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ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS

OF REDUCTIVE p-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

Abstract. Let F be a locally compact field with residue characteristic p, and
let G be a connected reductive F -group. Let U be a pro-p Iwahori subgroup of
G = G(F ). Fix a commutative ring R. If π is a smooth R[G]-representation,
the space of invariants πU is a right module over the Hecke algebra H of U in
G.

Let P be a parabolic subgroup of G with a Levi decomposition P = MN
adapted to U . We complement a previous investigation of Ollivier-Vignéras
on the relation between taking U-invariants and various functor like IndG

P and
right and left adjoints. More precisely the authors’ previous work with Herzig
introduced representations IG(P, σ,Q) where σ is a smooth representation of
M extending, trivially on N , to a larger parabolic subgroup P (σ), and Q
is a parabolic subgroup between P and P (σ). Here we relate IG(P, σ,Q)U

to an analogously defined H-module IH(P, σUM , Q), where UM = U ∩ M
and σUM is seen as a module over the Hecke algebra HM of UM in M . In
the reverse direction, if V is a right HM -module, we relate IH(P,V, Q) ⊗
c-IndG

U 1 to IG(P,V ⊗HM
c-IndM

UM
1, Q). As an application we prove that if

R is an algebraically closed field of characteristic p, and π is an irreducible
admissible representation of G, then the contragredient of π is 0 unless π has
finite dimension.

Contents

1. Introduction 119
2. Notation, useful facts, and preliminaries 122
3. Pro-p Iwahori invariants of IG(P, σ,Q) 124
4. Hecke module IH(P,V , Q) 134
5. Universal representation IH(P,V , Q)⊗H R[U\G] 150
6. Vanishing of the smooth dual 156
References 159

1. Introduction

1.1. The present paper is a companion to [AHV] and is similarly inspired by the
classification results of [AHHV17]; however it can be read independently. We recall
the setting. We have a non-archimedean locally compact field F of residue charac-
teristic p and a connected reductive F -group G. We fix a commutative ring R and
study the smooth R-representations of G = G(F ).

Received by the editors March 14, 2018, and, in revised form, June 17, 2018.
2010 Mathematics Subject Classification. Primary 20C08; Secondary 11F70.
Key words and phrases. Parabolic induction, pro-p Iwahori Hecke algebra.
The first-named author was supported by JSPS KAKENHI Grant Number 26707001.

c©2018 American Mathematical Society

119

https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/518


120 N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

In [AHHV17] the irreducible admissible R-representations of G are classified in
terms of supersingular ones when R is an algebraically closed field of characteristic
p. That classification is expressed in terms of representations IG(P, σ,Q), which
make sense for any R. In that notation, P is a parabolic subgroup of G with a Levi
decomposition P = MN and σ a smooth R-representation of the Levi subgroup M ;
there is a maximal parabolic subgroup P (σ) of G containing P to which σ inflated
to P extends to a representation eP (σ)(σ), and Q is a parabolic subgroup of G with
P ⊂ Q ⊂ P (σ). Then

IG(P, σ,Q) = IndGP (σ)(eP (σ)(σ)⊗ St
P (σ)
Q ),

where Ind stands for parabolic induction and St
P (σ)
Q = Ind

P (σ)
Q R/

∑
Ind

P (σ)
Q′ R, the

sum being over parabolic subgroups Q′ of G with Q � Q′ ⊂ P (σ). Alternatively,

IG(P, σ,Q) is the quotient of IndGQ(eQ(σ)) by
∑

IndGQ′ eQ′(σ) with Q′ as above,

where eQ(σ) is the restriction of eP (σ)(σ) to Q, similarly for Q′.
In [AHV] we mainly studied what happens to IG(P, σ,Q) when we apply to it,

for a parabolic subgroup P1 of G, the left adjoint of IndGP1
, or its right adjoint. Here

we tackle a different question. We fix a pro-p Iwahori subgroup U of G in good
position with respect to P , so that in particular UM = U ∩ M is a pro-p Iwahori
subgroup of M . One of our main goals is to identify the R-module IG(P, σ,Q)U

of U-invariants, as a right module over the Hecke algebra H = HG of U in G -
the convolution algebra on the double coset space U\G/U - in terms of the module
σUM over the Hecke algebra HM of UM in M . That goal is achieved in section 4,
Theorem 4.17.

1.2. The initial work has been done in [OV17, §4] where (IndGP σ)U is identified. Pre-
cisely, writing M+ for the monoid of elements m ∈ M with m(U ∩N)m−1 ⊂ U ∩N ,
the subalgebra HM+ of HM with support in M+, has a natural algebra embedding
θ into H and [OV17, Proposition 4.4] identifies (IndGP σ)U with IndHHM

(σUM ) =

σUM ⊗HM+ H. So in a sense, this paper is a sequel to [OV17] although some of our
results here are used in [OV17, §5].

As IG(P, σ,Q) is only a subquotient of IndGP σ and taking U-invariants is only left
exact, it is not straightforward to describe IG(P, σ,Q)U from the previous result.
However, that takes care of the parabolic induction step, so in a first approach
we may assume P (σ) = G so that IG(P, σ,Q) = eG(σ) ⊗ StGQ. The crucial case
is when moreover σ is e-minimal, that is, not an extension eM (τ ) of a smooth R-
representation τ of a proper Levi subgroup of M . That case is treated first and the
general case in section 4 only.

1.3. To explain our results, we need more notation. We choose a maximal F -split
torus T in G and a minimal parabolic subgroup B = ZU with Levi component
Z the G-centralizer of T . We assume that P = MN contains B and M contains
Z, and that U corresponds to an alcove in the apartment associated to T in the
adjoint building of G. It turns out that when σ is e-minimal and P (σ) = G, the
set ΔM of simple roots of T in Lie(M ∩ U) is orthogonal to its complement in the
set Δ of simple roots of T in LieU . We assume until the end of this section that
ΔM and Δ2 = Δ \ ΔM are orthogonal. If M2 is the Levi subgroup - containing
Z - corresponding to Δ2, both M and M2 are normal in G, M ∩ M2 = Z and
G = MM2. Moreover the normal subgroup M ′

2 of G generated by N is included in
M2 and G = MM ′

2.
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We say that a right HM -module V is extensible to H if TM
z acts trivially on V

for z ∈ Z ∩M ′
2 (section 3.3). In this case, we show that there is a natural structure

of right H-module eH(V) on V such that Tg ∈ H corresponding to UgU for g ∈ M ′
2

acts as in the trivial character of G (section 3.4). We call eH(V) the extension of
V to H though HM is not a subalgebra of H. That notion is already present in
[Abe] in the case where R has characteristic p. Here we extend the construction to
any R and prove some more properties. In particular we produce an H-equivariant
embedding eH(V) into IndHHM

V (Lemma 3.10). If Q is a parabolic subgroup of G

containing P , we go further and put on eH(V)⊗R (IndGQ R)U and eH(V)⊗R (StGQ)
U

structures of H-modules (Proposition 3.15 and Corollary 3.17) - note that H is not
a group algebra and there is no obvious notion of tensor product of H-modules.

If σ is an R-representation of M extensible to G, then its extension eG(σ) is
simply obtained by letting M ′

2 act trivially on the space of σ; moreover it is clear
that σUM is extensible to H, and one shows easily that eG(σ)

U = eH(σUM ) as an H-

module (section 3.5). Moreover, the natural inclusion of eG(σ) into IndGP σ induces

on taking pro-p Iwahori invariants an embedding eH(σUM ) → (IndGP σ)U which, via
the isomorphism of [OV17], yields exactly the above embedding of H-modules of

eH(σUM ) into IndHHM
(σUM ).

Then we show the H-modules (eG(σ)⊗R IndGQ R)U and eH(σUM )⊗R (IndGQ R)U

are equal, and similarly (eG(σ)⊗R StGQ)
Uand eH(σUM )⊗R (StGQ)

U are equal (The-
orem 4.9).

1.4. We turn back to the general case where we do not assume that ΔM and Δ\ΔM

are orthogonal. Nevertheless, given a right HM -module V , there exists a largest
Levi subgroup M(V) of G - containing Z - corresponding to ΔM ∪Δ1 where Δ1 is a
subset of Δ\ΔM orthogonal to ΔM , such that V extends to a right HM(V)-module
eM(V)(V) with the notation of section 1.3. For any parabolic subgroup Q between
P and P (V) = M(V)U we put (Definition 4.12)

IH(P,V , Q) = IndHHM
(eM(V)(V)⊗R (St

M(V)
Q∩M(V))

UM(V)).

We refer to Theorem 4.17 for the description of the right H-module IG(P, σ,Q)U

for any smooth R-representation σ of U . As a special case, it says that when σ is e-
minimal then P (σ) ⊃ P (σUM ) and if moreover P (σ) = P (σUM ), then IG(P, σ,Q)U

is isomorphic to IH(P, σUM , Q).

Remark 1.1. In [Abe] are attached similar H-modules to (P,V , Q); here we write

them as CIH(P,V , Q) because their definition uses, instead of IndHHM
a different

kind of induction, which we call coinduction. In [Abe] those modules are used
to give, when R is an algebraically closed field of characteristic p, a classifica-
tion of simple H-modules in terms of supersingular modules - that classification
is similar to the classification of irreducible admissible R-representations of G in
[AHHV17]. Using the comparison between induced and coinduced modules estab-
lished in [Vig15b, 4.3] for any R, our Corollary 4.24 expresses CIH(P,V , Q) as a
module IH(P1,V1, Q1); consequently we show in section 4.5 that the classification
of [Abe] can also be expressed in terms of modules IH(P,V , Q).

1.5. In a reverse direction one can associate to a right H-module V a smooth
R-representation V ⊗H R[U\G] of G (seeing H as the endomorphism ring of the
R[G]-module R[U\G]).
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If V is a right HM -module, we construct, again using [OV17], a natural R[G]-map

IH(P,V , Q)⊗H R[U\G] → IndGP (V)(eM(V)(V ⊗HM
R[UM\M ])⊗R St

M(V)
Q∩M(V)),

with the notation of section 1.4. We show in section 5 that it is an isomorphism
under a mild assumption on the Z-torsion in V ; in particular it is an isomorphism
if p = 0 in R.

1.6. In the final section 6, we turn back to the case where R is an algebraically
closed field of characteristic p. We prove that the smooth dual of an irreducible
admissible R-representation V of G is 0 unless V is finite dimensional - that result
is new if F has positive characteristic, a case where the proof of Kohlhaase [Koh]
for char(F ) = 0 does not apply. Our proof first reduces to the case where V is
supercuspidal (by [AHHV17]) then uses again the H-module V U .

2. Notation, useful facts, and preliminaries

2.1. The group G and its standard parabolic subgroups P = MN . In all
that follows, p is a prime number and F is a local field with finite residue field k
of characteristic p. We denote an algebraic group over F by a bold letter, like H,
and use the same ordinary letter for the group of F -points, H = H(F ). We fix a
connected reductive F -group G. We fix a maximal F -split subtorus T and write
Z for its G-centralizer; we also fix a minimal parabolic subgroup B of G with Levi
component Z, so that B = ZU where U is the unipotent radical of B. Let X∗(T)
be the group of F -rational characters of T and let Φ be the subset of roots of T in
the Lie algebra of G. Then B determines a subset Φ+ of positive roots - the roots
of T in the Lie algebra of U- and a subset of simple roots Δ. The G-normalizer
NG of T acts on X∗(T) and through that action, NG/Z identifies with the Weyl
group of the root system Φ. Set N := NG(F ) and note that NG/Z 	 N/Z; we
write W for N/Z.

A standard parabolic subgroup of G is a parabolic F -subgroup containing B.
Such a parabolic subgroup P has a unique Levi subgroup M containing Z, so that
P = MN where N is the unipotent radical of P - we also call M standard. By a
common abuse of language to describe the preceding situation, we simply say “let
P = MN be a standard parabolic subgroup of G”; we sometimes write NP for N
and MP for M . The parabolic subgroup of G opposite to P will be written P and
its unipotent radical N , so that P = MN , but beware that P is not standard! We
write WM for the Weyl group (M ∩N )/Z.

If P = MN is a standard parabolic subgroup of G, then M ∩ B is a minimal
parabolic subgroup of M. If ΦM denotes the set of roots of T in the Lie algebra of
M, with respect to M ∩B we have Φ+

M = ΦM ∩ Φ+ and ΔM = ΦM ∩Δ. We also
write ΔP for ΔM as P and M determine each other, P = MU . Thus we obtain a
bijection P 
→ ΔP from standard parabolic subgroups of G to subsets of Δ, with
B corresponding to Φ and G to Δ. If I is a subset of Δ, we sometimes denote by
PI = MINI the corresponding standard parabolic subgroup of G. If I = {α} is a
singleton, we write Pα = MαNα. We note a few useful properties. If P1 is another
standard parabolic subgroup of G, then P ⊂ P1 if and only if ΔP ⊂ ΔP1

; we have
ΔP∩P1

= ΔP ∩ΔP1
and the parabolic subgroup corresponding to ΔP ∪ΔP1

is the
subgroup 〈P, P1〉 of G generated by P and P1. The standard parabolic subgroup of
M associated to ΔM ∩ΔM1

is M ∩ P1 = (M ∩M1)(M ∩N1) [Car85, Proposition
2.8.9]. It is convenient to write G′ for the subgroup of G generated by the unipotent
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radicals of the parabolic subgroups; it is also the normal subgroup of G generated
by U , and we have G = ZG′. For future reference, we now give a useful lemma
extracted from [AHHV17].

Lemma 2.1. The group Z ∩G′ is generated by the Z ∩M ′
α, α running through Δ.

Proof. Take I = ∅ in [AHHV17, II.6.Proposition]. �

Let vF be the normalized valuation of F . For each α ∈ X∗(T ), the homomor-
phism x 
→ vF (α(x)) : T → Z extends uniquely to a homomorphism Z → Q that

we denote in the same way. This defines a homomorphism Z
v−→ X∗(T ) ⊗ Q such

that α(v(z)) = vF (α(z)) for z ∈ Z, α ∈ X∗(T ).
An interesting situation occurs when Δ = I � J is the union of two orthogonal

subsets I and J . In that case, G′ = M ′
IM

′
J , M

′
I and M ′

J commute with each other,
and their intersection is finite and central in G [AHHV17, II.7 Remark 4].

2.2. IG(P, σ,Q) and minimality. We recall from [AHHV17] the construction of
IG(P, σ,Q), our main object of study.

Let σ be an R-representation ofM and let Pσ be the standard parabolic subgroup
with ΔPσ

= Δσ where

Δσ = {α ∈ Δ \ΔP | Z ∩M ′
α acts trivially on σ}.

We also let P (σ) be the standard parabolic subgroup with

ΔP (σ) = Δσ ∪ΔP .

This is the largest parabolic subgroup P (σ) containing P to which σ extends, here
N ⊂ P acts on σ trivially. Clearly when P ⊂ Q ⊂ P (σ), σ extends to Q and the
extension is denoted by eQ(σ). The restriction of eP (σ)(σ) to Q is eQ(σ). If there
is no risk of ambiguity, we write

e(σ) = eP (σ)(σ).

Definition 2.2. An R[G]-triple is a triple (P, σ,Q) made out of a standard par-
abolic subgroup P = MN of G, a smooth R-representation of M , and a parabolic
subgroup Q of G with P ⊂ Q ⊂ P (σ). To an R[G]-triple (P, σ,Q) is associated a
smooth R-representation of G:

IG(P, σ,Q) = IndGP (σ)(e(σ)⊗ St
P (σ)
Q ),

where St
P (σ)
Q is the quotient of Ind

P (σ)
Q 1, 1 denoting the trivial R-representation

of Q, by the sum of its subrepresentations Ind
P (σ)
Q′ 1, the sum being over the set of

parabolic subgroups Q′ of G with Q � Q′ ⊂ P (σ).

Note that IG(P, σ,Q) is naturally isomorphic to the quotient of IndGQ(eQ(σ))

by the sum of its subrepresentations IndG
Q′(eQ′(σ)) for Q � Q′ ⊂ P (σ) by [AHV,

Lemma 2.5].
It might happen that σ itself has the form eP (σ1) for some standard parabolic

subgroup P1 = M1N1 contained in P and some R-representation σ1 of M1. In that
case, P (σ1) = P (σ) and e(σ) = e(σ1). We say that σ is e-minimal if σ = eP (σ1)
implies P1 = P, σ1 = σ.
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Lemma 2.3 ([AHV, Lemma 2.9]). Let P = MN be a standard parabolic subgroup of
G and let σ be an R-representation of M . There exists a unique standard parabolic
subgroup Pmin,σ = Mmin,σNmin,σ of G and a unique e-minimal representation of
σmin of Mmin,σ with σ = eP (σmin). Moreover P (σ) = P (σmin) and e(σ) = e(σmin).

Lemma 2.4. Let P = MN be a standard parabolic subgroup of G and let σ be an
e-minimal R-representation of M . Then ΔP and ΔP (σ) \ΔP are orthogonal.

That comes from [AHHV17, II.7 Corollary 2]. That corollary of [AHHV17] also
shows that when R is a field and σ is supercuspidal, then σ is e-minimal. Lemma
2.4 shows that ΔPmin,σ

and ΔP (σmin) \ΔPmin,σ
are orthogonal.

Note that when ΔP and Δσ are orthogonal of union Δ = ΔP �Δσ, then G =
P (σ) = MM ′

σ and e(σ) is the R-representation of G simply obtained by extending
σ trivially on M ′

σ.

Lemma 2.5 ([AHV, Lemma 2.11]). Let (P, σ,Q) be an R[G]-triple. Then we have
that (Pmin,σ, σmin, Q) is an R[G]-triple and IG(P, σ,Q) = IG(Pmin,σ, σmin, Q).

2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup K of
G fixing a special vertex x0 in the apartment A associated to T in the Bruhat-
Tits building of the adjoint group of G. We let B be the Iwahori subgroup fixing
the alcove C in A with vertex x0 contained in the Weyl chamber (of vertex x0)
associated to B. We let U be the pro-p radical of B (the pro-p Iwahori subgroup).
The pro-p Iwahori Hecke ring H = H(G,U) is the convolution ring of compactly
supported functions G → Z constant on the double classes of G modulo U . We
denote by T (g) the characteristic function of UgU for g ∈ G, seen as an element
of H. Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra HR is
R⊗Z H. We will follow the custom to still denote by h the natural image 1⊗ h of
h ∈ H in HR.

For P = MN a standard parabolic subgroup of G, the similar objects for M are
indexed by M , we have KM = K∩M,BM = B∩M,UM = U ∩M , the pro-p Iwahori
Hecke ring HM = H(M,UM ), TM (m) the characteristic function of UMmUM for
m ∈ M , seen as an element of HM . The pro-p Iwahori subgroup U of G satisfies
the Iwahori decomposition with respect to P :

U = UNUMUN ,

where UN = U ∩N,UN = U ∩N . The linear map

(2.1) HM
θ−→ H, θ(TM (m)) = T (m) (m ∈ M)

does not respect the product. But if we introduce the monoid M+ of elements
m ∈ M contracting UN , meaning mUNm−1 ⊂ UN , and the submodule HM+ ⊂ HM

of functions with support in M+, we have [Vig15b, Theorem 1.4]:
HM+ is a subring of HM and HM is the localization of HM+ at an element

τM ∈ HM+ central and invertible in HM , meaning HM =
⋃

n∈N HM+(τM )−n. The

map HM
θ−→ H is injective and its restriction θ|HM+ to HM+ respects the product.

These properties are also true when (M+, τM ) is replaced by its inverse
(M−, (τM )−1) where M− = {m−1 ∈ M | m ∈ M+}.

3. Pro-p Iwahori invariants of IG(P, σ,Q)

3.1. Pro-p Iwahori Hecke algebras: Structures. Here we supplement the no-
tation of sections 2.1 and 2.3. The subgroups Z0 = Z ∩K = Z ∩B and Z1 = Z ∩U
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are normal in N and we put

W = N/Z0, W (1) = N/Z1, Λ = Z/Z0, Λ(1) = Z/Z1, Zk = Z0/Z1.

We have N = (N ∩ K)Z so that we see the finite Weyl group W = N/Z as the
subgroup (N ∩ K)/Z0 of W ; in this way W is the semidirect product Λ �W. We
put NG′ = N ∩ G′. The image WG′ = W ′ of NG′ in W is an affine Weyl group
generated by the set Saff of affine reflections determined by the walls of the alcove
C. The group W ′ is normal in W and W is the semidirect product W ′ � Ω where
Ω is the image in W of the normalizer NC of C in N . The length function � on the
affine Weyl system (W ′, Saff) extends to a length function on W such that Ω is the
set of elements of length 0. We also view � as a function of W (1) via the quotient
map W (1) → W . We write
(3.1)
(ŵ, w̃, w) ∈ N ×W (1)×W corresponding via the quotient maps N → W (1) → W.

When w = s in Saff or more generally w in WG′ , we will most of the time choose
ŵ in N ∩G′ and w̃ in the image 1WG′ of N ∩G′ in W (1).

We are now ready to describe the pro-p Iwahori Hecke ring H = H(G,U) [Vig16].
We have G = UNU and for n, n′ ∈ N we have UnU = Un′U if and only if nZ1 =
n′Z1. For n ∈ N of image w ∈ W (1) and g ∈ UnU we denote Tw = T (n) = T (g)
in H. The relations among the basis elements (Tw)w∈W (1) of H are:

(1) Braid relations: TwTw′ = Tww′ for w,w′ ∈ W (1) with �(ww′) = �(w) +
�(w′).

(2) Quadratic relations: T 2
s̃ = qsTs̃2 + cs̃Ts̃

for s̃ ∈ W (1) lifting s ∈ Saff , where qs = qG(s) = |U/U ∩ ŝU(ŝ)−1| depends only on
s, and cs̃ =

∑
t∈Zk

cs̃(t)Tt for integers cs̃(t) ∈ N summing to qs − 1.

We shall need the basis elements (T ∗
w)w∈W (1) of H defined by:

(1) T ∗
w = Tw for w ∈ W (1) of length �(w) = 0.

(2) T ∗
s̃ = Ts̃ − cs̃ for s̃ ∈ W (1) lifting s ∈ Saff .

(3) T ∗
ww′ = T ∗

wT
∗
w′ for w,w′ ∈ W (1) with �(ww′) = �(w) + �(w′).

We need more notation for the definition of the admissible lifts of Saff in NG. Let
s ∈ Saff fixing a face Cs of the alcove C and Ks the parahoric subgroup of G fixing
Cs. The theory of Bruhat-Tits associates to Cs a certain root αs ∈ Φ+ [Vig16, §4.2].
We consider the group G′

s generated by Uαs
∪U−αs

where U±αs
the root subgroup

of ±αs (if 2αs ∈ Φ, then U2αs
⊂ Uαs

) and the group G′
s generated by Uαs

∪ U−αs

where U±αs
= U±αs

∩Ks. When u ∈ Uαs
− {1}, the intersection NG ∩ U−αs

uU−αs

(equal to NG∩U−αs
uU−αs

[BT72, 6.2.1 (V5)], [Vig16, §3.3 (19)]) possesses a single
element ns(u). The group Z ′

s = Z ∩ G′
s is contained in Z ∩ Ks = Z0; its image in

Zk is denoted by Z ′
k,s.

The elements ns(u) for u ∈ Uαs
− {1} are the admissible lifts of s in NG; their

images in W (1) are the admissible lifts of s in W (1). By [Vig16, Theorem 2.2,
Proposition 4.4], when s̃ ∈ W (1) is an admissible lift of s, cs̃(t) = 0 if t ∈ Zk \Z ′

k,s,
and

(3.2) cs̃ ≡ (qs − 1)|Z ′
k,s|−1

∑
t∈Z′

k,s

Tt mod p.

The admissible lifts of S in NG are contained in NG ∩ K because Ks ⊂ K when
s ∈ S.
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Definition 3.1. An admissible lift of the finite Weyl group W in NG is a map
w 
→ ŵ : W → NG ∩ K such that ŝ is admissible for all s ∈ S and ŵ = ŵ1ŵ2 for
w1, w2 ∈ W such that w = w1w2 and �(w) = �(w1) + �(w2).

Any choice of admissible lifts of S in NG ∩K extends uniquely to an admissible
lift of W ([AHHV17, IV.6], [OV17, Proposition 2.7]).

Let P = MN be a standard parabolic subgroup of G. The groups Z,Z0 =
Z ∩KM = Z ∩BM , Z1 = Z ∩UM are the same for G and M , but NM = N ∩M and
M∩G′ are subgroups ofN and G′. The monoidM+ (section 2.3) contains (NM∩K)
and is equal to M+ = UMNM+UM where NM+ = N ∩ M+. An element z ∈ Z
belongs to M+ if and only if vF (α(z)) ≥ 0 for all α ∈ Φ+\Φ+

M (see [Vig15b, Lemme
2.2]). Put WM = NM/Z0 and WM (1) = NM/Z1.

Let ε = + or ε = −. We denote by WMε ,WMε(1) the images of NMε in
WM ,WM (1). We see the groupsWM ,WM (1), 1WM ′ as subgroups ofW,W (1), 1WG′ .
As θ (section 2.3), the linear injective map

(3.3) HM
θ∗
−→ H, θ∗(TM,∗

w ) = T ∗
w, (w ∈ WM (1)),

respects the product on the subring HMε . Here TM,∗
w ∈ HM is defined in the same

way as T ∗
w for HM . Note that θ and θ∗ satisfy the obvious transitivity property

with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where ΔM and Δ \ ΔM are or-
thogonal, writing M2 = MΔ\ΔM

as in section 1.3.
From M ∩ M2 = Z we get WM ∩ WM2

= Λ,WM (1) ∩ WM2
(1) = Λ(1), the

semisimple building of G is the product of those of M and M2. The set Saff is the
disjoint union of Saff

M and Saff
M2

, the group WG′ is the direct product of WM ′ and

WM ′
2
. For s̃ ∈ WM (1) lifting s ∈ Saff

M , the elements TM
s̃ ∈ HM and Ts̃ ∈ H satisfy

the same quadratic relations. A word of caution is necessary for the lengths �M
of WM and �M2

of WM2
different from the restrictions of the length � of WM , for

example �M (λ) = 0 for λ ∈ Λ ∩WM ′
2
.

Lemma 3.2. We have Λ = (WMε ∩ Λ)(WM ′
2
∩ Λ).

Proof. We prove the lemma for ε = −. The case ε = + is similar. The map
v : Z → X∗(T ) ⊗ Q defined in section 2.1 is trivial on Z0 and we also write v for
the resulting homomorphism on Λ. For λ ∈ Λ there exists λ2 ∈ WM ′

2
∩Λ such that

λλ2 ∈ WM− , or equivalently α(v(λλ2)) ≤ 0 for all α ∈ Φ+ \ Φ+
M = Φ+

M2
. It suffices

to have the inequality for α ∈ ΔM2
. The matrix (α(β∨))α,β∈ΔM2

is invertible, hence

there exists nβ ∈ Z such that
∑

β∈ΔM2
nβα(β

∨) ≤ −α(v(λ)) for all α ∈ ΔM2
. As

v(WM ′
2
∩Λ) contains

⊕
α∈ΔM2

Zα∨ where α∨ is the coroot of α [Vig16, after formula

(71)], there exists λ2 ∈ WM ′
2
∩ Λ with v(λ2) =

∑
β∈ΔM2

nββ
∨. �

The groups N ∩M ′ and N ∩M ′
2 are normal in N , and

N = (N ∩M ′)NC(N ∩M ′
2) = Z(N ∩M ′)(N ∩M ′

2),

and

W = WM ′ΩWM ′
2
= WMWM ′

2
= WM+WM ′

2
= WM−WM ′

2
.

The first two equalities are clear, the equality WMWM ′
2
= WMεWM ′

2
follows from

WM = WMΛ, WM ⊂ WMε and the lemma. The inverse image in W (1) of these
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groups are
(3.4)
W (1) = 1WM ′ Ω(1) 1WM ′

2
= WM (1) 1WM ′

2
= WM+(1) 1WM ′

2
= WM−(1) 1WM ′

2
.

We recall the function qG(n) = q(n) = |U/(U∩n−1Un)| onN [Vig16, Proposition
3.38] and we extend to N the functions qM on N ∩M and qM2

on N ∩M2:

(3.5) qM (n) = |UM/(UM ∩ n−1UMn)|, qM2
(n) = |UM2

/(UM2
∩ n−1UM2

n)|.

The functions q, qM , qM2
descend to functions on W (1) and on W , also denoted by

q, qM , qM2
.

Lemma 3.3. Let n ∈ N of image w ∈ W . We have

(1) q(n) = qM (n)qM2
(n).

(2) qM (n) = qM (nM ) if n = nMn2, nM ∈ N ∩M,n2 ∈ N ∩M ′
2 and similarly

when M and M2 are permuted.
(3) q(w) = 1 ⇔ qM (λwM ) = qM2

(λwM2
) = 1, if w = λwMwM2

, (λ,wM , wM2
) ∈

Λ×WM ×WM2
.

(4) On the coset (N ∩ M ′
2)NCn, qM is constant equal to qM (nM ′) for any

element nM ′ ∈ M ′ ∩ (N ∩ M ′
2)NCn. A similar result is true when M

and M2 are permuted.

Proof. We put UM ′ = U ∩M ′ and UM ′
2
= U ∩M ′

2. The product map

(3.6) Z1
∏

α∈ΦM,red

Uα

∏
α∈ΦM2,red

Uα → U

with Uα = Uα ∩ U , is a homeomorphism. We have UM = Z1YM ′ , UM ′ = (Z1 ∩
M ′)YM ′ where YM ′ =

∏
α∈ΦM,red

Uα and N ∩M ′
2 commutes with YM ′ , in particular

N ∩M ′
2 normalizes YM ′ . Similar results are true when M and M2 are permuted,

and U = UM ′UM2
= UMUM ′

2
.

Writing N = Z(N ∩M ′)(N ∩M ′
2) (in any order), we see that the product map

(3.7) Z1(YM ′ ∩ n−1YM ′n)(YM ′
2
∩ n−1YM ′

2
n) → U ∩ n−1Un

is a homeomorphism. The inclusions induce bijections

(3.8) YM ′/(YM ′ ∩ n−1YM ′n) 	 UM ′/(UM ′ ∩ n−1UM ′n) 	 UM/(UM ∩ n−1UMn),

similarly for M2, and also a bijection

U/(U ∩ n−1Un) 	 (YM ′
2
/(YM ′

2
∩ n−1YM ′

2
n))× (YM ′/(YM ′ ∩ n−1YM ′n)).(3.9)

From (3.8) and (3.9), we get

(3.10) U/(U ∩ n−1Un) 	 (UM ′
2
/(UM ′

2
∩ nUM ′

2
n−1))× (UM ′/(UM ′ ∩ nUM ′n−1))

which implies the assertion (1) in the lemma.
The assertion (2) follows from (3.7) since N ∩M ′

2 normalizes YM ′ ; with (1), it
implies the assertion (3).

A subgroup of N normalizes UM if and only if it normalizes YM ′ by (3.8) if
and only if qM = 1 on this group. The group N ∩M ′

2 normalizes YM ′ . Therefore
the group (N ∩ M ′

2)NC normalizes UM . The coset (N ∩ M ′
2)NCn contains an

element nM ′ ∈ M ′. For x ∈ (N ∩ M ′
2)NC , (xnM ′)−1UxnM ′ = n−1

M ′UnM ′ hence
qM (xnM ′) = qM (nM ′). �
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3.3. Extension of an HM -module to H. This section is inspired by similar
results for the pro-p Iwahori Hecke algebras over an algebraically closed field of
characteristic p [Abe, Proposition 4.16]. We keep the setting of section 3.2 and we
introduce ideals:

• J� (resp., Jr) the left (resp., right) ideal of H generated by T ∗
w − 1H for all

w ∈ 1WM ′
2
,

• JM,� (resp., JM,r) the left (resp., right) ideal of HM generated by TM,∗
λ −

1HM
for all λ in 1WM ′

2
∩WM (1) = 1WM ′

2
∩ Λ(1).

The next proposition shows that the ideals J� = Jr are equal and similarly JM,� =
JM,r. After the proposition, we will drop the indices � and r.

Proposition 3.4. The ideals J� and Jr are equal to the submodule J ′ of H gen-
erated by T ∗

w − T ∗
ww2

for all w ∈ W (1) and w2 ∈ 1WM ′
2
.

The ideals JM,� and JM,r are equal to the submodule J ′
Mof HM generated by

TM,∗
w − TM,∗

wλ2
for all w ∈ WM (1) and λ2 ∈ Λ(1) ∩ 1WM ′

2
.

Proof.
(1) We prove J� = J ′. Let w ∈ W (1), w2 ∈ 1WM ′

2
. We prove by induction on

the length of w2 that T ∗
w(T

∗
w2

− 1) ∈ J ′. This is obvious when �(w2) = 0 because
T ∗
wT

∗
w2

= T ∗
ww2

. Assume that �(w2) = 1 and put s = w2. If �(ws) = �(w) + 1, as
before T ∗

w(T
∗
s − 1) ∈ J ′ because T ∗

wT
∗
s = T ∗

ws. Otherwise �(ws) = �(w) − 1 and
T ∗
w = T ∗

ws−1T ∗
s hence

T ∗
w(T

∗
s − 1) = T ∗

ws−1(T ∗
s )

2 − T ∗
w = T ∗

ws−1(qsT
∗
s2 − T ∗

s cs)− T ∗
w = qsT

∗
ws − T ∗

w(cs + 1).

Since cs + 1 =
∑

t∈Z′
k
cs(t)Tt with cs(t) ∈ N and

∑
t∈Z′

k
cs(t) = qs [Vig16, Proposi-

tion 4.4],

qsT
∗
ws − T ∗

w(cs + 1) =
∑
t∈Z′

k

cs(t)(T
∗
ws − T ∗

wT
∗
t ) =

∑
t∈Z′

k

cs(t)(T
∗
ws − T ∗

wss−1t) ∈ J ′.

Assume now that �(w2) > 1. Then, we factorize w2 = xy with x, y ∈ 1WM2
of

length �(x), �(y) < �(w2) and �(w2) = �(x) + �(y). The element T ∗
w(T

∗
w2

− 1) =
T ∗
wT

∗
x (T

∗
y − 1) + T ∗

w(T
∗
x − 1) lies in J ′ by induction.

Conversely, we prove T ∗
ww2

− T ∗
w ∈ J�. We factorize w = xy with y ∈ 1WM ′

2
and

x ∈ 1WM ′Ω(1). Then, we have �(w) = �(x) + �(y) and �(ww2) = �(x) + �(yw2).
Hence

T ∗
ww2

− T ∗
w = T ∗

x (T
∗
yw2

− T ∗
y ) = T ∗

x (T
∗
yw2

− 1)− T ∗
x (T

∗
y − 1) ∈ J�.

This ends the proof of J� = J ′.
By the same argument, the right ideal Jr of H is equal to the submodule of

H generated by T ∗
w2w − T ∗

w for all w ∈ W (1) and w2 ∈ 1WM ′
2
. But this latter

submodule is equal to J ′ because 1WM ′
2
is normal in W (1). Therefore we proved

J ′ = Jr = J�.
(2) Proof of the second assertion. We prove JM,� = J ′

M . The proof is easier than
in (1) because for w ∈ WM (1) and λ2 ∈ 1WM ′

2
∩Λ(1), we have �(wλ2) = �(w)+�(λ2)

hence TM,∗
w (TM,∗

λ2
− 1) = TM,∗

wλ2
− TM,∗

w . We have also �(λ2w) = �(λ2) + �(w) hence

(TM,∗
λ2

− 1)TM,∗
w = TM,∗

λ2w
− TM,∗

w hence JM,r is equal to the submodule of HM

generated by TM,∗
λ2w

− TM,∗
w for all w ∈ WM (1) and λ2 ∈ 1WM ′

2
∩ Λ(1). This latter

submodule is J ′
M , as 1WM ′

2
∩Λ(1) = 1WM ′

2
∩WM (1) is normal in WM (1). Therefore

J ′
M = JM,r = JM,�. �



PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS 129

By Proposition 3.4, a basis of J is T ∗
w−T ∗

ww2
for w in a system of representatives

of W (1)/1WM ′
2
, and w2 ∈ 1WM ′

2
\ {1}. Similarly a basis of JM is TM,∗

w − TM,∗
wλ2

for w in a system of representatives of WM (1)/(Λ(1) ∩ 1WM ′
2
). and λ2 ∈ (Λ(1) ∩

1WM ′
2
) \ {1}.

Proposition 3.5. The natural ring inclusion of HM− in HM and the ring inclusion
of HM− in H via θ∗ induce ring isomorphisms

HM/JM
∼←− HM−/(JM ∩HM−)

∼−→ H/J .

Proof.
(1) The left map is obviously injective. We prove the surjectivity. Let w ∈

WM (1). Let λ2 ∈ 1WM ′
2
∩ Λ(1) such that wλ−1

2 ∈ WM−(1) (see (3.4)). We have

TM,∗
wλ−1

2

∈ HM− and TM,∗
w = TM,∗

wλ−1
2

TM,∗
λ2

= TM,∗
wλ−1

2

+ TM,∗
wλ−1

2

(TM,∗
λ2

− 1). Therefore

TM,∗
w ∈ HM− + JM . As w is arbitrary, HM = HM− + JM .
(2) The right map is surjective: let w ∈ W (1) and w2 ∈ 1WM ′

2
such that ww−1

2 ∈
WM−(1) (see (3.4)). Then T ∗

w − T ∗
ww−1

2

∈ J with the same arguments as in (1),

using Proposition 3.4. Therefore H = θ∗(HM−) + J .
We prove the injectivity: θ∗(HM−)∩J =θ∗(HM−∩JM ). Let

∑
w∈WM− (1) cwT

M,∗
w ,

with cw ∈ Z, be an element of HM− . Its image by θ∗ is
∑

w∈W (1) cwT
∗
w where

we have set cw = 0 for w ∈ W (1) \ WM−(1). We have
∑

w∈W (1) cwT
∗
w ∈ J if

and only if
∑

w2∈1WM′
2

cww2
= 0 for all w ∈ W (1). If cww2

�= 0, then w2 ∈
1WM ′

2
∩ WM (1), that is, w2 ∈ 1WM ′

2
∩ Λ(1). The sum

∑
w2∈1WM′

2

cww2
is equal

to
∑

λ2∈1WM′
2
∩Λ(1) cwλ2

. By Proposition 3.4,
∑

w∈W (1) cwT
∗
w ∈ J if and only if∑

w∈WM− (1) cwT
M,∗
w ∈ JM . �

We construct a ring isomorphism

e∗ : HM/JM
∼−→ H/J

by using Proposition 3.5. For any w ∈ W (1), T ∗
w + J = e∗(TM,∗

wM− + JM ) where

wM− ∈ WM−(1) ∩ w 1WM ′
2
(see (3.4)), because by Proposition 3.4, T ∗

w + J =

T ∗
wM− +J and T ∗

wM− +J = e∗(TM,∗
wM− +JM ) by construction of e∗. We check that

e∗ is induced by θ∗.

Theorem 3.6. The linear map HM
θ∗
−→ H induces a ring isomorphism

e∗ : HM/JM
∼−→ H/J .

Proof. Let w ∈ WM (1). We have to show that T ∗
w + J = e∗(TM,∗

w + JM ). We saw
above that T ∗

w +J = e∗(TM,∗
wM− +JM ) with w = wM−λ2 with λ2 ∈ 1WM ′

2
∩WM (1).

As �M (λ2) = 0, TM,∗
w = TM,∗

wM−TM,∗
λ2

∈ TM,∗
wM− + JM . Therefore TM,∗

wM− + JM =

TM,∗
w + JM . This ends the proof of the theorem. �

We now wish to compute e∗ in terms of the Tw instead of the T ∗
w.

Proposition 3.7. Let w ∈ W (1). Then, Tw + J = e∗(TM
wM

qM2
(w) + JM ) for any

wM ∈ WM (1) ∩ w 1WM ′
2
.
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Proof. The element wM is unique modulo right multiplication by an element λ2 ∈
WM (1) ∩ 1WM ′

2
of length �M (λ2) = 0 and TM

wM
qM2

(w) + JM does not depend on
the choice of wM . We choose a decomposition (see (3.4)):

w = s̃1 . . . s̃aus̃a+1 . . . s̃a+b, �(w) = a+ b,

for u ∈ Ω(1), s̃i ∈ 1WM ′ lifting si ∈ Saff
M for 1 ≤ i ≤ a and s̃i ∈ 1WM ′

2
lifting

si ∈ Saff
M2

for a+1 ≤ i ≤ a+b, and we choose uM ∈ WM (1) such that u ∈ uM 1WM ′
2
.

Then
wM = s̃1 . . . s̃auM ∈ WM (1) ∩ w 1WM ′

2

and qM2
(w) = qM2

(s̃a+1 . . . s̃a+b) (Lemma 3.3 (4)). First we check the proposition
in three simple cases:

Case 1. Let w = s̃ ∈ 1WM ′ lifting s ∈ Saff
M ; we have Ts̃+J = e∗(TM

s̃ +JM ) because

T ∗
s̃ − e∗(TM,∗

s̃ ) ∈ J , Ts̃ = T ∗
s̃ + cs̃, T

M
s̃ = TM,∗

s̃ + cs̃ and 1 = qM2
(s̃).

Case 2. Let w = u ∈ W (1) of length �(u) = 0 and uM ∈ WM (1) such that
u ∈ uM 1WM ′

2
. We have �M (uM ) = 0 and qM2

(u) = 1 (Lemma 3.3). We deduce

Tu + J = e∗(TM
uM

+ JM ) because T ∗
u + J = T ∗

uM
+ J = e∗(TM,∗

uM
+ JM ), and

Tu = T ∗
u , T

M
uM

= TM,∗
uM

.

Case 3. Let w = s̃ ∈ 1WM ′
2
lifting s ∈ Saff

M2
; we have Ts̃ + J = e∗(qM2

(s̃) + JM )
because T ∗

s̃ − 1, cs̃ − (qs − 1) ∈ J , Ts̃ = T ∗
s̃ + cs̃ ∈ qs + J and qs = qM2

(s̃).
In general, the braid relations Tw = Ts̃1 . . . Ts̃aTuTs̃a+1

. . . Ts̃a+b
give a similar

product decomposition of Tw + J , and the simple cases 1, 2, 3 imply that Tw + J
is equal to

e∗(TM
s̃1 + JM ) . . . e∗(TM

s̃a + JM )e∗(TM
uM

+ JM )e∗(qM2
(s̃a+1)

+ JM ) . . . e∗(qM2
(s̃a+b) + JM )

= e∗(TM
wM

qM2
(w) + JM ).

The proposition is proved. �
Propositions 3.4, 3.5, 3.7, and Theorem 3.6 are valid over any commutative ring

R (instead of Z).
The two-sided ideal of HR generated by T ∗

w−1 for all w ∈ 1WM ′
2
is JR = J ⊗ZR,

the two-sided ideal of HM,R generated by T ∗
λ − 1 for all λ ∈ 1WM ′

2
∩ Λ(1) is

JM,R = JM ⊗Z R, and we get as in Proposition 3.5 isomorphisms

HM,R/JM,R
∼←− HM−,R/(JM,R ∩HM−,R)

∼−→ HR/JR,

giving an isomorphism HM,R/JM,R → HR/JR induced by θ∗. Therefore, we have
an isomorphism from the category of right HM,R-modules where JM acts by 0 onto
the category of right HR-modules where J acts by 0.

Definition 3.8. A right HM,R-module V where JM acts by 0 is called extensible
to H. The corresponding HR-module where J acts by 0 is called its extension to
H and denoted by eH(V) or e(V).

With the element basis T ∗
w, V is extensible to H if and only if

(3.11) vTM,∗
λ2

= v for all v ∈ V and λ2 ∈ 1WM ′
2
∩ Λ(1).

The H-module structure on the R-module e(V) = V is determined by

(3.12) vT ∗
w2

= v, vT ∗
w = vTM,∗

w for all v ∈ V , w2 ∈ 1WM ′
2
, w ∈ WM (1).
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It is also determined by the action of T ∗
w for w ∈ 1WM ′

2
∪WM+(1) (or w ∈ 1WM ′

2
∪

WM−(1)). Conversely, a right H-module W over R is extended from an HM -module
if and only if

(3.13) vT ∗
w2

= v for all v ∈ W , w2 ∈ 1WM ′
2
.

In terms of the basis elements Tw instead of T ∗
w, this says the following.

Corollary 3.9. A right HM -module V over R is extensible to H if and only if

(3.14) vTM
λ2

= v for all v ∈ V and λ2 ∈ 1WM ′
2
∩ Λ(1).

Then, the structure of an H-module on the R-module e(V) = V is determined by
(3.15)

vTw2
= vqw2

, vTw = vTM
w qM2

(w) for all v ∈ V , w2 ∈ 1WM ′
2
, w ∈ WM (1).

(WM+(1) or WM−(1) instead of WM (1) is enough.) A right H-module W over R
is extended from an HM -module if and only if

(3.16) vTw2
= vqw2

for all v ∈ W , w2 ∈ 1WM ′
2
.

3.4. σUM is extensible to H of extension e(σUM ) = e(σ)U . Let P = MN be a
standard parabolic subgroup of G such that ΔP and Δ \ΔP are orthogonal, and
let σ be a smooth R-representation of M extensible to G. Let P2 = M2N2 denote
the standard parabolic subgroup of G with ΔP2

= Δ \ΔP .
Recall that G = MM ′

2, that M ∩ M ′
2 = Z ∩ M ′

2 acts trivially on σ, e(σ) is
the representation of G equal to σ on M and trivial on M ′

2. We will describe the
H-module e(σ)U in this section. We first consider e(σ) as a subrepresentation of

IndGP σ. For v ∈ σ, let fv ∈ (IndGP σ)M
′
2 be the unique function with value v on M ′

2.
Then, the map

(3.17) v 
→ fv : σ → IndGP σ

is the natural G-equivariant embedding of e(σ) in IndGP σ. As σUM = e(σ)U as

R-modules, the image of e(σ)U in (IndGP σ)U is made out of the fv for v ∈ σUM .

We now recall the explicit description of (IndGP σ)U . For each d ∈ WM2
, we fix a

lift d̂ ∈ 1WM ′
2
and for v ∈ σUM let fP d̂U,v ∈ (IndGP σ)U for the function with support

contained in P d̂U and value v on d̂U . As Z ∩M ′
2 acts trivially on σ, the function

fP d̂U,v does not depend on the choice of the lift d̂ ∈ 1WM ′
2
of d. By [OV17, Lemma

4.5], recalling that w ∈ WM2
is of minimal length in its coset wWM = WMw as

ΔM and ΔM2
are orthogonal to each other:

The map
⊕

d∈WM2
σUM → (IndGP σ)U given on each d-component by v 
→ fP d̂U,v,

is an HM+-equivariant isomorphism where HM+ is seen as a subring of H via θ,
and induces an HR-module isomorphism

(3.18) v ⊗ h 
→ fPU,vh : σUM ⊗HM+ ,θ H → (IndGP σ)U .

In particular for v ∈ σUM , v ⊗ T (d̂) does not depend on the choice of the lift

d̂ ∈ 1WM ′
2
of d and

(3.19) fP d̂U,v = fPU,vT (d̂).
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As G is the disjoint union of P d̂U for d ∈ WM2
, we have fv =

∑
d∈WM2

fP d̂U,v and

fv is the image of v ⊗ eM2
in (3.18), where

(3.20) eM2
=

∑
d∈WM2

T (d̂).

Recalling (3.17) we get the following.

Lemma 3.10. The map v 
→ v ⊗ eM2
: e(σ)U → σUM ⊗HM+ ,θ H is an HR-

equivariant embedding.

Remark 3.11. The trivial map v 
→ v ⊗ 1H is not an HR-equivariant embedding.

We describe the action of T (n) on e(σ)U for n ∈ N . By definition for v ∈ e(σ)U ,

(3.21) vT (n) =
∑

y∈U/(U∩n−1Un)

yn−1v.

Proposition 3.12. We have vT (n) = vTM (nM )qM2
(n) for any nM ∈ N ∩M is

such that n = nM (N ∩M ′
2).

Proof. The description (3.10) of U/(U ∩ n−1Un) gives

vT (n) =
∑

y1∈UM/(UM∩n−1UMn)

y1
∑

y2∈UM′
2
/(UM′

2
∩n−1UM′

2
n)

y2n
−1v.

As M ′
2 acts trivially on e(σ), we obtain

vT (n) = qM2
(n)

∑
y1∈UM/(UM∩n−1UMn)

y1n
−1
M v = qM2

(n) vTM (nM ).

�

Theorem 3.13. Let σ be a smooth R-representation of M . If P (σ) = G, then σUM

is extensible to H of extension e(σUM ) = e(σ)U . Conversely, if σUM is extensible
to H and generates σ, then P (σ) = G.

Proof.
(1) The HM -module σUM is extensible to H if and only if Z ∩M ′

2 acts trivially
on σUM . Indeed, for v ∈ σUM , z2 ∈ Z ∩M ′

2,

vTM (z2) =
∑

y∈UM/(UM∩z−1
2 UMz2)

yz−1
2 v =

∑
y∈YM′/(YM′∩z−1

2 YM′z2)

yz−1
2 v = z−1

2 v,

by (3.21), then (3.8), then the fact that z−1
2 commutes with the elements of YM .

(2) P (σ) = G if and only if Z ∩ M ′
2 acts trivially on σ (the group Z ∩ M ′

2 is

generated by Z ∩ M ′
α for α ∈ ΔM2

by Lemma 2.1). The R-submodule σZ∩M ′
2 of

elements fixed by Z ∩M ′
2 is stable by M , because M = ZM ′, the elements of M ′

commute with those of Z ∩M ′
2 and Z normalizes Z ∩M ′

2.
(3) Apply (1) and (2) to get the theorem except the equality e(σUM ) = e(σ)U

when P (σ) = G which follows from Propositions 3.12 and 3.7. �

Let 1M denote the trivial representation of M over R (or 1 when there is no
ambiguity on M). The right HR-module (1G)

U = 1H (or 1 if there is no ambiguity)
is the trivial right HR-module: for w ∈ WM (1), Tw = qwid and T ∗

w = id on 1H.
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Example 3.14. The H-module (IndGP 1)U is the extension of the HM2
-module

(IndM2

M2∩B 1)UM2 . Indeed, the representation IndGP 1 of G is trivial on N2, as G =
MM ′

2 and N2 ⊂ M ′ (as Φ = ΦM ∪ΦM2
). For g = mm′

2 with m ∈ M,m′
2 ∈ M ′

2 and
n2 ∈ N2, we have Pgn2 = Pm′

2n2 = Pn2m
′
2 = Pm′

2 = Pg. The group M2 ∩ B =

M2 ∩ P is the standard minimal parabolic subgroup of M2 and (IndGP 1)|M2
=

IndM2

M2∩B 1. Apply Theorem 3.13 as follows.

3.5. The HR-module e(V) ⊗R (IndGQ 1)U . Let P = MN be a standard para-
bolic subgroup of G such that ΔP and Δ \ ΔP are orthogonal, let V be a right
HM,R-module which is extensible to HR of extension e(V), and let Q be a para-
bolic subgroup of G containing P . Let P2 = M2N2 denote the standard parabolic
subgroup of G with ΔP2

= Δ \ΔP .

We define on the R-module e(V)⊗R (IndGQ 1)U a structure of a right HR-module
as follows.

Proposition 3.15.

(1) The diagonal action of T ∗
w for w ∈ W (1) on e(V) ⊗R (IndGQ 1)U defines a

structure of a right HR-module.
(2) The action of the Tw is also diagonal and satisfies:

((v ⊗ f)Tw, (v ⊗ f)T ∗
w) = (vTuwM′ ⊗ fTuwM′

2
, vT ∗

uwM′ ⊗ fT ∗
uwM′

2

),

where w = uwM ′wM ′
2
with u ∈ W (1), �(u) = 0, wM ′ ∈ 1WM ′ , wM ′

2
∈ 1WM ′

2
.

Proof. If the lemma is true for P it is also true for Q, because the R-module
e(V)⊗R (IndGQ 1)U naturally embedded in e(V)⊗R (IndGP 1)U is stable by the action
of H defined in the lemma. So, we suppose Q = P .

For each element in 1S
aff we fix an admissible lift and denote the set of admissible

lifts by 1S
aff . We also use the obvious notation 1S

aff
M and 1S

aff
M2

. Suppose that T ∗
w

for w ∈ W (1) acts on e(V) ⊗R (IndGP 1)U as in (1). The braid relations obviously
hold. The quadratic relations hold because T ∗

s with s ∈ 1S
aff , acts trivially either

on e(V) or on (IndGP 1)U . Indeed, 1S
aff = 1S

aff
M ∪ 1S

aff
M2

, T ∗
s for s ∈ 1S

aff
M , acts

trivially on (IndGP 1)U which is extended from an HM2
-module (Example 3.14), and

T ∗
s for s ∈ 1S

aff
M2

, acts trivially on e(V) which is extended from an HM -module.
This proves (1).

We describe now the action of Tw instead of T ∗
w on the H-module e(V) ⊗R

(IndGQ 1)U . Let w ∈ W (1). We write w = uwM ′wM ′
2
= uwM ′

2
wM ′ with u ∈

W (1), �(u) = 0, wM ′ ∈ 1WM ′ , wM ′
2
∈ 1WM ′

2
. We have �(w) = �(wM ′) + �(wM ′

2
)

hence Tw = TuTwM′TwM′
2
.

For w = u, we have Tu = T ∗
u and (v⊗f)Tu = (v⊗f)T ∗

u = vT ∗
u⊗fT ∗

u = vTu⊗fTu.
For w = wM ′ , (v ⊗ f)T ∗

w = vT ∗
w ⊗ f ; for s ∈ 1S

aff
M , cs =

∑
t∈Zk∩1WM′ cs(t)T

∗
t in

particular, we have (v⊗f)Ts = (v⊗f)(T ∗
s + cs) = v(T ∗

s + cs)⊗f = vTs⊗f . Hence
(v ⊗ f)Tw = vTw ⊗ f .

For w = wM ′
2
, we have similarly (v⊗f)T ∗

w = v⊗fT ∗
w and (v⊗f)Tw = v⊗fTw. �

Example 3.16. Let X be a right HR-module. Then 1H ⊗R X where the T ∗
w acts

diagonally is an HR-module isomorphic to X . But the action of the Tw on 1H⊗RX
is not diagonal.
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It is known [Ly15] that (IndGQ′ 1)U and (StGQ)
U are free R-modules and that

(StGQ)
U is the cokernel of the natural HR-map⊕

Q�Q′

(IndGQ′ 1)U → (IndGQ 1)U(3.22)

although the invariant functor (−)U is only left exact.

Corollary 3.17. The diagonal action of T ∗
w for w ∈ W (1) on e(V) ⊗R (StGQ)

U

defines a structure of a right HR-module satisfying Proposition 3.15(2).

4. Hecke module IH(P,V , Q)

4.1. Case V extensible to H. Let P = MN be a standard parabolic subgroup of
G such that ΔP and Δ\ΔP are orthogonal, let V be a rightHM,R-module extensible
to HR of extension e(V), and let Q be a parabolic subgroup of G containing P .
As Q and MQ determine each other: Q = MQU , we denote also HMQ

= HQ

and HMQ,R = HQ,R when Q �= P,G. When Q = G we drop G and we denote
eH(V) = e(V).

Lemma 4.1. V is extensible to an HQ,R-module eHQ
(V).

Proof. This is straightforward. By Corollary 3.9, V extensible to H means that
TM (z) acts trivially on V for all z ∈ NM ′

2
∩ Z. We have MQ = MM ′

2,Q with

M ′
2,Q ⊂ MQ ∩ M ′

2 and NM ′
2,Q

⊂ NM ′
2
; hence TM (z) acts trivially on V for all

z ∈ NM ′
2,Q

∩ Z meaning that V is extensible to HQ. �

Remark 4.2. We cannot say that eHQ
(V) is extensible to H of extension e(V) when

the set of roots ΔQ and Δ \ΔQ are not orthogonal (Definition 3.8).

Let Q′ be an arbitrary parabolic subgroup of G containing Q. We are going to de-

fine anHR-embedding IndHHQ′ (eHQ′ (V))
ι(Q,Q′)−−−−−→ IndHHQ

(eHQ
(V)) = eHQ

(V)⊗H
M

+
Q
,θ

H defining an HR-homomorphism

⊕Q�Q′⊂G IndHHQ′ (eHQ′ (V)) → IndHHQ
(eHQ

(V))

of cokernel isomorphic to e(V)⊗R (StGQ)
U . In the extreme case (Q,Q′) = (P,G), the

HR-embedding e(V) ι(P,G)−−−−→ IndHHM
(V) is given in the following lemma where fG and

fPU ∈ (IndGP 1)U denote the characteristic functions of G and PU , fG = fPUeM2

(see (3.20)).

Lemma 4.3. There is a natural HR-isomorphism

v ⊗ 1H 
→ v ⊗ fPU : IndHHM
(V) = V ⊗HM+ ,θ H

κP−−→ e(V)⊗R (IndGP 1)U ,

and compatible HR-embeddings

v 
→ v ⊗ fG : e(V) −→ e(V)⊗R (IndGP 1)U ,(4.1)

v 
→ v ⊗ eM2
: e(V) ι(P,G)−−−−→ IndHHM

(V).(4.2)

Proof. We show first that the map

v 
→ v ⊗ fPU : V −→ e(V)⊗R (IndGP 1)U(4.3)
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is HM+ -equivariant. Let w ∈ WM+(1). We write w = uwM ′wM ′
2
as in Propo-

sition 3.15 (2), so that fPUTw = fPUTuwM′
2
. We have fPUTuwM′

2
= fPU because

1WM ′ ⊂ WM+(1)∩WM−(1) hence uwM ′
2
= ww−1

M ′ ∈ WM+(1) and in 1HM
⊗HM+ ,θH

we have (1⊗ 1H)TuwM′
2
= 1TM

uwM′
2

⊗ 1H, and TM
uwM′

2

acts trivially in 1HM
because

�M (uwM ′
2
) = 0. We deduce (v ⊗ fPU )Tw = vTw ⊗ fPUTw = vTM

w ⊗ fPU .
By adjunction (4.3) gives an HR-equivariant linear map

(4.4) v ⊗ 1H 
→ v ⊗ fPU : V ⊗HM+ ,θ H
κP−−→ e(V)⊗R (IndGP 1)U .

We prove that κP is an isomorphism. Recalling d̂ ∈ N ∩M ′
2, d̃ ∈ 1WM ′

2
lift d, one

knows that

(4.5) V ⊗HM+ ,θ H =
⊕

d∈WM2

V ⊗ Td̃, e(V)⊗R (IndGP 1)U =
⊕

d∈WM2

V ⊗ fP d̂U ,

where each summand is isomorphic to V . The left equality follows from section 4.1
and Remark 3.7 in [Vig15b] recalling that w ∈ WM2

is of minimal length in its coset
WMw = wWM as ΔM and ΔM2

are orthogonal; for the second equality see section
3.4 (3.19). We have κP (v ⊗ Td̃) = (v ⊗ fPU )Td̃ = v ⊗ fPUTd̃ (Proposition 3.15).
Hence κP is an isomorphism.

We consider the composite map

v 
→ v ⊗ 1 
→ v ⊗ fPUeM2
: e(V) → e(V)⊗R 1H → e(V)⊗R (IndGP 1)U ,

where the right map is the tensor product e(V)⊗R− of the HR-equivariant embed-

ding 1H → (IndGP 1)U sending 1R to fPUeM2
(Lemma 3.10); this map is injective

because (IndGP 1)U/1 is a free R-module; it isHR-equivariant for the diagonal action
of the T ∗

w on the tensor products (Example 3.16 for the first map). By compati-

bility with (4.4), we get the HR-equivariant embedding v 
→ v ⊗ eM2
: e(V) ι(P,G)−−−−→

IndHHM
(V). �

For a general (Q,Q′) theHR-embedding IndHHQ′ (eHQ′ (V))
ι(Q,Q′)−−−−−→ IndHHQ

(eHQ
(V))

is given in the next proposition generalizing Lemma 4.3. The element eM2
of HR

appearing in the definition of ι(P,G) is replaced in the definition of ι(Q,Q′) by an

element θQ′(eQ
′

Q ) ∈ HR that we define first.
Until the end of section 4, we fix an admissible lift w 
→ ŵ : W → N ∩ K

(Definition 3.1) and w̃ denotes the image of ŵ in W (1). We denote WMQ
= WQ

and by WQW the set of w ∈ W of minimal length in their coset WQw. The group G

is the disjoint union of Qd̂U for d running through WQW [OV17, Lemma 2.15 (2)]:

G =
⊔

d∈WQW Qd̂U . Since Qd̂U ⊂ Q′U if and only if d̂ ∈ Q′, namely d ∈ WQWQ′ ,
we have

(4.6) Q′U =
⊔

d∈WQWQ′

Qd̂U .

Set

(4.7) eQ
′

Q =
∑

d∈WQWQ′

T
MQ′

d̃
.

We write eGQ = eQ. We have eQP =
∑

d∈WM2,Q
T

MQ

d̃
.
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Remark 4.4. Note that WMW = WM2
and eP = eM2

, where M2 is the standard
Levi subgroup of G with ΔM2

= Δ\ΔM , as ΔM and Δ\ΔM are orthogonal. More

generally, WQWMQ′ =
WM2,QWM2,Q′ where M2,Q′ = M2 ∩MQ′ .

Note that eQ
′

Q ∈ HM+ ∩HM− . We consider the linear map

θQ
′

Q : HQ → HQ′ TMQ
w 
→ T

MQ′
w (w ∈ WMQ

(1)).

We write θGQ = θQ so that θQ(T
MQ
w ) = Tw. When Q = P this is the map θ defined

earlier. Similarly we denote by θQ
′,∗

Q the linear map sending the T
MQ,∗
w to T

MQ′ ,∗
w

and θG,∗
Q = θ∗Q. We have

(4.8) θQ′(eQ
′

Q ) =
∑

d∈WQWQ′

Td̃, θQ′(eQ
′

P ) = θQ(e
Q
P )θQ′(eQ

′

Q ).

Proposition 4.5. There exists an HR-isomorphism
(4.9)

v ⊗ 1H 
→ v ⊗ fQU : IndHHQ
(eHQ

(V)) = eHQ
(V)⊗H

M
+
Q
,θ H

κQ−−→ e(V)⊗R (IndGQ 1)U ,

and compatible HR-embeddings

v ⊗ fQ′U 
→ v ⊗ fQ′U : eHQ′ (V)⊗R (IndGQ′ 1)U → eHQ
(V)⊗R (IndGQ 1)U ,(4.10)

v ⊗ 1H 
→ v ⊗ θQ′(eQ
′

Q ) : IndHHQ′ (eHQ′ (V))
ι(Q,Q′)−−−−−→ IndHHQ

(eHQ
(V)).(4.11)

Proof. We have the HMQ,R-embedding

v 
→ v ⊗ eQP : eHQ
(V) → V ⊗HM+ ,θ HQ = Ind

HQ

HM
(V)

by Lemma 4.3 (4.2) as ΔM is orthogonal to ΔMQ
\ ΔM . Applying the parabolic

induction which is exact, we get the H-embedding

v ⊗ 1H 
→ v ⊗ eQP ⊗ 1H : IndHHQ
(eHQ

(V)) → IndHHQ
(Ind

HQ

HM
(V)).

Note that T
MQ

d̃
∈ HM+

Q
for d ∈ WMQ

. By transitivity of the parabolic induction,

it is equal to the HR-embedding

(4.12) v ⊗ 1H 
→ v ⊗ θQ(e
Q
P ) : Ind

H
HQ

(eHQ
(V)) → IndHHM

(V).

On the other hand we have the HR-embedding

(4.13) v ⊗ fQU 
→ v ⊗ θQ(e
Q
P ) : e(V)⊗R (IndGQ 1)U → IndHHM

(V)

given by the restriction to e(V) ⊗R (IndGQ 1)U of the HR-isomorphism given in

Lemma 4.3 (4.1), from e(V)⊗R (IndGP 1)U to V⊗HM+ ,θH sending v⊗fPU to v⊗1H,

noting that v ⊗ fQU = (v ⊗ fPU )θQ(e
Q
P ) by Proposition 3.15, fQU = fPUθQ(e

Q
P )

and θQ(e
Q
P ) acts trivially on e(V) (this is true for Td̃ for d̃ ∈ 1WM ′

2
). Comparing

the embeddings (4.12) and (4.13), we get the HR-isomorphism (4.9).
We can replace Q by Q′ in the HR-homomorphisms (4.9), (4.12), and (4.13).

With (4.12) we see IndHHQ′ (eHQ′ (V)) and IndHHQ
(eHQ

(V)) as HR-submodules of

IndHHM
(V). As seen in (4.8) we have θQ′(eQ

′

P ) = θQ(e
Q
P )θQ′(eQ

′

Q ). We deduce the

HR-embedding (4.11).
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By (3.19) for Q and (4.6),

fQ′U =
∑

d∈WQWQ′

fQUTd̃ = fQUθQ′(eQ
′

Q )

in (IndGQ 1)U . We deduce that the HR-embedding corresponding to (4.11) via κQ

and κQ′ is the HR-embedding (4.10). �
We recall that ΔP and Δ \ΔP are orthogonal and that V is extensible to H of

extension e(V).
Corollary 4.6. The cokernel of the HR-map⊕

Q�Q′⊂G

IndHHQ′ (eHQ′ (V)) → IndHHQ
(eHQ

(V))

defined by the ι(Q,Q′), is isomorphic to e(V)⊗R (StGQ)
U via κQ.

4.2. Invariants in the tensor product. We return to the setting where P = MN
is a standard parabolic subgroup of G, σ is a smooth R-representation of M with
P (σ) = G of extension e(σ) to G, and Q a parabolic subgroup of G containing P .
We still assume that ΔP and Δ \ΔP are orthogonal.

The HR-modules e(σUM ) = e(σ)U are equal (Theorem 3.13). We compute

IG(P, σ,Q)U = (e(σ)⊗R StGQ)
U .

Theorem 4.7. The natural linear maps e(σ)U ⊗R (IndGQ 1)U → (e(σ)⊗R IndGQ 1)U

and e(σ)U ⊗R (StGQ)
U → (e(σ)⊗R StGQ)

U are isomorphisms.

Proof. We need some preliminaries. In [GK14,Ly15], are introduced a finite free Z-

module M (depending on ΔQ) and a B-equivariant embedding StGQZ
ι−→ C∞

c (B,M)
(we indicate the coefficient ring in the Steinberg representation) which induces an

isomorphism (StGQZ)
B 	 C∞

c (B,M)B.

Lemma 4.8.

(1) (IndGQ Z)B is a direct factor of IndGQ Z.

(2) (StGQZ)
B is a direct factor of StGQZ.

Proof.
(1) [AHV, Example 2.2].
(2) As M is a free Z-module, C∞

c (B,M)B is a direct factor of C∞
c (B,M). Con-

sequently, ι((StGQZ)
B) = C∞

c (B,M)B is a direct factor of ι(StGQZ). As ι is injective,
we get (2). �

We now prove Theorem 4.7. We may and do assume that σ is e-minimal (because
P (σ) = P (σmin), e(σ) = e(σmin)) so that ΔM and Δ \ΔM are orthogonal and we
use the same notation as in section 3.2 in particular M2 = MΔ\ΔM

. Let V be

the space of e(σ) on which M ′
2 acts trivially. The restriction of IndGQ Z to M2 is

IndM2

Q∩M2
Z, that of StGQZ is StM2

Q∩M2
Z.

As in [AHV, Example 2.2], ((IndM2

Q∩M2
Z)⊗ V )

UM′
2 	 (IndM2

Q∩M2
Z)

UM′
2 ⊗ V . We

have
(IndM2

Q∩M2
Z)

UM′
2 = (IndM2

Q∩M2
Z)UM2 = (IndGQ Z)U .

The first equality follows from M2 = (Q ∩ M2)WM2
UM2

, UM2
= Z1UM ′

2
and Z1

normalizes UM ′
2
and is normalized by WM2

. The second equality follows from U =
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UM ′UM2
and IndGQ Z is trivial onM ′. Therefore ((IndGQ Z)⊗V )

UM′
2 	 (IndGQ Z)U⊗V .

Now taking fixed points under UM , as U = UM ′
2
UM ,

((IndGQ Z)⊗ V )U 	 ((IndGQ Z)U ⊗ V )UM = (IndGQ Z)U ⊗ V UM .

The equality uses that the Z-module IndGQ Z is free. We get the first part of the

theorem as (IndGQ Z)U ⊗ V UM 	 (IndGQ R)U ⊗R V UM .

Tensoring with R the usual exact sequence defining StGQZ gives an isomorphism

StGQZ⊗R 	 StGQR and in [GK14,Ly15], it is proved that the resulting map StGQR
ιR−→

C∞(B,M ⊗ R) is also injective. Their proof in no way uses the ring structure of
R, and for any Z-module V , tensoring with V gives a B-equivariant embedding

StGQZ⊗ V
ιV−→ C∞

c (B,M⊗ V ). The natural map (StGQZ)
B ⊗ V → StGQZ⊗ V is also

injective by Lemma 4.8 (2). Taking B-fixed points we get inclusions

(4.14) (StGQZ)
B ⊗ V → (StGQZ⊗ V )B → C∞

c (B,M⊗ V )B 	 M⊗ V.

The composite map is surjective, so the inclusions are isomorphisms. The image
of ιV consists of functions which are left Z0-invariant, and B = Z0U ′ where U ′ =
G′ ∩ U . It follows that ι yields an isomorphism (StGQZ)

U ′ 	 C∞
c (Z0\B,M)U

′
again

consisting of the constant functions. So that in particular (StGQZ)
U ′

= (StGQZ)
B and

reasoning as previously we get isomorphisms

(4.15) (StGQZ)
U ′ ⊗ V 	 (StGQZ⊗ V )U

′ 	 M⊗ V.

The equality (StGQZ)
U ′

= (StGQZ)
B and the isomorphisms remain true when we

replace U ′ by any group between B and U ′. We apply these results to StM2

Q∩M2
Z⊗

V to get that the natural map (StM2

Q∩M2
Z)

UM′
2 ⊗ V → (StM2

Q∩M2
Z ⊗ V )

UM′
2 is an

isomorphism and also that (StM2

Q∩M2
Z)

UM′
2 = (StM2

Q∩M2
Z)UM2 . We have U = UM ′UM2

so (StGQZ)
U = (StM2

Q∩M2
Z)UM2 and the natural map (StGQZ)

U ⊗V → (StGQZ⊗V )
UM′

2

is an isomorphism. The Z-module (StGQZ)
U is free and the V UM = V U , so taking

fixed points under UM , we get (StGQZ)
U ⊗V U 	 (StGQZ⊗V )U . We have StGQZ⊗V =

StGQR ⊗R V and (StGQZ)
U ⊗ V U = (StGQR)U ⊗R V U . This ends the proof of the

theorem. �

Theorem 4.9. The HR-modules (e(σ) ⊗R IndGQ 1)U = e(σ)U ⊗R (IndGQ 1)U are

equal. The HR-modules (e(σ)⊗R StGQ)
U = e(σ)U ⊗R (StGQ)

U are also equal.

Proof. We already know that theR-modules are equal (Theorem 4.7). We show that

they are equal as H-modules. The HR-modules e(σ)U ⊗R (IndGQ 1)U = eH(σUM )⊗R

(IndGQ 1)U are equal (Theorem 3.13), they are isomorphic to IndHHQ
(eHQ

(σUM ))

(Proposition 4.5), to (IndGQ(eQ(σ)))
U [OV17, Proposition 4.4], and to (e(σ) ⊗R

IndGQ 1)U [AHV, Lemma 2.5]). We deduce that the HR-modules e(σ)U⊗R (IndGQ 1)U

= (e(σ)⊗R IndGQ 1)U are equal. The same is true when Q is replaced by a parabolic

subgroup Q′ of G containing Q. The representation e(σ)⊗R StGQ is the cokernel of
the natural R[G]-map⊕

Q�Q′

e(σ)⊗R IndGQ′ 1
αQ−−→ e(σ)⊗R IndGQ 1
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and the HR-module e(σ)U ⊗R (StGQ)
U is the cokernel of the natural HR-map⊕

Q�Q′

e(σ)U ⊗R (IndGQ′ 1)U
βQ−−→ e(σ)U ⊗R (IndGQ 1)U

obtained by tensoring (3.22) by e(σ)U over R, because the tensor product is right

exact. The maps βQ = αU
Q are equal and the R-modules e(σ)U ⊗R (StGQ)

U =

(e(σ) ⊗R StGQ)
U are equal. This implies that the HR-modules e(σ)U ⊗R (StGQ)

U =

(e(σ)⊗R StGQ)
U are equal. �

Remark 4.10. The proof shows that the representations e(σ)⊗R IndGQ 1 and e(σ)⊗
StGQ of G are generated by their U-fixed vectors if the representation σ ofM is gener-

ated by its UM -fixed vectors. Indeed, the R-modules e(σ)U = σUM , (IndGQ 1)
UM′

2 =

(IndGQ 1)U are equal. If σUM generates σ, then e(σ) is generated by e(σ)U . The rep-

resentation IndGQ 1|M ′
2
is generated by (IndGQ 1)U (this follows from the lemma be-

low), we have G = MM ′
2 and M ′

2 acts trivially on e(σ). Therefore the R[G]-module

generated by σU ⊗R (IndGQ 1)U is e(σ)⊗R IndGQ 1. As e(σ)⊗R StGQ is a quotient of

e(σ)⊗R IndGQ 1, the R[G]-module generated by σU ⊗R (StGQ)
U is e(σ)⊗R StGQ.

Lemma 4.11. For any standard parabolic subgroup P of G, the representation
IndGP 1|G′ is generated by its U-fixed vectors.

Proof. Because G = PG′ it suffices to prove that if J is an open compact subgroup
of N the characteristic function 1PJ of PJ is a finite sum of translates of 1PU =
1PUN

by G′. For t ∈ T we have PUt = Pt−1UN t and we can choose t ∈ T ∩J ′ such

that t−1UN t ⊂ J . �

4.3. General triples. Let P = MN be a standard parabolic subgroup of G. We
now investigate situations where ΔP and Δ \ ΔP are not necessarily orthogonal.
Let V be a right HM,R-module.

Definition 4.12. Let P (V) = M(V)N(V) be the standard parabolic subgroup of
G with ΔP (V) = ΔP ∪ΔV and

ΔV = {α ∈ Δ orthogonal to ΔM , TM (z) acts trivially on V for all z ∈ Z ∩M ′
α}.

If Q is a parabolic subgroup of G between P and P (V), the triple (P,V , Q) called
an HR-triple, defines a right HR-module IH(P,V , Q) equal to

IndHHM(V)
(e(V)⊗R (St

M(V)
Q∩M(V))

UM(V)) = (e(V)⊗R (St
M(V)
Q∩M(V))

UM(V))⊗HM(V)+,R,θHR,

where e(V) is the extension of V to HM(V).

This definition is justified by the fact that M(V) is the maximal standard Levi
subgroup of G such that the HM,R-module V is extensible to HM(V).

Lemma 4.13. ΔV is the maximal subset of Δ \ ΔP orthogonal to ΔP such that

TM,∗
λ acts trivially on V for all λ ∈ Λ(1) ∩ 1WM ′

V
.

Proof. For J ⊂ Δ let MJ denote the standard Levi subgroup of G with ΔMJ
= J .

The group Z ∩M ′
J is generated by the Z ∩M ′

α for all α ∈ J (Lemma 2.1). When J
is orthogonal to ΔM and λ ∈ ΛM ′

J
(1), �M (λ) = 0 where �M is the length associated

to Saff
M , and the map λ 
→ TM,∗

λ = TM
λ : ΛM ′

J
(1) → HM is multiplicative. �
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The following is the natural generalization of Proposition 4.5 and Corollary 4.6.
Let Q′ be a parabolic subgroup of G with Q ⊂ Q′ ⊂ P (V). Applying the results of
section 4.1 to M(V) and its standard parabolic subgroups Q∩M(V) ⊂ Q′ ∩M(V),
we have an HM(V),R-isomorphism

Ind
HM(V)

HQ
(eHQ

(V))

= eHQ
(V)⊗H

M
+
Q
,θ HM(V),R

κQ∩M(V)−−−−−−→ e(V)⊗R (Ind
M(V)
Q∩M(V) 1)

UM(V)

v ⊗ 1H 
→ v ⊗ fQU∩M(V) :

and an HM(V),R-embedding

Ind
HM(V)

HQ′ (eHQ′ (V))
ι(Q∩M(V),Q′∩M(V))−−−−−−−−−−−−−−→ Ind

HM(V)

HQ
(eHQ

(V))

v ⊗ 1HM(V)

→ v ⊗ θ

P (V)
Q′ (eQ

′

Q ).

Applying the parabolic induction IndHHM(V)
which is exact and transitive, we obtain

an HR-isomorphism κQ = IndHHM(V)
(κQ∩M(V)),

IndHHQ
(eHQ

(V)) κQ−−→ IndHHM(V)
(e(V)⊗R (Ind

M(V)
Q∩M(V) 1MQ

)UM(V))(4.16)

v ⊗ 1H 
→ v ⊗ fQUM(V)
⊗ 1H

and an HR-embedding ι(Q,Q′) = IndHHM(V)
(ι(Q,Q′)M(V))

(4.17) v ⊗ 1H 
→ v ⊗ θQ′(eQ
′

Q ) : IndHHQ′ (eHQ′ (V))
ι(Q,Q′)−−−−−→ IndHHQ

(eHQ
(V)).

Applying Corollary 4.6 we obtain:

Theorem 4.14. Let (P,V , Q) be an HR-triple. Then, the cokernel of the HR-map

⊕Q�Q′⊂P (V) Ind
H
HQ′ (eHQ′ (V)) → IndHHQ

(eHQ
(V)),

defined by the ι(Q,Q′) is isomorphic to IH(P,V , Q) via the HR-isomorphism κQ.

Let σ be a smooth R-representation of M and let Q be a parabolic subgroup of
G with P ⊂ Q ⊂ P (σ).

Remark 4.15. The HR-module IH(P, σUM , Q) is defined if ΔQ \ ΔP and ΔP are
orthogonal because Q ⊂ P (σ) ⊂ P (σUM ) (Theorem 3.13).

We denote here by Pmin = MminNmin the minimal standard parabolic subgroup
of G contained in P such that σ = eP (σ|Mmin

) (Lemma 2.3, we drop the index
σ). The sets of roots ΔPmin

and ΔP (σ|Mmin
) \ ΔPmin

are orthogonal (Lemma 2.4).

The groups P (σ) = P (σ|Mmin
), the representations e(σ) = e(σ|Mmin

) of M(σ), the

representations IG(P, σ,Q) = IG(Pmin, σ|Mmin
, Q) = IndGP (σ)(e(σ)⊗R St

P (σ)
Q ) of G,

and the R-modules σUMmin = σUM are equal. From Theorem 3.13,

P (σ) ⊂ P (σUMmin ), eHM(σ)
(σUMmin ) = e(σ)UM(σ) ,

and P (σUMmin ) = P (σ) if σUMmin generates the representation σ|Mmin
. The HR-

module

IH(Pmin, σ
UMmin , Q) = IndHH

M(σ
UMmin )

(e(σUMmin )⊗R (St
P (σ

UMmin )
Q )

U
M(σ

UMmin ))

is defined because ΔPmin
and Δ

P (σ
UMmin )

\ ΔPmin
are orthogonal and P ⊂ Q ⊂

P (σ) ⊂ P (σUMmin ).
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Remark 4.16. If σUMmin generates the representation σ|Mmin
(in particular if R is

an algebraically closed field of characteristic p and σ is irrreducible), then P (σ) =
P (σUMmin ) hence

IH(Pmin, σ
UMmin , Q) = IndHHM(σ)

(eHM(σ)
(σUMmin )⊗R (St

M(σ)
Q∩M(σ))

UM(σ)).

Applying Theorem 4.9 to (Pmin∩M(σ), σ|Mmin
, Q∩M(σ)), the HM(σ),R-modules

(4.18) eHM(σ)
(σUMmin )⊗R (St

M(σ)
Q∩M(σ))

UM(σ) = (eM(σ)(σ)⊗R St
M(σ)
Q∩M(σ))

UM(σ)

are equal. We have the HR-isomorphism [OV17, Proposition 4.4]:

IG(P, σ,Q)U = (IndGP (σ)(e(σ)⊗R St
P (σ)
Q ))U

ov−→ IndHHM(σ)
((e(σ)⊗R St

M(σ)
Q∩M(σ))

UM(σ))

fP (σ)U,x 
→ x⊗ 1H (x ∈ (e(σ)⊗R St
M(σ)
Q∩M(σ))

UM(σ)).

We deduce the following.

Theorem 4.17. Let (P, σ,Q) be an R[G]-triple. Then, we have the HR-isomorphism

IG(P, σ,Q)U
ov−→ IndHHM(σ)

(eHM(σ)
(σUMmin )⊗R (St

M(σ)
Q∩M(σ))

UM(σ)).

In particular,

IG(P, σ,Q)U 	
{
IH(Pmin, σ

UMmin , Q) if P (σ) = P (σUMmin ),

IH(P, σUM , Q) if P = Pmin, P (σ) = P (σUM ).

4.4. Comparison of the parabolic induction and coinduction. Let P = MN
be a standard parabolic subgroup of G, let V be a right HR-module, and let Q be
a parabolic subgroup of G with Q ⊂ P (V). When R is an algebraically closed field
of characteristic p, in [Abe], we associated to (P,V , Q) an HR-module using the
parabolic coinduction

CoindHHMQ
(−) = HomH

M
−
Q

,θ∗
(H,−) : ModR(HMQ

) → ModR(H)

instead of the parabolic induction IndHHMQ
(−) = −

⊗
H

M
+
Q
,θ H. The index θ∗ in the

parabolic coinduction means that HM−
Q

embeds in H by θ∗Q. Our terminology is

different from the one in [Abe] where the parabolic coinduction is called induction.
For a parabolic subgroup Q′ of G with Q ⊂ Q′ ⊂ P (V), there is a natural inclusion
of HR-modules

(4.19) HomH
M

−
Q′ ,θ∗

(H, eHQ′ (V))
i(Q,Q′)−−−−−→ HomH

M
−
Q

,θ∗
(H, eHQ

(V))

because θ∗(HM−
Q
) ⊂ θ∗(HM−

Q′
) as WM−

Q
(1) ⊂ WM−

Q′
(1), and vT

MQ′ ,∗
w = vT

MQ,∗
w for

w ∈ WM−
Q
(1) and v ∈ V . (This is [Abe, Proposition 4.19] when R is an algebraically

closed field of characteristic p. This follows from our formulation of the extension
for any R.)

Definition 4.18. Let CIH(P,V , Q) denote the cokernel of the map⊕
Q�Q′⊂P (V)

HomH
M

−
Q′ ,θ∗

(H, eHQ′ (V)) → HomH
M

−
Q

,θ∗
(H, eHQ

(V))

defined by the HR-embeddings i(Q,Q′).
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When R is an algebraically closed field of characteristic p, we showed that the
HR-module CIH(P,V , Q) is simple when V is simple and supersingular (Definition
4.25), and that any simple HR-module is of this form for an HR-triple (P,V , Q)
where V is simple and supersingular, P,Q and the isomorphism class of V are
unique [Abe]. The aim of this section is to compare the HR-modules IH(P,V , Q)
with the HR-modules CIH(P,V , Q) and to show that the classification is also valid
with the HR-modules IH(P,V , Q).

It is already known that a parabolically coinduced module is a parabolically
induced module and vice versa [Abe, Proposition 4.15], [Vig15b, Theorem 1.8]. To
make it more precise we need to introduce notation.

We lift the elements w of the finite Weyl group W to ŵ ∈ NG∩K as in [AHHV17,
IV.6], [OV17, Proposition 2.7]: they satisfy the braid relations ŵ1ŵ2 = (w1w2)̂ when
�(w1)+�(w2) = �(w1w2) and when s ∈ S, ŝ is admissible, in particular lies in 1WG′ .

Let w,wM ,wM denote, respectively, the longest elements in W,WM and wwM .
We have w = w−1 = wMwM ,wM = w−1

M , ŵ = ŵMŵM ,

wM (ΔM ) = −w(ΔM ) ⊂ Δ, wM (Φ+ \ Φ+
M ) = w(Φ+ \ Φ+

M ).

Let w.M be the standard Levi subgroup of G with Δw.M = wM (ΔM ) and w.P
the standard parabolic subgroup of G with Levi w.M . We have

w.M = ŵMM(ŵM )−1 = ŵM(ŵ)−1, ww.M = wMw = (wM )−1.

The conjugation w 
→ wMw(wM )−1 inW gives a group isomorphism WM → Ww.M

sending Saff
M onto Saff

w.M , respecting the finite Weyl subgroups wMWM (wM )−1 =
Ww.M = wWMw−1, and exchanging WM+ and W(w.M)− = wWM+w−1. The

conjugation by w̃M restricts to a group isomorphism WM (1) → Ww.M (1) sending
WM+(1) onto W(w.M)−(1). The linear isomorphism

(4.20) HM
ι(w̃M )−−−−→ Hw.M TM

w 
→ Tw.M
w̃Mw(w̃M )−1 for w ∈ WM (1),

is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and w.M . It
sends the positive part HM+ of HM onto the negative part H(w.M)− of Hw.M

[Vig15b, Proposition 2.20]. We have w̃ = w̃Mw̃w.M = w̃Mw̃M , (w̃M )−1 =
w̃w.M tM where tM = w̃2w̃−2

M ∈ Zk.

Definition 4.19. The twist w̃M .V of V by w̃M is the rightHw.M -module deduced
from the right HM -module V by functoriality: as R-modules w̃M .V = V and for
v ∈ V , w ∈ WM (1) we have vTw.M

w̃Mw(w̃M )−1 = vTM
w .

We can define the twist w̃M .V of V with the TM,∗
w instead of TM

w .

Lemma 4.20. For v ∈ V , w ∈ WM (1) we have vTw.M,∗
w̃Mw(w̃M )−1 = vTM,∗

w in w̃M .V.

Proof. By the ring isomorphism HM
ι(w̃M )−−−−→ Hw.M , we have cw.M

w̃M s̃(w̃M )−1 = cMs̃
when s̃ ∈ WM (1) lifts s ∈ Saff

M . So the equality of the lemma is true for w = s̃.
Apply the braid relations to get the equality for all w ∈ WM (1). �

We return to the HR-module HomHM−,θ∗
(H, V ) parabolically coinduced from

V . It has a natural direct decomposition indexed by the set WWM of elements d in
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the finite Weyl group W of minimal length in the coset dWM . Indeed it is known
that the linear map

f 
→ (f(Td̃))d∈WWM : HomHM− ,θ∗(H,V) →
⊕

d∈WWM

V

is an isomorphism. For v ∈ V and d ∈ WWM , there is a unique element

fd̃,v ∈ HomHM− ,θ∗(H,V) satisfying f(Td̃) = v and f(Td̃′) = 0 for d′ ∈ WWM \ {d}.

It is known that the map v 
→ fw̃M ,v : w̃M .V → HomHM− ,θ∗(H,V) is H(w.M)+ -
equivariant: fw̃M ,vTw.M

w
= fw̃M ,vTw for all v ∈ V , w ∈ Ww.M+(1). By adjunction,

thisH(w.M)+ -equivariant map gives anHR-homomorphism from an induced module
to a coinduced module:

(4.21) v ⊗ 1H 
→ fw̃M ,v : w̃M .V ⊗H(w.M)+ ,θ H
μP−−→ HomHM− ,θ∗(H,V).

This is an isomorphism [Abe, Proposition 4.15], [Vig15b, Theorem 1.8].
The naive guess that a variant μQ of μP induces an HR-isomorphism between

the HR-modules IH(w.P, w̃M .V ,w.Q) and CIH(P,V , Q) turns out to be true. The
proof is the aim of the rest of this section.

The HR-module IH(w.P, w̃M .V ,w.Q) is well defined because the parabolic sub-
groups of G containingw.P and contained in P (w̃M .V) arew.Q for P ⊂ Q ⊂ P (V),
as follows from Lemma 4.21.

Lemma 4.21. Δw̃M .V = −w(ΔV).

Proof. Recall that ΔV is the set of simple roots α ∈ Δ \ ΔM orthogonal to ΔM

and TM (z) acts trivially on V for all z ∈ Z ∩M ′
α, and the corresponding standard

parabolic subgroup PV = MVNV . The Z ∩ M ′
α for α ∈ ΔV generate the group

Z ∩M ′
V . A root α ∈ Δ \ΔM orthogonal to ΔM is fixed by wM so wM (α) = w(α)

and

ŵMMV(ŵ
M )−1 = ŵMV(ŵ)−1.

The proof of Lemma 4.21 is straightforward as Δ = −w(Δ), Δw.M = −w(ΔM ). �

Before going further, we check the commutativity of the extension with the twist.
As Q = MQU and MQ determine each other we denote wMQ

= wQ,w
MQ = wQ

when Q �= P,G.

Lemma 4.22. eHw.Q
(w̃M .V) = w̃Q.eHQ

(V).

Proof. As R-modules V = eHw.Q
(w̃M .V) = w̃Q.eHQ

(V). A direct computation

shows that the Hecke element Tw.Q,∗
w acts in the HR-module eHw.Q

(w̃M .V), by

the identity if w ∈ w̃Q
1WM ′

2
(wQ)−1 and by TM,∗

(w̃Q)−1ww̃Q if w ∈ w̃Q
1WM ′

2
(wQ)−1

where M2 denotes the standard Levi subgroup with ΔM2
= ΔQ \ ΔP . Whereas

in the HR-module w̃Q.eHQ
(V), the Hecke element Tw.Q,∗

w acts by the identity if

w ∈ 1Ww.M ′
2
and by TM,∗

(w̃M )−1ww̃M if w ∈ Ww.M (1). So the lemma means that

1Ww.M ′
2
= w̃Q

1WM ′
2
(wQ)−1, (w̃Q)−1ww̃Q = (w̃M )−1ww̃M if w ∈ Ww.M (1).

These properties are easily proved using that 1WG′ is normal in W (1) and that
the sets of roots ΔP and ΔQ \ ΔP are orthogonal: wQ = wM2

wM , the elements
wM2

and wM normalize WM and WM2
, the elements of WM2

commutes with the
elements of WM . �
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We return to our guess. The variant μQ of μP is obtained by combining the
commutativity of the extension with the twist and the isomorphism (4.21) applied
to (Q, eHQ

(V)) instead of (P,V). The HR-isomorphism μQ is

(4.22) v ⊗ 1H 
→ fw̃M ,v : IndHHw.MQ
(eHw.Q

(w̃M .V)) μQ−−→ HomH
M

−
Q
,θ∗(H, eHQ

(V)).

Our guess is that μQ induces an HR-isomorphism from the cokernel of the HR-
map ⊕

Q�Q′⊂P (V)

IndHHw.Q′ (eHw.Q′ (w̃
M .V)) → IndHHw.Q

(eHw.Q
(w̃M .V))

defined by the HR-embeddings ι(w.Q,w.Q′), isomorphic to IH(w.P, w̃MV ,w.Q)
via κw.Q (Theorem 4.14), onto the cokernel CIH(P,V , Q) the HR-map⊕

Q�Q′⊂P (V)

HomH
M

−
Q′ ,θ∗

(H, eHQ′ (V)) → HomH
M

−
Q

,θ∗
(H, eHQ

(V))

defined by the HR-embeddings i(Q,Q′). This is true if i(Q,Q′) corresponds to
ι(w.Q,w.Q′) via the isomorphisms μQ′ and μQ. This is the content of the next
proposition.

Proposition 4.23. For all Q � Q′ ⊂ P (V) we have

i(Q,Q′) ◦ μQ′ = μQ ◦ ι(w.Q,w.Q′).

We postpone to section 4.6 the rather long proof of the proposition.

Corollary 4.24. The HR-isomorphism μQ ◦ κ−1
w.Q induces an HR-isomorphism

IH(w.P, w̃MV ,w.Q) → CIH(P,V , Q).

4.5. Supersingular HR-modules, classification of simple HR-modules. We
recall first the notion of supersingularity based on the action of the center of H.

The center of H [Vig14, Theorem 1.3] contains a subalgebra ZT+ isomorphic
to Z[T+/T1] where T+ is the monoid of dominant elements of T and T1 is the
pro-p-Sylow subgroup of the maximal compact subgroup of T .

Let t ∈ T of image μt ∈ W (1) and let (Eo(w))w∈W (1) denote the alcove walk
basis of H associated to a closed Weyl chamber o of W. The element

Eo(C(μt)) =
∑
μ′

Eo(μ
′)

is the sum over the elements in μ′ in the conjugacy class C(μt) of μt in W (1). It
is a central element of H and does not depend on the choice of o. We write also
z(t) = Eo(C(μt)).

Definition 4.25. A non-zero right HR-module V is called supersingular when, for
any v ∈ V and any non-invertible t ∈ T+, there exists a positive integer n ∈ N

such that v(z(t))n = 0. If one can choose n independent on (v, t), then V is called
uniformly supersingular.

Remark 4.26. One can choose n independent on (v, t) when V is finitely generated
as a right HR-module. If R is a field and V is simple we can take n = 1.

When G is compact modulo the center, T+ = T , and any non-zero HR-module
is supersingular.
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The induction functor IndHHM
: Mod(HM,R) → Mod(HR) has a left adjoint LH

HM

and a right adjoint RH
HM

[Vig15b]: for V ∈ Mod(HR),
(4.23)

LH
HM

(V) = w̃w.M ◦ (V ⊗H(w.M)− ,θ∗ Hw.M ), RH
HM

(V) = HomHM+ ,θ(HM ,V).

In the left adjoint, V is seen as a right H(w.M)− -module via the ring homomor-
phism θ∗w.M : H(w.M)− → H; in the right adjoint, V is seen as a right HM+ -module
via the ring homomorphism θM : HM+ → H (section 2.3).

Proposition 4.27. Assume that V is a supersingular right HR-module and that p is
nilpotent in V. Then LH

HM
(V) = 0, and if V is uniformly supersingular RH

HM
(V) =

0.

Proof. This is a consequence of three known properties:

(1) HM is the localization of HM+ (resp., HM−) at TM
μ for any element μ ∈

ΛT (1), central in WM (1) and strictly N -positive (resp., N -negative), and
TM
μ = TM,∗

μ . See [Vig15b, Theorem 1.4].

(2) When o is anti-dominant, Eo(μ) = Tμ if μ ∈ Λ+(1) and Eo(μ) = T ∗
μ if

μ ∈ Λ−(1).
(3) Let an integer n > 0 and μ ∈ Λ(1) such that the W-orbit of v(μ) ∈ X∗(T )⊗

Q (definition in section 2.1) and of μ have the same number of elements.
Then

(Eo(C(μ)))nEo(μ)− Eo(μ)
n+1 ∈ pH.

See [Vig15a, Lemma 6.5], where the hypotheses are given in the proof (but
not written in the lemma).

Let μ ∈ Λ+
T (1) satisfying (1) forM+ and (3), similarly let w.μ ∈ Λ−

T (1) satisfying
(1) for (w.M)− and (3). For (R,V) as in the proposition, let v ∈ V and n > 0
such that vEo(C(μ))n = vEo(C(w.μ))n = 0. Multiplying by Eo(μ) or Eo(w.μ),
and applying (3) and (2) for o anti-dominant we get:

vEo(μ
n+1) = vTn+1

μ ∈ pV , vEo((w.μ)n+1) = v(T ∗
w.μ)

n+1 ∈ pV .

The proposition follows from: vTn+1
μ , v(T ∗

w.μ)
n+1 in pV (as explained in [Abe16,

Proposition 5.17] when p = 0 in R). From v(T ∗
w.μ)

n+1 in pV , we get v⊗(Tw.M,∗
w.μ )n+1

= v(T ∗
w.μ)

n+1⊗1Hw.M
in pV⊗H(w.M)− ,θ∗ Hw.M . As Tw.M,∗ = Tw.M is invertible in

Hw.M we get v⊗1Hw.M
in pV⊗H(w.M)− ,θ∗ Hw.M . As v was arbitrary, V⊗H(w.M)− ,θ∗

Hw.M ⊂ pV⊗H(w.M)− ,θ∗Hw.M . If p is nilpotent in V , then V⊗H(w.M)− ,θ∗Hw.M = 0.

Suppose now that there exists n > 0 such that V(z(t))n = 0 for any non-invertible
t ∈ T+; then VTn+1

μ ⊂ pV where μ = μt and hence ϕ(h) = ϕ(hTM
μ−n−1)Tn+1

μ

in pV for an arbitrary ϕ ∈ HomHM+ ,θ(HM ,V) and an arbitrary h ∈ HM . We
deduce HomHM+ ,θ(HM ,V) ⊂ HomHM+ ,θ(HM , pV). If p is nilpotent in V , then
HomHM+ ,θ(HM ,V) = 0. �

Recalling that w̃M .V is obtained by functoriality from V and the ring isomor-
phism ι(w̃M ) defined in (4.20), the equivalence between V supersingular and w̃MV
supersingular follows from Lemma 4.28

Lemma 4.28.

(1) Let t ∈ T . Then t is dominant for UM if and only if ŵM t(ŵM )−1 ∈ T is
dominant for Uw.M .
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(2) The R-algebra isomorphism HM,R
ι(w̃M )−−−−→ Hw.M,R, TM

w 
→ Tw.M
w̃Mw(w̃M )−1

for w ∈ WM (1) sends zM (t) to zw.M (ŵM t(ŵM )−1) for t ∈ T dominant for
UM .

Proof. The conjugation by ŵM stabilizes T , sends UM to Uw.M , and sends theWM -
orbit of t ∈ T to the Ww.M -orbit of ŵM t(ŵM )−1, as wMWM (wM )−1 = Ww.M .
It is known that ι(w̃M ) respects the anti-dominant alcove walk bases [Vig15b,
Proposition 2.20]: it sends EM (w) to Ew.M (w̃Mw(w̃M )−1) for w ∈ WM (1). �

We deduce the following.

Corollary 4.29. Let V be a right HM,R-module. Then V is supersingular if and
only if the right Hw.M,R-module w̃MV is supersingular.

Assume R is an algebraically close field of characteristic p. The supersingular
simple HM,R-modules are classified in [Vig15a]. By Corollaries 4.24 and 4.29, the
classification of the simpleHR-modules in [Abe] remains valid with theHR-modules
IH(P,V , Q) instead of CIH(P,V , Q):

Corollary 4.30 (Classification of simple HR-modules). Assume R is an alge-
braically closed field of characteristic p. Let (P,V , Q) be an HR-triple where V
is simple and supersingular. Then, the HR-module IH(P,V , Q) is simple. A sim-
ple HR-module is isomorphic to IH(P,V , Q) for an HR-triple (P,V , Q) where V is
simple and supersingular, P,Q and the isomorphism class of V are unique.

4.6. A commutative diagram. We prove in this section Proposition 4.23. For
Q ⊂ Q′ ⊂ P (V) we show by an explicit computation that

μ−1
Q ◦ i(Q,Q′) ◦ μQ′ IndHHw.Q′ (eHw.Q′ (w̃

M .V)) → IndHHw.Q
(eHw.Q

(w̃M .V))

is equal to ι(w.Q,w.Q′). The R-module eHw.Q′ (w̃
M .V) ⊗ 1H generates the HR-

module eHw.Q′ (w̃
M .V)⊗Hw.Q′,R,θ+ HR = IndHHw.Q′ (eHw.Q′ (w̃

M .V)) and by (4.17)

(4.24) ι(w.Q,w.Q′)(v ⊗ 1H) = v ⊗
∑

d∈
WMw.QWM

w.Q′

Td̃

for v ∈ V seen as an element of eHw.Q′ (w̃
M .V) in the LHS and an element of

eHw.Q
(w̃M .V) in the RHS.

Lemma 4.31. (μ−1
Q ◦ i(Q,Q′) ◦ μQ′)(v ⊗ 1H) = v ⊗

∑
d∈W

WMQ
M

Q′

qd T
∗
w̃Q(w̃Q′ d̃)−1

.

Proof. μQ′(v⊗1H) is the unique homomorphism f
w̃

M
Q′ ,v

∈HomH
M

−
Q′

,θ∗(H, eHQ′ (V))

sending Tw̃Q′ to v and vanishing on Td̃′ for d′ ∈ W
WM

Q′ \ {wQ′} by (4.22). By
(4.19), i(Q,Q′) is the natural embedding of HomH

M
−
Q′ ,θ∗

(H, eHQ′ (V)) in

HomH
M

−
Q

,θ∗
(H, eHQ

(V)) therefore i(Q,Q′)(f
w̃

M
Q′ ,v

) is the unique homomorphism

HomH
M

−
Q

,θ∗
(H, eHQ

(V)) sending Tw̃Q′ to v and vanishing on Td̃′ for d′ ∈ W
WM

Q′ \

{wQ′}. As W
WMQ = WWQ′W

WMQ

MQ′ , this homomorphism vanishes on Tw̃ for w not
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in wMQ′W
WMQ

MQ′ . By [Abe16, Lemma 2.22], the inverse of μQ is the HR-isomorphism

(4.25) HomH
M

−
Q
,θ∗(H, eHQ

(V))
μ−1
Q−−→ IndHHw.MQ

(eHw.Q
(w̃M .V))

f 
→
∑

d∈WWM

f(Td̃)⊗ T ∗
w̃M d̃−1 ,

where WWM is the set of d ∈ W with minimal length in the coset dWM . We deduce
the explicit formula

(μ−1
Q ◦ i(Q,Q′) ◦ μQ′)(v ⊗ 1H) =

∑
w∈W

WMQ

i(Q,Q′)(fQ′

w̃
M

Q′ ,v
)(Tw̃)⊗ T ∗

w̃MQ w̃−1 .

Some terms are zero: the terms for w ∈ W
WMQ not in wMQ′W

WMQ

MQ′ . We analyze

the other terms for w in W
WMQ ∩wMQ′W

WMQ

MQ′ ; this set is wMQ′W
WMQ

MQ′ . Let w =

wMQ′d, d ∈ W
WMQ

MQ′ , and w̃ = w̃MQ′ d̃ with d̃ ∈ 1WG′ lifting d. By the braid relations

Tw̃ = T
w̃

M
Q′ Td̃. We have Td̃ = θ∗(T

MQ′

d̃
) by the braid relations because d ∈ WMQ′ ,

SMQ′ ⊂ Saff and θ∗(c
MQ′
s̃ ) = cs̃ for s ∈ SMQ′ . As WMQ′ ⊂ WM−

Q′
∩ WM+

Q′
, we

deduce:

i(Q,Q′)(fQ′

w̃
M

Q′ ,v
)(Tw̃) = i(Q,Q′)(fQ′

w̃
M

Q′ ,v
)(T

w̃
M

Q′ Td̃)

= i(Q,Q′)(fQ′

w̃
M

Q′ ,v
)(T

w̃
M

Q′ )T
MQ′

d̃

= vT
MQ′

d̃
= qdv.

Corollary 3.9 gives the last equality. �

The formula for (μ−1
Q ◦ i(Q,Q′) ◦ μQ′)(v ⊗ 1H) given in Lemma 4.31 is different

from the formula (4.24) for ι(w.Q,w.Q′)(v⊗1H). It needs some work to prove that
they are equal.

A first reassuring remark is that WMw.QWMw.Q′ = {wd−1w | d ∈ W
WMQ

MQ′ }, so
the two summation sets have the same number of elements. But better,

WMw.QWMw.Q′ = {wQ(wQ′
d)−1 | d ∈ W

WMQ

MQ′ }

because wQ′W
WMQ

MQ′ wQ = W
WMQ

MQ′ . To prove the latter equality, we apply the crite-

rion: w ∈ WMQ′ lies in WMQ′
WMQ if and only if w(α) > 0 for all α ∈ ΔQ noticing

that d ∈ W
WMQ

MQ′ implies wQ(α) ∈ −ΔQ, dwQ(α) ∈ −ΦMQ′ , wQ′dwQ(α) > 0.

Let xd = wQ(wQ′
d)−1. We have w̃MQ(w̃MQ′ d̃)−1 = x̃d because the lifts w̃ of

the elements w ∈ W satisfy the braid relations and �(xd) = �(wQd
−1wQ′) =

�(wQ′)−�(wQd
−1) = �(wQ′)−�(wQ)−�(d−1) = �(wQ′)−�(wQ)−�(d) = −�(wQ′

)+
�(wQ) − �(d). We have qd = qww.Qxdww.Q′ because wd−1w = ww.Qxdww.Q′ , and
qd = qd−1 = qwd−1w. So∑

d∈W
WMQ
M

Q′

qdT
∗
w̃Q(w̃Q′ d̃)−1 =

∑
xd∈

WMw.QWM
w.Q′

qww.Qxdww.Q′T
∗
x̃d
.
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In the RHS, only w̃M .V ,w.Q,w.Q′ appear. The same holds true in the formula
(4.24). The map (P,V , Q,Q′) 
→ (w.P, w̃M .V ,w.Q,w.Q′) is a bijection of the set
of triples (P,V , Q,Q′) where P = MN,Q,Q′ are standard parabolic subgroups
of G, V a right HR-module, Q ⊂ Q′ ⊂ P (V) by Lemma 4.21. So we can re-
place (w.P, w̃M .V ,w.Q,w.Q′) by (P,V , Q,Q′). Our task is reduced to prove in
eHQ

(V)⊗H
M

+
Q
,θ HR:

(4.26) v ⊗
∑

d∈
WMQ WMQ′

Td̃ = v ⊗
∑

d∈
WMQ WMQ′

qwQdwQ′T
∗
d̃
.

A second simplification is possible: we can replaceQ ⊂ Q′ by the standard parabolic
subgroups Q2 ⊂ Q′

2 of G with ΔQ2
= ΔQ \ΔP and ΔQ′

2
= ΔQ′ \ΔP , because ΔP

and ΔP (V) \ΔP are orthogonal. Indeed, WMQ′ = WM ×WMQ′
2
and WMQ

= WM ×
WMQ2

are direct products, the longest elements wQ′ = wMwQ′
2
,wQ = wMwQ2

are direct products and

WMQWMQ′ =
WMQ2 WMQ′

2
, wQdwQ′ = wQ2

dwQ′
2
.

Once this is done, we use the properties of eHQ
(V): vh ⊗ 1H = v ⊗ θQ(h) for

h ∈ HM+
Q2

, and TQ,∗
w acts trivially on eHQ

(V) for w ∈ 1WM ′
Q2

∪ (Λ(1) ∩ 1WM ′
Q′

2

).

Set 1WM ′
Q′

2

= {w ∈ 1WM ′
Q′

2

| w is a lift of some element in WMQ′
2
} and 1WM ′

Q2

similarly. Then Zk ∩ 1WM ′
Q′

2

⊂ (Λ(1) ∩ 1WM ′
Q′

2

) ∩ 1WM+
Q2

and 1WM ′
Q2

⊂ 1WM ′
Q2

∩
1WM+

Q2

. This implies that (4.26) where Q ⊂ Q′ has been replaced by Q2 ⊂ Q′
2

follows from a congruence

(4.27)
∑

d∈
WMQ2 WM

Q′
2

Td̃ ≡
∑

d∈
WMQ2 WM

Q′
2

qwQ2
dwQ′

2
T ∗
d̃

in the finite subring H(1WMQ′
2
) of H generated by {Tw | w ∈ 1WM ′

Q′
2

} modulo the

right ideal J2 with generators {θQ(TQ,∗
w )− 1 | w ∈ (Zk ∩ 1WM ′

Q′
2

) ∪ 1WM ′
Q2

}.
Another simplification concerns T ∗

d̃
modulo J2 for d ∈ WMQ′

2
. We recall that

for any reduced decomposition d = s1 . . . sn with si ∈ S ∩ WMQ′
2
we have T ∗

d̃
=

(Ts̃1 − cs̃1) . . . (Ts̃n − cs̃n) where the s̃i are admissible. For s̃ admissible, by (3.2)

cs̃ ≡ qs − 1.

Therefore

T ∗
d ≡ (Ts̃1 − qs1 + 1) · · · (Ts̃n − qsn + 1).

Let J ′ ⊂ J2 be the ideal of H(1WM ′
Q′

2

) generated by {Tt − 1 | t ∈ Zk ∩ 1WM ′
Q′

2

}.
Then the ring H(1WM ′

Q′
2

)/J ′ and its right ideal J2/J ′ are the specialization of

the generic finite ring H(WMQ′
2
)g over Z[(qs)s∈SM

Q′
2

] where the qs for s ∈ SMQ′
2
=

S ∩WMQ′
2
are indeterminates, and of its right ideal J g

2 with the same generators.

The similar congruence modulo J g
2 in H(WMQ′

2
)g (the generic congruence) implies

the congruence (4.27) by specialization.
We will prove the generic congruence in a more general setting where H is the

generic Hecke ring of a finite Coxeter system(W, S) and parameters (qs)s∈S such
that qs = qs′ when s, s′ are conjugate in W. The Hecke ring H is a Z[(qs)s∈S ]-free
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module of basis (Tw)w∈W satisfying the braid relations and the quadratic relations
T 2
s = qs + (qs − 1)Ts for s ∈ S. The other basis (T ∗

w)w∈W satisfies the braid
relations and the quadratic relations (T ∗

s )
2 = qs − (qs − 1)T ∗

s for s ∈ S, and is
related to the first basis by T ∗

s = Ts − (qs − 1) for s ∈ S, and more generally
TwT

∗
w−1 = T ∗

w−1Tw = qw for w ∈ W [Vig16, Proposition 4.13].
Let J ⊂ S and J is the right ideal of H with generators T ∗

w − 1 for all w in the
group WJ generated by J .

Lemma 4.32. A basis of J is (T ∗
w1

− 1)T ∗
w2

for w1 ∈ WJ \ {1}, w2 ∈ WJW, and

adding T ∗
w2

for w2 ∈ WJW gives a basis of H. In particular, J is a direct factor of
H.

Proof. The elements (T ∗
w1

− 1)T ∗
w for w1 ∈ WJ , w ∈ W generate J . We write

w = u1w2 with unique elements u1 ∈ WJ , w2 ∈ WJW, and T ∗
w = T ∗

u1
T ∗
w2

. Therefore,
(T ∗

w1
−1)T ∗

u1
T ∗
w2

. By an induction on the length of u1, one proves that (T
∗
w1

−1)T ∗
u1

is a linear combination of (T ∗
v1 − 1) for v1 ∈ WJ as in the proof of Proposition 3.4.

It is clear that the elements (T ∗
w1

− 1)T ∗
w2

and T ∗
w2

for w1 ∈ WJ \ {1}, w2 ∈ WJW

form a basis of H. �

Let wJ denote the longest element of WJ and w = wS .

Lemma 4.33. In the generic Hecke ring H, the congruence modulo J∑
d∈WJ W

Td ≡
∑

d∈WJ W

qwJdwT ∗
d

holds true.

Proof.

Step 1. We show

WJW = wJ
WJWw, qwJ

qwJdwT ∗
d = TwJ

TwJdwT ∗
w.

The equality between the groups follows from the characterization of WJW in W:
an element d ∈ W has minimal length in WJd if and only if �(ud) = �(u) + �(d) for
all u ∈ WJ . An easy computation shows that �(uwJdw) = �(u) + �(wJdw) for all
u ∈ WJ , d ∈ WJW (both sides are equal to �(u)+ �(w)− �(wJ)− �(d)). The second
equality follows from qwJ

qwJdw = qdw because (wJ)
2 = 1 and �(wJ)+ �(wJdw) =

�(dw) (both sides are �(w)− �(d)) and from qdwT ∗
d = TdwT

∗
wd−1T ∗

d = TdwT ∗
w. We

also have Tdw = TwJ
TwJdw.

Step 2. The multiplication by qwJ
on the quotient H/J is injective (Lemma 4.32)

and qwJ
≡ TwJ

. By Step 1, qwJdwT ∗
d ≡ TwJdwT ∗

w and∑
d∈WJ W

qwJdwT ∗
d ≡

∑
d∈WJ W

TdT
∗
w.

The congruence

(4.28)
∑

d∈WJ W

Td ≡
∑

d∈WJ W

TdT
∗
s

for all s ∈ S implies the lemma because T ∗
w = T ∗

s1 . . . T
∗
sn for any reduced decom-

position w = s1 . . . sn with si ∈ S.
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Step 3. When J = ∅, the congruence (4.28) is an equality

(4.29)
∑
w∈W

Tw =
∑
w∈W

TwT
∗
s .

It holds true because
∑

w∈W Tw =
∑

w<ws Tw(Ts+1) and (Ts+1)T ∗
s = TsT

∗
s +T ∗

s =
qs + T ∗

s = Ts + 1.

Step 4. Conversely the congruence (4.28) follows from (4.29) because∑
w∈W

Tw = (
∑

u∈WJ

Tu)
∑

d∈WJ W

Td ≡ (
∑

u∈WJ

qu)
∑

d∈WJ W

Td

(recall qu = T ∗
u−1Tu ≡ Tu) and we can simplify by

∑
u∈WJ

qu in H/J . �

This ends the proof of Proposition 4.23.

5. Universal representation IH(P,V , Q)⊗H R[U\G]

The invariant functor (−)U by the pro-p-Iwahori subgroup U of G has a left
adjoint

−
⊗
HR

R[U\G] : ModR(H) → Mod∞R (G).

The smooth R-representation V ⊗HR
R[U\G] of G constructed from the right HR-

module V is called universal. We write

R[U\G] = X.

Question 5.1. Does V �= 0 imply V ⊗HR
X �= 0 or does v ⊗ 1U = 0 for v ∈ V

imply v = 0? We have no counterexample. If R is a field and the HR-module V
is simple, the two questions are equivalent: V ⊗HR

X �= 0 if and only if the map
v 
→ v ⊗ 1U is injective. When R is an algebraically closed field of characteristic p,
V ⊗HR

X �= 0 for all simple HR-modules V if this is true for V simple supersingular
(this is a consequence of Corollary 5.13).

The functor −
⊗

HR
X satisfies a few good properties: it has a right adjoint and

is compatible with the parabolic induction and the left adjoint (of the parabolic
induction). Let P = MN be a standard parabolic subgroup and XM = R[UM\M ].
We have functor isomorphisms

(−
⊗
HR

X) ◦ IndHHM
→ IndGP ◦(−

⊗
HM,R

XM ),(5.1)

(−)N ◦ (−
⊗
HR

X) → (−
⊗
HM,R

XM ) ◦ LH
HM

.(5.2)

The first one is [OV17, formula 4.15], the second one is obtained by left adjunction

from the isomorphism IndHHM
◦(−)UM → (−)U ◦ IndGP [OV17, formula (4.14)]. If V

is a right HR-supersingular module and p is nilpotent in V , then LH
HM

(V) = 0 if
M �= G (Proposition 4.27). Applying (5.2) we deduce the following.

Proposition 5.2. If p is nilpotent in V and V supersingular, then V ⊗HR
X is left

cuspidal.
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Remark 5.3. For a non-zero smooth R-representation τ of M , Δτ is orthogonal to
ΔP if τ is left cuspidal. Indeed, we recall from [AHHV17, II.7 Corollary 2] that
Δτ is not orthogonal to ΔP if and only if there exists a proper standard parabolic
subgroup X of M such that σ is trivial on the unipotent radical of X; moreover τ
is a subrepresentation of IndMX (τ |X), so the image of τ by the left adjoint of IndMX
is not 0.

From now on, V is a non-zero right HM,R-module and

σ = V ⊗HM,R
XM .

In general, when σ �= 0, let P⊥(σ) be the standard parabolic subgroup of G with
ΔP⊥(σ) = ΔP ∪Δ⊥,σ where Δ⊥,σ is the set of simple roots α ∈ Δσ orthogonal to
ΔP .

Proposition 5.4.

(1) P (V) ⊂ P⊥(σ) if σ �= 0.
(2) P (V) = P⊥(σ) if the map v 
→ v ⊗ 1UM

is injective.
(3) P (V) = P (σ) if the map v 
→ v ⊗ 1UM

is injective, p nilpotent in V and V
supersingular.

(4) P (V) = P (σ) if σ �= 0, R is a field of characteristic p and V simple super-
singular.

Proof.
(1) P (V) ⊂ P⊥(σ) means that Z∩M ′

V acts trivially on V⊗1UM
, whereMV is the

standard Levi subgroup such that ΔMV = ΔV . Let z ∈ Z ∩M ′
V and v ∈ V . As ΔM

and ΔV are orthogonal, we have TM,∗(z) = TM (z) and UMzUM = UMz. We have
v⊗1UM

= vTM (z)⊗1UM
= v⊗TM (z)1UM

= v⊗1UM z = v⊗z−11UM
= z−1(v⊗1UM

).
(2) If v ⊗ 1UM

= 0 for v ∈ V implies v = 0, then σ �= 0 because V �= 0. By (1)
P (V) ⊂ P⊥(σ). As in the proof of (1), for z ∈ Z ∩ M ′

⊥,σ we have vTM,∗(z) ⊗
1UM

= vTM (z) ⊗ 1UM
= v ⊗ 1UM

and our hypothesis implies vTM,∗(z) = v hence
P (V) ⊃ P⊥(σ).

(3) Proposition 5.2, Remark 5.3, and (2).
(4) Question 5.1 and (3). �

Let Q be a parabolic subgroup of G with P ⊂ Q ⊂ P (V). In this chapter

we will compute IH(P,V , Q) ⊗H R[U\G] where IH(P,V , Q) = IndHHM(V)
(e(V) ⊗

(St
M(V)
Q∩M(V))

UM(V)) (Theorem 5.11). The smooth R-representation IG(P, σ,Q) of G

is well defined: it is 0 if σ = 0 and IndGP (σ)(e(σ)⊗St
P (σ)
Q ) if σ �= 0 because (P, σ,Q)

is an R[G]-triple by Proposition 5.4. We will show that the universal representation
IH(P,V , Q) ⊗H R[U\G] is isomorphic to IG(P, σ,Q), if P (V) = P (σ) and p = 0,
or if σ = 0 (Corollary 5.12). In particular, IH(P,V , Q) ⊗H R[U\G] 	 IG(P, σ,Q)
when R is an algebraically closed field of characteristic p and V is supersingular.

5.1. Q = G. We consider first the case Q = G. We are in the simple situation where
V is extensible to H and P (V) = P (σ) = G, IH(P,V , G) = e(V) and IG(P, σ,G) =
e(σ). We recall that Δ\ΔP is orthogonal to ΔP and that M2 denotes the standard
Levi subgroup of G with ΔM2

= Δ \ΔP .
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The HR-morphism e(V) → e(σ)U = σUM sending v to v ⊗ 1UM
for v ∈ V , gives

by adjunction an R[G]-homomorphism

v ⊗ 1U 
→ v ⊗ 1UM
: e(V)⊗HR

X
ΦG

−−→ e(σ).

If ΦG is an isomorphism, then e(V)⊗HR
X is the extension to G of (e(V)⊗HR

X)|M ,
meaning that M ′

2 acts trivially on e(V)⊗HR
X. The converse is true.

Lemma 5.5. If M ′
2 acts trivially on e(V)⊗HR

X, then ΦG is an isomorphism.

Proof. Suppose that M ′
2 acts trivially on e(V) ⊗HR

X. Then e(V) ⊗HR
X is the

extension to G of (e(V) ⊗HR
X)|M , and by Theorem 3.13, (e(V) ⊗HR

X)U is the
extension of (e(V)⊗HR

X)UM . Therefore, by (3.12),

(v ⊗ 1U )T
∗
w = (v ⊗ 1U )T

M,∗
w for all v ∈ V , w ∈ WM (1).

As V is extensible to H, the natural map v 
→ v ⊗ 1U : V Ψ−→ (e(V) ⊗HR
X)UM is

HM -equivariant, i.e.,

vTM,∗
w ⊗ 1U = (v ⊗ 1U )T

M,∗
w for all v ∈ V , w ∈ WM (1)

because (3.12) vTM,∗
w ⊗ 1U = vT ∗

w ⊗ 1U = v ⊗ T ∗
w = (v ⊗ 1U )T

∗
w in e(V)⊗HR

X.
We recall that −

⊗
HM,R

XM is the left adjoint of (−)UM . The adjoint R[M ]-

homomorphism σ = V ⊗HM,R
XM → e(V) ⊗HR

X sends v ⊗ 1UM
to v ⊗ 1U for

all v ∈ V . The R[M ]-module generated by the v ⊗ 1U for all v ∈ V is equal to
e(V)⊗HR

X because M ′
2 acts trivially. Hence we obtained an inverse of ΦG. �

Our next move is to determine if M ′
2 acts trivially on e(V)⊗HR

X. It is equivalent
to see if M ′

2 acts trivially on e(V) ⊗ 1U as this set generates the representation
e(V)⊗HR

X of G and M ′
2 is a normal subgroup of G as M ′

2 and M commute and
G = ZM ′M ′

2. Obviously, U ∩M ′
2 acts trivially on e(V)⊗ 1U . The group of double

classes (U ∩M ′
2)\M ′

2/(U ∩M ′
2) is generated by the lifts ŝ ∈ N ∩M ′

2 of the simple
affine roots s of WM ′

2
. Therefore, M ′

2 acts trivially on e(V)⊗HR
X if and only if for

any simple affine root s ∈ Saff
M ′

2
of WM ′

2
, any ŝ ∈ N ∩M ′

2 lifting s acts trivially on

e(V)⊗ 1U .

Lemma 5.6. Let v ∈ V , s ∈ Saff
M ′

2
and ŝ ∈ N ∩M ′

2 lifting s. We have

(qs + 1)(v ⊗ 1U − ŝ(v ⊗ 1U )) = 0.

Proof. We compute:

Ts(ŝ1U ) = ŝ(Ts1U ) = 1U ŝU(ŝ)−1 =
∑
u

ŝu(ŝ)−11U =
∑
uop

uop1U ,

Ts(ŝ
21U ) = ŝ2(Ts1U ) = 1U ŝU(ŝ)−2 = 1U(ŝ)−1U =

∑
u

uŝ1U

for u in the group U/(ŝ−1U ŝ∩U) and uop in the group ŝU(ŝ)−1/(ŝU(ŝ)−1 ∩U); the
reason is that ŝ2 normalizes U , U ŝU ŝ−1 is the disjoint union of the sets U ŝu−1(ŝ)−1

and U(ŝ)−1U is the disjoint union of the sets U(ŝ)−1u−1. We introduce now a
natural bijection

(5.3) u → uop : U/(ŝ−1U ŝ ∩ U) → ŝU(ŝ)−1/(ŝU(ŝ)−1 ∩ U)
which is not a group homomorphism. We recall the finite reductive group Gk,s

quotient of the parahoric subgroup Ks of G fixing the face fixed by s of the alcove
C. The Iwahori groups Z0U and Z0ŝU(ŝ)−1 are contained in Ks and their images
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in Gs,k are opposite Borel subgroups ZkUs,k and ZkU
op
s,k. Via the surjective maps

u 
→ u : U → Us,k and uop 
→ uop : ŝU(ŝ)−1 → Uop
s,k we identify the groups

U/(ŝ−1U ŝ∩U) 	 Us,k and similarly ŝU(ŝ)−1/(ŝU(ŝ)−1∩U) 	 Uop
s,k. Let G

′
k,s be the

group generated by Us,k and Uop
s,k, and let B′

s,k = G′
k,s ∩ZkUs,k = (G′

k,s ∩Zk)Us,k.

We suppose (as we can) that ŝ ∈ Ks and that its image ŝk in Gs,k lies in G′
k,s. We

have ŝkUs,k(ŝk)
−1 = Uop

s,k and the Bruhat decomposition G′
k,s = B′

k,s � Uk,sŝkB
′
k,s

implies the existence of a canonical bijection uop → u : (Uop
k,s −{1}) → (Uk,s −{1})

respecting the cosets uopB′
k,s = uŝkB

′
k,s. Via the preceding identifications we get

the wanted bijection (5.3).
For v ∈ e(V) and z ∈ Z0 ∩M ′

2 we have vTz = v, z1U = Tz1U and v ⊗ Tz1U =
vTz ⊗ 1U therefore Z0 ∩ M ′

2 acts trivially on V ⊗ 1U . The action of the group
(Z0 ∩ M ′

2)U on V ⊗ 1U is also trivial. As the image of Z0 ∩ M ′
2 in Gs,k contains

Zk ∩G′
s,k,

uŝ(v ⊗ 1U ) = uop(v ⊗ 1U )

when u and uop are not units and correspond via the bijection (5.3). So we have

v ⊗ Ts(ŝ1U )− (v ⊗ 1U ) = v ⊗ Ts(ŝ
21U )− v ⊗ ŝ1U .(5.4)

We can move Ts on the other side of ⊗ and as vTs = qsv (Corollary 3.9), we can
replace Ts by qs. We have v⊗ ŝ21U = v⊗Ts−21U because ŝ2 ∈ Z0 ∩M ′

2 normalizes
U ; as we can move Ts−2 on the other side of ⊗ and as vTs−2 = v we can forget ŝ2.
So (5.4) is equivalent to (qs + 1)(v ⊗ 1U − ŝ(v ⊗ 1U )) = 0. �

Combining the two lemmas we obtain the following.

Proposition 5.7. When V is extensible to H and has no qs + 1-torsion for any
s ∈ Saff

M ′
2
, then M ′

2 acts trivially on e(V)⊗HR
X and ΦG is an R[G]-isomorphism.

Proposition 5.7 for the trivial character 1H, says that 1H ⊗HR
X is the trivial

representation 1G of G when qs + 1 has no torsion in R for all s ∈ Saff . This
is proved in [OV17, Lemma 2.28] by a different method. The following counter-
example shows that this is not true for all R.

Example 5.8. Let G = GL(2, F ) and let R be an algebraically closed field where
qs0 + 1 = qs1 + 1 = 0 and Saff = {s0, s1}. (Note that qs0 = qs1 is the order of
the residue field of F .) Then the dimension of 1H ⊗HR

X is infinite, in particular
1H ⊗HR

X �= 1G.

Indeed, the Steinberg representation StG = (IndGB 1Z)/1G of G is an indecom-
posable representation of length 2 containing an irreducible infinite dimensional
representation π with πU = 0 of quotient the character (−1)val ◦ det. This follows
from the proof of Theorem 3 and from Proposition 24 in [Vig89]. The kernel of the
quotient map StG ⊗ (−1)val ◦ det → 1G is infinite dimensional without a non-zero
U-invariant vector. As the characteristic of R is not p, the functor of U-invariants
is exact hence (StG ⊗ (−1)val ◦ det)U = 1H. As −⊗HR

R[U\G] is the left adjoint of
(−)U there is a non-zero homomorphism

1H ⊗HR
X → StG ⊗ (−1)val ◦ det

with image generated by its U-invariants. The homomorphism is therefore surjec-
tive.
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5.2. V extensible to H. Let P = MN be a standard parabolic subgroup of G
with ΔP and Δ \ ΔP orthogonal. We still suppose that the HM,R-module V is

extensible to H, but now P ⊂ Q ⊂ G. So we have IH(P,V , Q) = e(V) ⊗R (StGQ)
U

and IG(P, σ,Q) = e(σ) ⊗R StGQ where σ = V ⊗HM,R
XM . We compare the images

by −
⊗

HR
X of the HR-modules e(V)⊗R (IndGQ 1)U and e(V)⊗R (StGQ)

U with the

smooth R-representations e(σ)⊗ IndGQ 1 and e(σ)⊗ StGQ of G.

As −
⊗

HR
X is left adjoint of (−)U , theHR-homomorphism v⊗f 
→ v⊗1UM

⊗f :

e(V)⊗R(Ind
G
Q 1)U → (e(σ)⊗RInd

G
Q 1)U gives by adjunction an R[G]-homomorphism

v ⊗ f ⊗ 1U 
→ v ⊗ 1UM
⊗ f : (e(V)⊗R (IndGQ 1)U )⊗HR

X
ΦG

Q−−→ e(σ)⊗R IndGQ 1.

When Q = G we have ΦG
G = ΦG. By Remark 4.10, ΦG

Q is surjective. Proposition

5.7 applies with MQ instead of G and gives the R[MQ]-homomorphism

v ⊗ 1UMQ

→ v ⊗ 1UM

: eHQ
(V)⊗HQ,R

XMQ

ΦQ

−−→ eQ(σ).

Proposition 5.9. The R[G]-homomorphism ΦG
Q is an isomorphism if ΦQ is an

isomorphism, in particular if V has no qs + 1-torsion for any s ∈ Saff
M ′

2∩MQ
.

Proof. The proposition follows from another construction of ΦG
Q that we now de-

scribe. Proposition 4.5 gives the HR-module isomorphism

v⊗ fQU 
→ v⊗ 1H : (e(V)⊗R (IndGQ 1)U ) → IndHHQ
(eHQ

(V)) = eHQ
(V)⊗H

M
+
Q,R

,θ H.

We have the R[G]-isomorphism [OV17, Corollary 4.7]

v⊗ 1H ⊗ 1U 
→ fQU,v⊗1UMQ
: IndHHQ

(eHQ
(V))⊗HR

X → IndGQ(eHQ
(V)⊗HQ,R

XMQ
)

and the R[G]-isomorphism

fQU,v⊗1UM

→ v ⊗ 1UM

⊗ fQU : IndGQ(eQ(σ)) → e(σ)⊗ IndGQ 1.

From ΦQ and these three homomorphisms, there exists a unique R[G]-homomor-
phism

(e(V)⊗R (IndGQ 1)U )⊗HR
X → e(σ)⊗R IndGQ 1

sending v⊗fQU ⊗1U to v⊗1UM
⊗fQU . We deduce: this homomorphism is equal to

ΦG
Q, V ⊗ 1QU ⊗ 1U generates (e(V)⊗R (IndGQ 1)U )⊗HR

X, if ΦQ is an isomorphism,

then ΦG
Q is an isomorphism. By Proposition 5.7, if V has no qs + 1-torsion for any

s ∈ Saff
M ′

2∩MQ
, then ΦQ and ΦG

Q are isomorphisms. �

We recall that the HM,R-module V is extensible to H.

Proposition 5.10. The R[G]-homomorphism ΦG
Q induces an R[G]-homomorphism

(e(V)⊗R (StGQ)
U )⊗HR

X → e(σ)⊗R StGQ,

It is an isomorphism if ΦG
Q′ is an R[G]-isomorphism for all parabolic subgroups Q′

of G containing Q, in particular if V has no qs + 1-torsion for any s ∈ Saff
M ′

2
.
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Proof. The proof is straightforward, with the arguments already developed for
Proposition 4.5 and Theorem 4.9. The representations e(σ)⊗R StGQ and (e(V)⊗R

(StGQ)
U )⊗HR

X of G are the cokernels of the natural R[G]-homomorphisms

⊕Q�Q′e(σ)⊗R IndGQ′ 1
id⊗α−−−→ e(σ)⊗R IndGQ 1,

⊕Q�Q′(e(V)⊗R (IndGQ′ 1)U )⊗HR
X

id⊗αU⊗id−−−−−−→ (e(V)⊗R (IndGQ 1)U )⊗HR
X.

TheseR[G]-homomorphisms make a commutative diagram with theR[G]-homomor-
phisms

⊕
Q�Q′ ΦG

Q′ and ΦG
Q going from the lower line to the upper line. Indeed,

let v ⊗ fQ′U ⊗ 1U ∈ (e(V) ⊗R (IndGQ′ 1)U ) ⊗HR
X. On the one hand, it goes

to v ⊗ fQUθQ′(eQ
′

Q ) ⊗ 1U ∈ (e(V) ⊗R (IndGQ 1)U ) ⊗HR
X by the horizontal map,

and then to v ⊗ 1UM
⊗ fQUθQ′(eQ

′

Q ) by the vertical map. On the other hand, it

goes to v ⊗ 1UM
⊗ fQ′U by the vertical map, and then to v ⊗ 1UM

⊗ fQUθQ′(eQ
′

Q )

by the horizontal map. One deduces that ΦG
Q induces an R[G]-homomorphism

(e(V) ⊗R (StGQ)
U ) ⊗HR

X → e(σ) ⊗R StGQ, which is an isomorphism if ΦG
Q′ is an

R[G]-isomorphism for all Q ⊂ Q′. �

5.3. General. We consider now the general case: let P = MN ⊂ Q be two
standard parabolic subgroups of G and let V be a non-zero right HM,R-module

with Q ⊂ P (V). We recall IH(P,V , Q) = IndHHM(V)
(e(V) ⊗R (St

P (V)
Q )UM(V)) and

σ = V ⊗HM,R
XM (Proposition 5.4). There is a natural R[G]-homomorphism

IH(P,V , Q)⊗HR
X

ΦG
I−−→ IndGP (V)(eM(V)(σ)⊗R St

P (V)
Q )

obtained by composition of the R[G]-isomorphism [OV17, Corollary 4.7] (proof of
Proposition 5.9):

IH(P,V , Q)⊗HR
X → IndGP (V)((e(V)⊗R (St

M(V)
Q∩M(V))

UM(V))⊗HM(V),R
XM(V)),

with the R[G]-homomorphism

IndGP (V)((e(V)⊗R (St
P (V)
Q )UM(V))⊗HM(V),R

XM(V)) → IndGP (V)(eM(V)(σ)⊗R St
P (V)
Q ),

image by the parabolic induction IndGP (V) of the homomorphism

(e(V)⊗R (St
P (V)
Q )UM(V))⊗HM(V),R

XM(V) → eM(V)(σ)⊗R St
P (V)
Q

induced by the R[M(V)]-homomorphism Φ
P (V)
Q = Φ

M(V)
Q∩M(V) of Proposition 5.10

applied to M(V) instead of G.

This homomorphism ΦG
I is an isomorphism if Φ

P (V)
Q is an isomorphism, in par-

ticular if V has no qs + 1-torsion for any s ∈ Saff
M ′

2
where ΔM2

= ΔM(V) \ ΔM

(Proposition 5.10). We get the main theorem of this section.

Theorem 5.11. Let (P = MN,V , Q) be an HR-triple and σ = V⊗HM,R
R[UM\M ].

Then, (P, σ,Q) is an R[G]-triple. The R[G]-homomorphism

IH(P,V , Q)⊗HR
R[U\G]

ΦG
I−−→ IndGP (V)(eM(V)(σ)⊗R St

P (V)
Q )

is an isomorphism if Φ
P (V)
Q is an isomorphism. In particular ΦG

I is an isomorphism

if V has no qs + 1-torsion for any s ∈ Saff
M ′

2
.
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Recalling IG(P, σ,Q) = IndGP (σ)(e(σ) ⊗R St
P (σ)
Q ) when σ �= 0, we deduce the

following.

Corollary 5.12. We have the following:
IH(P,V , Q) ⊗HR

R[U\G] 	 IG(P, σ,Q), if σ �= 0, P (V) = P (σ) and V has no
qs + 1-torsion for any s ∈ Saff

M ′
2
.

IH(P,V , Q)⊗HR
R[U\G] = IG(P, σ,Q) = 0, if σ = 0.

Recalling P (V) = P (σ) if σ �= 0, R is a field of characteristic p and V simple
supersingular (Proposition 5.4 (4)), we deduce the following.

Corollary 5.13. IH(P,V , Q)⊗HR
R[U\G] 	 IG(P, σ,Q) if R is a field of charac-

teristic p and V simple supersingular.

6. Vanishing of the smooth dual

Let V be an R[G]-module. The dual HomR(V,R) of V is an R[G]-module for
the contragredient action: gL(gv) = L(v) if g ∈ G, L ∈ HomR(V,R) is a linear
form and v ∈ V . When V ∈ Mod∞R (G) is a smooth R-representation of G, the
dual of V is not necessarily smooth. A linear form L is smooth if there exists an
open subgroup H ⊂ G such that L(hv) = L(v) for all h ∈ H, v ∈ V ; the space
HomR(V,R)∞of smooth linear forms is a smooth R-representation of G, called the
smooth dual (or smooth contragredient) of V . The smooth dual of V is contained
in the dual of V .

Example 6.1. When R is a field and the dimension of V over R is finite, the dual
of V is equal to the smooth dual of V because the kernel of the action of G on V
is an open normal subgroup H ⊂ G; the action of G on the dual HomR(V,R) is
trivial on H.

We assume in this section that R is a field of characteristic p. Let P = MN be
a parabolic subgroup of G and V ∈ Mod∞R (M). Generalizing the proof given in
[Vig07, 8.1] when G = GL(2, F ) and the dimension of V is 1, we show the following.

Proposition 6.2. If P �= G, the smooth dual of IndGP (V ) is 0.

Proof. Let L be a smooth linear form on IndGP (V ) and let K be an open pro-p-
subgroup of G which fixes L. Let J be an arbitrary open subgroup of K, g ∈ G
and f ∈ (IndGP (V ))J with support PgJ . We want to show that L(f) = 0. Let J ′ be

any open normal subgroup of J and let ϕ denote the function in (IndGP (V ))J
′
with

support PgJ ′ and value ϕ(g) = f(g) at g. For j ∈ J we have L(jϕ) = L(ϕ), and
the support of jϕ(x) = ϕ(xj) is PgJ ′j−1. The function f is the sum of translates
jϕ, where j ranges through the left cosets of the image X of g−1Pg ∩ J in J/J ′,
so that L(f) = rL(ϕ) where r is the order of X in J/J ′. We can certainly find J ′

such that r �= 1, and then r is a positive power of p. As the characteristic of R is p
we have L(f) = 0. �

The module R[U\G] is contained in the module RU\G of functions f : U\G → R.
The actions of H and of G on R[U\G] extend to RU\G by the same formulas. The
pairing

(f, ϕ) 
→ 〈f, ϕ〉 =
∑

g∈U\G
f(g)ϕ(g) : RU\G ×R[U\G] → R
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identifies RU\G with the dual of R[U\G]. Let h ∈ H and ȟ ∈ H, ȟ(g) = h(g−1) for
g ∈ G. We have

〈f, hϕ〉 = 〈ȟf, ϕ〉.

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is
not compact modulo the center and V is a simple supersingular right HR-module,
the smooth dual of V ⊗HR

R[U\G] is 0.

Proof. Let Haff
R be the subalgebra of HR of basis (Tw)w∈W ′(1) where W ′(1) is the

inverse image of W ′ in W (1). The dual of V ⊗HR
R[U\G] is contained in the

dual of V ⊗Haff
R

R[U\G]; the Haff
R -module V|Haff

R
is a finite sum of supersingular

characters [Vig15a]. Let χ : Haff
R → R be a supersingular character. The dual

of χ ⊗Haff
R

R[U\G] is contained in the dual of R[U\G] isomorphic to RU\G. It is

the space of f ∈ RU\G with ȟf = χ(h)f for all h ∈ Haff
R . The smooth dual of

χ⊗Haff
R

R[U\G] is 0 if the dual of χ⊗Haff
R

R[U\G] has no non-zero element fixed by

U . Let us take f ∈ RU\G/U with ȟf = χ(h)f for all h ∈ Haff
R . We shall prove that

f = 0. We have Ťw = Tw−1 for w ∈ W (1).
Let < denote the Bruhat order of W (1) associated to Saff [Vig16]. The elements

(Tt)t∈Zk
and (Ts̃)s∈Saff where s̃ is an admissible lift of s in W aff(1), generate the

algebra Haff
R and

TtTw = Ttw, Ts̃Tw =

{
Ts̃w, s̃w > w,

cs̃Tw, s̃w < w,

with cs̃ = −|Z ′
k,s|

∑
t∈Z′

k,s
Tt because the characteristic of R is p [Vig16, Proposition

4.4]. Expressing f =
∑

w∈W (1) awTw, aw ∈ R, as an infinite sum, we have

Ttf =
∑

w∈W (1)

at−1wTw, Ts̃f =
∑

w∈W (1),s̃w<w

(a(s̃)−1w + awcs̃)Tw.

A character χ of Haff
R is associated to a character χk : Zk → R∗ and a subset J of

Saff
χk

= {s ∈ Saff | (χk)|Z′
k,s

trivial }

[Vig15a, Definition 2.7]. We have

(6.1)

⎧⎪⎨
⎪⎩
χ(Tt) = χk(t), t ∈ Zk,

χ(Ts̃) =

{
0, s ∈ Saff \ J,
−1, s ∈ J.

(χk)(cs̃) =

{
0, s ∈ Saff \ Saff

χk
,

−1, s ∈ Saff
χk

.

Therefore χk(t)f = Ťtf = Tt−1f hence χk(t)aw = atw. We have χ(Ts̃)f = Ťs̃f =
T(s̃)−1f = Ts̃T(s̃)−2f = χk((s̃)

2)Ts̃f ; as (s̃)
2 ∈ Z ′

k,s [Vig16, three lines before Propo-

sition 4.4] and J ⊂ Saff
χk

, we obtain

(6.2) Ts̃f =

{
0, s ∈ Saff \ J,
−f, s ∈ J.



158 N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

Introducing χk(t)aw = atw in the formula for Ts̃f , we get∑
w∈W (1),s̃w<w

awcs̃Tw = −|Z ′
k,s|−1

∑
w∈W (1),s̃w<w,t∈Z′

k,s

awTtw

= −|Z ′
k,s|−1

∑
w∈W (1),s̃w<w,t∈Z′

k,s

at−1wTw

= −|Z ′
k,s|−1

∑
t∈Z′

k,s

χk(t
−1)

∑
w∈W (1),s̃w<w

awTw

= χk(cs̃)
∑

w∈W (1),s̃w<w

awTw.

Ts̃f =
∑

w∈W (1),s̃w<w

(a(s̃)−1w + awχk(cs̃))Tw

=

{∑
w∈W (1),s̃w<w a(s̃)−1wTw, s ∈ Saff \ Saff

χk
,∑

w∈W (1),s̃w<w(a(s̃)−1w − aw)Tw, s ∈ Saff
χk

.

From the last equality and (6.2) for Ts̃f , we get:

(6.3) as̃w =

{
0, s ∈ J ∪ (Saff \ Saff

χk
), s̃w < w,

aw, s ∈ Saff
χk

\ J.
Assume that aw �= 0. By the first condition, we know that w > s̃w for s ∈
J∪(Saff\Saff

χk
). The character χ is supersingular if for each irreducible component X

of Saff , the intersection X∩J is not empty and different from X [Vig15a, Definition
2.7, Theorem 6.18]. This implies that the group generated by the s ∈ Saff

χk
\ J is

finite. If χ is supersingular, by the second condition we can suppose w > s̃w for
any s ∈ Saff . But there is no such element if Saff is not empty. �

Theorem 6.4. Let π be an irreducible admissible R-representation of G with a
non-zero smooth dual where R is an algebraically closed field of characteristic p.
Then π is finite dimensional.

Proof. Let (P, σ,Q) be anR[G]-triple with σ supercuspidal such that π 	 IG(P, σ,Q).

The representation IG(P, σ,Q) is a quotient of IndGQ eQ(σ) hence the smooth dual of

IndGQ eQ(σ) is not zero. From Proposition 6.2, Q = G. We have IG(P, σ,G) = e(σ).
The smooth dual of σ contains the smooth linear dual of e(σ) hence is not zero. As
σ is supercuspidal, the HM -module σUM contains a simple supersingular submod-
ule V [Vig15a, Proposition 7.10, Corollary 7.11]. The functor −

⊗
HM,R

R[UM\M ]

being the right adjoint of (−)UM , the irreducible representation σ is a quotient of
V ⊗HM,R

R[UM\M ], hence the smooth dual of V ⊗HM,R
R[UM\M ] is not zero. By

Proposition 6.3, M = Z. Hence σ is finite dimensional and the same is true for
e(σ) = IG(B, σ,G) 	 π. �

Remark 6.5. When the characteristic of F is 0, Theorem 6.4 was proved by
Kohlhaase for a field R of characteristic p. He gives two proofs [Koh, Proposi-
tion 3.9, Remark 3.10], but none of them extends to F of characteristic p. Our
proof is valid without restriction on the characteristic of F and does not use the
results of Kohlhaase. Our assumption that R is an algebraically closed field of
characteristic p comes from the classification theorem in [AHHV17].
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[Vig15a] Marie-France Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic
group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529, DOI
10.2140/pjm.2015.279.499. MR3437789
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Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013 France

Email address: vigneras@math.jussieu.fr

https://www.ams.org/mathscinet-getitem?mr=3600042
https://www.ams.org/mathscinet-getitem?mr=0327923
https://www.ams.org/mathscinet-getitem?mr=794307
https://www.ams.org/mathscinet-getitem?mr=3263032
https://www.ams.org/mathscinet-getitem?mr=3682662
https://www.ams.org/mathscinet-getitem?mr=3402357
https://www.ams.org/mathscinet-getitem?mr=1026328
https://www.ams.org/mathscinet-getitem?mr=2392364
https://www.ams.org/mathscinet-getitem?mr=3271250
https://www.ams.org/mathscinet-getitem?mr=3437789
https://www.ams.org/mathscinet-getitem?mr=3437789
https://www.ams.org/mathscinet-getitem?mr=3484112

	1. Introduction
	2. Notation, useful facts, and preliminaries
	3. Pro-𝑝 Iwahori invariants of 𝐼_{𝐺}(𝑃,𝜎,𝑄)
	4. Hecke module 𝐼_{}ℋ(𝒫,𝒱,𝒬)
	5. Universal representation 𝐼_{}ℋ(𝒫,𝒱,𝒬)⊗_{}ℋℛ[𝒰\𝒢]
	6. Vanishing of the smooth dual
	References

