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POSITIVITY CONJECTURES FOR KAZHDAN-LUSZTIG

THEORY ON TWISTED INVOLUTIONS:

THE UNIVERSAL CASE

ERIC MARBERG

Abstract. Let (W,S) be a Coxeter system and let w �→ w∗ be an involution
of W which preserves the set of simple generators S. Lusztig and Vogan
have recently shown that the set of twisted involutions (i.e., elements w ∈
W with w−1 = w∗) naturally generates a module of the Hecke algebra of
(W,S) with two distinguished bases. The transition matrix between these
bases defines a family of polynomials Pσ

y,w which one can view as “twisted”

analogues of the much-studied Kazhdan-Lusztig polynomials of (W,S). The
polynomials Pσ

y,w can have negative coefficients, but display several conjectural
positivity properties of interest. This paper reviews Lusztig’s construction
and then proves three such positivity properties for Coxeter systems which
are universal (i.e., having no braids relations), generalizing previous work of
Dyer. Our methods are entirely combinatorial and elementary, in contrast
to the geometric arguments employed by Lusztig and Vogan to prove similar
positivity conjectures for crystallographic Coxeter systems.

1. Introduction

1.1. Overview. A nice source of open problems in the representation theory of
Coxeter systems comes from the frequent observation that interesting properties of
Weyl groups seem to hold for much larger classes of reflection groups. This paper
concerns phenomena of this nature which have arisen in ongoing work of Lusztig
and Vogan [18–22].

Let (W,S) be any Coxeter system, and writeHq2 for the associated Hecke algebra

with parameter q2: this is the usual Hecke algebra (namely, a certain Z[q±1/2]-
algebra with a basis (Tw)w∈W indexed by W ), but with q replaced by q2 in its
defining relations. A precise definition appears in Section 1.4 below. Next, fix
an automorphism ∗ : W → W with order one or two which preserves the set of
simple generators S. Write I∗ for the corresponding set of twisted involutions (i.e.,
elements w ∈ W with w−1 = w∗), and let Mq2 be the free Z[q±1/2]-module which
this set generates.

Lusztig [18] has shown that Mq2 has an Hq2-module structure which serves as
a natural and interesting analogue of the regular representation of Hq2 on itself.
(Section 1.4 contains the details of this construction.) The regular representation
of Hq2 possesses a distinguished Kazhdan-Lusztig basis (Cw)w∈W , whose transi-
tion matrix from the standard basis (Tw)w∈W defines the much-studied family of
Kazhdan-Lusztig polynomials (Py,w)y,w∈W ⊂ Z[q]. Lusztig’s work [18] indicates
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that we may repeat much of this theory for the moduleMq2 : it too has a “Kazhdan-
Lusztig basis” whose transition matrix from the standard basis defines a family of
“twisted Kazhdan-Lusztig polynomials” (P σ

y,w)y,w∈I∗ ⊂ Z[q].
Many remarkable properties of the Kazhdan-Lusztig basis of Hq2 appear to have

“twisted” analogues for the module Mq2 . For example, one of the most famous
aspects of the original Kazhdan-Lusztig polynomials (Py,w)y,w∈W is that their co-
efficients are always nonnegative. (This statement, while known in many cases
from the work of a number of people, has only recently been proved for all Coxeter
systems by Elias and Williamson [6].) The twisted Kazhdan-Lusztig polynomials
(P σ

y,w)y,w∈I∗ can have negative coefficients. However, Lusztig and Vogan [20] have

shown by geometric arguments that the modified polynomials 1
2 (Py,w ± P σ

y,w) for
y, w ∈ I∗ have nonnegative coefficients whenever W is crystallographic. In fact,
for any choice of (W,S) and ∗, the polynomials 1

2 (Py,w ±P σ
y,w) belong to Z[q], and

Lusztig [18] has conjectured that their coefficients are always nonnegative.
Section 1.5 presents two other positivity conjectures for the “Kazhdan-Lusztig

basis” of the twisted involution Hq2 -module Mq2 . These serve as analogues of long-
standing conjectures related to the ordinary Kazhdan-Lusztig polynomials Py,w.
After stating these “twisted” conjectures, we devote the rest of this paper to prov-
ing them for Coxeter systems (W,S) which are universal (i.e., such that st ∈ W
has infinite order for all distinct s, t ∈ S), with ∗ arbitrary. This special case is
of interest as it provides an infinite family of Coxeter systems for which our con-
jectures hold, despite existing outside the geometric context of Weyl groups and
affine Weyl groups. Moreover, it is possible in the universal case to derive explicit
formulas for the polynomials Py,w and P σ

y,w.
These results generalize Dyer’s work [5] on the Kazhdan-Lusztig polynomials

of universal Coxeter systems. A detailed summary of our methods appears in
Section 1.6 at the end of this introduction. (Sections 1.2−1.5 provide some brief
preliminaries needed to state our main results.) The study of the module Mq2 and
its conjectural positivity properties continues in our companion paper [24], which
addresses the case when (W,S) is finite.

1.2. Setup. Throughout we write Z for the integers and N = {0, 1, 2, . . . } for the
nonnegative integers. We also adopt the following conventions:

• Let (W,S) be a Coxeter system with length function � : W → N.
• Let ≤ denote the Bruhat order on W . Recall that in this partial order we
have y ≤ w if and only if for each reduced expression

w = s1 · · · sk with si ∈ S

we have y = si1 · · · sim for some sequence of indices 1 ≤ i1 < · · · < im ≤ k.
• Let A = Z[v, v−1] be the ring of Laurent polynomials over Z in an indeter-
minate v.

• Let q = v2. In the sequel, we will refer to v in place of the parameter q1/2

used in Section 1.1.

The ring A will now occupy the role which Z[q±1/2] played in the previous section.
For background on Coxeter systems and the Bruhat order, see for example [2,11,17].

1.3. Kazhdan-Lusztig theory. Here we briefly recall the definition of the Kazhdan-
Lusztig polynomials attached to (W,S). Let Hq denote the free A-module with
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basis {tw : w ∈ W}. This module has a unique A-algebra structure with respect to
which the multiplication rule

tstw =

{
tsw if �(sw) = �(w) + 1,

qtsw + (q − 1)tw if �(sw) = �(w)− 1,

holds for each s ∈ S and w ∈ W . The element tw ∈ Hq is more often denoted in the
literature by the symbol Tw, but here we reserve the latter notation for the Hecke
algebra Hq2 , to be introduced in the next section.

We refer to the algebra Hq as the Hecke algebra of (W,S) with parameter q.
A number of good references exist for this much-studied object; see for example
[2, 11, 13, 17]. The Hecke algebra possesses a unique ring involution : Hq → Hq

with vn = v−n and tw = (tw−1)
−1

for all n ∈ Z and w ∈ W , referred to as the bar
operator, and this gives rise to the following theorem-definition from Kazhdan and
Lusztig’s seminal paper [13].

Theorem-Definition 1.1 (Kazhdan and Lusztig [13]). For each w ∈ W there is a
unique family of polynomials (Py,w)y∈W ⊂ Z[q] with the following three properties:

(a) The element cw
def
= v−�(w) ·

∑
y∈W Py,w · ty in Hq has cw = cw.

(b) Py,w = δy,w if y �< w in the Bruhat order.
(c) Py,w has degree in q at most 1

2 (�(w)− �(y)− 1) whenever y < w.

Remark. Here and elsewhere, the Kronecker delta δy,w has the usual meaning of
δy,w = 1 if y = w and δy,w = 0 otherwise.

The polynomials (Py,w)y,w∈W are the Kazhdan-Lusztig polynomials of the Cox-
eter system (W,S). Property (b) implies that the elements (cw)w∈W form an A-
basis for Hq, which one calls the Kazhdan-Lusztig basis.

For more information on the Kazhdan-Lusztig polynomials and methods of com-
puting them, see, for example, [11, Chapter 7] or [2, Chapter 5].

1.4. “Twisted Kazhdan-Lusztig theory”. We now present Lusztig’s definition
of the module Mq2 and the polynomials P σ

y,w mentioned at the start of this intro-
duction. To begin, we let Hq2 denote the Hecke algebra of (W,S) with parameter
q2: this is the free A-module with basis {Tw : w ∈ W}, equipped with the unique
A-algebra structure with respect to which the multiplication rule

TsTw =

{
Tsw if �(sw) = �(w) + 1,

q2Tsw + (q2 − 1)Tw if �(sw) = �(w)− 1,

holds for each s ∈ S and w ∈ W . Like Hq, this algebra possesses a unique ring

involution : Hq2 → Hq2 with vn = v−n and Tw = (Tw−1)−1 for all n ∈ Z and
w ∈ W . This bar operator fixes each of the elements

Cw
def
= q−�(w) ·

∑
y∈W

Py,w(q
2) · Ty for w ∈ W.

The elements (Cw)w∈W form an A-basis of Hq2 which one refers to as the Kazhdan-
Lusztig basis. The use of the capitalized symbols Tw, Cw is intended to distinguish
elements of Hq2 from the basis elements tw, cw of the usual Hecke algebra Hq.

The following Theorem-Definition of Lusztig [18] defines Mq2 explicitly as a
certain module of the algebra Hq2 . This statement requires a few additional ingre-
dients:
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• Fix an automorphism w �→ w∗ of W with order ≤ 2 such that s∗ ∈ S for
each s ∈ S.

• Set I∗ = {w ∈ W : w∗ = w−1}. One calls elements of this set twisted
involutions.

• Given s ∈ S and w ∈ I∗, let s � w denote the unique element in the
intersection of {sw, sws∗} and I∗ \ {w}. Note that while s� (s� w) = w,
the operation � : S × I∗ → I∗ generally does not extend to a group action
of W on I∗.

We now have Lusztig’s result. This statement first appeared in Lusztig and Vogan’s
paper [20] in the special case that W is a Weyl group or affine Weyl group and ∗ is
trivial.

Theorem-Definition 1.2 (Lusztig and Vogan [20]; Lusztig [18]). Let Mq2 be the
free A-module with basis {aw : w ∈ I∗}.

(a) Mq2 has a unique Hq2-module structure with respect to which the following
multiplication rule holds for each s ∈ S and w ∈ I∗:

(1.1) Tsaw =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
as�w + if s� w = sws∗ > w,

(q + 1)as�w + qaw if s� w = sw > w,

(q2 − q)as�w + (q2 − q − 1)aw if s� w = sw < w,

q2as�w + (q2 − 1)aw if s� w = sws∗ < w.

(b) There is a unique Z-linear involution : Mq2 → Mq2 such that a1 = a1
and h ·m = h ·m for all h ∈ Hq2 and m ∈ Mq2 . This bar operator acts on

the standard basis of Mq2 by the formula aw = (−1)�(w) · (Tw−1)−1 · aw−1

for w ∈ I∗.

The bar operator just introduced on Mq2 gives rise, in turn, to the following
analogue of Theorem-Definition 1.1. Like the previous result, this was first shown
by Lusztig and Vogan [20] in the crystallographic case (with ∗ trivial). Lusztig [18]
subsequently extended the statement to all Coxeter systems.

Theorem-Definition 1.3 (Lusztig and Vogan [20]; Lusztig [18]). For each w ∈ I∗
there is a unique family of polynomials

(
P σ
y,w

)
y∈I∗

⊂ Z[q] with the following three

properties:

(a) The element Aw
def
= v−�(w) ·

∑
y∈I∗

P σ
y,w · ay in Mq2 has Aw = Aw.

(b) P σ
y,w = δy,w if y �< w in the Bruhat order.

(c) P σ
y,w has degree in q at most 1

2 (�(w)− �(y)− 1) whenever y < w.

Note from (b) that the elements (Aw)w∈I∗
form an A-basis for the module Mq2 .

We sometimes refer to this as the “twisted Kazhdan-Lusztig basis.” Likewise, we
call the polynomials P σ

y,w the twisted Kazhdan-Lusztig polynomials of the triple
(W,S, ∗). We will discuss some general properties of these polynomials (and also
address how one computes them) in Section 2.2 below.

Before continuing to state the conjectures concerning P σ
y,w which are our main

subject, let us mention a few reasons why one might care about these polynomials or
the module Mq2 . First, as detailed in [20], when W is a Weyl group or affine Weyl
group, the module Mq2 arises from geometric considerations and in that context
the polynomials P σ

y,w are expected to have importance in the theory of unitary
representations of complex reductive groups.
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While for more general Coxeter groups we lack such an interpretation for Mq2 ,
there is nevertheless always a sense in which we can view the left regular represen-
tation of the Hecke algebra of a Coxeter system as a special case of (a submodule
of) the module Mq2 . Consequently, one can realize the ordinary Kazhdan-Lusztig
polynomials of one Coxeter system as the twisted polynomials P σ

y,w corresponding
to another Coxeter system with a particular choice of ∗. These considerations are
explained in more precise detail in [24].

We also mention that when W is finite, the irreducible decomposition of Mq2 has
a surprising interpretation in terms of the “Fourier transform” of a set of “unipotent
characters” attached to (W,S). This phenomenon, which is studied in various
cases in the articles [3, 7, 15, 20, 23], gives one more indication that Mq2 deserves
consideration not only in the crystallographic case.

1.5. Positivity conjectures. Many results in the theory of Hecke algebras depend
on positivity properties of the Kazhdan-Lusztig polynomials Py,w. In particular,
we recall the following much studied conjectures:

Conjecture A. The polynomials Py,w have nonnegative integer coefficients.

Conjecture B. The polynomials Py,w are decreasing for fixed w, in the sense that
the difference Py,w − Pz,w has nonnegative integer coefficients whenever y ≤ z.

Denote by (hx,y;z)x,y,z∈W the structure coefficients ofHq in the Kazhdan-Lusztig

basis; i.e., these are the Laurent polynomials in A satisfying cxcy =
∑

z∈W hx,y;zcz
for x, y, z ∈ W .

Conjecture C. The Laurent polynomials hx,y;z have nonnegative coefficients.

These conjectures have been proved in the case when (W,S) is crystallographic
(i.e., when W a Weyl group or affine Weyl group), finite, or universal through the
work of a number of people [1, 4, 5, 12, 14, 16, 27]. Elias and Williamson’s recent
proof of Soergel’s conjecture [6], finally, establishes Conjectures A and C for any
Coxeter system. In this generality Conjecture B remains open.

The central topic of this work concerns “twisted” versions of the preceding conjec-
tures. While the parallels between Theorem-Definitions 1.1 and 1.3 suggest obvious
analogues of Conjectures A, B, and C in the twisted case, these statements turn
out not to be the right ones. Notably, the polynomials P σ

y,w may have negative

coefficients. To state the “correct” conjectures, define P+
y,w, P

−
y,w ∈ Q[q] by

(1.2) P±
y,w = 1

2

(
Py,w ± P σ

y,w

)
for each y, w ∈ I∗.

Lusztig proves that these polynomials actually have integer coefficients [18, Theo-
rem 9.10] and conjectures the following:

Conjecture A′. The polynomials P+
y,w and P−

y,w have nonnegative integer coeffi-
cients.

This statement is a refinement of Conjecture A since P+
y,w + P−

y,w = Py,w for
y, w ∈ I∗. We introduce the following stronger conjecture, which is likewise a
refinement of Conjecture B.

Conjecture B′. The polynomials P±
y,w are decreasing for fixed w, in the sense that

the differences P+
y,w − P+

z,w and P−
y,w − P−

z,w have nonnegative integer coefficients
whenever y ≤ z.
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Finally, to provide an analogue of Conjecture C, for each x ∈ W and y ∈ I∗
define

(
h̃x,y;z

)
z∈W

and
(
hσ
x,y;z

)
z∈I∗

as the Laurent polynomials in A satisfying

(1.3) cxcycx∗−1 =
∑
z∈W

h̃x,y;zcz and CxAy =
∑
z∈I∗

hσ
x,y;zAz.

Note that cx, cy, cz ∈ Hq while Cx ∈ Hq2 and Ay ∈ Mq2 . Now, define h+
x,y;z, h

−
x,y;z ∈

Q[v, v−1] by

(1.4) h±
x,y;z = 1

2

(
h̃x,y;z ± hσ

x,y;z

)
for each x ∈ W and y, z ∈ I∗.

One can show from results of Lusztig [18] that these Laurent polynomials likewise
have integer coefficients (see Proposition 2.11 below), which leads to this conjecture.

Conjecture C′. The Laurent polynomials h+
x,y;z and h−

x,y;z have nonnegative in-
teger coefficients.

Lusztig and Vogan’s work [20] establishes Conjecture A′ when W is a Weyl group
or affine Weyl group. In these cases, [20, Section 5] also mentions without proof
that Conjecture C′ holds (when ∗ is trivial). Conjecture B′ appears still to be open
even in the crystallographic case. Here, we will provide some evidence that these
conjectures hold for all Coxeter systems, by proving them in the case that W is
universal. The supplementary paper [24] will provide further evidence coming from
the case of finite Coxeter systems.

1.6. Outline of main results. Following Dyer [5], we say that a Coxeter system
(W,S) is universal if the product st ∈ W has infinite order for any distinct gen-
erators s, t ∈ S. In this case W is the group generated by S subject only to the
relations s2 = 1 for s ∈ S. The elements of W consists of all words in S with dis-
tinct adjacent letters, and products of elements are given by concatenation, subject
to the rule that one inductively removes all pairs of equal adjacent letters.

Let (W,S) be any universal Coxeter system and let ∗ ∈ Aut(W ) be any S-
preserving involution of W . Restricted to S, the map w �→ w∗ then corresponds to
either the identity or to an arbitrary permutation of order two. Dyer’s paper [5]
derives formulas for the polynomials Py,w and for the decomposition of the products
cxcy ∈ Hq in terms of the Kazhdan-Lusztig basis, thus establishing Conjectures A,
B, and C in the universal case. (Dyer’s results are formulated in somewhat different
language than these conjectures; cf. Theorems 3.5 and 3.15 below.) Our paper
proceeds as something of a sequel to Dyer’s work, as follows:

• In Sections 3.1, 3.2, and 3.3 we derive recurrence relations, with coefficients

in N[q], for the polynomials P σ
y,z;w

def
= P σ

y,w−P σ
z,w and Py,z;w

def
= Py,w−Pz,w

(with y ≤ z).
• These recurrences show that in the universal case P σ

y,w and P±
y,w belong to

N[q] and are decreasing with respect to the index y ∈ I∗ and the Bruhat
order; see Theorems 3.12 and 3.13 below. Thus Conjectures A′ and B′ hold
for universal Coxeter systems.

• In Section 3.4 we describe the decomposition of the product CxAy in terms
of the distinguished basis (Az)z∈I∗

of Mq2 ; see Theorem 3.18. This shows
that the Laurent polynomials hσ

x,y,;z have nonnegative coefficients in the
universal case; see Corollary 3.19.

• Combining these results with Dyer’s work finally affords a proof of Conjec-
ture C′ for universal Coxeter systems; see Theorem 3.22.
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Before carrying all this out, we provide in Section 2 a few relevant preliminaries con-
cerning the Bruhat order on I∗, the polynomials Py,w and P σ

y,w, and the associated
bases of Hq and Mq2 .

2. Preliminaries

Here, we preserve all conventions from the introduction. Thus, (W,S) is an
arbitrary Coxeter system (not necessarily universal) with an S-preserving involution
∗ ∈ Aut(W ), and attached to these choices are the following structures:

• Hq2 is the Hecke algebra of (W,S) with parameter q2.
• I∗ = {w ∈ W : w−1 = w∗} is the corresponding set of twisted involutions.
• Mq2 = A-span{aw : w ∈ I∗} is the Hq2-module generated by I∗.

Recall also the definitions of the special bases (Cw)w∈W ⊂ Hq2 and (Aw)w∈I∗
⊂

Mq2 , and the polynomials (Py,w)y,w∈W and
(
P σ
y,w

)
y,w∈I∗

in Z[q].

2.1. Bruhat order on twisted involutions. The set of twisted involutions I∗ is
partially ordered by the Bruhat order ≤ on W , and this ordering controls many
important features of the basis (Aw)w∈I∗

⊂ Mq2 and the polynomials
(
P σ
y,w

)
y,w∈I∗

.

The subposet (I∗,≤) has a more direct characterization and a number of interesting
properties, which are meticulously detailed in Hultman’s papers [8–10]. Hultman’s
work extends to arbitrary Coxeter systems many earlier observations of Richardson
and Springer [25, 26, 28] concerning I∗ when W is finite. Here we review some of
this material which will be of use later on, particularly in Section 3.3.

Recall from Section 1.4 that we define

(2.1) s� w
def
=

{
sw if sw = ws∗

sws∗ if sw �= ws∗
for s ∈ S and w ∈ I∗.

In [18], Lusztig uses the notation s • w instead of s � w; we prefer the symbol �
to emphasize that s ∈ S acts to “twist” w ∈ I∗. Although this notation does not
extend to an action of W of I∗, it does lead to the following definition, adapted
from [8–10]:

Definition 2.1. A sequence (s1, s2, . . . , sk) with si ∈ S is an I∗-expression for a
twisted involution w ∈ I∗ if w = s1 � (s2 � (· · · � (sk � 1) · · · )). An I∗-expression
for w is reduced if its length k is minimal. We consider the empty sequence () to
be a reduced I∗-expression for w = 1.

What we refer to as I∗-expressions are the left-handed versions of what Hultman
terms “S-expressions” in [8–10]. (In consequence, all of our statements here are in
fact the left-handed versions of Hultman’s.) It follows by induction on �(w) that
every w ∈ I∗ has a reduced I∗-expression, and so the next statement (given as
[10, Proposition 2.5]) is well-defined:

Proposition 2.2 (Hultman [10]). Choose a reduced I∗-expression (s1, s2, . . . , sk)
for w ∈ I∗ and define w0 = w and wi = si � wi−1 for 1 ≤ i ≤ k. Then the number
of indices i ∈ {1, 2, . . . , k} with siwi = wis

∗
i depends only on w and not on the

choice of I∗-expression.

Define �∗ : I∗ → N by setting �∗(w) equal to the number defined in the preceding
proposition. (In particular, �∗(1) = 0 and �(s) = 1 for any s ∈ S∩I∗.) The function
�∗ coincides with the map φ which Lusztig defines in [18, Proposition 4.5]. This
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map measures the difference in size between the (ordinary) reduced expressions and
reduced I∗-expressions for a twisted involution, in the sense of the following result,
which appears as [8, Theorem 4.8].

Theorem-Definition 2.3 (Hultman [8]). Let ρ : I∗ → N be the map which assigns
to w ∈ I∗ the common length of any of its reduced I∗-expressions. Then the poset
(I∗,≤) is graded with rank function ρ, and

ρ = 1
2 (�+ �∗) .

In particular, if w ∈ I∗ and s ∈ S, then ρ(s � w) = ρ(w) − 1 if and only if
�(sw) = �(w)− 1.

We conclude by stating the “subword property” for the Bruhat order on I∗,
which appears for arbitrary Coxeter systems as [10, Theorem 2.8].

Theorem 2.4 (Hultman [10]). If y, w ∈ I∗ are twisted involutions, then y ≤ w if
and only if whenever (s1, s2, . . . , sk) is a reduced I∗-expression for w, there exist
indices 1 ≤ i1 < i2 < · · · < im ≤ k such that (si1 , si2 . . . , sim) is a reduced I∗-
expression for y.

2.2. Multiplication formulas and a recurrence for P σ
y,w. While Theorem-

Definition 1.3 establishes the existence of the distinguished basis (Aw)w∈I∗
for the

Hq2-module Mq2 , it gives no immediate indication of how Hq2 acts on this basis, or

of how one can compute the polynomials
(
P σ
y,w

)
y,w∈I∗

. In this section we summarize

the main results of Lusztig [18] addressing these problems.

Notation. Remember that q = v2. To refer to the coefficients of P σ
y,w ∈ Z[q] of

highest possible order, given y, w ∈ I∗, we let

μσ(y, w)
def
= the coefficient of v�(w)−�(y)−1 in P σ

y,w,

νσ(y, w)
def
= the coefficient of v�(w)−�(y)−2 in P σ

y,w.

In turn, for each s ∈ S define another integer μσ(y, w; s) by the following more
complicated formula:

μσ(y, w; s)
def
= νσ(y,w) + δsy,ys∗μ

σ(sy, w)− δsw,ws∗μ
σ(y, sw)−

∑

x∈I∗; sx<x

μσ(y, x)μσ(x, w).

As usual, the Kronecker delta here means δa,b = 1 if a = b and δa,b = 0 otherwise.

Note since P σ
y,w is a polynomial in q = v2 that μσ(y, w) (respectively, νσ(y, w))

is nonzero only if y ≤ w and �(w)− �(y) is odd (respectively, even). The numbers
μσ(y, w; s) have an analogous property, which requires a short argument to prove.
Here and elsewhere, for any w ∈ W we write

(2.2)
DesL(w)

def
= {s ∈ S : �(sw) < �(w)},

DesR(w)
def
= {s ∈ S : �(ws) < �(w)},

for the corresponding left and right descent sets.

Proposition 2.5. Let y, w ∈ I∗ and s ∈ DesL(y) \ DesL(w). Then the integer
μσ(y, w; s) is nonzero only if �(w)− �(y) is even and y < s� w.
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Proof. All terms in the definition of μσ(y, w; s) are zero if �(w)−�(y) is odd. Assume
y �< s � w. Then y �< w automatically, so μσ(y, w; s) = δsy,ys∗μ

σ(sy, w). This is
zero unless sy = ys∗, but if sy = ys∗, then sy = s�y �< w, as s�y < w would imply
the contradiction y < s � w by Theorem 2.4. (In detail, if s � y < w then adding
s to the beginning of any reduced I∗-expression for s � y or w forms a reduced
I∗-expression for y or s� w, respectively.) Thus μσ(s� y, w) = 0. �

Finally, definemσ(y
s−→ w) ∈ A for y, w ∈ I∗ and s ∈ S as the Laurent polynomial

(2.3) mσ(y
s−→ w) =

{
μσ(y, w)(v + v−1) if �(w)− �(y) is odd,

μσ(y, w; s) if �(w)− �(y) is even.

Lusztig proves the following result, which explains our notation, as [18, Theorem
6.3].

Theorem 2.6 (Lusztig [18]). Let w ∈ I∗ and s ∈ S. Then Cs = q−1(Ts + 1) and

CsAw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q + q−1

)
Aw if s ∈ DesL(w),

(
v + v−1

)
Asw +

∑
y∈I∗

sy<y<sw

mσ(y
s−→ w)Ay if s /∈ DesL(w) and sw = ws∗,

Asws∗ +
∑
y∈I∗

sy<y<sws∗

mσ(y
s−→ w)Ay if s /∈ DesL(w) and sw �= ws∗.

We may equivalently rewrite this theorem as a recurrence for the polynomials
P σ
y,w. This provides the following “twisted” analogue of one of the standard recur-

rences (see, e.g., [2, Theorem 5.1.7]) for the ordinary Kazhdan-Lusztig polynomials
Py,w.

Corollary 2.7. Let y, w ∈ I∗ with y ≤ w and s ∈ DesL(w).

(a) P σ
y,w = P σ

s�y,w.
(b) If s ∈ DesL(y) and w′ = s� w and c = δsw,ws∗ and d = δsy,ys∗ , then

(q + 1)cPσ
y,w = (q + 1)dPσ

s�y,w′ + q(q − d)Pσ
y,w′ −

∑

z∈I∗; sz<z
y≤z<w

v�(w)−�(z)+c ·mσ(z
s−→ w′) · Pσ

y,z .

Proof. The corollary results from comparing coefficients of ay on both sides of
the equation in Theorem 2.6. Rewriting the right-hand side in the standard basis
(aw)w∈I∗

is straightforward from the definitions in Section 1.4, while rewriting

the left-hand side can be done using the identities Cs = q−1(Ts + 1) and Aw =
v−�(w)

∑
y∈I∗

P σ
y,way with the multiplication rule (1.1). �

Translating this corollary into an algorithm for computing the polynomials P σ
y,w

involves a little subtlety, because terms on the right-hand side of the recurrence in
part (b) can depend on P σ

y,w. The companion paper [24] discusses these issues in
detail (and provides pseudocode for the resulting algorithm).

One can establish several notable properties of the polynomials P σ
y,w using Corol-

lary 2.7 and induction on �(w). For example, we have these facts mentioned by
Lusztig in [18]:

Corollary 2.8 (Lusztig [18]). Let y, w ∈ I∗ with y ≤ w.

(a) P σ
y,w has constant coefficient 1.

(b) P σ
y,w = P σ

y−1,w−1 = P σ
y∗,w∗ .
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Part (a), which Lusztig states explicitly as [18, Proposition 4.10], mirrors the fact
that Py,w has constant coefficient 1 whenever y ≤ w in W . Thus the polynomials
P+
y,w and P−

y,w (see (1.2)) have constant coefficients 1 and 0, respectively, whenever
y ≤ w in I∗. The following lemma states two other properties of the ordinary
Kazhdan-Lusztig polynomials which we will have cause to refer to. These results
all appear, for example, in [11, Chapter 7].

Lemma 2.9. Let y, w ∈ W .

(a) Py,w = Psy,w if s ∈ DesL(w) and Py,w = Pys,w if s ∈ DesR(w).
(b) Py,w = Py−1,w−1 = Py∗,w∗ .

2.3. Parity statements. Conjectures A′, B′ and C′ are statements concerning
whether the Laurent polynomials

P±
y,w = 1

2

(
Py,w ± P σ

y,w

)
and h±

x,y;z = 1
2

(
h̃x,y;z ± hσ

x,y;z

)
defined by equations (1.2), (1.3), and (1.4) for x ∈ W and y, z, w ∈ I∗ have non-
negative integer coefficients. It is not clear a priori that these polynomials even
have integer coefficients, and we spend this last preliminary section clarifying this
property.

Here we write f ≡ g (mod 2) for two Laurent polynomials f, g ∈ A if f − g has
only even integer coefficients; i.e., if f − g = 2h for some h ∈ A. Lusztig proves the
following result, showing that P±

y,w ∈ Z[q], as [18, Theorem 9.10].

Proposition 2.10 (Lusztig [18]). For all y, w ∈ I∗ we have Py,w ≡ P σ
y,w (mod 2).

The next proposition shows likewise that h±
x,y;z ∈ Z[v, v−1]. In the case that

(W,S) is a Weyl group and ∗ is trivial, this property was mentioned without proof
in [20, Section 5].

Proposition 2.11. For all x ∈ W and y, z ∈ I∗ we have h̃x,y,z ≡ hσ
x,y,z (mod 2).

Proof. In what follows it is helpful to recall that we denote the bases of Hq using
the lower case symbols tw, cw and the bases of Hq2 using the upper case symbols

Tw, Cw. Let w† = w∗−1 for w ∈ W and define h �→ h† as the unique A-algebra
anti-automorphism of Hq such that (tw)

† = tw† . Also write proj : Hq → Mq2 for
the A-linear map with tw �→ aw for w ∈ I∗ and tw �→ 0 for w ∈ W \ I∗.

We writem ≡ m′ (mod 2) form,m′ ∈ Mq2 ifm−m′ = 2m′′ for somem′′ ∈ Mq2 .
With respect to this notation, Lusztig [18, 9.4(a)] proves that

(2.4) proj
(
txty(tx)

†) ≡ Txay (mod 2) for all x ∈ W and y ∈ I∗.

The current proposition derives from this fact in the following way. Let x ∈ W
and y ∈ I∗ and note that (cw)

† = cw† by Lemma 2.9. The anti-automorphism †
consequently preserves cxcycx† , so we must have h̃x,y,z = h̃x,y,z† for all z ∈ W and

it follows that we can write cxcycx† = (a + a†) +
∑

z∈I∗
h̃x,y,zcz for an element

a ∈ Hq. Since proj(a+a†) ≡ 0 (mod 2) and since proj(cz) ≡ Az (mod 2) for z ∈ I∗
by Proposition 2.10, we deduce that

(2.5) proj(cxcycx†) ≡
∑
z∈I∗

h̃x,y,zAz (mod 2).

On the other hand, by definition cxcycx† = v−2�(x)−�(y)
∑

x′,z,x′′∈W Px′,xPz,yPx′′,x ·
tx′tz(tx′′)†. Since Pz,y = Pz†,y for all z ∈ W as y = y†, the anti-automorphism
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† acts on the latter sum by exchanging the summands indexed by (x′, z, x′′) and
(x′′, z†, x′). It follows by dividing the sum

∑
x′,z,x′′∈W into two parts, consisting of

the summands fixed and unfixed by †, that we can write

cxcycx† = (b+ b†) + v−2�(x)−�(y)
∑
x′∈W

∑
z∈I∗

(Px′,x)
2Pz,y · tx′tz(tx′)†

for another element b ∈ Hq. Since proj(b + b†) ≡ 0 (mod 2) and (Px′,x)
2 ≡

Px′,x(q
2) (mod 2) and Pz,y ≡ P σ

z,y (mod 2) for y, z ∈ I∗, applying (2.4) to the
preceding equation shows that

(2.6) proj (cxcycx†) ≡ CxAy (mod 2) for all x ∈ W and y ∈ I∗.

The proposition now follows immediately by combining (2.5) and (2.6). �

3. Positivity results for universal Coxeter systems

In this section we prove our main results. Thus, for the duration we let (W,S)
denote a fixed universal Coxeter system and we let ∗ denote a fixed S-preserving
involution of W . It is helpful to recall that the involution ∗ of W corresponds to
an arbitrary choice of a permutation with order ≤ 2 of the set S. The twisted
involutions w ∈ I∗ = {x ∈ W : x−1 = x∗} each take one of two possible forms:

• If �(w) is even then w = x∗x−1 for some x ∈ W .
• If �(w) is odd then w = x∗sx−1 for some x ∈ W and s ∈ S with s = s∗.

The following observation enumerates a few other special properties of universal
Coxeter systems which make them tractable test cases for general questions and
conjectures. Recall here the definition of s� w from (2.1).

Observation 3.1. Assume (W,S) is a universal Coxeter system.

(a) Each w ∈ W has a unique reduced expression.
(b) Each w ∈ I∗ has a unique reduced I∗-expression.
(c) If w ∈ W \ {1} then |DesL(w)| = |DesR(w)| = 1.
(d) The map S × I∗ → I∗ given by (s, w) �→ s�w extends to a group action of

W on I∗.

Notation. In light of part (d), it is well-defined to set

x� w
def
= s1 � (s2 � (· · ·� (sn � w) · · · ))

where x ∈ W and w ∈ I∗ and si ∈ S are such that x = s1s2 · · · sn.

Before proceeding, we note as a consequence of our observation that in the special
case that ∗ has no fixed points in S, one can view the ordinary Kazhdan-Lusztig
theory of a universal Coxeter system as a special case of its twisted theory, in the
following way

Observation 3.2. Suppose (W,S) is a universal Coxeter system and s �= s∗ for
all s ∈ S. Then the unique A-linear map Hq2 → Mq2 with Tw∗ �→ aw∗w−1 for
w ∈ W defines an isomorphism of left Hq2-modules which commutes with the bar
operators of Hq2 and Mq2 , and consequently,

P σ
(y∗y−1),(w∗w−1) = Py,w(q

2) and hσ
x, (y∗y−1); (z∗z−1) = hx,y∗;z∗(v2)

for all w, x, y, z ∈ W .
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Proof. If s �= s∗ for all s ∈ S then every w ∈ I∗ has even length and the map
w∗ �→ w∗w−1 defines a poset isomorphism (W,≤)

∼−→ (I∗,≤). From this, the proof
of the proposition is a straightforward exercise using Theorem-Definitions 1.1, 1.2,
and 1.3. �

3.1. Kazhdan-Lusztig polynomials. Dyer derived a formula for the Kazhdan-
Lusztig polynomials of a universal Coxeter system [5, Theorem 3.8] which shows
their coefficients to be nonnegative. We review the key parts of this result here. To
begin, we note the following lemma which is a special case of [5, Lemma 3.5].

Lemma 3.3 (Dyer [5]). Assume (W,S) is a universal Coxeter system. Suppose
y, w ∈ W and r, s ∈ S such that rsw < sw < w and sy > y. Then

Py,w = Py,sw + qPsy,sw − δ · qPy,rsw where δ = |{s} ∩DesL(rsw)|.

In the sequel we adopt the following notation. Given y, z, w ∈ W with y ≤ z,
define

(3.1) Py,z;w
def
= Py,w − Pz,w.

We expand upon the previous lemma with the following statement.

Proposition 3.4. Assume (W,S) is universal. Let y, z ∈ W with y ≤ z and
suppose

• k is a positive integer;
• r, s ∈ S such that r �= s and s /∈ DesL(y) and s /∈ DesL(z);
• u ∈ W such that {r, s} ∩DesL(u) = ∅.

If a, w ∈ W are defined by

w = srsrs · · ·︸ ︷︷ ︸
k+1 factors

u and a = · · · srsrs︸ ︷︷ ︸
k factors

then Py,z;w = Py,z;sw + qkPay,az;aw.

Remark. Applying the identity Py,z;w = Py∗−1,z∗−1;w∗−1 from Lemma 2.9 affords a
right-handed version of this proposition, which will be of use in Section 3.3 below.

Proof. Note that y ≤ z implies ay ≤ az, since (as sy > y and sz > z) the unique
reduced expression for ay (respectively, az) is formed by concatenating · · · srsrs
to the unique reduced expression for y (respectively, z). To prove the lemma, we
proceed by induction on k. If k = 1 then the lemma reduces to Lemma 3.3. If
k > 1, then since Psy,sz;rsw = Py,z;rsw by Lemma 2.9, Lemma 3.3 asserts that
Py,z;w = Py,z;sw + q(Psy,sz;sw − Psy,sz;rsw). By induction we may assume that
Psy,sz;sw = Psy,sz;rsw + qk−1Pay,az;aw; substituting this identity into the preceding
equation gives the desired recurrence. �

From the last lemma we have an easy proof of Conjecture B (and so also of
Conjecture A) for universal Coxeter systems. This result can also be deduced from
[5, Theorem 3.8].

Theorem 3.5 (Dyer [5]). If (W,S) is a universal Coxeter system, then the polyno-
mial Py,w −Pz,w has nonnegative integer coefficients for all y, z, w ∈ W with y ≤ z
in the Bruhat order. In particular, we have Py,w ∈ N[q] for each y, w ∈ W .
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Proof. The proof is by induction on �(w). If �(w) ≤ 1 then Py,z;w ∈ {0, 1} ⊂ N[q]
by Lemma 2.9. Assume �(w) ≥ 2 so that there exists s ∈ DesL(w). Let (y′, z′) be
the unique pair in the set {(y, z), (sy, z), (y, sz), (sy, sz)} which has s /∈ DesL(y

′)
and s /∈ DesL(z

′). It is straightforward to check that y′ ≤ z′, and by Lemma 2.9
we have Py,z;w = Py′,z′;w. Proposition 3.4 applied Py′,z′;w shows that Py,z;w ∈ N[q]
by induction, and it follows that Py,w ∈ N[q] since Pw,w = 1. �

3.2. Twisted Kazhdan-Lusztig polynomials. Here we initiate the proof of
Conjecture B′ for universal Coxeter systems, to be completed in the next section.
As above, (W,S) is a fixed Universal Coxeter system with a fixed S-preserving
involution ∗.

Recall the definition of the Laurent polynomial mσ(y
s−→ w) ∈ A from (2.3).

Lemma 3.6. Assume (W,S) is a universal Coxeter system. If y, w ∈ I∗ and
r, s ∈ S such that y ≤ w and DesL(y) = {s} �= {r} = DesL(w), then

mσ(y
s−→ w) =

{
1 if y = rwr∗ or if (y, w) = (s, r),

0 otherwise.

Proof. First note that since W is a universal Coxeter group and y /∈ {1, r} we have
r � y = ryr∗ and �(r � y) = �(y) + 2. In addition, from Corollary 2.7 we have
P σ
y,w = P σ

r�y,w.
We claim that μσ(y, w) = 0. To prove this, note that if r�y = w then �(w)−�(y)

is even, and if r � y �≤ w then y �< w, so in either case μσ(y, w) = 0. On the other
hand, if r�y < w then the degree of P σ

y,w = P σ
r�y,w as a polynomial in q is at most

�(w)−�(r�y)−1
2 which is strictly less than �(w)−�(y)−1

2 , so again μσ(y, w) = 0.
It thus suffices to show that μσ(y, w; s) = 1 if y = rwr∗ or if (y, w) = (s, r)

and μσ(y, w; s) = 0 otherwise. To this end, observe that if we apply our first claim
to the definition of μσ(y, w; s), and also note that sw �= ws∗ since w /∈ {1, s}, we
obtain

μσ(y, w; s) = νσ(y, w) + δsy,ys∗μ
σ(sy, w).

If y = rwr∗ then P σ
y,w = P σ

w,w = 1 so νσ(y, w) = 1. Alternatively, if y < w and
y �= rwr∗ then it follows as above that P σ

y,w = P σ
r�y,w has degree strictly less than

�(w)−�(y)−2
2 so νσ(y, w) = 0. Hence

(3.2) νσ(y, w) =

{
1 if y = rwr∗,

0 otherwise.

In turn, we have sy = ys∗ if and only if y = s (note that y �= 1 by hypothesis), in
which case μσ(sy, w) = μσ(1, w). If w = r then μσ(1, w) = 1 and if w �= r then
either w = rr∗ (in which case �(w) − �(1) is even) or r � 1 �= w (in which case

P σ
1,w = P σ

r�1,w has degree strictly less than �(w)−�(1)−1
2 ) so μσ(1, w) = 0. Thus

(3.3) δsy,ys∗μ
σ(sy, w) =

{
1 if (y, w) = (s, r),

0 otherwise.

Combining (3.2) and (3.3) gives the desired formula for μσ(y, w; s). �

We now have the following analogue of Lemma 3.3.
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Lemma 3.7. Assume (W,S) is a universal Coxeter system. Suppose y, w ∈ I∗ and
r, s ∈ S such that rs� w < s� w < w and sy > y. Then

P σ
y,w = P σ

y,s�w + q2P σ
s�y,s�w − δ · q2P σ

s�y,rs�w.+ δ′ · q(P σ
1,s�w − P σ

s,s�w),

where we define

δ =

{
1 if s ∈ DesL(rs� w),

0 otherwise
and δ′ =

{
1 if y = 1 and s = s∗ and w �= srs,

0 otherwise.

Proof. Everything follows by combining Lemma 3.6 with Corollary 2.7. It is straight-
forward to check that the lemma holds if y �< w, so assume y < w. Let δ′′ = δsy,ys∗

and note by hypothesis that sw �= ws∗. By Corollary 2.7 we therefore have

(3.4) P σ
y,w = P σ

y,s�w + q2P σ
s�y,s�w + δ′′q(P σ

y,s�w − P σ
s�y,s�w)− Σ

where
Σ =

∑
z∈I∗; sz<z
y≤z<w

v�(w)−�(z)mσ(z
s−→ s� w)P σ

y,z.

From the preceding lemma we know that mσ(z
s−→ s � w) = 1 if z = rs � w or

(z, s�w) = (s, r), and mσ(z
s−→ s�w) = 0 otherwise. The sum Σ in (3.4) includes

a summand indexed by z = rs � w if and only if δ = 1. On the other hand, if
s�w = r then the sum includes a summand indexed by z = s if and only if s = s∗.
Since P σ

y,s = 1 if y ∈ {1, s} and P σ
y,s = 0 otherwise, we conclude that

P σ
y,w = P σ

y,s�w + q2P σ
s�y,s�w + δ′′ · q(P σ

y,s�w − P σ
s�y,s�w)− δ · q2P σ

y,rs�w − δ′′′ · q
where we define

δ′′′ =

{
1 if y = 1 and s = s∗ and w = srs,

0 otherwise.

Note that if δ = 1 then P σ
y,rs�w = P σ

s�y,rs�w by Corollary 2.7. Thus to finish our
proof, it is enough to check that

δ′′(P σ
y,s�w − P σ

s�y,s�w)− δ′′′ = δ′(P σ
1,s�w − P σ

s,s�w).

This is clear if y = 1 and s = s∗ and w �= srs since then δ′ = δ′′ = 1 and δ′′′ = 0.
On the other hand, if y = 1 and s = s∗ but w = srs then δ′ = 0 and δ′′ = δ′′′ = 1
and P σ

y,s�w − P σ
s�y,s�w = P σ

1,r = 1, which again gives equality. Finally, if y �= 1 or
s �= s∗ then δ′ = δ′′ = δ′′′ = 0 and our equation again holds. �
3.3. Four technical propositions. To prove Conjectures A′ and B′ for the univer-
sal Coxeter system (W,S) we require an analogue of Proposition 3.4. The requisite
statement splits into four somewhat more technical propositions, which we prove
here. The Coxeter system (W,S) is always assumed to be universal in this section
(and we stop stating this condition in our results).

Mirroring the notation Py,z;w from (3.1), given y, z, w ∈ I∗ with y ≤ z, we define

(3.5) P σ
y,z;w

def
= P σ

y,w − P σ
z,w.

Also, given elements w1, w2, . . . , wk ∈ W we write 〈w1, w2, . . . , wk〉 for the subgroup
they generate. Finally, recall from Theorem-Definition 2.3 that we denote the rank
function on (I∗,≤) by

ρ : I∗ → N,

so that ρ(w) is the length of any reduced I∗-expression for w ∈ I∗.



102 ERIC MARBERG

At least one half of the following result is well-known, being equivalent to the fact
that the Kazhdan-Lusztig polynomials of dihedral Coxeter systems are all constant.

Proposition 3.8. Let y, z, w ∈ I∗ with y ≤ z. If r, s ∈ S such that w ∈ 〈r, s〉, then

P σ
y,z;w = Py,z;w =

{
1 if y ≤ w and z �≤ w,

0 otherwise.

Proof. If suffices to show that P σ
y,w = Py,w = 1 if y ≤ w; however, this follows by a

straightforward argument using induction on the length of w and Lemmas 3.3 and
3.7. In particular, the base cases for our induction are given by Corollary 2.7 and
Lemma 2.9, which show that P σ

y,w = 1 if y ≤ w and ρ(w) ≤ 1, and that Py,w = 1 if
y ≤ w and �(w) ≤ 1. �

For the duration of this section we adopt the following specific setup: fix y, z ∈ I∗
with y ≤ z and assume w ∈ I∗ has the form

(3.6) w = srsrs · · ·︸ ︷︷ ︸
k+1 factors

�u

where

• k is a positive integer;
• r, s ∈ S such that r �= s and s /∈ DesL(y) and s /∈ DesL(z);
• u ∈ I∗ such that {r, s} ∩DesL(u) = ∅.

In addition, define a ∈ 〈r, s〉 ⊂ W as the element

(3.7) a = · · · srsrs︸ ︷︷ ︸
k factors

and let y′, z′, w′ ∈ I∗ denote the twisted involutions

(3.8) y′ = a� y and z′ = a� z and w′ = a� w.

Observe that ρ(y′) = ρ(a)+ ρ(y) and ρ(z′) = ρ(a)+ ρ(z) and ρ(w′) = ρ(u)+1, and
that clearly y′ ≤ z′ in the Bruhat order. In addition, w′ is given by either s� u or
r � u, depending on the parity of k. We now have our second proposition.

Proposition 3.9. Suppose w /∈ 〈r, s〉 and either y �= 1 or s �= s∗. Then

(a) P σ
y,z;w = P σ

y,z;sws∗ + q2kP σ
y′,z′;w′ .

(b) Py,z;w = Py,z;sws∗ + q2kPy′,z′;w′ + 2qkPay,az;aws∗ .

Remark. The best way of making sense of this and the next two propositions is
through pictures. The recurrences in each proposition are conveniently illustrated
as trees whose nodes are labelled by the polynomials P σ

y,z;w or Py,z;w and whose
edges are labelled by powers of q; see Figures 1, 2, 3, 4, 5, and 6. In these diagrams,
the branches at each level indicate one application of Lemma 3.7 or Lemma 3.3;
these lemmas add two or three children to a given node while possibly also canceling
a node two levels down the tree. This cancelation accounts for the chains of k single-
child nodes, which appear as dashed lines.

Proof. First consider Figure 1. The proof of part (a) is very similar to that of
Proposition 3.4, but using Lemma 3.7 in place of Lemma 3.3. The argument is en-
tirely analogous because, under our current hypotheses, whenever we apply Lemma
3.7 the second indicator δ′ defined in that result is zero.
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Pσ
y,z;w

Pσ
y,z;sws∗

��
1 �����
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y′,z′;w′

��
q2

�������

Figure 1. Labelled tree illustrating part (a) of Proposition 3.9.

Now consider Figure 2. To prove part (b), we first apply the right-handed version
of Proposition 3.4 to Py,z;w and then apply the left-handed version of Proposition
3.4 to the result. In detail, the first application gives

Py,z;w = Py,z;ws∗ + qkPya∗−1,za∗−1;wa∗−1

while the second gives Py,z;ws∗ = Py,z;sws∗ + qkPay,az;aws∗ and

Pya∗−1,za∗−1;wa∗−1 = Pya∗−1,za∗−1;swa∗−1 + qkPy′,z′;w′ .

Since Pay,az;aws∗ = Pya∗−1,za∗−1;swa∗−1 by Lemma 2.9 combining the preceding
equations gives the desired recurrence. �
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�������

• ��
q ������� Py,z;sws∗
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�
�

�
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q

�������
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��
q
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q ������� Pay,az;aws∗
��

1
�����

•��

�
�

�
�

Py′,z′;w′
��
q

�������

Figure 2. Labelled tree illustrating part (b) of Proposition 3.9.

We proceed immediately to our next proposition.

Proposition 3.10. Suppose w /∈ 〈r, s〉 and y = 1 �= z and s = s∗ and r = r∗.
Then there are elements u0, u1, . . . , uk ∈ I∗ and z1, z2, . . . , zk ∈ W with ui ≤ ui+1

and ui ≤ zi such that

(a) P σ
y,z;w = P σ

y,z;sws + q2kP σ
y′,z′;w′ +

∑
0≤i<k q

i+kP σ
ui,ui+1;w′ .
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(b) Py,z;w = Py,z;sws+q2kPy′,z′;w′ +
∑

0≤i<k q
i+k

(
Pui,ui+1;w′ + 2Pui+1,zi+1;w′

)
.

Proof. The twisted involutions u0, u1, . . . , uk ∈ I∗ are defined as follows:

• If k− i is even then let ui = (· · · srsrs)� 1, where (· · · srsrs) has i factors.
• If k − i is odd then let ui = (· · · rsrsr)� 1, where (· · · rsrsr) has i factors.
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� � � � � � •��

� � � � � �
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q
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��
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· · · Pσ

uk−2,uk−1;w
′

��
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���������
Pσ
uk−1,uk;w

′

��
q2

���������
Pσ
y′,z′;w′

��
q2

���������

Figure 3. Labelled tree illustrating part (a) of Proposition 3.10

Consider Figure 3. To prove part (a), we note that Lemma 3.7 implies

P σ
y,z;w = P σ

1,z;s�w + q2(P σ
s,s�z;s�w − δ · P σ

s,s�z;rs�w) + qP σ
1,s;s�w

where δ = 0 if k = 1 and δ = 1 otherwise. If δ = 1 then Proposition 3.9 gives
P σ
s,s�z;s�w = P σ

s,s�z;rs�w + q2(k−1)P σ
y′,z′;w′ ; by substituting this into the previous

equation we get in either case

(3.9) P σ
y,z;w = P σ

1,z;s�w + q2kP σ
y′,z′;w′ + qP σ

1,s;s�w.

If k = 1 then this equation coincides with the recurrence in part (a), and if
k > 1 then by induction (with the parameters (k, r, s, y, z, w) replaced by (k −
1, s, r, 1, s, s� w)) we may assume that

P σ
1,s;s�w = P σ

1,s;rs�w + q2(k−1)P σ
uk−1,uk;w′ +

∑
0≤i<k−1

qi+k−1P σ
ui,ui+1;w′ .

Since here P σ
1,s;rs�w = P σ

1,1;rs�w = 0 as s ∈ DesL(rs�w), substituting the previous
equation into (3.9) establishes part (a) for all k.

Before proving part (b) we must define the elements zi ∈ W . For this, we first
define an intermediate sequence z̃1, z̃2, . . . , z̃k+1 ∈ W in the following way. Set
z̃k+1 = az where a is given by (3.7), and for i ≤ k define z̃i inductively by these
cases:

• If k − i is even then let z̃i be the shorter element in {z̃i+1, z̃i+1r
∗}.

• If k − i is odd then let z̃i be the shorter element in {z̃i+1, z̃i+1s
∗}.

Note by construction that z̃ir
∗ > z̃i if k − i is even and z̃is

∗ > z̃i if k − i is odd.
Finally, define z1, z2, . . . , zk ∈ W as follows:
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• If k − i is even then let

zi = z̃i(rsrsr · · · )∗

where (rsrsr · · · ) has i− 1 factors.
• If k − i is odd then let

zi = z̃i(srsrs · · · )∗

where (srsrs · · · ) has i− 1 factors.

Note that by construction �(zi) = �(z̃i) + i − 1. Note also that since we assume
s = s∗ and r = r∗, the ∗’s in the preceding bullet points are superfluous; however,
these will be significant in the proof of the next proposition when we refer to the
definition of uk−1, uk, and zk.
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Figure 4. Labelled tree illustrating part (b) of Proposition 3.10

Consider Figure 4. To prove part (b), we note from Proposition 3.4 that

Py,z;w = P1,z;sw + qkPa,az;aw = P1,z;ws + qkPas,az;aw.

Here the second equality follows from properties in Lemma 2.9 (in particular, the
fact that Py,w = Pys,w if ws < w). One checks similarly that applying (the left-
and right-handed versions of) Proposition 3.4 to the terms on the right gives

(3.10) Py,z;w = P1,z;sws + qkPa,z̃k;aws + qkPasr,z̃k;aws + q2kPy′,z′;w′ .

From here, it is a straightforward exercise to check the identities

Pa,z̃k;aws =

k−1∑
i=0

qiPui+1,zi+1;w′ and Pasr,z̃k;aws =

k−1∑
i=0

qiPui,zi+1;w′
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which on substitution afford the desired recurrence (since Pui−1,zi;w′ + Pui,zi;w′ =
Pui−1,ui;w′ + 2Pui,zi;w′). In particular, one obtains these identities by applying
the right-handed version Proposition 3.4 to the left-hand sides, and then applying
the proposition again to the term in the result with coefficient one, repeating this
process until the third index of every polynomial is w′. �

For this section’s final proposition, it is convenient to let y′′, z′′, w′′ ∈ W denote
the elements

(3.11) y′′ = a and z′′ =

{
azr∗ if r∗ ∈ DesR(z),

az otherwise
and w′′ = awsr∗.

We remark that in the notation of the proof of the previous proposition, the element
z′′ = z̃k. Thus we also have zk = z′′(rsrsr · · · )∗ where (rsrsr · · · ) has k−1 factors.

Proposition 3.11. Suppose y = 1 �= z and s = s∗ and r �= r∗ (so that automati-
cally w /∈ 〈r, s〉). Then, with uk−1, uk ∈ I∗ and zk ∈ W defined as in the proof of
Proposition 3.10, we have

(a) P σ
y,z;w = P σ

y,z;sws + q2kP σ
y′,z′;w′ + q2k−1P σ

uk−1,uk;w′ .

(b) Py,z;w = Py,z;sws + q2kPy′,z′;w′ + q2k−1
(
Puk−1,uk;w′ + 2Puk,zk;w′

)
+ E where

E =

{
2qkPy′′,z′′;w′′ if k > 1,

0 if k = 1.

Pσ
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Pσ
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��
1 ������

Pσ
1,s;s�w
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0
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� � � � � �
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q2

���������
Pσ
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��
q2

���������

Figure 5. Labelled tree illustrating part (a) of Proposition 3.11

Proof. Consider Figure 5. To prove part (a), we first note that the argument used
to show (3.9) in the previous proposition remains valid here and gives

P σ
y,z;w = P σ

1,z;s�w + q2kP σ
y′,z′;w′ + qP σ

1,s;s�w.

If k = 1 then (using the definitions in the proof of Proposition 3.10) we have u0 = 1
and u1 = s and so this equation coincides with the desired recurrence. If k > 1,
then since r �= r∗, we can apply Proposition 3.8 with the parameters (k, r, s, y, z, w)
replaced by (k − 1, s, r, 1, s, s� w) to obtain

P σ
1,s;s�w = P σ

1,s;rs�w + q2(k−1)P σ
uk−1,uk;w′ .
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Here uk−1 = (· · · rsrsr)�1 where (· · · rsrsr) has k−1 factors and uk = (· · · srsrs)�
1 where (· · · srsrs) has k factors. Substituting this identity into our formula for
P σ
y,z,w then establishes part (a) for all k.
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Figure 6. Labelled tree illustrating part (b) of Proposition 3.11
(when k > 1)

To prove part (b), consider Figure 6 and observe that it follows by successive
applications of Propositions 3.4, exactly as in the proof of Proposition 3.10, that

Py,z;w = P1,z;sws + qkPa,z′′;aws + qkPas,z′′;aws + q2kPy′,z′;w′ .

Note that the third term on the right, qkPas,z′′;aws, differs from the analogous
equation (3.10) above; this is because now we have asr∗ �< as since r �= r∗.

Now, if k = 1 then uk−1 = u0 = as = 1 and uk = u1 = a = s and zk =
z1 = z′′ and w′ = aws, so the preceding formula for Py,z;w coincides with the
desired recurrence as Puk−1,zk;w′+Puk,zk;w′ = Puk−1,uk;w′+2Puk,zk;w′ . Alternatively,
if k > 1 then the right-handed version of Proposition 3.4 with the parameters
(k, r, s, y, z, w) replaced by (k − 1, s, r, a, z′′, aws) or (k − 1, s, r, as, z′′, aws) gives

Pa,z′′;aws = Py′′,z′′;w′′ + qk−1Puk,zk;w′′ ,

Pas,z′′;aws = Pas,z′′;w′′ + qk−1Puk−1,zk;w′′ .

Since w′′s < w′′ as k > 1, we have Pas,z′′;w′′ = Pa,z′′;w′′ = Py′′,z′′;w′′ , and so substi-
tuting these two identities into our previous equation gives the desired recurrence
in all cases. �
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Our first application of these results is the following theorem, which shows that
the perhaps most natural analogues of Conjectures A and B for twisted involutions
(which are false in general) do hold in the universal case.

Theorem 3.12. If (W,S) is a universal Coxeter system and ∗ ∈ Aut(W ) is any
S-preserving involution, then the difference P σ

y,w − P σ
z,w has nonnegative integer

coefficients for all y, z, w ∈ I∗ with y ≤ z in the Bruhat order. In particular,
P σ
y,w ∈ N[q] for each y, w ∈ I∗.

Proof. The proof is by induction on ρ(w), and is similar to that of Theorem 3.5. Fix
y, z, w ∈ I∗ with y < z. If ρ(w) ≤ 1 then the theorem follows from Proposition 3.8.
Suppose ρ(w) ≥ 2, and that s ∈ DesL(w). By Corollary 2.7 we may assume that s /∈
DesL(y) and s /∈ DesL(z), in which case one checks that the triple (y, z, w) satisfies
the hypotheses of one of Propositions 3.8, 3.9, 3.10, or 3.11. These propositions
then imply P σ

y,z;w ∈ N[q] by induction. �

Next, as the main result of this section we prove that Conjectures A′ and B′

hold for universal Coxeter systems.

Theorem 3.13. If (W,S) is a universal Coxeter system and ∗ ∈ Aut(W ) is any
S-preserving involution, then the polynomials P+

y,w − P+
z,w and P−

y,w − P−
z,w have

nonnegative integer coefficients for all y, z, w ∈ I∗ with y ≤ w in the Bruhat order.
In particular, P+

y,w ∈ N[q] and P−
y,w ∈ N[q] for each y, w ∈ I∗.

Proof. Recall that the coefficients of Py,z;w ± P σ
y,z;w are all even by Proposition

2.10. Since Py,z;w and P σ
y,z;w both have positive coefficients by Theorems 3.5 and

3.12, it suffices just to show that Py,z;w − P σ
y,z;w ∈ N[q] for y, z, w ∈ I∗ with y < z.

One can prove this fact by induction on ρ(w) using the same argument as in the
proof of Theorem 3.12. The same inductive argument works because the differences
between parts (a) and (b) in each of our propositions in this section involves only
polynomials Py,z;w ∈ N[q] and differences Py,z;w − P σ

y,z;w. �

3.4. Structure constants. In the rest of this paper, we redirect our focus to Con-
jecture C′. Continue to assume (W,S) is a universal Coxeter system. This section
describes an inductive method of computing the Laurent polynomials (hx,y;z)x,y,z∈W

and
(
hσ
x,y;z

)
x∈W, y,z∈I∗

, which we recall from (1.3) are the structure constants in

A = Z[v, v−1] satisfying

cxcy =
∑
z∈W

hx,y;zcz ∈ Hq and CxAy =
∑
z∈I∗

hσ
x,y;zAz ∈ Mq2 .

We begin by recollecting some relevant results of Dyer [5] concerning hx,y;z in the
universal case. The following appears as [5, Definition 3.11].

Definition 3.14. Assume (W,S) is a universal Coxeter system. Let w ∈ W and
n = �(w), and suppose si ∈ S such that w = s1s2 · · · sn. For each integer j ∈ Z,
define c(w, j) ∈ Hq recursively according to the following cases:

(a) If 2 ≤ j ≤ n− 1 (so that n ≥ 3) and sj−1 = sj+1, then set

c(w, j) = cw′ + c(w′, j − 1), where w′ = s1 · · · ŝj ŝj+1 · · · sn.
Here, we write ŝj to indicate that the factor sj is omitted.

(b) Otherwise set c(w, j) = 0.
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The following result of Dyer [5, Theorem 3.12] gives the decomposition of the
product cxcy in terms of the Kazhdan-Lusztig basis of Hq, and shows that the
Laurent polynomials (hx,y;z)x,y,z∈W have nonnegative coefficients, and are in fact

polynomials in v+ v−1 with nonnegative integer coefficients. (This latter property
fails for other Coxeter systems.)

Theorem 3.15 (Dyer [5]). Assume (W,S) is universal. Let x, y ∈ W and n = �(x).
Then

cxcy =

{
(v + v−1) (cxsy + c(xsy, n)) if DesR(x) = DesL(y) = {s} �= ∅,

cxy + c(xy, n) + c(xy, n+ 1) otherwise.

Remark. The preceding theorem differs from the corresponding statement in [5] as
a result of our notational conventions. In [5, Theorem 3.12], Dyer writes “Cw” to
denote the element of Hq which in our notation is written∑

y∈W

(−v)�(w)−�(y) · Py,w(q
−1) · v−�(y) · ty.

This element is just (−1)�(w) · ι(cw), where ι is the A-algebra automorphism of
Hq with tw �→ (−q)�(w) · t−1

w−1 for w ∈ W . (When checking this, it helps to recall
cw = cw.) This observation transforms Dyer’s results into what is stated here.

Moving on to the analogous decomposition of CxAy, we have this lemma. Recall
from Theorem 2.6 that if s ∈ S then Cs = q−1(Ts + 1) ∈ Hq2 .

Lemma 3.16. Assume (W,S) is universal. Suppose s ∈ S and w ∈ I∗.

(a) If s ∈ DesL(w) then CsAw =
(
q + q−1

)
Aw.

(b) If s /∈ DesL(w) then

CsAw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Asws∗ +Arwr∗ if DesL(w) = {r} and DesL(rwr

∗) = {s},
Asws∗ +As if w ∈ S and s = s∗,

(v + v−1)As if w = 1 and s = s∗,

Asws∗ otherwise.

Proof. Part (a) is immediate from Theorem 2.6. If w = 1 then mσ(y
s−→ w) =

mσ(y
s−→ 1) = 0 for all y ∈ I∗ with sy < y so by Theorem 2.6 we have CsA1 =

(v + v−1)cAs�1 where c = δs,s∗ . This proves part (b) when w = 1.
For the remaining cases, assume w �= 1 and DesL(w) = {r} �= {s}. Combining

Theorem 2.6 and Lemma 3.6 gives CsAw = As�1 +
∑

y∈X Ay, where X ⊂ I∗ is
the subset which contains s if s = s∗ and w = r ∈ S, and which contains rwr∗

if rwr∗ ∈ I∗ and DesL(rwr
∗) = {s}. Since rwr∗ always belongs to I∗ and since

DesL(rwr
∗) = {s} implies w /∈ S, the set X contains at most one element and our

formula CsAw = As�1 +
∑

y∈X Ay reduces to the cases in the lemma. �

We now make this definition, after Definition 3.14.

Definition 3.17. Assume (W,S) is a universal Coxeter system. Let w ∈ I∗ and
n = ρ(w), and suppose si ∈ S such that w = s1� s2� · · ·� sn�1. For each integer
j ∈ Z, define A(w, j) ∈ Mq2 recursively according to the following cases:

(a) If 2 ≤ j ≤ n− 1 (so that n ≥ 3) and sj−1 = sj+1, then set

A(w, j) = Aw′ +A(w′, j − 1)
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where

w′ = s1 � · · ·� ŝj � ŝj+1 � · · ·� sn.

Here, we again write ŝj to indicate that the factor sj is omitted.
(b) If j = n and n ≥ 2 and {sn−1, sn} ⊂ I∗, then set

A(w, j) = Aw′ +A(w′, n− 1), where w′ = s1 � · · ·� sn−1.

(c) Otherwise set A(w, j) = 0.

Using this notation, the following analogue of Theorem 3.15 now decomposes
the product CxAy in terms of the distinguished basis (Az)z∈I∗

of Mq2 . This result

shows that the Laurent polynomials
(
hσ
x,y;z

)
x∈W,y,z∈ı

have nonnegative coefficients,

but in contrast to our previous situation, hσ
x,y;z does not typically have nonnegative

coefficients when written as a polynomial in v + v−1.

Theorem 3.18. Assume (W,S) is universal. If x ∈ W and y ∈ I∗ and n = �(x),
then

CxAy =

⎧⎪⎪⎨
⎪⎪⎩

(v + v−1) (Ax�1 + A(x� 1, n)) if x �= 1, y = 1 and DesR(x) ⊂ I∗,

(q + q−1) (Axs�y + A(xs� y, n)) if DesR(x) = DesL(y) = {s} �= ∅,

Ax�y +A(x� y, n) + A(x� y, n+ 1) otherwise.

Proof. The proof is similar to that of [5, Theorem 3.12], and proceeds by induction
on n. If n ∈ {0, 1} then the theorem reduces to Lemma 3.16 (checking this fact is
a healthy exercise which we leave to the reader), so we may assume �(x) ≥ 2 and
that

x = x′rs for some x′ ∈ W and r, s ∈ S with �(x′) = �(x)− 2.

It follows from Theorem 3.15 (noting that the Z-linear mapHq → Hq2 with vn �→ qn

and tw �→ Tw is a ring embedding with cw �→ Cw) that

(3.12) Cx =

{
CxsCs − Cx′ if DesR(x

′) = {s},
CxsCs otherwise.

It suffices to consider the following five cases, exactly one of which must occur:

(i) Suppose y = 1. Then A(x� y, n+ 1) = 0 and so we wish to show that

CxA1 = (v + v−1)c · (Ax�1 +A(x� 1, n))

where c = |{s} ∩ I∗|.
(ii) Suppose s ∈ DesL(y). We then wish to show that

CxAy = (q + q−1) (Axs�y +A(xs� y, n)) .

(iii) Suppose y ∈ S and s /∈ DesL(y) and s = s∗. Then A(x � y, n + 1) =
Ax�1 +A(x� 1, n) and so we wish to show

CxAy = Ax�y +A(x� y, n) +Ax�1 +A(x� 1, n).

(iv) Suppose ρ(y) = 1 and s /∈ DesL(y) but either y /∈ S or s �= s∗. Then
A(x� y, n+ 1) = 0 and so we wish to show

CxAy = Ax�y +A(x� y, n).

(v) Suppose ρ(y) ≥ 2 and s /∈ DesL(y). We then want

CxAy = Ax�y +A(x� y, n) +A(x� y, n+ 1).



POSITIVITY CONJECTURES: THE UNIVERSAL CASE 111

The proof of each case is similar, and involves substituting (3.12) for Cx and then
applying Lemma 3.16 and induction. Case (v) is the most complicated, but its proof
is nearly the same as that of [5, Lemma 6.2]. We demonstrate (i) as an example
and leave the rest to the reader.

For case (i), suppose y = 1 and let c = |{s} ∩ I∗|; recall that DesR(x) = {s} by
assumption. If DesR(x

′) �= {s} then Cx = Cx′rCs by (3.12) and A(x�1, n−1) = 0,
in which case by Lemma 3.16 and then induction we get

CxA1 = Cx′rCsA1

= (v + v−1)c · Cx′rAs�1

= (v + v−1)c · (Ax�1 +A(x� 1, n− 1)︸ ︷︷ ︸
=0

+A(x� 1, n)),

which is what we want to show. Alternatively, if DesR(x
′) = {s} then Cx =

Cx′rCs − Cx′ by (3.12) and A(x � 1, n − 1) = Ax′
�1 + A(x′ � 1, n − 2), so by

induction Cx′A1 = (v + v−1)c · A(x � 1, n − 1). In this case by Lemma 3.16 and
then induction we have

CxA1 = (Cx′rCs − Cx′)A1

= (v + v−1)c · Cx′rAs�1 − Cx′A1

= (v + v−1)c · (Ax�1 +A(x� 1, n)) + (v + v−1)c ·A(x� 1, n− 1)− Cx′A1︸ ︷︷ ︸
=0

,

which is again the desired formula. �

Wrapping up, we have this corollary immediately from Theorems 3.15 and 3.18.

Corollary 3.19. If (W,S) is a universal Coxeter system then each of the families

(hx,y;z)x,y,z∈W and (h̃x,y;z)x,y,z∈W and (hσ
x,y;z)x∈W, y,z∈I∗

consists of Laurent polynomials in A = Z[v, v−1] with nonnegative coefficients.

3.5. Proof of the positivity conjecture for universal structure constants.
As previously, (W,S) is a universal Coxeter system with a fixed S-preserving involu-
tion ∗ ∈ Aut(W ). We devote this final section to proving Conjecture C′ for univer-

sal Coxeter systems; i.e., that the Laurent polynomials h±
x,y;z = 1

2

(
h̃x,y;z ± hσ

x,y;z

)
defined in Section 1.5 always have nonnegative coefficients.

To begin, it is useful to recall the following notation from the proof of Proposition
2.11. Given w ∈ W , let w† = w∗−1 and more generally let h �→ h† denote the
A-linear map Hq → Hq with (tw)

† = tw† for w ∈ W . Observe that † is an anti-
automorphism (of A-algebras) and that (cw)

† = cw† for all w ∈ W by Lemma 2.9.
We now state two technical lemmas associated with Definitions 3.14 and 3.17.

Lemma 3.20. Assume (W,S) is a universal Coxeter system. Suppose u, t ∈ W
such that �(u � t) = 2�(u) + �(t) and �(t) ∈ {0, 1} and t = t∗. Fix an integer
n ≤ �(u). Then there exists a unique integer k ≥ 0 and a unique sequence of
elements

u = u0 > u1 > · · · > uk

in W (descending with respect to the Bruhat order), such that c(ut, n) =
∑k

i=1 cuit.
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This sequence has the following additional properties:

(a) For each 0 ≤ i ≤ k we have �(ui � t) = 2�(ui) + �(t).
(b) For any w ∈ W with �(utw) = �(u) + �(t) + �(w) we have

c(utw, n) =

k∑
i=1

cuitw + c(uktw, n− k).

(c) A(u� t, n) =
∑k

i=1 Aui�t + δ ·A(uk � t, n− k) where

δ =

{
1 if n− k = �(uk) + 1,

0 otherwise.

Remark. Note that we may have k = 0 in this lemma; this indicates that c(ut, n) =
0. In this case the sums

∑n
k=1 are considered to be zero, and we automatically

have δ = 0 in part (c) since n < �(u0) + 1 by hypothesis.

Proof. We sketch the proof of this lemma, as everything derives from the definitions
in a straightforward way by induction on �(u). The existence of the sequence of
elements u = u0 > u1 > · · · > uk follows from Definition 3.14 by inspection, as
does property (a). Property (b) holds because the first k+1 terms in the expansion
of c(utw, n), which one gets by applying Definition 3.14 successively, depend only
on the first n+ k factors in the unique reduced expression for utw. Part (c) follows
from the fact that the same sequence of elements in S gives both the unique reduced
expression for ut and the unique reduced I∗-expression for u � t. Noting this and
comparing Definitions 3.14 and 3.17 (while remembering n ≤ �(u)), we deduce that

A(u� t, n) =
∑k

i=1 Aui�t+A(uk� t, n−k), and that A(uk� t, n−k) is zero unless
n − k = ρ(uk � t). The latter condition is equivalent to having both �(t) = 1 and
n− k = �(uk)+1; however, if �(t) = 0 while n− k = �(uk)+1 then A(uk � t, n− k)
is zero by definition. �

In what follows, we let Φ : Mq2 → Hq denote the A-linear map with Aw �→ cw
for w ∈ I∗.

Lemma 3.21. Assume (W,S) is a universal Coxeter system. Suppose x ∈ W and
s ∈ S ∩ I∗ such that s /∈ DesR(x). If n = �(x), then

c(x� s, n+ 1) = Φ (A(x� s, n+ 1)) .

Proof. If x = 1 or if DesR(x) �⊂ I∗ then the lemma holds since c(x� s, n+ 1) and
A(x� s, n+ 1) are both zero. Assume x �= 1 so that x = x′r for some y ∈ W and
r ∈ S ∩ I∗ with �(x′) = �(x) − 1. Then c(x � s, n + 1) = cx′

�r + c(x′ � r, n) and
A(x′� s, n+1) = Ax′

�r +A(x′� r, n), so the lemma follows by induction on n. �

We may now state our final result, which establishes Conjecture C′ in the uni-
versal case.

Theorem 3.22. If (W,S) is a universal Coxeter system and ∗ ∈ Aut(W ) is any
S-preserving involution, then the Laurent polynomials h±

x,y,z defined by (1.4) have
nonnegative integer coefficients for all x ∈ W and y, z ∈ I∗.

Proof. Let H+
q = N[v, v−1]-span{cw : w ∈ W} denote the set of elements in Hq

whose coefficients with respect to the Kazhdan-Lusztig basis (cw)w∈W have non-

negative coefficients. Note that H+
q is preserved by † since (cw)

† = cw† .
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Let x ∈ W and y ∈ I∗. By Theorems 3.15 and 3.18 we know that cxcycx† ∈ H+
q

and Φ(CxAy) ∈ H+
q , and if we write cxcycx† ± Φ(CxAy) =

∑
z∈W p±z cz for some

polynomials p±z ∈ Z[v, v−1], then by definition h±
x,y;z = 1

2p
±
z for each z ∈ I∗. It

is thus immediate that every h+
x,y;z has nonnegative coefficients, and to prove the

theorem it is enough to show that

(3.13) cxcycx∗−1 − Φ(CxAy) ∈ H+
q .

To this end, let n = �(x). If n = 0 then (3.13) automatically holds since the
left-hand side is zero, so we may assume n ≥ 1. There are three cases, which we
consider in turn:

(a) Suppose y = 1. Expand the products cxcycx† = cxcx† and CxAy = CxA1

according to Theorems 3.15 and 3.18. These expansions take one of two
forms according to whether s = s∗, and applying Lemma 3.21 to the terms
in either case shows that (3.13) holds.

(b) Suppose y �= 1 and DesL(y) �= DesR(x). Apply Theorem 3.15 to expand
the product cxcycx† , by expanding first cxcy and then (cxcy)cx† . There are
again two cases according to whether y ∈ S. On comparing the resulting
terms to Theorem 3.18 (while noting Lemma 3.21), one finds that (3.13)
will hold if we can prove the following claims:
(b1) If �(y) ≥ 1 then we have c(xy, n)cx† − Φ (A(x� y, n)) ∈ H+

q .

(b2) If �(y) ≥ 2 then we have c(xy, n+ 1)cx† − Φ (A(x� y, n+ 1)) ∈ H+
q .

To prove (b1), write y = ztz† where z, t ∈ W such that �(t) ≤ 1 and t = t∗

and �(ztz†) = 2�(z) + �(t). Now let u = xz and let u = u0 > u1 > · · · > uk

be the corresponding sequence of elements in W described in Lemma 3.20,

so that c(ut, n) =
∑k

i=1 cukt. Using part (b) of Lemma 3.20 and the fact
that † is an anti-automorphism, we then have

c(xy, n)cx† = c(utz†, n)cx†

=

(
k∑

i=1

cuitz† + c(uktz
†, n− k)

)
cx†

=

(
cx

k∑
i=1

czt(ui)†

)†

+ c(uktz
†, n− k)cx†

=

(
k∑

i=1

c(ut(ui)
†, n)

)†

+
(
an element of H+

q

)
.

Here, the last equality follows by applying Theorem 3.15 to the terms in

the sum on the second line. Since each c(ut(ui)
†, n) =

∑k
j=1 cujt(ui)† +(

an element of H+
q

)
by parts (a) and (b) of Lemma 3.20, after collecting

terms in H+
q we get

c(xy, n)cx† =
k∑

i=1

cui�t + c(uk � t, n− k) +
(
an element of H+

q

)
.
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By part (c) of Lemma 3.20, however, we have A(x� y, n) =
∑k

i=1 Aui�t +
δ · A(uk � t, n − k), where δ ∈ {0, 1} is zero unless n − k = �(xk) + 1. If
δ = 1 then A(uk � t, n − k) = 0 unless t ∈ S ∩ I∗, and so (b1) follows by
Lemma 3.21.

One proves (b2) by replacing n with n + 1 in the preceding argument.
Our applications of Lemma 3.20 remain valid after this substitution because
we assume �(y) ≥ 2, which implies �(u) ≥ 1 and in turn n+ 1 ≤ �(u).

(c) Suppose y �= 1 and DesR(x) = DesL(y) = {s} for some s ∈ S. Using
Theorems 3.15 and 3.18 to expand the products (cxcy)cx† and CxAy gives

cxcycx† = (q + 2 + q−1) · cxs�y + (q + 2 + q−1) · c(xs� y,m)

+ (v + v−1) · c(xsy, n)cx†

where m = �(xsy) = n+ �(y)− 1 and

CxAy = (q + q−1) ·Axs�y + (q + q−1) ·A(xs� y, n).

Note that c(xs� y,m) ∈ H+
q and c(xsy, n)cx† ∈ H+

q automatically.
We have two cases to consider: either y = s ∈ I∗ or �(y) ≥ 2. In the

former case m = n, and so it follows by Lemma 3.21 that

c(xs� y,m) = c(xs� y, n) = Φ (A(xs� y, n))

and therefore (3.13) holds. To deal with the remaining case, assume �(y) ≥
2. To prove (3.13) it then suffices to show that

(3.14)
(v + v−1)c(xsy, n)cx†

= (q + q−1)Φ (A(xs� y, n)) +
(
an element of H+

q

)
.

The proof of this identity is similar to the arguments in part (b). A sketch
goes as follows. First write y = ztz† where z, t ∈ W such that �(t) ≤
1 ≤ �(z) and t∗ = t and �(ztz†) = 2�(z) + �(t). Let u = xsz and let
u = u0 > u1 > · · · > uk be the sequence of elements in W afforded by

Lemma 3.20, so that c(ut, n) =
∑k

i=1 cukt. Now, by rewriting c(xsy, n) =

c(utz†, n) in terms of the elements ui and expanding various products using
the properties in Lemma 3.20, one deduces that

c(xsy, n)cx† − (v + v−1)

(
k∑

i=1

cui�t + c(uk � t, n− k)

)
is an element of H+

q Comparing this to the formula for A(xs � y, n) in
part (c) of Lemma 3.20 then shows that (3.14) holds, as a consequence of
Lemma 3.21. �
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