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ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS
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OF REDUCTIVE p-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNERAS

ABSTRACT. Let F be a locally compact field with residue characteristic p, and
let G be a connected reductive F-group. Let U be a pro-p Iwahori subgroup of
G = G(F). Fix a commutative ring R. If 7 is a smooth R[G]-representation,
the space of invariants 7 is a right module over the Hecke algebra #H of U in
G.

Let P be a parabolic subgroup of G with a Levi decomposition P = M N
adapted to U. We complement a previous investigation of Ollivier-Vignéras
on the relation between taking U-invariants and various functor like IndIG3 and
right and left adjoints. More precisely the authors’ previous work with Herzig
introduced representations I (P, o, Q) where o is a smooth representation of
M extending, trivially on N, to a larger parabolic subgroup P(c), and Q
is a parabolic subgroup between P and P(c). Here we relate Ig(P, o, Q)Y
to an analogously defined H-module Iy (P,o¥M,Q), where Up; = UN M
and oYM is seen as a module over the Hecke algebra Hps of Ups in M. In
the reverse direction, if V is a right Has-module, we relate Iy (P,V,Q) ®
c-IndS 1 to Ig(P,V @74y, C-Ind%w 1,Q). As an application we prove that if
R is an algebraically closed field of characteristic p, and 7 is an irreducible
admissible representation of G, then the contragredient of 7 is 0 unless 7 has
finite dimension.
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1. INTRODUCTION

ekl k]

1.1. The present paper is a companion to [AHV| and is similarly inspired by the
classification results of [AHHV17]; however it can be read independently. We recall
the setting. We have a non-archimedean locally compact field F' of residue charac-
teristic p and a connected reductive F-group G. We fix a commutative ring R and
study the smooth R-representations of G = G(F).
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In [AHHVITY] the irreducible admissible R-representations of G are classified in
terms of supersingular ones when R is an algebraically closed field of characteristic
p. That classification is expressed in terms of representations Ig(P, o, Q), which
make sense for any R. In that notation, P is a parabolic subgroup of G with a Levi
decomposition P = M N and o a smooth R-representation of the Levi subgroup M;
there is a maximal parabolic subgroup P(o) of G containing P to which o inflated

to P extends to a representation ep(,(c), and @ is a parabolic subgroup of G' with
P C @ C P(o). Then

Ig(P,0,Q) = Indg(a)(ep(a)(a) ® Stg(a)),

where Ind stands for parabolic induction and Stg(g) = Indg(g) R/> Indg,(g) R, the
sum being over parabolic subgroups @’ of G with Q@ C Q' C P(o). Alternatively,
I (P,0,Q) is the quotient of Indg(eQ(a)) by ZIndg, eq/ (o) with @' as above,
where eq(c) is the restriction of ep()(c) to @, similarly for Q'

In [AHV] we mainly studied what happens to I¢(P, 0, Q) when we apply to it,
for a parabolic subgroup P; of G, the left adjoint of Indgl, or its right adjoint. Here
we tackle a different question. We fix a pro-p Iwahori subgroup U of G in good
position with respect to P, so that in particular Uy, = U N M is a pro-p Iwahori
subgroup of M. One of our main goals is to identify the R-module I (P, o, Q)%
of U-invariants, as a right module over the Hecke algebra H = Hg of U in G -
the convolution algebra on the double coset space U\G /U - in terms of the module

o over the Hecke algebra Hys of Uy in M. That goal is achieved in section [}
Theorem [4.17

1.2. The initial work has been done in [OV17, §4] where (Ind$ o) is identified. Pre-
cisely, writing M for the monoid of elements m € M with m(UNN)m~! CUNN,
the subalgebra H,,+ of H s with support in M, has a natural algebra embedding
6 into H and [OVIT7, Proposition 4.4] identifies (Ind% o)¥ with IndzM (otr) =
oUm ®%4,,, H. So in a sense, this paper is a sequel to [OV17] although some of our
results here are used in [OV17, §5].

As I¢(P, 0, Q) is only a subquotient of Indg o and taking U-invariants is only left
exact, it is not straightforward to describe Ig(P, o, Q)Y from the previous result.
However, that takes care of the parabolic induction step, so in a first approach
we may assume P(c) = G so that Ig(P,0,Q) = eg(o0) ® Stg. The crucial case
is when moreover ¢ is e-minimal, that is, not an extension ep;(7) of a smooth R-
representation 7 of a proper Levi subgroup of M. That case is treated first and the
general case in section [ only.

1.3. To explain our results, we need more notation. We choose a maximal F-split
torus 7' in G and a minimal parabolic subgroup B = ZU with Levi component
Z the G-centralizer of T. We assume that P = M N contains B and M contains
Z, and that U corresponds to an alcove in the apartment associated to T in the
adjoint building of G. It turns out that when o is e-minimal and P(o) = G, the
set Ay of simple roots of T in Lie(M NU) is orthogonal to its complement in the
set A of simple roots of T' in LieU. We assume until the end of this section that
Ap and Ay = A\ Ay are orthogonal. If Ms is the Levi subgroup - containing
Z - corresponding to As, both M and M, are normal in G, M N My = Z and
G = M M. Moreover the normal subgroup M}, of G generated by N is included in
My and G = M MJ.



PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS 121

We say that a right Hys-module V is extensible to H if TM acts trivially on V
for z € ZN M} (sectionB3). In this case, we show that there is a natural structure
of right H-module e (V) on V such that T, € H corresponding to Ugld for g € M,
acts as in the trivial character of G (section B4)). We call e3/(V) the extension of
VY to H though Hjs is not a subalgebra of 7. That notion is already present in
[Abe] in the case where R has characteristic p. Here we extend the construction to
any R and prove some more properties. In particular we produce an H-equivariant
embedding ey (V) into IndZM V (Lemma BI0). If @ is a parabolic subgroup of G
containing P, we go further and put on ey (V) ®g (Indg R and ey (V) ®r (Stg)u
structures of H-modules (Proposition [B.I5 and Corollary [B17]) - note that # is not
a group algebra and there is no obvious notion of tensor product of H-modules.

If o is an R-representation of M extensible to G, then its extension eg(o) is
simply obtained by letting M} act trivially on the space of o; moreover it is clear
that oM™ is extensible to H, and one shows easily that eq (o) = ey (c¥™) as an H-
module (section [33). Moreover, the natural inclusion of eg(c) into Ind% o induces
on taking pro-p Iwahori invariants an embedding ez (6% ) — (Ind% o) which, via
the isomorphism of [OV17], yields exactly the above embedding of H-modules of
ey (a¥™) into IndZf L, (ot

Then we show the H-modules (eq (o) ®r Indg R)Y and ey (c¥™) @ (Indg R)Y
are equal, and similarly (eg(0) ®p Stg)“and en (o) ®p (Stg)u are equal (The-

orem [4.9]).

1.4. We turn back to the general case where we do not assume that Ay, and A\ Ay
are orthogonal. Nevertheless, given a right H;-module V), there exists a largest
Levi subgroup M (V) of G - containing Z - corresponding to A UA; where A is a
subset of A\ Ajps orthogonal to Ay, such that V extends to a right H;(y)-module
enm(vy(V) with the notation of section [L3l For any parabolic subgroup @ between
P and P(V) = M(V)U we put (Definition [£.12))

In(P,V,Q) = IndZM(@M(v) (V) ®r (Stgrg}\)/l)(v))uww).

We refer to Theorem EIT for the description of the right H-module Ig(P, o, Q)%
for any smooth R-representation o of Y. As a special case, it says that when o is e-
minimal then P(o) D P(o%™) and if moreover P(o) = P(o¥™), then Ig(P, 0, Q)%
is isomorphic to Iy (P, o" Q).

Remark 1.1. In [Abe] are attached similar H-modules to (P,V, Q); here we write
them as CIy(P,V, Q) because their definition uses, instead of Indz . @ different
kind of induction, which we call coinduction. In [Abe] those modules are used
to give, when R is an algebraically closed field of characteristic p, a classifica-
tion of simple H-modules in terms of supersingular modules - that classification
is similar to the classification of irreducible admissible R-representations of G in
[AHHV17]. Using the comparison between induced and coinduced modules estab-
lished in [Vigl5bl 4.3] for any R, our Corollary E24] expresses CIy(P,V, Q) as a
module I(Py, V1, Q1); consequently we show in section that the classification
of [Abe] can also be expressed in terms of modules Iy (P, V, Q).

1.5. In a reverse direction one can associate to a right H-module V a smooth
R-representation V @y R[U\G] of G (seeing H as the endomorphism ring of the
R[G]-module R[U\G]).
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If V is a right H j/-module, we construct, again using [OV17], a natural R[G]-map
L4(P,V, Q) ® RIU\G] — IndS ) (ear) (V @2, RU\M]) 5 Stiyn)oy):

with the notation of section [[4l We show in section Bl that it is an isomorphism
under a mild assumption on the Z-torsion in V; in particular it is an isomorphism
ifp=0in R.

1.6. In the final section [G] we turn back to the case where R is an algebraically
closed field of characteristic p. We prove that the smooth dual of an irreducible
admissible R-representation V' of G is 0 unless V is finite dimensional - that result
is new if F' has positive characteristic, a case where the proof of Kohlhaase [Kol
for char(F) = 0 does not apply. Our proof first reduces to the case where V is
supercuspidal (by [AHHVIT]) then uses again the H-module V¥.

2. NOTATION, USEFUL FACTS, AND PRELIMINARIES

2.1. The group G and its standard parabolic subgroups P = M N. In all
that follows, p is a prime number and F' is a local field with finite residue field &
of characteristic p. We denote an algebraic group over F' by a bold letter, like H,
and use the same ordinary letter for the group of F-points, H = H(F'). We fix a
connected reductive F-group G. We fix a maximal F-split subtorus T and write
Z for its G-centralizer; we also fix a minimal parabolic subgroup B of G with Levi
component Z, so that B = ZU where U is the unipotent radical of B. Let X*(T)
be the group of F-rational characters of T and let ® be the subset of roots of T in
the Lie algebra of G. Then B determines a subset ®* of positive roots - the roots
of T in the Lie algebra of U- and a subset of simple roots A. The G-normalizer
Ng of T acts on X*(T) and through that action, Ng/Z identifies with the Weyl
group of the root system ®. Set N := Ng(F) and note that Ng/Z ~ N/Z; we
write W for N'/Z.

A standard parabolic subgroup of G is a parabolic F-subgroup containing B.
Such a parabolic subgroup P has a unique Levi subgroup M containing Z, so that
P = MN where N is the unipotent radical of P - we also call M standard. By a
common abuse of language to describe the preceding situation, we simply say “let
P = MN be a standard parabolic subgroup of G”; we sometimes write Np for N
and Mp for M. The parabolic subgroup of G opposite to P will be written P and
its unipotent radical N, so that P = M N, but beware that P is not standard! We
write Wy, for the Weyl group (M NN)/Z.

If P = MN is a standard parabolic subgroup of G, then M N B is a minimal
parabolic subgroup of M. If ®,; denotes the set of roots of T in the Lie algebra of
M, with respect to M N B we have <I>1+V[ =& NP®T and Ay = P NA. We also
write Ap for Ay as P and M determine each other, P = MU. Thus we obtain a
bijection P — Ap from standard parabolic subgroups of G to subsets of A, with
B corresponding to ® and G to A. If I is a subset of A, we sometimes denote by
P; = M; Ny the corresponding standard parabolic subgroup of G. If I = {a} is a
singleton, we write P, = M,N,. We note a few useful properties. If P; is another
standard parabolic subgroup of G, then P C P; if and only if Ap C Ap,; we have
Apnp, = Ap N Ap, and the parabolic subgroup corresponding to Ap U Ap, is the
subgroup (P, P;) of G generated by P and P;. The standard parabolic subgroup of
M associated to Ay N Ay, is MNP = (M N M;)(MnN N;y) [Car85, Proposition
2.8.9]. It is convenient to write G’ for the subgroup of G generated by the unipotent
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radicals of the parabolic subgroups; it is also the normal subgroup of G generated
by U, and we have G = ZG’'. For future reference, we now give a useful lemma
extracted from [AHHV1T].

Lemma 2.1. The group ZNG' is generated by the Z N M/, o running through A.
Proof. Take I = () in [AHHV17, II.6.Proposition]. O

Let vp be the normalized valuation of F'. For each a € X*(T), the homomor-
phism z — vp(a(z)) : T — Z extends uniquely to a homomorphism Z — Q that
we denote in the same way. This defines a homomorphism Z % X, (T) ® Q such
that a(v(z)) = vp(a(z)) for z € Z,a € X*(T).

An interesting situation occurs when A = I LU J is the union of two orthogonal
subsets I and J. In that case, G’ = M;M/;, M} and M/, commute with each other,
and their intersection is finite and central in G [AHHV17 I1.7 Remark 4].

2.2. I¢(P,0,Q) and minimality. We recall from [AHHV17| the construction of
I¢(P,0,Q), our main object of study.

Let o be an R-representation of M and let P, be the standard parabolic subgroup
with Ap, = A, where

A, ={a €A\ Ap | ZN M, acts trivially on o}.
We also let P(o) be the standard parabolic subgroup with
AP(O’) = A, UAp.

This is the largest parabolic subgroup P(c) containing P to which o extends, here
N C P acts on o trivially. Clearly when P C Q C P(0), o extends to @ and the
extension is denoted by eq (o). The restriction of ep(s)(0) to Q is eq(o). If there
is no risk of ambiguity, we write

e(0) = ep(e)(0).

Definition 2.2. An R[G]-triple is a triple (P, 0, Q) made out of a standard par-
abolic subgroup P = M N of G, a smooth R-representation of M, and a parabolic
subgroup @ of G with P C Q C P(c). To an R|G]-triple (P, 0,Q) is associated a
smooth R-representation of G:

IG(Pv g, Q) = Indg(o) (6(0’) ® Stg(g)),

(

where Stg(o) is the quotient of Indg )1, 1 denoting the trivial R-representation

of @, by the sum of its subrepresentations Indg,(g) 1, the sum being over the set of
parabolic subgroups Q' of G with Q C Q' C P(0o).

Note that I (P,0,Q) is naturally isomorphic to the quotient of Indg(eQ(U))

by the sum of its subrepresentations Indg,(eQ/(a)) for @ € Q' C P(o) by [AHV]
Lemma 2.5].

It might happen that o itself has the form ep(oy) for some standard parabolic
subgroup P; = M;N; contained in P and some R-representation oy of M. In that
case, P(01) = P(0) and e(0) = e(01). We say that o is e-minimal if 0 = ep(01)
implies P, = P01 = 0.
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Lemma 2.3 ([AHV) Lemma 2.9]). Let P = M N be a standard parabolic subgroup of
G and let o be an R-representation of M. There exists a unique standard parabolic
subgroup Prin,e = Mmin,o Nmin,e 0f G and a unique e-minimal representation of
Omin Of Mmin,e with 0 = ep(Omin). Moreover P(o) = P(owin) and (o) = e(omin)-

Lemma 2.4. Let P = MN be a standard parabolic subgroup of G and let o be an
e-minimal R-representation of M. Then Ap and Ap,) \ Ap are orthogonal.

That comes from [AHHVI7, I1.7 Corollary 2]. That corollary of [AHHV1T7] also
shows that when R is a field and o is supercuspidal, then ¢ is e-minimal. Lemma
2.4 shows that Ap,,, . and Ap, .y \ A are orthogonal.

Note that when Ap and A, are orthogonal of union A = Ap U A,, then G =
P(o) = MM/ and e(o) is the R-representation of G simply obtained by extending

o trivially on M.

Lemma 2.5 ([AHV] Lemma 2.11]). Let (P, 0, Q) be an R[G]-triple. Then we have
that (Pmin,o, Omin; @) is an R[G]-triple and I¢(P, 0, Q) = Ig(Pmin,o> Omin; Q)-

2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup K of
G fixing a special vertex z( in the apartment A associated to T in the Bruhat-
Tits building of the adjoint group of G. We let B be the Iwahori subgroup fixing
the alcove C in A with vertex zy contained in the Weyl chamber (of vertex x)
associated to B. We let U be the pro-p radical of B (the pro-p Iwahori subgroup).
The pro-p Iwahori Hecke ring H = H(G,U) is the convolution ring of compactly
supported functions G — Z constant on the double classes of G modulo U. We
denote by T'(g) the characteristic function of Ugld for g € G, seen as an element
of H. Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra Hpg is
R ®z H. We will follow the custom to still denote by % the natural image 1 ® h of
h e Hin Hpg.

For P = M N a standard parabolic subgroup of G, the similar objects for M are
indexed by M, we have Kp; = KNM, By = BAM, Uy = UN M, the pro-p Iwahori
Hecke ring Hyr = H(M,Uyr), T (m) the characteristic function of Uy mly, for
m € M, seen as an element of Hjs. The pro-p Iwahori subgroup U of G satisfies
the Iwahori decomposition with respect to P:

U = UnUn Uz,
where Uy =U N N, Uz =U N N. The linear map

Prin, o

(2.1) Hy S H, 0(TM(m))=T(m) (me M)

does not respect the product. But if we introduce the monoid M™* of elements
m € M contracting Uy, meaning mUnm ! C Uy, and the submodule H 1+ C Hys
of functions with support in M+, we have [VigI5b, Theorem 1.4]:

Har+ is a subring of Hpyr and Hpy is the localization of Hyr+ at an element
™ € H v central and invertible in Har, meaning Har = Unen Har+ (rM)=n. The
map Has b H s injective and its restriction 9|HM+ to H o+ respects the product.

These properties are also true when (M™*,7M) is replaced by its inverse
(M=, (7™)=Y) where M~ ={m~t e M | me M*}.

3. PRO-p IWAHORI INVARIANTS OF I (P, 0, Q)

3.1. Pro-p Iwahori Hecke algebras: Structures. Here we supplement the no-
tation of sections 2.1l and 23l The subgroups Z° = ZNK = ZNBand Z' = ZnU
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are normal in N and we put
W=N/Z° W()=N/Z', A=2/7°, N\Q) =Z/Z", Z,, =2Z°)Z".

We have N' = (NN K)Z so that we see the finite Weyl group W = N/Z as the
subgroup (N NK)/Z° of W; in this way W is the semidirect product A x W. We
put Nov = NN G'. The image Wg = W’ of Ng in W is an affine Weyl group
generated by the set S of affine reflections determined by the walls of the alcove
C. The group W’ is normal in W and W is the semidirect product W’ x Q where
Q is the image in W of the normalizer N¢ of C in A/. The length function £ on the
affine Weyl system (W', S*) extends to a length function on W such that € is the
set of elements of length 0. We also view £ as a function of W (1) via the quotient
map W (1) - W. We write

(3.1)

(w,w,w) € N xW(1) x W corresponding via the quotient maps N — W(1) — W.

When w = s in S or more generally w in Wg/, we will most of the time choose
w in NN G’ and @ in the image ;Wg of N NG’ in W(1).

We are now ready to describe the pro-p Iwahori Hecke ring H = H(G,U) [Vigl6).
We have G = UNU and for n,n’ € N we have Unld = Un'U if and only if nZ! =
n'Zt. For n € N of image w € W(1) and g € UnU we denote T,, = T'(n) = T(g)
in H. The relations among the basis elements (T ),cw (1) of H are:

(1) Braid relations: Ti,Ty = Ty for w,w’ € W(1) with f(ww’) = £(w) +

L(w').

(2) Quadratic relations: T2 = ¢sT52 + 575
for § € W(1) lifting s € S where ¢, = g (s) = [U/U N 8U(3)~!| depends only on
s, and ¢z = >, cs(t)T; for integers cz(t) € N summing to gs — 1.

We shall need the basis elements (T};)ew 1) of H defined by:

(1) T =T, for we W(1) of length ¢(w) = 0.

(2) T¢ = Ts — c; for § € W (1) lifting s € S,

(3) T}, = TuTr, for w,w' € W(1) with {(ww’) = £(w) + £(w').
We need more notation for the definition of the admissible lifts of S& in M. Let
s € S fixing a face C, of the alcove C and K, the parahoric subgroup of G fixing
Cs. The theory of Bruhat-Tits associates to Cs a certain root a; € ®* [Vigl6], §4.2].
We consider the group G’, generated by U,, UU_,_ where Uy, the root subgroup
of tay (if 2a, € @, then Us,, C U,,) and the group G. generated by U, U U_,,
where Uyy, = Uso, NKs. When u € U, — {1}, the intersection Ng NU_ uld_q,
(equal to Ng NU_, uU_,, [BT72, 6.2.1 (V5)], [Vigl6l §3.3 (19)]) possesses a single
element ny(u). The group Z, = Z NG’ is contained in Z N K, = Z%; its image in
Zj, is denoted by Zj ..

The elements ng(u) for u € U,, — {1} are the admissible lifts of s in Ng; their
images in W (1) are the admissible lifts of s in W (1). By [Vigl6, Theorem 2.2,
Proposition 4.4], when § € W (1) is an admissible lift of s, c5(t) = 0if t € Z; \ 7},
and

(3.2) cs = (gs — 1)|Z,’€’S|_1 Z T, mod p.
teZ;,

The admissible lifts of S in Mg are contained in Ng N K because K, C K when
s€S.
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Definition 3.1. An admissible lift of the finite Weyl group W in Ng is a map
wi—= W : W — Ng N K such that 5 is admissible for all s € S and W = W;w» for
wiy, we € W such that w = wiwy and £(w) = £(w1) + £(ws).

Any choice of admissible lifts of S in Ng N K extends uniquely to an admissible
lift of W ([AHHVITZ, IV.6], [OVI7, Proposition 2.7)).

Let P = MN be a standard parabolic subgroup of G. The groups Z, Z° =
ZNKy = ZN By, ZY = ZNUyp are the same for G and M, but My = NN M and
MNG’ are subgroups of A" and G’. The monoid M (section23]) contains (N NK)
and is equal to M+ = Uy Ny +Uy where Nyy+ = NN M. An element z € Z
belongs to M if and only if vr(a(z)) > 0 for all @ € +\ &1, (see [Vigl5h, Lemme
2.2]). Put WM :NM/ZO and WM(I) :NM/Zl.

Let € = + or ¢ = —. We denote by Wyse, Wase(1) the images of Nyse in
War, War(1). We see the groups Wi, Wi (1), 1 Wy as subgroups of W, W (1), 1 Wer.
As 6 (section 23)), the linear injective map

(3.3) Hor S5 H, 0/(TM*) =15, (we Wu(l),

respects the product on the subring Hse. Here TM* € H, is defined in the same
way as T,» for Hpys. Note that 6 and 6* satisfy the obvious transitivity property
with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where Ay and A\ Ay are or-
thogonal, writing My = Ma\a,, as in section L3l

From M N My = Z we get Wy N Whay, = A, W (1) N Wy, (1) = A(1), the
semisimple building of G is the product of those of M and M. The set S is the
disjoint union of S3f and S?Vg, the group Wg- is the direct product of Wy, and
Wy For s € War(1) lifting s € Sf‘vf,f, the elements TM € Hys and Ts € H satisfy
the same quadratic relations. A word of caution is necessary for the lengths ¢,
of Wis and £y, of Wy, different from the restrictions of the length ¢ of W, for
example £37(A) = 0 for A € AN Wyy,.

Lemma 3.2. We have A = (Wye N A)(Wag, N A).

Proof. We prove the lemma for ¢ = —. The case ¢ = + is similar. The map
v:Z — X.(T) ® Q defined in section 2] is trivial on Z° and we also write v for
the resulting homomorphism on A. For A € A there exists Ay € Wy, N A such that
Mo € Wyy—, or equivalently a(v(A2)) <0 for all @ € @+ \ &}, = @}\"42. It suffices
to have the inequality for & € Apy,. The matrix ((8Y))a,sea,,, is invertible, hence
there exists ng € Z such that Z%Am nga(fY) < —a(v(N)) for all a € Apy,. As
v(Wag;NA) contains @aeAMQ Za" where oY is the coroot of a [Vigl6l, after formula
(71)], there exists Ay € Wiy, N A with v(A2) = Z,@EAM2 ngBY. O

The groups NN M’ and N’ N M} are normal in N, and
N =WNNMNe(NNMy)=Z(NNM)NN M),

and
W = WM/QWMé = WMWMZ; = Wi+ WMé =Wy WMé.

The first two equalities are clear, the equality Wy Wy, = Wae Wy follows from
Wi = Wiy A, Wy € Wige and the lemma. The inverse image in W (1) of these
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groups are
(3.4)
W (1) = 1War Q1) 1Wary = War(1) 1Wagy = Wi+ (1) 1 Wagy = Wy (1) 1 Wy

We recall the function qg(n) = q(n) = |U/(UNn"Un)| on N [Vigl6], Proposition
3.38] and we extend to A the functions gpy on N'N M and gqpz, on N N Ma:

(35)  qum(n) = [Une/Une " UMM, qary (n) = [Ungy / Ung, O 0™ Ungyn)].

The functions ¢, gar, gar, descend to functions on W (1) and on W, also denoted by
4q,49M 5 M, -
Lemma 3.3. Let n € N of image w € W. We have
(1) g(n) = arr(n)aa, (n).
(2) qu(n) = qu(nar) if n = nyna, nyy € NN M,ny € NN M}, and similarly
when M and My are permuted.
(3) q(w) =1 qu(Awar) = qur, Awag,) = 1, if w = Awprwar,, (A, war, wars,) €
A x WM X WMz .
(4) On the coset (N N M5Nen, qu is constant equal to qp(nar) for any
element npr € M' N (N N MH)ONen. A similar result is true when M
and My are permuted.

Proof. We put Upy =U N M" and Upyy = U N M. The product map

(3.6) zZ I ta J] Ua—u

0¢€<I>M,Ted aeq)kfz,red
with U, = U, NU, is a homeomorphism. We have Uy; = Z 'V, Unpy = (Z1 N
M") Y where Y = [[,ca,, .., Ua and NN M)} commutes with Yy, in particular

N N M} normalizes YVps. Similar results are true when M and M, are permuted,
and U = Z/{M/Z/{M2 = uMuMé-
Writing N' = Z(N N M')(N N M) (in any order), we see that the product map

(3.7) Z Y N V) Vg N n T Yaggn) — U N Un

is a homeomorphism. The inclusions induce bijections

(3.8) Y/ (Ve N Vapm) =~ Upp | (Ung: O~ Unpm) ~ Ung ) Ung N0~ Uym),
similarly for M, and also a bijection

(3.9) U/UNn~"UR) =~ (Vary/ Vagy N0~ Yaggn)) X Varr/ Va0~ Yarm)).

From [B.8) and [B.9), we get
(310) Z/I/(Z/Iﬁn_ll/{n) =~ (L{Mé/(L{Mé ﬁnZ/lMén_l)) X (Z/{M//(Z/{M/ ﬂnLIM/n_l))

which implies the assertion (1) in the lemma.

The assertion (2) follows from (B.7) since N' N M) normalizes Yy with (1), it
implies the assertion (3).

A subgroup of N normalizes Uy, if and only if it normalizes Yy by [B.8) if
and only if gy = 1 on this group. The group N N M) normalizes V. Therefore
the group (N N M4)Ne normalizes Up;. The coset (M N Mj)Nen contains an
element nyy € M'. For x € (NN MLHNe, (znyr) *Uznpy = nyUnyp hence
am(xnar) = qar(nar). O
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3.3. Extension of an #Hj);-module to 7. This section is inspired by similar
results for the pro-p Iwahori Hecke algebras over an algebraically closed field of
characteristic p [Abel Proposition 4.16]. We keep the setting of section and we
introduce ideals:
e Jy (resp., J,) the left (resp., right) ideal of H generated by 1.5 — 14 for all
w €1 Wy,
o Jare (resp., Ju,r) the left (resp., right) ideal of Has generated by T;\V[’* —
17.[M for all A in 1WM$ N WM(l) = 1WM$ n A(l)
The next proposition shows that the ideals J, = J, are equal and similarly Jus,¢ =
Jm . After the proposition, we will drop the indices ¢ and r.

Proposition 3.4. The ideals J; and [J, are equal to the submodule J' of H gen-
erated by Ty, — Ty, for allw € W(1) and wy € 1Wyy.

The ideals Jre and Jarr are equal to the submodule Ty of Har generated by
TM* Tw]vﬁ\: for all w e Wi (1) and Ay € A(1) N1 Wy

Proof.

(1) We prove Jy = J'. Let w € W(1),wz € 1Wy,. We prove by induction on
the length of wy that Tj (T, — 1) € J'. This is obvious when /(w3) = 0 because
TaTy, = To,,- Assume that £(wp) = 1 and put s = ws. If £(ws) = L(w) + 1, as

before T (TF — 1) € J' because T;T = T . Otherwise {(ws) = ¢(w) — 1 and

Ty =Tr T; hence
To(Ty = 1) =Ty i (TS)? = Ty = Ty -1 (qs Tz = Ti'cs) — Ty = qs T — Tt (cs + 1),

Since ¢, +1 = ZteZ,; cs(t)Ty with () € N and ZteZ,; ¢s(t) = g5 [Vigl6l Proposi-
tion 4.4],

WTh —Toles + 1) = 3 oO(To —T2T7) = 3 co((Th — Ty i) € 7"
tez, tez],

Assume now that ¢(ws) > 1. Then, we factorize wy = xy with x,y € {Wyy, of
length £(x),£(y) < £(w2) and £(wz) = £(x) + £(y). The element Ty (T, — 1) =
ToTy(Ty — 1)+ T (T — 1) lies in J' by induction.

Conversely, we prove Ty, — Ty, € Ji. We factorize w = zy with y € ;W) and
x € 1WyprQ(1). Then, we have £(w) = £(x) + {(y) and L(wws) = £(z) + L(yws).
Hence

Ty — T = T (Thy, — T2) = T2 (T, — 1) — TH(TF — 1) € o

wwsa Yywsa Yywa
This ends the proof of J, = J'.

By the same argument, the right ideal 7. of H is equal to the submodule of
H generated by T, — T, for all w € W(1) and wy € 1Wyy;. But this latter
submodule is equal to J’ because 1Way; is normal in W (1). Therefore we proved
J =T =T

(2) Proof of the second assertion. We prove Jar¢ = J;;- The proof is easier than
in (1) because for w € W (1) and Az € 1 Wy, NA(1), we have £(wlz) = £(w)+£(A2)
hence TMJY'[’*(TAN;’* -1)= T%\: — TM* We have also £(Aaw) = £()\3) + ¢(w) hence
(T)J\\Z’* — )TMx = T;\‘;IJ — TM* hence Jyr, is equal to the submodule of H
generated by T;\;[J — Ty for all w € Wy(1) and Ay € 1Wyyy N A(1). This latter
submodule is Jy;, as 1 Wz, NA(1) = 1 Wiy, MWy (1) is normal in Wy (1). Therefore
T = Imr = T O
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By Proposition[3.4} a basis of J is T}, —Ty;,,, for w in a system of representatives
of W(1)/1 Wy, and wy € Wiy \ {1}. Similarly a basis of Jy is T — T%’:

for w in a system of representatives of W (1)/(A(1) N 1Wayy). and A2 € (A(1) N
W) \ {1}

Proposition 3.5. The natural ring inclusion of Hpyr— in Hys and the ring inclusion
of Hyr— in H via 0* induce ring isomorphisms

Har )T = Hur- /(T N Har-) = H/T.

Proof.

(1) The left map is obviously injective. We prove the surjectivity. Let w €

War(1). Let Ay € 1Wpy; N A(1) such that whyt € Wy (1) (see (B4)). We have
M ,x * M ,* M,x __ M ,* M ,x M ,*

Tw)\;1 € Hy- and TM* = Tw/\ng)\2 = TwAgl + Tw/\gl(TAQ —1). Therefore

TM* € Hyr + Jar- As w is arbitrary, Ha = Har- + T

(2) The right map is surjective: let w € W(1) and wy € 1 W)y such that ww, "~ €
Wir-(1) (see B4)). Then T} — T* _, € J with the same arguments as in (1),

ww2
using Proposition B4l Therefore H = 6*(Hy-) + J.

We prove the injectivity: 0* (H - )NT =60*(Hp-NTar). Let ZweWM_(l) coTM>
with ¢,, € Z, be an element of H,,—~. Its image by 6* is Ewew(l) cwT}; where
we have set ¢, = 0 for w € W(1) \ Wy-(1). We have }° cyqyculy € T if
and only if ZmelWM/ Cww, = 0 for all w € W(1). If cyw, # 0, then we €

2
1Whagy 0 Wiy (1), that is, wa € 1 Wy N A(1). The sum szelel Cww, 1S equal
2
to ZAzeleéﬂA(l) Cwr,- By Proposition B4 3 <) Ty € J if and only if
ZweWM,u) cwTy"* € Tn- O

1

We construct a ring isomorphism

by using Proposition For any w € W(1), T + J = ¢€* (T%’i + Jum) where
wy- € Wiy-(1) Nw Wy (see (B4)), because by Proposition B4, Ty + J =
Ty, +Jand T +J = e*(T%/}t + Jm) by construction of e*. We check that
e* is induced by 6*.

Theorem 3.6. The linear map Hys LA H induces a Ting isomorphism
e T Hu/Iu — H/T.

Proof. Let w € Wys(1). We have to show that T + 7 = e*(TM* + Jyr). We saw
above that T)5 + J = e*(Tu]}i’I*_ +Jnr) with w = wpr-Ag with Ay € 1 Wy N Was(1).
As lyr(Ng) = 0, TM* = T%;T)]\\;I’* € T%}*_ + Jur- Therefore T%; +JIm =
TM* 4 . This ends the proof of the theorem. O

We now wish to compute e* in terms of the T, instead of the T};.

Proposition 3.7. Let w € W(1). Then, T, + J = e* (T qun, (w) + Tnr) for any
wpr € W]V[(l) Nw IWMé
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Proof. The element wj; is unique modulo right multiplication by an element Ay €
War(1) N 1 Wayy of length £3(A2) = 0 and TM qar, (w) + Jar does not depend on

wnm
the choice of wj;. We choose a decomposition (see ([B.4])):
w=31...8,u8q41-.-5q1p, L(w)=a+Db,
for u € Q(1), §; € Wy lifting s; € S?\flf for 1 <i < a and 5; € Wy lifting
8; € S}"‘Vz for a+1 < i < a+b, and we choose up; € Wi (1) such that u € ups W,
Then
Wy = S1...8.up € WM(I) Nw 1WMé
and qar, (W) = gar, (Sat1 - - - Satb) (Lemma (4)). First we check the proposition
in three simple cases:

Case 1. Let w = § € {Wy lifting s € S?\}C[f; we have Tz +J = e*(TM + Jpr) because
T — e (TN e T, Ts = TF 4 ¢z, TM = TM* 4 ¢5 and 1 = quy,(3).

Case 2. Let w = u € W(1) of length ¢(u) = 0 and up; € Wpy(1) such that
u € up 1Wayy. We have £y (ups) = 0 and qar,(u) = 1 (Lemma B.3). We deduce
T, +J = e*(TM + Ju) becawse T +J = Ty +J = e*(TM* + Jur), and
T, = T[[,T%I = Té‘;&*.
Case 3. Let w = § € W)y, lifting s € S;"‘VZ; we have Ts + J = e*(qnr,(8) + Tmr)
because TZ —1,¢5 — (g5 — 1) € T, Ts =TZF + ¢5 € ¢s + T and ¢s = qur, (8).

In general, the braid relations T, = Ts, ...15,T.T5,,, ---T5,,, give a similar
product decomposition of Ty, + 7, and the simple cases 1, 2, 3 imply that T, + J
is equal to

e*(ng\I/l +JIm) ... €e" (ng\f + jM)e*(T% + Tm)e* (qu, (3a+1)
+Im) - € (arr, (Basb) + Tnr)
= e (Tay, arr (W) + Tar)-
The proposition is proved. O

Propositions [3.4], B35l B.7, and Theorem are valid over any commutative ring
R (instead of Z).

The two-sided ideal of Hr generated by T —1 for all w € W is Jr = J @z R,
the two-sided ideal of Hys g generated by T3 — 1 for all A € Wy, N A(L) is
JIm,r = Im ®z R, and we get as in Proposition isomorphisms

Har,v/Imr <— Hyr- 1/ (T, VHy- r) = Hi/Tr

giving an isomorphism Har,r/Tm,r — Hr/JTr induced by 6*. Therefore, we have
an isomorphism from the category of right H s, g-modules where Jj; acts by 0 onto
the category of right H r-modules where J acts by 0.

Definition 3.8. A right H s r-module V where Jys acts by 0 is called extensible
to H. The corresponding Hg-module where 7 acts by 0 is called its extension to
H and denoted by e (V) or e(V).

With the element basis T};, V is extensible to H if and only if
(3.11) UT)]\\;[’* = v forall v eV and Ay € Wy, NA(D).
The H-module structure on the R-module e(V) =V is determined by
(3.12) oIy =v, vl =vT)"* forall veV, w,e Wy, w € War(1).
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It is also determined by the action of T} for w € Wiy U W+ (1) (or w € 1 Wy, U
Wir-(1)). Conversely, a right H-module W over R is extended from an H js-module
if and only if

(3.13) VT, =v forall ve W, ws € 1 Wyyy.

In terms of the basis elements T;, instead of 7T}, this says the following.
Corollary 3.9. A right Har-module V over R is extensible to H if and only if
(3.14) VIV = for all veV and \; € W NA(L).

Then, the structure of an H-module on the R-module e(V) =V is determined by
(3.15)
Ty = Vquys  VTw = vVTMqpr, (w)  for all v € V,wy € Wy, w € War(1).

(War+(1) or Wy—(1) instead of Wir(1) is enough.) A right H-module W over R
is extended from an Hpyr-module if and only if

(3.16) VT, =G, for all v e W,wy € 1 Wy,

3.4. oM is extensible to H of extension e(c"™) = ¢(0)". Let P = MN be a
standard parabolic subgroup of G such that Ap and A\ Ap are orthogonal, and
let o be a smooth R-representation of M extensible to G. Let P, = MsN, denote
the standard parabolic subgroup of G with Ap, = A\ Ap.

Recall that G = MM}, that M N M, = Z N M} acts trivially on o, e(o) is
the representation of G equal to ¢ on M and trivial on Mj. We will describe the
H-module e(o)¥ in this section. We first consider e(o) as a subrepresentation of
Ind$ 0. For v € o, let f, € (Ind$ ¢)™z be the unique function with value v on Mj.
Then, the map

(3.17) v fy:io—IndSo

is the natural G-equivariant embedding of e(c) in Ind§ 0. As o¥™ = e(o)¥ as

R-modules, the image of e(0) in (Ind% o) is made out of the f, for v € g™,
We now recall the explicit description of (IndIGD o). For each d € W)y, , we fix a

lift d e 1Wag and for v € oM™ let fpaua € (Ind$ o )¥ for the function with support

contained in Pd and value v on did. As Z N M} acts trivially on o, the function
fP(iu,v does not depend on the choice of the lift de 1Way, of d. By [OV1T, Lemma
4.5], recalling that w € Wy, is of minimal length in its coset wWjy, = Wyw as
Ajps and Ay, are orthogonal to each other:

The map @dGWMQ otm (Indg o) given on each d-component by v fpdv.vr
is an Hpr+-equivariant isomorphism where Hy+ is seen as a subring of H via 0,
and induces an Hg-module isomorphism

(3.18) v@h s fruh oM™ @y L g H — (IndE o).

M+

In particular for v € o™ v ® T(cf) does not depend on the choice of the lift
d € Wy, of d and

(3.19) fp,ju)v = fPU,vT(CZ)'



132 N. ABE, G. HENNIART, AND M.-F. VIGNERAS

As @G is the disjoint union of PdU for d € W, we have f, = ZdeWM2 fpiu.. and
fv is the image of v ® epy, in BI8]), where
(3.20) ey, =y T(d).

deW s,
Recalling (BI7) we get the following.

Lemma 3.10. The map v — v ® ey, : e(o) — o™ @y o H is an Hp-
equivariant embedding.

Remark 3.11. The trivial map v — v ® 14 is not an Hgr-equivariant embedding.

We describe the action of T'(n) on e(o)¥ for n € N'. By definition for v € e(0)¥,

(3.21) vT'(n) = Z yn~to.

yeU/(UNn—1Un)

Proposition 3.12. We have vT'(n) = vT™ (npr)qns, (n) for any nayr € NN M s
such that n = np (N N MJ).

Proof. The description 3I0) of U /(U Nn~'Un) gives

vT(n) = Z 1 Z yontv.

yi€Un /UnNn = Unn) Y2 €Uy [(Ungy ™ Uy m)
As M} acts trivially on e(0), we obtain

vT'(n) = qu,(n) > yinatv = qas, (n) 0T (nay).
y1€Z/{M/(Z/{Mﬂn*1MMn)

]

Theorem 3.13. Let o be a smooth R-representation of M. If P(c) = G, then o¥M
is extensible to H of extension e(c¥™) = e(o)". Conversely, if oYM is extensible
to H and generates o, then P(o) = G.

Proof.
(1) The Hps-module o¥M is extensible to H if and only if Z N M} acts trivially
on oM. Indeed, for v € 0¥ 2o € Z N M},

vTM (29) = Z yzy tv = Z yzy to = 25 ',

yEUN [ UnrNzy " Unrz2) YEV M/ (VprrNzy "V ppr 22)

by B2I)), then (B), then the fact that z, ' commutes with the elements of Vy;.
(2) P(o) = G if and only if Z N M} acts trivially on o (the group Z N MJ is
generated by Z N M/, for o € Ay, by Lemma ZI). The R-submodule 0Z™Mz of
elements fixed by Z N MY} is stable by M, because M = ZM’, the elements of M’
commute with those of Z N M} and Z normalizes Z N M.
(3) Apply (1) and (2) to get the theorem except the equality e(c¥™) = e(o)¥
when P(o) = G which follows from Propositions and 711 O

Let 1) denote the trivial representation of M over R (or 1 when there is no
ambiguity on M). The right Hz-module (15)¥ = 14 (or 1 if there is no ambiguity)
is the trivial right Hg-module: for w € Wy (1), Ty, = ¢uid and T;% = id on 14.
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Example 3.14. The #-module (Ind§ 1)¥ is the extension of the Hjz,-module
(Ind%imB 1)U Indeed, the representation Ind% 1 of G is trivial on Ny, as G =
MM} and No C M’ (as ® = @y UDyy,). For g = mml, with m € M, m}, € M} and
ny € Na, we have Pgny = Pmbny = Pnam,, = Pm}, = Pg. The group M> N B =
M, N P is the standard minimal parabolic subgroup of My and (Ind% 1)y, =
Ind%ﬁm 5 1. Apply Theorem B.13] as follows.

3.5. The Hr-module e(V) Qg (Indg 1)“. Let P = MN be a standard para-
bolic subgroup of G such that Ap and A\ Ap are orthogonal, let V be a right
M, r-module which is extensible to Hp of extension e(V), and let @ be a para-
bolic subgroup of G containing P. Let P, = M3N> denote the standard parabolic
subgroup of G with Ap, = A\ Ap.

We define on the R-module e(V) ®@pr (Indg 1) a structure of a right H g-module
as follows.

Proposition 3.15.

1) The diagonal action of T for w € W(1) on e(V) @g (IndS 1) defines a
w Q
structure of a right Hr-module.
(2) The action of the Ty, is also diagonal and satisfies:

((’U & f)va ('U & f)Tw) = (’UTHU’M/ & fT“wMé ’ UT““’M’ ® fT“wMé )7
where w = uwppwyry with u € W(1),4(u) =0,wp € W, wary € 1 Wy

Proof. If the lemma is true for P it is also true for ), because the R-module
e(V)®r (Indg 1) naturally embedded in e(V) @z (Ind% 1) is stable by the action
of H defined in the lemma. So, we suppose @ = P.

For each element in 1.5 we fix an admissible lift and denote the set of admissible
lifts by 1.5*f. We also use the obvious notation 15;}? and 15’;“\/}52 . Suppose that T};
for w € W(1) acts on e(V) @ (Ind% 1) as in (1). The braid relations obviously
hold. The quadratic relations hold because T with s € 1521 acts trivially either
on e(V) or on (Ind%1)Y. Indeed, ;5% = 538 U 1S58, T for s € 1557, acts
trivially on (Ind% 1)¥ which is extended from an H z,-module (Example 314), and
Ty for s € 1551, acts trivially on e(V) which is extended from an Hp-module.
This proves (1).

We describe now the action of T, instead of 7)) on the H-module e(V) ®g
(Indg Y. Let w € W(1). We write w = uwypwyy = uwpgwyy with u €
W(1),£(u) = 0,wnr € 1Warr,wary € 1Wag,. We have £(w) = L(war) + €(wary)
hence T, = TuTwM,TwMé.

For w = u, wehave T,, = T* and (v® f)To, = (v f) Tk = v fTr = vT,QfTy,.

For w = wyr, (v® f)T) =T} @ f; for s € 1930 ¢, = Ytezpruw,, Cs(O)T7 in
particular, we have (v® f)Ts = (v f)(TF +cs) = v(TF +¢5)® f = vTs ® f. Hence
(v® )Ty =0Ty R f.

For w = wjy;, we have similarly (v )Tk = v fTr and (v@ )Ty, = vRfT,. O

Example 3.16. Let X be a right Hp-module. Then 1y ®r X where the T} acts
diagonally is an H g-module isomorphic to X. But the action of the T, on 14y g X
is not diagonal.
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It is known [Lyl5] that (Indg, 1)¥ and (Stg)u are free R-modules and that
St%)4 is the cokernel of the natural H p-map
Q

(3.22) P (mdg, 1) - (Indg 1)
QCQ’

u

although the invariant functor (—)“ is only left exact.

Corollary 3.17. The diagonal action of T for w € W(1) on e(V) ®gr (Stg)u
defines a structure of a right Hr-module satisfying Proposition BI5(2).

4. HECKE MODULE I (P, V, Q)

4.1. Case V extensible to H. Let P = M N be a standard parabolic subgroup of
G such that Ap and A\ Ap are orthogonal, let V be a right H s g-module extensible
to Hpr of extension e(V), and let @ be a parabolic subgroup of G containing P.
As Q and Mg determine each other: Q@ = MqgU, we denote also Hyr, = Hq
and Har,,r = Ho,r Wwhen Q # P,G. When Q = G we drop G and we denote
en(V) =e(V).

Lemma 4.1. V is extensible to an Hg,r-module ez, (V).

Proof. This is straightforward. By Corollary B9l V extensible to H means that
TM(z) acts trivially on V for all z € Ny N Z. We have Mg = MM o with

Mj o C Mg N Mj and Ny , C Nag; hence TM(z) acts trivially on V for all
z€ Ny o N Z meaning that V is extensible to Hq. O

Remark 4.2. We cannot say that ey, (V) is extensible to H of extension e(V) when
the set of roots Ag and A\ Ag are not orthogonal (Definition [B.8]).

Let Q' be an arbitrary parabolic subgroup of G containing Q). We are going to de-
fine an ‘H p-embedding Ind%Q/ (eny, (V) LCICON Ind%@ (e (V) = eng (V)(EQ;:.LMér 0
‘H defining an ‘H r-homomorphism

®ocace Indjf, (en,, (V) = Indjy, (exg (V)
of cokernel isomorphic to e(V)®r (Stg)u. In the extreme case (Q, Q') = (P, G), the

‘H g-embedding e(V) UPG), Ind? A, (V) is given in the following lemma where fg and

fpu € (Ind% 1) denote the characteristic functions of G and PU, fo = fruen,

(see 3.20)).
Lemma 4.3. There is a natural Hg-isomorphism
1R 1y = v fpy: IndgiM(V) =VQu, 0 H L2y e(V) @g (IndG 1),

and compatible H r-embeddings

(4.1) v v® fo:e(V) = e(V) @g (Indg 1Y,
(4.2) v v e, :e(V) KN IndzM V).

Proof. We show first that the map
(4.3) v v® fpy V= e(V) @r (Indg 1)
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is Hpr+-equivariant. Let w € Wi+ (1). We write w = uwpyrwyyy as in Propo-
sition B.IH (2), so that fpyTw = fruTuw,, - We have fpyTuw,, = fru because
2 2

1Warr C€ Wi+ (1)NWhy- (1) hence uwyyy = ww]T/Ill € Wi+ (1) and in 14, @3, oH

we have (1® 17{)TuwMé = 1T1%)M, ® 19, and T%JM, acts trivially in 14;,, because
2 2

€M(uwMé) = 0. We deduce (v ® fpy)Tw = vTw @ fruTw = vIM @ fpy.
By adjunction (3] gives an H g-equivariant linear map

(4.4) V@ 1y 0@ fpu V@, 0 H D e(V) ®g (Indf 1)Y.

M+

We prove that xp is an isomorphism. Recalling deNn M, de 1Wayy lift d, one
knows that

(45) Vou,,oH= P Vel eV)ormdil) = P V& fpi.
dGWM2 dGWMQ

where each summand is isomorphic to V. The left equality follows from section 4.1
and Remark 3.7 in [Vigl5b] recalling that w € Wy, is of minimal length in its coset
Warw = wWy, as Ay and Ay, are orthogonal; for the second equality see section
B4 (m) We have Kp(’U X T(Z) e (1} X fp[/{)’Td~ =vR® fpuTJ (PI‘OpOSitiOn m)
Hence xp is an isomorphism.

We consider the composite map

v v @1 0@ feyen, e(V) = e(V) @r 1y — e(V) @r (IndE 1),
where the right map is the tensor product e(V) ® g — of the H g-equivariant embed-
ding 13, — (Ind$ 1) sending 1z to fpyens, (Lemma BI0); this map is injective
because (Ind$ 1)¥/1 is a free R-module; it is # z-equivariant for the diagonal action
of the T¥ on the tensor products (Example BI0] for the first map). By compati-

bility with ([@4]), we get the Hr-equivariant embedding v — v ® ey, : e(V) UBG),
Ind} (V). 0

For a general (Q, Q') the H g-embedding Ind%@l (engy, (V) M)Indz(g (eny (V)

is given in the next proposition generalizing Lemma 43l The element eps, of Hp
appearing in the definition of +(P, G) is replaced in the definition of +(Q,Q’) by an
element ¢ (eg/) € Hpr that we define first.

Until the end of section @] we fix an admissible lift w — @ : W — NN K
(Definition B.1)) and @ denotes the image of @ in W(1). We denote Wy, = Wg
and by "eW the set of w € W of minimal length in their coset Wow. The group G
is the disjoint union of Qdl for d running through WeW [OVI7, Lemma 2.15 (2)]:
G = UdevaWQJZ/I. Since QdUd € Q'U if and only if d € Q’, namely d € Wowg,

we have

(4.6) Qu= || Qdu.
deVewy,
Set
/ M/
(4.7) g = >, T;¢.
dGWQWQI

We write e = eq. We have €S = ZdeleQ TéwQ.
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Remark 4.4. Note that VMW = Wy, and ep = epr,, where My is the standard
Levi subgroup of G with Ay, = A\ Ay, as Ay and A\ Ay are orthogonal. More
generally, WQWMQ, = Warz g WMQ,Q, where My g/ = My N M.

Note that egl € Hpr+ NHps—. We consider the linear map
09 :Ho = Ho TM = T (w € Warg (1))
We write 05 = 0 so that g (T MQ) =T,. When @) = P this is the map 6 defined

earlier. Similarly we denote by GQ " the linear map sending the T, Ma* ¢ TMQ' *

and 9G * = = 0. We have
(4.8) O(eg)= Y Tp Og(eB)=0g(eR)0o(ed).
de"ew

Proposition 4.5. There exists an Hg-isomorphism
(4.9)

v® Ly = 0@ fou s Ind (e2,(V)) = eny (V) @3, 0 H —2 e(V) @ (Indg 1),

My
and compatible H r-embeddings
(4.10) v ® fou = v® fou :en, (V) ®r (Indg, 1Y — ey, (V) ®r (Indg 1Y,
(4.11) vR1ly = v® by (eQ ) IndHQl (eny, (V) ——= ECITON IndHQ (eny (V).
Proof. We have the H s, r-embedding

v @ el e, (V) = Veu,,, o Ho = Indp2 (V)

by Lemma B3] (£2) as Ay is orthogonal to Az, \ Aps. Applying the parabolic
induction which is exact, we get the H-embedding

V@ 1y = v ® e @1y Ind% (eng (V) — Ind} (Ind}2 (V).

Note that TéVIQ eH M for d € Wyy,,. By transitivity of the parabolic induction,
it is equal to the Hr-embedding

(4.12) v @ Ly v @ Og(eP) : Ind} (e, (V) — Ind, (V).
On the other hand we have the H z-embedding
(4.13) v ® fou v ®0g(eP) r e(V) ®p (Ind§ 1) — df (V)

given by the restriction to e(V) ®@p (Indg 1)% of the Hpg-isomorphism given in
Lemma 3 @), from e(V) @z (Ind$ 1) to V®u,, .0 H sending v®@ fpy to v@1y,
noting that v ® fou = (v ® fpu)GQ(eg) by Proposition B8 fou = fPMOQ(eg)
and g (e%2) acts trivially on e(V) (this is true for T; for d € 1Whyy). Comparing
the embeddings (£12) and [@I3), we get the H g-isomorphism (£3)).

We can replace @ by @' in the Hgr-homomorphisms (L9), @I2), and @I3).
With ([EI2) we see IndZQ,(eHQ, (V)) and IndHQ(eHQ (V)) as Hpg-submodules of
IndHM (V). As seen in ([£8) we have GQI(eP ) = GQ(eP)HQ/(eQ ). We deduce the
H r-embedding (Z.IT]).
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By @I9) for Q and (LT,
fou= > fouTi= fouby(ed)
dac"aw,,
in (Indg 1)¥. We deduce that the Hg-embedding corresponding to [II)) via k¢
and k¢ is the H r-embedding (ZI0)). O

We recall that Ap and A\ Ap are orthogonal and that V is extensible to H of
extension e(V).

Corollary 4.6. The cokernel of the Hr-map
&b IndﬁQ, (€3, (V) = Ind}, (e (V)
QCQ'CG
defined by the 1(Q,Q"), is isomorphic to e(V) Qg (Stg)u Vi KQ.
4.2. Invariants in the tensor product. We return to the setting where P = M N
is a standard parabolic subgroup of G, ¢ is a smooth R-representation of M with
P(0) = G of extension e(o) to G, and @ a parabolic subgroup of G containing P.

We still assume that Ap and A\ Ap are orthogonal.
The Hg-modules e(c¥™) = e(o)¥ are equal (Theorem B.I3). We compute

I6(P,0, Q)" = (e(0) ®r St&)¥.

Theorem 4.7. The natural linear maps e(0)¥ @ g (Indg 1Y — (e(0) ®@r Indg 1)
and e(o)¥ @r (Stg)“ — (e(o) ®r Stg)” are isomorphisms.
Proof. We need some preliminaries. In [GK14,[Ly15], are introduced a finite free Z-
module M (depending on Ag) and a B-equivariant embedding Sth 4 C(B,M)
(we indicate the coefficient ring in the Steinberg representation) which induces an
isomorphism (Sth)B ~ O(B,M)5.
Lemma 4.8.

(1) (Indg 7)B is a direct factor of Indg Z.

(2) (Sth)B is a direct factor of Sth.
Proof.

(1) [AHV] Example 2.2].

(2) As M is a free Z-module, C°(B,M)? is a direct factor of C°(B,M). Con-
sequently, L((Sth)B) = O®(B,M)B is a direct factor of L(StSZ). As ¢ is injective,
we get (2). O

We now prove Theorem 7] We may and do assume that o is e-minimal (because
P(0) = P(omin),e(0) = €(omin)) so that Ay and A\ Ajs are orthogonal and we
use the same notation as in section in particular My = Ma\a,,- Let V be
the space of e(o) on which M} acts trivially. The restriction of Indg Z to My is
Ind})?,,, Z, that of StGZ is Sty2,,, Z.

As in [AHV] Example 2.2], ((Ind)2,, Z) ® V
have

)2 (Ind2,y, 2)% @ V. We
(IndX2,,. 2)"% = (Ind}2,,. Z)*42 = (Ind§ Z)X.

The first equality follows from My = (Q N Ma)Wa,Uns,, Uni, = Z'Upy and Z*

normalizes Uy, and is normalized by Wyy,. The second equality follows from U =



138 N. ABE, G. HENNIART, AND M.-F. VIGNERAS

UprUnr, and Indg 7Z is trivial on M’. Therefore ((Indg Z)®V)u
Now taking fixed points under Uns, as U = Upy U,

M5 o~ (IndG Z) V.

(Ind§ Z) @ V) ~ ((Indg 2)" @ V)" = (Ind§ Z)* @ V¥,

The equality uses that the Z-module Indg Z is free. We get the first part of the
theorem as (Indg ZM @ VUM ~ (Indg R @p VUM,

Tensoring with R the usual exact sequence defining Sth gives an isomorphism
SthQ@R ~ Sth and in [GK14l[Ly15], it is proved that the resulting map Sth iR,
C>*(B,M ® R) is also injective. Their proof in no way uses the ring structure of
R, and for any Z-module V, tensoring with V gives a B-equivariant embedding
StgZ®V £ C2(B,M @ V). The natural map (StGZ)5 @V — StGZ @ V is also
injective by Lemma 8] (2). Taking B-fixed points we get inclusions

(4.14) (StGZ)P @V = (StGZ@ V)5 = C(B,Me V)P~ Me V.

The composite map is surjective, so the inclusions are isomorphisms. The image
of v consists of functions which are left Z°-invariant, and B = Z°U’ where U’ =
G'NU. Tt follows that ¢ yields an isomorphism (Sth)u ~ CX(ZO\B, MY again
consisting of the constant functions. So that in particular (Sth)M = (Sth)B and
reasoning as previously we get isomorphisms

(4.15) (St @V ~ (StEZ@ VI ~me V.

The equality (Sth)u' = (Sth)B and the isomorphisms remain true when we
replace U’ by any group between B and U’. We apply these results to Stgri ML ®
V to get that the natural map (Stg[ﬁ]M2Z)MMé @V — (Stgéle ® V)uMé is an
isomorphism and also that (Stgﬁu%Z)uMé = (StggMQZ)uMz . We have U = Upp Uy,
50 (StSZ) = (Sth2,,, )2 and the natural map (StGZ)¥ @ V — (St§Z @ V)"
is an isomorphism. The Z-module (Sth)” is free and the V¥ = VU 5o taking
fixed points under Uy, we get (StGZ)Y @ VY ~ (StGZ® V)4, We have St§ZeV =

StgR ®r V and (StGZ)Y @ V¥ = (StGR)Y ®p VY. This ends the proof of the
theorem. O

Theorem 4.9. The Hpr-modules (e(c) ®r Indg DY = e(o) ®@p (Indg 1Y are
equal. The Hp-modules (e(0) ®r Stg)u =e(0) ®@p (Stg)u are also equal.

Proof. We already know that the R-modules are equal (Theorem 7). We show that
they are equal as H-modules. The H p-modules e(0) @ g (Indg DY = ey (o) @p
(Indg 1) are equal (Theorem BI3), they are isomorphic to Ind2 o(erg (ot1))
(Proposition 1), to (Indg(eQ(U)))” [OV1T, Proposition 4.4], and to (e(c) ®gr
Indg 1)Y [ATIV], Lemma 2.5]). We deduce that the H z-modules e(0)¥ @ (Indg 1)4
= (e(0)® RIndg 1) are equal. The same is true when @ is replaced by a parabolic

subgroup @’ of G containing ). The representation e(c) ®pr Stg is the cokernel of
the natural R[G]-map

@ e(o) ®r Indg/ 12% ¢(0) ®p Indg 1
QCQ’
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and the Hpz-module e(0)¥ ®r (Stg)u is the cokernel of the natural Hg-map

@ e(o) ®r (Indg, 1)4 o, e(o)" ®r (Indg 1)

QREQ’
obtained by tensoring [:22)) by e(c)¥ over R, because the tensor product is right
exact. The maps Bg = ag are equal and the R-modules e(o)¥ ®p (Stg)“ =
(e(o) ®r Stg)“ are equal. This implies that the Hgz-modules e(o0)¥ ®pg (Stg)“ =
(e(o0) ®r Stg)u are equal. O

Remark 4.10. The proof shows that the representations e(o) ® g Indg 1 and e(0) ®
Stg of G are generated by their U-fixed vectors if the representation o of M is gener-

ated by its Uy-fixed vectors. Indeed, the R-modules e(o)¥ = gtm (IndG 1) Uy —

Unr

(Indg 1) are equal. If o™ generates o, then e(o) is generated by e(o)¥. The rep-

resentation Indg 1[pz; is generated by (Indg 1)Y (this follows from the lemma be-
low), we have G = M M/, and M} acts trivially on e(o). Therefore the R[G]-module
generated by o @p (Indg 1) is e(0) ®r Indg 1. Ase(o) ®r Stg is a quotient of
e(o) ®r Indg 1, the R[G]-module generated by o @ (Stg)“ is e(0) @R Stg.

Lemma 4.11. For any standard parabolic subgroup P of G, the representation
Indg 1| is generated by its U-fized vectors.

Proof. Because G = PG’ it suffices to prove that if J is an open compact subgroup
of N the characteristic function 1p; of PJ is a finite sum of translates of 1py =
Lpyy by G'. For t € T' we have PUt = Pt~ 'zt and we can choose t € T'NJ’ such
that ¢~ Uzt C J. O

4.3. General triples. Let P = M N be a standard parabolic subgroup of G. We
now investigate situations where Ap and A\ Ap are not necessarily orthogonal.
Let V be a right H s, r-module.

Definition 4.12. Let P(V) = M(V)N(V) be the standard parabolic subgroup of
G with AP(V) =ApUAy and

Ay = {a € A orthogonal to Ay, T (2) acts trivially on V for all z € Z N M/ }.

If @ is a parabolic subgroup of G between P and P(V), the triple (P, V, Q) called
an Hp-triple, defines a right Hr-module Iy (P, V, Q) equal to

Ind}! ((V)@R(Stgfg‘;[ Py JHM00) = ((V)®R(Stgﬂ§‘;[ ) @y

Harv) o "R,
where e(V) is the extension of V to Has(y).

M(V)*T,R>

This definition is justified by the fact that M (V) is the maximal standard Levi
subgroup of G such that the H s r-module V is extensible to H s (v)-

Lemma 4.13. Ay is the mazimal subset of A\ Ap orthogonal to Ap such that
T)I\V[’* acts trivially on 'V for all X € A(1) N1 Wayy,.
Proof. For J C A let M; denote the standard Levi subgroup of G with A, = J.

The group Z N M/, is generated by the Z N M, for all « € J (Lemmal[ZT]). When J
is orthogonal to Ay and A € Ay (1), €ar(A) = 0 where £ is the length associated

to Sall and the map A — T/(VI’* =TM: AM/J(I) — Hs is multiplicative. |
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The following is the natural generalization of Proposition and Corollary
Let @’ be a parabolic subgroup of G with @ C Q' C P(V). Applying the results of
section @Il to M (V) and its standard parabolic subgroups QN M (V) C Q' NM(V),
we have an H ys(y), g-isomorphism

Indjy "™ (ex,, (V)

= eno (V) On g Harv).r ——2 e(V) @ (Indgm(}i}(v) 1)

V@ 1y = v® founmy)
and an H (), r-embedding

H L(QQM(V),Q’QJVI(V)) H
Ind}y (e, (V) Ind ™ (e, (V)

U®17-[M(v) '_>U®9P(V ( Q)

Applying the parabolic induction IndH ) which is exact and transitive, we obtain

an H g-isomorphism kg = IndHM(V) (konm)),

(4.16) IndHQ (enq (V)) IndzM(w( e(V) ®r (IndeM(v) Lo, )va))
VR1Iy — v fQuM(v) ® 1y
and an Hg-embedding «(Q, Q') = IndZM(V)( 1(Q, QM)

) L9, L(QQ)

(4.17) 11y~ e 9@:(68/) : Ind%@l (e, (V IndHQ (erg(V))-

Applying Corollary we obtain:
Theorem 4.14. Let (P,V,Q) be an Hg-triple. Then, the cokernel of the Hr-map
Docecpw) Indj, (ex, (V) = Indj, (exy (V)),

defined by the +(Q, Q") is isomorphic to Iyy(P,V,Q) via the Hr-isomorphism Kg.
Let o be a smooth R-representation of M and let @ be a parabolic subgroup of

G with P C @ C P(o).

Remark 4.15. The Hpg-module I3 (P,c%™ Q) is defined if Ag \ Ap and Ap are

orthogonal because Q C P(c) C P(o"™) (Theorem B.I3).

We denote here by Pupin = MminNmin the minimal standard parabolic subgroup
of G contained in P such that o = ep(o|nr,,,) (Lemma 23] we drop the index
0). The sets of roots Ap_ . and AP(U‘M y \ Ap,,, are orthogonal (Lemma 2.7]).

min min

The groups P(o) = P(o|,,, ), the representatlons e(o) = e(o|m,,,) of M(c), the
representations I(P, 0,Q) = Ig(Pmin, 0| My, @) = Indg(g)(e(a) ®r Stg(a)) of G,
and the R-modules ¢“Mmin = g™ are equal. From Theorem .13

P(o) C P(o"Mmin), €3, (0"Mmin) = e(o) 1),

and P(cYMmin) = P(0) if o"min generates the representation oy, .. The Hp-
module
Uns . H Uns . P(o"Mmin ) U Ung oo
IH (Pmim o Mmin | Q) = IndHM(U”Mmm) (6(0 Mm'") QR (StQ(U )) Mo M ))
is defined because Ap_, and A P (0 Momin ) \ Ap_,, are orthogonal and P C @ C

P(0) C P(c"min).
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Remark 4.16. If oYMmin generates the representation o|ys,,. (in particular if R is
an algebraically closed field of characteristic p and o is irrreducible), then P(o) =
P(c"Mmin) hence

. . M(o
I’H (Pmin7 O,Z/{Z\/Imm s Q) = IndzM(a) (GHM(U) (O.UMmm ) (StQﬁM( ))Z/{]W(d) )

Applying Theorem B9/ to (Prnin VM (0), 0| a1, @O M (0)), the H (), g-modules

M(o M(o
(4.18) ey, (o oUMmin ) @ p (StQm(N)I ))MM<a> = (enm(o)(0) ®r Sth(W} ))L{M((,)

are equal. We have the H g-isomorphism [OV17, Proposition 4.4]:
Ie(P,o, Q" = (Ind§ () (e(0) @r St ™)

M (o
—>Ind7'lM( )(( e(o) ® RSthEA}( ))UJVI(G))

M(o
fp(g)u’m —r®ly (J? S (6( ) SthgJ\/}( ))Z/{M(a)).
We deduce the following.
Theorem 4.17. Let (P, 0, Q) be an R[G]-triple. Then, we have the H g-isomorphism

ov M(o
Ig(P,o,Q)" = IndHM( (€300 (0 g 0min ) @ (StQmJVI( ))MM(“))~

In particular,

I6(P,o, QY {IH(Pmm’ oWin, Q) if P(0) = P(0HMmin ),

Iy (P, o% Q) if P = Puin, P(0) = P(c¥™).

4.4. Comparison of the parabolic induction and coinduction. Let P = M N
be a standard parabolic subgroup of G, let V be a right H z-module, and let @ be
a parabolic subgroup of G with @ C P(V). When R is an algebraically closed field
of characteristic p, in [Abe], we associated to (P,V,Q) an Hpg-module using the
parabolic coinduction

CoindzMQ (=) =Homy _ (H,-): Modgr(Hrg) = Modg(H)
5

instead of the parabolic induction Ind?} Mg (=) =—®y ., oH. Theindex 6" in the
M7

parabolic coinduction means that H Mg embeds in H by 67,. Our terminology is

different from the one in [Abe| where the parabolic coinduction is called induction.
For a parabolic subgroup @’ of G with Q@ C @’ C P(V), there is a natural inclusion
of H g-modules
i(Q,Q")

(4.19) HomHMé/’e* (H, e, (V)) —— Homy w0 (H,en,(V))
because 6" () C 6% (Hy, ) as Wy, (1) € Wy, (1), and oI = yTMe* o

Qf Q!
wE WMQ_ (1) and v € V. (This is [Abel Proposition 4.19] when R is an algebraically
closed field of characteristic p. This follows from our formulation of the extension
for any R.)

Definition 4.18. Let CIy(P,V, Q) denote the cokernel of the map
@ HomHM*,,e* (H,en, (V) — HomHM(g,G* (", en,(V))
QCQ'CP(V) “
defined by the H g-embeddings i(Q, Q’).
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When R is an algebraically closed field of characteristic p, we showed that the
Hg-module Cl (P, V, Q) is simple when V is simple and supersingular (Definition
28], and that any simple Hg-module is of this form for an Hg-triple (P,V, Q)
where V is simple and supersingular, P, and the isomorphism class of V are
unique [Abe]. The aim of this section is to compare the Hr-modules I3 (P, V, Q)
with the Hr-modules CIy (P, V, Q) and to show that the classification is also valid
with the Hg-modules Iy (P, V, Q).

It is already known that a parabolically coinduced module is a parabolically
induced module and vice versa [Abel, Proposition 4.15], [Vigl5b, Theorem 1.8]. To
make it more precise we need to introduce notation.

We lift the elements w of the finite Weyl group W to @ € NgNK as in [AHHVIT,
IV.6], [OV17, Proposition 2.7]: they satisfy the braid relations wqws = (w;ws) when
L(wr)+£(we) = f(wiwsz) and when s € S, § is admissible, in particular lies in ; We.

Let w, wys, wM denote, respectively, the longest elements in W, W, and ww ;.

We have w = w1 = wMwy, wy = Wy, W= WM,

WM(AM) =—w(Apy) C A, WM(<I>Jr \ @L) =w(®T\ @L)

Let w.M be the standard Levi subgroup of G with Ay ar = wM(Ay) and w.P
the standard parabolic subgroup of G with Levi w.M. We have

w.M =wMMwM) T =wMw)l, wWM = wyw = (wM) !

The conjugation w — wMw(wM)~1in W gives a group isomorphism Wy; — Wy s
sending S3F onto ST, | respecting the finite Weyl subgroups w™ W, (w?)~! =
Wy = wWyw!, and exchanging W+ and Wiwan- = wWy+w™ L. The
conjugation by w restricts to a group isomorphism Wy (1) — Wi as(1) sending
Wi+ (1) onto Wis . ary-(1). The linear isomorphism
uw™) M w. M

(420) HM —_— Hw,]\/[ T’LU — TVVNIw(WAI)_l for w S WM(].),

is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and w.M. It
sends the positive part Hys+ of Hjps onto the negative part Hiw.ar)- of Hw. i

w.M ~M)—1 —

[Vigl5b, Proposition 2.20]. We have w = wyw = wMwy, (W

wW-M¢, o where ty = W2WM € 7.

Definition 4.19. The twist w.V of V by w is the right H,.,/-module deduced
from the right #,-module V by functoriality: as R-modules w™.V = V and for
v eV, w e Wy (l) we have UTvaw(wM)—l =oTM.

We can define the twist w.V of V with the TM-* instead of TM.
Lemma 4.20. Forv € V,w € Wy (1) we have vT;,”I‘V?ﬁE‘wJ&{)—I =oTM* ip WM.
(wM

Proof. By the ring isomorphism H s —> Hw. v, We have Cst(wM) L =c

when § € Wy, (1) lifts s € S3. So the equality of the lemma is true for w =
Apply the braid relations to get the equality for all w € W (1).

O« *g

We return to the Hgr-module Homy, . (H,V) parabolically coinduced from

V. It has a natural direct decomposition indexed by the set W"» of elements d in
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the finite Weyl group W of minimal length in the coset dWj,;. Indeed it is known
that the linear map

f= (f(T5)aewnn : Homy o« (H, V) @ v

deWwWm
is an isomorphism. For v € V and d € WW | there is a unique element
i, € Homgy - (H,V) satisfying f(T;) = v and f(Ty) =0 for ' € W\ {d}.

It is known that the map v — fgu, : WM.V — Homy; o« (H,V) is Hw.n)+-
equivariant: fgu ,rwn = fou Ty for all v € V,w € Wy p+(1). By adjunction,
this H (w.nr)+-equivariant map gives an H g-homomorphism from an induced module
to a coinduced module:

(4.21) V@ 1y > forry t WY Oy arys 0 H L2 Homyy,, o+ (H, V).

This is an isomorphism [Abel, Proposition 4.15], [Vigl5bl Theorem 1.8].

The naive guess that a variant pg of pp induces an Hpg-isomorphism between
the Hg-modules Iy, (w.P, WM.V, w.Q) and CI(P,V, Q) turns out to be true. The
proof is the aim of the rest of this section.

The H g-module I3 (w.P,wM.V, w.Q) is well defined because the parabolic sub-
groups of G containing w.P and contained in P(w*.V) are w.Q for P C Q C P(V),
as follows from Lemma [.2T]

Lemma 4.21. Azuy = —w(Ay).

Proof. Recall that Ay, is the set of simple roots o« € A\ Ay orthogonal to Ay
and TM (2) acts trivially on V for all z € Z N M/, and the corresponding standard
parabolic subgroup P, = MyNy. The Z N M/, for a € Ay generate the group
ZNM,. Aroot a € A\ Ay orthogonal to Ay is fixed by was so wM(a) = w(a)
and

WMy (W) T = WMy (w)
The proof of Lemma[L2T]is straightforward as A = —w(A), Ay = —w(Ay). O

Before going further, we check the commutativity of the extension with the twist.
As Q = MU and Mg determine each other we denote wyy, = wg, wHe = w@
when Q # P,G.

Lemma 4.22. eHWQ(v?/M.V) = VVQ-GH@(V)-

Proof. As R-modules V = ey, ,(WM.V) = w@.ey,(V). A direct computation
shows that the Hecke element TW-@* acts in the Hg-module ey, ,(W.V), b
the identity if w € W9 Wy (w?) ! and by T(55) 1 g if w € WO Wy (W)~
where My denotes the standard Levi subgroup with Ay, = Ag \ Ap. Whereas
in the Hg-module W<, eHQ(V), the Hecke element TV-@* acts by the identity if
w € 1Wy ary and by T, (wM) Lwwn W E Wy ar(1). So the lemma means that

Waeary = W W (w9) ™ (w9) T lww® = (W) "low™ if w e Wy ar(1).

These properties are easily proved using that ;Wgr is normal in W (1) and that
the sets of roots Ap and Ag \ Ap are orthogonal: wg = wa,way, the elements
war, and wys normalize Wy, and Wy, the elements of Wy, commutes with the
elements of W,,. O
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We return to our guess. The variant pg of pup is obtained by combining the
commutativity of the extension with the twist and the isomorphism (£21]) applied
to (Q, exn,(V)) instead of (P,V). The Hp-isomorphism g is

(4.22) v ® 1y fgn Indzw.MQ (e, o (WMV)) 22, HomﬂMC3 o (Hyeno (V).

Our guess is that pg induces an H g-isomorphism from the cokernel of the Hz-
map

b Indjy (e, o (W) = Indfg,  (en, .o (WM.V))
QCQ/CP(V)
defined by the Hg-embeddings +(w.Q, w.Q'), isomorphic to I (w.P,wMV, w.Q)
via fw.g (Theorem 14, onto the cokernel CIy (P, V, Q) the Hr-map

@ HomHMf/)B* (H,en, (V) — HomHMévs* (H,engy(V))
QCQ/CP(Y) “

defined by the Hp-embeddings i(Q, Q). This is true if i(Q,Q’) corresponds to

(w.Q,w.Q’) via the isomorphisms pg and pg. This is the content of the next

proposition.

Proposition 4.23. For all Q C Q' C P(V) we have
i(Q,Q") o pgr = pg o (w.Q, w.Q').
We postpone to section the rather long proof of the proposition.
Corollary 4.24. The Hg-isomorphism ug o H;?Q induces an Hpg-isomorphism
Iy (w.P,w™My w.Q) = ClIy(P,V,Q).

4.5. Supersingular H z-modules, classification of simple Hr-modules. We
recall first the notion of supersingularity based on the action of the center of H.
The center of H [Vigld Theorem 1.3] contains a subalgebra Zp+ isomorphic
to Z[T+/T1] where T is the monoid of dominant elements of 7" and T} is the
pro-p-Sylow subgroup of the maximal compact subgroup of T'.
Let t € T of image p; € W(1) and let (Eo(w))wew (1) denote the alcove walk
basis of H associated to a closed Weyl chamber o of W. The element

Eo(Cue) =Y Eo(w)

is the sum over the elements in g’ in the conjugacy class C'(p;) of py in W(1). It
is a central element of H and does not depend on the choice of 0. We write also

z(t) = Eo(C(pe))-

Definition 4.25. A non-zero right Hpr-module V is called supersingular when, for
any v € V and any non-invertible ¢ € T, there exists a positive integer n € N
such that v(z(¢))” = 0. If one can choose n independent on (v,t), then V is called
uniformly supersingular.

Remark 4.26. One can choose n independent on (v,t) when V is finitely generated
as a right Hr-module. If R is a field and V is simple we can take n = 1.

When G is compact modulo the center, Tt = T, and any non-zero H g-module
is supersingular.
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The induction functor Ind%M : Mod(Hr,r) = Mod(Hg) has a left adjoint £3
and a right adjoint R}¢ ~ [VigI5b]: for V € Mod(Hr),
(4.23)

£ (V)y=w Mo (v O,

In the left adjoint, V' is seen as a right H(w.ar)--module via the ring homomor-
phism 603, 1/ Hw.a)- — H; in the right adjoint, V is seen as a right H +-module
via the ring homomorphism 0, : Hy+ — H (section 2.3]).

Hew M), RzM V) = HomHM+,0(HM7 V).

M)~ ,0*

Proposition 4.27. Assume thatV is a supersingular right H g-module and that p is
nilpotent in V. Then E%M (V) =0, and if V is uniformly supersingular R%M V)=
0.

Proof. This is a consequence of three known properties:

(1) Has is the localization of Hys+ (resp., Har—) at T/j‘/[ for any element p €
Ar(1), central in Wjs(1) and strictly N-positive (resp., N-negative), and
T =T)*. See [VigI5b, Theorem 1.4].

(2) When o is anti-dominant, Eo(p) = T, if p € AT(1) and E,(u) = T} if
we A (D).

(3) Let an integer n > 0 and u € A(1) such that the W-orbit of v(u) € X.(T)®
Q (definition in section 2I]) and of p have the same number of elements.
Then

(EO(C(/J')))”EO(M) - EO(M)HJFI € pH'
See [Vigl5al Lemma 6.5], where the hypotheses are given in the proof (but
not written in the lemma).

Let u € AL (1) satisfying (1) for M+ and (3), similarly let w.uu € A7 (1) satisfying
(1) for (w.M)~ and (3). For (R,V) as in the proposition, let v € V and n > 0
such that vE,(C(p))™ = vE,(C(w.u))™ = 0. Multiplying by FE,(u) or E,(w.u),
and applying (3) and (2) for o anti-dominant we get:

VB, (i) = oI € Y, 0B, (wn)" ) = u(T, )" € pV.

The proposition follows from: vT;**, v(Ty, ,)"*" in pV (as explained in [Abel6),
Proposition 5.17] when p = 0 in R). From v(Ty, ,)"*! in pV, we get v@ (T M*)"+
= 0(Ty )" @ Lagy oy PV @3, -0 Hworo As TV % = TWM s invertible in
Hw.vr we get v@1ly  ,, in pV®H(w'M>7’9* Hw.ni- As v was arbitrary, V®H(W,M)ﬂ9*
Hw.r C pV®H(wAM),79* Hw.ar. If pis nilpotent in V, then V®H(W_M),,9* Hw.r = 0.
Suppose now that there exists n > 0 such that V(z(¢))"” = 0 for any non-invertible

t € T then VT'*' C pV where p = p; and hence @(h) = @(thi‘CI,L,l)TlZL‘H
in pV for an arbitrary ¢ € Homy , o(Har,V) and an arbitrary h € Hy. We
deduce Homy,, , o(Har,V) C Homyy  , o(Ha,pV). If p is nilpotent in V, then

Homy , o(Har, V) = 0. O

Recalling that w™.V is obtained by functoriality from V and the ring isomor-
phism (W) defined in (20), the equivalence between V' supersingular and wV
supersingular follows from Lemma [4.28

Lemma 4.28.

(1) Lett € T. Then t is dominant for Uy if and only if WMt(WM)=1 € T is
dominant for Uy as.
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L(wl\f)
(2) The R-algebra isomorphism Hay g — Hw.M,R; M s Tv"va(wM) N

forw € Wyr(1) sends 2M(t) to 2™-M(wWMt(WM)=1) fort € T dominant for
Up.

Proof. The conjugation by w stabilizes T, sends Ups to Uy.ar, and sends the W y,-
orbit of t € T to the Wy, p-orbit of WMt(WM)~1 as wM Wy, (whM)~t = Wy, ar.
It is known that (W) respects the anti-dominant alcove walk bases [Vigl5b),
Proposition 2.20]: it sends EM (w) to EW-M (WwMw(wM)~1) for w € Wy (1). O

We deduce the following.

Corollary 4.29. Let V be a right Has r-module. Then V is supersingular if and
only if the right Hw ar.r-module WMV is supersingular.

Assume R is an algebraically close field of characteristic p. The supersingular
simple H s r-modules are classified in [Vigl5a]. By Corollaries f24] and 29 the
classification of the simple H -modules in [Abe] remains valid with the H r-modules
I3(P,V, Q) instead of CIy(P,V,Q):

Corollary 4.30 (Classification of simple Hpg-modules). Assume R is an alge-
braically closed field of characteristic p. Let (P,V,Q) be an Hpg-triple where V
is simple and supersingular. Then, the Hr-module Iy, (P,V, Q) is simple. A sim-
ple Hr-module is isomorphic to I3 (P,V,Q) for an Hg-triple (P,V,Q) where V is
simple and supersingular, P,Q and the isomorphism class of V are unique.

4.6. A commutative diagram. We prove in this section Proposition [4.23] For
Q C Q' C P(V) we show by an explicit computation that

pg i@, Q) o pg Indjy,  (en, o (WY V)) = nd}  (en,, o (W)

is equal to «(w.Q,w.Q’). The R-module ey, ,(W".V) ® 13 generates the Hz-
module ey, ., (WY.V) @y, o o0+ Hr = Indzw, (ex,, o (WM.V)) and by @I7)

(4.24) w.Q,w.Q) v ®1y) =v® > T;

Wy
de w.Q WMW.Q/

for v € V seen as an element of eHW.Q,(\TVM.V) in the LHS and an element of
€10 (WM.V) in the RHS.

Lemma 4.31. (ug' 0i(Q,Q") o pg)(v@1y) =v® EdeWWMQ 90 Tg (e gy-1-

MQ/

Proof. pg (v®1y) is the unique homomorphism f_ 2 , €Homy, o~ (H, en,, (V)
Q/

sending To/ to v and vanishing on T for d' € WWMQ’ \ {w?'} by @22). By

@I9), i(Q,Q") is the natural embedding of Homy _ (M, ey, (V)) in

Mg ?
Homy _ (M, e3,(V)) therefore i(Q, Q' )(f~MQ/ ) is the unique homomorphism
o

Homy _ (M, en,(V)) sending Tger to v and vanishing on Ty, for d’ € WMo \
o

, W
{(w?'}. As WMo = wWaer MZ/Q’ this homomorphism vanishes on T for w not
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W
in WMQ’WMZ,Q . By [Abel6, Lemma 2.22], the inverse of ;¢ is the H g-isomorphism
-1
H -
(4.25) Homy g+ (H, €34 (V) —— IndZW_MQ (€4 (WMD)
Q

fro Y HTY@Tiug

deWWm
where WW# is the set of d € W with minimal length in the coset dW,;. We deduce

the explicit formula
(1g' i@ Q) ong) W@ L) = D Q@) [y NTa) ® Torig s

wew'" MQ
Some terms are zero: the terms for w € WMo not in WMQ’WXM? We analyze
the other terms for w in W" e N wMer W Q ; this set is we’ W Q Let w =

wMa'd d e W ,and w = MQ’d with d € 1WG/ lifting d. By the brald relations
Ty =T nmg Ty We have T; = 0*( @) by the braid relations because d € W,
SMQ, c St and 0*(c5 Q') = c; for s € SMQ,. As W, C WM@S/ n WM;;/, we
deduce:
i(Q.Q)(Fy )Ta) = HQQV Iy, )T T)

= i(Q Qg N Tguig )Ty

= de{VIQ/ = qqv.

Corollary gives the last equality. O

The formula for (uél 0i(Q, Q") o pg) (v ® 1y) given in Lemma F3T] is different
from the formula [@24) for «(w.Q, w.Q’)(v®1y). It needs some work to prove that
they are equal.

W
A first reassuring remark is that " Mw.c W, o = {wd™'w | d € WMZ/Q}, SO0

the two summation sets have the same number of elements. But better,

WIMW'QWMW‘Q/ = {WQ( ) 1 | d S WMQ/Q}

W Was
because wgo W MZ/Q wgo =W MQ/ To prove the latter equality, we apply the crite-

rion: w € Wyy,,, lies in WMQ,WMQ if and only if w(a) > 0 for all & € Ag noticing
that d € WXZ? implies wg(a) € —Aqg, dwg(a) € =Py, Wordwg(a) > 0.
Let 25 = w@(w?d)~'. We have wMe(wMe'd)~! = &, because the lifts @ of
the elements w € W satisfy the braid relations and ((z4) = l(wod lwg/) =
U(wqy)—E(wad ™) = U(war) —L(wq)—U(d ) = L) —E(wq)—(d) = —(w?)+
U(w?) = £(d). We have qa = Gy, grgw,. o Decause wd™'w = Wy, @raWw.q/, and
4d = 4qa—1 = qwd—1w- SO
Z B Z W qawy o L5,

w
zge Mw.Q Wy, ,
Q’ w.Q
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In the RHS, only w™.V, w.Q,w.Q’ appear. The same holds true in the formula
@24). The map (P,V,Q,Q") — (w.P,wM.V, w.Q,w.Q') is a bijection of the set
of triples (P, V,Q, Q') where P = MN,Q,Q’ are standard parabolic subgroups
of G, V a right Hg-module, @ C Q" C P(V) by Lemma 2T So we can re-
place (w.P,w™.V, w.Q,w.Q') by (P,V,Q,Q’). Our task is reduced to prove in

€Ho (V) ®f,r.[Mér 0 Hrg:

(4.26) v Y Tp=0® Y Gwodwy T
de"Mq War,,, de " Ma Warg,

A second simplification is possible: we can replace Q C @’ by the standard parabolic

subgroups Q2 C Q5 of G with Ag, = Ag \ Ap and Ag, = Agr \ Ap, because Ap

and AP(V)\AP are orthogonal. Indeed, WMQ, =Wy x WMQ, and Wy, = Wy x
2

Wz, are direct products, the longest elements wg = WMWQ,, WQ = WMWQ,

are direct products and

W w
MQWMQ/ = "Ma, WMQ%’ WQdWQ/ = WQ2dWQ/2.

Once this is done, we use the properties of ey, (V): vh ® 13 = v ® fg(h) for

h € HM+ , and TG acts trivially on ey, (V) for w € W, U (AN IWMé), ).
2 2

Set 1WM/ ={w € 1WM/ | w is a lift of some element in W, /} and 1WM/

2

similarly. Then ZiL N 1WM/ C (A()N 1WM/ )ﬂ 1WM+ and 1WM/ - 1WM/ ﬂ

1WM+ . This implies that (IM) where @ C Q' has been replaced by Q2 C QQ

follows from a congruence

(4.27) Z ;= Z Gwq,dwq, T3

de" M@z Wi de"Ma2 Warg,

in the finite subring H(1WMQ/2) of H generated by {T,, | w € 1WM£9/2} modulo the
right ideal J» with generators {0g(T¢*) — 1| w € (Z N 1WM(/2,2) U 1WM£22}.

Another simplification concerns T; modulo 75 for d € Wy, o We recall that
for any reduced decomposition d = s1...s, with s; € SN W’MQ,2 we have T(;f =
(T5, —cs5,) ... (Ts, — cs,) where the §; are admissible. For § admissible, by ([3.2))

c;=qs — 1.
Therefore
Tp=Ts —qs, + 1) (T5, — gs, + 1)

Let J' C J»2 be the ideal of H(1WM/ ) generated by {T} — 1|t € Zy N 1WM/ }
Then the ring H(1WM/ )/J' and its right ideal Jo/J' are the spec1ahzat10n of
the generic finite ring H(WM , )9 over Z[(qs)ses,, o | where the ¢, for s € SMQ2 =
SNWy, oy are indeterminates, and of its right 1deal J3 with the same generators.
The similar congruence modulo 73 in H(Wy, @’2) (the generic congruence) implies

the congruence [@27)) by specialization.

We will prove the generic congruence in a more general setting where H is the
generic Hecke ring of a finite Coxeter system(W, S) and parameters (gs)ses such
that ¢; = g when s, s’ are conjugate in W. The Hecke ring H is a Z[(gs)scs]-free
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module of basis (T,)wew satisfying the braid relations and the quadratic relations
T? = g5 + (gs — 1)Ts for s € S. The other basis (T} ),ecw satisfies the braid
relations and the quadratic relations (77)% = ¢s — (¢s — 1)) for s € S, and is
related to the first basis by T2 = Ts — (¢s — 1) for s € S, and more generally
Tl = T;‘],lTw = ¢y for w € W [Vigl6], Proposition 4.13].

Let J C S and J is the right ideal of H with generators T, — 1 for all w in the
group W ; generated by J.

Lemma 4.32. A basis of J is (T}, — 1)Ty, for wy € Wy \ {1}, ws € W7W, and
adding Ty, for wg € WoW gives a basis of H. In particular, J is a direct factor of
H.

Proof. The elements (T, — 1)T, for wy € Wy, w € W generate J. We write
w = uywy with unique elements uy € Wy, wy € VW, and T = Ty, Ty, Therefore,
(T, —1)T; T, By an induction on the length of u1, one proves that (T; —1)T;,

up T we "
is a linear combination of (T, — 1) for v; € W as in the proof of Proposition 3.4l

It is clear that the elements (175 — 1)T;, and T}, for wy € Wy \ {1}, wy € /W
form a basis of H. O

Let w; denote the longest element of W; and w = wg.

Lemma 4.33. In the generic Hecke ring H, the congruence modulo J
Z Td = Z QW]dwTd
deWIw deIw

holds true.
Proof.
Step 1. We show
Wow = w, W Ww, Gw, Gwraw = Tw, Tw, dw ey

The equality between the groups follows from the characterization of W/W in W:
an element d € W has minimal length in W ;d if and only if ¢(ud) = £(u) + ¢(d) for
all u € W;. An easy computation shows that ¢(uw ydw) = £(u) + £(w ydw) for all
u € Wy, deWIW (both sides are equal to £(u) +£(w) — £(w ;) — £(d)). The second
equality follows from qw , Gw,dw = qaw because (w;)? =1 and £(wy) + {(wjdw) =
{(dw) (both sides are £(w) — £(d)) and from qawT)] = Taw Ty ;-1 1] = TawTs. We
also have Tyw = Tw, Tw , dw-

Step 2. The multiplication by g, on the quotient H/J is injective (Lemma [32))
and qw, = Tw,. By Step[l ¢w,awT = Tw, awly and

> dwawTi= ) Ty,
aeow deVIw
The congruence
(4.28) Z T, = Z T T
deWow desw

for all s € S implies the lemma because Ty, = T ...T; for any reduced decom-
position w = s7...s, with s; € S.
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Step 3. When J = (), the congruence ([£28)) is an equality

(4.29) S T,=> T,T;.

weW weW

It holds true because )y Tw = > Tw(Ts+1) and (Ts+ 1)1 =TT +TS =
qs + 17 =T, + 1.

w<ws

Step 4. Conversely the congruence (28 follows from (£29) because

ZT :(ZTu) Z TdE(Z qu) Z Ty

weW ueWy deVow ueWy deWow
(vecall ¢, =T, T, =T,) and we can simplify by >y ¢u in H/J. |
This ends the proof of Proposition 23]

5. UNIVERSAL REPRESENTATION Iy (P, V, Q) ®3 R[U\G]

The invariant functor (—)“ by the pro-p-Iwahori subgroup U of G has a left
adjoint
— @) RIU\G] : Modg(H) — Mod (G).
Hr

The smooth R-representation V ®4,, RU\G] of G constructed from the right H g-
module V is called universal. We write

RU\G] = X.

Question 5.1. Does V # 0 imply V ®y, X # 0 or does v ® 1jy = 0 for v € V
imply v = 07 We have no counterexample. If R is a field and the Hz-module V
is simple, the two questions are equivalent: V ®4, X # 0 if and only if the map
v = v ® 1y is injective. When R is an algebraically closed field of characteristic p,
V ®u, X # 0 for all simple ‘H r-modules V if this is true for V simple supersingular
(this is a consequence of Corollary B.13]).

The functor — ®HR X satisfies a few good properties: it has a right adjoint and
is compatible with the parabolic induction and the left adjoint (of the parabolic
induction). Let P = MN be a standard parabolic subgroup and X = R[Un\M].
We have functor isomorphisms

(5.1) (- @ X) oInd},, — IndEo(— X) Xur),
HRr Hr R
(5.2) (v (-QX) = (= Q) Xur)o LK.
’HR HM,R

The first one is [OV17, formula 4.15], the second one is obtained by left adjunction
from the isomorphism Ind%M o(—)m — (=) 0 Ind$ [OVIT, formula (4.14)]. If V
is a right H g-supersingular module and p is nilpotent in V, then E%M(V) =0 if
M # G (Proposition [£.27)). Applying (£.2) we deduce the following.

Proposition 5.2. If p is nilpotent in V and V supersingular, then V @4, X is left
cuspidal.
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Remark 5.3. For a non-zero smooth R-representation 7 of M, A, is orthogonal to
Ap if 7 is left cuspidal. Indeed, we recall from [AHHVTT7, I1.7 Corollary 2] that
A is not orthogonal to Ap if and only if there exists a proper standard parabolic
subgroup X of M such that o is trivial on the unipotent radical of X; moreover 7
is a subrepresentation of Ind! (7]x), so the image of 7 by the left adjoint of Ind}/
is not 0.

From now on, V is a non-zero right H s rg-module and
g = V ®7—[M,R X]V[.

In general, when o # 0, let P, (o) be the standard parabolic subgroup of G with
Ap (o) = ApUA] , where A}, is the set of simple roots a € A, orthogonal to

Ap.

Proposition 5.4.

(1) P(V)C Py (o) if o #0.

(2) P(V)= Py (o) if the map v — v Q ly,, is injective.

(3) P(V) = P(0) if the map v — v ® ly,, is injective, p nilpotent in V and V
supersingular.

(4) P(V)=P(o) if o #0, R is a field of characteristic p and V simple super-
singular.

Proof.

(1) P(V) C P, (o) means that ZNM, acts trivially on V®1y,,, where My is the
standard Levi subgroup such that Ay, = Ay. Let z € ZN M7, and v € V. As Ay
and Ay are orthogonal, we have T™*(z) = TM (z) and Uy 2Uy = Upsz. We have
v®@1y,, = vTM(2)@1y,, = vRTM (2)1y,, = v@1y,,. = v@2 1y, = 271 (v@1y,, ).

(2) If v ® 1y,, = 0 for v € V implies v = 0, then o # 0 because V # 0. By (1)
P(V) C Pi(0). As in the proof of (1), for = € Z N M| , we have vTM*(2) ®
ly,, = vT™(2) ® 1y,, = v ® ly,, and our hypothesis implies vT**(z) = v hence
P(V) D) PL(O').

(3) Proposition 5.2] Remark 53] and (2).

(4) Question Bl and (3). O

Let @ be a parabolic subgroup of G with P € @ C P(V). In this chapter
we will compute I (P, V,Q) ®u RU\G]| where Iy (P,V,Q) = IndzM(v) (e(V) ®

(Stgrg‘ﬁ(v))uﬂf(v>) (Theorem [B1T]). The smooth R-representation Ig(P, o, Q) of G

is well defined: it is 0 if o = 0 and Indg(g)(e(o) ® Stg(g)) if o # 0 because (P, 0, Q)
is an R[G]-triple by Proposition 54l We will show that the universal representation
I4(P,V, Q) @y RU\G] is isomorphic to I (P, 0,Q), if P(V) = P(c) and p = 0,
or if 0 = 0 (Corollary BI2). In particular, Iy (P, V, Q) @y RU\G] ~ I¢(P,0,Q)
when R is an algebraically closed field of characteristic p and V is supersingular.

5.1. @ = G. We consider first the case @ = G. We are in the simple situation where
V is extensible to H and P(V) = P(o) = G, I4(P,V,G) = e(V) and Ig(P,0,G) =
e(o). We recall that A\ Ap is orthogonal to Ap and that My denotes the standard
Levi subgroup of G with Ay, = A\ Ap.
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The H g-morphism e(V) — e(o)¥ = o™ sending v to v ® 1y, for v € V, gives
by adjunction an R[G]-homomorphism

G
v 1y = v® 1y, e(V) @y, X 25 e(o).

If ¢ is an isomorphism, then (V) @4, X is the extension to G of (e(V) @4, X) |,
meaning that M} acts trivially on e(V) ®4, X. The converse is true.

Lemma 5.5. If M} acts trivially on e(V) @4, X, then ®% is an isomorphism.

Proof. Suppose that M} acts trivially on e(V) @4, X. Then e(V) Q4, X is the
extension to G of (e(V) @, X)|ar, and by Theorem BI3, (e(V) @3, X)¥ is the
extension of (e(V) @3, X)“™. Therefore, by [(3.12),

(v @ 1T = (v 1) TM*  for all v € V,w € Wi (1).

As V is extensible to H, the natural map v — v ® 1y : V (e(V) @u, X)UM g
‘H pr-equivariant, i.e.,
VT @1y = (v @ 1) T for all v € V,w € Wiy (1)
because B12) vITM* @1y =T @1y =v@ T = (v® 1y) T in e(V) @y, X
We recall that — @&, X is the left adjoint of (—)4s . The adjoint R[M]-
homomorphism ¢ = V ®4,, , Xy = e(V) @3, X sends v @ 1y, to v ® 1y for

all v € V. The R[M]-module generated by the v ® 1y for all v € V is equal to
e(V) @3, X because M} acts trivially. Hence we obtained an inverse of ®¢. O

Our next move is to determine if M} acts trivially on e(V) @4, X. It is equivalent
to see if M4 acts trivially on e(V) ® 1y as this set generates the representation
e(V) @, X of G and M} is a normal subgroup of G as M} and M commute and
G = ZM'M}. Obviously, U N M} acts trivially on e(V) ® 1. The group of double
classes (U N M5)\MS5/(U N M}) is generated by the lifts § € N'N M} of the simple
affine roots s of Wyy;. Therefore, Mj acts trivially on e(V) ®4, X if and only if for
any simple affine root s € S?\Z of Wiy, any s € N N M} lifting s acts trivially on

e(V) ® 1y.

Lemma 5.6. Letv eV, s € S%Z and § € N'N M} lifting s. We have
(gs +1)(v @ 1y — (v ®@ 1y)) = 0.

Proof. We compute:

T5(31u) = 3(Tslu) = Lyaus)— = Zgu(g)_llu = ZUOPlua
u 6uoP
To(8*1y) = 8 (Tolu) = lysus)-2 = lus)—u = Zuélu
for w in the group U /(37 UsNU) and u°P in the group 8U(38)~1/(sU(5)~*NU); the
reason is that §2 normalizes U, UsU3 ™! is the disjoint union of the sets Usu=1(3)~?
and U(8)"1U is the disjoint union of the sets U(3)"'u~!. We introduce now a
natural bijection

(5.3) u—uP U/(ETTUSOU) — UGB/ (UGBTI NU)
which is not a group homomorphism. We recall the finite reductive group Gy s

quotient of the parahoric subgroup £ of G fixing the face fixed by s of the alcove
C. The Iwahori groups Z°U and Z°8U(3)~! are contained in &, and their images
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in G, are opposite Borel subgroups Z,U,  and ZkU;’;c. Via the surjective maps
u WU = Uy and w® — @% @ 8U(5)"" — UL we identify the groups
U/(37USNU) = Uy, and similarly sU(8)~1/(8U(3) " NU) = U Let G}, | be the
group generated by U ;, and Usof;e, and let Bg,k = G;as NZpUs i = ( 2378 N Zy)Us .
We suppose (as we can) that § € & and that its image §j in G, lies in G;c,s' We
have 8,Us 1 (8;) ! = Uf’;€ and the Bruhat decomposition G;“S = B;C,s U Uk,s8x By,
implies the existence of a canonical bijection ©°? — @ : (U.", — {1}) = (Uy,s — {1})
respecting the cosets H"I’B,’c’s = ﬂékB,’c’S. Via the precedirig identifications we get
the wanted bijection (B.3).

For v € e(V) and 2z € Z° N M} we have vT, = v, 21y = T, 1y and v @ T, 1y =
vT, ® 1y therefore Z° N M} acts trivially on V @ 1. The action of the group
(Z° N MU on V @ 1y is also trivial. As the image of Z° N M} in G contains
Zy NG s

us(v ® 1y) = u?(v® ly)

when v and u° are not units and correspond via the bijection ([B.3]). So we have
(5.4) v Ty(81y) — (V@ 1y) = v @ Ts(5%1y) — v ® 31y.

We can move T on the other side of ® and as vTs = gsv (Corollary B.9), we can
replace T by qs. We have v ® 821y = v ® T,—2 1y because 32 € Z° N M} normalizes
U; as we can move T,—» on the other side of ® and as vT,-2 = v we can forget 5.
So (B4) is equivalent to (¢s + 1)(v ® 1y — (v ® 1)) = 0. O

Combining the two lemmas we obtain the following.

Proposition 5.7. When V is extensible to H and has no qs + 1-torsion for any
s € Saﬁé, then M} acts trivially on e(V) @3, X and ®C is an R|G]-isomorphism.

Proposition 5.7 for the trivial character 14, says that 1y ®4,, X is the trivial
representation 1g of G when ¢, + 1 has no torsion in R for all s € S, This
is proved in [OV17, Lemma 2.28] by a different method. The following counter-
example shows that this is not true for all R.

Example 5.8. Let G = GL(2, F) and let R be an algebraically closed field where
Gso +1 =¢qs;, +1 =0 and S,g = {so,s1}. (Note that gs, = ¢s, is the order of
the residue field of F'.) Then the dimension of 14 ®4, X is infinite, in particular
1y Oy, X # 1¢.

Indeed, the Steinberg representation Stg = (Ind% 1,)/1g of G is an indecom-
posable representation of length 2 containing an irreducible infinite dimensional
representation 7 with 7/ = 0 of quotient the character (—1)'#°9et. This follows
from the proof of Theorem 3 and from Proposition 24 in [Vig89]. The kernel of the
quotient map Stg @ (—1)v#°det _ 15 is infinite dimensional without a non-zero
U-invariant vector. As the characteristic of R is not p, the functor of U-invariants
is exact hence (Stg ® (—1)va°deH = 15, As — ®4, RU\G] is the left adjoint of
(—)¥ there is a non-zero homomorphism

1y =7 X — StG ® (_1)valodet

with image generated by its U-invariants. The homomorphism is therefore surjec-
tive.
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5.2. V extensible to H. Let P = MN be a standard parabolic subgroup of G
with Ap and A\ Ap orthogonal. We still suppose that the Hj; z-module V is
extensible to H, but now P C Q C G. So we have Iy (P,V,Q) = e¢(V) ®r (Stg)u
and Ig¢(P,0,Q) = e(0) ®r Stg where 0 =V ®4,, , Xar. We compare the images
by — @, X of the Hg-modules (V) ®@r (Indg 1) and e(V) ®r (Stg)l’{ with the
smooth R-representations e(o) ® Indg 1 and e(o) ® Stg of G.

As — ®,,,, Xis left adjoint of (—)¥, the # g-homomorphism v® f = V@ 1y, @ f :
e(V)®R(Indg 1Y — (e(a)@RIndg 1) gives by adjunction an R[G]-homomorphism

@G
VR f @1y v® Ly, @ f: (e(V) ®r (IndG 1)) @2, X —2 e(0) ®p Indg 1.
When Q = G we have &% = ®¢. By Remark @g is surjective. Proposition
5.7 applies with Mg instead of G and gives the R[Mg]-homomorphism
i3
V&R 1MMQ = U® 11,[M Pl (V) ®HQ,R XMQ — GQ(O').

Proposition 5.9. The R[G]-homomorphism fbg is an isomorphism if ®9 is an
isomorphism, in particular if V has no qs + 1-torsion for any s € SafzmMQ.

Proof. The proposition follows from another construction of @g that we now de-
scribe. Proposition gives the H r-module isomorphism

VR fourrv®1ly : (e(V)Qr (Indg 1)“) — Ind%Q(eHQ V) = eno (V) @n oH.

+
NIQ,R

We have the R|[G]-isomorphism [OV17, Corollary 4.7]
v® 1y @1y — fQUW@lMMQ : Insz (eno(V)) ®up X — Indg(eHQ V) @216 Xntg)
and the R[G]-isomorphism

Jouwetu,, — v ® luy, ® fou Indg(eQ(a)) —e(0)® Indg 1.

From ®€ and these three homomorphisms, there exists a unique R[G]-homomor-
phism

(e(V)®r (Indg 1)) @y, X = e(0) g Indg 1
sending v ® fou ® 1y to v® 1y, ® fou. We deduce: this homomorphism is equal to
<I>g, YV ® lou ® 1y generates (e(V) ®@r (Indg DY) @4, X, if @9 is an isomorphism,
then <I>g is an isomorphism. By Proposition 5.7 if V has no ¢s + 1-torsion for any
s e S?VZOMQ, then ®9 and @g are isomorphisms. |

We recall that the H s, r-module V is extensible to H.
Proposition 5.10. The R[G]-homomorphism ®& induces an R[G]-homomorphism
(e(V) ®r (StG)) @3, X — e(0) ®r StG,

It is an isomorphism if ‘1’8/ is an R|G]-isomorphism for all parabolic subgroups Q'
of G containing Q, in particular if V has no qs + 1-torsion for any s € S?VZ.
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Proof. The proof is straightforward, with the arguments already developed for
Proposition and Theorem The representations e(o) @g Stg and (e(V) ®gr

(Stg)“ ) ®1, X of G are the cokernels of the natural R[G]-homomorphisms

Docqre(0) ©r nd§, 1 22% ¢(0) @ nd§ 1

Bocq (e(V) @ (IndS, 1) @y, X L2, (V) @5 (IndG 1)4) @34,, X

These R[G]-homomorphisms make a commutative diagram with the R[G]-homomor-
phisms ®QQQ’ @8, and fbg going from the lower line to the upper line. Indeed,
let v ® fou ® 1y € (e(V) @g (Ind$, 1)¥) @4, X. On the one hand, it goes
to v ® fQZ,{HQ/(eg) ® 1y € (e(V) ®R (IndG 1Y) ®3, X by the horizontal map,
and then to v ® 1y,, ® fouby (eQ ) by the vertical map. On the other hand, it
goes to v ® ly,, ® fou by the vertical map, and then to v ® 1y,, ® foubgr (eQ )
by the horizontal map. One deduces that @g induces an R[G]-homomorphism
(e(V) ®r (Stg)u) Qun X = e(o) Qg Stg7 which is an isomorphism if fbg, is an
R[G]-isomorphism for all Q C Q’. O

5.3. General. We consider now the general case: let P = MN C @ be two
standard parabolic subgroups of G and let V be a non-zero right H,s,gr-module

with @ C P(V). We recall Iy (P, V,Q) = IndHM(V)( e(V) ®r (Stg(v))umv)) and
0 =V @3, r Xar (Proposition [5.4). There is a natural R[G]-homomorphism

q>G
Iy(P,V, Q) @y X — IndE ) (earv)(0) ®r StP(V))

obtained by composition of the R[G]-isomorphism [OVIT, Corollary 4.7] (proof of
Proposition 5.9):

M(V
IH(P, V, Q) QHg X — Indg(v)((e(V) XRnr (Sthg]W)(V))uM(V)) ®’HM(V),R XM(V))a
with the R[G]-homomorphism
dE ) (e(V) @ (St )H00) @3,y Xar(wy) = Id ) (enrny (0) @1 St g™,

image by the parabolic induction Indg(v) of the homomorphism
(e(V) @ (Sto ")) @41, 0w Xarw) = earny(0) @5 o)

induced by the R[M (V)]-homomorphism (I)g(v) = (I)Aer(u}\;/[ of Proposition .10
applied to M (V) instead of G.

This homomorphism <I> is an isomorphism if CI)P(V)

is an isomorphism, in par-
ticular if V has no ¢y + 1-torsion for any s € S3If ! where Anr, = Apvy \ A
(Proposition [5.10). We get the main theorem of this section.

Theorem 5.11. Let (P = MN,V,Q) be an Hg-triple and 0 = V®4,,, , R[Unrr\M].
Then, (P,0,Q) is an R[G|-triple. The R[G]-homomorphism

¢
Iy (P, V,Q) @u, RU\G] — Indg(V)(eM(V)(U) QR Stg(V))

is an isomorphism if @g(v) 18 an isomorphism. In particular @? s an isomorphism
if V has no qs + 1-torsion for any s € S?\Z.
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Recalling Ig(P,0,Q) = Indg(g)(e(a) ®r Stg(g)) when o # 0, we deduce the
following.

Corollary 5.12. We have the following:

I’H(P7V5Q) O p R[M\G] 2 IG(P7 g, Q)7 ZfO' 7& 0, P(V) = P(U) and V has no
qs + 1-torsion for any s € Saﬁé.

I’H(Paqu) ®HR R[U\G] = IG(P7 g, Q) = 07 lfO' =0.

Recalling P(V) = P(o) if 0 # 0, R is a field of characteristic p and V simple
supersingular (Proposition 5.4l (4)), we deduce the following.

Corollary 5.13. I (P, V,Q) ®u, RU\G| ~ Ig(P,0,Q) if R is a field of charac-
teristic p and V simple supersingular.

6. VANISHING OF THE SMOOTH DUAL

Let V be an R[G]-module. The dual Homg(V, R) of V is an R[G]-module for
the contragredient action: gL(gv) = L(v) if ¢ € G, L € Hompg(V, R) is a linear
form and v € V. When V € Modz (G) is a smooth R-representation of G, the
dual of V is not necessarily smooth. A linear form L is smooth if there exists an
open subgroup H C G such that L(hv) = L(v) for all h € H,v € V; the space
Hompg(V, R)*of smooth linear forms is a smooth R-representation of G, called the
smooth dual (or smooth contragredient) of V. The smooth dual of V is contained
in the dual of V.

Example 6.1. When R is a field and the dimension of V' over R is finite, the dual
of V is equal to the smooth dual of V' because the kernel of the action of G on V
is an open normal subgroup H C G; the action of G on the dual Homg(V, R) is
trivial on H.

We assume in this section that R is a field of characteristic p. Let P = M N be
a parabolic subgroup of G and V € Mody (M). Generalizing the proof given in
[Vig07, 8.1] when G = GL(2, F') and the dimension of V' is 1, we show the following.

Proposition 6.2. If P # G, the smooth dual of Indg(V) is 0.

Proof. Let L be a smooth linear form on Indg(V) and let K be an open pro-p-
subgroup of G which fixes L. Let J be an arbitrary open subgroup of K, g € G
and f € (Ind%(V))7 with support Pg.J. We want to show that L(f) = 0. Let J’ be
any open normal subgroup of .J and let ¢ denote the function in (Ind% (V)7 with
support PgJ’ and value ¢(g) = f(g) at g. For j € J we have L(j¢) = L(¢), and
the support of jp(x) = p(xj) is PgJ’j~. The function f is the sum of translates
jo, where j ranges through the left cosets of the image X of g~*PgnJ in J/J',
so that L(f) = rL(y) where r is the order of X in J/J’. We can certainly find J’
such that r # 1, and then r is a positive power of p. As the characteristic of R is p
we have L(f) = 0. O

The module R[/\G] is contained in the module R¥\® of functions f : U\G — R.
The actions of # and of G on R[U\G] extend to RY\® by the same formulas. The
pairing

(f,0) = (f0) = > flo)plg) : B”Y\Y x RU\G] — R
geUN\G
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identifies RY\® with the dual of RU\G]. Let h € H and h € H, h(g) = h(g™") for
g € G. We have

(f, hep) = (hf, ).

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is
not compact modulo the center and V is a simple supersingular right Hgr-module,
the smooth dual of V Q4 , RU\G] is 0.

Proof. Let Hii be the subalgebra of Hp of basis (Ty)wew (1) where W’(1) is the
inverse image of W’ in W(1). The dual of V ®4, R[U\G] is contained in the
dual of V ®rr RU\G]; the Haf-module Vlpgas is a finite sum of supersingular
characters [Viglha]. Let x : Hj‘{f — R be a supersingular character. The dual
of X ®yair RU\G] is contained in the dual of R[U\G] isomorphic to RU\G . Tt is
the space of f € RY\C with hf = x(h)f for all h € H¥E. The smooth dual of
X ®gat RIUN\G] is 0 if the dual of x ®zr R[U\G] has no non-zero element fixed by
U. Let us take f € RUN\G/Y with hf = x(h)f for all h € H3T. We shall prove that
f =0. We have T, = T\, for w € W(1).

Let < denote the Bruhat order of W (1) associated to S*! [Vigl6]. The elements
(Ty)tez, and (Ts),cgee where 3 is an admissible lift of s in W#f(1), generate the
algebra HT and

Ts Sw > w
TtTw = Ttwu T§Tw = o ~ ’
ciTy, sSw < w,

with s = —|Z;_| Etez,; T} because the characteristic of R is p [Vigl6, Proposition
4.4). Expressing f = Z@Ew(l) ay Ty, 4y € R, as an infinite sum, we have

Ty f = Z a1 Tw, Ts5f = Z (a(§)*1w+awC§)Tw-

wew (1) weW (1),5w<w
A character x of H&T is associated to a character xx : Zx — R* and a subset .J of
S;f ={s e g | (Xk)|z; , trivial }

[Vigl5al, Definition 2.7]. We have

T = t), te Z,
X( t) Xk( ) . k 0, se Saff\saff,
(6.1) Ty =10 sES VLo Gl =00
X\L3 _17 se J ’ Xk *

Therefore i (t)f = Tif = Ty-1 f hence xi(t)aw = aro. We have x(T5)f = Tsf =

Ty f =TsT (5= f = Xk((§)2)T§f; as () € Z;, , [Vigl6}, three lines before Propo-

sition 4.4] and J C S;f, we obtain

0 St g

(6.2) rp= %  sE€STAJ
—f, seJ
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Introducing xx(t)aw = ayy in the formula for Ts f, we get

Z aywCs Ly = _|Zl/<;7s|_1 Z T

weW (1),5w<w weW (1),5w<w,teZ

_|Zl/<:7s|_1 Z atflew

weW (1),5w<w,teZ; |

_|ZI/€7S|_1 Z Xk(t_l) Z awTw

tez; | weW (1),5w<w

Z ATy

weW (1),5w<w

I
>
B
—

o
e
~—

Tsf = Z (az)—1w + awxr(cs))Tw
weW (1),5w<w
_ ZwEW(l),§w<w a(g)—lew, s€ Saff \ Sig’
EwEW(l),§w<w(a(§)7lw o aw)Tw’ 5€ S;f:

From the last equality and (62) for Tsf, we get:

aff affy 3
- 0, seJU(S*™\SE,) sw<w,
Ay, sES’;H\J.

k

(6.3)

Assume that a,, # 0. By the first condition, we know that w > sw for s €
JU(S1\ §2) " The character y is supersingular if for each irreducible component X
of S the intersection X N.J is not empty and different from X [Vigl5a), Definition
2.7, Theorem 6.18]. This implies that the group generated by the s € S;f \ J is
finite. If y is supersingular, by the second condition we can suppose w > sw for
any s € S*. But there is no such element if S* is not empty. O

Theorem 6.4. Let m be an irreducible admissible R-representation of G with a
non-zero smooth dual where R is an algebraically closed field of characteristic p.
Then 7 is finite dimensional.

Proof. Let (P, 0, Q) be an R[G]-triple with o supercuspidal such that 7 ~ I (P, 0, Q).
The representation I (P, 0, Q) is a quotient of Indg eq(o) hence the smooth dual of
Indg eq(o) is not zero. From Proposition[6.2] Q = G. We have I¢(P,0,G) = e(0).
The smooth dual of o contains the smooth linear dual of e(o) hence is not zero. As

o is supercuspidal, the Hyr-module ¥M contains a simple supersingular submod-
ule V [Vigl5a, Proposition 7.10, Corollary 7.11]. The functor — @), . Rt \M]

being the right adjoint of (=), the irreducible representation o is a quotient of
V @u .y n BUM\M], hence the smooth dual of V ®4,, , R[Un\M] is not zero. By
Proposition B3] M = Z. Hence o is finite dimensional and the same is true for
e(c) =Ig(B,0,G) ~ 7. O

Remark 6.5. When the characteristic of F' is 0, Theorem was proved by
Kohlhaase for a field R of characteristic p. He gives two proofs [Kohl, Proposi-
tion 3.9, Remark 3.10], but none of them extends to F' of characteristic p. Our
proof is valid without restriction on the characteristic of F' and does not use the
results of Kohlhaase. Our assumption that R is an algebraically closed field of
characteristic p comes from the classification theorem in [AHHVIT].
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