
sum of polynomial spaces. Choose an orientation of each edge of Γ. For each
ν ∈ N[I] we define an action of R(ν) on the free abelian group

Po�ν =
⊕

i∈Seq(ν)

Po�i , Po�i = Z[x1(i), x2(i), . . . , xm(i)], m = |ν|.

It is useful to think of the variable xk(i) as labelled by the vertex of Γ in the k-
th position in the sequence i . The symmetric group Sm acts on Po�ν by taking
xa(i) to xw(a)(w(i)), w ∈ Sm. The transposition sk maps xa(i) to xa(sk(i)) if
a �= k, k + 1, xk(i) to xk+1(ski), and xk+1(i) to xk(ski).

To define the action of R(ν), we first require that an element x ∈ jR(ν)i acts
by 0 on Po�k if k �= i and takes Po�i to Po�j . We describe the action of the
generators. The dot in the k-th position xk,i (see (2.14)) acts by sending f ∈ Po�i
to xk(i)f ∈ Po�i . The idempotent 1i acts by the identity on Po�i . The crossing
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δk,i (see (2.15)) acts on f ∈ Po�i by

f 	→ skf if ik · ik+1 = 0,

f 	→ f − skf

xk(i)− xk+1(i)
if ik = ik+1,

f 	→ skf if ik ←− ik+1,

f 	→ (xk(ski) + xk+1(ski))(skf) if ik −→ ik+1.

The notation ik ←− ik+1 means that ik · ik+1 = −1 and this edge of Γ is oriented
from ik+1 to ik. Note that when ik = ik+1 the crossing δk,i acts by the divided
difference operator. When all strands have the same label i, the action reduces to
the action of the nil-Hecke algebra on its polynomial representation.

Proposition 2.3. These rules define a left action of R(ν) on Po�ν .

Proof. We check the defining relations for R(ν). The relation (2.3) with i · j = 0
and i · j = −1 and relation (2.4) are trivial to verify. The relation (2.3) with
i = j and relations (2.6), (2.5), and (2.8) for i = j = k are just the nil-Hecke
relations. The relation (2.8) with i, j, k all distinct, or with i �= j = k, i · j = 0,
or with i = j �= k, j · k = 0 is easy to check. The same relation with i = j,
i · k = −1 or j = k, i · j = −1 follows from the fact that the divided difference
operator annihilates symmetric polynomials. This leaves us with the last relation
(2.7), reproduced below:

i j i

−

i j i

=

i j i

if i · j = −1.

It is enough to check it on 3-stranded diagrams, with ν = 2i + j. To simplify
formulas, we write x, y, and z instead of xk(i), xk+1(i), and xk+2(i) for each
i = {iji, iij, jii}. Assume that the ij edge is i ←− j. The left hand side of the
relation is

δ1,jiiδ2,jiiδ1,iji − δ2,iijδ1,iijδ2,iji,
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taking Po�iji to Po�iji. We compute the action of this element on each monomial
xuyvzw, u, v, w ∈ N:

δ1,jiiδ2,jiiδ1,iji(x
uyvzw)(2.24)

= δ1,jiiδ2,jii(x
vyuzw) = δ1,jii

(
xvyuzw − xvywzu

y − z

)
=

xuyvzw − xwyvzu

x− z
(x+ y),

δ2,iijδ1,iijδ2,iji(x
uyvzw)(2.25)

= δ2,iijδ1,iij((y + z)xuywzv)

= δ2,iij

(
xuyw+1 − xw+1yu

x− y
zv +

xuyw − xwyu

x− y
zv+1

)
= δ2,iij

(
xuyw+1zv − xw+1yuzv + xuywzv+1 − xwyuzv+1

x− y

)
=

xuyvzw+1 − xw+1yvzu + xuyv+1zw − xwyv+1zu

x− z
.

One can easily verify that the difference of (2.24) and (2.25) is xuyvzw, proving
relation (2.7) in this case. When i −→ j, we compute

δ1,jiiδ2,jiiδ1,iji(x
uyvzw)(2.26)

= δ1,jiiδ2,jii((x+ y)xvyuzw)

= δ1,jii

(
xv+1 y

uzw − ywzu

y − z
+ xv y

u+1zw − ywzu+1

y − z

)
= δ1,jii

(
xv+1yuzw − xv+1ywzu + xvyu+1zw − xvywzu+1

y − z

)
=

xuyv+1zw − xwyv+1zu + xu+1yvzw − xwyvzu+1

x− z
,

δ2,iijδ1,iijδ2,iji(x
uyvzw)(2.27)

= δ2,iijδ1,iij(x
uywzv)

= δ2,iij

(
xuywzv − xwyuzv

x− y

)
=

xuyvzw − xwyvzu

x− z
(y + z).

Again, the difference of (2.26) and (2.27) is xuyvzw. Relation (2.7) and Proposi-
tion 2.3 follow. �

A spanning set. We look for a lower bound on the size of R(ν). An element
of this ring is a linear combination of diagrams.

If a diagram D contains two strands that intersect more than once, relations
(2.3)–(2.7) allow us to write D as a linear combination of diagrams, each with
fewer intersections than D. Iterating, we can write any element of R(ν) as a linear
combination of diagrams with at most one intersection between any two strands.
Furthermore, we can slide all dots in a diagram D all the way to the bottom of the
diagram at the cost of adding a linear combination of diagrams with fewer crossings
than D. These two operations together tell us that R(ν) is spanned by diagrams
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having all dots at the bottom and with each pair of strands intersecting at most
once:

•
• • •

•

•

Such D are determined by i = bot(D), a minimal presentation w̃ = sk1
. . . skr

,
r = l(w) of a permutation w ∈ Sm and the number of dots at each bottom endpoint
of D. The difference of two diagrams given by the same data except for different
minimal presentations of w can be written as a linear combination of diagrams with
fewer crossings than each of the original two diagrams.

For each w ∈ Sm fix its minimal presentation w̃. For i , j ∈ Seq(ν) let jSi be the
subset of Sm consisting of permutations w that take i to j via the standard action
of permutations on sequences, defined earlier. For each w ∈ jSi we convert its
minimal presentation w̃ into an element of jR(ν)i denoted ŵi . Denote the subset

{ŵi}w∈jSi
of jR(ν)i by j Ŝi .

Example 2.4. ijiSiji = {id, (13)}, and

îdiji =

i j i

, (̂13)iji =

i j i

or

i j i

,

depending on whether we choose s2s1s2 or s1s2s1 as a minimal presentation of
permutation (13).

In general, j Ŝi depends on our choices of minimal presentations for permutations.

For instance, in the above example, (̂13)iji ∈ ijiŜiji will depend nontrivially on
whether the presentation s1s2s1 or s2s1s2 was chosen if i · j = −1.

Let jBi be the set {y·xu1

1,i . . . x
um

m,i} over all y ∈ j Ŝi and ui ∈ N. Here the diagrams

in j Ŝi are multiplied by all possible monomials at the bottom. For example, the
sets ijBij and jiBij consist of elements

i

•

j

•u1 u2 and • •
i j

u1 u2

respectively, where we write

•u =

⎛⎝ •

⎞⎠u

.

Theorem 2.5. jR(ν)i is a free graded abelian group with a homogeneous basis jBi.
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Proof. We have already observed that the set jBi spans jR(ν)i . This set consists
of homogeneous elements relative to our grading on R(ν). To prove linear indepen-
dence of elements of jBi we check that they act on Po�ν by linearly independent
operators.

Let j 1i be the diagram with the fewest number of crossings with bot(j 1i ) = i
and top(j 1i ) = j . For example,

jjiki1ijkij =

i j k i j

j j i k i

Note that identically colored lines do not intersect in j 1i , and that i1i is just 1i .
The product i1j j 1i =

∏
(xa,i + xb,i ) where the product is over all pairs 1 ≤ a <

b ≤ m such that the lines in j 1i ending at a and b bottom endpoints counting from
the left intersect and are colored by i, j with i · j = −1.

For instance, if i = ijj, j = jji with i · j = −1, then

(2.28) j 1i =

i j j

j j i

and the product

(2.29) i1j j 1i =

i j j

= (x1,i + x2,i )(x1,i + x3,i ).

Choose a complete order on the set of vertices of Γ and orient Γ so that for each
edge i −→ j we have i < j relative to the order. This order induces a lexicographic
order on Seq(ν). We prove linear independence of jBi by induction on j ∈ Seq(ν)
with respect to this order.

Base of induction: We write

(2.30) j = j1 . . . j1j2 . . . j2 . . . jr . . . jr = jν1
1 jν2

2 . . . jνr
r ∈ Seq(ν), ν =

r∑
k=1

νkjk,

where j1 < j2 < · · · < jr and r is the cardinality of Supp(ν). Clearly, j is the lowest
element in Seq(ν) with respect to lexicographic order. For this j each w ∈ jSi can
be written uniquely as w = w1w0 where w1 ∈ Sν1

× · · · × Sνr
and w0 is the unique

minimal length element in jSi .
Each minimal length representative w̃0 determines the same ŵ0i = j 1i . Likewise,

the element ŵ1j does not depend on the choice of a minimal length representative
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w̃1, since in the nil-Hecke algebra the element associated to a permutation does not
depend on the minimal presentation of this permutation.

j1 j1 j1 j2 j2 jr jr jr

w1

w0

The set jBi consists of elements ŵ1j ŵ0ix
u, over all u ∈ Nm, where

xu = xu1

1,ix
u2

2,i . . . x
um

m,i .

It suffices to check that induced maps

(2.31) ŵ1j ŵ0ix
u : Po�i −→ Po�j

are linearly independent, over all u ∈ Nm. Indeed, ŵ0ix
u takes xv ∈ Po�i to

xw0(u+v) ∈ Po�j , where w0 acts on v via the obvious permutation. This is due to
peculiarities of our action, since the element δk,i takes f ∈ Po�i to skf if ik > ik+1.
Elements ŵ1j act on the monomials by products of divided difference operators. It is
known that the standard action of the nil-Hecke ring on polynomials is faithful [36],
implying linear independence of all maps (2.31).

Induction step: Assume we proved that jBi is independent, that jk < jk+1,
and set j ′ = skj = j1 . . . jk−1jk+1jkjk+2 . . . jm. It suffices to assume that jk ·jk+1 =
−1, otherwise jk · jk+1 = 0 and the maps δk,j , δk,j ′ set up bijections between jBi

and j ′Bi , implying linear independence of j ′Bi .
To show that j ′Bi is independent, we examine its image under the map

(2.32) δk,j ′ : j ′R(ν)i → jR(ν)i .

Define a partial order on jBi by requiring that w1x
u < w2x

v if �(w1) < �(w2), or
if w1 = w2, u1 = v1, . . . , ut = vt, ut+1 < vt+1 for some t. Extend this partial order
to a complete order on jBi in some way.

Define the map δ : j ′Bi → jBi by δy = δk,j ′y if the strands of diagram y ending
at the top endpoints numbered k, k + 1 from the left are disjoint

δ :

i1 ik ik+1

	→

i1 ik ik+1

and δy = y′ ·x�,i if these two strands of y intersect. Here � is the number, counting
from the left, of the bottom endpoint of the strand with top endpoint k, and y′ is
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obtained from y by removing the intersection of these two strands. Graphically

δ :

i1 ik ik+1

• • •
•

	→

•
•

• •
•

i1 ik ik+1

We can write y′ = ŝkwix
ux�,i if y = ŵix

u as above. The map δ : j ′Bi → jBi is

clearly injective. It is not hard to compute that δk,j ′y = δy+ lower-order terms:

(2.33) δk,j ′y = δy +
∑
z<δy

nz · z, nz ∈ Z, z ∈ jBi ,

for any y ∈ j ′Bi , and by lower-order terms we mean a linear combination of elements

of jBi less than δy with respect to the order of jBi .
The induction step follows, since jBi is a linearly independent set by induction

hypothesis. This completes the proof of Theorem 2.5. �

The representation Po�ν has a grading. Choose any i ∈ Seq(ν) and place the
unit element 1 ∈ Po�i in degree 0. This uniquely determines a grading on Po�ν
making it a graded module over the graded ring R(ν).

Corollary 2.6. Po�ν is a faithful graded module over the graded ring R(ν).

2.4. Properties of R(ν). From Theorem 2.5 we deduce several properties of R(ν).
For each i ∈ Seq(ν) the subring iR(ν)i contains the polynomial ring Po�(ν, i) ∼=
Z[x1,i , x2,i , . . . , xm,i ]. We differentiate between the ring Po�(ν, i) and the abelian
group Po�i on which we defined the action. The direct product

(2.34) Po�(ν) =
∏

i∈Seq(ν)

Po�(ν, i )

is a commutative subring of R(ν).

Proposition 2.7. R(ν) is a free Po�(ν)-module of rank m! with respect to both left
and right multiplication actions of Po�(ν).

Proof. For each permutation w ∈ Sm choose a minimal representative w̃ and form

ŵ =
∑

i∈Seq(ν)

ŵi .

Theorem 2.5 implies that the set {ŵ}w∈Sn
is a basis of R(ν) as a free graded

module over Po�(ν) under the right multiplication action of the latter. The left
multiplication case follows by applying the anti-involution ψ of R(ν). �

The symmetric group Sm acts on Po�(ν) by permuting strands (which carry
labels and dots). Let Sym(ν) = Po�(ν)Sm be the subring of Sm-invariants. It is
naturally isomorphic to the tensor product of rings of symmetric polynomials

(2.35) Sym(ν) ∼=
⊗

i∈Supp(ν)

Z[x1, . . . , xνi
]Sνi ,

over vertices i in Supp(ν), with the number of variables νi.
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Example 2.8. The following elements are generators of Sym(2i+ j):

1 =

i i j

+

i j i

+

j i i

i

•

i j

+

i i

•

j

+

i

•

j i

+

i j i

• +

j i

•

i

+

j i i

•

i

•

i

•

j

+

i

•

j i

• +

j i

•

i

•

i i j

• +

i j

•

i

+

j

•

i i

Consider the inclusions of rings

(2.36) Sym(ν) ⊂ Po�(ν) ⊂ R(ν).

Each subsequent ring is a free rank m! module over the previous ring. Therefore,
R(ν) is a free module of rank (m!)2 over Sym(ν). Moreover, a simple computation
shows that Sym(ν) belongs to the center of R(ν). The converse is true as well.

Theorem 2.9. Sym(ν) is the center of R(ν).

Proof. The multiplication map

iR(ν)k −→ jR(ν)k

y 	→ j 1iy

by j 1i is injective, since the composition i1j j 1i is injective, being a certain product
of sums of xa,i ’s (use Theorem 2.5).

A central element z ∈ Z(R(ν)) decomposes

(2.37) z =
∑

i∈Seq(ν)

zi , zi = 1iz = z1i .

In particular, zi is a central element of iR(ν)i . Let j = jν1
1 jν2

2 . . . jνr
r , for some

order j1 . . . jr of vertices that appear in ν. The ring jR(ν)j is the tensor product
of nil-Hecke rings

(2.38) jR(ν)j ∼=
r⊗

t=1

NHνt

and its center is isomorphic to the tensor product of centers of nil-Hecke rings, which
are known to be symmetric polynomials in νt variables. Moreover, the composition

(2.39) Sym(ν) Z(R(ν)) Z(jR(ν)j )

z zj

�� ��

� ��

is an isomorphism.
Subtracting an element of Sym(ν), we can assume that a central element z has

zj = 0. Since for all i ,

(2.40) 0 = zj (j 1i ) = z(j 1i ) = (j 1i )z = (j 1i )zi ,



CATEGORIFICATION OF QUANTUM GROUPS 327

we get zi = 0 since the multiplication by j 1i is injective. �

Corollary 2.10.

1) R(ν) is a free rank (m!)2 module over its center Sym(ν).
2) R(ν) is free as a graded module over Sym(ν).

The ring Sym(ν) is Z+-graded. Any finitely-generated free graded Sym(ν)-
module has a graded rank invariant which lies in N[q, q−1]. The graded rank of
the module Sym(ν){a} whose grading starts in degree a is qa, and the graded rank
is the additive under the direct sum. It is not hard to write a combinatorial formula
for the graded rank of R(ν); we leave it to the reader as an exercise.

Corollary 2.11.

1) R(ν) is both left and right Noetherian.
2) R(ν) is indecomposable.

Indecomposability is equivalent to 1 being the only central idempotent in the
ring. Note that R(ν) is “almost” positively graded. Precisely, it is zero in degrees
less that −

∑
i νi(νi − 1).

2.5. Representations. In this and the following sections we assume that R(ν) is
defined over a field k rather than over Z. All earlier results of R(ν) remain valid
over k. We view R(ν) as a graded k-algebra with every element of k in degree
0. Let R(ν)−mod be the category of finitely-generated graded left R(ν)-modules,
let R(ν)−fmod be the category of finite-dimensional graded R(ν)-modules, and let
R(ν)−pmod be the category of projective objects in R(ν)−mod. The morphisms in
each of these three categories are grading-preserving module homomorphisms. The
first two categories are abelian. We have a diagram of categories and inclusions:

R(ν)−fmod ⊂ R(ν)−mod ⊃ R(ν)−pmod.

From now on, by an R(ν)-module we mean a left graded finitely-generated R(ν)-
module, unless otherwise specified. For any two R(ν)-modules M , N denote by
Hom(M,N) or HomR(ν)(M,N) the k-vector space of grading-preserving homomor-
phisms, and by

(2.41) HOM(M,N) :=
⊕
a∈Z

Hom(M,N{a}),

the Z-graded k-vector space of all R(ν)-module morphisms. Here N{a} denotes N
with the grading shifted up by a. By a simple R(ν)-module we mean a simple object
in the category R(ν)−mod. We denote by Sym+(ν) the unique graded maximal
central ideal of Sym(ν). It is spanned by Sm-invariant polynomials without the
constant term.

Proposition 2.12. A simple R(ν)-module S is finite-dimensional and Sym+(ν)
acts by 0 on it. Hom(S, S{a}) = 0 if a �= 0, and S remains simple when viewed as
an S-module without the grading.

Proof. The first part and the first claim in the second part of the proposition are
obvious. The reference for the last statement is Theorem 4.4.4(v) in [38]; see also
Theorems 4.4.6 and 9.6.8 in [38]. �
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Hence, S is a (graded) module over the finite-dimensional quotient algebra

(2.42) R′(ν) = R(ν)/Sym+(ν)R(ν).

Note that dimk R
′(ν) = (m!)2, and, up to isomorphism and grading shifts, there

are only finitely many simple R(ν)-modules. We choose one representative Sb from
each equivalence class, denote the set of equivalence classes by B′

ν , and define

B′ def
=

⊔
ν∈N[I]

B′
ν .

We expect a bijection between B′ and the Lusztig-Kashiwara canonical basis B,
hence we use a similar notation. Thus, any simple R(ν)-module is isomorphic to
Sb{a} for a unique b ∈ B′

ν and a ∈ Z (recall that we are considering only graded
modules). We do not specify the grading shift for Sb yet (but see the end of
Section 3.2).

Each module in R(ν)−fmod has finite length composition series with subsequent
quotients—simple modules. The Grothendieck group G0(R(ν)) of R(ν)−fmod is a
free Z[q, q−1]-module with the basis {[Sb]}b∈B′

ν
and the multiplication by q corre-

sponding to the grading shift up by 1.
The abelian category R(ν)−mod has the Krull-Schmidt unique direct sum de-

composition property for modules. Objects Pi , i ∈ Seq(ν), belong to its subcate-
gory R(ν)−pmod of projective modules.

Each simple Sb has a unique (up to isomorphism) indecomposable projective
cover, denoted Pb. We have HOM(Pb, Sb) ∼= Hom(Pb, Sb) ∼= End(Sb). An inde-
composable object of R(ν)−pmod is isomorphic to Pb{a} for a unique b ∈ B′

ν

and a ∈ Z. Any object of R(ν)−pmod has a unique, up to isomorphism, direct
sum decomposition into indecomposables. The Grothendieck group of R(ν)−pmod
is a free Z[q, q−1]-module with the basis {[Pb]}b∈B′

ν
given by the images [Pb] of

indecomposable projectives. Denote this Grothendieck group by K0(R(ν)).
Recall that for a right, respectively left, R(ν)-module M we denote by Mψ

the left, respectively right, R(ν)-module M with the action twisted by ψ. For
P ∈ R(ν)−pmod, let P = HOM(P,R(ν))ψ. This is a graded projective left R(ν)-
module and ¯ is a contravariant self-equivalence in R(ν)−pmod. We have Pi

∼= Pi

for each i ∈ Seq(ν), and, more generally, Pi{a} ∼= Pi{−a}. This self-equivalence
induces a Z[q, q−1]-antilinear involution on K0(R(ν)), also denoted ¯.

There is a Z[q, q−1]-bilinear pairing

(, ) : K0(R(ν))×G0(R(ν)) −→ Z[q, q−1],(2.43)

([P ], [M ]) := gdimk(P
ψ ⊗R(ν) M).(2.44)

When the field k is algebraically closed, End(Sb) ∼= k, and the bases {[Pb]}b and
{[Sb]}b are dual, possibly up to rescaling by powers of q and permutation of ele-
ments. In this case G0(R(ν)) and K0(R(ν)) are dual free Z[q, q−1]-modules. We
will show in Section 3.2 that, over any field k, simples Sb are absolutely irreducible
and the above pairing is perfect without any restrictions on k.

There is a Z[q, q−1]-bilinear form, also denoted (, ),

(2.45) (, ) : K0(R(ν))×K0(R(ν)) −→ Z[q−1, q] · (ν)q,
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where

(2.46) (ν)q = gdim(Sym(ν)) =
∏
i∈Γ

(
νi∏

a=1

1

1− q2a

)
,

and

(2.47) ([P ], [Q]) = gdimk(P
ψ ⊗R(ν) Q).

Since Pψ⊗R(ν)Q ∼= Qψ⊗R(ν)P , the form is symmetric. It follows from Theorem 2.5
that iR(ν)j ∼= iP ⊗R(ν) Pj is a free graded Sym(ν)-module for any i , j . Therefore,

Pψ ⊗R(ν) Q is a free graded Sym(ν)-module of finite rank for any P , Q as above,

and the form takes values in Z[q−1, q] · (ν)q. We have

([Pj ], [Pi ]) = gdim(jP ⊗R(ν) Pi ) = gdim(jR(ν)i ).

Define the character ch(M) of a graded finitely-generated R(ν)-module M as

ch(M) =
∑

i∈Seq(ν)

gdim(1iM) · i .

The character is an element of the free Z((q))-module with the basis Seq(ν); when
M is finite-dimensional, ch(M) is an element of the free Z[q, q−1]-module with basis
Seq(ν). We abbreviate gdim(1iM) to ch(M, i),

ch(M) =
∑

i∈Seq(ν)

ch(M, i) · i .

Let Seqd(ν) be the set of all expressions i
(n1)
1 i

(n2)
2 . . . i

(nr)
r such that n1, . . . , nr ∈

N and
∑r

a=1 naia = ν. For instance,

Seqd(2i+ j) = {iij, iji, jij, i(2)j, ji(2)}.
To i ∈ Seqd(ν) we assign the idempotent

1i = ei1,n1
⊗ ei2,n2

⊗ · · · ⊗ eir,nr
,

given by the tensor product of minimal idempotents ei,n in the nil-Hecke rings; see
Section 2.2.

Let i ! = [n1]! . . . [nr]!, and î be the element of Seq(ν) given by expanding i ,

î = i1 . . . i1i2 . . . i2 . . . ir . . . ir.

î = i iff i ∈ Seq(ν). We have the equality of graded dimensions

gdim(1
̂iM) = q−〈i〉i ! · gdim(1iM), 〈i〉 =

r∑
k=1

nk(nk − 1)

2
,

which follows from the structure of the nil-Hecke algebra. Let

ch(M, i) = q−〈i〉 · gdim(1iM),

then

ch(M, î) = i ! · ch(M, i).

In particular, ch(M) determines ch(M, i) for any i ∈ Seqd(ν).
For i ∈ Seqd(ν) define the left graded projective module

Pi = R(ν)ψ(1i ){−〈i〉},
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and the right graded projective module

iP = 1iR(ν){−〈i〉}.
We have P

̂i
∼= P i !

i and
̂iP

∼= iP
i ! . For instance,

Pii
∼= P

[2]!

i(2)
= P q+q−1

i(2)
= Pi(2){1} ⊕ Pi(2){−1}.

Moreover,

(2.48) ch(M, i) = gdim(iP ⊗R(ν) M) = gdim(HOM(Pi ,M)).

Given two or more sequences in Seqd(ν) that differ only in several neighboring
terms, we denote identical parts in them via dots. For instance, . . . ij . . . and
. . . ji . . . denote a pair of sequences i ′iji ′′ and i ′jii ′′ for some sequences i ′, i ′′.

Proposition 2.13. There are isomorphisms of graded projective right R(ν)-modules

...ij...P ∼= ...,ji...P if i · j = 0,

...iji...P ∼= P...i(2)j... ⊕ P...ji(2)... if i · j = −1,

and isomorphisms of graded projective left R(ν)-modules

P...ij...
∼= P...ji..., if i · j = 0,

P...iji...
∼= P...i(2)j... ⊕ P...ji(2)... if i · j = −1.

Proof. It suffices to show the isomorphisms for right projective modules; applica-
tion of the anti-involution ψ would imply the corresponding isomorphisms for left
projective modules. Multiplication by the diagram

. . .

i j

. . .

is a grading-preserving isomorphism between ...ij...P and ...ji...P if i · j = 0.
Consider grading-preserving maps

B0 : ...iji...P−→...i(2)j...P ⊕ ...ji(2)...P,

B1 : ...i(2)j...P ⊕ ...ji(2)...P−→...iji...P

given by matrices of diagrams

(2.49) B0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•

i j i

•

i j i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B1 =

⎛⎜⎜⎜⎜⎝ −

i i j j i i

⎞⎟⎟⎟⎟⎠

Notice that the top entry in B0 ends with the projector e2,i which takes 1...ii...
to 1...i(2)..., and we view this entry as a homomorphism

...iji...P−→...iij...P−→...i(2)j...P,
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ditto for the bottom entry in B0. The degree of each diagram in B0 is 1, therefore
the map B0 is grading-preserving since the grading shifts for the sequences differ
by 〈. . . i(2)j . . .〉 − 〈. . . iji . . .〉 = 1.

We view the first entry in B1 as the composition

...i(2)j...P ⊂ ...iij...P−→...iji...P,

and there is no need to write the corresponding idempotent (the same for the second
entry). We compute

B0B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•

i j i

•

i j i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝ −

i i j j i i

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

•

i i j

•

i i j

−

•

i i j

•

i i j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
•

•

i i j

0

0
•

•

j i i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.3),(2.6)

⎛⎜⎜⎜⎜⎝
•

i i j
0

0
•

j i i

⎞⎟⎟⎟⎟⎠

In the last matrix above the diagonal terms are idempotents 1i(2)j and 1ji(2) ,
giving identity maps of projectives ...i(2)j...P and ...ji(2)...P , respectively.

B1B0 =

⎛⎜⎜⎝ −

i i j j i i

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•

i j i

•

i j i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= − •

i j i

+ •

i j i

(2.3)
−

i j i

+

i j i

(2.7)

i j i

Therefore, B0, B1 are isomorphisms, and the second isomorphism follows. �
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Corollary 2.14. For any M in R(ν)−mod there are isomorphisms of graded vector
spaces

1...ij...M ∼= 1...ji...M if i · j = 0,

1...iji...M{1} ∼= 1...i(2)j...M ⊕ 1...ji(2)...M if i · j = −1.

Corollary 2.15. The following character equalities hold for any graded finitely-
generated R(ν)-module M ,

ch(M, . . . ij . . . ) = ch(M, . . . , ji . . . ) if i · j = 0,

ch(M, . . . iji . . . ) = ch(M, . . . i(2)j . . . ) + ch(M, . . . ji(2) . . . ) if i · j = −1,

ch(M, . . . i(a)i(b) . . . ) =

[
a+ b
a

]
ch(M, . . . i(a+b) . . . ).

2.6. Induction and restriction. Suppose we have an inclusion of rings ι : B ↪→ A
which is not necessarily unital: e = ι(1) is only an idempotent in A. The induction
functor between categories of unital modules

B−mod
Ind−→ A−mod, M 	−→ A⊗B M

is isomorphic to the functor M 	−→ Ae⊗B M. Its right adjoint

Res : A−mod−→B−mod

takes M to eM , viewed as a B-module.
The inclusion of graded rings

ιν,ν′ : R(ν)⊗R(ν′) ↪→ R(ν + ν′)

is described by putting the diagrams next to each other. It takes the idempotent
1i ⊗ 1j to 1i j and the unit element to an idempotent of R(ν + ν′) denoted 1ν,ν′ .

Proposition 2.16. 1ν,ν′R(ν + ν′) is a free graded left R(ν)⊗R(ν′)-module.

Proof. The minimal representative w of a left S|ν|×S|ν′|-coset in S|ν|+|ν′| gives rise
to the diagram

i j ŵ ∈ i jR(ν + ν′)w−1(i j )

of the minimal presentation of w with top ends of strands labelled by the sequence
i j for i ∈ Seq(ν) and j ∈ Seq(ν′):

i1 i2 in j1 j2 jm−n

The set of elements

ŵ =
∑

i∈ν,j∈ν′
i j ŵ,

over all cosets, is a basis of 1ν,ν′R(ν + ν′) as a free graded left R(ν) ⊗ R(ν′)-
module. �
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We denote the restriction and induction functors for the inclusion

R(ν)⊗R(ν′) ⊂ R(ν + ν′)

by Resν,ν′ and Indν,ν′ , respectively.

Corollary 2.17. The restriction functor Resν,ν′ takes projectives to projectives.

Given a quadruple (ν, ν′, ν′′, ν′′′) with ν + ν′ = ν′′ + ν′′′, let

ν,ν′Rν′′,ν′′′ = 1ν ⊗ 1ν′R(ν + ν′)1ν′′ ⊗ 1ν′′′ .

Proposition 2.18. Graded (R(ν)⊗R(ν′), R(ν′′)⊗R(ν′′′))-bimodule ν,ν′Rν′′,ν′′′ has
a filtration by graded bimodules isomorphic to(
νRν−λ,λ⊗ν′Rν′+λ−ν′′′,ν′′′−λ

)
⊗R′

(
ν−λ,ν′′+λ−νRν′′⊗λ,ν′′′−λRν′′′

)
{−λ·(ν′+λ−ν′′′)},

where R′ = R(ν − λ)⊗R(λ)⊗R(ν′ + λ− ν′′′)⊗R(ν′′′ − λ), over all λ ∈ N[I] such
that every term above is in N[I].

Proof. This proposition is a version of the Mackey’s induction-restriction theorem
for inclusion of maximal parabolic subgroups Sm−n×Sn ⊂ Sm. The statement and
its proof are best illustrated by the diagram

︸ ︷︷ ︸ ︸ ︷︷ ︸

︷ ︸︸ ︷ ︷ ︸︸ ︷ν ν′

ν′′ ν′′′

ν − λ ν′′′ − λ

λ

ν′ + λ− ν′′′

These diagrams, over all λ (summing over all colorings of strands) will provide
generators for the subquotient bimodules that appear in the proposition. The
grading shift −λ · (ν′ + λ − ν′′′) is the degree of the intersection diagram of |λ|
parallel lines colored by any i ∈ Seq(λ) and |ν′ + λ− ν′′′| parallel lines colored by
any j ∈ Seq(ν′ + λ− ν′′′). �

We have

Indν,ν′(Pi ⊗ Pj ) ∼= Pi j

for i ∈ Seq(ν), j ∈ Seq(ν′). By passing to direct summands, we see that the formula
holds more generally, for i ∈ Seqd(ν), j ∈ Seqd(ν′).

A shuffle k of a pair of sequences i ∈ Seq(ν), j ∈ Seq(ν′) is a sequence together
with a choice of subsequence isomorphic to i such that j is the complementary
subsequence. Shuffles of i , j are in a bijection with the minimal coset representatives
of S|ν| × S|ν′| in S|ν|+|ν′|. We denote by deg(i , j , k) the degree of the diagram in
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R(ν + ν′) naturally associated to the shuffle; see an example below:

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

k

i j

When the meaning is clear, we will also denote by k the underlying sequence of the
shuffle k .

Proposition 2.19. For any k ∈ Seq(ν + ν′),

Resν,ν′Pk
∼=

⊕
i,j

Pi ⊗ Pj{deg(i, j, k)},

Resν,ν′(kP ) ∼=
⊕
i∗j=k

iP ⊗ jP{deg(i, j, k)},

the sum over all ways to represent k as a shuffle of i ∈ Seq(ν) and j ∈ Seq(ν′).

The proposition follows immediately from the structure of bimodules ν,ν′Rν+ν′

and ν+ν′Rν,ν′ . �
Given two functions f and g on sets Seq(ν) and Seq(ν′), respectively, with val-

ues in some commutative ring which contains Z[q, q−1], we define their (quantum)
shuffle product f ∪∪ g (see [30] and references therein) as a function on Seq(ν + ν′)
given by

(f ∪∪ g)(k) =
∑
i ,j

qdeg(i ,j ,k)f(i)g(j ),

the sum is over all ways to represent k as a shuffle of i and j .

Lemma 2.20. For M ∈ R(ν)−mod and N ∈ R(ν′)−mod we have

ch(Indν,ν′(M ⊗N)) = ch(M) ∪∪ ch(N).

Proof. This lemma follows at once from the last proposition and formula (2.48). �

3. Quantum groups and the Grothendieck ring of R

3.1. Homomorphism γ of twisted bialgebras. For a graph Γ, we form the
direct sum

R =
⊕

ν∈N[I]

R(ν).
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This is a nonunital ring. By various categories of R-modules we will mean direct
sums of corresponding categories of R(ν)-modules:

R−mod
def
=

⊕
ν∈N[I]

R(ν)−mod,

R−fmod
def
=

⊕
ν∈N[I]

R(ν)−fmod,

R−pmod
def
=

⊕
ν∈N[I]

R(ν)−pmod.

The Grothendieck groups

K0(R) =
⊕

ν∈N[I]

K0(R(ν)), G0(R) =
⊕

ν∈N[I]

G0(R(ν))

are the direct sums of Grothendieck groups of rings R(ν). We extend the pair-
ings (2.43) and (2.45) to K0(R) and G0(R) by requiring that subspaces corre-
sponding to different ν’s be orthogonal. Induction and restriction functors for the
inclusion R(ν)⊗R(ν′) ⊂ R(ν + ν′), summed over all ν, ν′, give functors

Ind : R⊗ R−mod−→R−mod, Res : R−mod−→R⊗R−mod

where by R ⊗ R−mod we mean the direct sum of categories R(ν) ⊗ R(ν′)−mod,
over all ν, ν′. These functors restrict to subcategories of finite-dimensional modules
and projective modules. Indeed, induction takes projectives to projectives. Re-
striction, in the case of these inclusions, also takes projectives to projectives, by
Proposition 2.19 and the Krull-Shmidt property.

Thus, these functors induce maps [Ind], [Res] on Grothendieck groups K0(R) and
G0(R). Note that [Res] is the sum of maps

K0(R(ν + ν′))−→K0(R(ν))⊗K0(R(ν′)),

or

G0(R(ν + ν′))−→G0(R(ν))⊗G0(R(ν′)),

over all ν, ν′; the tensor products here and further are over Z[q, q−1].

Proposition 3.1. [Ind] turns K0(R) and G0(R) into associative unital Z[q, q−1]-
algebras. [Res] turns K0(R) and G0(R) into coassociative counital coalgebras over
Z[q, q−1].

Proof follows from the associativity of induction and restriction. The unit ele-
ment is given by inducing with the one-dimensional module over R(∅). The counit
is given by restricting to R(∅) and taking the graded dimension. �

Denote the product [Ind](x1, x2) for x1, x2 ∈ K0(R) simply by x1x2.
We equip K0(R)⊗K0(R) with the algebra structure via

(x1 ⊗ x2)(x
′
1 ⊗ x′

2) = q−|x2|·|x′
1|x1x

′
1 ⊗ x2x

′
2(3.1)

for homogeneous x1, x2, x
′
1, x

′
2, where |x2| ∈ N[I] is the weight of x2, etc.

Proposition 3.2. [Res] is an algebra homomorphism from K0(R) to K0(R) ⊗
K0(R) with the above algebra structure.

Proof. This follows from Proposition 2.18. �
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Recall the symmetric bilinear pairing (2.45) on K0(R) taking values in Z[q, q−1] ·
(ν)q.

Proposition 3.3. The pairing (, ) has the following properties:

(1) (1, 1) = 1,
(2) ([Pi], [Pj ]) = δi,j(1− q2)−1 for i, j ∈ I,
(3) (x, yy′) = ([Res](x), y ⊗ y′), for x, y, y′ ∈ K0(R),
(4) (xx′, y) = (x⊗ x′, [Res](y)), for x, x′, y ∈ K0(R).

Proof. Since 1 = [P∅], where ∅ is the empty sequence, and P∅ = k as a module
over R(∅) = k, the first statement follows. When i �= j, vectors [Pi] and [Pj ] lie
in mutually orthogonal subspaces K0(R(i)) and K0(R(j)), so that ([Pi], [Pj ]) = 0.
Also,

([Pi], [Pi]) = gdim(iR(i)i) = gdim(k[x]) = (1− q2)−1.

Let X ∈ R(ν + ν′)−pmod, Y ∈ R(ν)−pmod, and Y ′ ∈ R(ν′)−pmod. Then

([X], [Y ][Y ′]) = ([X], [Indν,ν′Y ⊗ Y ′])

= gdim(Xψ ⊗R(ν+ν′) (ν+ν′Rν,ν′)⊗R(ν)⊗R(ν′) Y ⊗ Y ′)

= gdim(Xψ(1ν ⊗ 1ν′)⊗R(ν)⊗R(ν′) Y ⊗ Y ′) = ([Resν,ν′X], [Y ]⊗ [Y ′]),

and statement (3) follows. A similar computation establishes (4). �

We next recall Q(q)-algebras ′f and f from [34, Section 1] and Af , the integral
form of f (our q is Lusztig’s v−1). Algebra ′f is a free associative N[I]-graded algebra
on generators θi. The degree of θi is i. The tensor product ′f ⊗′ f is equipped
with an algebra structure using the rule (3.1), and with a coalgebra structure r :
′f−→′f ⊗′ f , determined by the conditions r(θi) = θi ⊗ 1 + 1 ⊗ θi and r being an
algebra homomorphism.

′f comes equipped with a bilinear form (, ) uniquely determined by the same
conditions as the ones in Proposition 3.3, with comultiplication r taking the place
of comultiplication [Res] in K0(R) and θi, θj taking the place of [Pi], [Pj ]. It has
the weight space decomposition

′f =
⊕

ν∈N[I]

′fν .

Let I be the radical of the bilinear form (, ). It is a two-sided ideal of ′f and one
forms the quotient algebra f = ′f/I, which also has the weight decomposition

f =
⊕

ν∈N[I]

fν .

The bilinear form and the comultiplication r descend to the quotient algebra. ′f
and f come with a Q(q)-antilinear involution ¯ that takes qn to q−n and θi to θi.

It is not hard to check that the elements

θiθj − θiθj for i · j = 0

and

(q + q−1)θiθjθi − θ2i θj − θjθ
2
i for i · j = −1

belong to the ideal I. The quantum version of the Gabber-Kac theorem says that
I is generated by these elements over all pairs of vertices i �= j of the graph Γ (for
instance, see Theorem 33.1.3 in [34]).
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Define Af as the Z[q, q
−1]-subalgebra generated by the divided powers θ

(a)
i , i ∈ I,

a ∈ N.

Proposition 3.4. There is an injective homomorphism of Z[q, q−1]-algebras γ :

Af−→K0(R) that takes θ
(a1)
i1

. . . θ
(ak)
ik

to [Pi], where i = i
(a1)
1 . . . i

(ak)
k . This homo-

morphism converts the comultiplication r of Af into the comultiplication [Res] in
K0(R). It takes the bilinear form on Af to the bilinear form on K0(R):

(x, y) = (γ(x), γ(y)).

The bar-involution of Af goes to the bar-involution of K0(R) under γ.

Proof. Start with the homomorphism of Q(q)-algebras ′f−→K0(R)Q(q), where

K0(R)Q(q)
def
= K0(R)⊗Z[q,q−1] Q(q),

defined by the condition that it takes θi to [Pi]. There are equalities in K0(R)Q(q):

[Pij ] = [Pji], i · j = 0,

[Piji] = [Pi(2)j ] + [Pji(2) ], i · j = −1,

that come from isomorphisms of left projective modules in Proposition 2.13. These
equalities match the generators of the ideal I. Therefore, the above homomorphism
descends to a homomorphism

γQ(q) : f−→K0(R)Q(q).

Under this homomorphism induction of projective R-modules corresponds to the
multiplication in Af , so that

γQ(q)(θi1 . . . θik) = [Pi1...ik ].

Passing to the divided powers shows that

γQ(q)(θ
(a1)
i1

. . . θ
(ak)
ik

) = [P
i
(a1)
1 ...i

(ak)

k

].

The bilinear forms on f andK0(R)Q(q) satisfy the same properties, listed earlier, and
these properties uniquely determine the form on f . Therefore, the homomorphism
γQ(q) respects the bilinear forms:

(γQ(q)(x), γQ(q)(y)) = (x, y).

Since the bilinear form on f is nondegenerate, homomorphism γQ(q) is injective.
The bar-involution on f is q-antilinear and fixes each product element θi1 . . . θik .
The bar-involution on K0(R)Q(q) is q-antilinear and fixes [Pi ] for each i . Therefore,

γQ(q)(x) = γQ(q)(x) for all x ∈ f .
The image of the restriction of γQ(q) to Af lies in K0(R), therefore we get a

homomorphism γ : Af−→K0(R) by restriction. This homomorphism is injective
and satisfies all the properties stated in the proposition. �

We will prove in the next section that γ is an isomorphism.
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3.2. Surjectivity of γ. In this section we closely follow [25, Chapter 5]; all results
there transfer directly to our case.

For M in R(ν)−mod and i ∈ I let

∆iM = (1ν−i ⊗ 1i)M = ν−i,iRν ⊗R(ν) M,

and, more generally,

∆inM = (1ν−ni ⊗ 1ni)M = ν−ni,niRν ⊗R(ν) M.

We view ∆in as the functor into the category R(ν − ni)⊗ R(ni)−mod. There are
functorial isomorphisms

(3.2) HOMR(ν)(Indν−ni,niN⊗L(in),M) ∼= HOMR(ν−ni)⊗R(ni)(N⊗L(in),∆inM),

for M as above and N ∈ R(ν − ni)−mod. The following lemma is obvious.

Lemma 3.5.
ch(∆inM) =

∑
j∈Seq(ν−ni)

ch(M, jin) · j,

where we view ∆inM as a module over the subalgebra R(ν−ni) of R(ν−ni)⊗R(ni).

Let εi(M) = max{n ≥ 0|∆inM �= 0}. This number is the length of the longest
tail of i’s in sequences k with 1kM �= 0.

Lemma 3.6. If M ∈ R(ν)−mod is irreducible, and N ⊗L(in){r} is an irreducible
submodule of ∆in(M) for some 0 ≤ n ≤ εi(M) and r ∈ Z, then εi(N) = εi(M)−n.

Proof. This is our analogue of Lemma 5.1.2 of [25] and the proof is essentially
the same. Let ε = εi(M). Clearly, εi(N) ≤ εi(M) − n. Isomorphisms (3.2) and
the irreducibility of M imply that it is a quotient of Indν−ni,niN ⊗ L(in){r}. By
exactness of ∆iεM , we get that ∆iε(M) �= 0 is a quotient of

∆iε(Indν−ni,niN ⊗ L(in)){r}.
Hence, the latter module is nonzero, and the inequality εi(N) ≥ εi(M)− n follows
from the Shuffle lemma 2.20. �

Lemma 3.7. Suppose N ∈ R(ν)−mod is irreducible and εi(N) = 0. Let M =
Indν,niN ⊗ L(in). Then

(1) ∆inM ∼= N ⊗ L(in),
(2) hdM is irreducible and εi(hdM) = n,
(3) all other composition factors L of M have εi(L) < n.

Proof. This is the analogue of Lemma 5.1.3 in [25] for algebras R(ν).
(1) is immediate from the Shuffle lemma and Lemma 3.5.
(2) From (3.2) we see that a copy of N ⊗ L(in), possibly with a grading shift,

appears in ∆inQ for any nonzero quotient Q of M , including direct summands of
hdM . Part 1, however, implies that N ⊗L(in) appears only once in ∆inM , so that
hdM is irreducible.

(3) From part (2) we have ∆in(M) = ∆in(hdM), so that ∆in(L) = 0 for any
other composition factor of M , since ∆in is exact. �

Lemma 3.8. Let M ∈ R(ν)−mod be irreducible and ε = εi(M). Then ∆iεM is
isomorphic to N ⊗L(iε) for some irreducible N ∈ R(ν − εi)−mod with εi(N) = 0.

Proof. The proof is identical to that of Lemma 5.1.4 in [25]. �
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Lemma 3.9. Let N ∈ R(ν)−mod be irreducible and M = Indν,niN ⊗L(in). Then
hdM is irreducible, εi(hdM) = εi(N) + n, and all other composition factors L of
M have εi(L) < εi(N) + n.

Proof. The same as the proof of Lemma 5.1.5 in [25]. �

Proposition 3.10. For any irreducible M ∈ R(ν)−mod and 0 ≤ n ≤ εi(M),
soc∆inM is an irreducible R(ν − ni) ⊗ R(ni)-module of the form L ⊗ L(in) with
εi(L) = εi(M)− n.

Proof. The same as the proof of Theorem 5.1.6 in [25]. The analogue of the Kato
theorem in our framework is stated below (this theorem appears in the proof of
Theorem 5.1.6). �

Proposition 3.11. Let µ be a composition of n.

(1) The module L(in) over the nil-Hecke algebra R(ni) is the only graded irre-
ducible module, up to isomorphism and graded shifts.

(2) All composition factors of ResnµL(i
n) are isomorphic to L(iµ1)⊗· · ·⊗L(iµr),

up to grading shifts, and soc(ResnµL(i
n)) is irreducible.

(3) soc(Resnn−1L(i
n)) ∼= L(in−1), up to a grading shift.

Here Resnµ denotes the restriction to the parabolic nil-Hecke subalgebra NHµ
∼=

NHµ1
⊗· · ·⊗NHµr

. The proof in [25] works in this case as well, with the equivalent
of Lemma 4.3.1 being Lemma 2.1. �

Let ei = Resν−i,i
ν−i ◦∆i be the functor of composition of ∆i with the restriction

from R(ν − i)⊗R(i) to R(ν − i). Then εi(M) = max{n ≥ 0|eni M �= 0} and

Resνν−iM =
⊕
i∈I

eiM.

Corollary 3.12. Let M ∈ R(ν)−mod be irreducible with εi(M) > 0. Then
soc(eiM) is irreducible and εi(soc(eiM)) = εi(M) − 1. Socles of eiM are pair-
wise nonisomorphic for different i ∈ I.

The proof is the same as for Corollaries 5.1.7 and 5.1.8 in [25]. �
For an irreducible M ∈ R(ν)−mod define

(3.3) ẽiM := soc(eiM), f̃iM := hd indν+i
ν,i M ⊗ L(i).

The module f̃iM is irreducible by Lemma 3.9, while ẽiM is irreducible or 0 by
Corollary 3.12, and

εi(M) = max{n ≥ 0|ẽni M �= 0}, εi(f̃iM) = εi(M) + 1.

In the statements below, isomorphisms of simple modules are allowed to be
homogeneous (not necessarily degree-preserving).

Lemma 3.13. For an irreducible M ∈ R(ν)−mod we have

soc∆inM ∼= (ẽni M)⊗ L(in),(3.4)

hd indν,ni(M ⊗ L(in)) ∼= f̃n
i M.(3.5)

Lemma 3.14. For an irreducible M ∈ R(ν)−mod the socle of eni M is isomorphic

to ẽni M
⊕[n]!{−n(n−1)

2 }.

The proofs are equivalent to those of Lemmas 5.2.1 and 5.2.2 in [25]. �



340 MIKHAIL KHOVANOV AND AARON D. LAUDA

Lemma 3.15. For irreducible modules M ∈ R(ν)−mod and N ∈ R(ν + i)−mod

we have f̃iM ∼= N if and only if ẽiN ∼= M .

The proof follows that of Lemma 5.2.3 in [25]. �

Corollary 3.16. Let M,N ∈ R(ν)−mod be irreducible. Then f̃iM ∼= f̃iN if and
only if M ∼= N . Assuming εi(M), εi(N) > 0, ẽiM ∼= ẽiN if and only if M ∼= N .

The character ch(M) of a finite-dimensional representation M ∈ R(ν)−mod
takes values in Z[q, q−1]Seq(ν), the free Z[q, q−1]-module generated by Seq(ν), and
descends to a homomorphism from G0(R(ν)) to Z[q, q−1]Seq(ν).

Theorem 3.17. The character map

ch : G0(R(ν))−→Z[q, q−1]Seq(ν)

is injective.

Equivalently, the characters of irreducible modules (one from each equivalence
class up to grading shifts) are linearly independent functions on Seq(ν). The proof
is identical to that of Theorem 5.3.1 in [25]. Note that in our case the character
of a finite-dimensional graded module is a function on sequences with values in
Z[q, q−1], while in the nongraded case of [25] its a function on sequences taking
values in Z. This discrepancy has no effect on the proof. �

Passing to the fraction field Q(q) of Z[q, q−1] and dualizing the map ch, which
then becomes the composition

Q(q)Seq(ν)−→fν
γQ(q)−→ K0(R(ν))Q(q),

we conclude that γQ(q), restricted to weight ν, is a surjective map of Q(q)-vector
spaces. We have already observed that γ and γQ(q) are injective. By summing over
all weights, we obtain the following result.

Proposition 3.18. γQ(q) : f−→K0(R)Q(q) is an isomorphism.

Therefore, the number of isomorphism classes of (graded) simple R(ν)-modules
is the same for any field k.

Corollary 3.19. A (graded) irreducible R(ν)-module is absolutely irreducible, for
any Γ, k and weight ν.

Next, assume that Γ is finite. Choose a total order on I, i(0) < i(1) · · · < i(k−1),
k = |I|. For r > k define i(r) = i(r′) where r′ is the residue of r modulo k. Fix one
representative Sb from each isomorphism class b of irreducible R(ν)-modules, up to
grading shifts. Recall that we denoted this set of isomorphism classes by B′

ν . For
all ν, to each b ∈ B′

ν assign the following sequence Yb = y0y1 . . . of nonnegative
integers: y0 = εi(0)(M), and let M1 = ẽy0

i(0)M . Inductively, yr = εi(r)(Mr), and

Mr+1 = ẽyr

i(r)Mr. Note that y0 + y1 + · · · = |ν| and only finitely many terms in the

sequence are nonzero. Introduce a lexicographic order on sequences of nonnegative
integers: y0y1 · · · > z0z1 . . . if, for some t, y0 = z0, y1 = z1, . . . , yt−1 = zt−1

and yt > zt. This order induces a total order on B′
ν , by b > c iff Yb > Yc. To

each sequence Yb = y0y1 . . . we assign the projective R(ν)-module PY r
b
associated

to the divided powers sequence Y r
b = · · · i(2)y(2)i(1)y(1)i(0)(y0) (the order of y’s is

reversed).

Proposition 3.20. HOM(P (Yb), Sc) = 0 if b < c and HOM(P (Yb), Sb) = k.
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This follows from the previous results and implies that the image [P ] of any
(graded) projective R(ν)-module in the Grothendieck group K0(R(ν)) can be writ-
ten as a linear combination, with coefficients in Z[q, q−1], of images of divided
powers projectives [Pθ], for divided power sequences θ of the form Y r

b . Therefore,
γ : Af−→K0(R(ν)) is surjective. Since, γ is also injective, it is an isomorphism.
The case of an infinite Γ follows by taking the direct limit of its finite subgraphs.
This concludes the proof of the Theorem 1.1 stated in the introduction.

It would be interesting to find out if the theorem remains valid for rings R(ν)
over Z rather than over a field k.

For each divided power i(a) we have the corresponding projective Pi(a) . Induction

with this projective is an exact functor, denoted F (a)
i , from R(ν)−mod to R(ν +

ai)−mod. Summing over all ν, form the functor

F (a)
i : R−mod−→R−mod.

This functor restricts to the subcategory R−pmod of the category of projective

modules. To any divided power sequence θ = i
(a1)
1 . . . i

(ar)
r associate the functor

Fθ = F (a1)
i1

◦ · · · ◦ F (ar)
ir

on R−mod. To a finite sum
∑

k ukθ(k) where uk ∈ N[q, q−1] and θ(k) are divided
powers sequences associate the direct sum of shifted copies of Fθ(k):⊕

k

F⊕uk

θ(k) .

Theorem 3.21. For any relation∑
k

ukθ(k) =
∑
�

v�θ
′(�)

in Af with positive coefficients uk, v� ∈ N[q, q−1] there is an isomorphism of projec-
tives ⊕

k

P⊕uk

θ(k)
∼=

⊕
�

P⊕v�
θ′(�)

inducing an isomorphism of functors⊕
k

F⊕uk

θ(k)
∼=

⊕
�

F⊕v�
θ′(�).

This result follows immediately from the earlier ones. �
We conclude that any relation in Af lifts to an isomorphism of functors. It

is natural to view the category R−pmod, as well as the category of induction
functors on R−mod it gives rise to, as a categorification of Af , the integral form of
the quantum universal enveloping algebra of the negative half of the simply-laced
Kac-Moody algebra associated to the graph Γ.

The semilinear “hom” form (, )′ on K0(R) defined by

([P ], [Q])′ := gdimHOM(P,Q)

is related to the “tensor product” bilinear form (, ) given by (2.45) via

(x, y)′ = (x, y).

Indeed, by surjectivity of γ, it suffices to check this relation for x = [Pi ] and
y = [Pj ], in which case both sides are equal to the graded dimension of iR(ν)j .
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The involution σ of R(ν) defined in Section 2.1 induces a self-equivalence of
R(ν)−mod which takes projective P

i
(a1)
1 ...i

(ar)
r

to P
i
(ar)
r ...i

(a1)
1

. The induced map [σ]

on the Grothendieck group K0(R) coincides, under the isomorphism γ, the q-linear

anti-involution of Af that fixes each θ
(a)
i .

On the category R(ν)−fmod we have the contravariant duality functor, which
takes a finite-dimensional module M to its vector space dual M∗ψ twisted by the
anti-involution ψ. This duality functor leaves invariant the character evaluated at
q = 1:

ch(M∗ψ)q=1 = ch(M)q=1.

Therefore, the contravariant duality preserves simples, up to overall shift:

S∗ψ
b

∼= Sb{r}.
Given i ∈ Seq(ν), we have ch(Sb, i) ∈ Z[q2, q−2] or ch(Sb, i) ∈ qZ[q2, q−2] for parity
reasons (more generally, this is true for any indecomposable object of R(ν)−mod
and can be used to decompose R(ν)−mod into the direct sum of two subcategories).

Then ch(S∗ψ
b , i) ∈ Z[q2, q−2] if the same is true for ch(Sb, i), and ch(S∗ψ

b , i) ∈
qZ[q2, q−2] if ch(Sb, i) ∈ qZ[q2, q−2]. Hence, the shift r is an even number.

From now on we redefine Sb by shifting its grading by r
2 . We have S∗ψ

b
∼= Sb as

graded modules. This normalization of Sb does not depend on the choice of i . The
character of Sb is bar-invariant:

ch(Sb, i) = ch(Sb, i)

for all i ∈ Seq(ν), where q = q−1. Extending the bar-involution to Z[q, q−1]Seq(ν)

by i = i , we have ch(Sb) = ch(Sb).
This canonical (balanced) choice of grading for Sb allows us to fix the grading

on indecomposable projective Pb so that the quotient map Pb−→Sb is grading-
preserving. In this way we obtain a basis {[Pb]} in Af which depends only on the
characteristic of k. Both the multiplication and the comultiplication in this basis
have coefficients in N[q, q−1]. An example below shows this basis to be different
from the Lusztig-Kashiwara basis when Γ is an odd length cycle and k has any
characteristic, and when Γ is a cycle and k has characteristic 2.

3.3. Tight monomials and indecomposable projectives. Following Lusztig

[35], we say that a monomial θ = θ
(a1)
1 . . . θ

(ak)
k is tight if it belongs to the canonical

basis B of Af . It follows from the properties of the canonical basis that a monomial
θ is tight if and only if (θ, θ)− 1 ∈ qN[q] (or see [40, Proposition 3.1]).

Proposition 3.22. If a monomial θ is tight, the projective module Pθ is indecom-
posable.

Proof. Tightness of θ implies that HOM(Pθ, Pθ) is a Z+-graded k-vector space
which is one-dimensional in degree 0. Therefore, any degree 0 endomorphism of Pθ

is a multiple of the identity, and Pθ is indecomposable. This argument works even
over Z. �

Example 3.23. When the graph Γ consists of a single vertex i, the weight space

Afmi is a rank one free Z[q, q−1]-module generated by θ
(m)
i . The map γ takes it

to [Pi(m) ], the generator of the Grothendieck group K0(R(mi)). Projective module
Pi(m) is indecomposable.
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Example 3.24. Let Γ = ◦ ◦i j
. Tight monomials θ

(a)
i θ

(b)
j θ

(c)
i (a, b, c ∈ N, b ≥

a+ c) and θ
(c)
j θ

(b)
i θ

(a)
j (a, b, c ∈ N, b ≥ a+ c), with the identification

θ
(a)
i θ

(a+c)
j θ

(c)
i = θ

(c)
j θ

(a+c)
i θ

(a)
j ,

constitute the canonical basis B of Af ; see [34, Example 14.5.4]. Therefore, images
of indecomposable projectives Pi(a)j(b)i(c) , b ≥ a+c and Pj(c)i(b)j(a) , b > a+c, consti-

tute a basis in the free Z[q, q−1]-module K0(R). Any indecomposable projective in
R−mod is isomorphic to one of the above, up to a grading shift. Indecomposables
Pi(a)j(a+c)i(c) and Pj(c)i(a+c)j(a) are isomorphic.

Example 3.25. Let Γ = ◦
◦◦

◦◦
◦

��� ��
�

��
����
be a cycle with n ≥ 3 vertices. Label the vertices

clockwise by 1, 2, . . . , n and let i = 12 . . . n. Then HOM(Pi i , Pi i ) is Z+-graded and
Hom(Pi i , Pi i ) is 2-dimensional with the basis {i i1i i , α}, where

α =

1 2 3 ··· n 1 2 3 ··· n

A computation shows that deg(α) = 0 and

α2 =

{
0 if n is odd,

−2α if n is even;

implying that i i1i i is the only idempotent in Pi i if n is odd, or if n is even and
char(k) = 2. Under these assumptions, Pi i is indecomposable, but(

[Pi i ], [Pi i ]
)
∈ 2 + qN[q] �= 1 + qN[q],

and [Pi i ] is not a canonical basis element. For Γ, an odd length cycle, we found
an indecomposable projective Pi i whose image in the Grothendieck group is not a
canonical basis vector, while being invariant under the bar involution: [Pi i ] = [Pi i ].

When n is even and char(k) �= 2, α0 = −α
2 is an idempotent in Hom(Pii , Pi i ),

and Pi i
∼= Pi iα0⊕Pi i (1−α0) is isomorphic to the direct sum of two indecomposable

projectives. Furthermore, α = β1β0 where

β1 =

1 1 2 2 3 3 n··· n

• • • •
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β0 =

1 2 3 ··· n 1 2 3 ··· n

Module homomorphisms

β1 : Pi i −→ P1(2)2(2)...n(2) ,

β0 : P1(2)2(2)...n(2) −→ Pi i ,

induced by these elements via right multiplication have degree 0, and β0β1 = −2·Id,
so that Pi iα0

∼= P1(2)2(2)...n(2) .

3.4. A conjecture on categorification of irreducible representations. Choose
λ ∈ N[I], λ =

∑
λi · i, i ∈ I. Let R(ν;λ) be the quotient ring of R(ν) by the ideal

generated by all diagrams of the form

i1 i2

. . .

im

•λi1

where i1 . . . im ∈ Seq(ν) and the leftmost string has λi1 dots on it. The ring R(ν;λ)
inherits a grading from R(ν). These quotient rings should be the analogues of the
Ariki-Koike cyclotomic Hecke algebras in our framework. Let

R(∗;λ) def
=

⊕
ν∈N[I]

R(ν;λ),

and switch from Z to a field k. We expect that, for sufficiently nice Γ and k,
the category of graded modules over R(∗;λ) categorifies the integrable irreducible
Uq(g)-representation Vλ with the highest weight λ. Let R(ν;λ)−pmod be the cat-
egory of finitely-generated graded projective left R(ν;λ)-modules and

R(∗;λ)−pmod
def
=

⊕
ν∈N[I]

R(ν;λ)−pmod.

There should exist an isomorphism

K0(R(∗;λ)) ∼= VZ,λ,

where VZ,λ is an integral version of Vλ, a free Z[q, q−1]-module spanned by the com-

positions of divided differences F
(a)
i applied to the highest weight vector vλ ∈ Vλ.

Under this isomorphism indecomposable projectives should correspond to canoni-

cal basis vectors in Vλ. The action of E
(a)
i and F

(a)
i should lift to exact functors

E(a)
i and F (a)

i between categories R(ν;λ)−pmod and R(ν + ai;λ)−pmod as well as
the categories R(ν;λ)−mod and R(ν + ai;λ)−mod of all finitely-generated graded

modules. These functors E(a)
i and F (a)

i will be direct summands of the induction
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and restriction functors between R(ν;λ) and R(ν + ai;λ)-modules, defined á la
Ariki. We expect them to be biadjoint, up to grading shifts.
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