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DUALITY FOR CLASSICAL p-ADIC GROUPS:

THE HALF-INTEGRAL CASE

CHRIS JANTZEN

Abstract. Let G be a classical p-adic group and let π be a smooth irreducible
representation of G. In this paper, we consider the problem of calculating the
dual (in the sense of Aubert and Schneider-Stuhler) π̂. More precisely, if π
is specified by its Langlands data, the problem is to determine the Langlands
data for π̂. This problem reduces (based on supercuspidal support) to two
main cases: half-integral reducibility and integral reducibility; the latter is
addressed here.

1. Introduction

We begin by recalling the definition of the duality operator (see [Au], [S-S]). Let
F be a p-adic field and let G be the F -points of a connected reductive group defined
over F . If Π denotes the set of simple roots for G and π is a smooth, finite length
representation of G, the dual DG(π) is defined as

(1.1) DG(π) =
∑
Φ⊂Π

(−1)|Φ|iG,MΦ
◦ rMΦ,G(π)

(iG,MΦ
, rMΦ,G denoting normalized parabolic induction and Jacquet module—see

[B-Z] or the next section), with the sum taking place in the Grothendieck group
(with a similar definition for the nonconnected group O(2n, F );cf. [J4]). The dual-
ity operator is an involution which takes irreducible representations to irreducible
representations (up to ±), and behaves well with respect to the parabolic induction
and Jacquet module functors (cf. Théor̀eme 1.1 of [Au] for more precise statements).
We write π̂ for ±DG(π), whichever is nonnegative.

Historically, such duality operators were first defined for finite groups of Lie-
type by Curtis [Cur], Alvis [Alv], and Kawanaka [Kaw]; Deligne-Lusztig proved
that irreducibility is preserved in [D-L1], [D-L2]. For Hecke algebras, the Iwahori-
Matsumoto involution [I-M] is older, but the action on representations results from
an involution on the Hecke algebra; the characterization (1.1) did not appear until
later in [Kat]. Similarly, the Zelevinsky involution for p-adic general linear groups
[Ze] is a special case of duality, but defined somewhat differently; it was conjectured
to preserve irreducibility. The general version for connected reductive p-adic groups
was done by Aubert [Au] and Schneider-Stuhler [S-S]; they also established the
connection between the Zelevinsky involution and duality. There is also a more
recent interpretation in terms of Arthur packets. There is an obvious involution on
Arthur packets corresponding to the interchange of the two copies of SL(2,C) in
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the parameters; this also turns out to be given by duality (see section 7.1 of [Art],
[Mœ3]).

The problem considered here is that of providing an algorithm for calculating
DG for representations of classical groups. More precisely, if π is specified by its
Langlands data, the problem is to determine the Langlands data for π̂. In the case
of general linear groups, such an algorithm was originally given in [M-W]. Later,
a more explicit formula was given in [K-Z]. An algorithm, more along the lines of
[M-W], was given as an application of some results in [J5]; the algorithm below uses
the same underlying strategy.

Beyond general interest and the considerations above, there are a couple of ad-
ditional reasons for our interest in this problem. First, the duality operator can
be useful in analyzing induced representations—e.g., techniques may apply to the
dual induced representation which do not apply to the original. Conclusions may be
drawn on the dual side, then transferred back (e.g., [J1], [B-J2]). Also, the Iwahori-
Matsumoto involution is known to preserve unitarity ([B-M]); more general duality
has also found a role in the determination of the unitary dual (e.g., [Mu1], [Mu-T]).

By [J2] (and [J4]), the problem of determining π̂ in general may be reduced to
the problem of determining π̂ when π ∈ R((ρ, β);σ), i.e., when π has supercuspidal
support on {νxρ}x∈β+Z ∪ {σ}, 0 ≤ β ≤ 1

2 if ρ ∼= ρ̌ (resp., {νxρ, ν−xρ̌}x∈β+Z ∪ {σ},
0 ≤ β < 1 if ρ �∼= ρ̌)); here ρ denotes an irreducible unitary supercuspidal represen-
tation for a general linear group, σ an irreducible supercuspidal representation of
a classical group, and ρ̌ the contragredient (in the symplectic or orthogonal cases)
or its conjugate (in the unitary case)—see section 2.1. Now, the induced represen-
tation iG,M (νxρ⊗ σ) is reducible for some (exactly one) x ≥ 0 if and only if ρ̌ ∼= ρ;
we let red(ρ;σ) denote this value. This paper addresses the case red(ρ;σ) ≡ 1

2
mod 1. The other possibility when ρ ∼= ρ̌—i.e., red(ρ;σ) ∈ Z—has certain techni-
cal difficulties discussed later. However, many of the results established along the
way hold in general.

Before describing the algorithm itself, we first need to recall a key definition.
Let Gn(F ) be from one of the families of classical groups under consideration
(symplectic, odd special orthogonal, even orthogonal, unitary—see section 2). For
1 ≤ m ≤ n, we have a (maximal proper) standard parabolic subgroup with Levi
factorM(m)

∼= GL(m,F )×Gn−m(F ). For π a representation of G, set

μ∗(π) =
n∑

i=1

rM(i),G(π),

with the sum in R⊗R[S]—see section 2.1. This was originally defined in [T1], and
has many useful properties, discussed in more detail in the next section. However,
the definition is sufficient for the purposes at hand. In particular, it enables us to
define the following (Definition 3.1.1 of [J7]).

Definition 1.1. For X a set of (not necessarily unitary) supercuspidal representa-
tions of general linear groups, let f = fπ(X) be the largest value such that a (mini-
mal nonzero) Jacquet module of π has a term of the form νx1ρ1⊗ · · ·⊗ νxf ρf ⊗ . . .
with νx1ρ1, . . . , ν

xf ρf ∈ X (where ν = |det| as in [Ze]). We let

μ∗
X(π) =

∑
i

λi ⊗ θi,
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where the sum is over all irreducible λi⊗ θi ≤ μ∗(π) for which a (minimal nonzero)
Jacquet module of λi contains a term of the form νx1ρ1 ⊗ · · · ⊗ νxf ρf , with
νx1ρ1, . . . , ν

xf ρf ∈ X.

Suppose X has the property that νxρ ∈ X ⇒ ν−xρ̌ �∈ X. If π is irreducible, we
have the following key properties (section 3.1 of [J7]):

(1.2)
•μ∗(π) consists of a single representation, denoted λπ(X)⊗ θπ(X).
•π ↪→ iG,M (λπ(X)⊗ θπ(X)) as unique irreducible subrepresentation.
•If μ∗

X(π1) = μ∗
X(π2), then π1

∼= π2 (follows from above).

Note that we have |X| = 1 for most applications.
We remark that if σ is a supercuspidal representation of one of the classical

groups under consideration, then the induced representation iG,M (νxρ ⊗ σ) is re-
ducible for some x ∈ R if and only if ρ̌ ∼= ρ, making this the most interesting case.
However, if ρ̌ ∼= ρ, then one cannot have νxρ ∈ X ⇒ ν−xρ̌ �∈ X when x = 0. As a
consequence, the case x = 0 is avoided in the algorithm below. Section 7 contains
more on the issues which arise in this case.

We now turn to the algorithm for duality. Assuming an algorithm for calculating
μ∗
X(π), we may calculate π̂ as follows.

Algorithm (Algorithm for computing π̂).

(1) Calculate μ∗
{νxρ}(π) = (νxρ)fπ(ν

xρ) ⊗ θπ(ν
xρ) for some νxρ, x �= 0, having

fπ(ν
xρ) > 0 (i.e., μ∗

X(π) for X = {νxρ}). This may be done using the
algorithm described in section 3.

(2) By properties of duality, it follows that μ∗
{ν−xρ̌}(π̂)=(ν−xρ̌)fπ(ν

xρ)⊗ ̂θπ(νxρ).

Note that as θπ(ν
xρ) is from a group of lower rank, we may inductively as-

sume that it has been calculated. In practice, we work iteratively, treating
the algorithm as reducing the rank.

(3) Recover π̂ from μ∗
{ν−xρ̌}(π̂) = (ν−xρ̌)fπ(ν

xρ) ⊗ ̂θπ(νxρ). Note that by the

properties of μ∗
X above, μ∗

{ν−xρ̌}(π̂) suffices to determine π̂. (There are

only a finite number of possibilities for π̂ having the correct supercuspi-
dal support. In principle, one could calculate μ∗

{ν−xρ̌} for all of them; in

practice, only a small number of these need to be checked.)

The above algorithm is demonstrated in Example 1 of section 4.1, where π̂ is
computed in three iterations.

The key in implementing the algorithm above is the ability to calculate μ∗
{νxρ}(π);

the construction of an algorithm for doing so constitutes the bulk of this paper. We
now take a moment to discuss this.

Consider X = {νxρ}, with ρ irreducible unitary supercuspidal. Write π =
L(Δ;T ) in the subrepresentation setting of the Langlands classification (see sec-
tion 2.1). We have

π ↪→ iG,M (L(Δ)⊗ T ) ,

using L(Δ) to denote the representation of the appropriate general linear group
having Langlands data Δ (also section 2.1). Intuitively, copies of νxρ can come
from one of three sources:

(1) terms νxρ⊗ . . . in rM ′,G′ (L(Δ)),
(2) terms · · · ⊗ ν−xρ̌ in rM ′′,G′ (L(Δ)),
(3) terms νxρ⊗ . . . in rL,G′′(T ).
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The analysis has three parts. First, the case of π = T (tempered) must be
addressed. In this case, the result is done in [J8], based on the extended Mœglin-
Tadić data for T , and is summarized in Theorem 3.1. Note that this is essentially
a formula rather than an algorithm.

The second case is x < 0 (relevant only for nontempered π). This case is rela-
tively easy as only terms of the form νxρ ⊗ . . . in rM ′,G′ (L(Δ)) ((1) above) can
contribute. In this case, one calculates m∗

{νxρ} (L(Δ))—the analogue to μ∗
{νxρ} for

general linear groups (see section 2.1)—which is known (Theorem 2.2.1 of [J5]).
Then,

m∗
{νxρ}L(Δ) = (νxρ)f ⊗ L(Δ′)

⇓
μ∗
{νxρ}(π) = (νxρ)f ⊗ L(Δ′;T ).

The third case is x > 0 with π nontempered. In this case, there are two parts to
the algorithm. The first resolves the problem assuming one can determine μ∗

{νxρ} for

representations of the form L((ν−xρ)k, δ([ν−xρ, νx−1ρ])�;T ); the second addresses
this special case.

The arguments in this paper are ultimately built from the Mœglin-Tadić classi-
fication of discrete series ([M-T]) and the machinery needed for that classification.
Their work is done under the assumption that their Basic Assumption (BA) holds.
Note that in the quasi-split case, when char(F )=0, (BA) follows from [Art] (see
[Mœ4]), so their results hold unconditionally. When char(F )> 0—still in the quasi-
split case—(BA) is proven in [G-L], contigent on the Working Hypothesis of [G-L].
In those cases where it is not already established, we assume (BA); our results then
hold in the generality of [M-T], that is, to the same classical groups considered
there.

We close by briefly describing the contents of this paper. In the next section,
we introduce notation and give some background results. In section 3, we give the
algorithm for calculating μ∗

{νxρ}, breaking the presentation into several subsections

depending on the value of x and the representation under consideration. Note that
only the last of these subsections uses red(ρ;σ) ≡ 1

2 mod 1, and also assumes

π ∈ R((ρ, 12 );σ) (the most interesting value of β in this situation). To streamline
the presentation, proofs of the results in section 3 are deferred until later in the
paper. In section 4, we give an example to illustrate the algorithms in action. The
proofs of the main results follow: sections 5–6 contain the proofs of the results from
section 3. In section 7, we make some remarks on what breaks down when x = 0.
In section 8, we retain the assumption red(ρ;σ) ≡ 1

2 mod 1, and take up what

happens when β �= 1
2 .

2. Notation and preliminaries

2.1. Notation and preliminaries. Let F be a p-adic field. We make no re-
strictions on char(F ), but remind the reader that the status of the Mœglin-Tadić
classification depends (in part) on the characteristic of F . We consider the same
families of (not necessarily quasi-split) classical groups as in [M-T]: symplectic,
odd special orthogonal, even special orthogonal (nonsplit only), even orthogonal
(split only), and even and odd unitary groups (with F ′/F the associated separable
quadratic extension). For a more detailed description, see section 1 of [M-T].
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We now discuss some structure theory from [Ze] and [T1], [Ba]. First, let S(n, F )
denote the rank n member of one of the families of classical groups under consid-
eration and set

R =
⊕
n≥0

R(GL(n, F )) and R[S] =
⊕
n≥0

R(S(n, F )),

where R(G) denotes the Grothendieck group of the category of smooth finite length
representations of G. We define multiplication on R as follows: suppose ρ1, ρ2
are representations of GL(n1, F ), GL(n2, F ), resp. We have M = GL(n1, F ) ×
GL(n2, F ) the Levi factor of a standard parabolic subgroup of G = GL(n, F ), where
n = n1 + n2, and set τ1 × τ2 = iG,M (τ1 ⊗ τ2) (normalized parabolic induction—
see [B-Z]). This extends (after semisimplification) to give the multiplication × :
R×R −→ R. To describe the comultiplication on R, let M(i) denote the standard
Levi factor for G = GL(n, F ) having M(i) = GL(i, F ) × GL(n − i, F ). For a
representation τ of GL(n, F ), we define

m∗(τ ) =
n∑

i=0

rM(i),G(τ ),

the sum of semisimplified Jacquet modules (lying in R ⊗ R). This extends to a
map m∗ : R −→ R⊗R. We note that with this multiplication and comultiplication
(and antipode map given by the Zelevinsky involution, a special case of the general
duality operator of [Au], [S-S]), R is a Hopf algebra. There are two analogues for
general linear groups of the μ∗

X discussed in the introduction: m∗
X and Xm∗. For

an irreducible representation π, we let f = fπ(X) (resp., g = gπ(X)) be the largest
value such that a minimal nonzero Jacquet module of π has a term of the form
νx1ρ1 ⊗ · · · ⊗ νxf ρf ⊗ . . . (resp., of the form · · · ⊗ νxgρg ⊗ · · · ⊗ νx1ρ1) with all
νxiρi ∈ X, 1 ≤ i ≤ f (resp., 1 ≤ i ≤ g). The analogue of (1.2) holds without
restriction on X (Lemma 2.1.2 of [J5]); we define m∗

X and Xm∗ accordingly.
Recall that for a, b with a ≤ b and b−a ∈ Z, δ([νaρ, νbρ]) denotes the generalized

Steinberg representation associated to the segment [νaρ, νbρ], i.e., the unique irre-
ducible subrepresentation of νbρ× νb−1ρ× · · · × νaρ ([Ze]). The unique irreducible
subrepresentation of νaρ × νa+1ρ × · · · × νbρ is denoted ζ([νaρ, νbρ]). Note that
ζ([νaρ, νbρ]) is dual to δ([νaρ, νbρ]).

Next, suppose τ is a representation of GL(n1, F ) and θ a representation of
S(n2, F ). We have M = GL(n1, F )× S(n2, F ) the Levi factor of a standard para-
bolic subgroup of G = S(n, F ), with n = n1 + n2, and set τ � θ = iG,M (τ ⊗ θ). If
one extends � to a map � : R⊗R[S] −→ R[S], we have R[S] as a module over R.
To describe its comodule structure, let M(i) = GL(i, F )⊗ S(n− i, F ), a standard
Levi factor for G = S(n, F ). For a representation π of S(n, F ), we define

μ∗(π) =
n∑

i=0

rM(i),G(π),

the sum of (normalized) semisimplified Jacquet modules (lying in R⊗R[S]). This
extends to a map μ∗ : R[S] −→ R ⊗ R[S]. In addition to μ∗

X introduced earlier,
there is another variant of this which is needed occasionally in what follows. For an
irreducible representation λ of a general linear group and a representation π of one
of the classical groups under consideration, we let μ∗

λ(π) be the sum of everything
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in μ∗(π) having first factor isomorphic to λ. More precisely, if μ∗(π) =
∑

i λi ⊗ ξi,
we let μ∗

λ(π) =
∑

i∈Iλ
λi ⊗ ξi, where Iλ = {i |λi

∼= λ}.
For unitary groups, let ξ denote the nontrivial element of the Galois group of the

underlying quadratic extension. For a representation π of S(n, F ), we then define

π̌ =

{
π̃ ◦ ξ for unitary groups,
π̃ otherwise,

where ˜ denotes contragredient. Using this, we may give R[S] the structure of an
M∗-module over R ([T1], [Ba], [M-T]):

Theorem 2.1. Define M∗ : R −→ R⊗R by

M∗ = (m⊗ 1) ◦ (̌ ⊗m∗) ◦ s ◦m∗,

where m denotes the multiplication × : R ⊗R −→ R and s : R⊗ R −→ R ⊗R the
extension of the map defined on representations by s : τ1 ⊗ τ2 �−→ τ2 ⊗ τ1. Then

μ∗(τ � π) = M∗(τ )� μ∗(π),

where � on the right-hand side is determined by (τ1⊗τ2)�(τ⊗θ) = (τ1×τ )⊗(τ2�θ).

We now take a moment to review cuspidal reducibility values. Suppose ρ is an
irreducible unitary supercuspidal representation of a general linear group and σ an
irreducible supercuspidal representation of a classical group. If ρ �∼= ρ̌, then νxρ�σ
is irreducible for all x ∈ R; if ρ ∼= ρ̌, then there is a unique nonnegative x ∈ R

such that νxρ � σ reduces ([Si2]; also Corollary 4.4 of [B-J1] for the orthogonal
case), which we denote by red(ρ;σ). The values for red(ρ;σ) for Sp(2n, F ) and
SO(2n+ 1, F ) have been determined (assuming certain conjectures) in [Mœ1] and
[Zh]; in the generic case, it is known that they must lie in {0, 12 , 1} ([Sh1], [Sh2]).
Further, in the quasi-split, characteristic zero case, the reducibility values are now
known to be half-integral ([Art], [Mœ4]).

We next review the Casselman criterion for S(n, F ) (see [Ca], [Wa], which ex-
tends easily to the nonconnected group O(2n, F )). Suppose π is an irreducible
representation of S(n, F ). Suppose νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ ≤ rM,G(π) has ρi an
irreducible unitary supercuspidal representation of GL(mi, F ) for i = 1, . . . , k, σ
an irreducible supercuspidal representation of S(m,F ), and x1, . . . , xk ∈ R. The
Casselman criterion tells us that if π is tempered, the following hold:

m1x1 ≥ 0
m1x1 +m2x2 ≥ 0

...
m1x1 +m2x2 + · · ·+mkxk ≥ 0.

Conversely, if these inequalities hold for any such νx1ρ1⊗· · ·⊗νxkρk⊗σ (i.e., ρi an
irreducible unitary supercuspidal representation of GL(mi, F ) and σ an irreducible
supercuspidal representation of S(m,F )) appearing in a Jacquet module of π, then
π is tempered. The criterion for square-integrability is the same except that the
inequalities are strict.

We also take a moment to review the Langlands classification ([B-W], [Si1],
[Kon]; also the appendix of [B-J1] for the nonconnected group O(2n, F )). We work
in the subrepresentation setting of the Langlands classification as it is the most con-
venient for applying Jacquet module methods. Suppose τ1, . . . , τk are irreducible
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tempered representations of general linear groups and x1 < · · · < xk. Then the in-
duced representation νx1τ1×· · ·×νxkτk has a unique irreducible subrepresentation
which we denote L(νx1τ1, . . . , ν

xkτk). Every irreducible admissible representation
of a general linear group may be written in this way, and the data νx1τ1⊗· · ·⊗νxkτk
are unique. Turning to classical groups, if τ1, . . . , τk are irreducible tempered rep-
resentations of general linear groups, τ an irreducible tempered representation of
S(n, F ), and x1 < · · · < xk < 0, the representation νx1τ1 × · · · × νxkτk � τ has a
unique irreducible subrepresentation which we denote L(νx1τ1, . . . , ν

xkτk; τ ). Fur-
ther, any irreducible admissible representation of a classical group may be written
in this way, and the data νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ are again unique.

The next lemma is Lemma 5.5 of [J2].

Lemma 2.2. Suppose π is an irreducible representation of G, λ an irreducible
representation of M , and π ↪→ iG,M (λ). If L > M , then there is an irreducible
representation ρ of L such that

(1) π ↪→ iG,L(ρ).
(2) ρ is a subquotient of iL,M (λ).

Recall that two segments Σ1, Σ2 are called linked if Σ1 �⊂ Σ2, Σ2 �⊂ Σ1, and
Σ1 ∪ Σ2 is also a segment (section 4.1 of [Ze]).

Lemma 2.3. Consider δ(Σ1)× · · · × δ(Σk) with Σ1, . . . ,Σk segments. Then

L(Σ′
1, . . . ,Σ

′
k′) ≤ δ(Σ1)× · · · × δ(Σk)

if and only if Σ′
1, . . . ,Σ

′
k′ may be obtained from Σ1, . . . ,Σk by a sequence of opera-

tions which replace linked segments Σ∗,Σ∗∗ with (Σ∗∪Σ∗∗), (Σ∗∩Σ∗∗) (noting that
as Σ∗ ∩ Σ∗∗ may be empty, we may have k′ < k).

Proof. This follows from Theorem 7.1 of [Ze] (see Proposition 3.2.4 of [J5]). �

The following is Lemma 2.3 of [J8].

Lemma 2.4. Suppose fπ(ν
xρ) = f . If

π ↪→ (νxρ)f × λ1 × · · · × λk � T

with λ1⊗· · ·⊗λk⊗T satisfying the conditions for Langlands data (subrepresentation
setting), then

μ∗
{νxρ}(π) = (νxρ)f ⊗ L(λ1, . . . , λk;T )

(up to multiplicity if x = 0).

2.2. The extended Mœglin-Tadić classification. In this section, we review the
extension of the construction of [M-T] to tempered representations. The extension
used here is from [J7]; we also note the somewhat different extension available in
[T5].

Recall that the Mœglin-Tadić classification is a bijective correspondence between
(equivalence classes of) discrete series for a family of classical groups and (equiv-
alence classes of) admissible triples. An admissible triple is a triple of the form
(Jord, σ, ε). Here Jord consists of pairs (ρ, a), with ρ an irreducible unitary su-
percuspidal representation of a general linear group and a ∈ N subject to a parity
condition from ρ, σ the “partial cuspidal support” (the supercuspidal representation
of a classical group which appears in any minimal nonzero Jacquet module term),
and ε a function defined on a subset of Jord∪ (Jord×Jord) taking values in {±1}
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which essentially distinguishes between discrete series having the same supercus-
pidal support. Information about induced representations into which the discrete
series embeds is also encoded in the data. This classification and its properties have
been summarized in [M-T], many of the references for this paper (e.g., [T3], [Mu2],
[Mu3], [T4], [J6], [T5], [J7]), as well as many other places. We forgo doing so again
and simply refer the reader to these sources, as well as to the characterization of
admissibility (in the [M-T] sense) in the appendix.

To extend the Mœglin-Tadić classification to tempered representations, we first
consider the elliptic case. Suppose

(2.1) Tell ↪→ δ([ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1])× · · · × δ([ν
−c�+1

2 ρ�, ν
c�−1

2 ρ�])� δ,

with δ a discrete series for a classical group. Let (Jord(δ), σ, εδ) be the Mœglin-
Tadić data for δ, with Sδ ⊂ Jord(δ)∪ (Jord(δ)×Jord(δ)) the domain for εδ. Intu-
itively, we construct Jord(T ) from Jord(δ) by adding two copies each of (ρ1, c1), . . . ,

(ρ�, c�) (one for each end of δ([ν
−ci+1

2 ρi, ν
ci−1

2 ρi]), even if ci = 1). Thus we introduce
a fourth datum,mT—the multiplicity—so have T associated to (Jord(T ), σ, εT ,mT ).
Thus,

Jord(T ) = Jord(δ) ∪ {(ρ1, c1), . . . , (ρ�, c�)}
and

mT (ρ, a) =

{
1 if (ρ, a) ∈ Jord(δ),
2 if (ρ, a) ∼= (ρi, ci) for some i.

Again, we have εT : ST −→ {±1}, with the domain

ST ⊂ Jord(T ) ∪ (Jord(T )× Jord(T )) .

We have ST ⊃ Sδ, and εT |Sδ
= εδ. The additional values of εT effectively distin-

guish the 2� components of δ([ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1])×· · ·×δ([ν
−c�+1

2 ρ�, ν
c�−1

2 ρ�])�δ.
In particular, we have the following extension of the basic embedding property
of [M-T]: for (ρ, a) ∈ Jord(T ), let a− be the largest value of b < a satisfying
(ρ, b) ∈ Jord(δ) if it exists. Then (Proposition 2.3.2 of [J7])
(2.2)
(1) if m(ρ, a) = 1,

ε ((ρ, a), (ρ, a−))=1 ⇔ T ↪→δ([ν
a−+1

2 ρ, ν
a−1
2 ρ])�θ for some irreducible θ,

(2) if m(ρ, a) = 2,

ε ((ρ, a), (ρ, a−)) = 1 ⇔ T ↪→ δ([ν
a−+1

2 ρ, ν
a−1
2 ρ])

×δ([ν
a−+1

2 ρ, ν
a−1
2 ρ])� θ for some irreducible θ.

Other basic properties of the Mœglin-Tadić classification also have counterparts
in the extension to the tempered case; we forgo including them here but include
citations when used.

For more general tempered representations—i.e., no longer assuming elliptic—we
construct Jord(T ), mT in a similar manner. Write

(2.3) T ∼= δ([ν
−d1+1

2 ρ′1, ν
d1−1

2 ρ′1])× · · · × δ([ν
−dm+1

2 ρ′m, ν
dm−1

2 ρ′m])� Tell

(irreducibly induced) with Tell elliptic tempered. We construct Jord(T ),mT from
Jord(T�),mTell

by adding one copy each of (ρ′1, d1), (ρ̌
′
1, d1), . . . , (ρ

′
m, dm), (ρ̌′m, dm)

(so two copies of (ρ′i, di) are added if ρ̌′i
∼= ρi); ST and εT match STell

and εTell
(not-

ing that the corresponding induced representation is irreducible so we do not have
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components to distinguish). We then have an extension of the above embedding:
for (ρ, a) ∈ Jord(Tell), let a− < a be the largest value such that (ρ, a−) ∈ Jord(Tell)
if it exists. Then

ε ((ρ, a), (ρ, a−)) = 1 ⇔ T ↪→ δ([ν
a−+1

2 ρ, ν
a−1
2 ρ])× · · · × δ([ν

a−+1

2 ρ, ν
a−1
2 ρ])︸ ︷︷ ︸

m(ρ,a)

�θ.

This is not explicitly stated in [J7], but is a straightforward consequence of (2.2)
and the irreducibility of (2.3).

3. Algorithm for μ∗
{νxρ}

Let π be a smooth irreducible representation of S(n, F ). In this section, we give
an algorithm for calculating μ∗

{νxρ}(π). Because of certain technical problems which

arise in the case x = 0—discussed in detail in section 7—most of this section applies
only when x �= 0. The exception is the results in the tempered case—recalled from
[J8] in the first subsection—which do allow the possibility x = 0. The second
subsection covers the case x < 0, while the third addresses the more difficult case
x > 0. The algorithm for x > 0 reduces to the special case where the representation

has the form π ∼= L((ν
−a+1

2 ρ)k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ), which is more delicate as it

is where the reducibility of ν
−a+1

2 ρ� T enters the picture. That case is covered in
the last subsection. We remark that when applying the algorithms of the last two
subsections to specific representations, one often has steps which do not apply to
those representations, effectively shortening the algorithms.

3.1. The tempered case. In the case where π = T is tempered, μ∗
{νxρ}(T ) may

be calculated using the results of [J8], summarized in the following theorem.

Theorem 3.1. Suppose T is irreducible tempered with (ρ, a) ∈ Jord(T ). If a > 2,
we have the following:

(1) If ρ �∼= ρ̌, then

μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗ L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])mT (ρ,a);T1),

where mT1
(ρ, a) = mT1

(ρ̌, a) = 0, mT1
(ρ′, b) = mT (ρ

′, b) for all other (ρ′, b),
and εT1

= εT (noting that (ρ, a) �∈ ST ).
(2) If ρ ∼= ρ̌ but a−1

2 �≡ red(ρ;σ) mod 1,

μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗ T2,

where mT2
(ρ, a) = 0, mT2

(ρ, a − 2) = mT (ρ, a), mT2
(ρ′, b) = mT (ρ

′, b) for
all other (ρ′, b), and εT2

= εT (noting that (ρ, a) �∈ ST ).
(3) If ρ ∼= ρ̌ with a−1

2 ≡ red(ρ;σ) mod 1 and either (i) a > a− + 2, or (ii)

εT (ρ, a)εT (ρ, a−)
−1 = 1, then

μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗ T3,

where mT3
(ρ, a) = 0, mT3

(ρ, a−2) = mT (ρ, a)+mT (ρ, a−2), and mT2
(ρ′, b)

= mT (ρ
′, b) for all other (ρ′, b). If mT (ρ, a − 2) > 0, εT3

is just given by
restriction; if mT (ρ, a − 2) = 0, it is given by substituting (ρ, a − 2) for
(ρ, a). More precisely, if m(ρ, a−2) = 0, εT3

is determined by the following
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changes: εT3
(ρ, a− 2) = εT (ρ, a) if defined, and εT3

(ρ, a − 2)εT3
(ρ, b)−1 =

εT (ρ, a)εT (ρ, b)
−1.

(4) If ρ ∼= ρ̌ with a−1
2 ≡ red(ρ;σ) mod 1, a− = a−2, and εT (ρ, a)εT (ρ, a−)

−1 =
−1, then

μ∗
{ν

a−1
2 ρ}

(T ) =

{
(ν

a−1
2 ρ)mT (ρ,a)−1 ⊗ T4 if mT (ρ, a) odd,

(ν
a−1
2 ρ)mT (ρ,a)−1 ⊗ L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ]);T5) if mT (ρ, a) even.

Here, mT4
(ρ, a) = 1, mT4

(ρ, a−2) = mT (ρ, a−2)+mT (ρ, a)−1, mT4
(ρ′, b) =

mT (ρ
′, b) for all other (ρ′, b), and εT4

= εT ; for T5, mT5
(ρ, a) = 0,

mT5
(ρ, a − 2) = mT (ρ, a − 2) + mT (ρ, a) − 2, mT5

(ρ′, b) = mT (ρ
′, b) for

all other (ρ′, b), and εT5
the restriction of εT .

If a = 2, we have the following:
(5) If ρ �∼= ρ̌, then

μ∗
{ν

1
2 ρ}

(T ) = (ν
1
2 ρ)mT (ρ,2) ⊗ L((ν−

1
2 ρ)mT (ρ,2);T1),

where mT1
(ρ, a) = mT1

(ρ̌, a) = 0, mT1
(ρ′, b) = mT (ρ

′, b) for all other (ρ′, b),
and εT1

= εT (noting that (ρ, 2) �∈ ST ).
(6) If ρ ∼= ρ̌ but red(ρ;σ) �≡ 1

2 mod 1,

μ∗
{ν

1
2 ρ}

(T ) = (ν
1
2 ρ)mT (ρ,2) ⊗ T2,

where mT2
(ρ, 2) = 0, mT2

(ρ′, b) = mT (ρ
′, b) for all other (ρ′, b), and εT2

=
εT (noting that (ρ, a) �∈ ST ).

(7) If ρ ∼= ρ̌ with red(ρ;σ) ≡ 1
2 mod 1 and εT (ρ, 2) = 1, then

μ∗
{ν

1
2 ρ}

(T ) = (ν
1
2 ρ)mT (ρ,2) ⊗ T3,

where mT3
(ρ, 2) = 0, mT2

(ρ′, b) = mT (ρ
′, b) for all other (ρ′, b), and εT3

just the restriction of εT .
(8) If ρ ∼= ρ̌ with red(ρ;σ) ≡ 1

2 mod 1 and εT (ρ, 2) = −1, then

μ∗
{ν

1
2 ρ}

(T ) =

{
(ν

1
2 ρ)mT (ρ,2)−1 ⊗ T4 if mT (ρ, 2) odd,

(ν
1
2 ρ)mT (ρ,2)−1 ⊗ L(ν−

1
2 ρ;T5) if mT (ρ, 2) even.

Here, mT4
(ρ, 2) = 1, mT4

(ρ′, b) = mT (ρ
′, b) for all other (ρ′, b), and εT4

=
εT ; for T5, mT5

(ρ, 2) = 0, mT5
(ρ′, b) = mT (ρ

′, b) for all other (ρ′, b), and
εT5

just the restriction of εT .
If a = 1, we have the following:

(9) If ρ �∼= ρ̌, then

μ∗
{ρ}(T ) = (ρ)mT (ρ,1) ⊗ T1,

where mT1
(ρ, 1) = mT1

(ρ̌, 1) = 0, mT1
(ρ′, b) = mT (ρ

′, b) for all other (ρ′, b),
and εT1

= εT (noting that (ρ, 1) �∈ ST ).
(10) If ρ ∼= ρ̌ but red(ρ;σ) �≡ 0 mod 1,

μ∗
{ρ}(T ) = 2

mT (ρ,1)

2 · (ρ)
mT (ρ,1)

2 ⊗ T2,

where mT2
(ρ, 1) = 0, mT2

(ρ′, b) = mT (ρ
′, b) for all other (ρ′, b), and εT2

=
εT (noting that (ρ, 1) �∈ ST ).
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(11) If ρ ∼= ρ̌ with red(ρ;σ) ≡ 0 mod 1, then

μ∗
{ρ}(T ) =

{
2

mT (ρ,1)

2 · (ρ)
mT (ρ,1)

2 ⊗ T3 if mT (ρ, 1) even,

2
mT (ρ,1)−1

2 · (ρ)
mT (ρ,1)−1

2 ⊗ T3 if mT (ρ, 1) odd,

where

mT3
(ρ, 1) =

{
0 if mT (ρ, 1) even,
1 if mT (ρ, 1) odd,

mT3
(ρ′, b) = mT (ρ

′, b) for all other (ρ′, b), and εT3
= εT if mT (ρ, 1) odd,

εT3
the restriction of εT if mT (ρ, 1) even.

3.2. Calculating μ∗
{νxρ}(π) in the case x < 0. Now, write π = L(Δ;T ). Then

π ↪→ L(Δ) � T . Considering μ∗
{νxρ} (L(Δ)� T ), we see three possible sources for

copies of νxρ:

(3.1)
(1) terms νxρ⊗ . . . in rmin((L(Δ)),
(2) terms · · · ⊗ ν−xρ̃ in rmin(L(Δ)),
(3) terms νxρ⊗ . . . in rmin(T ).

Notice, however, that since segments appearing in Δ all have negative central ex-
ponent, (2) cannot contribute unless x > 0. Similarly, by the Casselman criterion,
(3) cannot contribute unless x ≥ 0. We address the simplest case—namely, x < 0—
here, deferring the rest until later sections.

We now turn to the task of calculating μ∗
{νxρ}(π) when x < 0. Write

π = L(Δ;T ) ↪→ L(Δ)� T.

If m∗
{νxρ} (L(Δ)) = (νxρ)f ⊗L(Δ′)—which may be calculated by Theorem 2.2.1 of

[J5]—then

L(Δ) ↪→ (νxρ)f × L(Δ′)
⇓

π ↪→ (νxρ)f × L(Δ′)� T.

We claim that (i) fπ(ν
xρ) = f , and (ii) Δ′⊗T satisfies the conditions for Langlands

data. Assuming these for the moment, it then follows from Lemma 2.4 that

μ∗
{νxρ}(π) = (νxρ)f ⊗ L(Δ′;T ).

To check that (i) and (ii) hold, note that Δ′ is obtained from Δ by removing
copies of νxρ from the upper ends of segments in Δ (see Theorem 2.2.1 of [J5] for
a more precise description, noting the convention on rearrangement into Langlands
data order in that paper). Since such a removal lowers the central exponent of a
segment, we see that the segments in Δ′ all have negative central exponents. In
particular, this tells us (ii) holds.

For (i), it follows immediately from Frobenius reciprocity that fπ(ν
xρ) ≥ f . On

the other hand, observe that fT (ν
xρ) = 0 by the Casselman criterion. By construc-

tion, fL(Δ′)(ν
xρ) = 0; as δ′ has segments with negative central exponents (hence

lower segment ends must have negative exponents), gL(Δ′)(ν
−xρ̌) = 0. Therefore,

fL(Δ′)�T (ν
xρ) = 0. It then follows that

fπ(ν
xρ) ≤ f + fL(Δ′)�T (ν

xρ) = f,

implying fπ(ν
xρ) = f , as claimed.
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Note 3.2. In the reverse direction, if one has

μ∗
{νxρ}(π) = (νxρ)f ⊗ θ

for x < 0 and the goal is to identify π, write θ = L(Δ′;T ). From [J5], we may
determine L(Δ) such that m∗

{νxρ} (L(Δ)) = (νxρ)f ⊗ L(Δ′). We then have π =

L(Δ;T ).

3.3. Calculating μ∗
{νxρ}(π) in the case x > 0 with π �∼= L((ν

−a+1
2 ρ)k, δ([ν

−a+1
2 ρ,

ν
a−3
2 ρ])�;T ). First, write L(Δ) = L(νx1τ1, . . . , ν

xk−1τk−1, ν
− 1

2 τk) and

ν−
1
2 τk = ν−

1
2 τ ′k × δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�

(with � maximal). If Δ(1) = νx1τ1 ⊗ · · · ⊗ νxk−1τk−1 ⊗ ν−
1
2 τ ′k, it follows from the

Langlands classification that L(Δ) ↪→ L(Δ(1))× δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�. Then,

π ↪→ L(Δ(1))× δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T.

Further, writing
{ν

−a+1
2 ρ}

m∗(L(Δ(1)) = L(Δ(2))⊗ (ν
−a+1

2 ρ)k (see Theorem 2.4.5 of

[J5]), we have

π ↪→ L(Δ(2))× (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T

⇓ (Lemma 2.2)
π ↪→ L(Δ(2))� λ

for some irreducible λ ≤ (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T .

Claim 1. λ = L((ν
−a+1

2 ρ)k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ).

We verify this in Lemma 5.4 below. Continuing, write

μ∗
{ν

a−1
2 ρ}

(
L((ν

−a+1
2 ρ)k, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�;T )

)
= (ν

a−1
2 ρ)f1 ⊗ θ1,

where the (nontrivial) calculation required for this is discussed in section 3.4. Then,

π ↪→ L(Δ(2))× (ν
a−1
2 ρ)f1 � θ1

⇓ (Lemma 2.2)
π ↪→ λ′ � θ1

for some irreducible λ′ ≤ L(Δ(2))× (ν
a−1
2 ρ)f1 .

Claim 2. λ′ = L(Δ(2), (ν
a−1
2 ρ)f1).

This is verified in Lemma 5.5. Note that since fθ1(ν
a−1
2 ρ)=0 and gL(Δ(2))(ν

−a+1
2 ρ)

= 0 ⇒ g
L(Δ(2),(ν

a−1
2 ρ)f1)

(ν
−a+1

2 ρ) = 0 (noting x = a−1
2 > 0), we now have

fπ(ν
a−1
2 ρ) = f

L(Δ(2),(ν
a−1
2 ρ)f1 )

(ν
a−1
2 ρ).

Write (see Theorem 2.2.1 of [J5])

m∗
{ν

a−1
2 ρ}

(L(Δ(2), (ν
a−1
2 ρ)f1)) = (ν

a−1
2 ρ)f ⊗ L(Δ(3)),

with f = fπ(ν
a−1
2 ρ) from above. We now have

π ↪→ (ν
a−1
2 ρ)f × L(Δ(3))� θ1.
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Further, it follows from the algorithm for computing m∗
{ν

a−1
2 ρ}

(L(Δ(2), (ν
a−1
2 ρ)f1))

(essentially, the ν
a−1
2 ρ are drawn from the upper segment ends in Δ(2)⊗(ν

a−1
2 ρ)f1)

that Δ(3) has the form Δ(4) ⊗ (ν
a−1
2 ρ)f2 for some f2 ≤ f1 and Δ(4) consisting of

segments with negative central exponent. In particular, it then follows that

π ↪→ (ν
a−1
2 ρ)f × L(Δ(4))× (ν

a−1
2 ρ)f2 � θ1

⇓ (Lemma 2.2)

π ↪→ (ν
a−1
2 ρ)f × L(Δ(4))� θ2

for some irreducible θ2 ≤ (ν
a−1
2 ρ)f2 � θ1.

Claim 3. fθ2(ν
a−1
2 ρ) = f2.

This is verified in Lemma 5.6. Now, it follows from Proposition 5.1 and Corol-
lary 5.2 that θ2 has the form

θ2 = L((ν
−a+1

2 ρ)kθ2 , δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�θ2 ;Tθ2).

Therefore, we may use the results of section 3.4 to determine kθ2 , �θ2 , Tθ2 so that

μ∗
{ν

a−1
2 ρ}

(θ2) = (ν
a−1
2 ρ)f2 ⊗ θ1. It then follows that

π ↪→ (ν
a−1
2 ρ)f × L(Δ(4))× (ν

−a+1
2 ρ)kθ2 � L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�θ2 ;Tθ2)

⇓ (Lemma 2.2)

π ↪→ (ν
a−1
2 ρ)f × L(Δ(5))� L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�θ2 ;Tθ2)

for some irreducible L(Δ(5)) ≤ L(Δ(4))× (ν
−a+1

2 ρ)kθ2 .

Claim 4. gL(Δ(5))(ν
−a+1

2 ρ) = kθ2 .

This is proved in Lemma 5.7 below. Finally, using Theorem 2.4.5 and (the ana-
logue of) Remark 2.2.4 of [J5], we may determine Δ(5) such that

{ν
−a+1

2 ρ}
m∗(L(Δ(5))

= L(Δ(4))⊗ (ν
−a+1

2 ρ)kθ2 . Note that it follows immediately from the procedure for
recovering L(Δ(5)) from

{ν
−a+1

2 ρ}
m∗(L(Δ(4)) that Δ(5) consists of segments with

negative central exponents. Thus,

π ↪→ (ν
a−1
2 ρ)f × L(Δ(5))� L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�θ2 ;Tθ2)

⇓ (Lemma 2.4)

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)f ⊗ L(Δ(5), δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�θ2 ;Tθ2),

the result needed.

3.4. Calculating μ∗
{νxρ}(π) in the case π ∼= L((ν

−a+1
2 ρ)k, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�;T ).

Here, we address the problem of calculating μ∗
{ν

a−1
2 ρ}

(π) when

π ∼= L(ν
−a+1

2 ρ)k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ).

We focus on the case when a−1
2 ≡ red(ρ;σ) mod 1. We start by noting a couple of

special cases where we have explicit formulae (and which do not work in the general
algorithm given later). We have not included the case a = 3 as it arises only for
the integral case (the one not addressed in this paper). However, the case a = 3
when red(ρ;σ) ≡ 1

2 mod 1 is discussed in section 8.

Case 1 (a = 2). Here, we have the following results, proved in section 6.1.
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Theorem 3.3. Let π = L((ν−
1
2 ρ)k;T ). Suppose red(ρ;σ) ≡ 1

2 mod 1 and set
m = mT (ρ, 2).

(1) If (ρ, 2) �∈ Jord(T ), then fπ(ν
1
2 ρ) = 0.

(2) If (a) ε(ρ, 2) = 1, k even, m odd, or (b) ε(ρ, 2) = −1, k odd, m odd,

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m ⊗ L((ν−

1
2 ρ)k−1;T ′).

(3) If (a) ε(ρ, 2) = 1, k even, m even, or (b) ε(ρ, 2) = −1, k odd, m even,

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m ⊗ L((ν−

1
2 ρ)k;T ′′).

(4) If (a) ε(ρ, 2) = 1, k odd, m odd or (b) ε(ρ, 2) = −1, k even, m odd,

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m−1 ⊗ L((ν−

1
2 ρ)k;T ′).

(5) If (a) ε(ρ, 2) = 1, k odd, m even, or (b) ε(ρ, 2) = −1, k even, m even,

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m−1 ⊗ L((ν−

1
2 ρ)k+1;T ′′).

Here, mT ′(ρ, 2) = 1, mT ′′(ρ, 2) = 0, the remaining multiplicities for T ′, T ′′ match
those for T , εT ′ = εT , and εT ′′ is the restriction of εT .

Case 2 (a > 3 and fπ(ν
a−3
2 ρ) = 0). In this case, we have the following result,

proved in section 6.2.

Proposition 3.4. Let π ∼= L((ν
−a+1

2 ρ)k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ) for some a > 3

with a−1
2 ≡ red(ρ;σ) mod 1. Suppose fπ(ν

a−3
2 ρ) = 0. Then, we must have � = 0

and either (i) (ρ, a − 2) �∈ Jord(T ), or (ii) (ρ, a − 2), (ρ, a − 4) ∈ Jord(T ) with
mT (ρ, a− 2) = 1 and εT (ρ, a− 2)εT (ρ, a− 4)−1 = −1 (interpreted as εT (ρ, 2) = −1
for a = 4). Further, we have the following:

(1) If (ρ, a) ∈ Jord(T ) but (ρ, a− 2) �∈ Jord(T ),

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a) ⊗ T1,

where T1 has mT1
(ρ, a− 2) = mT (ρ, a), mT1

(ρ, a) = 0, the remaining mul-
tiplicities match those of T , and εT1

is given by substituting (ρ, a − 2)
for (ρ, a). More precisely, εT1

is determined by the following changes:
εT1

(ρ, a − 2) = εT (ρ, a) if defined, and εT1
(ρ, a − 2)εT1

(ρ, b)−1 =
εT (ρ, a)εT (ρ, b)

−1.
(2) If (ρ, a), (ρ, a − 2) ∈ Jord(T ), εT (ρ, a)εT (ρ, a − 2)−1 = −1, and mT (ρ, a)

odd,

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a)−1 ⊗ T2,

where T2 has mT2
(ρ, a− 2) = mT (ρ, a), mT2

(ρ, a) = 1, and remaining data
matching that of T .

(3) If (ρ, a), (ρ, a − 2) ∈ Jord(T ), εT (ρ, a)εT (ρ, a − 2)−1 = −1, and mT (ρ, a)
even,

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a)−1 ⊗ L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ]);T3),

where T3 has mT3
(ρ, a − 2) = mT (ρ, a) − 1, mT3

(ρ, a) = 0, the remaining
multiplicities for T3 match those for T , and εT3

is the restriction of εT .
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(4) If (ρ, a), (ρ, a− 2) ∈ Jord(T ) and εT (ρ, a)εT (ρ, a− 2)−1 = 1,

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a)−1 ⊗ L(ν

−a+1
2 ρ;T4),

where T4 has mT4
(ρ, a − 2) = mT (ρ, a) + 1, mT4

(ρ, a) = 0, the remaining
multiplicities for T4 match those for T , and εT4

is the restriction of εT .
(5) If (ρ, a), (ρ, a− 2) �∈ Jord(T ), then

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k ⊗ T.

(6) If (ρ, a) �∈ Jord(T ) but (ρ, a− 2) ∈ Jord(T ), then

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k−1 ⊗ L(ν

−a+1
2 ρ;T ).

Case 3 (a > 3 and fπ(ν
a−3
2 ρ) > 0). Note that we retain the assumption a−1

2 ≡
red(ρ;σ) mod 1.

Let X = {ν a−3
2 ρ, ν

a−1
2 ρ}. The process in this case involves working through μ∗

X

(noting that as a > 3, X satisfies the hypotheses for (1.2)). Thus we begin with a
couple of general observations regarding μ∗

X .

The following is just a restatement of Lemma 1.3.5 of [J5].

Lemma 3.5. An irreducible representation of a general linear group with support
on X has one of the following forms:

(ν
a−1
2 ρ)x × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])y × δ([ν

a−3
2 ρ, ν

a−1
2 ρ])z

or

(ν
a−3
2 ρ)x × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])y × δ([ν

a−3
2 ρ, ν

a−1
2 ρ])z.

As a consequence, we have a couple of ways to calculate μ∗
X(π), π an irreducible

representation of a classical group (not necessarily π ∼= L(ν−
a+1
2 ρ)k, δ([ν−

a+1
2 ρ,

ν
a−3
2 ρ])�;T ) for this part of the discussion). We could calculate

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)α1 ⊗ λ1,

μ∗
{ν

a−3
2 ρ}

(λ1) = (ν
a−3
2 ρ)α2 ⊗ λ2,

μ∗
{ν

a−1
2 ρ}

(λ2) = (ν
a−1
2 ρ)α3 ⊗ λ3.

It follows from Lemma 3.5 that θπ(X) = λ3 and

τπ(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ν
a−1
2 ρ)α1+α3−α2 × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])α3

× δ([ν
a−3
2 ρ, ν

a−1
2 ρ])α2−α3 if α1 + α3 ≥ α2,

(ν
a−3
2 ρ)α2−α1−α3 × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])α3

× δ([ν
a−3
2 ρ, ν

a−1
2 ρ])α1 if α1 + α3 ≤ α2

(noting that in the first case, one necessarily has α2−α3 ≥ 0). One could also start

with ν
a−3
2 ρ:

μ∗
{ν

a−3
2 ρ}

(π) = (ν
a−3
2 ρ)α

′
1 ⊗ λ′

1,

μ∗
{ν

a−1
2 ρ}

(λ′
1) = (ν

a−1
2 ρ)α

′
2 ⊗ λ′

2,

μ∗
{ν

a−3
2 ρ}

(λ′
2) = (ν

a−3
2 ρ)α

′
3 ⊗ λ′

3.
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Again, θπ(X) = λ′
3 and

τπ(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ν
a−3
2 ρ)α

′
1+α′

3−α′
2 × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])α

′
2−α′

3

× δ([ν
a−3
2 ρ, ν

a−1
2 ρ])α

′
3 if α′

1 + α′
3 ≥ α′

2,

(ν
a−1
2 ρ)α

′
2−α′

1−α′
3 × ζ([ν

a−3
2 ρ, ν

a−1
2 ρ])α

′
1

× δ([ν
a−3
2 ρ, ν

a−1
2 ρ])α

′
3 if α′

1 + α′
3 ≤ α′

2

(noting that in the first case, one necessarily has α′
2 − α′

3 ≥ 0).

Returning to π ∼= L(ν−
a+1
2 ρ)k, δ([ν−

a+1
2 ρ, ν

a−3
2 ρ])�;T ), although we do not have

a way to calculate μ∗
{ν

a−1
2 ρ}

(π) at this point, we can determine μ∗
{ν

a−3
2 ρ}

(π) as this

fits under the previous case (see section 3.3). Further, as we have fπ(ν
a−3
2 ρ) > 0,

the resulting λ′
1 is associated to a group of lower rank. By inductive hypothesis,

we may then continue on and determine μ∗
X(π) as above (second approach, i.e.,

calculating μ∗
X working in the order μ∗

{ν
a−3
2 ρ}

, μ∗
{ν

a−1
2 ρ}

, μ∗
{ν

a−3
2 ρ}

). As τX(π)

determines fπ(ν
a−1
2 ρ), we can determine whether or not fπ(ν

a−1
2 ρ) = 0. Of course,

if it is zero, there is nothing left to do.

If fπ(ν
a−1
2 ρ) > 0, then we have θπ(X) = λ3 = λ′

3. From τπ(X), we may easily

determine α1, α2, α3, noting α1 = fπ(ν
a−1
2 ρ) > 0. As we are dealing with lower-

rank groups, we may then detemine λ2 such that μ∗
{ν

a−1
2 ρ}

(λ2) = (ν
a−1
2 ρ)α3⊗λ3 and

then λ1 such that μ∗
{ν

a−3
2 ρ}

(λ1) = (ν
a−3
2 ρ)α2 ⊗ λ2. We then have θπ(ν

a−1
2 ρ) = λ1,

and have thus determined μ∗
{ν

a−1
2 ρ}

(π), as needed.

4. Examples

In this section, we do a couple of examples to illustrate the algorithms from the
previous section. The first is a duality calulation using the algorithm for calculat-
ing duality discussed in the introduction, implemented using the algorithms from
sections 3.2 and 3.3 to do the needed Jacquet module calculations. An example
which included a nontrivial use of the algorithm in section 3.4 would be considerably
longer, so we provide a second example illustrating the use of that algorithm.

4.1. Example 1. Given π, specified by its Langlands data, we compute the Lang-
lands data for π̂.

Suppose red(ρ;σ) = 1
2 . Write

δ([ν−
1
2 ρ, ν

1
2 ρ])� σ = T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)⊕ T−(δ([ν

− 1
2 ρ, ν

1
2 ρ])),

where the components have

rM,G(T+(δ([ν
− 1

2 ρ, ν
1
2 ρ]);σ)) = 2 · ν 1

2 ρ⊗ ν
1
2 ρ⊗ σ + ν

1
2 ρ⊗ ν−

1
2 ρ

and
rM,G(T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)) = ν

1
2 ρ⊗ ν−

1
2 ρ.

In terms of data, Jordρ(T±(δ([ν
− 1

2 ρ, ν
1
2 ρ]);σ)) = {(ρ, 2)} with mT±(ρ, 2) = 2 and

εT±(ρ, 2) = ±1 (signs matching). Let

π = L(δ([ν−
5
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ;T−((δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ).

In what follows, we show that

π̂ = L(ν−
5
2 ρ, δ([ν−

3
2 ρ, ν−

1
2 ρ]), (ν−

1
2 ρ)2;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)).
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Note that if we specialize to ρ = 1F× , σ = 1SO(1), we have

π = L(StGL(4)(ν
−1), ν−

1
2 , T−)

and π̂ = L(ν−
5
2 , StGL(2)(ν

−1), ν−
1
2 × ν−

1
2 ;T+) (in SO(15, F )).

Note that in the beginning of the calculations below, we have favored calculating
μ∗
{νxρ} for x > 0 as this simplifies the later calculations. In particular, on the dual

side, the resulting (ν−xρ) ⊗ . . . must be associated to (1) the context of (3.1), so
we are essentially dealing with a general linear groups calculation at that point (see
Note 3.2).

Step 1.

μ∗
{ν

5
2 ρ}

(π) = ν
5
2 ρ⊗ L(δ([ν−

3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ;T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)) = ν

5
2 ρ⊗ θ1

(defining θ1).

To see this using the algorithm in section 3.3, we have

π ↪→ L(δ([ν− 5
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ)� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

↪→ L(δ([ν− 3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ)× ν−

5
2 ρ� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓ (Claim 1)

π ↪→ L(δ([ν− 3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ)� L(ν−

5
2 ρ;T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))).

By Proposition 3.4, we have

μ∗
{ν

5
2 ρ}

(L(ν−
5
2 ρ;T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))) = ν

5
2 ρ⊗ T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))).

Then,

π ↪→ L(δ([ν− 3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ)× ν

5
2 ρ� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓ (Claim 2)

π ↪→ L(δ([ν− 3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ, ν

5
2 ρ)� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓
π ↪→ ν

5
2 ρ× L(δ([ν− 3

2 ρ, ν
1
2 ρ]), ν−

1
2 ρ)� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓
θ1 = L(δ([ν−

3
2 ρ, ν

1
2 ρ]), ν−

1
2 ρ;T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)),

as claimed.

Step 2.

μ∗
{ν

1
2 ρ}

(θ1) = (ν
1
2 ρ)3 ⊗ L(δ([ν−

3
2 ρ, ν−

1
2 ρ]), ν−

1
2 ρ;σ) = (ν

1
2 ρ)3 ⊗ θ2

(defining θ2).

To see this using the results of section 3.3, observe that

θ1 ↪→ δ([ν−
3
2 ρ, ν

1
2 ρ])× ν−

1
2 ρ� T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)

⇓ (Claim 1)

θ1 ↪→ δ([ν−
3
2 ρ, ν

1
2 ρ])� L(ν−

1
2 ρ;T−(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ).
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By Theorem 3.3, we then have

θ1 ↪→ δ([ν−
3
2 ρ, ν

1
2 ρ])× (ν

1
2 ρ)2 � L(ν−

1
2 ρ;σ)

⇓ (Claim 2)

θ1 ↪→ L(δ([ν− 3
2 ρ, ν

1
2 ρ]), (ν

1
2 ρ)2)� L(ν−

1
2 ρ;σ)

⇓
θ1 ↪→ (ν

1
2 ρ)3 × δ([ν−

3
2 ρ, ν−

1
2 ρ])� L(ν−

1
2 ρ;σ)

from which the identity of θ2 follows.

Step 3.

μ∗
{ν

3
2 ρ}

(θ2) = ν
3
2 ρ⊗ L((ν−

1
2 ρ)2;σ) = ν

3
2 ρ⊗ θ3

(defining θ3). This may be argued using the algorithm from section 3.3 as above,
but simplifies considerably as

θ2 ↪→ ν−
1
2 ρ×ν−

1
2 ρ×ν−

3
2 ρ�σ ∼= ν−

1
2 ρ×ν−

1
2 ρ×ν

3
2 ρ�σ ∼= ν

3
2 ρ×ν−

1
2 ρ×ν−

1
2 ρ�σ

(by the irreducibility of ν−
3
2 ρ� σ and ν−

1
2 ρ× ν

3
2 ρ).

Step 4.

μ∗
{ν− 1

2 ρ}
(θ3) = (ν−

1
2 ρ)2 ⊗ σ.

Step 5.

μ∗
{ν

1
2 ρ}

(θ̂3) = (ν
1
2 ρ)2 ⊗ σ

⇓
θ̂3 = T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ).

Step 6.

μ∗
{ν− 3

2 ρ}
(θ̂2) = ν−

3
2 ρ⊗ T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)

⇓
θ̂2 = L(ν−

3
2 ρ;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

(by Lemma 2.4).

Step 7.

μ∗
{ν− 1

2 ρ}
(θ̂1) = (ν−

1
2 ρ)3 ⊗ L(ν−

3
2 ;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓
θ̂1 = L(δ([ν−

3
2 ρ, ν−

1
2 ρ]), (ν−

1
2 ρ)2;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)).

Note that from Step 2, we see that if θ̂1 = L(Δ; T ),

μ∗
{ν− 1

2 ρ}
(L(Δ; T )) = (ν−

1
2 ρ)3 ⊗ L(ν−

3
2 ;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ)

⇓
m∗

{ν− 1
2 ρ}

(L(Δ)) = (ν−
1
2 ρ)3 ⊗ ν−

3
2 ρ.

It now follows from [J5] that L(Δ) = L(δ([ν− 3
2 ρ, ν−

1
2 ρ]), (ν−

1
2 ρ)2). The identity of

θ̂1 is then immediate.

Step 8.

μ∗
{ν− 5

2 ρ}
(π̂) = ν−

5
2 ρ⊗ L(δ([ν−

3
2 ρ, ν−

1
2 ρ]), (ν−

1
2 ρ)2;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

⇓
π̂ = L(ν−

5
2 ρ, δ([ν−

3
2 ρ, ν−

1
2 ρ]), (ν−

1
2 ρ)2;T+(δ([ν

− 1
2 ρ, ν

1
2 ρ]);σ))

as in Step 7.



178 CHRIS JANTZEN

4.2. Example 2. Given π as in Case 3 of section 3.4, we compute μ∗
{ν

a−1
2 ρ}

(π).

Again, suppose red(ρ;σ) = 1
2 . Let T ≤ δ([ν−

1
2 ρ, ν

1
2 ρ]) � δ([ν

1
2 ρ, ν

3
2 ρ];σ)—the

latter the generalized Steinberg representation whose minimal Jacquet module is

ν
3
2 ρ⊗ν

1
2 ρ⊗σ—and having εT (ρ, 2) = −1. In particular, Jordρ(T ) = {(ρ, 2), (ρ, 4)}

with mT (ρ, 2) = 2, mT (ρ, 4) = 1, εT (ρ, 2) = −1, and εT (ρ, 4) = 1. We let π =

L((ν−
3
2 ρ)3, δ([ν−

3
2 , ν

1
2 ρ]);T ) and calculate μ∗

{ν
3
2 ρ}

(π).

Observe that we are in Case 3 from section 3.4, thus wish to calculate μ∗
X(π) for

X = {ν 1
2 ρ, ν

3
2 ρ}. Using the notation from that section, we have

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)2 ⊗ L((ν−

3
2 ρ)3, δ([ν−

3
2 ρ, ν−

1
2 ρ]), ν−

1
2 ρ; δ([ν

1
2 ρ, ν

3
2 ρ];σ))︸ ︷︷ ︸

λ′
1

.

Next,

μ∗
{ν

3
2 ρ}

(λ′
1) = (ν

3
2 ρ)4 ⊗ L(ν−

3
2 ρ, (ν−

1
2 ρ)2; δ(ν

1
2 ρ;σ))︸ ︷︷ ︸

λ′
2

and

μ∗
{ν

1
2 ρ}

(λ′
2) = ν

1
2 ρ⊗ L(ν−

3
2 ρ, ν−

1
2 ρ; δ(ν

1
2 ρ;σ)).

It then follows that

μ∗
X(π) = L((ν 1

2 ρ)2, δ([ν
1
2 ρ, ν

3
2 ρ]), (ν

3
2 ρ)3)⊗ L(ν−

3
2 ρ, ν−

1
2 ρ; δ(ν

1
2 ρ;σ)),

noting that L((ν 1
2 ρ)2, δ([ν

1
2 ρ, ν

3
2 ρ]), (ν

3
2 ρ)3) = ζ([ν

1
2 ρ, ν

3
2 ρ])2×δ([ν

1
2 ρ, ν

3
2 ρ])×ν

3
2 ρ

(irreducibly induced).
If we approach μ∗

X(π) in the other order, we may write

μ∗
{ν

3
2 ρ}

(π) = (ν
3
2 ρ)2 ⊗ λ1,

μ∗
{ν

1
2 ρ}

(λ1) = (ν
1
2 ρ)3 ⊗ λ2,

μ∗
{ν

3
2 ρ}

(λ2) = (ν
3
2 ρ)2 ⊗ L(ν−

3
2 ρ, ν−

1
2 ρ; δ(ν

1
2 ρ;σ)).

Now,

λ2 = L((ν−
3
2 ρ)2, ν−

1
2 ρ; δ([ν

1
2 ρ, ν

3
2 ρ];σ)).

Then,

μ∗
{ν

1
2 ρ}

(λ1) = (ν
1
2 ρ)3 ⊗ L((ν−

3
2 ρ)2, ν−

1
2 ρ; δ([ν

1
2 ρ, ν

3
2 ρ];σ))

⇓
λ1 = L((ν−

3
2 ρ)2, T ),

where T = δ([ν−
1
2 ρ, ν

1
2 ρ])�T (so mT (ρ, 2) = 4, with the rest of the data matching

that for T ).

5. Proofs for section 3.3

In the algorithm given in section 3.3, there are four claims made whose proofs
are deferred to this section. In particular, claims 1–4 of section 3.3 are proven in
Lemmas 5.4, 5.5, 5.6, and 5.7, respectively.

The following is Proposition 3.1 of [J8].
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Proposition 5.1. Suppose π ≤ (ν
−a+1

2 ρ)k× δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])��T is irreducible.

Then, π has the form

π = L((ν
−a+1

2 ρ)k
′
, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�

′
;T ′)

with k′ + �′ ≤ k + �.

Corollary 5.2. If π = L((ν
−a+1

2 ρ)k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ), then θπ(ν

a−1
2 ρ) has

the form

θπ(ν
a−1
2 ρ) = L((ν

−a+1
2 ρ)k

′′
, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�

′′
;T ′′).

Proof. Since π ≤ (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T , we have

μ∗(π) ≤ M
∑

x1, x2, i1, . . . , i�
j1, . . . j�, h

(ν
−a+1

2 ρ)x1 × (ν
a−1
2 ρ)x2

×
(∏�

s=1 δ([ν
−is+1ρ, ν

a−3
2 ρ])× δ([νjsρ, ν

a−1
2 ρ])

)
× λh

⊗(ν
−a+1

2 ρ)k−x1−x2 ×
(

�∏
s=1

δ([νisρ, νjs−1ρ])

)
� θh

for some M . Now, observe that to contribute to μ∗
{ν

a−1
2 ρ}

, we must have x1 = 0

and −is + 1 = a−1
2 for all s. Further, each js must be either a−1

2 or a+1
2 . Let �1

denote the number of s for which js =
a−1
2 . We then have

μ∗
{ν

a−1
2 ρ}

(π) ≤
∑

(ν
a−1
2 ρ)x2+�1 × λh

⊗(ν
−a+1

2 ρ)k−x2×δ([ν
−a+3

2 ρ, ν
a−3
2 ρ])�1×δ([ν

−a+3
2 ρ, ν

a−1
2 ρ])�−�1�θh.

Now, writing μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)fT ⊗ θT , it follows from Lemma 2.2 that

θπ(ν
a−1
2 ρ) ≤ (ν

−a+1
2 ρ)k−x2 × δ([ν

−a+3
2 ρ, ν

a−3
2 ρ])�1

× δ([ν
−a+3

2 ρ, ν
a−1
2 ρ])�−�1�

(
(ν

a−1
2 ρ)fT+x2+�1−fπ�θT

)
.

If θT = T ∗ is tempered, this gives

θπ(ν
a−1
2 ρ) ≤ (ν

−a+1
2 ρ)k+fT+�1−fπ × δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�−�1

�

(
δ([ν

−a+3
2 ρ, ν

a−3
2 ρ])�1 � T ∗

)
;

if not, θT has the form θT = L((δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]);T ∗∗) and

θπ(ν
a−1
2 ρ) ≤ (ν

−a+1
2 ρ)k+fT+�1−fπ × δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�−�1+1

�

(
δ([ν

−a+3
2 ρ, ν

a−3
2 ρ])�1 � T ∗∗

)
.

In either case, it follows from Proposition 5.1 that θπ(ν
a−1
2 ρ) has the form claimed.

�

Lemma 5.3. Suppose Δ ⊗ T satisfies the requirements to be Langlands data.The
only terms λ⊗ θ ≤ μ∗(L(Δ)� T ) having central character of λ matching that of Δ
is L(Δ)⊗ T , which appears with multiplicity one.
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Write M∗(L(Δ)) =
∑

i λ
′
i ⊗ λ̌′′′

i ⊗ λ′′
i , noting that λ′

i ⊗ λ′′
i ⊗ λ′′′

i ≤ rM,G(L(Δ)).
If μ∗(T ) =

∑
j ζj ⊗ θj , then by Theorem 2.1

μ∗ (L(Δ)� T ) =
∑
i,j

λ′
i × λ̌′′′

i × ζj ⊗ λ′′
i � θj .

We are interested in when L(Δ) ≤ λ′
i × λ̌′′′

i × ζj . Observe that as rM,G(L(Δ)) ≥
λ′
i⊗λ′′

i ⊗λ′′′
i , we must have the central exponent for λ̌′′′

i ×ζj matching that of λ′′
i ×λ′′′

i .
Further, observe that as the segments appearing in λ′′

i ⊗ λ′′′
i are the lower parts of

segments from Δ—which have negative central exponent—the central exponent of
λ̌′′′
i × ζj must be negative. However, if nontrivial, ζj must have nonnegative central

exponent by the Casselman criterion. Similarly, if nontrivial, λ̌′′′
i must have positive

central exponent as λ′′′
i has negative central exponent (as above, it is comprised of

lower parts of segments with negative central exponents). Thus, λ′′′
i and ζj must be

trivial, leaving λ′
i = L(Δ), hence θj = T . That L(Δ)⊗T appears with multiplicity

one follows from properties of the Langlands classification (e.g., [B-J3]). �
We now turn to the task of verifying the claims.

Lemma 5.4. Claim 1 holds.

Proof. To see this, first write λ = L(Δ∗;T ∗). Then,

π ↪→ L(Δ(2))× L(Δ∗)� T ∗

⇓ (Lemma 2.2)
π ↪→ L(Δ∗∗)� T ∗

for some irreducible L(Δ∗∗) ≤ L(Δ(2)) × L(Δ∗). Now, observe that if Σ′ and Σ′′

are two linked segments with negative central exponents, then Δ′∪Δ′′ and Δ′∩Δ′′

also have negative central exponents. It then follows from Lemma 2.3 that Δ∗∗

has negative central exponents. Therefore, by the Langlands classification we must
have π = L(Δ∗∗;T ∗). In particular, this forces Δ∗∗ = Δ and T ∗ = T ; the former
implying L(Δ) ≤ L(Δ(2)) × L(Δ∗). Observe that this implies Δ∗ has the same

central character as (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�. By Lemma 5.3 applied to

(ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T , it then follows that L(Δ∗) = (ν

−a+1
2 ρ)k ×

δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�, as needed. �

Lemma 5.5. Claim 2 holds.

Proof. First, we make an initial claim: an irreducible subquotient of L(Δ(2)) ×
(ν

a−1
2 ρ)f1 has the form L(Δ∗, (ν

a−1
2 ρ)f1−x) for some 0 ≤ x ≤ f1 and Δ∗ consisting

of segments with negative central exponents. To show this, it suffices by Lemma 2.3
to show the following: if a (multi)set of segments Δ0 satisfies (1) Δ0 consists of

segments with negative central exponents and copies of ν
a−1
2 ρ (segments with a

single element), and (2) δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]) is not in Δ0, then any Δ′

0 obtained by
replacing a pair of segments Σ,Σ′ with Σ ∪ Σ′,Σ ∩ Σ′ (i.e., as in Lemma 2.3) also
satisfies (1) and (2). This may be seen by considering two cases: first when one

of the segments is ν
a−1
2 ρ, then when neither is. If one of the segments is ν

a−1
2 ρ,

then the other must have the form [ν
−di+1

2 ρ, ν
a−3
2 ρ] in order for the segments to be

linked. This gives ∅ and [ν
−di+1

2 ρ, ν
a−1
2 ρ] as the intersection and union. Clearly,

(2) holds. In order for (1) to fail, we would have to have di ≤ a. However, since

di ≥ ci + 2 = a, the only possibility is [ν
−di+1

2 ρ, ν
ci−1

2 ρ] = [ν
−a+1

2 ρ, ν
a−3
2 ρ]—ruled
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out by (2). If ν
a−1
2 ρ is not one of the segments, write them as [ν

−di+1

2 ρ, ν
ci−1

2 ρ]

and [ν
−dj+1

2 ρ, ν
cj−1

2 ρ]; without loss of generality, we may assume cj > ci. For the
segments to be linked, we must then have dj < di (also ci ≥ −dj); for negative
central exponents, ci < di and cj < dj . Taking the intersection and union, we get

[ν
−dj+1

2 ρ, ν
ci−1

2 ρ] and [ν
−di+1

2 ρ, ν
cj−1

2 ρ], respectively. We have cj < dj < di and

ci < cj < dj , so (1) is still satisfied. For (2), observe that to obtain [ν
−a+1

2 ρ, ν
a−3
2 ρ]

as the intersection, we must have ci = a − 2 and dj = a. However, ci < cj < dj
then becomes a − 2 < cj < a, a contradiction as cj ≡ a mod 2. Similarly, for

[ν
−a+1

2 ρ, ν
a−3
2 ρ] to be the union, we would require cj = a − 2 and di = a. Then,

cj < dj < di gives the contradiction. The initial claim now follows.

Now, suppose (for an indirect argument) we had λ′ = L(Δ∗, (ν
a−1
2 ρ)f1−x) for

some x > 0. By Corollary 5.2, θ1 = L((ν
−a+1

2 ρ)k1 , δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�1 ;T1). Then,

by Lemma 2.2,

π ↪→ L(Δ∗)× (ν
a−1
2 ρ)f1−x � θ1 ⇒ π ↪→ L(Δ∗)� θ2

for some irreducible θ2 ≤ (ν
a−1
2 ρ)f1−x � θ1. Write

θ2 = L((ν
−a+1

2 ρ)k2 , δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�2 ;T2)

by Proposition 5.1. Again by Lemma 2.2,

π ↪→ L(Δ∗)× L((ν
−a+1

2 ρ)k2 , δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�2)� T2 ⇒ π ↪→ L(Δ∗∗)� T2

for some irreducible L(Δ∗∗) ≤ L(Δ∗) × L((ν −a+1
2 ρ)k2 , δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�2). By

Lemma 2.4, since the central exponents of segments in Δ∗, (ν
−a+1

2 ρ), and

δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]) are all negative, so are the central exponents of segments in

Δ∗∗. It then follows from the Langlands classification that π = L(Δ∗∗;T2). We
next show this is not the case.

To see this, we focus on the number of segments having upper end with exponents
at least a−1

2 . Let nΔ be the number of such segments in Δ. Since Δ(2) is obtained

from Δ by removing segments δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]) and then taking

{ν
−a+1

2 ρ}
m∗, we

see that nΔ = nΔ(2) . By assumption, nΔ∗ = nΔ(2) + x = nΔ + x, x > 0. By

Lemma 2.3 applied to L(Δ∗∗) ≤ L(Δ∗) × L((ν −a+1
2 ρ)k2 , δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�2), we

see that nΔ∗∗ = nΔ∗ = nΔ + x. Thus, we cannot have Δ∗∗ = Δ, so cannot have
π = L(Δ;T ) = L(Δ∗∗;T ∗

1 ). Thus, we must have x = 0, and the lemma follows. �

Lemma 5.6. Claim 3 holds.

Proof. We have θπ(ν
a−1
2 ρ) ≤ L(Δ(4)) � θ2 and by (1.2) (in particular, uniqueness

of θπ),

rM,G(θπ(ν
a−1
2 ρ)) ≥ L(Δ(4))⊗ (ν

a−1
2 ρ)f2 ⊗ θ1.

If we knew μ∗
L(Δ(4))

(L(Δ(4))� θ2) = L(Δ(4))⊗ θ2, it would follow that

μ∗
L(Δ(4))(θπ(ν

a−1
2 ρ)) = L(Δ(4))⊗ θ2 ⇒ μ∗(θ2) ≥ (ν

a−1
2 ρ)f2 ⊗ θ1.

Since θ2 ≤ (ν
a−1
2 ρ)f2 � θ1 and fθ1(ν

a−1
2 ρ) = 0, Claim 3 follows. Thus Claim 3 is

reduced to showing the following: for any θ′ ≤ (ν
a−1
2 ρ)f2 � θ1, we have

(5.1) μ∗
L(Δ(4))(L(Δ

(4))� θ′) = L(Δ(4))⊗ θ′.
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Write θ1 = L((ν
−a+1

2 ρ)k
∗
, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�

∗
;T ∗) (Corollary 5.2). Then

L(Δ(4))× (ν
a−1
2 ρ)f2 � θ1 ≤ L(Δ(4))

× (ν
a−1
2 ρ)f2 × (ν

−a+1
2 ρ)k

∗ × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�

∗
� T ∗.

Thus (5.1) would follow if we show

μ∗
L(Δ(4))

(
L(Δ(4))× (ν

a−1
2 ρ)f2 × (ν

−a+1
2 ρ)k

∗ × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�

∗
� T ∗

)
= L(Δ(4))⊗

(
(ν

a−1
2 ρ)f2 × (ν

−a+1
2 ρ)k

∗ × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�

∗
� T ∗

)
.

We use Tadić’s μ∗ structure to argue this. First, write M∗(L(Δ(4))) =
∑

i ξ
′
i ⊗

ξ̌′′′i ⊗ξ′′i . Note that ξ′i⊗ξ′′i ⊗ξ′′′i ≤ rM,G(L(Δ(4)). In particular, we have m∗(L(Δ(4)))

≥ L(Δ(4)
i,1 ) ⊗ L(Δ(4)

i,2 ) with L(Δ(4)
i,1 ) = ξ′i and m∗(L(Δ(4)

i,2 )) ≥ ξ′′i ⊗ ξ′′′i . Note the

generalized Steinberg representations appearing in Δ
(4)
i,2 all have negative central

exponents (as Δ
(4)
i,2 consists of the lower parts of segments in Δ(4) and the gener-

alized Steinberg representations in Δ(4) all have negative central exponents). Also,

observe that as gL(Δ(4))(ν
−a+1

2 ρ) = 0, we must also have gL(Δ
(4)
i,2 )

(ν
−a+1

2 ρ) = 0.

Next, write μ∗(T ∗) =
∑

j ζj ⊗ ψj and

M∗((ν
a−1
2 ρ)f2 × (ν

−a+1
2 ρ)k

∗
)

=
∑
x1,x2

cx1,x2
(ν

a−1
2 ρ)x1 × (ν

−a+1
2 ρ)x2 ⊗ (ν

a−1
2 ρ)f2+k∗−x1−x2 ,

with cx1,x2
the multiplicity (we include the multiplicity in this term only, as it is

somewhat awkward to write it otherwise). As

M∗(δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]))

=

a−1
2∑

r=−a+1
2

a−1
2∑

s=r

δ([νr+1ρ, ν
a−1
2 ρ])× δ([νs, ν

a−3
2 ρ])⊗ δ([νrρ, νs−1ρ]),

we get

μ∗
(
L(Δ(4))× (ν

a−1
2 ρ)f2 × (ν

−a+1
2 ρ)k

∗ × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�

∗
� T ∗

)
=

∑
i

∑
j

∑
x1,x2

m∗∏
�=1

a−1
2∑

r�=
−a+1

2

a−1
2∑

s�=r�

cx1,x2
ξ′i × ξ̌′′′i × ζj × (ν

a−1
2 ρ)x1

× (ν
−a+1

2 ρ)x2 × δ([νr�+1ρ, ν
a−1
2 ρ])× δ([νs� , ν

a−3
2 ρ])⊗ . . . .

Thus, we need

L(Δ(4)) ≤ ξ′i × ξ̌′′′i × ζj

× (ν
a−1
2 ρ)x1 × (ν

−a+1
2 ρ)x2 ×

m∗∏
�=1

δ([νr�+1ρ, ν
a−1
2 ρ])× δ([νs� , ν

a−3
2 ρ]).

Now, observe that the supercuspidal support of L(Δ(4)
i,2 )—which matches the

supercuspidal support of ξ′′i ⊗ ξ′′′i —must then match that of ξ̌′′′i × ζj × (ν
a−1
2 ρ)x1 ×
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(ν
−a+1

2 ρ)x2 ×
∏m∗

�=1 δ([ν
r�+1ρ, ν

a−1
2 ρ])× δ([νs� , ν

a−3
2 ρ]). To simplify notation, write

this induced representation as (ν
−a+1

2 ρ)x2 × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])y × Λ, where y =

|{� | s� = −a+1
2 } and Λ consists of all the remaining terms. Note that all the terms

appearing in Λ have nonnegative central exponents. Let us define

nΛ(ν
xρ) = number of times νxρ appears in the supercuspidal support of Λ

and

nL(ν
xρ) = number of times νxρ appears in the supercuspidal support of L(Δ(4)

i,2 ).

We now observe the following:

(1) As the segments comprising Δ
(4)
i,2 all have negative central exponent, we

have nL(ν
−xρ) ≥ nL(ν

xρ) for x > 0. Further, if ν−xρ is a lower segment
end, the inequality is strict.

(2) As the segments in Λ have nonnegative central exponents, we have nΛ(ν
−xρ)

≤ nΛ(ν
xρ) for x > 0.

(3) We have

nL(ν
xρ) =

⎧⎨
⎩

nΛ(ν
−a+1

2 ρ) + x2 + y if x = −a+1
2 ,

nΛ(ν
xρ) + y if −a+3

2 ≤ x ≤ a−3
2 ,

nΛ(ν
xρ) otherwise.

Suppose ν−xρ is a lower segment end from Δ
(4)
i,2 . If −x < −a+1

2 , we have (using

(1) and (3) above)

nΛ(ν
−xρ) = nL(ν

−xρ) > nL(ν
xρ) = nΛ(ν

xρ)

contradicting (2) above. Similarly, if −a+3
2 ≤ −x < 0, we have

nΛ(ν
−xρ) + y = nL(ν

−xρ) > nL(ν
xρ) = nΛ(ν

xρ) + y,

again contradicting (2) above. Thus the only possible lower segment ends from Δ
(4)
i,2

are ν
−a+1

2 ρ. However, this would force gL(Δ
(4)
i,2 )

(ν
−a+1

2 ρ) �= 0, another contradiction.

Thus we must have L(Δ(4)
i,2 ) trivial, from which the lemma follows. �

Lemma 5.7. Claim 4 holds.

Proof. Write L(Δ(4))×(ν
−a+1

2 ρ)kθ2 =
∑

i L(Δi). An argument similar to that used
in the proof of Lemma 5.6 gives

μ∗
L(Δi)

(L(Δi)� L(δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�θ2 ;Tθ2))

= L(Δi)⊗ L(δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�θ2 ;Tθ2);

the claim may be deduced from this. �

6. Proofs for section 3.4

In this section, we prove the main results given in section 3.4. In particular,
the proofs of Theorem 3.3 and Proposition 3.4 are given in the first and second
subsections, respectively.

We begin by recalling some results from [J8].

Proposition 6.1. Consider ν
a−1
2 ρ�T , where a ≡ 2red(ρ;σ)+1 mod 2 and a > 2.

(1) If m(ρ, a− 2) = 0, we have ν
a−1
2 ρ� T irreducible.
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(2) If m(ρ, a− 2) = 1, we have

(a) ν
a−1
2 ρ� T reducible if m(ρ, a) = 0 or ε(ρ, a)ε(ρ, a− 2)−1 = 1,

(b) ν
a−1
2 ρ� T irreducible if ε(ρ, a)ε(ρ, a− 2) = −1.

(3) If m(ρ, a− 2) ≥ 2, we have ν
a−1
2 ρ� T reducible.

In the case a = 2, we have ν
1
2 ρ � T reducible if m(ρ, 2) = 0 or ε(ρ, 2) = 1; if

ε(ρ, 2) = −1, we have irreducibility.

Note 6.2. In the case where a �≡ 2red(ρ;σ) + 1 mod 2, we have the following:

ν
a−1
2 ρ � T is reducible if and only if (ρ, a − 2) ∈ Jord(T ). In particular, in the

context of (2.1) and (2.3), we have ν
a−1
2 ρ � δ irreducible, with any reducibility

which arises then coming from the reducibility of ν
a−1
2 ρ× δ([ν

−ci+1

2 ρi, ν
ci−1

2 ρi]) or

ν
a−1
2 ρ× δ([ν

−di+1

2 ρ′i, ν
di−1

2 ρ′i]) (or with ν
−a+1

2 ρ̌ in place of ν
a−1
2 ρ).

6.1. Proof of Theorem 3.3. In this subsection, we prove Theorem 3.3, which de-

termines μ∗
{ν

a−1
2 ρ}

(
L((ν

−a+1
2 ρ)k, δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])�;T )

)
in the special case when

a = 2. Note that in this case, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]) = ν

−a+1
2 ρ, so we simply have

π = L((ν
−a+1

2 ρ)k;T ).

Lemma 6.3. Suppose (ρ, 2) ∈ Jord(T ) with ε(ρ, 2) = 1. Then, ν−
1
2 ρ�L(ν−

1
2 ρ;T )

is irreducible.

Proof. Let π = L(ν−
1
2 ρ;T ).

We first show that fπ(ν
1
2 ρ) = mT (ρ, 2) − 1. To start, we claim that T ↪→

ν
1
2 ρ � T ′, where T ′ has the same data as T except that mT ′(ρ, 2) = mT (ρ, 2) − 1

(admissibility for the data for T ′ follows from the appendix to [J8]). To see this,

observe that by Lemma 2.2, T ↪→ (ν
1
2 ρ)fT (ν

1
2 ρ) � θ implies T ↪→ ν

1
2 ρ� λ for some

irreducible λ ≤ (ν
1
2 ρ)fT (ν

1
2 ρ)−1 � θ. From this, we have fT (ν

1
2 ρ) = 1 + fλ(ν

1
2 ρ),

implying μ∗
{ν

1
2 ρ}

(λ) = (ν
1
2 ρ)fT (ν

1
2 ρ)−1 ⊗ θ. It now follows from Theorem 3.1 and

the uniqueness in (1.2) that θ = T ′, verifying the claim. Now,

π ↪→ ν−
1
2 ρ× ν

1
2 ρ� T ′

⇓ (Lemma 2.2)

π ↪→ ζ([ν−
1
2 ρ, ν

1
2 ρ])� T ′

or

π ↪→ δ([ν−
1
2 ρ, ν

1
2 ρ])� T ′.

As the latter would imply fπ(ν
− 1

2 ρ) = 0, it must be the former, i.e.,

π ↪→ ζ([ν−
1
2 ρ, ν

1
2 ρ])� T ′.

As M∗(ζ([ν−
1
2 ρ, ν

1
2 ρ])) contains no terms of the form ν

1
2 ρ ⊗ . . . , it follows imme-

diately that fπ(ν
1
2 ρ) ≤ fT ′(ν

1
2 ρ) = mT (ρ, 2)− 1. On the other hand,

π ↪→ ζ([ν−
1
2 ρ, ν

1
2 ρ])� ((ν

1
2 ρ)mT (ρ,2)−1

� θT (ν
1
2 ρ)) ∼= (ν

1
2 ρ)mT (ρ,2)−1 × ζ([ν−

1
2 ρ, ν

1
2 ρ])� θT (ν

1
2 ρ),

from which it immediately follows that fπ(ν
1
2 ρ) ≥ mT (ρ, 2)−1, implying fπ(ν

1
2 ρ) =

mT (ρ, 2)− 1, as claimed.



DUALITY FOR CLASSICAL p-ADIC GROUPS 185

Next, let λ = L(ν−
1
2 ρ, ν−

1
2 ρ;T ). As ζ([ν−

1
2 ρ, ν

1
2 ρ]) � T ↪→ ν−

1
2 ρ × ν

1
2 ρ � T =

ν−
1
2 ρ× ν−

1
2 ρ� T and

μ∗(ζ([ν−
1
2 ρ, ν

1
2 ρ])� T ) ≥ (ν−

1
2 ρ× ν−

1
2 ρ)⊗ T,

it follows that λ is a subquotient of ζ([ν−
1
2 ρ, ν

1
2 ρ]) � T ; as the induced represen-

tation is unitary, λ appears as a subrepresentation. As above, it follows from this
embedding that fλ(ν

1
2 ρ) = mT (ρ, 2).

Now, it follows from the Langlands classification that

λ ↪→ ν−
1
2 ρ� L(ν−

1
2 ρ;T )

as unique irreducible subrepresentation. On the other hand, writing

μ∗
{ν

1
2 ρ}

(L(ν−
1
2 ρ;T )) = (ν

1
2 ρ)mT (ρ,2)−1 ⊗ θ,

we then have
μ∗
{ν

1
2 ρ}

(λ) = (ν
1
2 ρ)mT (ρ,2) ⊗ θ

⇓
π ↪→ (ν

1
2 ρ)mT (ρ,2) � θ

⇓ (Lemma 2.2)

π ↪→ ν
1
2 ρ� Λ

for some irreducible Λ ≤ (ν
1
2 ρ)mT (ρ,2)−1 � θ, necessarily having μ∗

{ν
1
2 ρ}

(Λ) =

(ν
1
2 ρ)mT (ρ,2)−1 ⊗ θ. By (1.2), it follows that Λ = L(ν−

1
2 ρ;T ). Thus, we have

λ ↪→ ν
1
2 ρ� L(ν−

1
2 ρ;T ).

Now, observe that L(ν−
1
2 ρ;T ) = Lquot(ν

1
2 ρ;T ) (quotient setting of the Langlands

classification; see Lemma 1.1 of [J3]). As λ = Lquot(ν
1
2 ρ, ν

1
2 ρ;T ), we see that λ

is the unique irreducible quotient of ν
1
2 ρ × ν

1
2 ρ � T ; as ν

1
2 ρ � Lquot(ν

1
2 ρ;T ) is a

quotient of ν
1
2 ρ× ν

1
2 ρ� T , it follows that λ is the unique irreducible quotient of

ν
1
2 ρ� Lquot(ν

1
2 ρ;T ) ∼= ν

1
2 ρ� L(ν−

1
2 ρ;T ).

As we have just shown that it also appears as a subrepresentation, it then follows

from multiplicity one in the Langlands classification that we must have ν
1
2 ρ �

L(ν−
1
2 ρ;T ) irreducible, as needed. �

Proposition 6.4. Suppose (ρ, 2) ∈ Jord(T ).

(1) If ε(ρ, 2) = 1 (so ν−
1
2 ρ� T reducible), then

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ;T )

and

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ, ν−

1
2 ρ;T )

are irreducible.
(2) If ε(ρ, 2) = −1 (so ν−

1
2 ρ� T irreducible̊,), then

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � T

and

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ;T )

are irreducible.
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Proof. We start with ζ([ν−
1
2 ρ, ν

1
2 ρ])� �L(ν−

1
2 ρ;T ) when ε(ρ, 2) = 1. Observe that

using Lemma 6.3,

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ;T ) ↪→ ζ([ν−

1
2 ρ, ν

1
2 ρ])�−1 × ν−

1
2 ρ× ν

1
2 ρ� L(ν−

1
2 ρ;T )

∼= ζ([ν−
1
2 ρ, ν

1
2 ρ])�−1×ν−

1
2 ρ× ν−

1
2 ρ� L(ν−

1
2 ρ;T )

∼= ν−
1
2 ρ×ν−

1
2 ρ×ζ([ν−

1
2 ρ, ν

1
2 ρ])�−1 � L(ν−

1
2 ρ;T )

... (iterating)

↪→ (ν−
1
2 ρ)2� � L(ν−

1
2 ρ;T ),

which has unique irreducible subrepresentation L((ν−
1
2 ρ)2�+1;T ) by the Langlands

classification. Therefore, L((ν−
1
2 ρ)2�+1;T ) appears in ζ([ν−

1
2 ρ, ν

1
2 ρ])��L(ν−

1
2 ρ;T )

as unique irreducible subrepresentation. Further, it follows from multiplicity one for
the Langlands classification that it appears with multiplicity one in ζ([ν−

1
2 ρ, ν

1
2 ρ])�

� L(ν−
1
2 ρ;T ) as well.

Now, applying the same argument but starting with Ť , we have

L((ν−
1
2 ρ)2�+1; Ť ) ↪→ ζ([ν−

1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ; Ť )

as unique irreducible subrepresentation. Taking contragredients or their complex
conjugates,

L((ν−
1
2 ρ)2�+1; Ť )̌ ∼= L((ν−

1
2 ρ)2�+1;T )

(Lemma 1.1 of [J3]) appears as the unique irreducible quotient of(
ζ([ν−

1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ; Ť )

)
ˇ∼= ζ([ν−

1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ;T ).

This contradicts multiplicity one unless

ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ;T ) = L((ν−

1
2 ρ)2�+1;T )

(irreducible), as needed.

The case ζ([ν−
1
2 ρ, ν

1
2 ρ])� � T when ε(ρ, 2) = −1 may be done similarly.

For the remaining cases—ζ([ν−
1
2 ρ, ν

1
2 ρ])� � L(ν−

1
2 ρ, ν−

1
2 ρ;T ) when ε(ρ, 2) = 1

and ζ([ν−
1
2 ρ, ν

1
2 ρ])��L(ν−

1
2 ρ;T ) when ε(ρ, 2) = −1—note that by Lemma 6.3 and

Proposition 6.1, we have L(ν−
1
2 ρ, ν−

1
2 ρ;T ) = ν−

1
2 ρ� L(ν−

1
2 ρ;T ) (irreducible) for

ε(ρ, 2) = 1 and L(ν−
1
2 ρ;T ) = ν−

1
2 ρ�T (irreducible) when ε(ρ, 2) = −1. Using these

observations, these cases may also be done using an argument like that above. �

Lemma 6.5. Suppose (ρ, 2) ∈ Jord(T ) with ε(ρ, 2) = 1. Let π = L(ν−
1
2 ρ;T ) and

m = m(ρ, 2). Then,

μ∗
{ν

1
2 ρ}

(π) =

{
(ν

1
2 ρ)m−1 ⊗ L(ν−

1
2 ρ;T ′) if m odd,

(ν
1
2 ρ)m−1 ⊗ L(ν−

1
2 ρ, ν−

1
2 ρ;T ′′) if m even,

where mT ′(ρ, 2) = 1, mT ′′(ρ, 2) = 0, the remaining multiplicities for T ′, T ′′ match
those for T , εT ′ = εT , and εT ′′ is the restriction of εT .

Proof. Recall from the proof of Lemma 6.3 that fπ(ν
1
2 ρ) = m− 1.

We first address the case m odd. In this case, we have T ∼= δ([ν−
1
2 ρ, ν

1
2 ρ])

m−1
2 �

T ′. Therefore, π ≤ δ([ν−
1
2 ρ, ν

1
2 ρ])

m−1
2 � L(ν−

1
2 ρ;T ′). As

μ∗
{ν

1
2 ρ}

(
δ([ν−

1
2 ρ, ν

1
2 ρ])

m−1
2 � L(ν−

1
2 ρ;T ′)

)
= (ν

1
2 ρ)m−1 ⊗ L(ν−

1
2 ρ;T ′)
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and fπ(ν
1
2 ρ) = m− 1, it then follows that

μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m−1 ⊗ L(ν−

m−1
2 ρ;T ′),

as needed.
Now, suppose m is even. First, if m = 2, we have

π ↪→ ν−
1
2 ρ� T

↪→ ν−
1
2 ρ× δ([ν−

1
2 ρ, ν

1
2 ρ])� T ′′

∼= δ([ν−
1
2 ρ, ν

1
2 ρ])× ν−

1
2 ρ� T ′′

↪→ ν
1
2 ρ× ν−

1
2 ρ× ν−

1
2 ρ� T ′′.

As fπ(ν
1
2 ρ) = 1, it follows from Lemma 2.4 that

μ∗
{ν

1
2 ρ}

(π) = ν
1
2 ρ⊗ L(ν−

1
2 ρ, ν−

1
2 ρ;T ′′),

as needed.
If m > 2 even, we can now argue as in the case m odd. We have T ∼=

δ([ν−
1
2 ρ, ν

1
2 ρ])

m−2
2 � T2, where mT2

(ρ, 2) = 2 and the remaining data matches

that for T . Then, π ≤ δ([ν−
1
2 ρ, ν

1
2 ρ])

m−2
2 � L(ν−

1
2 ρ;T2). From above,

μ∗
{ν

1
2 }
(L(ν−

1
2 ρ;T2)) = ν

1
2 ρ⊗ L(ν−

1
2 ρ, ν−

1
2 ρ;T ′′).

One then has

μ∗
{ν

1
2 ρ}

(
δ([ν−

1
2 ρ, ν

1
2 ρ])

m−2
2 � L(ν−

1
2 ρ;T2)

)
= (ν

1
2 ρ)m−1 ⊗ L(ν−

1
2 ρ, ν−

1
2 ρ;T ′′)

⇓
μ∗
{ν

1
2 ρ}

(π) = (ν
1
2 ρ)m−1 ⊗ L(ν−

1
2 ρ, ν−

1
2 ρ;T ′′),

(again noting fπ(ν
1
2 ρ) = m− 1), as needed. �

Proof of Theorem 3.3. For (1), we first claim that f
L(ν− 1

2 ρ;T )
(ν

1
2 ρ) = 0. Suppose

this were not the case. As fT (ν
1
2 ρ) = 0, it then follows from L(ν−

1
2 ρ;T ) ≤ ν

1
2 ρ�T

that

μ∗
{ν

1
2 ρ}

(L(ν−
1
2 ρ;T )) = ν

1
2 ρ⊗ T.

Therefore, by (1.2)

L(ν−
1
2 ρ;T ) ↪→ ν

1
2 ρ� T.

As L(ν−
1
2 ρ;T ) = Lquot(ν

1
2 ρ;T ), we have L(ν−

1
2 ρ;T ) appearing as both the unique

irreducible quotient and as a subrepresentation in ν
1
2 ρ� T . This contradicts mul-

tiplicity one in the Langlands classification unless ν
1
2 ρ�T is irreducible. However,

by Proposition 6.1, that is not the case. Thus, we must have f
L(ν− 1

2 ρ;T )
(ν

1
2 ρ) = 0,

as claimed.
For (2)–(5) when ε(ρ, 2) = −1, observe that from Proposition 6.4

π = ζ([ν−
1
2 ρ, ν

1
2 ρ])

k
2 � T

when k is even and

π = ζ([ν−
1
2 ρ, ν

1
2 ρ])

k−1
2 × ν

1
2 ρ� T
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when k is odd. Writing μ∗
{ν

1
2 ρ}

(T ) = (ν
1
2 ρ)m−1 ⊗ θT (ν

1
2 ρ), we see that

μ∗
{ν

1
2 ρ}

(π) =

{
(ν

1
2 ρ)m−1 ⊗ ζ([ν−

1
2 ρ, ν

1
2 ρ])

k
2 � θT (ν

1
2 ρ) if k even,

(ν
1
2 ρ)m ⊗ ζ([ν−

1
2 ρ, ν

1
2 ρ])

k−1
2 � θT (ν

1
2 ρ) if k odd,

noting that it follows from (1.2) that the induced representations on the right-hand
side above are necessarily irreducible. By Theorem 3.1,

θT (ν
1
2 ρ) =

{
T ′ if m odd,

L(ν−
1
2 ρ;T ′′) if m even,

from which the result then follows.
The argument when ε(ρ, 2) = 1 is similar, but uses

π =

{
ζ([ν−

1
2 ρ, ν

1
2 ρ])

k−1
2 � L(ν−

1
2 ρ;T ) if k odd,

ζ([ν−
1
2 ρ, ν

1
2 ρ])

k−2
2 × ν

1
2 ρ� L(ν−

1
2 ρ;T ) if k even,

(by Lemma 6.3 and Proposition 6.4) and Lemma 6.5. �

6.2. Proof of Proposition 3.4. We use notation as in Proposition 3.4.

Proof of Proposition 3.4. First, observe that (noting a > 3 ⇒ ν
−a+1

2 ρ × ν
a−3
2 ρ

irreducible)

π ↪→ (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� � T

↪→ (ν
−a+1

2 ρ)k × δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])� × (ν

a−3
2 ρ)fT (ν

a−3
2 ρ) � θT (ν

a−3
2 ρ)

∼= (ν
a−3
2 ρ)fT (ν

a−3
2 ρ) × δ([ν

−a+1
2 ρ, ν

a−3
2 ρ])� × (ν

−a+1
2 ρ)k � θT (ν

a−3
2 ρ)

⇓
fπ(ν

a−3
2 ρ) = �+ fT (ν

a−3
2 ρ).

Therefore, we have fπ(ν
a−3
2 ρ) = 0 if and only if � = 0 and fT (ν

a−3
2 ρ) = 0. By

Theorem 3.1, this means either (i) (ρ, a−2) �∈ Jord(T ) or (ii) (ρ, a−2), (ρ, a−4) ∈
Jord(T ) with mT (ρ, a − 2) = 1 and εT (ρ, a − 2)εT (ρ, a − 4)−1 = −1 (interpreted

as εT (ρ, 2) = −1 for a = 4). This verifies the conditions for fπ(ν
a−3
2 ρ) = 0 in the

statement of Proposition 3.4. We next turn to the calculation of μ∗
{ν

a−1
2 ρ}

(π) when

these conditions are met.
If (ρ, a − 2) �∈ Jord(T ), we have ν

−a+1
2 ρ � T irreducible (Proposition 6.1) and

μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗ T1 (Theorem 3.1). As a > 3, we have ν

−a+1
2 ρ ×

ν
a−1
2 ρ irreducible. Thus,

π ↪→ (ν
−a+1

2 ρ)k × T ∼= (ν
a−1
2 ρ)k � T ↪→ (ν

a−1
2 ρ)k+mT (ρ,a) � T1,

from which the results for (1) and (5) follow.
For (2) and (3), we have (ρ, a− 2) ∈ Jord(T ) and ε(ρ, a)εT (ρ, a− 2)−1 = −1. In

this case, we again have ν
a−1
2 ρ � T irreducible, and the argument proceeds as for

(1),(5) above (the case (ρ, a− 2) �∈ Jord(T )).
For (4), we have (ρ, a−2) ∈ Jord(T ) and ε(ρ, a)εT (ρ, a−2)−1 = 1. Note that we

also have mT (ρ, a− 2) = 1 and ε(ρ, a− 2)εT (ρ, a− 4)−1 = −1 (suitably interpreted
for a = 4). By Corollary 3.4.4 of [J7],

T ↪→ δ([ν
−a+3

2 ρ, ν
a−1
2 ρ])� T ′
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(T ′ as described there). Therefore,

π ↪→ (ν
−a+1

2 ρ)k × δ([ν
−a+3

2 ρ, ν
a−1
2 ρ])� T ′

⇓ (Lemma 2.2)

π ↪→ (ν
−a+1

2 ρ)k−1 × δ([ν
−a+1

2 ρ, ν
a−1
2 ρ])� T ′

or

π ↪→ (ν
−a+1

2 ρ)k−1 × L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−1
2 ρ]))� T ′.

As the former would imply π = L((ν
−a+1

2 ρ)k−1; T ) for some irreducible T ≤
δ([ν

−a+1
2 ρ, ν

a−1
2 ρ]) � T ′ by the Langlands classification, it must be the latter. As

fT ′(ν
a−1
2 ρ) = mT ′(ρ, a) = mT (ρ, a)− 1, we have

μ∗
{ν

a−1
2 ρ}

(T ′) = (ν
a−1
2 ρ)mT (ρ,a)−1 ⊗ T ′′,

where mT ′′(ρ, a − 2) = mT ′(ρ, a) = mT (ρ, a) − 1, mT ′′(ρ, a) = 0, remaining mul-
tiplicities matching T , and εT ′′ the restriction of εT . Noting the irreducibility

of ν
−a+1

2 ρ � T ′ (Proposition 6.1) and L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−1
2 ρ])) × ν±(a−1

2 )ρ
(Lemma 1.3.3 of [J5] and Lemma 3.6 of [J8]), we then have

π ↪→ L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−1
2 ρ]))× (ν

−a+1
2 ρ)k−1 � T ′

∼= L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−1
2 ρ]))× (ν

a−1
2 ρ)k−1 � T ′

↪→ L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−1
2 ρ]))× (ν

a−1
2 ρ)k+mT (ρ,a)−2 � T ′′

∼= (ν
a−1
2 ρ)k+mT (ρ,a)−2 × L(ν −a+1

2 ρ, δ([ν
−a+3

2 ρ, ν
a−1
2 ρ]))� T ′′

↪→ (ν
a−1
2 ρ)k+mT (ρ,a)−1 × L(ν −a+1

2 ρ, δ([ν
−a+3

2 ρ, ν
a−3
2 ρ]))� T ′′.

Note that as neither M∗(L(ν −a+1
2 ρ, δ([ν

−a+3
2 ρ, ν

a−3
2 ρ]))) nor μ∗(T ′′) contains terms

of the form ν
a−1
2 ρ⊗ . . . , it follows that fπ(ν

a−1
2 ρ) = k +mT (ρ, a)− 1.

Observe that if mT ′′(ρ, a− 2) = mT (ρ, a)− 1 > 0, then δ([ν
−a+3

2 ρ, ν
a−3
2 ρ])� T ′′

is irreducible and

π ↪→ (ν
a−1
2 ρ)k+mT (ρ,a)−1 × ν

−a+1
2 ρ× δ([ν

−a+3
2 ρ, ν

a−3
2 ρ])� T ′′

⇓ (Lemma 2.4)

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a)−1 ⊗ L(ν

−a+1
2 ρ; δ([ν

−a+3
2 ρ, ν

a−3
2 ρ])� T ′′).

The data for δ([ν
−a+3

2 ρ, ν
a−3
2 ρ]) � T ′′ matches that for T4, finishing the proof in

the case mT (ρ, a) > 1.

If mT (ρ, a) = 1, then δ([ν
−a+3

2 ρ, ν
a−3
2 ρ])� T ′′ is reducible. The same argument

as above shows that

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+mT (ρ,a)−1 ⊗ L(ν

−a+1
2 ρ;T ∗)

for some T ∗ ≤ δ([ν
−a+3

2 ρ, ν
a−3
2 ρ]) � T ′′. To show T ∗ = T4, we must show that

εT∗(ρ, a−2)εT∗(ρ, a−4)=−1. To this end, observe that if θπ(ν
a−1
2 ρ)=L(ν

−a+1
2 ρ;T ∗)

with εT∗(ρ, a− 2)εT∗(ρ, a− 4) = 1, then

μ∗
{ν

a−3
2 ρ}

(L(ν
−a+1

2 ρ;T ∗)) = (ν
a−3
2 ρ)2 ⊗ L(ν

−a+1
2 ρ;T ∗∗),

where mT∗∗(ρ, a− 2) = 0, mT∗∗(ρ, a− 4) = mT∗(ρ, a− 4) + 2, and remaining data

matching that of T ∗. Irreducibility (Proposition 6.1) then tells us ν
−a+1

2 ρ� T ∗∗ =

L(ν
−a+1

2 ρ;T ∗). For X = {ν a−3
2 ρ, ν

a−1
2 ρ}, we then have

fπ(X) ≥ (k +mT (ρ, a)− 1) + 2 + 1 = k + 3.



190 CHRIS JANTZEN

However, as π ≤ (ν
−a+1

2 ρ)k � T , we have

fπ(X) ≤ k + fT (X);

as εT (ρ, a − 2)εT (ρ, a − 4)−1 = −1 (and noting mT (ρ, a − 2) = mT (ρ, a) = 1), we
see that fT (X) = 2. Therefore,

fπ(X) ≤ k + 2

a contradiction. Thus we cannot have εT∗(ρ, a − 2)εT∗(ρ, a − 4) = 1. This gives
εT∗(ρ, a− 2)εT∗(ρ, a− 4)−1 = −1, as needed, finishing this case.

The claim for (6) follows directly from the following observations:

(a) f
L(ν

−a+1
2 ρ;T )

(ν
a−1
2 ρ) = 0, and (b) ν

−a+1
2 ρ � L(ν

−a+1
2 ρ;T ) is irreducible, which

we establish below.
To see that f

L(ν
−a+1

2 ρ;T )
(ν

a−1
2 ρ) = 0, we argue indirectly. Suppose not—then

μ∗
{ν

a−1
2 ρ}

(L(ν
−a+1

2 ρ;T )) = ν
a−1
2 ρ⊗T . It then follows that L(ν

−a+1
2 ρ;T ) ↪→ ν

a−1
2 ρ�

T . However, L(ν
−a+1

2 ρ;T ) also appears as the unique irreducible quotient (Lang-

lands quotient) in ν
a−1
2 ρ� T . Since it appears with multiplicity one (by the Lang-

lands classification), we must have ν
a−1
2 ρ � T irreducible. However, by Proposi-

tion 6.1, that is not the case. Thus f
L(ν

−a+1
2 ρ;T )

(ν
a−1
2 ρ) = 0, as claimed.

To see that ν
−a+1

2 ρ � L(ν
−a+1

2 ρ;T ) is irreducible, first observe that by Propo-

sition 5.1, an irreducible subquotient of ν
−a+1

2 ρ � L(ν
−a+1

2 ρ;T ) must have one of

the following forms: π1 = L((ν
−a+1

2 ρ)2;T ), π2 = L(ν
−a+1

2 ρ, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ]);T1),

π3=L(δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])2;T2), π4=L(ν

−a+1
2 ρ;T3), π5=L(δ([ν

−a+1
2 ρ, ν

a−3
2 ρ]);T4),

or π6 = T5. Of course, π1 appears with multiplicity one by the Langlands clas-
sification. Thus it remains to show that none of the other possibilities acutally
occur.

To show the other possibilities cannot occur, we use Proposition 2.4.1 of [J7],
which tells how Jord(T ) may be determined from the supercuspidal support. We
note that all the remaining possibilities except π4 would require mT (ρ, a−2) ≥ 2 to
occur, which is not the case. For π4, Proposition 2.4.1 of [J7] tells us mT3

(ρ, a) = 1

and mT3
(ρ, a − 2) = 0. Thus, by Proposition 6.1, we have π4 = ν

−a+1
2 ρ � T3

(irreducible), from which we see fπ4
(ν

a−1
2 ρ) = 2, too large for it to be a subquotient

of ν
−a+1

2 ρ�L(ν
−a+1

2 ρ;T ). The needed irreducibility and the proposition follow. �

7. Remarks on x = 0

In this section, we discuss the problems which arise when x = 0.
The first issue which arises is that the algorithms for calculating μ∗

{νxρ}(π) need

not work when x = 0. To see this, consider the example of

π = L(ν−1ρ, ν−1ρ, ρ� Ti(ρ;σ))

in the case where red(ρ;σ) = 0 and ρ � σ ∼= T1(ρ;σ)⊕ T−1(ρ;σ). Attempting the
algorithm from section 3.3 would give fπ(ρ) = 0. However, as

π ↪→ ζ([ν−1ρ, νρ])� Ti(ρ;σ) ↪→ ζ([ν−1ρ, νρ])× ρ� σ ∼= ρ× ζ([ν−1ρ, νρ])� σ,

Frobenius reciprocity tells us fπ(ρ) �= 0.
Fortunately, this is not a major issue as we do not need to be able to calculate

μ∗
{ρ}(π) for general π, only for those π when there is no other choice, i.e., when
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fπ(ν
xρ) = 0 for all x �= 0. In that case, an easy variation of the previous algorithm

applies. Write π = L(Δ;T ) and μ∗
{ρ}(T ) = ρ× · · · × ρ︸ ︷︷ ︸

f

⊗T ′ (noting that T ′ must be

tempered and is given in Theorem 3.1). Further, note that any generalized Steinberg
δ([νaρ, νbρ]) appearing in Δ has a < 0 (by conditions on Langlands data) and b ≥ 0
(or else fπ(ν

xρ) > 0 for some x < 0). In particular, this means ρ� δ([νaρ, νbρ]) is
irreducible; by Lemma 1.3.3 of [J5], this means ρ× L(Δ) is irreducible. Thus,

π ↪→ L(Δ)� T ↪→ L(Δ)× ρ× · · · × ρ︸ ︷︷ ︸
f

�T ′ ∼= ρ× · · · × ρ︸ ︷︷ ︸
f

×L(Δ)� T ′.

If we write

m∗
{ρ} (L(Δ)) = ρ× · · · × ρ︸ ︷︷ ︸

f ′

⊗L(Δ′),

we get

π ↪→ ρ× · · · × ρ︸ ︷︷ ︸
f+f ′

×L(Δ′)� T ′.

Now, it follows from Theorem 2.2.1 or [J5] that the representations appearing in
Δ′ have negative central exponents, so by Lemma 2.4,

μ∗
{ρ}(π) = ρ× · · · × ρ︸ ︷︷ ︸

f+f ′

⊗L(Δ′;T ′).

Thus, it is not difficult to determine μ∗
{ρ}(π) for those cases we need.

Another issue is that the results of section 3.4 have not been done for the case
a = 3. While not trivial to obtain, a version of Theorem 3.3 should certainly be
possible. Note that in the case red(ρ;σ) ≡ 1

2 mod 1, such a result is given in
section 8.

A more critical issue arises in (1.2). The first property there holds up to mul-
tiplicity (which is sufficient for our purposes); the second property holds as is.
However the third does not—we can have π1 �∼= π2 with μ∗

{ρ}(π1) = μ∗
{ρ}(π2). The

simplest example is when red(ρ;σ) = 0 and πi = Ti(ρ;σ), but it is not hard to find
less trivial examples. Again, we do not need the general case—it would be enough
to have a result for π having fπ(ν

xρ) = 0 for all x �= 0. We still have πi = Ti(ρ;σ) as
a counterexample, but nontrivial counterexamples are much rarer. The proposition
below limits the possibilities.

Proposition 7.1. Suppose π = L(Δ;T ) satisfies

(7.1) μ∗
{νxρ}(π) = 0 if x �= 0.

Write μ∗
{ρ}(π) = (ρ× · · · × ρ)︸ ︷︷ ︸

fπ

⊗θ up to multiplicity. Suppose π′ is an irreducible

representation with μ∗
{ρ}(π

′) = (ρ× · · · × ρ)︸ ︷︷ ︸
fπ

⊗θ up to multiplicity and also satisfies

equation (7.1).

(1) If mT (ρ, 1) = 0 or is odd, then π′ = π.
(2) If mT (ρ, 1) is positive and even, then π′ = π or π∗, where π∗ = L(Δ;T ∗)

and T ∗ has data matching that of T except εT∗(ρ, 1) = −εT (ρ, 1).
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Proof. Write π = L(Δ;T ) = L(δ([ν−b1ρ, νa1ρ]), . . . , (δ([ν−bkρ, νakρ]);T ). We may
assume that a1 ≤ a2 ≤ · · · ≤ ak as this reordering can be effected by commuting
representations which induce irreducibly (see section 1.2 of [J5]). Further, we must
have a1 = 0 as long as k > 0, i.e., π nontempered. As the claim is easier when
k = 0, we assume k > 0 below. In particular, this means there is some � such that
a� = 0 and a�+1 > 0 (possibly � = k).

Write μ∗
{ρ}(T ) = (ρ× · · · × ρ)︸ ︷︷ ︸

fT

⊗T0, up to multiplicity. Since ai, bi ≥ 0 for all i,

we have ρ× δ([ν−biρ, νaiρ]) ∼= δ([ν−biρ, νaiρ])× ρ (irreducible) for all i. Thus,

π ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bkρ, νakρ])× (ρ× · · · × ρ)︸ ︷︷ ︸
fT

�T0

∼= (ρ× · · · × ρ)︸ ︷︷ ︸
fT

×δ([ν−b1ρ, ρ])× · · · × δ([ν−b�ρ, ρ])× δ([ν−b�+1ρ, νa�+1ρ])

× · · · × δ([ν−bkρ, νakρ])� T0

↪→ (ρ× · · · × ρ)︸ ︷︷ ︸
�+fT

×δ([ν−b1ρ, ν−1ρ])× · · · × δ([ν−b�ρ, ν−1ρ])× δ([ν−b�+1ρ, νa�+1ρ])

× · · · × δ([ν−bkρ, νakρ])� T0.

From this embedding, we immediately see that fπ = � + fT . It then follows from
Lemma 2.4 that up to multiplicity,

μ∗
{ρ}(π)

= (ρ× · · · × ρ)︸ ︷︷ ︸
�+fT

⊗L(δ([ν−b1ρ, ν−1ρ]), . . . , δ([ν−b�ρ, ν−1ρ]), δ([ν−b�+1ρ, νa�+1ρ]),

. . . , δ([ν−bkρ, νakρ]);T0)

= (ρ× · · · × ρ)︸ ︷︷ ︸
�+fT

⊗θ

(defining θ).
Now, suppose π′ is an irreducible representation satisfying equation (7.1) and

having μ∗
{ρ}(π

′) = (ρ× · · · × ρ)︸ ︷︷ ︸
�+fT

⊗θ up to multiplicity. Then,

π′ ↪→ (ρ× · · · × ρ)︸ ︷︷ ︸
�+fT

×L(δ([ν−b1ρ, ν−1ρ]), . . . , δ([ν−b�ρ, ν−1ρ]), δ([ν−b�+1ρ, νa�+1ρ]),

. . . , δ([ν−bkρ, νakρ]))� T0)
⇓

π ↪→ (ρ× · · · × ρ)︸ ︷︷ ︸
fT

×λ� T0

for some irreducible

λ ≤ (ρ× · · · × ρ)︸ ︷︷ ︸
�

× L(δ([ν−b1ρ, ν−1ρ]), . . . , δ([ν−b�ρ, ν−1ρ]), δ([ν−b�+1ρ, νa�+1ρ]), . . . , δ([ν−bkρ, νakρ]))
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(Lemma 2.2). As fλ(ρ) = � (since fλ(ρ) < � would imply fπ′(ρ) < fT + �), we may
conclude that

λ = L(δ([ν−b1ρ, ρ]), . . . , δ([ν−b�ρ, ρ]), δ([ν−b�+1ρ, νa�+1ρ]), . . . , δ([ν−bkρ, νakρ])).

Then,

π′ ↪→ (ρ× · · · × ρ)︸ ︷︷ ︸
fT

×L(δ([ν−b1ρ, ρ]), . . . , δ([ν−b�ρ, ρ]), δ([ν−b�+1ρ, νa�+1ρ]),

. . . , δ([ν−bkρ, νakρ]))� T0
∼= L(δ([ν−b1ρ, ρ]), . . . , δ([ν−b�ρ, ρ]), δ([ν−b�+1ρ, νa�+1ρ]), . . . , δ([ν−bkρ, νakρ]))

× (ρ× · · · × ρ)︸ ︷︷ ︸
fT

�T0,

noting the irreducibility of

ρ× L(δ([ν−b1ρ, ρ]), . . . , δ([ν−b�ρ, ρ]), δ([ν−b�+1ρ, νa�+1ρ]), . . . , δ([ν−bkρ, νakρ]))

follows from that of ρ × δ([ν−biρ, νaiρ]) by Lemma 1.3.3 of [J5]. It then follows
from the Langlands classification that

π′ = L(δ([ν−b1ρ, ρ]), . . . , δ([ν−b�ρ, ρ]), δ([ν−b�+1ρ, νa�+1ρ]), . . . , δ([ν−bkρ, νakρ]);T ′)

for some component T ′ ≤ (ρ× · · · × ρ)︸ ︷︷ ︸
fT

�T0. If fT = 0 (corresponding to m(ρ, 1) ≤

1) or mT0
(ρ, 1) = 1 (corresponding to mT (ρ, 1) positive and odd), we have T ′ =

(ρ× · · · × ρ)︸ ︷︷ ︸
fT

�T0 = T irreducible. If neither of these holds, (ρ× · · · × ρ)︸ ︷︷ ︸
fT

�T0
∼=

T ⊕ T ∗, so T ′ = T or T ∗. The proposition follows. �

We emphasize that not every pair π, π∗ as in (2) of the proposition necessarily
have μ∗

{ρ}(π) = μ∗
{ρ}(π

∗), and in practice, it seems most do not. So, even in the

integral case, the duality algorithm from section 1—coupled with the observation
that if red(ρ;σ) = 0 (resp., red(ρ;σ) �= 0), the dual of (the irreducible representa-
tion) πi = ρ × · · · × ρ � Ti(ρ;σ) (resp., π = ρ × · · · × ρ � σ) is π−i (resp., π)—is
sometimes enough to calculate the dual.

8. The case π ∈ R((ρ, x0);σ) with x0 �= 1
2

Throughout most of this paper, we have focused on the most interesting and
difficult case—-when π ∈ R((ρ, 12 );σ) (so x ≡ red(ρ;σ) mod 1). In this section, we
take up what happens when the supercuspidal support of π is in {νxρ, ν−xρ}x∈x0+Z

where 0 ≤ x0 < 1
2 .

First, we note that if x0 �∈ 1
2Z, the situation is quite straightforward—μ∗

{ρ} does

not arise in the duality algorithm and the algorithms of sections 3.2 and 3.3 allow
us to calculate μ∗

{νxρ}(π); the situation covered by results of section 3.4 does not

occur. The only case requiring additional work is that when x0 = 0. Thus we
assume x0 = 0 in the remainder of the section.

The first issues that need to be addressed in this case are those connected to
μ∗
{ρ}. As noted in section 7, we need only calculate ν∗{ρ}(π) when there are no other

options, i.e., when fπ(ν
xρ) = 0 for all x �= 0. In this case, the algorithm given in

the beginning of section 7 allows us to calculate μ∗
{ρ}(π). There is also the issue

that one can have μ∗
{ρ}(π1) = μ∗

{ρ}(π2) for π1 �= π2 (e.g., π1 = L(δ([ν−1ρ, ρ]);σ) and
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π2 = L(ν−1ρ; ρ� σ)). Proposition 7.1 tells us this cannot happen here for π1 and
π2 both having fπi

(νxρ) = 0 for all x �= 0. Therefore, since we use μ∗
{ρ} only when

there are no other options, if we arrive at μ∗(π̂) = (ρ)k⊗λ in the duality algorithm
and there are two possibilities for π̂, we choose the one which has f(νxρ) = 0 for
all x �= 0 (noting that this property is clearly preserved under duality).

The results of section 3.4 are more delicate in their dependence on reducibility
values, etc. The situation covered by section 3.4 can occur in this case, and the
results there must be adapted to this case. Lemma 8.3, Lemma 8.4, and Proposi-
tion 8.5 are the analogue of Theorem 3.3—here for the case a = 3—while Proposi-
tion 8.6 is the analogue of Proposition 3.4. The algorithm at the end of section 3.4
then works as is for the general case.

We begin with some irreducibility results needed later.

Lemma 8.1. The following representations are irreducible:

(1) ν−1ρ× L(δ([ν−1ρ, ρ]), δ([ρ, νρ])) and νρ× L(δ([ν−1ρ, ρ]), δ([ρ, νρ])).
(2) δ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ])) and

δ([ρ, νρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ])).

(3) ζ([ν−1ρ, ρ])× L(ν−1ρ, δ([ρ, νρ])).

Proof. These may be proven using arguments like that in the proof of Lemma 3.6 of
[J8] or via a Jacquet module analysis like that in [B-J1] (but easier as only general
linear groups are involved). �

Lemma 8.2. δ([ν−1ρ, ρ])� T is irreducible.

Proof. First, we claim δ([ν−1ρ, ρ]) � σ is irreducible. Note that for some of the
groups in question, this is done in Proposition 6.3 of [T2]. More generally, were
δ([ν−1ρ, ρ])�σ reducible, the irreducible subquotients would have to have minimal
Jacquet modules rM,G(π1) = ρ⊗ν−1ρ⊗σ+ρ⊗νρ⊗σ and rM,G(π2) = 2 ·νρ⊗ρ⊗σ.
In particular, π2 would be square-integrable by the Casselman criterion. However,
by [Mœ2], [M-T], no such discrete series exists. Thus, δ([ν−1ρ, ρ])�σ is irreducible.

Now, observe that as x0 �≡ red(ρ;σ) mod 1, R((ρ, x0);σ) has no nontrivial el-
liptic tempered representations. In particular, we have T irreducibly induced as in
(2.3) with Tell = σ. Let π = L(δ([ν−1ρ, ρ]);T ). Then,

π ↪→ δ([ν−1ρ, ρ])� T ↪→ δ([ν−1ρ, ρ])× Λ� σ,

where Λ is a product of generalized Steinberg representations arising from (2.3).
Noting the irreducibility of δ([ν−1ρ, ρ])× Λ, δ([ρ, νρ])× Λ, and δ([ν−1ρ, ρ])� σ, a
commuting/inverting argument tells us

π ↪→ δ([ν−1ρ, ρ])× Λ� σ

∼= Λ× δ([ν−1ρ, ρ])� σ ∼= Λ× δ([ρ, νρ])� σ ∼= δ([ρ, νρ])× Λ� σ

⇓ (Lemma 2.2)

π ↪→ δ([ρ, νρ])� T ′

for some irreducible T ′ ≤ Λ� σ. We claim T ′ = T . Now,

μ∗(π) ≤ μ∗(δ([ρ, νρ])� T ′) = μ∗(δ([ν−1ρ, ρ])� T ′);

by Proposition 5.3 of [B-J3], δ([ν−1ρ, ρ]) ⊗ T ′ is the unique Jacquet module
subquotient having its central character. Consequently δ([ν−1ρ, ρ]) ⊗ T must be
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δ([ν−1ρ, ρ])⊗ T ′, implying T ′ = T , as claimed. This tells us π appears as both the
Langlands quotient in δ([ρ, νρ]) � T and as a subrepresentation. This contradicts
multiplicity one unless we have irreducibility. �

Lemma 8.3. For π = L(δ([ν−1ρ, ρ])�;T ), write μ∗(T ) = (νρ)fT ⊗ T ′. We have

μ∗
{νρ}(π) =

{
(νρ)fT+1 ⊗ L(δ([ν−1ρ, ρ])�−1; ρ� T ′) if � odd,
(νρ)fT ⊗ L(δ([ν−1ρ, ρ])�;T ′) if � even.

Proof. The proof is similar to that of Proposition 8.5 below; we forgo the details
here. �

Lemma 8.4. For π = L((ν−1ρ)k;T ), write μ∗(T ) = (νρ)fT ⊗T ′. If T = (ρ)k0�T0,
with fT0

(ρ) = 0, we have

μ∗
{νρ}(π) =

{
(νρ)fT ⊗ L((ν−1ρ)k;T ′) if k < 2k0,
(νρ)k−2k0+fT ⊗ L((ν−1ρ)2k0 ;T ′) if k ≥ 2k0.

Proof. The proof is done in three cases: k ≤ k0, k0 < k < 2k0, and 2k0 ≤ k. The
arguments for all three cases are similar; we do only the second case in detail.

We have

π ↪→ (ν−1ρ)k × (ρ)k0 � T0

⇓ (Lemma 2.2 and Lemma 1.3.5 of [J5])

π ↪→ (ν−1ρ)k−k0 × ζ([ν−1ρ, ρ])k
′ × δ([ν−1ρ, ρ])k0−k′

� T0

for some k′. We note that in the embedding above, we get fπ(ν
−1ρ) = k− k0 + k′,

hence must have k′ = k0. Thus,

π ↪→ (ν−1ρ)k−k0 × ζ([ν−1ρ, ρ])k0 � T0
∼= ζ([ν−1ρ, ρ])k0 × (ν−1ρ)k−k0 � T0
∼= ζ([ν−1ρ, ρ])k0 × (νρ)k−k0 � T0.

By Lemma 2.2,

π ↪→ ζ([ν−1ρ, ρ])k0−1 × L(ν−1ρ, δ([ρ, νρ]))× (νρ)k−k0−1 � T0

or
π ↪→ ζ([ν−1ρ, ρ])k0−1 × ζ([ν−1ρ, νρ])× (νρ)k−k0−1 � T0.

Observe that the former would imply fπ(ν
−1ρ) ≤ (k0−1)+1+(k−k0−1) = k−1.

Thus it must be the latter. Therefore,

π ↪→ ζ([ν−1ρ, νρ])× ζ([ν−1ρ, ρ])k0−1 × (νρ)k−k0−1 � T0.

Iterating this argument, we eventually arrive at

π ↪→ ζ([ν−1ρ, νρ])k−k0 × ζ([ν−1ρ, ρ])2k0−k � T0.

The embedding

(8.1) π ↪→ (ν−1ρ)k × (νρ)fT � T ′ ∼= (νρ)fT × (ν−1ρ)k � T ′

tells us fπ(νρ) ≥ fT . Now, write μ∗
{νρ}(T0) = (νρ)fT ⊗T ′

0, noting that fT0
(νρ) = fT

by Theorem 3.1. Then,

π ↪→ ζ([ν−1ρ, νρ])k−k0 × ζ([ν−1ρ, ρ])2k0−k × (νρ)fT � T ′
0

⇓ (Lemma 2.2)
π ↪→ ζ([ν−1ρ, νρ])k−k0 × ζ([ν−1ρ, ρ])2k0−k−1 × ζ([ν−1ρ, νρ])× (νρ)fT−1 � T ′

0

or
π ↪→ ζ([ν−1ρ, νρ])k−k0×ζ([ν−1ρ, ρ])2k0−k−1×L(ν−1ρ, δ([ρ, νρ]))×(νρ)fT−1 � T ′

0.
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As the former would imply fπ(νρ) ≤ fT − 1, it must be the latter. Then, by
Lemma 8.1 and the embedding L(ν−1ρ, δ([ρ, νρ])) ↪→ νρ× ζ([ν−1ρ, ρ]),

π ↪→ ζ([ν−1ρ, νρ])k−k0×ζ([ν−1ρ, ρ])2k0−k−1×L(ν−1ρ, δ([ρ, νρ]))×(νρ)fT−1 � T ′
0∼= ζ([ν−1ρ, νρ])k−k0×L(ν−1ρ, δ([ρ, νρ]))×ζ([ν−1ρ, ρ])2k0−k−1×(νρ)fT−1 � T ′
0

↪→ ζ([ν−1ρ, νρ])k−k0×
(
νρ× ζ([ν−1ρ, ρ])

)
×ζ([ν−1ρ, ρ])2k0−k−1×(νρ)fT−1 � T ′

0∼= νρ× ζ([ν−1ρ, νρ])k−k0×ζ([ν−1ρ, ρ])2k0−k × (νρ)fT−1 � T ′
0.

Iterating this argument, we eventually arrive at

π ↪→ (νρ)fT × ζ([ν−1ρ, νρ])k−k0 × ζ([ν−1ρ, ρ])2k0−k � T ′
0.

Note that this tells us fπ(νρ) = fT . By (8.1) and Lemma 2.4, it follows that

μ∗
{νρ}(π) = (νρ)fT ⊗ L((ν−1ρ)k;T ′),

as needed. �

Proposition 8.5. Let π = L((ν−1)k, δ([ν−1ρ, ρ])�;T ) with k, � > 0. Let

λ =

{
L((ν−1)k−1;T ) if � odd,
L((ν−1)k;T ) if � even,

and write μ∗
{νρ}(λ) = (νρ)fλ ⊗ L((ν−1ρ)k

∗
;T ∗) (Lemma 8.4). Then,

μ∗
{νρ}(π) =

{
(νρ)fλ+1 ⊗ L((ν−1)k

∗+1, δ([ν−1ρ, ρ])�−1; ρ� T ∗) if � odd,

(νρ)fλ ⊗ L((ν−1)k
∗
, δ([ν−1ρ, ρ])�;T ∗) if � even.

Proof. First, suppose � is odd and write � = 2j + 1 with j ≥ 0. Noting that
δ([ν−1ρ, ρ])� T is irreducible (Lemma 8.2),

π ↪→ (ν−1ρ)k × δ([ν−1ρ, ρ])2j+1 � T ∼= (ν−1ρ)k × δ([ν−1ρ, ρ])2j × δ([ρ, νρ])� T
⇓ (Lemma 2.2)

π ↪→ (ν−1ρ)k × δ([ν−1ρ, ρ])2j−1 × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))� T
or

(ν−1ρ)k × δ([ν−1ρ, ρ])2j−1 × δ([ν−1ρ, νρ])× ρ� T.

The latter would imply π = L((ν−1ρ)k, δ([ν−1ρ, ρ])2j−1; δ([ν−1ρ, νρ]) × ρ � T ) by
the Langlands classification, so it must be the former. Noting the irreducibility of
δ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ])) (Lemma 8.1)

π ↪→ (ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))× δ([ν−1ρ, ρ])2j−1 � T
⇓ (Lemma 8.2 and Lemma 2.2)

π ↪→ (ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))
×δ([ν−1ρ, ρ])2j−3 × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))� T

or
(ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))× δ([ν−1ρ, ρ])2j−3 × δ([ν−1ρ, νρ])× ρ� T.

The latter would give

π ↪→ (ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))
× δ([ν−1ρ, ρ])2j−3 × δ([ν−1ρ, νρ])× ρ� T

∼= (ν−1ρ)k × δ([ν−1ρ, ρ])2j−3

× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))× δ([ν−1ρ, νρ])× ρ� T
↪→ (ν−1ρ)k × δ([ν−1ρ, ρ])2j−3

× δ([ν−1ρ, ρ])× δ([ρ, νρ])�
(
δ([ν−1ρ, νρ])× ρ� T

)
∼= (ν−1ρ)k × δ([ν−1ρ, ρ])2j−3

× δ([ν−1ρ, ρ])× δ([ν−1ρ, ρ])�
(
δ([ν−1ρ, νρ])× ρ� T

)
.
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By the Langlands classification, this would again imply

π = L((ν−1ρ)k, δ([ν−1ρ, ρ])2j−1; δ([ν−1ρ, νρ])× ρ� T ),

so again, it must be the former. Iterating, we eventually arrive at

π ↪→ (ν−1ρ)k × δ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T.

As δ([ν−1ρ, ρ])×L(δ([ν−1ρ, ρ]), δ([ρ, νρ])) and δ([ρ, νρ])×L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))
are irreducible (Lemma 8.1), we have

π ↪→ (ν−1ρ)k × δ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T
∼= (ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j × δ([ν−1ρ, ρ])� T
∼= (ν−1ρ)k × L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j × δ([ρ, νρ])� T
∼= (ν−1ρ)k × δ([ρ, νρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T.

By Lemma 2.2, we have either

π ↪→ (ν−1ρ)k−1 × L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T
or

π ↪→ (ν−1ρ)k−1 × δ([ν−1ρ, νρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T.

The latter would imply fπ(ν
−1ρ) = k − 1, so the former must hold. Noting the

irreducibility of Lemma 3.6 of [J8] and Lemma 8.1, we then have

π ↪→ (ν−1ρ)k−1 × L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T
∼= L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j × (ν−1ρ)k−1 � T

⇓ (Lemma 2.2)
π ↪→ L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � λ

for some irreducible λ ≤ (ν−1ρ)k−1 � T . It follows from this embedding that
fπ(ν

−1ρ) ≤ 1 + fλ(ν
−1ρ) ⇒ fλ(ν

−1ρ) ≥ k − 1. By (1.2), this implies λ =
L((ν−1ρ)k−1;T ), matching the λ in the statement of the proposition. Then,

π ↪→ L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � L((ν−1ρ)k−1;T )

↪→ L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j × (νρ)fλ � L((ν−1ρ)k
∗
;T ∗)

∼= (νρ)fλ × L(ν−1ρ, δ([ρ, νρ]))× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � L((ν−1ρ)k
∗
;T ∗)

by the irreducibility in Lemma 8.1 and Lemma 1.3.3 of [J5]. As L(ν−1ρ, δ([ρ, νρ]))
↪→ νρ× ζ([ν−1ρ, ρ]), we have

π ↪→ (νρ)fλ+1 × ζ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � L((ν−1ρ)k
∗
;T ∗).

Note that it follows immediately from this embedding that fπ(νρ) = fλ + 1.
To finish, note that by Lemma 8.1, we have

π ↪→ (νρ)fλ+1 × (ν−1ρ)k
∗ × ζ([ν−1ρ, ρ])× L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T ∗.

Reversing the argument used above, we get

L(δ([ν−1ρ, ρ]), δ([ρ, νρ]))j � T ∗ ↪→ δ([ν−1ρ, ρ])2j � T ∗

⇓
π ↪→ (νρ)fλ+1 × (ν−1ρ)k

∗ × ζ([ν−1ρ, ρ])× δ([ν−1ρ, ρ])2j � T ∗.

Finally, as ζ([ν−1ρ, ρ]) ↪→ ν−1ρ× ρ, we have

π ↪→ (νρ)fλ+1 × (ν−1ρ)k
∗ × ν−1ρ× ρ× δ([ν−1ρ, ρ])2j � T ∗

∼= (νρ)fλ+1 × (ν−1ρ)k
∗+1 × δ([ν−1ρ, ρ])2j � (ρ� T ∗).

The result now follows from Lemma 2.4.
The case where � is even is similar. �
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Proposition 8.6. Let π = L((ν
−a+1

2 )k, δ([ν
−a+1

2 ρ, ν
a−3
2 ρ])�;T ) with a > 3, a odd

(and red(ρ;σ) ≡ 1
2 mod 1). Suppose fπ(ν

a−3
2 ρ) = 0. Then we must have � = 0

and (ρ, a− 2) �∈ Jord(T ). If μ∗
{ν

a−1
2 ρ}

(T ) = (ν
a−1
2 ρ)fT ⊗ T ′ (Theorem 3.1), then

μ∗
{ν

a−1
2 ρ}

(π) = (ν
a−1
2 ρ)k+fT ⊗ T ′.

Proof. First, the same argument as in the proof of Proposition 3.4 tells us that to

have fπ(ν
a−3
2 ρ) = 0, we must have � = 0 and fT (ν

a−3
2 ρ) = 0. However, in this

case, fT (ν
a−3
2 ρ) = 0 requires (ρ, a − 2) �∈ Jord(T ) (Theorem 3.1). By Note 6.2,

ν
−a+1

2 ρ�T is irreducible. Therefore, noting that ν
−a+1

2 ρ× ν
a−1
2 ρ is irreducible (as

a > 3),

π ↪→ (ν
−a+1

2 ρ)k � T
∼= (ν

−a+1
2 ρ)k−1 × ν

a−1
2 ρ� T

∼= (ν
a−1
2 ρ)× (ν

−a+1
2 ρ)k−1 � T

...
∼= (ν

a−1
2 ρ)k � T

∼= (ν
a−1
2 ρ)k+fT � T ′

⇓
μ∗
{ν

a−1
2 ρ}

(π) = (ν
−a+1

2 ρ)k+fT ⊗ T ′,

as claimed. �
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[T2] Marko Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91,
DOI 10.1007/BF02764004. MR1658535
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