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REPRESENTATIONS ASSOCIATED TO SMALL NILPOTENT

ORBITS FOR COMPLEX SPIN GROUPS

DAN BARBASCH AND WAN-YU TSAI

Abstract. This paper provides a comparison between the K-structure of
unipotent representations and regular sections of bundles on nilpotent orbits
for complex groups of type D. Precisely, let G0 = Spin(2n,C) be the Spin
complex group as a real group, and let K ∼= G0 be the complexification of the
maximal compact subgroup of G0. We compute K-spectra of the regular func-
tions on some small nilpotent orbits O transforming according to characters
ψ of CK(O) trivial on the connected component of the identity CK(O)0. We
then match them with the K-types of the genuine (i.e., representations which

do not factor to SO(2n,C)) unipotent representations attached to O.

1. Introduction

Let G be a connected complex semisimple group (viewed as a real group), and
let g, g∨, gC be its Lie algebra, dual Lie algebra, and complexified Lie algebra, re-
spectively. Special unipotent representations of G were introduced in [BV85]. To
each nilpotent orbit O∨ ⊂ g∨ an infinitesimal character λO∨ is associated via the
Jacobson–Morozov theorem; the orbit is associated to a Lie triple {e∨, h∨, f∨}, and
λO∨ = h∨/2 determines an infinitesimal character. Special unipotent representa-
tions are defined as the irreducible (gC,K)-modules Ξ satisfying

(1) the infinitesimal character is (λO∨ , λO∨) (see Section 4 for the parametriza-
tion of (gC,K)-modules) and

(2) the annihilator of Ξ in the universal enveloping algebra U(gC), denoted
AnnU(gC)Ξ, is the unique maximal primitive ideal of U(gC) with infinitesi-
mal character (λO, λO).

Denote by UG(O∨, λO∨) the set of unipotent representations of G associated to
O∨. In [Bar89], the unitarity of these representations is established for the case of
classical groups, and the whole unitary dual for such groups is determined. In the
process, a larger set of representations is introduced which are called unipotent.
A finite set of infinitesimal characters λO∨,s∨ is associated to each O∨, and an
irreducible module Ξ is unipotent if it satisfies (1) and (2) with the more general
λO∨,s∨ instead. The results in [Bar89] can be viewed as proving that the modules
in UG(O∨, λO∨,s∨) are the building blocks of the unitary dual.

In [Bar17] a different viewpoint is taken. Instead of parametrizing by O∨, the
unipotent representations are parametrized by nilpotent orbits O ⊂ g. The precise
setting is as follows. Let G0 ⊂ G be the real points of a complex linear reductive
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algebraic group G with Lie algebra g0 and maximal compact subgroup K0. Let
g0 = k0+s0 be the Cartan decomposition, and let g = k+s be the complexification.
Let K be the complexification of K0. Then K acts on s by the adjoint action. We
denote by CK(e) = {g ∈ K | Ad(g)e = e} the centralizer of e ∈ s in K.

For each irreducible admissible representation Ξ of G0, [Vog91] defines the as-
sociated cycle AC(Ξ) to be a union of nilpotent K-orbits in s, and an algebraic
representation of each centralizer CK(e) of a representative e for each orbit in
AC(Ξ).

Assume that G0 is a connected complex group viewed as a real Lie group. Then
G ∼= G0 × G0, and K ∼= G0 as complex groups. Furthermore s ∼= g0 as complex
vector spaces. In this case there is only one K-orbit O ⊂ s ∼= g0 in AC(Ξ). The
main results in [Vog00, Chapter 7] and [Vog91, Theorem 4.11] imply that, in the
case of a complex group,

Ξ |K= R(O, ψ)− Y,

with ψ an algebraic representation, R(O, ψ) as defined in equation (1.1.1) below,
and Y an S(g/k)-module supported on orbits of strictly smaller dimension.

Definition 1.1. Let e ∈ s be a nilpotent element, and let O := K · e ⊂ s be the
K-adjoint orbit of e. We say that an irreducible admissible representation Ξ is
associated to O if O occurs with nonzero multiplicity in the associated cycle. We
will write UG0

(O, λ) for the set of irreducible representations of G0 with maximal
annihilator with infinitesimal character λ, and associated to O.

Let CK(O) := CK(e) denote the centralizer of e in K, with e a representative
of O, and let AK(O) := CK(O)/CK(O)0 be the component group. In the case
of G0 being a connected complex group viewed as a real group, it is conjectured
that there exists an infinitesimal character λO such that in addition, we have the
following.

Conjecture. For each O there is λO such that there is a 1-1 correspondence

ψ ∈ ÂK(O) ←→ Ξ(O, ψ) ∈ UG0
(O, λO)

satisfying the additional condition

Ξ(O, ψ)
∣∣
K

∼= R(O, ψ),

where

(1.1.1)
R(O, ψ) = IndKCK(O)(ψ)

= {f : K → Vψ | f(gx) = ψ(x−1)f(g) ∀g ∈ K, x ∈ CK(O)}

is the ring of regular functions on O transforming according to ψ.

It is also natural to conjecture that there is a choice of λO such that the repre-
sentations are unitary. The results in [Bar89] and [Bre99] establish the unitarity of
the modules considered in this paper.

Candidates for parameters λO satisfying the Conjecture above are listed in
[Bar17]. Essentially they coincide with the λO∨,s∨ introduced in [Bar89]. The
validity of the conjecture is established for large classes of nilpotent orbits in the
classical complex groups. Such parameters λO are available for the exceptional
groups as well, [Bar17] for F4, and to appear elsewhere for type E.
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This conjecture cannot be valid for all nilpotent orbits in the case of real groups;
AC(Ξ) is supported on several K-orbits which are the components of the inter-
section of a complex nilpotent orbit Oc with s. The R(O, ψ) can be the same for
different components of a particular Oc. The representations with associated cycle
containing a given component have drastically different K-structures. Examples
can be found in [Vog00]. In addition, many examples are known (e.g., the case of
the minimal orbit in certain real forms of type D) for which there are no representa-
tions with associated cycle supported on O or any real form of its complexification.
The analogues of the results in this paper in the case of the real Spin groups are
studied in [BT18].

In the case when ψ is the trivial representation, our results provide irreducible
(unitary) (g,K)-modules with K-structure R(O). By the Kraft–Procesi classifica-
tion [KP82] of nilpotent orbits whose closures are normal, the orbits we consider
are normal, so also R(O) = R(O).

In this paper we investigate this conjecture for small orbits in the complex case
using different techniques than in [Bar17]; [BT18] investigates the analogue for the
real Spin groups. For the condition of small we require that

[μ : R(O, ψ)] ≤ cO,

i.e., that the multiplicity of any μ ∈ K̂ be uniformly bounded. This puts a restric-
tion on dimO:

(1.1.2) dimO ≤ rank(k) + |Δ+(k, t)|,

where t ⊂ k is a Cartan subalgebra and Δ+(k, t) is a positive system. The reason for
this restriction is as follows. Let (Π, X) be an admissible representation of G0, and

let μ be the highest weight of a representation (π, V ) ∈ K̂ which is dominant
for Δ+(k, t). Assume that dimHomK [π,Π] ≤ C and Π has associated variety
(cf. [Vog91]). Then

dim{v : v ∈ X belongs to an isotypic component with ||μ|| ≤ t} ≤ Ct|Δ
+(k,t)|+dim t.

The dimension of (π, V ) grows like t|Δ
+(k,t)|, the number of representations with

highest weight ||μ|| ≤ t grows like tdim t, and the multiplicities are assumed uni-
formly bounded. On the other hand, considerations involving primitive ideals imply
that the dimension of this set grows like tdimG·e/2 with e ∈ O, and half the dimen-
sion of (the complex orbit) G · e is the dimension of the (K-orbit) K · e ∈ s. In the
case of type D, condition (1.1.2) coincides with being spherical; see [Pan94]. Since
we only deal with characters of CK(O), multiplicity ≤ 1 is guaranteed.

In the case of the complex groups of type Dn, we consider G0 = Spin(2n,C)
viewed as a real group, and hence K ∼= G0 is the complexification of the maximal
compact subgroup K0 = Spin(2n) of G. In Section 2 we list all small nilpotent
orbits satisfying (1.1.2) and describe (the component groups of) their centralizers.

In Section 3, we compute R(O, ψ) for each O in Subsection 2.1 and ψ ∈ ÂK(O).
In Section 4 we associate to each O an infinitesimal character λO by [Bar17]. The
fact is that O is the minimal orbit which can be the associated variety of a (g,K)-
module with infinitesimal character (λL, λR), with λL and λR both conjugate to λO.
We make a complete list of irreducible modules X(λL, λR) (in terms of Langlands
classification) which are attached to O. Then we match the K-structure of these
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representations with R(O, ψ). This demonstrates the conjecture we state at the
beginning of the introduction. The following theorem summarizes this.

Theorem 1.2. With notation as above, view G0 = Spin(2n,C) as a real group.
The K-structure of each representation in UG0

(O, λO) is calculated explicitly and

matches the K-structure of the R(O, ψ) with ψ ∈ ÂK(O).That is, there is a 1-1

correspondence ψ ∈ ÂK(O) ←→ Ξ(O, ψ) ∈ UG0
(O, λO) satisfying

Ξ(O, ψ) |K∼= R(O, ψ).

For the case O(2n,C) (rather than Spin(2n,C)), the K-structure of the repre-
sentations studied in this paper were considered earlier in [McG94] and [BP11].
The unitarity of modules for the Spin groups (in particular the ones in this paper)
is established in [Bre99].

2. Preliminaries

2.1. Nilpotent orbits. The complex nilpotent orbits of type Dn are parametrized
by partitions of 2n, with even blocks occurring with even multiplicities, and with
I, II in the very even case (see [CM93]). The small nilpotent orbits satisfying
(1.1.2) are those O with dimO ≤ n2.

We list them out as the following four cases:

Case 1: n = 2p O = [3 2n−2 1] dimO = n2,

Case 2: n− 2p
or 2p+ 1

O = [3 22k 12n−4k−3]
0 ≤ k ≤ p− 1

dimO = 4nk − 4k2

+ 4n− 8k − 4,

Case 3: n = 2p O = [2n]I,II dimO = n2 − n,

Case 4: n = 2p
or 2p+ 1

O = [22k 12n−4k]
0 ≤ k < n/2

dimO = 4nk − 4k2 − 2k.

Note that these are the orbits listed in [McG94]. The proof of the next proposi-
tion, and the details about the nature of the component groups, are in Section 5.

Proposition 2.2 (Corollary 5.4).

Case 1: If O = [3 22p−2 1], then AK(O) ∼= Z2 × Z2.
Case 2: If O = [3 22k 12n−4k−3] with 2n− 4k − 3 > 1, then AK(O) ∼= Z2.
Case 3: If O = [22p]I,II , then AK(O) ∼= Z2.
Case 4: If O = [22k 12n−4k] with 2k < n, then AK(O) ∼= 1.

In all cases CK(O) = Z(K) · CK(O)0.

3. Regular sections

We use the notation introduced in Sections 1 and 2. We compute the centralizers
needed for R(O, ψ) in k and inK. We use the standard roots and basis for so(2n,C).
A basis for the Cartan subalgebra is given by H(εi); the root vectors are X(±εi ±
εj). Realizations in terms of the Clifford algebra and explicit calculations are in
Section 5.
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Let e be a representative of the orbit O, and let {e, h, f} be the corresponding
Lie triple. Let

• Ck(h)i be the i-eigenspace of ad(h) in k,
• Ck(e)i be the i-eigenspace of ad(h) in the centralizer of e in k,
• Ck(h)

+ :=
∑

i>0 Ck(h)i and Ck(e)
+ :=

∑
i>0 Ck(e)i.

3.1. We describe the centralizer for O = [3 22k 12n−4k−3] in detail. These are Cases
1 and 2. Representatives for e and h are

e = X(ε1 − ε2k+2) +X(ε1 + ε2k+2) +
∑

2≤i≤2k+1

X(εi + εk+i),

h = 2H(ε1) +
∑

2≤i≤2k+1

H(εi) = H(2, 1, . . . , 1︸ ︷︷ ︸
2k

, 0, . . . , 0︸ ︷︷ ︸
n−1−2k

).

Then

(3.1.1)

Ck(h)0 = gl(1)× gl(2k)× so(2n− 2− 4k),

Ck(h)1 = Span{X(ε1 − εi), X(εi ± εj), 2 ≤ i ≤ 2k + 1 < j ≤ n},
Ck(h)2 = Span{X(ε1 ± εj), X(εi + εl), 2 ≤ i 	= l ≤ 2k + 1 < j ≤ n},
Ck(h)3 = Span{X(ε1 + εi), 2 ≤ i ≤ 2k + 1}.

Similarly

(3.1.2)
Ck(e)0 ∼= sp(2k)× so(2n− 3− 4k),

Ck(e)1 = Span{X(ε1 − εi)−X(εk+i ± ε2k+2), X(ε1 − εk+i)−X(εi ± ε2k+2),

2 ≤ i ≤ k + 1, X(εj ± εl), 2 ≤ j ≤ 2k + 1, 2k + 3 ≤ l ≤ n},
Ck(e)2 = Ck(h)2,

Ck(e)3 = Ck(h)3.

We denote by χ the trivial character of Ck(e). A representation of K will be
denoted by its highest weight:

V = V (a1, . . . , an), a1 ≥ · · · ≥ |an|,
with all ai ∈ Z or all ai ∈ Z+ 1/2.

We will compute

(3.1.3) HomCk(e)[V
∗, χ] = HomCk(e)0

[
V ∗/(Ck(e)

+V ∗), χ
]
:=
[
V ∗/(Ck(e)

+V ∗)]χ.
3.2. Case 1. n = 2p, O = [3 2n−2 1].

In this case Ck(h)0 = gl(1)× gl(n− 2)× so(2), Ck(e)0 = sp(n− 2).
Consider the parabolic p = l+ n determined by h,

(3.2.1)
l = Ck(h)0 ∼= gl(1)× gl(n− 2)× so(2),

n = Ck(h)
+.

We denote by V ∗ the dual of V . Since n = 2p, V ∗ ∼= V. If V ∗ is a representation such
that HomCk(e)[V

∗, χ] in (3.1.3) is nonzero, then V ∗ is a quotient of a generalized
Verma moduleM(λ) = U(k)⊗U(p)F (λ), where λ is a weight of V ∗ which is dominant
for p. This is

λ = (−a1;−an−1, . . . ,−a2;−an).

The ; denotes the fact that this is a (highest) weight of l ∼= gl(1)×gl(n−2)× so(2).
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We choose the standard positive root system �+(l) for l. As a Ck(e)0-module,

n = Ck(e)
+ ⊕ n

⊥,

where we can choose n⊥ = Span{X(ε1 − εj), 2 ≤ j ≤ n− 1}. This complement is
l-invariant. It restricts to the standard module of Ck(e)0 = sp(n− 2).

The generalized Bernstein–Gelfand–Gelfand resolution is
(3.2.2)

0 · · · −→
⊕

w∈W+, �(w)=k

M(w ·λ) −→ · · · −→
⊕

w∈W+, �(w)=1

M(w ·λ) −→ M(λ) −→ V ∗ −→ 0,

with w · λ := w(λ+ ρ(k))− ρ(k), and w ∈ W+, the W (l)-coset representatives that
make w ·λ dominant for Δ+(l). This is a free Ck(e)

+-resolution so we can compute
cohomology by considering
(3.2.3)

0 · · · −→
⊕

w∈W+, �(w)=k

M(w · λ) −→ · · · −→
⊕

w∈W+, �(w)=1

M(w · λ) −→ M(λ) −→ V ∗ −→ 0,

where X denotes X/[Ck(e)
+X].

Note that in the sequences, M(w · λ) ∼= S(n) ⊗C F (w · λ) and M(w · λ) ∼=
S(n⊥)⊗C F (w ·λ). As an l-module, n⊥ has highest weight (1; 0, . . . , 0,−1; 0). Then
Sk(n⊥) ∼= F (k; 0, . . . , 0,−k; 0) as an l-module.

Let μ := (−α1;−αn−1, . . . ,−α2;−αn) be the highest weight of an l-module. By
the Pieri’s rule,

(3.2.4) Sk(n⊥)⊗Fμ =
∑

V (−α1+k;−αn−1−kn−1, . . . ,−α3−k3,−α2−k2;−αn).

The sum is taken over

{ki | ki ≥ 0,
∑

ki = k, 0 ≤ ki ≤ αi−1 − αi, 3 ≤ i ≤ n− 1}.

Lemma 3.3. HomCk(e)0 [S(n
⊥)⊗ Fμ : χ] 	= 0 for every μ. The multiplicity is 1.

Proof. Since (gl(n − 2), sp(n − 2)) is a hermitian symmetric pair, the theorem of
Cartan and Helgason (cf. Theorem 3.3.1.1 in [War72]) implies that a composition
factor in the terms of S(n⊥)⊗ Fμ in (3.2.4) admits Ck(e)0-fixed vectors only if

−αn−1−kn−1=−αn−2−kn−2, −αn−3−kn−3=−αn−4−kn−4, . . . ,−α3−k3=−α2−k2.

The conditions 0 ≤ ki ≤ αi−1 − αi imply

(3.3.1)

kn−2 = 0, kn−1 = αn−2 − αn−1,

...

k4 = 0, k5 = α4 − α5,

k2 = 0, k3 = α2 − α3.

Therefore, given μ, the weight of the Ck(e)0-fixed vector in S(n⊥)⊗ Fμ is

(−α1 + α2 − α3 + α4 − α5 + · · ·+ αn−2 − αn−1;−αn−2,−αn−2, . . . ,−α2, α2;−αn),

and the multiplicity is 1. �

Corollary 3.4. For every V (a1, . . . , an) ∈ K̂, HomCk(e)[V, χ] = 0 or 1. The action
of adh is −2

∑
1≤i≤p a2i−1.
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Proof. The first statement follows from Lemma 3.3 and the surjection

M(λ) ∼= S(n⊥)⊗C F (λ) −→ V ∗ −→ 0.

The action of adh is computed from the module

V (−a1 + k;−an−2,−an−2, . . . ,−a2,−a2;−an)(3.4.1)

with k = a2 − a3 + a4 − a5 + · · ·+ an−2 − an−1. The value is −2
∑

1≤i≤p a2i−1. �

	(w) = 1. To show that the weights in (3.4.1) actually occur, it is enough to show
that these weights do not occur in the term in the BGG resolution (3.2.3) with
	(w) = 1.

We calculate w · λ :

ρ = ρ(k) = (−(n− 1);−1,−2, . . . ,−(n− 2); 0)

is dominant for p, and

λ+ ρ = (−a1 − n+ 1;−an−1 − 1,−an−2 − 2, . . . ,−a2 − n+ 2;−an).

There are three elements w ∈ W+ of length 1. They are the left W (l)-cosets of

w1 = sε1−εn−1
, w2 = sε2−εn , w3 = sε2+εn .

So

(3.4.2)

w1 · λ = (−a2 + 1;−an−1,−an−2, . . . ,−a4,−a3,−a1 − 1;−an),

w2 · λ = (−a1;−an + 1,−an−2,−an−3, . . . ,−a3,−a2;−an−1 − 1),

w3 · λ = (−a1; an + 1,−an−2,−an−3, . . . ,−a3,−a2; an−1 + 1).

Lemma 3.5. For all λ, HomCk(e)[M(wi · λ), χ] = 1. The eigenvalues of adh are
different from −2

∑
1≤i≤p a2i−1 for each wi.

Proof. The sp(n− 2)-fixed weights coming from S(n⊥)⊗F (wi ·λ), i = 1, 2, 3, are

(3.5.1)

w1 ←→(a1 − a2 − a3 + a4 − a5 + · · ·+ an−2 − an−1 + 2;

− an−2,−an−2, . . . ,−a4,−a4,−a1 − 1,−a1 − 1;−an)

w2 ←→(−a1 + a2 − a3 + · · ·+ an−4 − an−3 + an−2 − an + 1;

− an−2,−an−2, . . . ,−a4,−a4,−a2,−a2;−an−1 − 1)

w3 ←→(−a1 + a2 − a3 + · · ·+ an−4 − an−3 + an−2 + an + 1;

− an−2,−an−2, . . . ,−a4,−a4,−a2,−a2; an−1 − 1)

The negatives of the weights of h are

(3.5.2)

w0 = 1 ←→ 2(a1 + a3 + · · ·+ an−1),

w1 ←→ 2(a2 + a3 + a5 · · ·+ an−1−1),

w2 ←→ 2(a1 + a3 + · · ·+ an−3 + an − 1),

w3 ←→ 2(a1 + a3 + · · ·+ an−3 − an − 1).

The last three weights are not equal to the first one. This completes the proof. �
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Theorem 3.6. Let K=Spin(2n,C) with n=2p. Every representation V (a1, . . . , an)
has Ck(e) fixed vectors and the multiplicity is 1. We write CK(O) := CK(e). In
summary,

IndKCK(O)0(Triv) =
⊕
a∈ ̂K

V (a1, . . . , an).

Theorem 3.6 can be interpreted as computing regular functions on the universal

cover Õ of O transforming trivially under Ck(e)0. We decompose it further:

R(Õ, T riv) := IndKCK(O)0(Triv) = IndKCK(O)

[
Ind

CK(O)
CK(O)0(Triv)

]
.(3.6.1)

The inner induced module splits into

(3.6.2) Ind
CK(O)
CK(O)0(Triv) =

∑
ψ,

where ψ are the irreducible representations of CK(O) trivial on CK(O)0. Thus, the

sum in (3.6.2) is taken over ÂK(O).
Then

(3.6.3) R(Õ, T riv) = IndKCK(O)0(Triv) =
∑

ψ∈ÂK(O)

R(O, ψ).

We will decompose R(O, ψ) explicitly as a representation of K.

Lemma 3.7. Let K = Spin(2n,C) with n = 2p. Let μi, 1 ≤ i ≤ 4, be the following
K-types parametrized by their highest weights:

μ1 = (0, . . . , 0), μ2 = (1, 0, . . . , 0),

μ3 = ( 12 , . . . ,
1
2 ), μ4 = ( 12 , . . . ,

1
2 ,−

1
2 ).

Let ψi be the restriction of the highest weight of μi to CK(O), respectively. Then

Ind
CK(O)
CK(O)0(Triv) =

4∑
i=1

ψi.

Proposition 3.8. Let K = Spin(2n,C) with n = 2p. The induced representation
(3.6.3) decomposes as

IndKCK(O)(Triv) =
4∑

i=1

R(O, ψi),

where

R(O, ψ1) = IndKCK(O)(ψ1) =
⊕

V (a1, . . . , an) with ai ∈ Z,
∑

ai ∈ 2Z,

R(O, ψ2) = IndKCK(O)(ψ2) =
⊕

V (a1, . . . , an) with ai ∈ Z,
∑

ai ∈ 2Z+ 1,

R(O, ψ3) = IndKCK(O)(ψ3) =
⊕

V (a1, . . . , an) with ai ∈ Z+ 1/2,
∑

ai ∈ 2Z+ p,

R(O, ψ4) = IndKCK(O)(ψ4) =
⊕

V (a1, . . . , an) with ai ∈ Z+ 1/2,
∑

ai ∈ 2Z+p+1.
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3.9. Case 2: O = [3 22k 12n−4k−3], 0 ≤ k ≤ p− 1.

Consider the parabolic p = l+ n determined by h:

l = Ck(h)0 ∼= gl(1)× gl(2k)× so(2n− 2− 4k),

n = Ck(h)
+.

In this section, let ε = −1 when n is even; ε = 1 when n is odd. The dual of V,
denoted V ∗, has lowest weight (εan,−an−1, . . . ,−a2,−a1). It is therefore a quotient
of a generalized Verma module M(λ) = U(k)⊗U(p) F (λ), where λ is dominant for
p and dominant for the standard positive system for l :

λ = (−a1;−a2k+1, . . . ,−a3,−a2︸ ︷︷ ︸
2k

; a2k+2, . . . , an−1, εan︸ ︷︷ ︸
n−1−2k

).

n = Ck(e)
+ ⊕ n⊥ as a module for Ck(e)0. A basis for n⊥ ⊂ Ck(h)1 is given by

{X(ε1−ε2k+2)}, 2 ≤ i ≤ 2k + 1.

This is the standard representation of sp(2k), trivial for so(2n− 4− 4k). We write
its highest weight as

(1; 0, . . . , 0,−1; 0, . . . , 0).

We can now repeat the argument for the case k = p; there is an added con-
straint that a2k+3 = · · · = an = 0 because the representation with highest weight
(a2k+2, . . . , an−1, εan) of so(2n−2−4k) must have fixed vectors for so(2n− 3− 4k).

Then the next theorem follows.

Theorem 3.10. A representation V (a1, . . . , an) has Ck(e) fixed vectors if and only
if

a2k+3 = · · · = an = 0,

and the multiplicity is 1. In summary,

IndKCK(O)0(Triv)=
⊕

V (a1, . . . , a2k+2, 0 . . . , 0), with a1 ≥· · ·≥ a2k+2 ≥ 0, ai ∈ Z.

As in (3.6.3), we decompose IndKCK(O)0(Triv) further into the sum of R(O, ψ)

with ψ ∈ ÂK(O).

Lemma 3.11. Let μ1, μ2 be the following K-types parametrized by their highest
weights:

μ1 = (0, . . . , 0), μ2 = (1, 0, . . . , 0).

Let ψi be the restriction of the highest weight of μi to CG(O), respectively. Then

Ind
CK(O)
CK(O)0(Triv) = ψ1 + ψ2.

Proposition 3.12. The induced representation (3.6.3) decomposes as

IndKCK(O)0(Triv) = R(O, ψ1) +R(O, ψ2),

where

R(O, ψ1) = IndKCK(O)(ψ1) =
⊕

V (a1, . . . , a2k+2, 0, . . . , 0) with ai ∈ Z,
∑

ai ∈ 2Z,

R(O, ψ2)=IndKCK(O)(ψ2)=
⊕

V (a1, . . . , a2k+2, 0, . . . , 0) with ai ∈ Z,
∑

ai ∈ 2Z+1.
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3.13. Now we treat O = [22k 12n−4k] with 0 ≤ k ≤ p. These are Cases 3 and 4.
When k = p (and hence n = 2p), the orbit is labeled by I, II. The computation is

similar and easier than the previous two cases. We state the results for R(Õ, T riv)
as follows.

Theorem 3.14.

Case 3: For k = p, so n = 2p,

OI = [2n]I , R(ÕI , T riv) = IndKCK(OI)0(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , an−1, an−1),

OII = [2n]II , R(ÕII , T riv) = IndKCK(OII )0(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , an−1,−an−1).

Case 4: For k ≤ p− 1,

O = [22k 12n−4k], R(Õ, T riv) = IndKCK(O)0(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , a2k−1, a2k−1, 0, . . . , 0),

satisfying a1 ≥ a3 ≥ · · · ≥ a2k−1 ≥ 0.

Proof. We treat the case n = 2p and k ≤ p− 1; n = 2p+ 1 is similar. A represen-
tative of O is e = X(ε1 + ε2) + · · ·+X(ε2k−1 + ε2k), and the corresponding middle
element in the Lie triple is h = H(1, . . . , 1︸ ︷︷ ︸

2k

, 0, . . . , 0︸ ︷︷ ︸
n−2k

). Thus

(3.14.1)

Ck(h)0 = gl(2k)× so(2n− 4k),

Ck(h)1 = Span{X(εi ± εj)}, 1 ≤ i ≤ 2k < j ≤ n,

Ck(h)2 = Span{X(εl + εm)}, 1 ≤ l 	= m ≤ 2k.

and

(3.14.2)

Ck(e)0 = sp(2k)× so(2n− 4k),

Ck(e)1 = Ck(h)1,

Ck(e)2 = Ck(h)2.

As before, let p = l + n be the parabolic subalgebra determined by h, and let
V = V (a1, . . . , an) be an irreducible representation of K. Since we assumed n = 2p,
V = V ∗. In this case Ck(e)

+ = n, so Kostant’s theorem implies V/[Ck(e)
+V ] =

Vl(a1, . . . a2k; a2k+1, . . . , an) as a gl(2k) × so(2n − 4k)-module. Since we want
sp(2k) × so(2n − 4k)-fixed vectors, a2k+1 = · · · = an = 0, and Cartan and Hel-
gason’s theorem implies a1 = a2, a3 = a4, . . . , a2k−1 = a2k.

When n = 2p and O = [2n]I,II , the calculations are similar to k ≤ p − 1. The
choices I, II are

eI = X(ε1 − ε2) +X(ε3 − ε4) + · · ·+X(εn−1 − εn),

hI = H(1, . . . , 1),

eII = X(ε1 − ε2) +X(ε3 − ε4) + · · ·+X(εn−3 − εn−2) +X(εn−1 + εn),

hII = H(1, . . . , 1,−1).
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These orbits are induced from the two nonconjugate maximal parabolic subalgebras

with gl(n) as Levi components, and R(ÕI,II , T riv) are just the induced modules
from the trivial representation on the Levi component. �

We aim at decomposing R(Õ, T riv) =
∑

R(O, ψ) with ψ ∈ ÂK(O) as before.

Lemma 3.15.

Case 3: n = 2p, O = [2n]I,II . Let μ1, μ2, ν1, ν2, be

μ1 = (1, . . . , 1), μ2 = ( 12 , . . .
1
2 ),

ν1 = (1, . . . , 1,−1), ν2 = ( 12 , . . . ,
1
2 ,−

1
2 ).

Let ψi be the restriction of the highest weight of μi to CK(e), and let φi be
the restriction of the highest weight of νi, respectively. Then

Ind
CK(OI)
CK(OI)0

(Triv) = ψ1 + ψ2,

Ind
CK(OII)
CK(OII)0

(Triv) = φ1 + φ2.

The ψi, φi are viewed as representations of ̂AK(OI,II), and ψ1 and φ1 are
Triv, and ψ2, φ2 are Sgn.

Case 4: O = [22k 12n−4k], 0 ≤ k ≤ p− 1.

Ind
CK(O)
CK(O)0(Triv) = Triv.

Then we are able to split up R(Õ, T riv) as a sum of R(O, ψ) as in (3.6.3).

Proposition 3.16.

Case 3: n = 2p, O = [2n]I,II : R(ÕI,II) = R(OI,II , T riv) + R(OI,II , Sgn)
with

R(OI , T riv) = IndKCK(OI)(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , an−1, an−1), with ai ∈ Z,

R(OI , Sgn) = IndKCK(OI)(Sgn)

=
⊕

V (a1, a1, a3, a3, . . . , an−1, an−1), with ai ∈ Z+ 1/2,

R(OII , T riv) = IndKCK(OII)(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , an−1,−an−1), with ai ∈ Z,

R(OII , Sgn) = IndKCK(OII)(Sgn)

=
⊕

V (a1, a1, a3, a3, . . . , an−1,−an−1), with ai ∈ Z+ 1/2,

satisfying a1 ≥ a3 ≥ · · · ≥ an−1 ≥ 0.
Case 4: O = [22k 12n−4k], 0 ≤ k ≤ p− 1:

R(Õ, T riv) = R(O, T riv) = IndKCK(O)(Triv)

=
⊕

V (a1, a1, a3, a3, . . . , a2k−1, a2k−1, 0, . . . , 0), with ai ∈ Z,

satisfying a1 ≥ a3 ≥ · · · ≥ a2k−1 ≥ 0.
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4. Representations with small support

4.1. Langlands classification. Let G be a complex linear algebraic reductive
group viewed as a real Lie group. Let θ be a Cartan involution with fixed points
K. Let G ⊃ B = HN ⊃ H = TA be a Borel subgroup containing a fixed θ-stable
Cartan subalgebra H, with

T = {h ∈ H | θ(h) = h},
A = {h ∈ H | θ(h) = h−1}.

The Langlands classification is as follows. Let χ ∈ Ĥ. Denote by

X(χ) := IndGB[χ⊗ �]K-finite

the corresponding admissible standard module (Harish-Chandra induction). Let
(μ, ν) be the differentials of χ |T and χ |A, respectively. Let λL = (μ + ν)/2, and
let λR = (μ− ν)/2. We write X(μ, ν) = X(λL, λR) = X(χ).

Theorem 4.2.

(1) X(μ, ν) has a unique irreducible subquotient denoted X(μ, ν) which con-
tains the K-type with extremal weight μ occurring with multiplicity one in
X(μ, ν).

(2) X(μ, ν) is the unique irreducible quotient when 〈Reν, α〉 > 0 for all α ∈
Δ(n, h), and the unique irreducible submodule when 〈Reν, α〉 < 0.

(3) X(μ, ν) ∼= X(μ′, ν′) if and only if there is w ∈ W such that wμ = μ′, wν =
ν′. Similarly for (λL, λR).

Assume λL, λR are both dominant integral. Write F (λ) to be the finite-
dimensional representation of G with infinitesimal character λ. Then X(λL,−λR)
is the finite-dimensional representation F (λL) ⊗ F (−w0λR) where w0 ∈ W is the
longest element in the Weyl group. The lowest K-type has extremal weight λL−λR.
Weyl’s character formula implies

(4.2.1) X(λL,−λR) =
∑
w∈W

ε(w)X(λL,−wλR).

In the following contents in this section, we use different notation as follows. We
write (G,K) = (Spin(2n,C), Spin(2n)) and (G,K) = (SO(2n,C), SO(2n)).

4.3. Infinitesimal characters. From [Bar17], we can associate to each O in Sec-
tion 2.1 an infinitesimal character λO. The fact is that O is the minimal orbit
which can be the associated variety of a (g,K)-module with infinitesimal character
(λL, λR), with λL and λR both conjugate to λO. The λO are listed below.

Case 1: n = 2p, O = [3 2n−2 1],

λO = ρ/2 = (p− 1

2
, . . . ,

3

2
,
1

2
| p− 1, . . . , 1, 0).

Case 2: O = [3 22k 12n−4k−3], 0 ≤ k ≤ p− 1,

λO = (k +
1

2
, . . . ,

3

2
,
1

2
| n− k − 2, . . . , 1, 0).
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Case 3: n = 2p, OI,II = [2n]I,II ,

λOI
=

(
2n− 1

4
,
2n− 5

4
, . . . ,

−(2n− 7)

4
,
−(2n− 3)

4

)
,

λOII
=

(
2n− 1

4
,
2n− 5

4
, . . . ,

−(2n− 7)

4
,
(2n− 3)

4

)
.

Case 4: O = [22k 12n−4k], 0 ≤ k ≤ p− 1,

λO = (k, k − 1, . . . , 1;n− k − 1, . . . , 1, 0).

Notice that the infinitesimal characters in Cases 1 and 2 are nonintegral. For
instance, in Case 1, λO = ρ/2, where ρ is a half sum of the positive roots of
type D2p. The integral system is of type Dp × Dp. The notation | separates the
coordinates of the two Dp.

4.4. We define the following irreducible modules in terms of Langlands classifica-
tion:

Case 1: n = 2p, O = [3 2n−1 1].
(i) Ξ1 = X(λO,−λO);
(ii) Ξ2 = X(λO,−w1λO), where w1λO = (p− 1

2 , . . . ,
3
2 ,−

1
2 | p−1, . . . , 1, 0);

(iii) Ξ3 = X(λO,−w2λO), where w2λO = (p− 1, . . . , 1, 0 | p− 1
2 , . . . ,

3
2 ,

1
2 );

(iv) Ξ4 = X(λO,−w3λO), where w3λO = (p−1, . . . , 1, 0 | p− 1
2 , . . . ,

3
2 ,−

1
2 ).

Case 2: O = [3 22k 12n−4k−3], 0 ≤ k ≤ p− 1.
(i) Ξ1 = X(λO,−λO);
(ii) Ξ2 = X(λO,−w1λO), w1λO = (k + 1

2 , . . . ,
3
2 ,

1
2 | n− k − 2, . . . , 1, 0).

Case 3: n = 2p, OI,II = [2n]I,II .

(i) ΞI = X(λOI
,−λOI

);

(i′) ΞI = X(λOI
,−wλOI

), wλOI
=
(

2n−3
4 , 2n−7

4 , . . . , −(2n−5)
4 , −(2n−1)

4

)
;

(ii) ΞII = X(λOII
,−λOII

);

(ii′) Ξ′
II = X(λOII

,−wλOII
), wλOII

=
(

2n−3
4 , 2n−7

4 , . . . , −(2n−5)
4 , 2n−1

4

)
.

Case 4: O = [22k 12n−4k], 0 ≤ k ≤ p− 1.
(i) Ξ = X(λO,−λO).

Remark 4.5. The representations introduced above form the set UG(O, λO). The
integral systems are of type Dp ×Dp in Case 1, Dk+1 ×Dn−k−1 in Case 2, An in
Case 3, and Dn in Case 4. It is then a matter of computing the multiplicity of
the sgn representation in the corresponding primitive ideal double cells for these
integral systems. We omit the details.

Notation. We write F (λ) for the finite-dimensional representation of the appro-
priate SO or Spin group with infinitesimal character λ. Write V (μ) for the finite-
dimensional representation of the appropriate SO or Spin group with highest weight
μ.

4.6. K-structure. We compute the K-types of each representation listed in Sub-
section 4.4.
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Case 1: The arguments are refinements of those in [McG94]. LetH be the image of
Spin(2p,C)× Spin(2p,C) in Spin(4p,C), and U the image of the maximal compact
subgroup Spin(2p)×Spin(2p) in K. Irreducible representations of U can be viewed
as Spin(2p)× Spin(2p)-representations such that ±(I, I) acts trivially.

Cases (i) and (ii) factor to representations of SO(2n,C), and (iii) and (iv) are
genuine for Spin(2n,C).

The Kazhdan–Lusztig conjectures for a nonintegral infinitesimal character (cf.
[ABV92, Chapters 16 and 17]) together with Weyl’s formula for the character of a
finite-dimensional module (see (4.2.1)) imply that

(4.6.1) X(ρ/2,−wiρ/2) =
∑

w∈W (Dp×Dp)

ε(w)X(ρ/2,−wwiρ/2),

since W (λO) = W (Dp ×Dp).
Restricting (4.6.1) to K, and using Frobenius reciprocity, we get

(4.6.2) X(ρ/2,−wiρ/2) |K= IndKU [F1(ρ/2)⊗F2(−wiρ/2)],

where F1,2 are finite dimensional representations of the two factors Spin(2p,C) ×
Spin(2p,C) with infinitesimal character ρ/2 and −wiρ/2, respectively. The terms
[F1(ρ/2)⊗F2(−wiρ/2)] are

(i) V (1/2, . . . , 1/2)⊗ V (1/2, . . . , 1/2)� V (0, . . . , 0)⊗ V (0, . . . , 0),
(ii) V (1/2, . . . ,−1/2)⊗ V (1/2, . . . , 1/2)� V (0, . . . , 0)⊗ V (0, . . . , 0),
(iii) V (1/2, . . . , 1/2)⊗ V (0, . . . , 0)� V (0, . . . , 0)⊗ V (1/2, . . . , 1/2),
(iv) V (1/2, . . . , 1/2)⊗ V (0, . . . , 0)� V (0, . . . , 0)⊗ V (1/2, . . . ,−1/2)

as Spin(n)× Spin(n)-representations (see Subsection 4.4 for the notation).

Lemma 4.7. Let SPIN+ = V ( 12 , . . . ,
1
2 ) and SPIN− = V ( 12 , . . . ,

1
2 ,−

1
2 ) ∈ ̂Spin(n).

Then

(4.7.1)

SPIN+ ⊗ SPIN+ =
⊕

0≤k≤[ p2 ]

V (1 . . . 1︸ ︷︷ ︸
2k

, 0 . . . 0︸ ︷︷ ︸
p−2k

),

SPIN+ ⊗ SPIN− =
⊕

0≤k≤[ p−1
2 ]

V (1 . . . 1︸ ︷︷ ︸
2k+1

. 0 . . . 0︸ ︷︷ ︸
p−2k−1

).

Proof. The proof is straightforward. �

Lemma 4.7 implies that (4.6.2) becomes

(4.7.2)

(i) X(ρ/2,−ρ/2) |K = IndKU

⎡⎣ ⊕
0≤k≤[ p2 ]

V (1, . . . , 1︸ ︷︷ ︸
2k

, 0, . . . , 0)� V (0, . . . , 0)

⎤⎦ ,

(ii) X(ρ/2,−w1ρ/2) |K = IndKU

⎡⎢⎣ ⊕
0≤k≤[ p−1

2 ]

V (1, . . . , 1︸ ︷︷ ︸
2k+1

, 0, . . . , 0)� V (0, . . . , 0)

⎤⎥⎦ ,

(iii) X(ρ/2,−w2ρ/2) |K = IndKU [V (1/2, . . . , 1/2)� V (1/2, . . . , 1/2)] ,

(iv) X(ρ/2,−w3ρ/2) |K = IndKU [V (1/2, . . . , 1/2)� V (1/2, . . . ,−1/2)] .
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Proposition 4.8.
(4.8.1)

X(ρ/2,−ρ/2)|K =
⊕

V (a1, . . . , an), with ai ∈ Z,
∑

ai ∈ 2Z,

X(ρ/2,−w1ρ/2)|K =
⊕

V (a1, . . . , an), with ai ∈ Z,
∑

ai ∈ 2Z+ 1,

X(ρ/2,−w2ρ/2)|K =
⊕

V (a1, . . . , an), with ai ∈ Z+ 1/2,
∑

ai ∈ 2Z+ p,

X(ρ/2,−w3ρ/2)|K =
⊕

V (a1, . . . , an), with ai ∈ Z+ 1/2,
∑

ai ∈ 2Z+ p+ 1.

Proof. In the first two cases we can substitute
(
Gsplit,Ksplit) :=

(
SO(2p, 2p), S[O(2p)

×O(2p)]
)
for
(
K,U

)
, and

(
Spin(2p, 2p), Spin(2p)×Spin(2p)/{±(I, I)}

)
for the last

two cases. The problem of computing the K-structure of X reduces to finding
the finite-dimensional representations of Gsplit which contain factors of F (ρ/2) ⊗
F (−wiρ/2). Any finite-dimensional representation of Gsplit is a Langlands quotient
of a principal series. Principal series have fine lowest K-types (see [Vog81]). Let
MA be a split Cartan subgroup of Gsplit. A principal series is parametrized by a

(δ, ν) ∈ M̂A. The δ are called fine, and each fine Ksplit-type μ is a direct sum of
a Weyl group orbit of a fine δ. This implies that the multiplicities in (4.7.2) are
all one, and all the finite-dimensional representations occur in (i),(ii),(iii),(iv). The
four formulas correspond to the various orbits of the δ. �

Case 2: O = [3 22k 12n−4k−3], 0 ≤ k ≤ p− 1. Recall that

λO = (k +
1

2
, . . . ,

3

2
,
1

2
| n− k − 2, . . . , 1, 0),

and the integral system is Dk+1×Dn−k−1. The irreducible modules are of the form
X(λL,−wλR) such that λO is dominant, wiλO is antidominant for Dk+1×Dn−k−1,
and they factor to SO(2n,C). These representations are listed in Subsection 4.4.

We need to work with the real form
(
SO(r, s), S[O(r)× O(s)]

)
. A representation

of O(n), r = 2m + η with η = 0 or 1, will be denoted by V (a1, . . . , am; ε), with
ε = ±1, 1/2 according to Weyl’s convention, and a1 ≥ a2 ≥ · · · ≥ am ≥ 0. If
am = 0, there are two inequivalent representations with this highest weight, one for
ε = 1 and one for ε = −1. Each restricts irreducibly to SO(r) as the representation

V (a1, . . . , am) ∈ ŜO(r). When am 	= 0, there is a unique representation with
this highest weight, ε = 1/2, or ε is suppressed altogether. The restriction of
this representation to SO(r) is a sum of two representations, V (a1, . . . , am) and
V (a1, . . . , am−1,−am).

Representations of Pin(s) are parametrized in the same way, with a1 ≥ · · · ≥
am ≥ 0 allowed to be nonnegative decreasing half-integers.

Representations of S[O(r)×O(s)] are parametrized by restrictions of V (a; ε1)�
V (b; ε2) with the following equivalences:

(1) If one of εi =
1
2 , say, ε1 = 1

2 , then V (a; ε1)� V (b; ε2) = V (a′; δ1)� V (b′; δ2)
if and only if a = a′, b = b′, ε1 = δ1, ε2 = δ2.

(2) If ε1, ε2, δ1, δ2 ∈ {±1}, then V (a; ε1) � V (b; ε2) = V (a′; δ1) � V (b′; δ2) iff
a = a′, b = b′, ε1ε2 = δ1δ2.
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Lemma 4.9. Let PIN = V ( 12 . . . ,
1
2 ) ∈ P̂ in(s), s = 2m+ η with η = 0 or 1. Then

(4.9.1) PIN ⊗ PIN =
m−1∑
�=0

V (1 . . . 1︸ ︷︷ ︸
�

, 0 . . . 0︸ ︷︷ ︸
m−�

; ε) + V (1, . . . , 1; 1/2),

where the sum is over ε = 1 and −1.

Proof. Omitted. �

We will use the groups U = S[O(2k+ 2)×O(2n− 2k− 2)] ⊂ K = SO(2n). Again,
the representations that we want are in Subsection 4.4. As before,

(4.9.2) X(λO,−wiλO) =
∑

w∈W (Dk+1×Dn−k−1)

ε(w)X(λO,−wwiλO).

Restricting to K, and using Frobenius reciprocity, (4.9.2) implies

(4.9.3) X(λO,−wiλO) |K= Ind
K
U [F1(λO)⊗F2(−wiλO)].

The terms [F1(λO)⊗ F2(−wiλO)] are

(i) V (1/2, . . . , 1/2)⊗ V (0, . . . , 0)� V (1/2, . . . , 1/2)⊗ V (0, . . . , 0),
(ii) V (1/2, . . . , 1/2,−1/2)⊗ V (0, . . . , 0)� V (1/2, . . . , 1/2,−1/2)⊗ V (0, . . . , 0).

Lemma 4.10.
(4.10.1)

X(λO,−λO) = Ind
K
U

[ ∑
0≤2�≤k+1

V (1, . . . , 1︸ ︷︷ ︸
2�

, 0, . . . , 0; 1)� V (0, . . . , 0; 1)

+
∑

0≤2�≤k+1

V (1, . . . , 1︸ ︷︷ ︸
2�

, 0, . . . , 0; 1)� V (0, . . . , 0;−1)
]
,

X(λO,−w1λO) = Ind
K
U

[ ∑
0≤2�+1≤k+1

V (1, . . . , 1︸ ︷︷ ︸
2l+1

, 0, . . . , 0; 1)� V (0, . . . , 0; 1)

+
∑

0≤2�+1≤k+1

V (1, . . . , 1︸ ︷︷ ︸
2�+1

, 0, . . . , 0; 1)� V (0, . . . , 0;−1)
]
.

Proof. This follows from Lemma 4.9. �
Proposition 4.11.
(4.11.1)

X(λO,−λO)|K =
⊕

V (a1, . . . , ak, 0, . . . , 0), with ai ∈ Z,
∑

ai ∈ 2Z,

X(λO,−w1λO)|K =
⊕

V (a1, . . . , ak, 0, . . . , 0), with ai ∈ Z.
∑

ai ∈ 2Z+ 1.

Proof. The proof is almost identical to that of Proposition 4.8. When k = p − 1,
the group Gsplit in the proof of Proposition 4.8 is replaced by Gqs = SO(2p, 2p+2)
and Ksplit is replaced by Kqs = S[O(2p)×O(2p+ 2)]. When k < p− 1, the group
Gsplit is replaced by Gk+1,n−k−1 = SO(2k + 2, 2n− 2k − 2) and Ksplit is replaced
by Kk+1,n−k−1 = S[O(2k + 2) × O(2n − 2k − 2)]. We follow [Vog81]. The K-
types μ in (4.10.1) have q(λL) as the θ-stable parabolic q = l + u determined by
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ξ = (0, . . . , 0; 1, . . . , 1︸ ︷︷ ︸
n−2k−2

, 0 . . . , 0). The Levi component is S[O(2k)× O(2k + 2)]. The

resulting μL = μ−2ρ(u∩ s) are fine U ∩L-types. A bottom layer argument reduces
the proof to the quasisplit case n = 2p+ 1. �
Cases 3, 4: We use the infinitesimal characters in 4.3 and the representations are
from Subsection 4.4 again.

In Case 4, O = [22k 12n−4k] with k < p. There is a unique irreducible repre-
sentation with associated support O, and it is spherical. It is a special unipotent
representation with character given by [BV85].

When n = 2p and k = p, there are two nilpotent orbits OI,II = [2n]I,II . The rep-
resentations ΞI,II in Subsection 4.4 are spherical representations, one each for OI,II

that are not genuine. The two representations are induced irreducibly from the triv-
ial representation of the parabolic subgroups with Levi components GL(n)I,II . On
the other hand, the representations Ξ′

I,II are induced irreducibly from the character

Det1/2 of the parabolic subgroups with Levi components GL(n)I,II . All of these
are unitary.

Proposition 4.12. The K-types of these representations are:

Case 3: OI,II = [22p]I,II :

(4.12.1)

ΞI |K =
⊕

V (a1, a1, a3, a3, . . . , an−1, an−1), with ai ∈ Z,

Ξ′
I |K =

⊕
V (a1, a1, a3, a3, . . . , an−1, an−1), with ai ∈ Z+ 1/2,

ΞII |K =
⊕

V (a1, a1, a3, a3, . . . , an−1,−an−1), with ai ∈ Z,

Ξ′
II |K =

⊕
V (a1, a1, a3, a3, . . . , an−1,−an−1), with ai ∈ Z+ 1/2,

satisfying a1 ≥ a3 ≥ · · · ≥ an−1 ≥ 0
Case 4: O = [22k 12n−4k], 0 ≤ k < n/2 :

Ξ|K =
⊕

V (a1, a1, . . . , ak, ak, 0, . . . , 0), with ai ∈ Z,

satisfying a1 ≥ a3 ≥ · · · ≥ ak ≥ 0.

Proof. These are well known. The cases [2n]I,II follow by Cartan and Helgason’s
theorem since (Dn, An−1) is a symmetric pair (for the real form SO∗(2n)). They
also follow by the method outlined below for the other cases.

For 2k < n, the methods outlined in [BP15] combined with [Bar17] give the
answer; the representations are Θ-lifts of the trivial representation of Sp(2k,C).
More precisely X(λO,−λO) is Ω/[sp(2k,C)Ω], where Ω is the oscillator repre-
sentation for the pair O(2n,C) × Sp(2k,C). The K-structure can then be com-
puted using seesaw pairs, namely Ω is also the oscillator representation for the pair
O(2n)× Sp(4k,R). �
4.13. We resume the notation used in Section 3. Let (G0,K) = (Spin(2n,C),
Spin(2n,C)). By comparing Propositions 3.8, 3.12, 3.16 and the K-structure of
representations listed in this section, we have the following matchup:

Case 1: Ξi|K = R(O, ψi), 1 ≤ i ≤ 4;
Case 2: Ξi|K = R(O, ψi), i = 1, 2;
Case 3: ΞI |K = R(OI , T riv), Ξ

′
I |K = R(OI , Sgn),

ΞII |K = R(OII , T riv), Ξ
′
II |K = R(OII , Sgn);

Case 4: Ξ|K = R(O, T riv).
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Then the following theorem follows.

Theorem 4.14. Attain the notation above. Let G0 = Spin(2n,C) be viewed as
a real group. The K-structure of each representations in UG0

(O, λO) is calculated

explicitly and matches the K-structure of the R(O, ψ) with ψ ∈ ÂK(O).That is,

there is a 1-1 correspondence ψ ∈ ÂK(O) ←→ Ξ(O, ψ) ∈ UG0
(O, λO) satisfying

Ξ(O, ψ) |K∼= R(O, ψ).

5. Clifford algebras and Spin groups

Since the main interest is in the case of Spin(V ), the simply connected groups
of type D, we realize everything in the context of the Clifford algebra.

5.1. Let (V,Q) be a quadratic space of even dimension 2n, with a basis {ei, fi} with
1 ≤ i ≤ n, satisfying Q(ei, fj) = δij , Q(ei, ej) = Q(fi, fj) = 0. Occasionally we will
replace ej , fj by two orthogonal vectors vj , wj satisfying Q(vj , vj) = Q(wj , wj) = 1,

and orthogonal to the ei, fi for i 	= j. Precisely they will satisfy vj = (ej + fj)/
√
2

and wj = (ej−fj)/(i
√
2) (where i :=

√
−1, not an index). Let C(V ) be the Clifford

algebra with automorphisms α defined by α(x1 · · ·xr) = (−1)rx1 · · ·xr and � given
by (x1 · · ·xr)

� = (−1)rxr · · ·x1, subject to the relation xy + yx = 2Q(x, y) for
x, y ∈ V . The double cover of O(V ) is

Pin(V ) := {x ∈ C(V ) | x · x� = 1, α(x)V x� ⊂ V }.
The double cover Spin(V ) of SO(V ) is given by the elements in Pin(V ) which are
in C(V )even, i.e., Spin(V ) := Pin(V ) ∩ C(V )even. For Spin, α can be suppressed
from the notation since it is the identity.

The action of Pin(V ) on V is given by ρ(x)v = α(x)vx�. The element −I ∈
SO(V ) is covered by

(5.1.1) ±E2n = ±in−1vnwn

∏
1≤j≤n−1

[1− ejfj ] = ±in
∏

1≤j≤n

[1− ejfj ].

These elements satisfy

E2
2n =

{
+Id if n ∈ 2Z,

−Id otherwise.

The center of Spin(V ) is

Z(Spin(V )) = {±I,±E2n} ∼=
{
Z2 × Z2 if n is even,

Z4 if n is odd.

The Lie algebra of Pin(V ) as well as Spin(V ) is formed of elements of even order
≤ 2 satisfying

x+ x� = 0.

The adjoint action is adx(y) = xy− yx. A Cartan subalgebra and the root vectors
corresponding to the usual basis in Weyl normal form are formed of the elements

(5.1.2)

(1− eifi)/2 ←→ H(εi),

eiej/2 ←→ X(−εi − εj),

eifj/2 ←→ X(−εi + εj),

fifj/2 ←→ X(εi + εj).
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5.2. Nilpotent orbits. We write K̃ = Spin(V ) = Spin(2n,C) and K = SO(V ) =
SO(2n,C). A nilpotent orbit of an element e will have Jordan blocks denoted by
(5.2.1)
e1 −→ e2 −→ · · · −→ ek −→ v −→ −fk −→ fk−1 −→ −fk−2 −→· · · −→ ±f1 −→ 0,

e1 −→ e2 −→ . . . −→ e2� −→ 0,
f2� −→ −f2�−1 −→ . . . −→ −f1 −→ 0

with the conventions about the ei, fj , v (equal to some appropriate vm) as before.
Every block is realized by a representative E, with the arrow in the block stand-
ing for the map adE . More precisely, a realization of the odd block is given by

the representative 1
2

(∑k−1
i=1 ei+1fi + vfk

)
, and a realization of the even blocks by

1
2

(∑2�−1
i=1 ei+1fi

)
. When there are only even blocks, there are two orbits; one block

of the form 1
2

(∑2�−1
i=1 ei+1fi + e2�f2�−1

)
is replaced by 1

2

(∑2�−1
i=1 ei+1fi + f2�f2�−1

)
.

Since the sizes of all blocks sum up to 2n, there is an even number of odd sized
blocks; any two blocks of equal odd size 2k + 1 can be replaced by a pair of blocks
of the same form as the even ones.

The centralizer of e in so(V ) has a Levi component isomorphic to a product of
so(r2k+1) and sp(2r2�), where rj is the number of blocks of size j. The centralizer
of e in SO(V ) has Levi component

∏
Sp(2r2�)×S[

∏
O(r2k+1)]. For each odd sized

block define

(5.2.2) E2k+1 = ikv
∏

(1− ejfj).

This is an element in Pin(V ), and acts by −Id on the block. Even products of
±E2k+1 belong to Spin(V ) and represent the connected components of C

˜K(e).

Proposition 5.3. Let m be the number of distinct odd blocks. Then

AK(O) ∼=
{
Zm−1
2 if m > 0,

1 if m = 0.

Furthermore,

(1) If e has an odd block of size 2k+ 1 with r2k+1 > 1, then A
˜K(O) ∼= AK(O).

(2) If all r2k+1 ≤ 1, then there is an exact sequence

1 −→ {±I} −→ A
˜K(O) −→ AK(O) −→ 0.

Proof. Assume that there is an r2k+1 > 1. Let

e1 → . . . → e2k+1 → 0,
f2k+1 → . . . → −f1 → 0

be two of the blocks. In the Clifford algebra this element is e = (e2f1 + · · · +
e2k+1f2k)/2. The element

∑2k+1
j=1 (1− ejfj) in the Lie algebra commutes with e. So

its exponential

(5.3.1)
∏

exp
(
iθ(1− ejfj)/2

)
=
∏

[cos θ/2 + i sin θ/2(1− ejfj)]

also commutes with e. At θ = 0, the element in (5.3.1) is I; at θ = 2π, it is −I.
Thus −I is in the connected component of the identity of A

˜K(O) (when r2k+1 > 1),
and therefore A

˜K(O) = AK(O).
Assume there are no blocks of odd size. Then CK(O)∼=

∏
Sp(r2l) is simply

connected, so C
˜K(O) ∼= CK(O)× {±I}. Therefore A

˜K(O) ∼= Z2.



REPRESENTATIONS ASSOCIATED TO SMALL NILPOTENT ORBITS 221

Assume there are m distinct odd blocks with m ∈ 2Z>0 and r2k1+1 = · · · =
r2km+1 = 1. In this case, CK(O) ∼=

∏
Sp(r2l) × S[O(1)× · · · ×O(1)︸ ︷︷ ︸

m

] , and hence

AK(O) ∼= Zm−1
2 . Even products of {±E2kj+1} are representatives of elements in

A
˜K(O). They satisfy

E2k+1 · E2�+1 =

{
−E2�+1 · E2k+1 k 	= 	,

(−1)kI k = 	.

�

Corollary 5.4.

(1) If O = [3 2n−2 1], then A
˜K(O) ∼= Z2 × Z2 = {±E3 · E1,±I}.

(2) If O = [3 22k 12n−4k−3] with 2n− 4k − 3 > 1, then A
˜K(O) ∼= Z2.

(3) If O = [2n]I,II (n even), then A
˜K(O) ∼= Z2.

(4) If O = [22k 12n−4k] with 2k < n, then A
˜K(O) ∼= 1.

In all cases C
˜K(O) = Z(K̃) · C

˜K(O)0.
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