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ON CERTAIN ELEMENTS

IN THE BERNSTEIN CENTER OF GL2

SANDEEP VARMA

Abstract. Let F be a nonarchimedean local field of residue characteristic p,
and let r be an odd natural number less than p. Using the work of Moy and
Tadić, we find an element z of the Bernstein center of G = GL2(F ) that acts

on any representation π of G by the scalar z(π) = tr
(
Frob; (Symr ◦ϕπ)

IF
)
,

the trace of any geometric Frobenius element Frob of the absolute Weil group
WF of F , acting on the inertia-fixed points of the representation Symr ◦ϕπ of

WF , where ϕπ : WF → Ĝ is the restriction to WF of the Langlands parameter
of π. This element z is specified by giving the functions obtained by convolving
it with the characteristic functions of a large class of compact open subgroups
of G, that includes all the groups of both the congruence and the Iwahori
filtrations of G having depth at least one.

1. Introduction

Let F be a nonarchimedean local field of residue characteristic p, and let o ⊂ F
denote its ring of integers. Let G denote the group GL2 over F , and let G =
GL2(F ). Let Z = Z(G) denote the Bernstein center ([2]) of G. Recall that
elements of Z may be viewed as essentially compact invariant distributions on G,
or equivalently, as regular functions on the Bernstein variety Ω(G) of G.

Let r : Ĝ → GL(V ) denote a representation of the Langlands dual group Ĝ
of G. We consider the following function zr on Ω(G). Let π be a supercuspidal

representation of M = M(F ), for a Levi subgroup M of G, and ι : M̂ → Ĝ the

associated inclusion of Langlands dual groups. Let ϕπ : WF → M̂ denote the
Langlands parameter for π, WF denoting the absolute Weil group of F . Since G is
a general linear group, any subquotient of the representation IndGM π, Ind standing
(as in the rest of this paper) for normalized induction, has a Langlands parameter
whose restriction to WF is ι ◦ ϕπ. Then to π one attaches the scalar:

zr(π) := tr(Frob |V IF ),

where tr denotes trace, IF ⊂ WF is the inertia subgroup, Frob denotes any geomet-
ric Frobenius element of WF , and Frob acts on V IF through r ◦ ι ◦ ϕπ. π �→ zr(π)
can be easily seen to define a regular function on Ω(G), and hence gives an el-
ement zr ∈ Z = Z(G). Since zr is essentially compact and invariant, if chK
denotes the measure-normalized characteristic function of a compact open sub-
group K of G, then the distribution zr ∗ chK can be realized by an element fr,K of
C∞

c (K\G/K) ⊂ C∞
c (G).
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Let r denote a natural number. Associated to r we have the r-th symmetric
power representation r = Symr : Ĝ → GLr+1(C). As per the above paragraph,
attached to this r is an element zr = zr ∈ Z, and thence corresponding to any
compact open subgroup K of G, an element fr,K ∈ C∞

c (G).
When K is a hyperspecial (respectively, parahoric) subgroup of G, the values of

fr,K can be obtained from the Satake (respectively, Bernstein) isomorphism. For K
belonging to the congruence filtration of open compact subgroups of G, the function
f1,K has been explicitly described by P. Scholze in Section 14 of [9]. In this note
we take r to be an odd natural number smaller than the residue characteristic p
of F , K to be KB := 1 + B for a lattice B ⊂ M2(o) satisfying some reasonable
assumptions (Hypothesis 2.1), and compute fB := fr,KB

. For this we most crucially
rely on the methods of A. Moy and M. Tadić in [6]. Moy and Tadić have developed
techniques to construct elements belonging to the Bernstein centers of reductive
groups over nonarchimedean local fields. In [6] they give a method to construct
all elements supported in any given connected component of the Bernstein variety.
Their algorithm lets us explicitly construct these elements whenever we understand
the characters of the representations belonging to this component well enough to
integrate certain functions constructed out of them. This is the case in the situations
of interest to us in this paper. Moy and Tadić also explain the sense in which
elements of the Bernstein center that are supported on a single component form
building blocks for more general elements. For our purposes, this comes down to
convolving the distributions we get via the Moy-Tadić algorithm with chKB

, and
summing the resulting functions.

The results of our computation of fB are stated in Theorem 6.1, the main result
in this paper. We do not repeat it here since the description of this function is
somewhat lengthy. If val : F → Z is the discrete valuation on F , it will turn out that
fB is supported on the set of g ∈ G such that val det g = r. Some factors entering
into the description of fB(g) are b := val tr g, kB,g := min{val tr gx | x ∈ B}, and
another term denoted lab(g), which depends on b, and, roughly speaking, generalizes
the function l(g) = val(1−tr g+det g) entering into the description of fB in Section
14 of [9] (where the case r = 1 is considered).

For those groups K in the congruence and the Iwahori filtrations of depth (as
per the Moy-Prasad normalization) at least one, we recover the functions obtained
by Scholze as a special case.

We briefly indicate in this paragraph why one might be interested in such func-
tions fr,K . For this paragraph alone, we use notation from Section 11 of [4]. In cer-
tain instances (i.e., for certain more general G, certain compact subgroups K ⊂ G

and certain representations r of Ĝ), a certain constant multiple φr (the subscript r
here, used to make notation consistent with [4], is not the integer r referred to in
the rest of this note) of the function fr,K has been observed to figure in an equation
of the form:∑

x∈Sh(kr)

Trss
(
Φr

p, RΨx(Q̄l)
)
=

∑
γ0

∑
(γ,δ)

c(γ0; γ, δ)Oγ(f
p)TOδσ(φr).

In particular, the left-hand side, known as the semisimple Lefschetz number, is the
sum of semisimple traces of Frobenius acting on stalks of a certain nearby cycle
sheaf RΨ(Ql) attached to an o-model for a Shimura variety associated to G. The
representation r comes from the Shimura datum defining the Shimura variety. For
exposition on this material, we refer the reader to [4], and for some related concepts
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regarding Shimura varieties with bad reduction we refer the reader to [8]. When K
is a hyperspecial subgroup of G, this equation has been proved by Kottwitz; see [5].
When K is an Iwahori subgroup of G, the equation has been proved by T. Haines
and B.C. Ngô in [3]. For GL2 over unramified extensions of Qp, and arbitrary K
belonging to the congruence filtration, Scholze has proved the equation in [9], for
his implementation of the Langlands-Kottwitz method for the modular curve.

We should also mention that in the context of Shimura varieties, the represen-
tations r that arise correspond to miniscule coweights, unlike the odd symmetric
powers considered in this note (except for the standard representation). Neverthe-
less, this restriction does not apply to their function field analogues, so one might
hope that these computations might be of some use. In addition, one may also
hope that our computations might give some rough preliminary insights into the
nature of these very interesting functions fr,K in general.

The organization of this note is as follows. In Section 2 we set up some notation,
and state and discuss the restrictions we impose on B. Then we recall that one can,
as in [6], write zr =

∑
zr,Ω, the summation being over the connected components

Ω ⊂ Ω(G), and each zr,Ω denoting the element of Z supported on Ω and equalling
zr on it (here, note that although infinitely many of the zr,Ω will be nonzero in
general, the sum

∑
zr,Ω makes sense as a distribution on G since for any given

ϕ ∈ C∞
c (G), only finitely many of the zr,Ω(ϕ) will be nonzero).

Each such zr,Ω can be realized by a locally integrable G-invariant function fr,Ω on
G. We describe in the light of this as to why fB is just the sum of the contributions
fr,Ω ∗ chKB

from the various components Ω ⊂ Ω(G), doing in particular some
preliminary set up for analyzing contributions from the principal series components.
In Section 3 we prove that the supercuspidal components do not contribute to fB .
In Section 4 we analyze contributions from certain principal series components
Ω ⊂ Ω(G), and in Section 5 we treat the remaining components. In both cases,
the fr,Ω’s can be obtained by adapting the computations of [6] and [7], from the
case of SL2 treated by Moy and Tadić, to the case of GL2. However, at least
in Section 5, convolving them with the measure-normalized characteristic function
chKB

of KB has needed a little bit of work. Finally, in Section 6 we put things
together, computing fB by adding up the contributions fr,Ω∗chKB

from the various
components Ω.

We have made use of the assumptions on r (being odd and less than p) in ruling
out contributions from components Ω consisting of supercuspidal representations.
The assumption that r is odd is crucial in Sections 4 and 5 as this ensures that
for the principal series components Ω featured there, fr,Ω is supported on elements
of G well away from the singular set. In Section 5, this assumption also enables
one to approximate a factor in fr,Ω using the trace function, thereby avoiding
reference to eigenvalues (see equation (5.4)), which helps us crucially in performing
the convolution with chKB

. That r is less than p is also used in Section 6, in getting
closed expressions for terms like lab(g) that go into the expression for fB(g), for
g ∈ G. It is not clear to the author if the techniques here can in any way be
adapted to deal with groups of higher rank. Doing so would involve integrating
functions involving supercuspidal character values near the identity and on the so
called “bad shell” (even when r = 1, one would have supercuspidal representations
of Levi subgroups figuring in). Moreover, it might not be possible to adapt the
aforementioned trick of expressing the fr,Ω’s of Section 5 using traces, since it is
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only for GL2(F ) that the trace of an element gives so much information about its
conjugacy class.

2. Setup

As in the introduction, let F be a nonarchimedean local field of residue charac-
teristic p, o ⊂ F its ring of integers, p the maximal ideal of o, and � a uniformizing
parameter. Let val : F → Z denote its usual discrete valuation, and let |·| = q− val(·),
with q = #(o/p), denote the usual norm on F . Let WF denote the absolute Weil
group of F and IF ⊂ WF the inertia group.

Let G denote the group GL2 over F . Let B denote its Borel subgroup consist-
ing of upper triangular matrices, and A its maximal torus consisting of diagonal
matrices. We will write GL2, G and A for GL2(F ), G(F ) and A(F ), respectively.
tr and det will stand for the trace and determinant functions on G, respectively.
Let Z = Z(G) denote the Bernstein center ([2]) of G. We follow [1] in giving G
the measure that gives GL2(o) volume 1, except that when we integrate over the
compact set KB considered later below, we give KB its normalized Haar measure.
There will not be any confusion between these choices at any point. Without fur-
ther mention, we will identify A with F××F× in the obvious fashion, so whenever
we write (α, β) for an element of A, we will be referring to the diagonal matrix
with α ∈ F× and β ∈ F× in the upper left and lower right corners, respectively.
Whenever we write an element of F× as �ao it will be implicitly assumed that
a ∈ Z and that o ∈ o×.

Let r be an odd natural number with r < p. For a supercuspidal representation
π of M := M(F ), where M (= A or G) is a Levi subgroup of G, we define zr(π)
to be the trace of any Frobenius element of WF acting on V IF , where V is the
representation space of Symr ◦ϕπ, ϕπ being a Langlands parameter for π viewed
as a map WF → Ĝ (after composition with the inclusion M̂ → Ĝ). From general
results about the Bernstein center, it easily follows that there exists an element
zr ∈ Z such that for any supercuspidal representation π of M := M(F ) for a Levi

subgroup M of G, zr acts on all subquotients of IndGM π by the scalar zr(π).
Let B be a lattice in M2(F ) such that KB := 1 + B is a subgroup of GL2(F ).

We will be considering the measure on KB giving it volume 1. For any g ∈ G, let
kB,g and mB be the integers such that the fractional ideals

{tr gx | x ∈ B} and {trx | x ∈ B}

in F equal pkB,g and pmB , respectively.
We make the following assumptions on B.

Hypothesis 2.1. We assume that KB := 1 +B is a subgroup of GL2(F ), and that:

(i) For all g ∈ G conjugate to some (�ao1, �
bo2),

{tr gx | x ∈ B} ⊃ {tr g · trx | x ∈ B}.

(ii) B is small enough so that mB > 0, and so that for all x ∈ B, detx ∈
�mB+1o.

(iii) det(I2 +�mBB⊥) ⊂ o×, where I2 denotes the two by two identity matrix
and

B⊥ = {y ∈ M2(F ) | trxy ∈ p}.
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Remark 2.2. Suppose B is of the form Bn := �nM2(o) for some n ∈ N, or of the
form:

(2.1) BL,n := {x ∈ M2(o) | xLj ⊂ Lj+n ∀j ∈ Z},
for some n ∈ N \ {1} and lattice chain L = {Lj}j∈Z. We claim that B satisfies
(i)–(iii). First note that any lattice chain L may be G-conjugated to the standard
lattice chain L0. Therefore, to prove (i)–(iii) for B of the form BL,n as above, it
suffices to treat the case where L = L0. Moreover, we have an explicit description
for BL0,n:

BL0,n =

(
p�n/2� p�(n−1)/2�

p�(n+1)/2� p�n/2�

)
.

Thus, we may and do assume that B = Bn for some n ∈ N or BL0,n for some
n ∈ N\{1}. Then (i) follows from the observation that whenver x ∈ B, the element
(trx, trx) ∈ A also lies in B. (ii) is straightforward given the explicit description
of BL0,n, and (iii) follows from �mBnB⊥

n = �nB1−n = B1 and

�
mBL0,nB⊥

L0,n = ��n/2�BL0,1−n = BL0,1+2�n/2�−n ⊂ BL0,1.

Another way to see this would be to note that lattices of the form Bn (n ∈ N) as
well as those of the form BL,n (n ∈ N, n > 1) are Moy-Prasad lattices of the form
gx,r for some x in the Bruhat-Tits building of G and some r ≥ 1. One can still prove
(i) the same way as above, while (ii) would follow from, say, choosing coordinates
for an appropriate apartment and making an easy computation by hand, and (iii)
would follow from the dual of gx,r being g∗x,(−r)+ together with the fact that the

trace form identifies each gx,s with g∗x,s. Our restriction r ≥ 1 cannot be replaced
by r > 0 without hurting (ii), and it is not clear to the author if (ii) might be
modified without affecting Lemma 5.1 below in a certain, however, very special
case.

Let chKB
denote the measure-normalized characteristic function of KB = 1+B.

Our aim in this note will be to compute the function fB on G that realizes the
distribution zr ∗ chKB

.
Let Ω(G) denote the Bernstein variety of G. We will often refer to connected

components Ω ⊂ Ω(G) as Bernstein components. Let Ω ⊂ Ω(G) be such a com-
ponent. Consider the element zΩ ∈ Z, supported on Ω and equalling zr on Ω. It
was denoted zr,Ω in Section 1, but we are suppressing the r to lighten notation.
According to [6], we have that zΩ is given by a locally integrable function fΩ on G,
and that zr is the sum of all the zΩ, in the sense that for all ϕ ∈ C∞

c (G),∑
Ω

zΩ(ϕ) = zr(ϕ),

with the left-hand side actually a finite sum. Note that for all Ω, the distribution
zΩ ∗ chKB

is given by the function fB,Ω, where for all g ∈ G,

fB,Ω(g) =

∫
KB

fΩ(gk) dk =

∫
B

fΩ(g(1 + x)) dx,

where dk and dx denote the normalized Haar measures on KB and B, respectively.

Notation 2.3. Henceforth, we will use the shorthand notation gx := g(1+ x) for all
g ∈ G and x ∈ B.
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Notation 2.4. For any character λ of o×, we denote by f(λ) the conductor of λ,
so f(λ) is the smallest n ∈ N ∪ {0} such that λ is trivial on Un, where Un equals
1 + pn if n ∈ N and o× if n = 0.

Now we describe the plan of our computation. Let fsc,B denote the sum of all
fB,Ω as Ω varies over the components of Ω(G) that correspond to supercuspidal
representations of G. We will show in the next section that:

(2.2) fsc,B = 0,

by showing that fΩ = 0 for all components Ω consisting of supercuspidal represen-
tations of G.

To proceed further, let us recall how Bernstein components consisting of principal
series representations of G are indexed by unordered pairs of characters of o×. For
convenience, we will often implicitly treat characters of o× also as characters on the
whole of k×, by declaring them to be trivial on �. Given characters μ, ν of o× and
s1, s2 ∈ C× we define πμ,ν,s1,s2 to denote the representation of G, unitarily induced
from the character of B that equals the character:(

μs
val(·)
1 , νs

val(·)
2

)
: (�ao1, �

bo2) �→ μ(o1)s
a
1 · ν(o2)sb2

on A. Then the Bernstein component corresponding to an unordered pair/multiset
consisting of characters {μ, ν} of o× may be identified with C××C× in case μ �= ν,
and with (C× × C×)/ ∼, ∼ being the equivalence relation (s1, s2) ∼ (s2, s1), if
μ = ν. In either case, (s1, s2) corresponds to the (the conjugacy class of the

trivially supercuspidal) representation
(
μs

val(·)
1 , νs

val(·)
2

)
of A.

Since A has been identified with Gm×Gm, the Langlands dual of A can and will
naturally be identified with C× × C×. Thus, the Langlands parameter ϕμ,ν,s1,s2

corresponding to this representation
(
μs

val(·)
1 , νs

val(·)
2

)
of A is obtained by compos-

ing the natural homomorphism WF → F××F× (obtained from the Abelianization
homomorphism WF → F× that sends a geometric Frobenius to a uniformizing

parameter in o) with
(
μs

val(·)
1 , νs

val(·)
2

)
. Then as representations of WF ,

Symr ◦ϕ =
⊕

a+b=r

ϕμa,νb,sa1 ,s
b
2
.

Hence,

(Symr ◦ϕ)IF =
⊕

a+b=r
μaνb=1

ϕμa,νb,sa1 ,s
b
2
.

Therefore, for any geometric Frobenius element Frob ∈ WF , and any s1, s2 ∈ C×:

(2.3) tr
(
Frob; (Symr ◦ϕ)IF

)
=

∑
a+b=r
μaνb=1

(
μas

a val(·)
1 · νbsb val(·)2

)
(�) =

∑
a+b=r
μaνb=1

sa1s
b
2.

We will need to treat the cases μ = ν and μ �= ν separately. If μ = ν = λ, say,
we let zλ be the element of Z supported in the Bernstein component of the multiset
{λ, λ}, and acting on the subquotients of πλ,λ,s1,s2 by sr1+sr−1

1 s2+· · ·+sr2. Let fλ,λ
be the locally integrable function as in [6] realizing the distribution zλ. For μ �= ν,
given a, b ∈ N ∪ {0} with a + b = r, we let zμ,ν,a,b be the element of Z supported
on the Bernstein component of the multiset {μ, ν}, that acts on πμ,ν,s1,s2 by sa1s

b
2.
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Let fμ,ν,a,b be the locally integrable function as in [6] that realizes the distribution
zμ,ν,a,b.

From Lemma 5.1 below it will follow that fB,Ω = 0 for almost all components
Ω ⊂ Ω(G), so that fB is simply the sum of all fB,Ω’s. Then from equations (2.2)
and (2.3) it will follow that:

fB =
∑
λr=1

fλ,λ ∗ chKB
+
∑
μ �=ν

∑
a+b=r
μaνb=1

fμ,ν,a,b ∗ chKB
.

In other words,

(2.4) fB = f
(0)
B + f

(>0)
B ,

where

(2.5) f
(0)
B =

∑
λr=1

fλ,λ ∗ chKB
,

and

f
(>0)
B =

∑
a+b=r

∑
μ �=ν

μaνb=1

fμ,ν,a,b ∗ chKB
=

∑
a+b=r

f
(>0,b)
B ,

where

f
(>0,b)
B =

∑
μ �=ν

μaνb=1

fμ,ν,a,b ∗ chKB

(whenever we refer to f
(>0,b)
B , it will be understood that b ∈ Z ∩ [0, r] and that

a = r − b).

3. Proving that supercuspidals do not contribute

3.1. Ruling out the exceptional supercuspidals. Even without our assump-
tions on p, the assumption that r is odd enables us to prove that the excep-
tional supercuspidal representations do not contribute to fB . In this subsection
we give this proof. Let π be an exceptional supercuspidal representation of G, and
ϕπ : WF → GL2(C) an associated Langlands parameter. We wish to prove that
the restriction of Symr ◦ϕπ to the inertia group IF ⊂ WF does not contain the
trivial representation. Since π is exceptional, the image of ϕπ(WF ) in PGL2(C)
contains A4, so that the image in PGL2(C) of ϕπ([WF ,WF ]) ⊂ ϕπ(IF ) contains a
copy of (Z/2Z)× (Z/2Z). Let x ∈ ϕπ([WF ,WF ]) ⊂ SL2(C) be such that the image
of x in PGL2(C) is nontrivial. Then x2 is a central element in GL2(C) while x is
not central, so the eigenvalues of x are of the form b,−b with b ∈ C. But since x has
determinant 1, b = ±i. But then the eigenvalues of Symr x are all ±i, and hence
Symr x ∈ Symr ◦ϕπ(IF ) cannot fix any nonzero vector in the space of Symr ◦ϕπ.

3.2. Weil representations. Let E/F be a quadratic extension and let π be a

supercuspidal representation of G with Langlands parameter ϕπ := IndWF

WE
λ, where

λ is viewed as a character of WE via the abelianization map WE → E×.
Let VSymr ◦ϕπ

denote the representation space of Symr ◦ϕπ, and let IE ⊂ IF
be the inertia group of E. We will show that the trace of any Frobenius element
of WF acting on V IF

Symr ◦ϕπ
is 0, so that π and hence its Bernstein component
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does not contribute to fB . By Frobenius reciprocity, since Symr ◦ϕπ is completely
irreducible, we have a decomposition (we are using here that r is odd),

Symr ◦ϕπ =
⊕

a+b=r
b<a

IndWF

WE
λa(λσ)b.

Let us denote the representation space of IndWF

WE
λa(λσ)b by Vb. Then:

(3.1) V IE
Symr ◦ϕπ

=


r/2�⊕
b=0

λa(λσ)b|IE=1

Vb

(where we have written a for r − b).
First consider the case where E/F is unramified. Here IF = IE . By equa-

tion (3.1), V IE
Symr ◦ϕπ

, as a representation of WF , is a direct sum of representations
induced from WE , and hence has its character supported on the WF conjugates of
WE in WF , namely, on WE . Thus any Frobenius element, which necessarily lies
outside WE , acts on V IE

Symr ◦ϕπ
= V IF

Symr ◦ϕπ
by a trace zero map.

Note. Another way to see this is to make computations following [6], upon which it
will follow that the contribution of the Bernstein component consisting of the repre-
sentations {π⊗sval ◦ det(·) | s ∈ C×}, for an unramified unitary supercuspidal repre-
sentation π of G, is a constant multiple of Θ̌π restricted to {g ∈ G | val(det g) = r},
where Θ̌π(g) = Θπ(g

−1) ∀ g ∈ G, Θπ denoting the character of π. But unramified
supercuspidal representations are induced from GL2(o) · ZG(F ), and hence have
characters supported on the set of elements g with val(det g) even.

Now consider the case where E/F is ramified. Let 0 ≤ b ≤ �r/2�. It is enough to
show that λa(λσ)b cannot be trivial on IE . Suppose it were. Then λa(λσ)b is trivial
on o

×
E , the group of units in the ring oE of integers in E. Therefore if E1 denotes

the kernel of the norm map from E× to F×, λa−b is trivial on E1. However, since
E/F is ramified, the order of any nontrivial continuous character of E1 cannot
have any factor other than 2 and p. Since a − b is both odd and relatively prime
to p (as r < p), it follows that λ is trivial on E1, which cannot be the case as π is
supercuspidal.

Thus, we have proved equation (2.2).

4. Unramified principal series components

Let λ be any character of o× with λr = 1. The Bernstein component of (λ, λ)
can then be identified with C× × C×/ ∼ where (s1, s2) ∼ (s2, s1).

Let Stλ denote the usual Steinberg representation tensored with λ◦det. In other
words, Stλ is the quotient of IndGB

(
λ| · |−1/2, λ| · |1/2

)
= πλ,λ,

√
q,
√
q−1 by its unique

subrepresentation, namely λ ◦ det. The cuspidal support of Stλ is the G-orbit of(
A,

(
λ| · |1/2, λ| · |−1/2

))
. For s ∈ C×, let Stλ,s denote Stλ ⊗sval ◦ det(·). The Stλ,s

are the only discrete series representations of GL2 having cuspidal support in the
Bernstein component corresponding to (λ, λ).

Recall that we have let zλ be the element of Z(G) that is supported on the
Bernstein component of (λ, λ), and which for s1, s2 ∈ C× acts on πλ,λ,s1,s2 by

the scalar zλ (πλ,λ,s1,s2) := sr1 + sr−1
1 s2 + · · · + sr2. Since Stλ,s is a subquotient of
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πλ,λ,
√
qs,

√
q−1s, it follows that zλ acts on Stλ,s by the constant

zλ(Stλ,s) = (
√
qs)r + (

√
qs)r−1(

√
q−1s) + · · ·+ (

√
q−1s)r =

qr+1 − 1

(q − 1)qr/2
· sr.

Now we apply the usual Plancherel inversion formula in Remark 2.17 of [2]. We
follow the more explicit form given in equation (2.4.3) of [6], except that we use
notation from Theorem 2.1 of [1]. Thus, we get that for all ϕ ∈ C∞

c (G):

(4.1)

zλ(ϕ) = c(G|A)−2γ(G|A)−1 1

2

(
1

2πi

)2 ∫
|s1|=|s2|=1

zλ (πλ,λ,s1,s2)

· μG|A

(
λs

val(·)
1 , λs

val(·)
2

)
d
(
λs

val(·)
1 , λs

val(·)
2

)
· Θ̌λ,λ,s1,s2(ϕ)

ds1
s1

ds2
s2

+ c(G|G)−2γ(G|G)−1 1

1

· 1

2πi

∫
|s|=1

zλ(Stλ,s)μG|G(Stλ,s) d(Stλ,s) · Θ̌St,λ,s(ϕ) · 2
ds

s
,

where Θ̌λ,λ,s1,s2 stands for the character of πλ,λ,s1,s2 composed with g �→ g−1, and

Θ̌St,λ,s stands for the character of Stλ,s composed with g �→ g−1. Here, the choice
of measures is justified by the discussion in the latter half of Page 31 of [1]. The
2 in 2ds/s comes from the normalization of measures in [11] (see the last sentence
of page 239 there), which [1] follows. We are also using that the various Stλ,s are
all pairwise distinct, and this well-known fact may be seen either from Langlands
parametrization or the character of Stλ,s, recalled later.

μG|G, cG|G and γG|G are trivial. The formal degree of the usual Steinberg rep-
resentation, and hence of each Stλ,s, with respect to the measure we have chosen is
(q − 1)/2 (see, e.g., page 28 of [1]). Moreover, γ(G|A) = (q + 1)/q and c(G|A) = 1
(e.g., equations (3) and (4) of [1]). From Theorem 4.5 of [1], we have:

μG|A

(
λs

val(·)
1 , λs

val(·)
2

)
= (q + 1)2

(s1 − s2)
2

(qs1 − s2)(s1 − qs2)
.

Plugging the formulas summarized into the above paragraph and the formulas
for zλ(πλ,λ,s1,s2) and zλ(Stλ,s) into equation (4.1), we get:

zλ(ϕ) =
q

(q + 1)
· 1
2
·
(

1

2πi

)2 ∫
|s1|=|s2|=1

(sr1 + sr−1
1 s2 + · · ·+ sr2)

· (q + 1)2
(s1 − s2)

2

(qs1 − s2)(s1 − qs2)
·
(∫

G

ϕ(g)Θ̌λ,λ,s1,s2(g)dg

)
ds1
s1

ds2
s2

+
1

2πi

∫
|s|=1

(
qr+1 − 1

(q − 1)qr/2
· sr

)
· q − 1

2
·
(∫

G

ϕ(g)Θ̌St,λ,s(g) dg

)
2
ds

s

=

∫
G

ϕ(g)

(
q(q + 1)

2

(
1

2πi

)2 ∫
|s1|=|s2|=1

(sr1 + · · ·+ sr2)Θ̌λ,λ,s1,s2(g)

· (s1 − s2)
2

(qs1 − s2)(s1 − qs2)

ds1
s1

ds2
s2

)
dg

+

∫
G

ϕ(g)

(
qr+1 − 1

qr/2
1

2πi

∫
|s|=1

srΘ̌St,λ,s(g)
ds

s

)
dg,
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by Fubini’s theorem. We thus have a locally integrable function fλ,λ = f ′
λ,λ + f ′′

λ,λ

that realizes the distribution zλ on G, where for all g ∈ G, f ′
λ,λ(g) equals:

(4.2)

f ′
λ,λ(g) =

q(q + 1)

2(2πi)2

∫
|s1|=|s2|=1

(sr1 + · · ·+ sr2)Θ̌λ,λ,s1,s2(g)

· (s1 − s2)
2

(qs1 − s2)(s1 − qs2)

ds1
s1

ds2
s2

and

(4.3) f ′′
λ,λ(g) =

qr+1 − 1

qr/2
1

2πi

∫
|s|=1

srΘ̌St,λ,s(g)
ds

s
.

When λ is the trivial character of o× (denoted 1 for convenience), the functions
fλ,λ, f

′
λ,λ and f ′′

λ,λ will be denoted by f1, f
′
1 and f ′′

1 respectively. Since for all

g ∈ G we have Θ̌λ,λ,s1,s2(g) = λ(det g)−1 · Θ̌1,1,s1,s2(g) and Θ̌St,λ,s(g) = λ(det g)−1 ·
Θ̌St,s(g), it follows that fλ,λ = (λ ◦ det)−1f1. Similarly, f ′

λ,λ = (λ ◦ det)−1f ′
1 and

f ′′
λ,λ = (λ ◦ det)−1f ′′

1 . Therefore, we now turn our attention to computing f1 by

evaluating f ′
1 and f ′′

1 separately.
We compute f ′′

1 first. Without loss of generality, we may take the values of our
character functions to be zero on nonregular elements. Using Θ̌St,s(g) = Θ̌St(g) ·
s− val(det g) for all g ∈ G, from equation (4.3) we get

f ′′
1 (g) =

qr+1 − 1

qr/2
1

2πi

∫
|s|=1

srΘ̌St,s(g)
ds

s

=
qr+1 − 1

qr/2
Θ̌St(g)

1

2πi

∫
|s|=1

sr−val(det g) ds

s

=

⎧⎨
⎩
0, if val(det g) �= r, and
qr+1 − 1

qr/2
Θ̌St(g), otherwise.

It is well known, and an easy consequence of Theorem 3 (ii) of [10] together with
the realization of the Steinberg representation as a quotient of a certain induced
representation by the trivial representation, that for regular semisimple g ∈ G we
get

Θ̌St(g) =

⎧⎨
⎩
−1, if g elliptic, and(

q−k1 + q−k2

|�k1o1 −�k2o2|

)
− 1, if g ∈ G(�k1o1, �

k2o2) ∈ GA

(here for any S ⊂ G, we denote by GS the set ofG-conjugates of elements of S; recall
also that by the notational convention we are following, k1, k2 ∈ Z and o1, o2 ∈ o×

in the above equation). Thus, f ′′
1 (g) equals 0 if g is singular or val(det g) �= r. If

val(det g) = r (so g is regular semisimple as r is odd), then f ′′
1 (g) equals⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−qr+1 − 1

qr/2
, if g elliptic regular, and

qr+1 − 1

qr/2
·
(

q−k1 + q−k2

|�k1o1 −�k2o2|
− 1

)
, if ∃ (�k1o1, �

k2o2) ∈ A ∩ G{g},

with k1 + k2 = r.
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Note that since r is odd, if val(det g) = r, then g is conjugate to a diagonal matrix
if and only if tr g �∈ p�r/2�.

Therefore we may write for regular semisimple g:

(4.4) f ′′
1 (g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if val(det g) �= r,

−qr+1 − 1

qr/2
, if val(det g) = r and tr g ∈ p�r/2�,

qr+1 − 1

qr/2
· q2 val(tr g)−r, if val(det g) = r and tr g �∈ p�r/2�.

Now we turn to f ′
1(g). Recall from Theorem 3 (ii) of [10] that for g ∈ G,

Θ̌1,1,s1,s2(g) = 0 unless g ∈ G{(�k1o1, �
k2o2)} for some (�k1o1, �

k2o2) ∈ A, in
which case:

Θ̌1,1,s1,s2(g) =
s−k1
1 s−k2

2 + s−k2
1 s−k1

2

|�k1o1 −�k2o2|
q−(k1+k2)/2.

Hence for regular semisimple g, equation (4.2) gives that f ′
1(g) = 0 unless g

is conjugate to some (�k1o1, �
k2o2). Therefore, we fix such a g and a corre-

sponding k1, k2, o1, o2 from now, until and including equation (4.5) below. Since
(�k1o1, �

k2o2) and (�k2o2, �
k1o1) are conjugate, we may and do also assume with-

out loss of generality that k2 ≤ k1. From equation (4.2) and using the change of
variables s2 = ss1 in the second step below:

f ′
1(g) =

q(q + 1)

2(2πi)2
·
∫
|s1|=|s2|=1

⎛
⎝ r∑

j=0

sj1s
r−j
2

⎞
⎠ s−k1

1 s−k2
2 + s−k2

1 s−k1
2

|�k1o1 −�k2o2|
· q−(k1+k2)/2

· (s1 − s2)
2

(qs1 − s2)(s1 − qs2)

ds1
s1

ds2
s2

=
q1−(k1+k2)/2(q + 1)

2(2πi)2
·
∫
|s1|=|s|=1

sr1

(
r∑

i=0

si

)
· s

−(k1+k2)
1 (s−k2 + s−k1)

|�k1o1 −�k2o2|

· (1− s)2

(q − s)(1− qs)

ds1
s1

ds

s
.

Integrating over s1, this is 0 unless k1 + k2 = r, which we assume from now on.
Then r being odd, k1 �= k2, so |�k1o1 − �k2o2| = q−min(k1,k2) = q−k2 . Thus, we
get

f ′
1(g) =

q1−(k1−k2)/2(q + 1)

2(2πi)

∫
|s|=1

⎛
⎝ r∑

j=0

(
sj−k2 + sj−k1

)⎞⎠ (1− s)2

(q − s)(1− qs)

ds

s

=
q1−(k1−k2)/2(q + 1)

2

r∑
j=0

(Ij−k2
+ Ij−k1

),

where for all l ∈ Z, Il denotes the integral defined in equation (3.6.3) of [6] (also
see the computation just after equation (3.6.4) of the same reference).

Using k1 + k2 = r and the obvious relation Il = I−l for all l ∈ Z (so Ij−k1
=

Ij−r+k2
= I(r−j)−k2

for all j), we get

r∑
j=0

Ij−k1
=

r∑
j=0

Ij−k2
=

k1∑
j=−k2

Ij ,
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so

f ′
1(g) = q1−(k1−k2)/2(q + 1)

k1∑
j=−k2

Ij .

From equation (3.6.5) of [6] and from [7], we have for all l ∈ Z,

Il =

⎧⎪⎨
⎪⎩
−q−|l|−1 q − 1

q + 1
, if l �= 0, and

−q−|l|−1 q − 1

q + 1
+

1

q
, if l = 0.

Therefore, we get

f ′
1(g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−q1−(k1−k2)/2(q + 1)

⎛
⎝q − 1

q + 1

k1∑
j=−k2

q−|j|−1

⎞
⎠ , if k2 < 0,

−q1−(k1−k2)/2(q + 1)

⎛
⎝q − 1

q + 1

k1∑
j=−k2

q−|j|−1 − 1

q

⎞
⎠ , if k2 ≥ 0.

Simplifying, we get

f ′
1(g) =

{
−q−(r/2)+k2−k1(qr+1 − 1), if min(k1, k2) < 0, and

q−r/2
(
1 + qk2−k1

)
, if min(k1, k2) ≥ 0.

We rewrite this as

(4.5) f ′
1(g) =

⎧⎪⎪⎨
⎪⎪⎩
−q2 val(tr g)−r · q

r+1 − 1

qr/2
, if val(tr g) < 0, and

1 + q2 val(tr g)−r

qr/2
, if 0 ≤ val(tr g) ≤ �r/2�.

Recalling that f1 = f ′
1 + f ′′

1 , we get that for an arbitrary regular semisimple
g ∈ G, f1(g) = 0 unless val(det g) = r, in which case we have

(4.6) f1(g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−qr+1 − 1

qr/2
, if val(tr g) ≥ �r/2�,

q2 val(tr g)+1 + 1

qr/2
, if 0 ≤ val(tr g) ≤ �r/2�,

0, if val(tr g) < 0.

Now we turn to fλ,λ ∗ chKB
, for a given character λ of o× with λr = 1. Since r

is relatively prime to q and since λr = 1, λ has conductor 1, and hence by (ii) of
Hypothesis 2.1, λ(det 1 + x) = 1 for all x ∈ B. Thus, we have

(4.7)

∫
B

fλ,λ(gx) dx = λ(det g)−1

∫
B

f1(gx) dx

(see Notation 2.3) and it is the integral

(4.8)

∫
B

f1(gx) dx

that we will be concerned with.
First, this integral is clearly 0 if val(det g) �= r, so assume this to be the case.

Then we have three cases:
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(i) Suppose min(kB,g, �r/2�) > val(tr g). Then by equation (4.6) f1(gx) =
f1(g) for all x ∈ B, so the above integral equals f1(g), which in turn equals
(q2 val(tr g)+1 + 1)q−r/2 if 0 ≤ val(tr g) ≤ �r/2�, and 0 if val(tr g) < 0.

(ii) Suppose min(val(tr g), kB,g) ≥ �r/2�. Then for all x ∈ B, val(tr gx) ≥

�r/2�, so clearly f1(g) as well as the integral (4.8) equals −qr+1 − 1

qr/2
.

(iii) Suppose min(val(tr g), �r/2�) ≥ kB,g. Since val(tr g) ≥ kB,g, the map

τ : x �→ tr(gx)

is a surjection from B to pkB,g and is, moreover, the composition of a
translation in pkB,g and a homomorphism of topological groups. Therefore,
if pkB,g is given the normalized Haar measure, then for any measurable
U ⊂ pkB,g , τ−1(U) ⊂ B has the same measure as U . Therefore, if for the
time being μB denotes our normalized Haar measure on B then

∀ j with kB,g ≤ j ≤ �r/2�, μB((val ◦τ )−1(j)) =
q − 1

qj−kB,g+1
,

and

μB((val ◦τ )−1(�r/2�,∞)) =
1

q�r/2�−kB,g
.

Therefore integral (4.8) is equal to⎛
⎝ 
r/2�∑

j=max(0,kB,g)

(
q2j+1 + 1

qr/2

)
· q − 1

qj−kB,g+1

⎞
⎠−

(
qr+1 − 1

qr/2

)
· 1

q�r/2�−kB,g
,

which, setting j0 = max(0, kB,g) for convenience, is equal to

1

qr/2−kB,g
·

⎛
⎝
r/2�∑

j=j0

(
(qj+1 − q−j−1)− (qj − q−j)

)⎞⎠− 1

qr/2−kB,g
· (q�r/2� − q−�r/2�),

which clearly simplifies to −q−r/2+kB,g(qj0 −q−j0), which equals 0 if kB,g ≤
0 and −q−r/2(q2kB,g − 1) otherwise.

Set χr(g) to be 1 if det g ∈ (F×)r and 0 otherwise. Then we have from equations

(2.5) and (4.7) that f
(0)
B (g) equals 0 if val(det g) �= r, and for g with val(det g) = r

it is given by
(4.9)

f
(0)
B (g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if tr g �∈ o or kB,g ≤ 0,

χr(g)(q − 1, r) · q
2 val(tr g)+1 + 1

qr/2
, if 0 ≤ val(tr g) < min(kB,g, �r/2�),

−χr(g)(q − 1, r) · q
r+1 − 1

qr/2
, if �r/2� ≤ min(val(tr g), kB,g),

−χr(g)(q − 1, r) · q
2kB,g − 1

qr/2
, if 0 ≤ kB,g ≤ min(val(tr g), �r/2�).

To interpret the above equation, recall that for a character λ of o×, we view it
as a character of F× through x �→ x/�valx. Also, in the above equation there is
some overlap between the cases involved, but the corresponding formulas are clearly
compatible.
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5. Ramified principal series components

Let μ, ν be characters of o×, with μ �= ν. Let a, b ∈ N ∪ {0} with a > b, such
that a+ b = r. Recall that zμ,ν,a,b ∈ Z, realized by the locally integrable function

fμ,ν,a,b, acts each of the induced representations IndGB

(
μs

val(·)
1 , νs

val(·)
2

)
by sa1s

b
2 and

by 0 on representations outside this Bernstein component.
Recall also that this Bernstein component can be identified with C× ×C×, with

(s1, s2) corresponding to the conjugacy class of the character

(μs
val(·)
1 , νs

val(·)
2 ) : (�k1o1, �

k2o2) �→ μ(o1)ν(o2)s
k1
1 sk2

2 ,

of A. In this case, since μ �= ν, by Theorem 4.3 of [1] the Plancherel measure is
constant on representations with cuspidal support in Ω, and is given by

μ(s1, s2) =

(
q + 1

q

)2

qf(μ
−1ν),

(recall Notation 2.4, f(μ−1ν) denotes the conductor of μ−1ν). Henceforth, for any
character λ of o×, f(λ) will denote the conductor of λ. Write Θμ,ν,s1,s2 for the

character of πμ,ν,s1,s2 and Θ̌μ,ν,s1,s2(g) for Θμ,ν,s1,s2(g
−1). If ϕ ∈ C∞

c (G), following
the inversion formula cited around equation (4.1),

zμ,ν,a,b(ϕ) = c(G|A)−2γ(G|A)−1 · 1
1
·
(

1

2πi

)2 ∫
|s1|=|s2|=1

zμ,ν,a,b (πμ,ν,s1,s2)

· μG|A

(
μs

val(·)
1 , νs

val(·)
2

)
d
(
μs

val(·)
1 , νs

val(·)
2

)
· Θ̌μ,ν,s1,s2(ϕ)

ds1
s1

ds2
s2

=
q

(q + 1)

(
1

2πi

)2 ∫
|s1|=|s2|=1

sa1s
b
2 ·

(
q + 1

q

)2

qf(μ
−1ν)

· 1 ·
(∫

G

ϕ(g)Θ̌μ,ν,s1,s2(g)dg

)
ds1
s1

ds2
s2

=

∫
G

ϕ(g)

(
q + 1

q
qf(μ

−1ν)

(
1

2πi

)2 ∫
|s1|=|s2|=1

sa1s
b
2Θ̌μ,ν,s1,s2(g)

ds1
s1

ds2
s2

)
dg,

by Fubini’s theorem. Therefore, for g ∈ G,

fμ,ν,a,b(g) = (q + 1)qf(μ
−1ν)−1

(
1

2πi

)2 ∫
|s1|=|s2|=1

sa1s
b
2Θ̌μ,ν,s1,s2(g)

ds1
s1

ds2
s2

.

In particular, fμ,ν,a,b is supported on regular elements in GA, the set of elements of
G conjugate to some element of A. For g conjugate to (�k1o1, �

k2o2), by Theorem
3 (ii) of [10],

Θ̌μ,ν,s1,s2(g) =
s−k1
1 μ(o−1

1 )s−k2
2 ν(o−1

1 ) + s−k1
2 ν(o−1

1 )s−k2
1 μ(o−1

2 )

|�k1o1 −�k2o2|
· q−(k1+k2)/2.

Therefore,

fμ,ν,a,b(g) =
(q + 1)qf(μ

−1ν)−1−(k1+k2)/2

(2πi)2

∫
|s1|=|s2|=1

sa−k1
1 sb−k2

2 μ(o−1
1 )ν(o−1

2 ) + sa−k2
1 sb−k1

2 μ(o−1
2 )ν(o−1

1 )

|�k1o1 −�k2o2|
ds1
s1

ds2
s2

.
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This is zero unless (k1, k2) is either (a, b) or (b, a) (these two are “Weyl-conjugate”
cases). From now we assume this to be the case, so let g be conjugate to some
(�ao1, �

bo2), so k1 = a, k2 = b. In this case, k1 �= k2 as a + b = r is odd, so that
|�k1o1 −�k2o2| = q−min(k1,k2) = q−b. Therefore,

(5.1) fμ,ν,a,b(g) = (q+1)qf(μ
−1ν)−1−(a−b)/2μ(o−1

1 )ν(o−1
2 ) = cμ,ν,a,b ·μ(o−1

1 )ν(o−1
2 ),

where for convenience we have written cμ,ν,a,b for (q + 1)qf(μ
−1ν)−1−(a−b)/2.

We once again take B to be a lattice in M2(F ) satisfying Hypothesis 2.1, and
wish to find, for g ∈ G, ∫

B

fμ,ν,a,b(gx) dx.

Hypothesis 2.1 (i) gives that, for g conjugate to some (�ao1, �
bo2) we have

(5.2) b+mB ≥ kB,g.

Lemma 5.1. For all g ∈ G,∫
B

fμ,ν,a,b(gx) dx =

{
fμ,ν,a,b(g), if f(μ) ≤ mB and f(μ−1ν) ≤ kB,g − b, and

0, otherwise.

Proof. Suppose g ∈ G lies in the support of fμ,ν,a,b, i.e., val tr g = b and val det g =
r. Note that if f(μ−1ν) ≤ kB,g − b, it means kB,g > b (as we are assuming
μ �= ν), so for all x ∈ B we have, apart from val det gx = r, also that tr gx = b
and kB,gx = kB,g. This means that we may only need to prove the assertion of the
lemma for those g ∈ G such that val tr g = b and val det g = r.

Moreover, in the case where mB < f(μ) or kB,g < f(μ−1ν) + b, since kB,g is
invariant under right multiplication by 1 + B, we may if necessary multiply B by
�m for somem ∈ N (this increases bothmB and kB,g bym and respects Hypothesis
2.1), to ensure that mB ≥ f(μ)− 1 and kB,g ≥ f(μ−1ν) + b− 1, with at least one
of these two being an equality. Recall that for g ∈ G conjugate to an element of
the form t = (�ao1, �

bo2) with o1, o2 ∈ o× we have

fμ,ν,a,b(g) = cμ,ν,a,b · μ(o−1
1 )ν(o−1

2 ).

Fix such a g for the time being, and pick (λ1, λ2) ∈ A conjugate to g, with val(λ1) =
a and val(λ2) = b. Note that for all x ∈ B, fμ,ν,a,b(gx) equals 0 unless gx is conjugate
to some (λ1o1, λ2o2) with o1, o2 ∈ o×, in which case

(5.3) fμ,ν,a,b(gx) = fμ,ν,a,b(g) · μ−1(o1o2) · (ν−1μ)(o2).

Our key step will be to prove that if gx, for some x ∈ B, is conjugate to an
element of the form (λ1o1, λ2o2) with o1, o2 ∈ o×, then

(5.4) (ν−1μ)(o2) = (ν−1μ)

(
1 +

tr gx

λ2

)
.

To prove this, suppose o1, o2 ∈ o× and x ∈ B are such that (λ1o1, λ2o2) is conjugate
to gx. Then λ1o1 + λ2o2 ∈ tr g + pkB,g , or,

(5.5) λ1(o1 − 1) + λ2(o2 − 1) ∈ p
kB,g .

Furthermore, o1o2 = det(1 + x) ∈ 1 + pmB , so the observation

val(o1 − 1) = val(o1o2 − o2) = val((o1o2 − 1)− (o2 − 1))

shows that either both val(o1 − 1), val(o2 − 1) ≥ mB or val(o1 − 1) = val(o2 −
1). We claim that in either case val(o1 − 1) ≥ f(μ−1ν) − 1. In the former case,
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val(o1 − 1), val(o2 − 1) ≥ mB, which by equation (5.2), is greater than or equal
to kB,g − b, which by our assumption is greater than or equal to f(μ−1ν) − 1.
In the latter case, since val(λ1) = a �= b = val(λ2), we see from equation (5.5)
that val(o2 − 1) + b ≥ kB,g ≥ b + f(μ−1ν) − 1, so val(o2 − 1) ≥ f(μ−1ν) − 1, so
val(o1 − 1) = val(o2 − 1) ≥ f(μ−1ν)− 1 as well.

Therefore, in either case we have(
o−1
2 ·

(
1 + tr

gx

λ2

))
− 1 = o−1

2

(
λ1(o1 − 1)

λ2

)
∈ pf(μ

−1ν)−1+a−b ⊂ pf(μ
−1ν),

as a > b. This gives equation (5.4).
Using (ii) of Hypothesis 2.1 and our assumption that mB ≥ f(μ)− 1, we get

(5.6) ∀x ∈ B, μ(det 1 + x) = μ(1 + trx+ detx) = μ(1 + trx).

That mB ≥ f(μ)− 1, also shows that x �→ μ(1 + trx) = μ(det 1 + x) is a character
on B.

Since we have assumed mB ≥ f(μ) − 1 and kB,g ≥ f(μ−1ν) + b − 1, it is
enough to consider four cases: (i) mB > f(μ) − 1 and kB,g > f(μ−1ν) + b − 1;
(ii) mB = f(μ) − 1; (iii) mB > f(μ) − 1 and kB,g = f(μ−1ν) + b − 1 > b; and
(iv) mB > f(μ)− 1 and kB,g = f(μ−1ν) + b − 1 = b. Here are these cases treated
one by one:

(i) Suppose mB > f(μ)− 1 and kB,g > f(μ−1ν) + b− 1. Then using equation
(5.6) and that mB ≥ f(μ), μ(det 1 + x) = 1 for all x ∈ B. Further, for all
x ∈ B, val(tr gx) ≥ kB,g ≥ b + f(μ−1ν) > b, so gx is indeed conjugate to
an element of the form (λ1o1, λ2o2) with o1, o2 ∈ o×. This with equation
(5.4) and val(tr gx) ≥ b + f(μ−1ν) gives that fμ,ν,a,b(gx) = fμ,ν,a,b(g) for
all x ∈ B. Therefore,∫

B

fμ,ν,a,b(gx) dx = fμ,ν,a,b(g).

(ii) Suppose mB = f(μ) − 1. Let us first see why it is enough to prove that

there exists x0 ∈ B such that trx0 ∈ pmB \pmB+1 and trλ−1
2 gx0 ∈ pf(μ

−1ν).

First, this would imply tr gx0 ∈ pb+f(μ−1ν) ⊂ pb+1 so that for all x ∈ B,
gx would be conjugate to some (λ1o1, λ2o2) with o1, o2 ∈ o× if and only if
gx+x0

satisfied the same property. This together with equation (5.4) would
give that, for all x ∈ B,

fμ,ν,a,b(gx+x0
) = μ−1(det 1 + x0)fμ,ν,a,b(gx).

Then, changing variables x �→ x+ x0, we would get that∫
B

f(gx) dx = μ−1(det 1 + x0)

∫
B

f(gx) dx = μ−1(1 + trx0)

∫
B

f(gx) dx

by equation (5.6) and since we may assume μ(1 + trx0) �= 1 (because
val(trx0) ∈ pmB \ pmB+1 = pf(μ)−1 \ pf(μ)), this integral would vanish.

Thus, it is enough to prove that there exists x0 ∈ B with trx0 ∈ pmB \
pmB+1 and trλ−1

2 gx0 ∈ pf(μ
−1ν). Since x �→ trλ−1

2 gx is a map from B onto
pkB,g−b, this is clear if kB,g − b ≥ f(μ−1ν), so for the rest of this paragraph
we assume kB,g − b < f(μ−1ν) so that f(μ−1ν) = kB,g − b + 1. To find
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the required x0, it is enough to prove that the homomorphism from B to(
pmB/pmB+1

)
×
(
pmB/pmB+1

)
induced by

x �→ (trx, tr�mB+b−kB,gλ−1
2 gx)

is surjective. If this were not the case, there would exist c1 ∈ o× such that,
for all x ∈ B,

tr
(
(c1�

mB+b−kB,gλ−1
2 g − I2)x

)
∈ p

mB+1,

where I2 denotes the identity element in G. This means that

c1�
mB+b−kB,gλ−1

2 g − I2 ∈ �mBB⊥.

So, for some c ∈ o×,

g ∈ �kB,g−mBc
(
I2 +�mBB⊥) .

This together with (iii) of Hypothesis 2.1 gives val det g = 2(kB,g − mB)
which is a contradiction as val det g = r is odd.

(iii) Suppose f(μ) ≤ mB and f(μ−1ν) = kB,g−b+1 > 1. First, since f(μ) ≤ mB

equation (5.6) gives that x �→ μ(det 1 + x) is trivial on B. Further, since
kB,g > b, we have that for all x ∈ B, val tr gx = b and val det gx = a + b.
Thus, for any such x we have from equations (5.3) and (5.4):

fμ,ν,a,b(gx) = fμ,ν,a,b(g) · (μ−1)(det 1 + x) · (ν−1μ)

(
1 +

tr gx

λ2

)

= fμ,ν,a,b(g) · (ν−1μ)

(
1 +

tr gx

λ2

)
.

Now for x ∈ B, the value of (ν−1μ)
(
1 + λ−1

2 tr gx
)
depends only on the

image of 1+λ−1
2 tr gx in (1+pf(μ

−1ν)−1)/1+pf(μ
−1ν) ∼= pf(μ

−1ν)−1/pf(μ
−1ν).

This together with x �→ λ−1
2 tr gx being a surjection from B onto pkB,g−b =

pf(μ
−1ν)−1 gives that x �→ (ν−1μ)

(
1 + λ−1

2 tr gx
)
is a nontrivial character,

call it Λ, on B. Thus,∫
B

fμ,ν,a,b(gx) dx = fμ,ν,a,b(g) ·
∫
B

Λ(x) dx = 0.

(iv) Suppose f(μ) ≤ mB, and f(μ−1ν) = kB,g − b + 1 = 1. We are assuming
f(μ) ≤ mB, x �→ μ(det 1 + x) is trivial on B exactly as in the previous
case. For all x ∈ B, we still have val det gx = a + b, but we only have in
general that val tr gx ∈ pkB,g = pb, and thus val(tr gx) = b if and only if
tr gx �≡ − tr g mod pb ≡ −λ2 mod pb (here we are using that a > b). This
last condition is true if and only if 1 + λ−1

2 tr gx �∈ p. Thus we have

fμ,ν,a,b(gx) =

⎧⎨
⎩fμ,ν,a,b(g) · (ν−1μ)

(
1 +

tr gx

λ2

)
, if 1 +

tr gx

λ2
�∈ p, and

0, otherwise.

Note that for each x ∈ B, (ν−1μ)
(
1 + λ−1

2 tr gx
)
depends only on the image

of 1 + λ−1
2 (tr gx) in o/p. But given α ∈ o/p, the measure of the set of all x

in B such that 1 + λ−1
2 tr gx has image α in o/p is independent of α, since

the map x �→ λ−1
2 tr gx is a homomorphism from B onto o. Since ν−1μ
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induces a nontrivial character ν−1μ of F×
q (we are assuming μ �= ν), we

conclude that∫
B

fμ,ν,a,b(gx) dx = (constant) ·
∑

c∈F
×
q )

ν−1μ(c) = 0. �

By Lemma 5.1, for fixed a, b with a+ b = r and a > b, and for g ∈ G conjugate
to some (�ao1, �

bo2), we have

f
(>0,b)
B (g) =

∑
μ �=ν

f(μ)≤mB

f(μ−1ν)≤kB,g−b

μaνb=1

(q + 1)qf(μ
−1ν)−1−(a−b)/2μ(o−1

1 )ν(o−1
2 ).

For n ∈ N and g ∈ G, set

f
(n,b)
B (g) =

∑
f(μ)≤mB

f(μ−1ν)=n

μaνb=1

(fμ,ν,a,b ∗ chKB
)(g),

which by equation (5.1) and Lemma 5.1 equals∑
f(μ)≤mB

f(μ−1ν)=n≤kB,g−b

μaνb=1

(q + 1)qf(μ
−1ν)−1−(a−b)/2μ(o−1

1 )ν(o−1
2 )

if g is conjugate to some (�ao1, �
bo2), and 0 otherwise. Moreover, we have

(5.7) f
(>0)
B (g) =

∑
a+b=r
b<a

∑
n∈N

n≤kB,g−b

f
(n,b)
B (g).

In what follows, we will use that, since r < p, the equation μaνb = 1 and the
resulting equations (μ−1ν)a = νr and (μ−1ν)b = μ−r give that, if f(μ−1ν) ≥ 1,
then f(μ) ≤ f(μ−1ν) and f(ν) ≤ f(μ−1ν).

It is clear that f
(>0)
B (g) = 0 if g is not conjugate to any (�ao1, �

bo2) with
a+ b = r. Hence, for the rest of this section we assume g to be conjugate to some

fixed (�ao1, �
bo2), and proceed to compute f

(>0)
B (g) = f

(>0,b)
B (g). By equation

(5.2), we have for kB,g − b ≥ n ∈ N,

f
(n,b)
B (g) = (q + 1)qn−1−(a−b)/2

∑
f(μ−1ν)=n≤kB,g−b

μaνb=1

μ(o−1
1 )ν(o−1

2 )

= (q + 1)qn−1−(a−b)/2(f̃
(n)
ab (g)− f̃

(n−1)
ab (g)),(5.8)

where for n ∈ N ∪ {0},

f̃
(n)
ab (g) =

∑
0≤f(μ−1ν)≤n≤kB,g−b

μaνb=1

μ(o−1
1 )ν(o−1

2 ).
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For n ∈ N ∪ {0}, let X
(n)
ab = {(μ, ν) | μ, ν ∈ Homcts(o

×,C×), 0 ≤ f(μ−1ν) ≤
n, μaνb = 1}. Then clearly f̃

(n)
ab (g) = 0 if n > kB,g − b, and if n ≤ kB,g − b we have

(5.9) f̃
(n)
ab (a, b) =

{
0, if ∃ (μ, ν) ∈ X

(n)
ab with μ(o−1

1 )ν(o−1
2 ) �= 1,

#X
(n)
ab , otherwise.

Using that o×/1+pn is, as an abstract group, the direct product of a cyclic group
of order (q − 1) and a group of order qn−1, and also that for n ≥ 1, f(μ−1ν) ≤
n ⇐⇒ f(μ) ≤ n and f(ν) ≤ n we have

(5.10) #X
(n)
ab =

{
(q − 1, r), if n = 0, and

(q − 1)(a, b, q − 1) · qn−1, if n ≥ 1.

Further, we define lab(g) to be the largest n ∈ N ∪ {0}, if it exists, such that

μ(o1)ν(o2) = 1 for all μ, ν ∈ X
(n)
ab . If no such n exists we define lab(g) = −1. As we

shall shortly see, lab(g) is going to figure into our formulas, so let us describe lab(g)
explicitly in terms of o1 and o2. Fix a surjection o× → F×

q with kernel 1 + p, and

for any o ∈ o× let ȯ denote its image under the surjection. If ȯ1ȯ2 is not a power of
r, then lab(g) = −1. Else if (ȯ1, ȯ2) is not of the form (ȯa, ȯb) for any ȯ ∈ F×

q , then

lab(g) = 0 : since o×/1 + p ∼= F×
q is cyclic, this is precisely the condition to ensure

μ(o1)ν(o2) �= 1 for at least one (μ, ν) ∈ X
(1)
ab . Else,

lab(g) = val

⎛
⎝(

det Syma+b g

(det g)b

)q−1

− 1

⎞
⎠ .

This easily follows from the fact that for any n ∈ N, o×/1 + pn is a direct product
of a cyclic group of order q − 1 and a p-group.

Thus, using equations (5.8), (5.9) and (5.10), we get that f
(n,b)
B (g), for g conju-

gate to (�ao1, �
bo2) and n ≥ 1, equals:

(i) 0, if n > min(lab(g) + 1, kB,g − b);

(ii) (q + 1)q−(a−b)/2 ((q − 1)(a, b, q − 1)− (q − 1, r)), if 1 = n ≤ min(kB,g −
b, lab(g));

(iii) −(q + 1)q−(a−b)/2(q − 1, r), if 1 = n = lab(g) + 1 ≤ kB,g − b;

(iv) (q − 1)(q2 − 1)(a, b, q − 1)q2n−3−(a−b)/2, if 2 ≤ n ≤ min(kB,g − b, lab(g));
and

(v) −(q2 − 1)(a, b, q − 1)q2n−3−(a−b)/2, if 2 ≤ n = lab(g) + 1 ≤ kB,g − b.

Therefore by equation (5.7) (recall we have fixed our a and b and g) : f
(>0)
B (g) =

f
(>0,b)
B (g) can be given by:

(i) If kB,g − b ≤ 0 or lab(g) = −1, then f
(>0)
B (g) = 0.

(ii) If lab(g) = 0 and kB,g − b > 0, then f
(>0)
B (g) = −(q + 1)q−(a−b)/2(q − 1, r).

(iii) If 0 < kB,g − b ≤ lab(g), then

f
(>0)
B (g) = (q + 1)q−(a−b)/2((q − 1)(a, b, q − 1)− (q − 1, r))

+

kB,g−b∑
n=2

(q − 1)(a, b, q − 1)
(
q2n−1−(a−b)/2 − q2n−3−(a−b)/2

)
= q−(a−b)/2

(
−(q + 1)(q − 1, r) + (q − 1)(a, b, q − 1)(1 + q2kB,g−2b−1)

)
.
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(iv) If 0 < lab(g) < kB,g − b, then

f
(>0)
B (g) = (q + 1)q−(a−b)/2((q − 1)(a, b, q − 1)− (q − 1, r))

+

lab(g)∑
n=2

(q − 1)(a, b, q − 1)
(
q2n−1−(a−b)/2 − q2n−3−(a−b)/2

)
− (q2 − 1)(a, b, q − 1)q2lab(g)−1−(a−b)/2

= q−(a−b)/2
(
−(q + 1)(q − 1, r) + (q − 1)(a, b, q − 1)(1− q2lab(g))

)
.

Note that the formulas for (ii) and (iv) are so compatible as to admit filing them
under the one case of 0 ≤ lab(g) < kB,g.

6. Putting things together

Now we are in a position to compute the the function fB ∈ C∞
c (G) that real-

izes zr ∗ chKB
, the convolution product of our distribution zr with the measure-

normalized characteristic function of an open compact subgroup of G of the form
1 + B, where B is a lattice in M2(F ) satisfying Hypothesis 2.1.

Theorem 6.1. Let g ∈ G. Set b = val(tr g) and a = r − b. Then fB(g) = 0 if
val(det g) �= r. In the case val(det g) = r we have the following results:

(i) If b < 0 or kB,g ≤ 0, then fB(g) = 0.
(ii) If min(b, �r/2�) ≥ kB,g ≥ 0, then

fB(g) = −χr(g)(q − 1, r)
q2kB,g − 1

qr/2
.

(iii) If min(b, kB,g) ≥ �r/2�, then

fB(g) = −χr(g)(q − 1, r)
qr+1 − 1

qr/2
.

(iv) If 0 ≤ b < min(kB,g, �r/2�) and lab(g) = 0, then

fB(g) =
−(q + 1)(q − 1, r) + χr(g)(q − 1, r)(qb+1 + q−b)

q(r/2)−b
.

(v) If 0 ≤ b < min(kB,g, �r/2�) and lab(g) ≥ kB,g − b, then fB(g) equals

−(q + 1)(q − 1, r) + (q − 1)(a, b, q − 1)(q2kB,g−2b−1 + 1) + (q − 1, r)(qb+1 + q−b)

q(r/2)−b
.

(vi) If 0 ≤ b < min(kB,g, �r/2�) and 0 ≤ lab(g) < kB,g − b, then fB(g) equals

−(q + 1)(q − 1, r) + (q − 1)(a, b, q − 1)(1− q2lab(g)) + (q − 1, r)(qb+1 + q−b)

q(r/2)−b
.

(vii) If 0 ≤ b ≤ min(kB,g, � r
2�) and lab(g) = −1, then

fB(g) =
χr(g)(q − 1, r)(qb+1 + q−b)

q(r/2)−b
= 0.

Proof. This follows, by using fB = f
(0)
B +f

(>0)
B , the value of f

(0)
B from equation (4.9)

and the computation of f
(>0)
B above. In (v) and (vi) we see that if lab(g) > 0, then

automatically χr(g) = 1, something readily verified. The vanishing in (vii) follows
from the explicit description of lab(g) given before. �
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Remark 6.2. Scholze in [9] had considered the case r = 1, and normalized the Haar
measure on G giving GL2(o) volume q − 1 instead of 1. Furthermore, the exact
distribution he considered was q1/2 times the one we considered. Keeping this in
mind, it is straightforward to check that upon writing r = 1 our Theorem 6.1 agrees
with his computations.
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