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THE 2-BLOCKS OF DEFECT 4

BURKHARD KÜLSHAMMER AND BENJAMIN SAMBALE

Abstract. We show that the major counting conjectures of modular represen-
tation theory are satisfied for 2-blocks of defect at most 4 except one possible
case. In particular, we determine the invariants of such blocks.

1. Introduction

LetB be a 2-block of a finite groupG with defect groupD. Then there are several
open conjectures regarding the number k(B) of irreducible ordinary characters of
B and the number l(B) of irreducible Brauer characters of B. The aim of this
paper is to show that most of these conjectures are fulfilled if D is small. More
precisely, we will assume that B has defect at most 4, i.e., D has order at most 16.
We denote the number of irreducible ordinary characters of height i in B by ki(B)
for i ≥ 0.

An essential tool is the following recent theorem by Kessar and Malle [17].

Theorem 1.1 (Kessar, Malle, 2011). For every p-block B of a finite group with
abelian defect group we have k(B) = k0(B).

For |D| ≤ 8 the block invariants and conjectures for B are known by the work of
Brauer [5], Olsson [23] and Kessar, Koshitani and Linckelmann [16]. So we assume
that D has order 16.

2. The elementary abelian case

Let I(B) be the inertial quotient of B and set e(B) := |I(B)|.
Proposition 2.1. Let B be a block of a finite group G with elementary abelian
defect group D of order 16. Then one of the following holds:

(i) B is nilpotent. Then e(B) = l(B) = 1 and k(B) = k0(B) = 16.
(ii) e(B) = l(B) = 3, CD(I(B)) = 1 and k(B) = k0(B) = 8.
(iii) e(B) = l(B) = 3, |CD(I(B))| = 4 and k(B) = k0(B) = 16.
(iv) e(B) = l(B) = 5 and k(B) = k0(B) = 8.
(v) e(B) = l(B) = 7 and k(B) = k0(B) = 16.
(vi) e(B) = l(B) = 9 and k(B) = k0(B) = 16.
(vii) e(B) = 9, l(B) = 1 and k(B) = k0(B) = 8.
(viii) e(B) = l(B) = 15 and k(B) = k0(B) = 16.
(ix) e(B) = 15, l(B) = 7 and k(B) = k0(B) = 8.
(x) e(B) = 21, l(B) = 5 and k(B) = k0(B) = 16.

Moreover, all cases except possibly case (ix) actually occur.
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Proof. First of all, by Theorem 1.1 we have k(B) = k0(B). The inertial quotient
I(B) is a subgroup of Aut(D) ∼= GL(4, 2) of odd order. It follows that e(B) ∈
{1, 3, 5, 7, 9, 15, 21} (this can be shown with GAP [13]). If e(B) �= 21, the inertial
quotient is necessarily abelian. Then by Corollary 1.2(ii) in [29] there is a nontrivial
subsection (u, b) such that l(b) = 1. Hence, Corollary 2 in [6] implies that |D| = 16
is a sum of k(B) odd squares. This shows k(B) ∈ {8, 16} for these cases. In order
to determine l(B) we calculate the numbers l(b) for all nontrivial subsections (u, b).
Here it suffices to consider a set of representatives of the orbits of D under I(B),
since B is a controlled block. If e(B) = 1, the block is nilpotent and the result is
clear. We discuss the remaining cases separately:

Case 1 (e(B) = 3). Here by results of Usami and Puig (see [28, 40]) there is a
perfect isometry between B and its Brauer correspondent in NG(D). According to
two different actions of I(B) on D, we get k(B) = 8 if CD(I(B)) = 1 or k(B) = 16
if |CD(I(B))| = 4. In both cases we have l(B) = 3.

Case 2 (e(B) = 5). Then there are four subsections (1, B), (u1, b1), (u2, b2) and
(u3, b3) with l(b1) = l(b2) = l(b3) = 1 up to conjugation. In [37] it was shown that
k(B) = 16 is impossible. Hence, k(B) = 8 and l(B) = 5.

Case 3 (e(B) = 7). There are again four subsections (1, B), (u1, b1), (u2, b2) and
(u3, b3) up to conjugation. But in this case l(b1) = l(b2) = 1 and l(b3) = 7 by [16].
Thus, k(B) = 16 and l(B) = 7.

Case 4 (e(B) = 9). There are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3)
such that l(b1) = 1 and l(b2) = l(b3) = 3 up to conjugation. This gives the
possibilities (vi) and (vii).

Case 5 (e(B) = 15). Here I(B) acts regularly on D \{1}. Thus, there are only two
subsections (1, B) and (u, b) such that l(b) = 1. This gives the possibilities (viii)
and (ix).

Case 6 (e(B) = 21). Here I(B) is nonabelian. Hence, we get four subsections
(1, B), (u1, b1), (u2, b2) and (u3, b3) up to conjugation. We have l(b1) = l(b2) = 3
and l(b3) = 5 by [16]. Since I(B) has a fixed point on D, it follows that l(B) = 5
and k(B) = 16 by Theorem 1 in [45].

For all cases except (vii) and (ix) examples are given by the principal block ofD�

I(B). In case (vii) we can take a nonprincipal block of the group
SmallGroup(432,526) ∼= D � E where E is the extraspecial group of order 27
and exponent 3 (see “small groups library”). �

We will see later that case (ix) would contradict Alperin’s Weight Conjecture.
Now we investigate the differences between the cases (vi) and (vii).

Lemma 2.2. Let B be a block of a finite group G with elementary abelian defect
group D of order 16. If e(B) = l(B) = 9, then the elementary divisors of the Cartan
matrix of B are 1, 1, 1, 1, 4, 4, 4, 4, 16. Moreover, the two I(B)-stable subgroups of
D of order 4 are lower defect groups of B. Both occur with 1-multiplicity 2.

Proof. Let C be the Cartan matrix of B. As in the proof of Proposition 2.1 there
are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) such that l(b1) = 1 and
l(b2) = l(b3) = 3 up to conjugation. In order to determine C up to basic sets, we
need to investigate the generalized decomposition numbers dui

rs for i = 1, 2, 3. The
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block b2 dominates a block b2 of CG(u2)/〈u2〉 with defect group D/〈u2〉 and inertial
index 3. Thus, as in the proof of Theorem 3 in [36] the Cartan matrix of b2 has the
form ⎛

⎝
8 4 4
4 8 4
4 4 8

⎞
⎠

up to basic sets. Since k(B) = 16, we may assume that the numbers du2
rs take the

form ⎛
⎝

1 1 1 1 1 1 1 1 . . . . . . . .
1 1 1 1 . . . . 1 1 1 1 . . . .
1 1 1 1 . . . . . . . . 1 1 1 1

⎞
⎠

T

.

For the column of decomposition numbers du1
rs we have essentially the following

possibilities:

(A) : (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1)T,

(B) : (1, 1, 1,−1, 1,−1,−1,−1, 1,−1,−1,−1, 1,−1,−1,−1)T,

(C) : (1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1)T.

Now we use a GAP program to enumerate the possible decomposition numbers
du3
rs . After that the ordinary decomposition matrix M can be calculated as the

orthogonal space. Then C = MTM up to basic sets. It turns out that in some
cases C has 2 as an elementary divisor. Using the notion of lower defect groups
as described in [24] we show that these cases cannot occur. If 2 is an elementary
divisor of C, then there exists a lower defect group Q ≤ D of order 2. With the

notation of [24] we have m
(1)
B (Q) > 0. By Theorem 7.2 in [24] there is a block bQ

of NG(Q) = CG(Q) such that bGQ = B and m
(1)
bQ

(Q) > 0. In particular, the Cartan

matrix of bQ has 2 as elementary divisor. Hence, bQ is conjugate to b2 or b3. But
we have seen above that all elementary divisors of the Cartan matrix of b2 (and
also b3) must be divisible by 4. This contradiction shows that 2 does not occur as
elementary divisor of C. After excluding these cases the GAP program reveals the
following two possibilities for the elementary divisors of C: 1, 1, 1, 1, 4, 4, 4, 4, 16 or
1, 1, 4, 4, 4, 4, 4, 4, 16.

Now we have to look at the lower defect group multiplicities more carefully. The
calculation above and (7G) in [4] imply

4 ≤
∑
R∈R

m
(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of G
of order 4. After combining this with the formula (2S) of [7] we get

4 ≤
∑

(R,bR)∈R′

m
(1)
B (R, bR)

whereR′ is a set of representatives for the G-conjugacy classes of B-subpairs (R, bR)
such that R has order 4. Let bD be a Brauer correspondent of B in CG(D). Then,
after changing the representatives if necessary we may assume (R, bR) ≤ (D, bD)

for (R, bR) ∈ R′. Then it is well known that bR = b
CG(R)
D is uniquely determined
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by R. Since the fusion of these subpairs is controlled by NG(D, bD), we get

4 ≤
∑

R∈R′′

m
(1)
B (R, bR)

where R′′ is a set of representatives for the I(B)-conjugacy classes of subgroups of
D of order 4.

Now let Q ≤ D of order 4 such that m
(1)
B (Q, bQ) > 0. Then by (2Q) in [7] we

have m
(1)
BQ

(Q) > 0 where BQ := b
NG(Q,bQ)
Q . If Q is not fixed under I(B), then we

would have the contradiction e(BQ) = l(BQ) = 1. Thus, we have shown that Q is
stable under I(B). Hence,

(1) 4 ≤ m
(1)
B (Q, bQ) +m

(1)
B (P, bP )

where P �= Q is the other I(B)-stable subgroup of D of order 4. Since 16 is always

an elementary divisor of C, we have m
(1)
BQ

(D) = 1. Observe that bQ has defect group

D and inertial index 3, so that l(bQ) = 3 by Proposition 2.1. Now Theorem 5.11 in
[24] and the remark following it imply

3 = l(bQ) ≥ m
(1)
BQ

(Q) +m
(1)
BQ

(D).

(Notice that in Theorem 5.11, loc. cit., it should read B ∈ Bl(G) instead of B ∈
Bl(Q).) Thus, m

(1)
BQ

(Q) ≤ 2 and similarly m
(1)
BP

(P ) ≤ 2. Now equation (1) yields

m
(1)
B (Q, bQ) = m

(1)
B (P, bP ) = 2. In particular, 4 occurs as elementary divisor of C

with multiplicity 4. It is easy to see that we also have m
(1)
B (Q) = m

(1)
B (P ) = 2

which proves the last claim. �

Proposition 2.3. Let B be a block of a finite group G with elementary abelian
defect group D of order 16. If e(B) = 9, then Alperin’s Weight Conjecture holds
for B.

Proof. Let bD be a Brauer correspondent of B in CG(D), and let BD be the Brauer
correspondent of B in NG(D, bD). Then it suffices to show that l(B) = l(BD). By
Proposition 2.1 we have to consider two cases l(B) ∈ {1, 9}. As in Lemma 2.2 we

set bR := b
CG(R)
D for R ≤ D.

We start with the assumption l(B) = 9. Then by Lemma 2.2 there is an I(B)-

stable subgroup Q ≤ D of order 4 such that m
(1)
BQ

(Q) = m
(1)
B (Q, bQ) > 0 where

BQ := b
NG(Q,bQ)
Q . In particular, l(BQ) = 9. Let P ≤ D be the other I(B)-stable

subgroup of order 4. Moreover, let b′P := b
NG(Q,bQ)∩CG(P )
D such that (P, b′P ) is a

BQ-subpair. Then by the same argument we get

m
(1)
β (P ) = m

(1)
BQ

(P, b′P ) > 0

where β := (b′P )
NG(Q,bQ)∩NG(P,b′P ) is a block with defect group D and l(β) = 9.

Now D = QP implies

NG(D, bD) ≤ NG(Q, bQ) ∩NG(P, b
′
P ) ≤ NG(D).

Since B
NG(Q,bQ)∩NG(P,b′P )
D = β, it follows that l(BD) = 9 as desired.

Now let us consider the case l(B) = 1. Here we can just follow the same lines

except that we have m
(1)
BQ

(Q) = 0 and m
(1)
β (P ) = 0. �



230 BURKHARD KÜLSHAMMER AND BENJAMIN SAMBALE

We want to point out that Usami showed in [42] that in case 2 �= p �= 7 there
is a perfect isometry between a p-block with abelian defect group D and inertial
index 9 and its Brauer correspondent in NG(D).

3. The ordinary weight conjecture

For most 2-blocks of defect 4, Robinson’s Ordinary Weight Conjecture (OWC)
[30] is known to hold. In this section we handle the remaining cases.

Proposition 3.1. Let B be a block of a finite group G with minimal nonabelian
defect group

D := 〈x, y | x2r = y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉
of order 2r+2 ≥ 16. Then the Ordinary Weight Conjecture holds for B.

Proof. The block invariants of B were determined and several conjectures were
verified in [35]. In order to prove the OWC we use the version in Conjecture 6.5 in
[15]. Let F be the fusion system of B. We may assume that F is nonnilpotent. Let
z := [x, y]. Then it was shown in [35] thatQ := 〈x2, y, z〉 ∼= C2r−1×C2

2 andD are the
only F-centric and F-radical subgroups ofD. Moreover, OutF (Q) = AutF (Q) ∼= S3

and OutF (D) = 1. Hence, it follows easily that w(D, d) = kd(D) = kd(B) for all
d ∈ N where kd(D) is the number of characters of defect d in D. Thus, it suffices to
show w(Q, d) = 0 for all d ∈ N by Theorem 3.6 in [35]. Since Q is abelian, we have
w(Q, d) = 0 unless d = r+1. Thus, let d = r+1. Up to conjugation NQ consists of
the trivial chain σ : 1 and the chain τ : 1 < C, where C ≤ OutF (Q) has order 2. We
consider the chain σ first. Here I(σ) = OutF (Q) ∼= S3 acts faithfully on Ω(Q) ∼= C3

2

and thus fixes a four-group. Hence, the characters in Irr(Q) split in 2r−1 orbits of
length 3 and 2r−1 orbits of length 1 under I(σ). For a character χ ∈ Irr(D) lying
in an orbit of length 3 we have I(σ, χ) ∼= C2 and thus w(Q, σ, χ) = 0. For the 2r−1

stable characters χ ∈ Irr(D) we get w(Q, σ, χ) = 1, since I(σ, χ) = OutF (Q) has
precisely one block of defect 0.

Now consider the chain τ . Here I(τ ) = C and the characters in Irr(Q) split
in 2r−1 orbits of length 2 and 2r orbits of length 1 under I(τ ). For a character
χ ∈ Irr(D) in an orbit of length 2 we have I(τ, χ) = 1 and thus w(Q, τ, χ) = 1. For
the 2r stable characters χ ∈ Irr(D) we get I(τ, χ) = I(τ ) = C and w(Q, τ, χ) = 0.

Taking both chains together, we derive

w(Q, d) = (−1)|σ|+12r−1 + (−1)|τ |+12r−1 = 2r−1 − 2r−1 = 0.

This proves the OWC. �
Now we consider the OWC for blocks with abelian defect groups D of order

2d. Here of course D is the only F-centric and F-radical subgroup of D and
I(B) = OutF (D) has odd order. In particular, ND consists only of the trivial
chain. Moreover, w(D, d′) = 0 unless d′ = d. If we assume in addition that I(B) is
cyclic, then

(2) w(D, d) =
∑

χ∈Irr(D)/I(B)

|I(B) ∩ I(χ)|

where I(B) ∩ I(χ) := {α ∈ I(B) : αχ = χ}. In connection with Theorem 1.1, the
OWC predicts k(B) = w(D, d).

Now let us consider the case where D is elementary abelian of order 16. Then
if 21 �= e(B) �= 9, the OWC follows easily from Proposition 2.1 and equation (2)
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except if case (ix) occurs (where OWC does not hold). Now assume e(B) = 21.
Here the number of 2-blocks of defect 0 in I(B) (which is denoted by z(kI(B)) in
[15] where k is an algebraically closed field of characteristic 2) is 5. We have to
insert this number for |I(B)∩I(χ)| in equation (2) if χ is invariant under I(B). Now
the OWC also follows in this case. We will deal with the remaining case e(B) = 9
in the next section.

4. The general case

Theorem 4.1. Let B be a 2-block of a finite group G with defect group D of order
at most 16. Then one of the following holds:

(i) The following conjectures are satisfied for B:
• Alperin’s Weight Conjecture [2],
• Brauer’s k(B)-Conjecture [3],
• Brauer’s Height-Zero Conjecture [3],
• Olsson’s Conjecture [25],
• Alperin-McKay Conjecture [1],
• Robinson’s Ordinary Weight Conjecture [30],
• Gluck’s Conjecture [14],
• Eaton’s Conjecture [9],
• Eaton-Moretó Conjecture [11],
• Malle-Navarro Conjecture [22].

Moreover, the Gluing Problem [21] for B has a unique solution.
(ii) D ∼= C4

2 , e(B) = 15, k(B) = k0(B) = 8, l(B) = 7 and D /∈ Syl2(G). The
Cartan matrix of B is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 5 5 5 5 5 7
5 6 5 5 5 5 7
5 5 6 5 5 5 7
5 5 5 6 5 5 7
5 5 5 5 6 5 7
5 5 5 5 5 6 7
7 7 7 7 7 7 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

up to basic sets. Alperin’s Weight Conjecture and the Alperin-McKay Conjecture
are not satisfied for B.

Proof. As explained earlier we may assume that |D| = 16. Then the situation splits
in the following possibilities:

(a) D is metacyclic,
(b) D is minimal nonabelian,
(c) D is abelian, but nonmetacyclic,
(d) D ∼= D8 × C2,
(e) D ∼= Q8 × C2,
(f) D ∼= D8 ∗ C4.

We start with a remark about Gluck’s Conjecture which only applies to rational
defect groups of nilpotency class at most 2. By Corollary 3.2 and Lemma 2.1 in
[14] we may assume that D is nonabelian of exponent 4 in order to prove Gluck’s
Conjecture. Moreover, Gluck’s Conjecture is satisfied for nilpotent blocks.

In case (a) the block invariants are known by [5], [23], [39]. From this most of the
conjectures follow trivially. Observe here that the nonabelian metacyclic groups of
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exponent 4 provide only nilpotent blocks. In particular, Gluck’s Conjecture follows.
For the OWC we refer to [32] and for the Gluing Problem to [26].

In case (b), D has the form D ∼= 〈x, y | x4 = y2 = [x, y]2 = [x, x, y] = [y, x, y] =
1〉; in particular, D is not rational. Then the result follows from [35] (for the OWC
see Proposition 3.1). Again we skip the elementary details for the three (less-known)
conjectures in Theorem 4.1. The last three cases (d), (e) and (f) were handled in
[31, 32, 38] (for Gluck’s Conjecture see [37]). It remains to consider case (c). Here
it is known that the Gluing Problem has a unique solution (see [21]). We have two
possibilities: D ∼= C4 × C2 × C2 or D is elementary abelian. We may assume that
B is nonnilpotent.

In case D ∼= C4 × C2 × C2, 3 is the only odd prime divisor of |Aut(D)|. Thus,
by Usami and Puig (see [28], [40]) there is a perfect isometry between B and its
Brauer correspondent in NG(D). Then it is easy to see that the conjectures are
true.

Now we consider the elementary abelian case. By Proposition 2.1, Brauer’s
k(B)-Conjecture, Brauer’s Height-Zero Conjecture, Olsson’s Conjecture, Eaton’s
Conjecture, the Eaton-Moretó Conjecture and the Malle-Navarro Conjecture are
satisfied. For abelian defect groups, Alperin’s Weight Conjecture is equivalent to
l(B) = l(b) where b is the Brauer correspondent of B in NG(D). For e(B) = 9 this
was shown in Proposition 2.3. Thus, assume e(B) �= 9. By the main result in [20],
b is Morita equivalent to a twisted group algebra of D� I(B). Since e(B) �= 9, the
corresponding 2-cocycle must be trivial so that b is Morita equivalent to the group
algebra of D � I(B). This gives l(b) = k(I(B)). Now it can be seen that Alperin’s
Weight Conjecture holds unless case (ix) in Proposition 2.1 occurs.

Since k(B) − l(B) = k0(B) − l(B) is determined locally, the Alperin-McKay
Conjecture follows from Alperin’s Weight Conjecture. Now consider the Ordinary
Weight Conjecture. By the remarks in the last section it suffices to look at the
case e(B) = 9. Here again b is Morita equivalent to a twisted group algebra of
D�I(B). If the corresponding 2-cocycle α is trivial we have l(B) = 9 and l(B) = 1
otherwise. Then with the notation in [15] we have z(kαI(B)) = 9 or z(kαI(B)) = 1,
respectively. Now the OWC follows as in the last section.

Now we consider the situation e(B) = 15, k(B) = k0(B) = 8 and l(B) = 7 more
closely. The arguments above imply that Alperin’s Weight Conjecture and thus also
the Alperin-McKay Conjecture are not fulfilled. In particular, G is nonsolvable.
The Cartan matrix C of B can be determined as in [37]. Here observe that detC =
16 = |D| a fact which is also predicted by Corollary 1 in [12].

Assume that D ∈ Syl2(G). We use the rest of the proof to derive a contradiction.
By the first Fong reduction we may assume that B is quasiprimitive, i.e., that, for
any normal subgroup N of G, B covers a unique block BN of N . Note that D ∩N
is a Sylow 2-subgroup of N and a defect group of BN .

Suppose now that N = O(G). Then, by the second Fong reduction there exist a
finite group G∗ with a cyclic central subgroup N∗ of odd order such that G∗/N∗ is
isomorphic toG/N , and a block B∗ of G∗ whose defect groupD∗ is isomorphic toD;
moreover, B∗ is Morita equivalent to B; in particular, we have k(B∗) = k(B) = 8
and l(B∗) = l(B) = 7.

Thus, Proposition 2.1 implies that e(B∗) = 15 as well, so that G∗, B∗ is also a
counterexample. So we may assume that G = G∗ and B = B∗. Then N is a central
cyclic subgroup of odd order in G.
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Let M/N be a minimal normal subgroup of G/N . Then D ∩ M is a Sylow 2-
subgroup of M ; in particular, D ∩M �= 1. Then D ∩M is stable under the inertial
subgroup NG(D, b) of B. Since NG(D, b) acts transitively on D \{1}, we must have
D = D ∩M ⊆ M . Thus M/N is the only minimal normal subgroup of G/N , and
|G : M | is odd.

If M/N is abelian, then M = D×N ; in particular, B has a normal defect group.
But this is impossible since G, B is a counterexample.

Hence M/N is a direct product of isomorphic nonabelian finite simple groups
which are transitively permuted under conjugation in G:

M/N = S1/N × . . .× St/N.

Thus D = (D ∩ S1) × . . . × (D ∩ St) with isomorphic factors. Since |D| = 24, we
must have t = 1, t = 2 or t = 4. Since |G : M | is odd, this implies that t = 1.
Hence M/N is a simple group with Sylow 2-subgroup D. By Walter’s Theorem
(see [44]), we must have M/N = PSL(2, 16). Note also that M = F∗(G). Since
PSL(2, 16) has a trivial Schur multiplier and an outer automorphism group of order
4, we conclude that G = M = PSL(2, 16) × N . We may therefore clearly assume
that N = 1. In this case B is the principal 2-block of PSL(2, 16), and l(B) = 15, a
final contradiction. �

We remark that even more information about 2-blocks of defect 4 can be ex-
tracted from [37]. For example Cartan matrices and the number of 2-rational and
2-conjugate characters of these blocks are known in most cases.

5. Invariants of blocks

In this section we give an overview in which cases the block invariants of p-blocks
for arbitrary primes p are known. It should be pointed out that many p-groups
provide only nilpotent fusion systems. For such defect groups all block invariants
are known, and we will omit theses cases. The extraspecial group of order p3 and
exponent p2 for an odd prime p is denoted by p1+2

− . More generally, let Mpn be the
(unique) nonabelian group of order pn with exponent pn−1.

p D I(B) classification used? references

arbitrary cyclic arbitrary no [8]

arbitrary abelian e(B) ≤ 4 no [27, 28, 40]

arbitrary abelian S3 no [41]

≥ 7 abelian C4 × C2 no [43]

/∈ {2, 7} abelian C2
3 no [42]

2 metacyclic arbitrary no [5, 23, 28, 39]

2 maximal class ∗ cyclic, arbitrary only for D ∼= C3
2 [16, 31, 32, 38]

incl. ∗ = ×
2 minimal nonabelian arbitrary only for one family [10, 35]

where |D| = 22r+1

2 minimal nonmetacyclic arbitrary only for D ∼= C3
2 [37]

2 |D| ≤ 16 � C15 yes this paper

2 C4 � C2 arbitrary no [19]

2 D8 ∗Q8 C5 yes [34]

2 C2n × C3
2 , n ≥ 2 arbitrary yes [34]

3 C2
3 /∈ {C8, Q8} no [18, 46]

3, 5, 7, 11 p1+2
− e(B) ≤ 2 no [33]

3 M81 arbitrary no [33]



234 BURKHARD KÜLSHAMMER AND BENJAMIN SAMBALE

Acknowledgments

The second author is supported by the German Academic Exchange Service
(DAAD). The second author is grateful to the University of California for their
hospitality.

References

[1] J. L. Alperin, The main problem of block theory, Proceedings of the Conference on Finite
Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York, 1976, pp. 341–356.
MR0404417 (53 #8219)

[2] J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Fi-
nite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc.,
Providence, RI, 1987, pp. 369–379. MR933373 (89h:20015)

[3] Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I,
Wiley, New York, 1963, pp. 133–175. MR0178056 (31 #2314)

[4] Richard Brauer, Defect groups in the theory of representations of finite groups, Illinois J.
Math. 13 (1969), 53–73. MR0246979 (40 #248)

[5] Richard Brauer, On 2-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII

(Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, Lon-
don, 1974, pp. 367–393. MR0354838 (50 #7315)
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with elementary abelian defect groups of order 8, J. Reine Angew. Math. 671 (2012), 85–130.
[17] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture,

arXiv:1112.2642v1.
[18] Masao Kiyota, On 3-blocks with an elementary abelian defect group of order 9, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 31 (1984), no. 1, 33–58. MR743518 (85k:20036)
[19] Burkhard Külshammer, On 2-blocks with wreathed defect groups, J. Algebra 64 (1980), no. 2,

529–555, DOI 10.1016/0021-8693(80)90157-X. MR579072 (81i:20008)
[20] Burkhard Külshammer, Crossed products and blocks with normal defect groups, Comm. Al-

gebra 13 (1985), no. 1, 147–168, DOI 10.1080/00927878508823154. MR768092 (86c:20015)
[21] Markus Linckelmann, Fusion category algebras, J. Algebra 277 (2004), no. 1, 222–235, DOI

10.1016/j.jalgebra.2003.12.010. MR2059628 (2005a:20017)
[22] Gunter Malle and Gabriel Navarro, Inequalities for some blocks of finite groups, Arch. Math.

(Basel) 87 (2006), no. 5, 390–399, DOI 10.1007/s00013-006-1769-8. MR2269921 (2007i:20073)

http://www.ams.org/mathscinet-getitem?mr=0404417
http://www.ams.org/mathscinet-getitem?mr=0404417
http://www.ams.org/mathscinet-getitem?mr=933373
http://www.ams.org/mathscinet-getitem?mr=933373
http://www.ams.org/mathscinet-getitem?mr=0178056
http://www.ams.org/mathscinet-getitem?mr=0178056
http://www.ams.org/mathscinet-getitem?mr=0246979
http://www.ams.org/mathscinet-getitem?mr=0246979
http://www.ams.org/mathscinet-getitem?mr=0354838
http://www.ams.org/mathscinet-getitem?mr=0354838
http://www.ams.org/mathscinet-getitem?mr=604610
http://www.ams.org/mathscinet-getitem?mr=604610
http://www.ams.org/mathscinet-getitem?mr=859323
http://www.ams.org/mathscinet-getitem?mr=859323
http://www.ams.org/mathscinet-getitem?mr=0200355
http://www.ams.org/mathscinet-getitem?mr=0200355
http://www.ams.org/mathscinet-getitem?mr=2029237
http://www.ams.org/mathscinet-getitem?mr=2029237
http://www.ams.org/mathscinet-getitem?mr=2920888
http://www.ams.org/mathscinet-getitem?mr=596014
http://www.ams.org/mathscinet-getitem?mr=596014
http://www.gap-system.org
http://www.ams.org/mathscinet-getitem?mr=2794375
http://www.ams.org/mathscinet-getitem?mr=2794375
http://www.ams.org/mathscinet-getitem?mr=2336637
http://www.ams.org/mathscinet-getitem?mr=2336637
http://de.arxiv.org/abs/1112.2642v1
http://www.ams.org/mathscinet-getitem?mr=743518
http://www.ams.org/mathscinet-getitem?mr=743518
http://www.ams.org/mathscinet-getitem?mr=579072
http://www.ams.org/mathscinet-getitem?mr=579072
http://www.ams.org/mathscinet-getitem?mr=768092
http://www.ams.org/mathscinet-getitem?mr=768092
http://www.ams.org/mathscinet-getitem?mr=2059628
http://www.ams.org/mathscinet-getitem?mr=2059628
http://www.ams.org/mathscinet-getitem?mr=2269921
http://www.ams.org/mathscinet-getitem?mr=2269921


THE 2-BLOCKS OF DEFECT 4 235

[23] Jørn Børling Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra
36 (1975), no. 2, 212–241. MR0376841 (51 #13016)

[24] Jørn B. Olsson, Lower defect groups, Comm. Algebra 8 (1980), no. 3, 261–288, DOI
10.1080/00927878008822458. MR558114 (81g:20024)

[25] Jørn B. Olsson, On the number of characters in blocks of finite general linear, unitary and
symmetric groups, Math. Z. 186 (1984), no. 1, 41–47, DOI 10.1007/BF01215489. MR735049
(85d:20008)

[26] Sejong Park, The gluing problem for some block fusion systems, J. Algebra 323 (2010), no. 6,
1690–1697, DOI 10.1016/j.jalgebra.2010.01.003. MR2588132 (2011b:20027)
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