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HECKE MODULES BASED ON INVOLUTIONS

IN EXTENDED WEYL GROUPS

G. LUSZTIG

Abstract. Let X be the group of weights of a maximal torus of a simply con-
nected semisimple group over C and let W be the Weyl group. The semidirect
product W ((Q ⊗ X)/X) is called an extended Weyl group. There is a natu-
ral C(v)-algebra H called the extended Hecke algebra with basis indexed by
the extended Weyl group which contains the usual Hecke algebra as a subal-
gebra. We construct an H-module with basis indexed by the involutions in
the extended Weyl group. This generalizes a construction of the author and
Vogan.

Introduction and statement of results

0.1. Let k be an algebraically closed field. Let G be a connected reductive group
over k. Let T be a maximal torus of G and let U be the unipotent radical of a Borel
subgroup of G containing T . Let N be the normalizer of T and let W = N/T be the
Weyl group; let w �→ |w| be the length function on W , let S = {w ∈ W ; |w| = 1},
and let κ : N → W be the obvious map. The obvious action of W on T is denoted
by w : t �→ w(t). Let Y = Hom(k∗, T ), X = Hom(T,k∗) and let 〈, 〉 : Y ×X → Z be
the obvious pairing. We regard Y,X as groups with operation written as addition.
Let K be a field of characteristic zero and let XK = K ⊗ X = Hom(Y,K). Let
X̄ = XK/X = (K/Z) ⊗ X. The obvious pairing 〈, 〉 : Y × XK → K restricts to
a pairing Y × X → Z and hence it induces a pairing �, 	 : Y × X̄ → K/Z. We
define an action of W on Y by w : y �→ y′, where y′(z) = w(y(z)) for z ∈ k∗.
We define an action of W on XK by the equality 〈w(y), w(x)〉 = 〈y, x〉 for all
y ∈ Y, x ∈ XK , w ∈ W . This action preserves X and hence it induces a W -action
on X̄. Let Ř ⊂ Y be the set of coroots, let Ř+ ⊂ Ř be the set of positive coroots
determined by U , let Ř− = Ř − Ř+. For s ∈ S we denote by α̌s ∈ Y the simple
coroot such that s(α̌s) = −α̌s. For λ ∈ X̄, s ∈ S we write s ∈ Wλ if �α̌s, λ	 = 0;
we write s /∈ Wλ if �α̌s, λ	 �= 0. Note that if s ∈ Wλ, then sλ = λ. For s ∈ S let Ts

be the image of α̌s : k
∗ → T .

0.2. Let W2 = {w ∈ W ;w2 = 1}. For any integer m ≥ 1 we set

X̄m = {λ ∈ X̄;m2λ = λ},
X̃m = {(w, λ) ∈ W2 × X̄;w(λ) = −mλ}.

We write WX̄ instead of W × X̄ with the group structure

(w, λ)(w′, λ′) = (ww′, w′−1(λ) + λ′).
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We call WX̄ the extended Weyl group. Then

X̃1 = {(w, λ) ∈ W2 × X̄;w(λ) = −λ} = {(w, λ) ∈ WX̄; (w, λ)2 = (1, 0)}

is exactly the set of involutions in the extended Weyl group WX̄.
More generally, if m ≥ 1, then {(w, λ) ∈ W × X̄;λ ∈ X̄m} is a subgroup of WX̄

denoted by WX̄m and (w, λ) �→ (w, λ)∗ := (w,mλ) is an involutive automorphism

of WX̄m. Moreover, X̃m is the set of ∗-twisted involutions of WX̄m, that is, the
set of all (w, λ) ∈ WX̄m such that (w, λ)(w, λ)∗ = (1, 0).

If m ≥ 1 and (w, λ) ∈ X̃m, then λ ∈ X̄m. Note that if (w, λ) ∈ X̃m and s ∈ S,

then (sws, sλ) ∈ X̃m; if in addition sw = ws, then (w, sλ) ∈ X̃m. If we have both

sw = ws and sλ = λ, then (sw, λ) ∈ X̃m.
Let p be a prime number and let q > 1 be a power of p. We set Q = q2. We

assume that the characteristic of k is either 0 or p. Then X̄q, X̃q are defined.

We fix a square root
√
−1 of −1 in C. For λ ∈ X̄q, s ∈ S, we define [λ, s] ∈

{1,−1} as follows. We have 〈α̌s, λ〉 = e/(Q − 1) with e ∈ Z. When p �= 2 we set
[λ, s] = 1 if e ∈ 2Z and [λ, s] =

√
−1 if e ∈ Z− 2Z; when p = 2 we set [λ, s] = 1.

0.3. For w ∈ W2, s ∈ S such that sw = ws we define, following [L5, 1.18], a number
(w : s) ∈ {−1, 0, 1} as follows. Assume first that G is almost simple, simply laced.
In [L5, 1.5, 1.7], a root system with a set of coroots Řw ⊂ Ř and a set of simple
coroots Π̌w for Řw was associated to w; we have α̌s ∈ Π̌w. This root system is
simply laced and has no component of type Al, l > 1. If the component containing
α̌s is not of type A1, there is a unique sequence α̌1, α̌2, . . . , α̌e in Π̌w such that
α̌i, α̌i+1 are joined in the Dynkin diagram of Řw for i = 1, 2, . . . , e−1, α̌1 = α̌s and
α̌e corresponds to a branch point of the Dynkin diagram of Řw; if the component
containing α̌s is of type A1 we define α̌1, α̌2, . . . , α̌e as the sequence with one term
α̌s (so that e = 1). We define (w : s) = (−1)e if |sw| < |w| and (w : s) = (−1)e+1

if |sw| > |w|. Next we assume that G is almost simple, simply connected, not
simply laced. Then G can be regarded as a fixed point set of an automorphism of
a simply connected, almost simple, simply laced group G′ (as in [L5, 1.14]) with
Weyl group W ′, a Coxeter group with a length preserving automorphism W ′ → W ′

with fixed point set W . When s is regarded as an element of W ′, it is a product of
k commuting simple reflections s′1, s

′
2, . . . , s

′
k of W ′; here k ∈ {1, 2, 3}. If k �= 2, we

define (w : s) for W to be (w : si) for G′, where i is any element of {1, . . . , k}. If
k = 2 we have either ws1 = s1w, ws2 = s2w (in which case (w : s) for G is defined
to be (w : s1) = (w : s2) for G

′) or ws1 = s2w, ws2 = s1w (in which case (w : s) for
G is defined to be 0). We now drop the assumption that G is almost simple. Let G′′

be the simply connected cover of an almost simple factor of the adjoint group of G
with Weyl group W ′′ ⊂ W such that s ∈ W ′′ and let w′′ be the W ′-component of
w. Then (w : s) for G is defined to be (w′′ : s) for G′′ (which is defined as above).

For p, q as in §0.2, (w, λ) ∈ X̃q, s ∈ S such that sw = ws, we set

δw,λ;s = exp(2π
√
−1((q − e)/2)(1− (w : s))〈α̌s, λ〉)

if p �= 2, e = |w| − |sw| = ±1 and δw,λ;s = 1 if p = 2. (Note that exp(2π
√
−1x) is

well defined for x ∈ Q/Z.) If G is simply laced, then δw,λ;s = 1 (since (w : s) = ±1).
In general we have δw,λ;s = ±1. Indeed, we can assume that p �= 2. It is enough to
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show that (q − e)〈α̌s, λ〉 = 0. From our assumption we have

�α̌s, λ	 = �wα̌s, wλ	 = �−eα̌s,−qλ	 = qe�α̌s, λ	 = qe−1�α̌s, λ	
and hence (q − e)�α̌s, λ	 = 0; our claim follows.

The following assumption will be made in parts of the paper (it will simplify
some proofs).

(a) For s ∈ S, α̌s;k
∗ → Ts is an isomorphism.

This is certainly satisfied if G is simply connected.
Here is one of the main results of this paper.

Theorem 0.4. Let q, p be as in §0.2. Assume that §0.3(a) holds. Let Mq be the

C-vector space with basis {aw,λ; (w, λ) ∈ X̃q}. If p �= 2 let z ∈ Z be such that
2z /∈ (q2−1)Z; if p = 2 let z ∈ Z be arbitrary. There is a unique action of the braid
group of W on Mq in which the generators {Ts; s ∈ S} of the braid group applied
to the basis elements of Mq are as follows. (We set Δ = 1 if s ∈ Wλ and Δ = 0 if
s /∈ Wλ.)

(a) Tsaw,λ = asws,λ if sw �= ws, |sw| > |w|,Δ = 1;
(b) Tsaw,λ = asws,λ + (q − q−1)aw,λ if sw �= ws, |sw| < |w|,Δ = 1;
(c) Tsaw,λ = aw,λ + (q + 1)asw,λ if sw = ws, |sw| > |w|,Δ = 1;
(d) Tsaw,λ = (1− q−1)asw,λ + (q − q−1 − 1)aw,λ if sw = ws, |sw| < |w|,Δ = 1;
(e) Tsaw,λ = [λ, s]asws,sλ if sw �= ws, |sw| > |w|,Δ = 0;
(f) Tsaw,λ = [λ, s]−1asws,sλ if sw �= ws, |sw| < |w|,Δ = 0;
(g) Tsaw,λ = δw,sλ;saw,sλ if sw = ws, |sw| > |w|,Δ = 0;

(h) Tsaw,λ = −δw,sλ;s exp(2π
√
−1(w : s)z〈α̌s, λ〉)aw,sλ if sw = ws, |sw| <

|w|,Δ = 1.

Note that the subspace of Mq spanned by {aw,0;w ∈ W2} is stable under the
braid group action; the resulting braid group action on that subspace involves only
the cases where Δ = 1 and in fact is the representation of the Hecke algebra of W
with parameter q introduced in [LV]. Thus the theorem is a generalization of a part
of [LV]. In the general case we can define operators 1λ : Mq → Mq (for λ ∈ X̄q) by

1λaw,λ′ = δλ,λ′aw,λ′ for all (w, λ′) ∈ X̃q. The operators Ts and 1λ on Mq satisfy
the relations of an “extended Hecke algebra”, isomorphic to the endomorphism
algebra of the representation of G(Fq) induced by the trivial representation of U(Fq)
(assuming that k is an algebraic closure of a finite field Fq and G is split over Fq).
This endomorphism algebra was studied by Yokonuma [Y] and a description of it in
terms of generators like Ts, 1λ was given in [L2]. The proof of the theorem is given in
§4, in terms of G(Fq), U(Fq) as above. Namely, we show that Mq can be interpreted
as the vector space spanned by the double cosets Γ1\Γ/Γ2 regarded naturally as a
module over the algebra spanned as a vector space by the double cosets Γ1\Γ/Γ1 for
suitable finite groups Γ1 ⊂ Γ ⊃ Γ2. (In our case we have Γ = G(Fq2), Γ1 = U(Fq2),
Γ2 = G(Fq).) A key role in our proof is played by a certain non-standard lifting
(introduced in [L5]) to N for the involutions in W . (The usual lifting, due to Tits
[T], is not suitable for the purposes of this paper.)

0.5. We now assume that k = C. Let v be an indeterminate and let M be the
C(v)-vector space with basis {aw,λ; (w, λ) ∈ X̃1}. For any

(a) (w, λ) ∈ X̃1 and s ∈ S such that |sw| > |w| we set

δ′w,λ;s = exp(2π
√
−1(1− (w : s))�α̌s, λ	).
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We note that for w, λ, s as in (a) we have

�α̌s, λ	 = �wα̌s, wλ	 = �α̌s,−λ	 = −�α̌s, λ	
and hence

(b) 2�α̌s, λ	 = 0 so that δ′w,λ;s is well defined and is in {1,−1}.
The following result is a generic version of Theorem 0.4 in which q is replaced

by v2 and Mq is replaced by M.

Theorem 0.6. We assume that k = C and that §0.3(a) holds. There is a unique
action of the braid group of W on M in which the generators {Ts; s ∈ S} of the
braid group applied to the basis elements of M are as follows. (We write Δ = 1 if
s ∈ Wλ and Δ = 0 if s /∈ Wλ.)

(a) Tsaw,λ = asws,sλ if sw �= ws, |sw| > |w|;
(b) Tsaw,λ = asws,sλ +Δ(v2 − v−2)aw,λ if sw �= ws, |sw| < |w|;
(c) Tsaw,λ = δ′w,sλ;saw,sλ +Δ(v + v−1)asw,λ if sw = ws, |sw| > |w|;
(d) Tsaw,λ = Δ(v− v−1)asw,λ+Δ(v2− v−2)aw,λ−aw,sλ if sw = ws, |sw| < |w|.

This can be deduced from Theorem 0.4 (see §4).
We can interpret the theorem as providing anH-module structure onM whereH

is the extended Hecke algebra (see §4.5). The subspace of M spanned by {aw,0;w ∈
W2} is stable under the operators Ts and this defines a representation of the generic
Hecke algebra of W which was defined in [LV].

0.7. The action in Theorem 0.6 can be specialized to v = 1. It becomes the braid
group action on the C-vector space with basis {aw,λ; (w, λ) ∈ X̃1} in which the
generators Ts of the braid group act as follows. (Notation and assumptions are
from Theorem 0.6.)

(a) Tsaw,λ = asws,sλ if sw �= ws;
(b) Tsaw,λ = δ′w,sλ;saw,sλ + 2Δasw,λ if sw = ws, |sw| > |w|;
(c) Tsaw,λ = −aw,sλ if sw = ws, |sw| < |w|.
This is actually a W -action since T 2

s acts as 1.

0.8. Let m be an integer ≥ 1 and let Mm be the C(v)-vector space with basis

{aw,λ; (w, λ) ∈ X̃m}. In the following result (a variant of Theorems 0.4 and 0.6)
the assumption §0.3(a) is not used.

Theorem 0.9. There is a unique action of the braid group of W on Mm in which
the generators {Ts; s ∈ S} of the braid group applied to the basis elements of Mm

are as follows. (We write Δ = 1 if s ∈ Wλ and Δ = 0 if s /∈ Wλ.)
(a) Tsaw,λ = asws,sλ if sw �= ws, |sw| > |w|;
(b) Tsaw,λ = asws,sλ +Δ(v2 − v−2)aw,λ if sw �= ws, |sw| < |w|;
(c) Tsaw,λ = aw,sλ +Δ(v + v−1)asw,λ if sw = ws, |sw| > |w|;
(d) Tsaw,λ = Δ(v − v−1)asw,λ + Δ(v2 − v−2 − 1)aw,λ + (1 − Δ)aw,sλ if sw =

ws, |sw| < |w|.

The proof is given in §3. It relies on results in [LV] and [L4].

0.10. The action in Theorem 0.9 can be specialized to v = 1. It becomes the braid
group action on the C-vector space with basis {aw,λ; (w, λ) ∈ X̃m} in which the
generators Ts of the braid group act as follows. (Notation and assumptions are
from Theorem 0.9.)
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(a) Tsaw,λ = asws,sλ if sw �= ws;
(b) Tsaw,λ = aw,sλ + 2Δasw,λ if sw = ws, |sw| > |w|;
(c) Tsaw,λ = aw,sλ − 2Δaw,λ if sw = ws, |sw| < |w|.
This is actually a W -action.

0.11. Notation. If X ⊂ X ′ are sets and ι : X ′ → X ′ satisfies ι(X) ⊂ X we write
Xι = {x ∈ X; ι(x) = x}.

1. The algebra F
1.1. Let p, q,Q be as in §0.2. We now assume that k is an algebraic closure of the
finite field Fq with �(Fq) = q. We fix a pinning (xs : k → G, ys : k → G; s ∈ S)
corresponding to T, U . (We have xs(k) ⊂ U .) Let W → N , w �→ ẇ be the Tits
cross section of κ : N → W associated to this pinning; see [T]. We fix an Fq-rational
structure on G with Frobenius map φ : G → G such that φ(t) = tq for all t ∈ T
and φ(xs(z)) = xs(z

q), φ(ys(z)) = ys(z
q) for all z ∈ k. We have φ(ẇ) = ẇ for

any w ∈ W and φ(U) = U . Let FQ be the subfield of k with �(FQ) = Q. We set
Φ = φ2. We set ε = −1 ∈ k∗.

For s ∈ S, z ∈ k∗ we set zs = α̌s(z) ∈ Ts. In particular, εs ∈ Ts is defined and
we have ṡ2 = εs.

1.2. Let X = G/U . Now G acts on X by g : xU �→ gxU and on X 2 by g :
(xU, yU) �→ (gxU, gyU). We have X 2 =

⊔
n∈N On, where On = {(xU, yU) ∈

X 2;x−1y ∈ UnU}. Now φ,Φ induce endomorphisms of X and X 2 denoted again
by φ,Φ. For n ∈ N , we have φ(On) = Oφ(n) and hence Φ(On) = OΦ(n). Thus we

have (X 2)Φ =
⊔

n∈NΦ OΦ
n and OΦ

n (n ∈ NΦ) are exactly the orbits of GΦ on (X 2)Φ.

1.3. Let
F = {f : (X 2)Φ → C; f constant on the orbits of GΦ}.

This is a C-vector space with basis {kn;n ∈ NΦ} where kn is 1 on OΦ
n and is 0 on

(X 2)Φ −OΦ
n . Now F is an associative algebra with 1 under convolution:

(f1f2)(xU, zU) =
∑

yU∈XΦ

f1(xU, yU)f2(yU, zU);

here f1 ∈ F , f2 ∈ F , (xU, zU) ∈ (X 2)Φ.
The following two lemmas are well known; they are also used in [Y].

Lemma 1.4. Assume that n, n′ ∈ N , κ(n) = w, κ(n′) = w′ satisfy |ww′| = |w| +
|w′|.

(a) If (xU, yU) ∈ On, (yU, zU) ∈ On′ , then (xU, zU) ∈ Onn′ .
(b) If (xU, zU) ∈ Onn′ , then there is a unique yU ∈ X such that (xU, yU) ∈

On, (yU, zU) ∈ On′ .

Lemma 1.5. Assume that s ∈ S. Assume that §0.3(a) holds.
(a) If (xU, x′U) ∈ Oṡ, (x

′U, zU) ∈ Oṡ−1 , then (xU, zU) ∈ O1 or (xU, zU) ∈⊔
y∈Ts

Oṡy.

(b) If (xU, zU) ∈ O1, then {x′U ∈ X; (xU, x′U) ∈ Oṡ, (x
′U, zU) ∈ Oṡ−1} is an

affine line.
(c) If (xU, zU) ∈ Oṡy with y ∈ Ts, then {x′U ∈ X; (xU, x′U) ∈ Oṡ, (x

′U, zU) ∈
Oṡ−1} is a point.

The following result can be deduced from Lemmas 1.4, 1.5.
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Lemma 1.6. Assume that s ∈ S, n ∈ N , κ(n) = w satisfy |ws| < |w|. Assume
that §0.3(a) holds.

(a) If (xU, x′U) ∈ On, (x
′U, x′′U) ∈ Oṡ−1 , then (xU, x′′U) ∈ Onṡ−1 or (xU, x′′U)

∈
⊔

τ∈Ts
Onτ .

(b) If (xU, x′′U) ∈ Onṡ−1 , then {x′U ∈ X; (xU, x′U) ∈ On, (x
′U, x′′U) ∈ Oṡ−1}

is an affine line.
(c) If (xU, x′′U) ∈ Onτ with y ∈ Ts, then

{x′U ∈ X; (xU, x′U) ∈ On, (x
′U, x′′U) ∈ Oṡ−1}

is a point.

1.7. Assume that §0.3(a) holds. From Lemma 1.4 we deduce that for n, n′ ∈ NΦ

such that |κ(nn′)| = |κ(n)|+ |κ(n′)| we have

(a) knkn′ = knn′

in F . In particular, k1 is the unit element of F . From Lemma 1.5 we deduce as in
[Y] that for s ∈ S we have

(b) kṡkṡ = Qkεs +
∑

y∈TΦ
s

kṡky.

It follows that for s ∈ S,w ∈ W,n ∈ NΦ such that |sw| < |w|, κ(n) = w we have

(c) kṡkn = Qkṡn +
∑

y∈TΦ
s

kyn

and for s ∈ S,w ∈ W,n ∈ NΦ such that |ws| < |w|, κ(n) = w we have

(d) knkṡ−1 = Qknṡ−1 +
∑

y∈TΦ
s

kny.

From (a), (c), and (d) we deduce that for s ∈ S,w ∈ W,n ∈ NΦ such that sw =
ws, |sw| < |w|, κ(n) = w we have

(e) kṡknkṡ−1 = Qkṡnṡ−1 +Q
∑

y∈TΦ
s

kṡny +
∑

y∈TΦ
s ,y′∈TΦ

s

kyny′ .

1.8. We set s = Hom(TΦ,C∗). Here TΦ is as in 0.11. Now W acts on s by
w : ν �→ wν where (wν)(t) = ν(w−1(t)) for t ∈ TΦ. For ν ∈ s we set

(a) 1ν = |TΦ|−1
∑

τ∈TΦ

ν(τ )kτ ∈ F .

We have

(b)
∑

ν∈s

1ν = k1 = 1.

Indeed, ∑

ν∈s

1ν = |TΦ|−1
∑

τ∈TΦ

∑

ν∈s

ν(τ )kτ =
∑

τ∈TΦ

δτ,1kτ = k1.

For ν, ν′ in s we have

(c) 1ν1ν′ = δν,ν′1ν .
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Indeed,

1ν1ν′ = |TΦ|−2
∑

τ∈TΦ,τ ′∈TΦ

ν(τ )ν′(τ ′)kττ ′

= |TΦ|−2
∑

τ∈TΦ,τ ′′∈TΦ

ν(τ )ν′(τ ′′τ−1)kτ ′′

= δν,ν′ |TΦ|−1
∑

τ ′′∈TΦ

ν′(τ ′′)kτ ′′ = δν,ν′1ν .

For ν ∈ s, n ∈ NΦ, w = κ(n) ∈ W we have

(d) kn1ν = 1wν1ν .

Indeed,

kn1ν = |TΦ|−1
∑

τ∈TΦ

ν(τ )knτ = |TΦ|−1
∑

τ∈TΦ

ν(τ )kw(τ)n

= |TΦ|−1
∑

τ ′∈TΦ

ν(w−1(τ ′))kτ ′n = 1wνkn.

For t ∈ TΦ, ν ∈ s we have

(e) kt1ν = ν(t−1)1ν .

Indeed,

kt1ν = |TΦ|−1
∑

τ∈TΦ

ν(τ )ktτ = |TΦ|−1
∑

τ ′∈TΦ

ν(t−1τ ′)kτ ′

= ν(t−1)|TΦ|−1
∑

τ ′∈TΦ

ν(τ ′)kτ ′ = ν(t−1)1ν .

For ν ∈ s, s ∈ S we write s ∈ Wν if ν(α̌s(z)) = 1 for all z ∈ F ∗
Q or equivalently if

ν|TΦ
s
= 1; we write s /∈ Wν if ν|TΦ

s
is not identically 1.

For ν ∈ s, α̌ ∈ Ř we define [ν, α̌] as follows. If ν(α̌(ε)) = 1 we set [ν, α̌] = 1;
if ν(α̌(ε)) = −1 we set [ν, α̌] =

√
−1. (Since α̌(ε)2 = 1 we must have ν(α̌(ε)) ∈

{1,−1}.) If p = 2 we have α̌(ε) = 1 and hence [ν, α̌] = 1. We have [ν, α̌]2 = ν(α̌(ε)).
For s ∈ S we set

(f) Ts = q−1kṡ
∑

ν∈s

[ν, α̌s]1ν ∈ F .

We show

(g) TsTs = 1 + (q − q−1)
∑

ν∈s;s∈Wν

Ts1ν .
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Indeed, we have

TsTs = Q−1
∑

ν∈s,ν′∈s

[ν, α̌s][ν
′, α̌s]kṡ1νkṡ1ν′

= Q−1
∑

ν∈s,ν′∈s

[ν, α̌s][ν
′, α̌s]kṡkṡ1sν1ν′

= Q−1
∑

ν′∈s

[sν′, α̌s][ν
′, α̌s]kṡkṡ1ν′

= Q−1
∑

ν∈s

ν(εs)kṡkṡ1ν

=
∑

ν∈s

ν(εs)kεs1ν +Q−1
∑

ν∈s,y∈TΦ
s

ν(εs)kṡky1ν

=
∑

ν∈s

1ν +Q−1
∑

ν∈s,y∈TΦ
s

ν(εs)ν(y
−1)kṡ1ν

= 1 +Q−1(Q− 1)
∑

ν∈s,ν|TΦ
s
=1

kṡ1ν .

It remains to use that if ν|TΦ
s
= 1, then ν(εs) = 1 and hence [ν, α̌s] = 1.

Now (g) implies that T −1
s ∈ F is well defined and we have

(h) T −1
s = Ts − (q − q−1)

∑

ν∈s;s∈Wν

1ν .

From (h) we see that for any ν ∈ s:

(i) T −1
s 1ν = Ts1ν −Δ(q − q−1)1ν , ,

where Δ = 1 if s ∈ Wν and Δ = 0 if s /∈ Wν .
For any ν ∈ s we show

(j) 1νTs = Ts1sν .

Indeed, we have

1νTs = q−11νkṡ
∑

ν′∈s

[ν′, α̌s]1ν′ = q−1
∑

ν′∈s

kṡ[ν
′, α̌s]1sν1ν′ = q−1kṡ[ν, α̌s]1sν ,

Ts1sν = q−1kṡ
∑

ν′∈s

[ν′, α̌s]1ν′1σν = q−1kṡ[ν, α̌s]1σν .

1.9. For any w ∈ W we set

Tw = q−|w|kẇ
∑

ν∈s

∏

α̌∈Ř+;w−1(α̌)∈Ř−

[ν, w−1α̌]1ν ∈ F .

When w = s ∈ S, this definition agrees with the earlier definition of Ts. For s ∈ S,
w ∈ W such that |ws| > |w| we show

(a) Tws = TwTs.
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Since |ws| > |w|, we have w(α̌s) ∈ R+ and {α̌ ∈ Ř+; (ws)−1(α̌) ∈ Ř−} = {α̌ ∈
R+;w−1(α̌) ∈ Ř−} � {w(α̌s)}. Hence we have

Tws = q−|ws|kẇṡ

∑

ν∈s

∏

α̌∈Ř+,(ws)−1)(α̌)∈Ř−

[ν, (ws)−1α̌]1ν

= q−|ws|kẇṡ

∑

ν∈s

[ν, (ws)−1(w(α̌s))]
∏

α̌∈Ř+;w−1(α̌)∈Ř−

[ν, (ws)−1(α̌)]1ν

= q−|ws|kẇṡ

∑

ν∈s

[ν, α̌s]
∏

α̌∈Ř+;w−1(α̌)∈Ř−

[ν, (ws)−1(α̌)]1ν .

We have

TwTs = q−|w|q−1kẇ
∑

ν∈s,ν′∈s

∏

α̌∈Ř+,w−1(α̌)∈Ř−

[ν, w−1(α̌)][ν′, α̌s]1νkṡ1ν′

= q−|ws|kẇkṡ
∑

ν∈s,ν′∈s

[ν′, α̌s]
∏

α̌∈Ř+,w−1(α̌)∈Ř−

[ν, w−1(α̌)]1sν1ν′

= q−|ws|kẇṡ

∑

ν∈s

[ν, α̌s]
∏

α̌∈Ř+,w−1(α̌)∈Ř−

[ν, (ws)−1(α̌)]1ν .

This proves (a).
From (a) we deduce:

(b) Tww′ = TwTw′ if w,w′ in W satisfy |ww′| = |w|+ |w′|.

Using §1.8(j) we see that

(c) 1νTw = Tw1w−1ν for w ∈ W, ν ∈ s.

We note that
(d) {Tw1ν ;w ∈ W, ν ∈ s} is a C-basis of F .
This follows from the fact that (up to a non-zero scalar) Tw1ν is equal to

∑

τ∈TΦ

ν(τ )kẇτ .

2. The F-module F ′

2.1. In this section we assume that §0.3(a) holds. We preserve the setup of §1.1.
We define φ′ : N → N by φ′(n) = φ(n)−1. We define ψ : X 2 → X 2 by ψ(xU, yU) =
(φ(y)U, φ(x)U). This is a Frobenius map for an Fq-rational structure on X 2. The
G-action on X 2 in §1.2 is compatible with this Fq-rational structure on X 2 and
with the Fq-rational structure on G given by φ. It follows that any G-orbit On

on X 2 such that ψ(On) = On satisfies the condition that Oψ
n �= ∅ and that Gφ

acts transitively on Oψ
n . (We use Lang’s theorem [La] and the connectedness of

the stabilizers of the G-action on On.) For n ∈ N we have ψ(On) = Oφ′(n); thus

ψ(On) = On precisely when n ∈ Nφ′
. Thus we have (X 2)ψ =

⊔
n∈Nφ′ Oψ

n and Oψ
n

(for various n ∈ Nφ′
) are precisely the Gφ-orbits in (X 2)ψ. Let

F ′ = {h : (X 2)ψ → C;h is constant on the orbits of Gφ}.
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This is a C-vector space with basis {θm;m ∈ Nφ′}, where θm is 1 on Oψ
m and is 0

on (X 2)ψ −Oψ
m. Now F ′ is an F-module under convolution

(fh)(xU, φ(x)U) =
∑

yU∈XΦ

f(xU, yU)h(yU, φ(y)U);

here f ∈ F , h ∈ F ′, (xU, φ(x)U) ∈ (X 2)ψ. (In this F-module, multiplication by the
unit element of F is the identity map of F ′.)

2.2. Now φ′ : N → N is an Fq-structure on N not necessarily compatible with
the group structure of N . But it is compatible with the T × T -action on N given
by (t1, t2) : n �→ t1nt

−1
2 and the Fq-rational structure on T × T with Frobenius

map (t1, t2) �→ (φ(t2), φ(t1)). Hence any T × T -orbit of the action on N which is
stable under φ′ : N → N must have a φ′-fixed point. Such an orbit is of the form
κ−1(w) with w ∈ W satisfying w−1 = w, that is, w ∈ W2. Using Lang’s theorem
and the connectedness of the stabilizers of the T ×T -action on κ−1(w), we see that

for w ∈ W2, κ
−1(w) ∩Nφ′

is non-empty and is exactly one orbit for the subgroup
{(t1, t2) ∈ T × T ; (t1, t2) = (φ(t2), φ(t1))} of T × T . Thus,

(a) Nφ′
=

⊔
w∈W2

N(w), where for any w ∈ W2, N(w) := κ−1(w) ∩Nφ′
is non-

empty and is a single orbit for the action of TΦ on Nφ′
given by t : n �→ tnφ(t)−1.

For w ∈ W2 we have N(w) = {ẇt; t ∈ T,w(tq)tẇ2 = 1}. Let T (w) = {t ∈
T ;w(tq)t = 1}. Clearly,

(b) N(w) is a single orbit under right translation by T (w).
We note:
(c) For w ∈ W2, z ∈ W we have żN(w)ż−1 = N(zwz−1).

It is enough to show that żNφ′
ż−1 = Nφ′

. More generally, if n ∈ NΦ, then
nNφ′

φ(n)−1 = Nφ′
. This is easily verified.

For w ∈ W2, we define a homomorphism ew : TΦ → T (w) by τ �→ w(τ )τ−q. We
show:

(d) ew is surjective.
Let t ∈ T (w). By Lang’s theorem we have t = w(τ )τ−q for some τ ∈ T . Since

t ∈ T (w) we have automatically τ ∈ TΦ and (d) follows.
For w ∈ I, s ∈ S such that sw = ws we show:
(e) If |sw| > |w|, then {cs; c ∈ FQ, c

q+1 = 1} ⊂ T (w); if |sw| < |w|, then
{cs; c ∈ FQ, c

q−1 = 1} ⊂ T (w).
Assume first that |sw| > |w| and that cq+1 = 1. We have w(cs) = cs and hence

w(cqs)cs = cq+1
s = 1. Next we assume that |sw| < |w| and that cq−1 = 1. We have

w(cs) = c−1
s and hence w(cqs)cs = c−q+1

s = 1. This proves (e).

2.3. For n ∈ NΦ,m ∈ Nφ′
we have knθm =

∑
m′∈N∗

Nn,m,m′θm′ , where

Nn,m,m′ = �{yU ∈ XΦ; (xU, yU) ∈ OΦ
n , (yU, φ(y)U) ∈ Oψ

m}.
We have also

Nn,m,m′ = �Zψ
xU,φ(x)U ,

where

ZxU,φ(x)U = {(yU, y′U) ∈ Om; (xU, yU) ∈ On, (y
′U, φ(x)U) ∈ Oφ(n)−1}

with (xU, φ(x)U) fixed in Oψ
m′ (note that ZxU,φ(x)U is ψ-stable).

Lemma 2.4. Assume that n = t ∈ TΦ, m ∈ Nφ′
. We have ktθm = θtmφ(t)−1 .
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If m′ ∈ Nφ′
satisfies Nn,m,m′ �= 0, then from Lemma 1.4 (applied twice) we see

that ZxU,φ(x)U is a point and m′ = tmφ(t)−1; moreover we have Nn,m,m′ = 1. The
result follows.

Lemma 2.5. Assume that s ∈ S, w ∈ I, m ∈ N(w), sw �= ws, |ws| > |w|. Recall
that ṡmṡ−1 ∈ N(sws). We have

kṡθm = θṡmṡ−1 .

In this case we have |sws| = |w| + 2. If m′ ∈ Nφ′
satisfies Nn,m,m′ �= 0, then

from Lemma 1.4 (applied twice) we see that ZxU,φ(x)U (in §2.3 with n = ṡ) is a

point and m′ = ṡmφ(ṡ)−1; moreover we have Nn,m,m′ = 1. The result follows.

Lemma 2.6. Assume that s ∈ S, w ∈ I, m ∈ N(w), sw = ws, |ws| > |w|. Write
m = ẇt where t ∈ T satisfies w(tq)tẇ2 = 1.

(a) We have ẇs(t) = ṡmṡ−1 ∈ N(w). We have s(t)−1tεs = ṡm−1ṡm ∈ Ts,
(ṡm−1ṡm)q+1 = 1.

(b) For y ∈ Ts we have ṡẇty = ṡmy ∈ N(sw) if and only if yq−1 = s(t)−1tεs =
ṡm−1ṡm. There are exactly q − 1 such y; they are all automatically in TΦ

s .
(c) We have

kṡθm = qθṡmṡ−1 +
∑

y∈Ts;yq−1=ṡm−1ṡm

θṡmy.

The equalities in (a) are easily checked; the inclusion ṡnṡ−1 ∈ N(w) follows
from §2.2(c). We have s(t)−1tεs ∈ Ts. To prove (a) it remains to show that
(s(t)−1tεs)

q+1 = 1. We have ṡẇ2 = ẇ2ṡ and hence ẇ2 = ṡẇ2ṡ−1 = s(ẇ2) =
ẇ2α̌s(αsẇ

−2). Thus we have α̌s(αs(ẇ
−2)) = 1, that is, α̌s(αs(w(t

q)t)) = 1. Since
w(αs) = αs it follows that α̌s(αs(t

q+1)) = 1 and hence (α̌s(−αs(t)))
q+1 = 1. Thus

(a) holds.
From our assumptions we have that w(y′) = y′ and s(y′) = y′−1 for any y′ ∈ Ts;

since s(t)t−1 ∈ Ts, it follows that w(s(t)t
−1) = s(t)t−1. Moreover we have w(ṡ2) =

ṡ2. Hence for y ∈ Ts we have

sw(tqyq)ty(ṡẇ)2 = s(w(tq)tẇ2)sw(yq)s(t)−1tyṡ2 = y−qs(t)−1tyṡ2.

This equals 1 if and only if yq−1 = s(t)−1tṡ2. This proves the first sentence of (b).
The second sentence of (b) follows from (a).

We prove (c). For m′ ∈ Nφ′
and (xU, φ(x)U) ∈ Oψ

m′ fixed, the variety ZxU,φ(x)U

in §2.3 (with n = ṡ) can be identified with

Z ′
xU,φ(x)U = {x′U ∈ X; (xU, x′U) ∈ Oṡm, (x′U, φ(x)U) ∈ Oṡ−1}.

(We use Lemma 1.4 and the equality |sw| = |w|+ 1.) By Lemma 1.6, Z ′
xU,φ(x)U is

an affine line if m′ = ṡmṡ−1, is a point if m′ = ṡmy for some y ∈ Ts, and is empty

otherwise. Hence �(Zψ
xU,φ(x)U ) is q if m′ = ṡmṡ−1, is 1 if m′ = ṡmy for some y ∈ Ts,

and is 0 otherwise. Now (c) follows from (a), (b).

Lemma 2.7. Assume that s ∈ S, w ∈ I, m ∈ N(w) and that sw = ws, |ws| < |w|.
Write m = ẇt, where t ∈ T satisfies w(tq)tẇ2 = 1.

(a) For y ∈ Ts we have ṡmṡ−1y ∈ N(w) if and only if yq−1 = 1.
(b) We have s(t)t−1εs = m−1ṡmṡ ∈ Tφ

s .
(c) For y ∈ Ts we have ṡmy ∈ N(sw) if and only if yq+1 = s(t)t−1εs = m−1ṡmṡ.

There are exactly q + 1 such y; they are all automatically in TΦ
s .
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(d) We have

kṡθm = q
∑

y∈Ts;yq+1=m−1ṡmṡ

θṡmy + θṡmṡ−1 + (q + 1)
∑

y∈Ts;yq−1=1,y �=1

θṡmṡ−1y.

We prove (a). We have

φ(ṡmṡ−1y)ṡmṡ−1y = ṡφ(m)ṡ−1yq ṡmṡ−1y = ṡm−1y−qmṡ−1y

= ṡw(y−q)ṡ−1y = ṡyq ṡ−1y = y−qy = y1−q.

This proves (a).
The equality in (b) is easily checked. We have s(t)t−1εs ∈ Ts. To prove (b)

it remains to show that (s(t)t−1εs)
q−1 = 1. We have ṡ−1ẇ2 = ẇ2ṡ−1 and hence

ẇ2 = ṡ−1ẇ2ṡ = s(ẇ2) = ẇ2α̌s(αsẇ
−2). Thus we have α̌s(αs(ẇ

−2)) = 1, that is,
α̌s(αs(w(t

q)t)) = 1. Since w(αs) = α−1
s it follows that α̌s(αs(t

−q+1)) = 1 and
hence (α̌s(−αs(t)))

−q+1 = 1. Thus (b) holds.
We prove (c). We have

φ(ṡmy)ṡmy = ṡφ(m)yqṡmy = ṡm−1yq ṡmy = ṡt−1ẇ−1yq ṡẇty

= ṡt−1ẇ−1yqẇṡty = ṡt−1w(yq)ṡty = ṡt−1y−q ṡty

= s(t−1y−q)εsty = yq+1s(t−1)tεs.

This proves the first sentence of (c). The second sentence of (c) follows from (b).

We prove (d). For m′ ∈ Nφ′
and (xU, φ(x)U) ∈ Oψ

m′ fixed, the variety ZxU,φ(x)U

in §2.3 (with n = ṡ) is
(i) an affine line if m′ = ṡmy for some y ∈ Ts such that ṡmy ∈ N(sw),
(ii) an affine line minus a point if m′ = ṡmṡ−1y with y ∈ Ts − {1},
(iii) a union of two affine lines with one point in common if m′ = ṡmṡ−1.
This is a geometric reinterpretation (and refinement) of the formula 1.7(e), in

which the number of Φ-fixed points on these varieties enter; this number is Q in
case (i), is Q − 1 in case (ii), and is 2Q − 1 in case (iii). It is enough to show
that the number of ψ-fixed points on ZxU,φ(x)U is q in case (i), is q + 1 in case
(ii), and is 1 in case (iii). This is verified directly by calculation in each case. (In
case (iii), ψ interchanges the two lines, keeping fixed the point common to the
two lines.) We give the details of the calculation assuming that G = SL2(k), T
is the diagonal matrices, TU is the upper triangular matrices, ṡ =

(
0 −1
1 0

)
, and φ

raises each matrix entry to the qth power. We have Nφ′
= {Ma; a ∈ F ∗

Q; a
q + a =

0} � {M ′
a; a ∈ F ∗

Q; a
q+1 = 1}, where Ma =

(
0 −a−1

a 0

)
, M ′

a =
(
a 0
0 a−1

)
. We must

show:
if x ∈ G, x−1φ(x) = Ma, then �(yU ∈ G/U ; y−1φ(y) ∈ UMbU, x

−1y ∈ UṡU) =
1 + δa,bq (here aq + a = 0, bq + b = 0);

if x ∈ G, x−1φ(x) = Ma′ , then �(yU ∈ G/U ; y−1φ(y) ∈ UMbU, x
−1y ∈ UṡU) =

q (here a′q+1 + a′ = 0, bq+1 = 0).
Setting y = xD we see that we must show that if bq + b = 0, then:
if aq + a = 0, then �(DU ∈ (UṡU)/U ;D−1Maφ(D) ∈ UMbU) = 1 + (1− δa,b)q;
if a′q+1 = 1, then �(DU ∈ (UṡU)/U ;D−1Ma′φ(D) ∈ UMbU) = q.
Equivalently, we must show that if bq + b = 0, then:
(e) if aq + a = 0, then �(d ∈ FQ; d

q+1a− a−1 = b) = 1 + (1− δa,b)q;
(f) if a′q+1 = 1, then �(d ∈ FQ;−a′dq + a′−1d = b) = q.
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If a = b, the equation in (e) is dq+1 = 0 which has one solution, namely d = 0. If
a �= b the equation in (e) is dq+1 = ba−1+a−2. Here (ba−1+a−2)q = ba−1+a−2 �= 0.
Hence the equation in (e) has exactly q + 1 solutions. Setting d′ = a′−1d, the
equation in (f) is −d′q+d′ = b and this has exactly d solutions in FQ since bq+b = 0.
This completes the proof.

2.8. Let T (w)∗ = Hom(T (w),C∗). Since ew is surjective (see §2.2(d)), the map
T (w)∗ → s, ζ �→ ζew is an injective homomorphism. Let sw be the image of this
homomorphism. We have sw = {ν ∈ s;w(ν)νq = 1}. Note that if w ∈ W2, z ∈ W ,
then z(sw) = szwz−1 .

For ν ∈ sw we denote by νw the element of T (w)∗ such that ν = νwew. We set
Kw = ker(ew).

For any w ∈ I, n ∈ N(w), and ν ∈ sw we define a′n,ν ∈ F ′ by

a′n,ν =
∑

t∈T (w)

νw(t)θnt = |Kw|−1
∑

τ∈TΦ

ν(τ )θτnτ−q .

To verify the last equality we note that the sum over t ∈ T (w) is equal to
|Kw|−1

∑
τ∈TΦ νw(ew(τ ))θnew(τ). We show:

(a) If w ∈ I, n ∈ N(w), τ ∈ TΦ, t ∈ T (w), and ν ∈ sw, then a′nt,ν = νw(t
−1)a′n,ν

and a′τnτ−q ,ν = ν(τ−1)a′n,ν . In particular, the line spanned by a′n,ν depends only on

w, ν and not on n.
Indeed, we have

a′nt,ν =
∑

t′∈T (w)

νw(t
′)θntt′ =

∑

t′′∈T (w)

νw(t
′′t−1)θnt′′ = νw(t

−1)a′n,ν ,

a′τnτ−q ,ν

= |Kw|−1
∑

τ ′∈TΦ

ν(τ ′)θτ ′τnττ ′−q |Kw|−1
∑

τ1∈TΦ

ν(τ1τ
−1)θτ1nτ−q

1
= ν(τ−1)a′n,ν .

This proves (a).
From §2.1, §2.2(a), (b), we see that:
(b) if {tw;w ∈ W2} is a collection of elements in T such that ẇtw ∈ N(w) for

all w ∈ W2, then {a′ẇtw,ν ;w ∈ W2, ν ∈ sw} is a C-basis of F ′.
For ν ∈ s, w ∈ I, n ∈ N(w), ν′ ∈ sw we show:

(c) 1νa
′
n,ν′ = δν,ν′a′n,ν′ .

Indeed, we have

1νa
′
n,ν′ = |Kw|−1|TΦ|−1

∑

τ∈TΦ

ν(τ )kτ
∑

τ ′∈TΦ

ν′(τ ′)θτ ′nτ ′−q

= |Kw|−1|TΦ|−1
∑

τ∈TΦ

ν(τ )
∑

τ ′∈TΦ

ν′(τ ′)θττ ′nτ ′−qt−q .

Setting ττ ′ = τ1 we obtain

1νa
′
n,ν′ = |Kw|−1|TΦ|−1

∑

τ1∈TΦ

ν′(τ1)
∑

τ∈TΦ

ν(τ )ν′(τ−1)θτ1nτ−1
1 −q

= δν,ν′ |Kw|−1
∑

τ1∈TΦ

ν′(τ1)θτ1nτ−1
1 −q = δν,ν′a′n,ν′ .

This proves (c).
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For s ∈ S, w ∈ W,n ∈ N(w), ν ∈ sw, we have (using (c)):

(d) Tsa′n,ν = q−1[ν, α̌s]kṡan,ν .

Lemma 2.9. Let s ∈ S,w ∈ I, n ∈ N(w), ν ∈ sw. Note that sν ∈ ssws. Assume
that sw �= ws, |sw| > |w|. We have

Tsa′n,ν = q−1[ν, α̌s]a
′
ṡnṡ−1,sν .

Using §2.8(d) we see that it is enough to show

kṡa
′
n,ν = a′ṡnṡ−1,sν .

Using Lemma 2.5 and the equality |Kw| = |Ksws| we see that

kṡa
′
n,ν = |Kw|−1

∑

τ∈TΦ

ν(τ )kṡθτnτ−q

= |Kw|−1
∑

τ∈TΦ

ν(τ )θṡτnτ−q ṡ−1

= |Ksws|−1
∑

τ ′∈TΦ

ν(s(τ ′))θτ ′ṡnṡ−1τ ′−q = a′ṡnṡ−1,sν .

The lemma is proved.

Lemma 2.10. Let s ∈ S,w ∈ I, n ∈ N(w), ν ∈ sw. Assume that sw = ws,
|sw| > |w|. If s ∈ Wν we set Δ = 1; if s /∈ Wν we set Δ = 0. Note that we have
sν ∈ sw; moreover, if Δ = 1, then sν = ν ∈ ssw. We set z = ṡn−1ṡn ∈ Ts; see
Lemma 2.6(a). We have zq+1 = 1; see Lemma 2.6(a). We have

Tsa′n,ν = a′ṡnṡ−1,sν if Δ = 0,

Tsa′n,ν = a′n,ν + (q−1 + 1)a′ṡnu,ν if Δ = 1,

where u ∈ TΦ
s is such that uq−1 = z (see Lemma 2.6(b)).

Using Lemma 2.6(c) and §2.8(d) we have Tsa′n,ν = A+B, where

A = |Kw|−1
∑

τ∈TΦ

ν(τ )θṡτnt−q ṡ−1 ,

and
B = q−1|Kw|−1

∑

τ∈TΦ,y∈Ts;yq−1=ṡτqn−1τ−1ṡτnτ−q

ν(τ )θṡτnτ−qy.

We have used that ν(εs) = 1 (and hence [ν, α̌s] = 1). Indeed, we have ν(εs) =
νw(ew(εs)) = νw(w(εs)εs) = νw(1) = 1 since w(εs) = εs.

In the sum A we set τ ′ = s(τ ). We get

A = |Kw|−1
∑

τ ′∈TΦ

(sν)(τ ′)θt′ṡnṡ−1t′−q = a′ṡnṡ−1,sν .

We now show that if Δ = 1, then

a′ṡnṡ−1,sν = a′n,ν .

We write n = ẇt with t ∈ T . We have ṡnṡ−1 = ṡẇtṡ−1 = ẇṡtṡ−1 = nt−1s(t). By

Lemma 2.6(a) we have (t−1s(t))q+1 = 1. Since t−1s(t) ∈ Ts we have t−1
1 s(t) = tq−1

1

with t1 ∈ TΦ
s . Thus we have ṡnṡ−1 = ntq−1

1 and hence a′ṡnṡ−1,ν = a′
ntq−1

1 ,ν
=

a′
t−1
1 ntq1,ν

= a′n,ν since ν(t1) = 1. This proves our claim.
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We now consider the sum B. In that sum we have

ṡτ qn−1τ−1ṡτnτ−q = s(τ q)ṡn−1ṡs(τ )−1τnτ−q

= ṡn−1ṡns(τ )−1ττ−qs(τ q) = z(τs(τ )−1)1−q.

Thus we have

B = q−1|Kw|−1
∑

(τ,y)∈Y
ν(τ )θṡnw(τ)τ−qy,

where Y = {(τ, y) ∈ TΦ × Ts; y
q−1 = z(τs(τ )−1)1−q}. Let Y ′ = {(τ ′, u) ∈ TΦ ×

(TΦ
s );uq−1 = z}. The map ξ : Y ′ → Y , (τ ′, u) �→ (s(τ ′), s(τ ′)qτ ′−qu) is a well

defined bijection. Now the sum B can be written in terms of this bijection as
follows:

B = q−1|Kw|−1
∑

(τ ′,u)∈Y′

ν(s(τ ′))θṡnw(s(τ ′))τ ′−qu.

We have a free action of TΦ
s on Y ′ given by e : (τ ′, u) �→ (τ ′s(e), ue−q−1). Note

that the quantity θṡnw(s(τ ′))τ ′−qu) is constant on the orbits of this action. Hence if

Y ′
0 is a set of representatives for the TΦ

s -orbits on Y ′ we have

B = q−1|Kw|−1
∑

(τ ′,y)∈Y′
0,e∈TΦ

s

(sν)(τ ′)ν(e)θτ ′ṡnτ ′−qu.

Note that
∑

e∈TΦ
s
ν(e) = δ(q2 − 1). In particular, if Δ = 0 we have B = 0. We now

assume that Δ = 1. For any u ∈ TΦ
s such that uq−1 = z we set

Bu = q−1|Kw|−1
∑

τ ′∈TΦ

(sν)(τ ′)θτ ′ṡnτ ′−qu.

We have B =
∑

u∈TΦ
s ;uq−1=z Bu. For any u as above and any e ∈ TΦ

s we have

B′
ue−1−q = B′

u since ν(e) = 1. If u, u′ in TΦ
s are such that uq−1 = u′q−1 = z, we have

u′ = uẽ, where ẽ ∈ TΦ
s satisfies ẽq−1 = 1. Hence we have ẽ = e−q−1 for some e ∈ TΦ

s

so that u′ = ue−q−1. Thus we have Bu′ = Bu. We see that B = (q − 1)Bu where
u ∈ TΦ

s is such that uq−1 = z. We have Bu = q−1|Ksw||Kw|−1a′ṡnu,ν . It remains

to show that (q − 1)|Ksw||Kw|−1 = q + 1 or equivalently, that |T (sw)||T (w)|−1 =
(q − 1)(q + 1)−1. This follows from the following fact: there exists c, c′ in N such

that |T (w)| = (q − 1)c(q + 1)c
′
, |T (sw)| = (q − 1)c+1(q + 1)c

′−1. The lemma is
proved.

Lemma 2.11. Let s ∈ S,w ∈ I, n ∈ N(w), ν ∈ sw. Assume that sw = ws,
|sw| < |w|, s /∈ Wν . Note that sν ∈ sw. We have

Tsa′n,ν = −a′ṡnṡ−1,sν .

Using Lemma 2.7(d) and §2.8(d) we have Tsa′n,ν = A+B where

A = q−1|Kw|−1
∑

τ∈TΦ,y∈Ts;yq−1=1

cyν(τ )θṡτnτ−q ṡ−1y,

where cy = q + 1 if y �= 1, cy = 1 if y = 1 and

B = |Kw|−1
∑

τ∈TΦ,y∈Ts;yq+1=τqn−1τ−1ṡτnτ−q ṡ

ν(τ )θṡτnτ−qy.
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We have used that, as in the proof of Lemma 2.10, we have ν(εs) = 1 (and hence
[ν, α̌s] = 1). In the sum A we set τ ′ = s(τ ). We get

A = q−1|Kw|−1
∑

τ ′∈TΦ,y∈Ts;yq−1=1

cy(sν)(τ
′)θτ ′ṡnṡ−1τ ′−qy.

For y ∈ Ts such that yq−1 = 1 we can find y′ ∈ Ts such that y′q+1 = y (there are
q + 1 such y′) and we have automatically y′ ∈ TΦ. Thus we have

A = q−1|Kw|−1(q + 1)−1
∑

τ ′∈TΦ,y′∈TΦ
s

cy′−q−1(sν)(τ ′)θτ ′ṡnṡ−1τ ′−qy′−q−1

= q−1|Kw|−1(q + 1)−1
∑

τ ′∈TΦ,y′∈TΦ
s

cy′−q−1(sν)(τ ′)θy′τ ′ ṡnṡ−1y′−qτ ′−q .

With the change of variable τ ′y′ = τ ′′ we obtain

A = q−1|Kw|−1(q + 1)−1
∑

τ ′′∈TΦ,y′∈TΦ
s

cy′−q−1(sν)(τ ′′)ν(y′)θτ ′′ṡnṡ−1τ ′′−q .

(We have used that s(y′) = y′−1.) Using our assumption that s /∈ Wν , we have
∑

y′∈TΦ
s

cy′−q−1ν(y′)

=
∑

y′∈TΦ
s ;y′q+1=1

ν(y′) + (q + 1)
∑

y′∈TΦ
s ;y′q+1 �=1

ν(y′)

= (q + 1)
∑

y′∈TΦ
s

ν(y′)− q
∑

y′∈TΦ
s ;y′q+1=1

ν(y′)

= −q
∑

y′∈TΦ
s ;y′q+1=1

ν(y′) = −q
∑

y′∈TΦ
s ;y′q+1=1

νw(y
′−q−1)

= −q�(y′ ∈ TΦ
s ; y′q+1 = 1) = −q(q + 1).

It follows that

A = q−1|Kw|−1(q + 1)−1(−q)(q + 1)
∑

τ ′′∈TΦ

ν(τ ′′)θτ ′′ṡnṡ−1τ ′′−q = −a′ṡnṡ−1,sν .

It remains to prove that B = 0. We set z = n−1ṡnṡ ∈ Ts; see Lemma 2.7(b). In
the sum B we have

τ qn−1τ−1ṡτnτ−qṡ = τ qn−1τ−1s(τ )ṡnṡs(τ )−q

= τ qτs(τ )−1n−1ṡnṡs(τ )−q = zτ qτs(τ )−1s(τ )−q = z(τs(τ )−1)q+1.

Thus we have

B = q−1|Kw|−1q
∑

(τ,y)∈Z
ν(τ )θṡτnτ−qy,

where Z = {(τ, y) ∈ TΦ × Ts; y
q+1 = z(τs(τ )−1)q+1}. The group TΦ

s acts freely
on Z by e : (τ, y) �→ (τe, yeq+1). (We must show that the equation yq+1 =
z(τs(τ )−1)q+1 implies (yeq+1)q+1 = z(τes(τe)−1)q+1; it is enough to show that

e(q+1)2 = e2(q+1) and this follows from eq
2−1 = 1.) We show that the last sum

restricted to any TΦ
s -orbit is zero. Since θṡτnτ−qy is constant on any TΦ

s -orbit it
is enough to show that

∑
e∈TΦ

s
ν(e) = 0; this follows from our assumption that

s /∈ Wν . We deduce that B = 0. The lemma is proved.
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2.12. For w ∈ I let ||w|| be the dimension of the −1 eigenspace of the linear map
induced by w on the real vector space R ⊗ Y . We have |w| = ||w|| mod 2. For
w ∈ N(w), ν ∈ sw we set

ãn,ν = q−(|w|+||w||)/2a′n,ν ∈ F ′.

We have the following result.

Lemma 2.13. Let s ∈ S,w ∈ W2, n ∈ N(w), ν ∈ sw. Write n = ẇt where t ∈ T .
We have:

(a) Tsãn,ν = [ν, α̌s]ãṡnṡ−1,sν if sw �= ws, |sw| > |w|;
(b) Tsãn,ν = ãṡnṡ−1,sν if sw = ws, |sw| > |w|, s /∈ Wν ;

(c) Tsãn,ν = ãn,ν + (q + 1)ãṡnu,ν (where u ∈ TΦ
s is such that uq−1 = ṡn−1ṡn =

s(t)−1tεs; see Lemma 2.6(a), (b)) if sw = ws, |sw| > |w|, s ∈ Wν ;
(d) Tsãn,ν = −ãṡnṡ−1,sν if sw = ws, |sw| < |w|, s /∈ Wν .

(a) is a reformulation of Lemma 2.9; (b), (c) are reformulations of Lemma 2.10;
(d) is a reformulation of Lemma 2.11.

3. Proof of Theorem 0.4

3.1. We preserve the setup of §1.1. Let L be the subgroup of Y generated by
{α̌s; s ∈ S}. Let S′ be a halving of S, that is, a subset S′ of S such that s1s2 = s2s1
whenever s1, s2 in S are both in S′ or both in S − S′. (Such S′ always exists.) Let

W2 → Y , w �→ rw, and W2 → L/2L, w �→ bw = bS
′

w be the maps defined in [L5, 0.2,
0.3]. From [L5, 0.2, 0.3] and from the proof of [L5, 1.14(a)] we have:

(i) r1 = 0, rs = α̌s for any s ∈ S, b1 = 0, bs = α̌s for any s ∈ S′, bs = 0 for any
s ∈ S − S′;

(ii) for any w ∈ W2, s ∈ S such that sw �= ws we have s(rw) = rsws, s(bw) =
bsws + α̌s;

(iii) for any w ∈ W2, s ∈ S such that sw = ws we have rsw = rw + N α̌s,
bsw = bw + lα̌s where l ∈ {0, 1}, N ∈ {−1, 0, 1}.

(iv) for any w ∈ W2, s ∈ S such that sw = ws, |sw| > |w| we have s(rw) = rw;
(v) for any w ∈ W2, s ∈ S such that sw = ws we have s(bw) = bw + (1 −N )α̌s

where N is as in (iii).
Moreover, by [L5, 0.5],
(vi) if c ∈ FQ, c

q−1 = ε, the element nw,c = ẇrw(c)bw(ε) ∈ κ−1(w) belongs to
N(w).

Here rw(c) ∈ T , bw(ε) ∈ T are obtained by evaluating a homomorphism k∗ → Y
at c or ε. Note that bw(ε) = bw(ε)

−1. From [L5, 1.18] we deduce:
(vii) in the setup of (iii) we have N = (w : s).
The following equality complements (iv):
(viii) for any w ∈ W2, s ∈ S such that sw = ws, |sw| < |w| we have s(rw) =

rw + 2(w : s)α̌s.
Indeed, using (iii), (iv), (vii) we have
s(rw) = s(rsw − (w : s)α̌s) = rsw + (w : s)α̌s = rw + 2(w : s)α̌s.
For any w ∈ W2, any c ∈ FQ such that cq−1 = ε, and any ν ∈ sw we set

aw,c,ν = ãnw,c,ν .

This is well defined by (vi). By §2.8(b),
(a) for any c as above, {aw,c,ν ;w ∈ W2, ν ∈ sw} is a C-basis of F ′.
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In the remainder of this section we assume that §0.3(a) holds. We have the
following result.

Proposition 3.2. Let s ∈ S,w ∈ W2, ν ∈ sw. Let c be as in §3.1(vi). We have
(a) Tsaw,c,ν = asws,c,sν if sw �= ws, |sw| > |w|, s ∈ Wν ;
(b) Tsaw,c,ν = asws,c,sν + (q − q−1)aw,c,ν if sw �= ws, |sw| < |w|, s ∈ Wν ;
(c) Tsaw,c,ν = aw,c,ν + (q + 1)asw,c,ν if sw = ws, |sw| > |w|, s ∈ Wν ;
(d) Tsaw,c,ν = (1−q−1)asw,c,ν+(q−q−1−1)aw,c,ν if sw = ws, |sw| < |w|, s ∈ Wν ;
(e) Tsaw,c,ν = [ν, α̌s]asws,c,sν if sw �= ws, |sw| > |w|, s /∈ Wν ;
(f) Tsaw,c,ν = [ν, α̌s]

−1asws,c,sν if sw �= ws, |sw| < |w|, s /∈ Wν ;

(g) Tsaw,c,ν = sνw(ε
1−(w:s)
s )aw,c,sν if sw = ws, |sw| > |w|, s /∈ Wν ;

(h) Tsaw,c,ν = −sνw(ε
1−(w:s)
s )sνw(c

−2(w:s)
s )aw,c,sν if sw = ws, |sw| < |w|, s /∈

Wν .

This will be deduced in §§3.3–3.8 from Lemma 2.13 with n = nw,c as in §3.1(vi),
using the equality ãn′t,ν′ = ν′w′(t−1)ãn′,ν′ where w′ ∈ W2, n

′ ∈ N(w), ν′ ∈ sw′ , t ∈
T (w′), which follows from §2.8(a).
3.3. Assume that we are in the setup of Proposition 3.2(a) or Proposition 3.2(e).
Using Lemma 2.13(a) and §3.1(ii) we obtain

Tsaw,c,ν = [ν, α̌s]ãṡẇrw(c)bw(ε)ṡ−1,sν

= [ν, α̌s]ãṡẇṡṡ−1rw(c)bw(ε)ṡ−1,sν

= [ν, α̌s]ãnsws,crsws(c)−1bsws(ε)−1ds−1rw(c)bw(ε)ṡ−1,sν

= [ν, α̌s]sνsws(ṡbw(ε)rw(c)
−1ṡrsws(c)bsws(ε))asws,c,sν

= [ν, α̌s]sνsws(bsws(ε)εsrsws(c)
−1εsrsws(c)bsws(ε))asws,c,sν = [ν, α̌s]asws,c,sν .

This proves Propposition 3.2(e). Now Proposition 3.2 follows also since in that
case we have [ν, α̌s] = 1. (It is enough to show that ν(εs) = 1. This follows from
s ∈ Wν .) This proves Proposition 3.2(a).

3.4. Assume that we are in the setup of Proposition 3.2(g). Using Lemma 2.13(b),
§3.1(iv), (v), (vii), we obtain

Tsaw,c,ν = ãṡẇrw(c)bw(ε)ṡ−1,sν = ãẇs(rw(c)bw(ε)),sν

= ã
ẇrw(c)bw(ε)ε

1−(w:s)
s ,sν

= sνw(ε
1−(w:s)
s )aw,c,sν .

This proves Proposition 3.2(g).

3.5. Assume that we are in the setup of Lemma 2.13(c) with n = nw,c. Using
§3.1(iv), (v), (vii), we have

uq−1 = s(rw(c)bw(e))
−1rw(c)bw(e)εs = s(bw(e))

−1bw(e)εs

= ε1−(w:s)
s εs = ε(w:s)

s .(a)

For l ∈ {0, 1} we show:

(b) νsw(c
(w:s)
s εlsu

−1) = 1.

Since ν is 1 on TΦ
s , νsw must be trivial on esw(T

Φ
s ), that is, on the image of TΦ

s →
TΦ
s , t �→ tq+1 which is the same as {t′ ∈ Ts; t

′q−1 = 1}. Since c
(w:s)
s εlsu

−1 ∈ Ts, it is
enough to show that

(c) (c(w:s)
s εlsu

−1)q−1 = 1.
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Using (a) and the equations cq−1 = ε, εq−1 = 1, we see that the left-hand side of

(c) is ε
(w:s)
s ε

−(w:s)
s = 1. This completes the proof of (b).

We now assume that we are in the setup of Proposition 3.2(c) (which is the same
as the setup of Lemma 2.13(c) with n = nw,c). From Lemma 2.13(c) we deduce
using (b) and §3.1(iii) that for some l ∈ {0, 1} we have

Tsaw,c,ν − aw,c,ν = (q + 1)ãṡẇrw(c)bw(ε)u,ν

= (q + 1)ãṡẇrsw(c)bsw(ε)rsw(c)−1bsw(ε)rw(c)bw(ε)u,ν

= (q + 1)νsw(rsw(c)bsw(ε)rw(c)
−1bw(ε)u

−1)asw,c,ν

= (q + 1)νsw(c
(w:s)
s εlsu

−1)asw,c,ν = (q + 1)asw,c,ν .

This completes the proof of Proposition 3.2(c).

3.6. Assume that we are in the setup of Proposition 3.2(h). From Lemma 2.13(d)
we deduce using §3.1(viii):

Tsaw,c,ν = −ãṡẇrw(c)bw(ε)ṡ−1,sν = −ãẇs(rw(c)bw(ε)),sν

= −ã
ẇrw(c)bw(ε)c

2(w:s)
s ε

1−(w:s)
s ,sν

= sνw(c
−2(w:s)
s ε1−(w:s)

s )aw,c,sν

= sνw(ε
1−(w:s)
s sνw(c

−2(w:s)
s )aw,c,sν .

This proves Proposition 3.2(h).

3.7. Assume that sw �= ws, |sw| < |w|. Then Proposition 3.2(a), (e) are applicable
with sws, sν instead of w, ν so that

Tsasws,c,sν = [sν, α̌s]aw,c,ν .

We apply T −1
s to both sides; we obtain

T −1
s aw,c,ν = T −1

s 1νaw,c,ν = [sν, α̌s]
−1asws,c,sν .

Using §1.8(i) we deduce

Tsaw,c,ν − δ(q − q−1)aw,c,ν = [sν, α̌s]
−1asws,c,sν ,

where Δ = 1 if s ∈ Wν , Δ = 0 if s /∈ Wν . This proves Proposition 3.2(b), (f). (We
use that [sν, α̌s] = [ν, α̌s] is 1 when s ∈ Wν since ν(εs) = 1 in that case.)

3.8. Assume that s, w, ν are as in Proposition 3.2(d). Then Proposition 3.2(c) is
applicable to sw, ν instead of w, ν and gives:

(a) Tsasw,c,ν = asw,c,ν + (q + 1)aw,c,ν .

We apply Ts to (a). We obtain

TsTsasw,c,ν = Tsasw,c,ν + (q + 1)Tsaw,c,ν .

Using §1.8(h) we deduce

asw,c,ν + (q − q−1)Tsasw,c,ν = Tsasw,c,ν + (q + 1)Tsaw,c,ν

and hence, using (a):

asw,c,ν + (q − q−1 − 1)(asw,c,ν + (q + 1)aw,c,ν) = (q + 1)Tsaw,c,ν .

Dividing by q + 1 we get Proposition 3.2(d). This completes the proof of Proposi-
tion 3.2.
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3.9. We choose a generator γ of the cyclic group F ∗
Q so that we have an isomorphism

(a) Z/(Q− 1)Z
∼−→ F ∗

Q

which takes 1 to γ.
Let z ∈ Z be as in §0.2. Let c = γz(q+1)/2 ∈ F ∗

Q. (If p = 2 so that (q + 1)/2

is not an integer, this is interpreted as a square root of γz(q+1) which is uniquely

defined.) If p �= 2 we have cq−1 = γz(q2−1)/2 = ε by the choice of z. If p = 2, then

(cq−1)2 = (c2)q−1 = γz(q2−1) = 1 and hence cq−1 = 1 = ε. Thus in any case we
have cq−1 = ε.

We have an isomorphism of groups F ∗
Q ⊗ Y

∼−→ TΦ, z⊗ y �→ y(z). Using (a) this

can be viewed as an isomorphism of groups (Z/(Q−1)Z)⊗Y
∼−→ TΦ; it takes n⊗y

to y(γn). We have a pairing

(, ) : ((Z/(Q− 1)Z)⊗ Y )× X̄q → C∗

given by

(d⊗ y,
a

Q− 1
⊗ x) = exp(2π

√
−1

da

Q− 1
�y, x	),

where y ∈ Y, x ∈ X, a ∈ Z, d ∈ Z. This pairing identifies X̄q with Hom((Z/(Q −
1)Z) ⊗ Y,C∗) = Hom(TΦ,C∗) = s. This identification is compatible with the

natural W -actions on X̄q and s; it induces an identification X̃q = {(w, ν);w ∈
W2, ν ∈ sw}. Thus, the basis §3.1(a) of F ′ can be naturally indexed by the elements

of X̃q. We shall interpret the quantities

[ν, α̌s], sνw(ε
1−(w:s)
s ), sνw(c

−2(w:s)
s )

which appear in Proposition 3.2 in terms of the corresponding parameter in X̃q.

Assume that (w, ν) ∈ W2 × s (with ν ∈ sw) corresponds to (w, λ) ∈ X̃q. Then for
any s ∈ S we have

(b) ν(α̌s(γ)) = exp(2π
√
−1�α̌s, λ	).

We show:
(c) If sw = ws, |sw| < |w|, s /∈ Wν , then

sνw(c
−2(w:s)
s ) = exp(2π

√
−1(w : s)z�α̌s, λ	).

Let c̃ = γz. We have c̃q+1
s = c2s and hence

sνw(c
−2(w:s)
s ) = sνw((c̃

−(w:s)
s )q+1) = sνw(ew(c̃

−(w:s)
s )) = (sν)(c̃−(w:s)

s ) = ν(c̃(w:s)
s ).

It remains to show:
ν(α̌s(γ

z) = exp(2π
√
−1z�α̌s, λ	).

This clearly follows from (b).
We show:
(d) If sw = ws, then sνw(ε

1−(w:s)
s ) = δw,sλ,s.

If p = 2, both sides are 1. Thus we can assume that p �= 2. We must show that

sνw(ε
1−(w:s)
s ) = exp(2π

√
−1((q − e)/2)(1− (w : s))�α̌s, sλ	),

where e = |w| − |sw| = ±1. It is enough to show that

sνw(εs) = exp(2π
√
−1((q − e)/2)�α̌s, sλ	).

We have εs = (γ
(q−e)/2
s )q+e = ew(γ

(q−e)/2
s ) so that

sνw(εs) = sνw(ew(γ
(q−e)/2
s )) = (sν)(γ(q−e)/2

s ).
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Thus it is enough to show that

(sν)(α̌s(γ)) = exp(2π
√
−1�α̌s, sλ	).

This clearly follows from (b).
We show:
(e) If s ∈ S, then [λ, s] = [ν, α̌s].
If p = 2 both sides are 1. Thus we can assume that p �= 2. We must show that we

have [λ, s] = 1 if and only if [ν, α̌s] = 1 or that exp(2π
√
−1(1/2)(Q−1)�α̌s, sλ	) = 1

if and only if ν(α̌s(ε)) = 1 or (using (b)) that ν(α̌s(γ))
(1/2)(Q−1) = 1 if and only if

ν(α̌s(ε)) = 1. This follows from the equality γ(1/2)(Q−1) = ε.
From (b) and the definitions we see that:
(f) If s ∈ S, then we have s ∈ Wλ if and only if s ∈ Wν .
We now see that Proposition 3.2 implies the truth of Theorem 0.4 in the special

case where k is as in §1.1. But then Theorem 0.4 follows immediately for any k
as in §0.1 such that the characteristic of k is 0 or p. This completes the proof of
Theorem 0.4.

4. The generic case

4.1. In this section we assume that k = C and that §0.3(a) holds. We have X̄1 = X̄.

Hence X̃1 = {(w, λ) ∈ W2 × X̄;w(λ) = −λ}.
Until the end of §4.2, we fix a W -orbit O in X̄ which is contained in the image

of XQ under XK → X̄. We can find an integer e ≥ 1 such that e�y, λ	 = 0 for
any y ∈ Y and any λ ∈ O. We can write e =

∏
p∈P

pcp where P is a finite set of

prime numbers and cp ≥ 1 are integers. Let P′ be the set of prime numbers which
do not divide 2e. Note that P ∩P′ = ∅. Hence if p ∈ P, p′ ∈ P′, then p′ is a unit
in the ring Z/pcpZ and hence for some integer ap ≥ 1 independent of p′ we have
p′ap = 1 in Z/pcpZ, that is, pcp divides p′ap − 1. Let S be the set of all integers
z ≥ 1 such that z is divisible by

∏
π∈P

ap. Then for any p ∈ P, p′ ∈ P′ and any

z ∈ S, pcp divides p′z − 1. Hence for any p′ ∈ P′ and any z ∈ S, e divides p′z − 1.
Let Q be the set of all numbers of the form p′z with p′ ∈ P′, z ∈ S. Then we have
(q − 1)�y, λ	 = 0 for any q ∈ Q, any y ∈ Y , and any λ ∈ O. Hence

(a) (q − 1)λ = 0 for any q ∈ Q and any λ ∈ O.
It follows that
(b) if (w, λ) ∈ X̃1 and λ ∈ O, then (w, λ) ∈ X̃q for any q ∈ Q.
Indeed, we have w(λ) = −λ and we must show that w(λ) = −qλ. It is enough

to show that qλ = λ and this follows from (a).

4.2. Let Q̃ be the set of squares of the numbers in Q. We have Q̃ ⊂ Q. We now
fix q ∈ Q̃. We have q = q′2 with q′ ∈ Q. Note that q = 4t+ 1 for some t ∈ N. Let
(w, λ) ∈ X̃1 with λ ∈ O (so that (w, λ) ∈ X̃q′ and (w, λ) ∈ X̃q by §4.1(b)) and let
s ∈ S. We show:

(a) [λ, s] defined as in §0.2 in terms of q is equal to 1.

Since (w, λ) ∈ X̃q′ we have �α̌s, λ	 = e′/(q′2 − 1) with e′ ∈ Z. Hence �α̌s, λ	 =
e/(q2 − 1) with e = e′(q′2 + 1). Since e is even we see that (a) holds.

We show:
(b) If sw = ws, |sw| > |w|, then δw,λ;s defined as in §0.3 in terms of q is equal

to δ′w,λ;s defined as in §0.5.
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It is enough to show that exp(2π
√
−1((q + 1)/2)�α̌s, λ	) = exp(2π

√
−1�α̌s, λ	)

or that (−1+(q+1)/2)�α̌s, λ	 = 0, or that 2t�α̌s, λ	 = 0. This follows from §0.5(b).
We show:
(c) If sw = ws, |sw| < |w|, then δw,λ;s defined as in §0.3 in terms of q is equal

to 1.
It is enough to show that

exp(2π
√
−1((q − 1)/2)�α̌s, λ	) = 1

or that ((q − 1)/2)�α̌s, λ	 = 0. Since λ ∈ X̄q′ we have (q′ − 1)�α̌s, λ	 = 0 by the
argument at the end of §0.3. We have (q−1)/2 = (q′−1)(q′+1)/2 where q′+1 ∈ 2Z
and hence

((q − 1)/2)�α̌s, λ	 = ((q′ + 1)/2)(q′ − 1)�α̌s, λ	 = 0.

This proves (c).

Proposition 4.3. Let q be an indeterminate and let M̃ denote the C(q)-vector

space with basis {ãw,λ; (w, λ) ∈ X̃1}. There is a unique action of the braid group of

W on M̃ in which the generators {Ts; s ∈ S} of the braid group applied to the basis

elements of M̃ are as follows. (We write Δ = 1 if s ∈ Wλ and Δ = 0 if s /∈ Wλ.)
(a) Tsãw,λ = ãsws,λ if sw �= ws, |sw| > |w|;
(b) Tsãw,λ = ãsws,sλ +Δ(q− q−1)ãw,λ if sw �= ws, |sw| < |w|;
(c) Tsãw,λ = δ′w,sλ;sãw,sλ +Δ(q+ 1)ãsw,λ if sw = ws, |sw| > |w|;
(d) Tsãw,λ = Δ(1−q−1)ãsw,λ +Δ(q−q−1)ãw,λ − ãw,sλ if sw = ws, |sw| < |w|.
Here δ′w,sλ;s = ±1 is as in §0.5. (It is 1 in the simply laced case; it is also 1 if

Δ = 1.)

It is enough to prove the proposition with M̃ replaced by the C(q)-vector space

M̃O with basis {ãw,λ; (w, λ) ∈ X̃1, λ ∈ O}, where O is any W -orbit in X̄.

Assume first that O is as in §4.1 and let e,Q, Q̃ be as in §4.2. Let Q̃′ = {q ∈
Q̃; 2e < q2 − 1}. Clearly, Q̃′ is an infinite set.

Let MO be the C-vector space with basis {ãw,λ; (w, λ) ∈ X̃1;λ ∈ O}. By §4.1(b)
we can identify MO with a subspace of Mq (for any q ∈ Q) by ãw,λ �→ aw,λ.
This subspace of Mq is stable under the operators Ts, s ∈ S attached in Theorem

0.4 to z = e, provided that q ∈ Q̃′. (Note for q ∈ Q̃′ we have 2z /∈ (q2 − 1)Z
since 0 < 2fe < q2 − 1.) Hence Ts : Mq → Mq can be regarded as an operator

T (q)
s : MO → MO for any q ∈ Q̃′. This operator is given by a matrix in the basis

of MO given by Laurent polynomials in q with integer coefficients independent of
q. (This follows from the formulas 0.4(a)–(h), from §4.2(a), (b), (c) and from the
equality exp(2π

√
−1(w : s)e〈α̌s, λ〉) = 1 for λ ∈ O.) Since q runs through an infinite

set, we deduce that the braid group relations satisfied by the T (q)
s remain valid when

q is replaced by the indeterminate q. We see that if we identify M̃O = C(q)⊗MO,

then there is a unique action of the braid group ofW on M̃O in which the generators
{Ts; s ∈ S} of the braid group applied to the basis elements of M̃O are as in (a)–(d)
above.

We now consider a W -orbit O in X̄ which is not necessarily as in §4.1. We choose
ξ0 ∈ XK such that the image of x0 in X̄ belongs to O. Let H be the collection of
affine hyperplanes

{ξ ∈ XK ; 〈α̌, ξ〉 = e} for various α̌ ∈ Ř, e ∈ Z;
{ξ ∈ XK ;w(ξ) = ξ + x} for various w ∈ W − {1}, x ∈ X;
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{ξ ∈ XK ;w(ξ) = −ξ + x} for various w ∈ W2, x ∈ X such that w + 1 is not
identically zero on X.

We can find ξ′0 ∈ XQ such that a hyperplane in H contains ξ0 if and only if it
contains ξ′0. Let O′ be the W -orbit of the image of ξ′0 in X̄. There is a unique W -

equivariant bijection j : O′ ∼−→ O under which the image of ξ′0 in X̄ corresponds to

the image of ξ0 in X̄. We define an isomorphism M̃O′
∼−→ M̃O by ãw,λ′ �→ ãw,j(λ′).

This isomorphism is compatible with the operators Ts on these two vector spaces.
Since these operators satisfy the braid group relations on M̃′

O (by the first part of

the proof) they will satisfy the braid group relations on M̃O. This completes the
proof of the proposition.

4.4. Let v be an indeterminate such that v2 = q. Let M = C(v) ⊗C(q) M̃. We

consider the basis {aw,λ; (w, λ) ∈ X̃1} defined by aw,λ = v||w||ãw,λ where ||w|| is
as in §2.12. The linear maps Ts : M̃ → M̃ with s ∈ S extend to linear maps
Ts : M → M which satisfy the equalities in Theorem 0.6. Thus Theorem 0.6 is a
consequence of Proposition 4.3.

4.5. Let H be the C(v)-vector space with basis {Tw,λ; (w, λ) ∈ WX̄}. There is a
unique structure of associative C(v)-algebra (without 1 in general) on H such that
(a), (b) below hold.

(a) Tw,λTw′,λ′ = δw−1(λ),λ′Tww′,λ′

if (w, λ) ∈ WX̄, (w′, λ′) ∈ WX̄, |ww′| = |w|+ |w′|;
(b) Ts,λTs,λ′ = δλ,λ′T1,λ′ +Δδs(λ),λ′(v2 − v−2)Ts,λ′

if s ∈ S, λ ∈ X̄, λ′ ∈ X̄ (here Δ = 1 if s ∈ Wλ and Δ = 0 if s /∈ Wλ). We call H the
extended Hecke algebra. This algebra has been studied in [L2], [L4] (at least when
K = Q). It is similar but not the same to an algebra studied in [MS].

For any w ∈ W we define a linear map Tw : M → M by Tw = Ts1Ts2 . . .Tsk ,
where s1, s2, . . . , sk are elements of S such that w = s1s2 . . . sk, |w| = k. By
Theorem 0.6, this is independent of the choice of s1, . . . , sk. For λ ∈ X̄ we define
a linear map 1λ : M → M by 1λ(aw,λ′) = δλ,λ′aw,λ′ for any (w, λ′) ∈ X̃1. For
(w, λ) ∈ WX̄ we define a linear map Tw,λ : M → M as the composition Tw1λ.
These maps define an H-module structure on M. (This follows from Theorem 0.6;
the relation (b) on M can be deduced from the analogous relation in Mq.) From
(b) we deduce that T −1

s : M → M is well defined and we have

(c) T −1
s = Ts − (v2 − v2)−1

∑

λ∈X̄;s∈Wλ

1λ.

(The last sum may be infinite but at most one term in the sum applied to a given
basis element of M can be non-zero.) It follows that for any w ∈ W , Tw : M → M
is invertible. Its inverse satisfies T −1

w1w2
= T −1

w2
T −1
w1

: M → M for any w1, w2 in W
such that |w1w2| = |w1|+ |w2|.

For any W -orbit O in X̄ we denote by HO the subspace of H spanned by

{Tw,λ; (w, λ) ∈ W ×O}.
This is a subalgebra of H, this time with unit, namely

∑
λ∈O T1,λ.

For any w ∈ W we set Tw =
∑

λ∈O Tw,λ ∈ HO; for any λ ∈ O we set 1λ =
T1,λ ∈ HO. We see that the elements Tw, 1λ exist separately in HO, not only in
the combination Tw,λ = Tw1λ.
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We denote by MO the subspace of M spanned by {aw,λ; (w, λ) ∈ X̃1, λ ∈ O}.
Note that the H-module structure on M restricts to an HO-module structure on
MO.

5. On the structure of the H-module M

5.1. In this section we assume that k = C. For λ ∈ X̄ let Řλ = {α̌ ∈ Ř; �α̌, λ	 = 0},
Ř+

λ = Řλ ∩ Ř+. Then Řλ is the set of coroots of a root system and Ř+
λ is a set of

positive coroots for it. Let Ř−
λ = Řλ − Ř+

λ . Let Π̌λ be the set of simple coroots

for Řλ contained in Ř+
λ . For each β ∈ Ř let sβ : Y → Y be the reflection in W

such that sβ(β) = −β. Let Wλ be the subgroup of W generated by {sβ;β ∈ Řλ}.
This is a Coxeter group with generators {sβ ;β ∈ Π̌λ} and with length function

w �→ |w|λ = �(β ∈ Ř+
λ ;w(β) ∈ Ř−

λ ). Note that for s ∈ S the condition that s ∈ Wλ

coincides with the condition denoted in the same way in §0.1; this follows from
[L4, 1.2(c)].

If w ∈ W , then there is a unique element z ∈ wWλ such that z(Ř+
λ ) ⊂ Ř+; we

have |z| < |zu| for any u ∈ Wλ − {1}; we write z = min(wWλ). (See [L4, 1.2(e)].)
We now fix an integer m ≥ 1. We fix a W -orbit O in X̄m. For any λ, λ′ in O we

set

[λ′, λ] = {z ∈ W ;λ′ = z(λ), z = min(zWλ)} = {z ∈ W ;λ′ = z(λ), z(Ř+
λ ) = Ř+

λ′}.

Clearly,
(a) [λ, λ′] = [λ′, λ]−1; moreover, if λ, λ′, λ′′ are in O, then [λ′′, λ′][λ′, λ] ⊂ [λ′′, λ].
Hence the group structure on W makes
(b) Ξ := {(λ′, z, λ) ∈ O ×W ×O; z ∈ [λ′, λ]}
into a groupoid; see [L4, 1.2(f)].

5.2. If λ ∈ X̄, then Řλ ⊂ Ř−mλ. If (w, λ) ∈ X̃m, then �(Řλ) = �(Ř−mλ) so that
Řλ = Ř−mλ and Wλ = W−mλ. We show:

(a) If λ ∈ X̄m and z ∈ [−mλ,m], then z(Ř+
λ ) = Ř+

λ so that ιz : u �→ zuz−1 is a
Coxeter group automorphism of Wλ.

We have z(Řλ) = Řzλ = Ř−mλ = Řλ; moreover since z(Ř+
λ ) ⊂ Ř+ we have

z(Ř+
λ ) = Ř+

λ . This proves (a).

Let X̃0
m = {(z, λ) ∈ W2 × X̄; z ∈ [−mλ, λ]}. Note that X̃0

m ⊂ X̃m. For (z, λ) ∈
X̃0

m let I(z,λ) = {u ∈ Wλ; ιz(u)u = 1} be the set of ιz-twisted involutions of Wλ. If

u ∈ Iz,λ, then (zu, λ) ∈ X̃m; indeed we have (zu)2 = 1 and zu(λ) = z(λ) = −mλ.
Conversely,

(b) if (w, λ) ∈ X̃m we have (w, λ) = (zu, λ) for a well defined (z, λ) ∈ X̃0
m and

u ∈ Iz,λ.
Indeed, let z = min(wWλ). Since w(l) = −mλ we have also z(λ) = −mλ and

hence z ∈ [−mλ, λ]. We have w = zu where u ∈ Wλ. We have w = w−1 =
u−1z−1 = z−1zuz−1 = z−1ιz(u). Since ιz(u) ∈ Wλ (see (a)) we have w ∈ z−1Wλ.
Since z(Ř+

λ ) = Ř+
λ we must have also z−1(Ř+

λ ) = Ř+
λ so that z−1 = min(wWλ).

It follows that z = z−1 so that (z, λ) ∈ X̃0
m. Since 1 = w2 = (zu)2 we see that

ιz(u)u = 1 so that u ∈ Iz,λ. This proves (b).
We see that
(c) we have a bijection

⊔
(z,λ)∈X̃0

m
Iz,λ

∼−→ X̃m given by (z, λ, u) �→ (zu, λ) where

(z, λ) ∈ X̃0
m, u ∈ Iz,λ.
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5.3. Let Ξ be as in §5.1(b). Let Ξ0 = {(z, λ) ∈ X̃0
m;λ ∈ O}.

We can view Ξ0
m as a subset of Ξ by (z, λ) �→ (−mλ, z, λ). This subset is the

fixed point set of the antiautomorphism

(λ′, z, λ) �→ (λ′, z, λ)∗ := (−mλ, z−1,−mλ′)

of the groupoid Ξ (the composition of the inversion (λ′, z, λ) �→ (λ, z−1, λ′) with the
involutive automorphism (λ′, z, λ) �→ (−mλ′, z,−mλ) of the groupoid Ξ). Hence
this subset can be viewed as the set of ∗-twisted “involutions” of this groupoid.

Until the end of §5.8 we assume that m = 1. From Theorem 0.6 we deduce
(a) If (w, λ) ∈ X̃1, s ∈ S, and s /∈ Wλ, then Ts(aw,λ) = ±asws,sλ.
Note also that in HO, for s ∈ S,w ∈ W,λ ∈ O we have
(b) TsTw1λ = Tsw1λ if s /∈ Ww(λ); TwTs1λ = Tws1λ if s /∈ Wλ.

Lemma 5.4. Let λ ∈ O. Let (w, λ) ∈ X̃1, z ∈ [λ, λ]. Then (zwz−1, λ) ∈ X̃1 and
Tzaw,λ = ±azwz−1,λ.

The proof is similar to that of [L4, 1.4(c)]. We have w(λ) = −λ and hence

zwz−1(λ) = −λ since z(λ) = λ. Thus (zwz−1, λ) ∈ X̃1.
We write z = sksk−1 . . . s1 where s1, . . . , sk are in S, |z| = k. As in the proof

of [L4, 1.4(c)] we have s1 /∈ Wλ, s1s2s1 /∈ Wλ, . . . s1s2 . . . sk . . . s2s1 /∈ Wλ. We
have Ts1aw,λ = ±as1ws1,s1λ since s1 /∈ Wλ; see §5.3(a). We have Ts2as1ws1,s1λ =
±as2s1ws1s2,s2s1λ since s2 /∈ Ws1λ; see §5.3(a). Continuing in this way we get

Tskask−1...s1ws1...sk−1,sk−1...s1λ = ±ask...s1ws1...sk,sk...s1λ.

Combining these equalities we get

Tzaw,λ = Tsk . . . Ts1aw,λ = ±ask...s1ws1...sk,sk...s1λ = ±azwz−1,zλ = ±azwz−1,λ.

The lemma is proved.
The following result is a generalization of the lemma above.

Lemma 5.5. Let (w, λ) ∈ X̃1, z ∈ [λ′, λ] where λ, λ′ are in O. Then (zwz−1, λ′) ∈
X̃1 and Tzaw,λ = ±azwz−1,λ′ .

The proof is similar to that of [L4, 1.4(d)]. We have w(λ) = −λ and hence

zwz−1(λ′) = −λ′ since z−1(λ′) = λ′. Thus (zwz−1, λ′) ∈ X̃1.
Since λ, λ′ are in the same W -orbit, we can find r ≥ 0 and s1, s2, . . . , sr in S

such that, setting

λ0 = λ, λ1 = s1λ, λ2 = s2s1λ, . . . , λr = sr . . . s2s1λ,

we have λ0 �= λ1 �= λ2 �= · · · �= λr = λ′. For j = 1, . . . , r, we have sj /∈ Wλj−1

since sj(λj−1) = λj �= λj−1 and hence sj has minimal length in sjWλj−1
and

sj ∈ [λj , λj−1]. It follows that sr . . . s2s1 ∈ [λr, λ0] = [λ′, λ] (we use §5.1(a)). We
define z̃ ∈ W by z = sr . . . s2s1z̃. Then z̃ ∈ [λ, λ] (we use again §5.1(a)). For
j ∈ [1, r] we have sj /∈ Wsj−1...s1λ (since λj �= λj−1) and hence, using §5.3(a) we
have

Tsjasj−1...s1z̃wz̃−1s1...sj−1,sj−1...s1λ = ±asjsj−1...s1z̃wz̃−1s1...sj−1sj ,sjsj−1...s1λ.

Applying this repeatedly we deduce

Tsr . . .Ts2Ts1az̃wz̃−1,z̃λ = ±asr...s2s1z̃wz̃−1s1s2...sr,sr...s2s1z̃λ = ±azwz−1,zλ.
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We now apply Lemma 5.4 with z replaced by z̃; we see that Tz̃aw,λ = ±az̃wz̃−1,λ.
Substituting this in the previous equation we obtain

(a) Tsr . . . Ts2Ts1Tz̃aw,λ = ±azwz−1,zλ.

For j ∈ [1, r] we have sj /∈ Wsj−1...s1λ (as above) and hence, using §5.3(b) we have

TsjTsj−1...s1z̃aw,λ = Tsjsj−1...s1z̃aw,λ.

Applying this repeatedly we deduce

Tsr . . . Ts2Ts1Tz̃aw,λ = Tsr...s2s1z̃aw,λ = Tzaw,λ.

Combining this with (a) gives

Tzaw,λ = ±azwz−1,zλ.

The lemma is proved.

Lemma 5.6. Let (z, λ) ∈ Ξ0 and let u ∈ Wλ. Let α ∈ Π̌λ. We set σ = σα;
note that |σ|λ = 1. Recall that u �→ ιz(u) = zuz−1 is an involutive Coxeter group
automorphism of Wλ. For any u ∈ Wλ we have

(a) Tσazu,λ = e1azιz(σ)uσ,λ if uσ �= ιz(σ)u, |uσ|λ > |u|λ;
(b) Tσazu,λ = e2azιz(s)uσ,λ + e3(v

2 − v−2)azu,λ if uσ �= ιz(σ)u, |uσ|λ < |u|λ;
(c) Tσazu,λ = e4azu,λ + e5(v + v−1)azuσ,λ if uσ = ιz(σ)u, |uσ|λ > |u|λ;
(d) Tσazu,λ = e6(v− v−1)azuσ,λ + e7(v

2 − v−2 − 1)azu,λ if uσ = ιz(σ)u, |uσ|λ <
|u|λ,

where e1, . . . , e7 ∈ {1,−1}.

As in the proof of [L4, 1.4(f)] we can find s1, s2, . . . , sr in S such that σ =
s1s2 . . . sr−1srsr−1 . . . s1, |σα| = 2r − 1, s1s2 . . . sj−1sjsj−1 . . . s1 /∈ Wλ for j =
1, 2, . . . r− 1. We argue by induction on r ≥ 1. When r = 1 the result follows from
Theorem 0.6. (Note that zιz(σ)uσ = σzuσ, the condition uσ = ιz(σ)u is equivalent
to zuσ = σzu and if |σ| = 1 the condition |uσ|λ > |u|λ is equivalent to |uσ| > |u|.)
Assume now that r ≥ 2. We set s = s1, λ

′ = sλ, β = s(α) ∈ R+
λ′ , u′ = sus,

z′ = szs, σ′ = sβ = sσs. We have (z′, λ′) ∈ Ξ0
O, u

′ ∈ Wλ′ and σ′ ∈ Wλ′ , |σ′|λ′ = 1,
|σ′| = |σ| − 2. Moreover, we have s /∈ Wλ. By the induction hypothesis we have

(a′) Tσ′az′u′,λ′ = e′1aσ′z′u′σ′,λ′ if u′σ′ �= z′σ′z′u′, |u′σ′|λ′ > |u′|λ′ ;
(b′) Tσ′az′u′,λ′ = e′2aσ′z′u′σ′,λ′ + e′3(v

2 − v−2)az′u′,λ′ if u′σ′ �= z′σ′z′u′, |u′σ′|λ′ <
|u′|λ′ ;

(c′) Tσ′az′u′,λ′ = e′4az′u′,λ′ + e′5(v + v−1)az′u′σ′,λ′ if u′σ′ = z′σ′z′u′, |u′σ′|λ′ >
|u′|λ′ ;

(d′) Tσ′az′u′,λ′=e′6(v − v−1)az′u′σ′,λ′ + e′7(v
2 − v−2 − 1)az′u′,λ′ if u′σ′=z′σ′z′u′,

|u′σ′|λ′ < |u′|λ′ ,
where e′1, . . . , e

′
7 ∈ {1,−1}. By §5.3(a), §5.3(b) we have

TsTσ′az′u′,λ′ = TσTsaz′u′,λ′ = ±Tσazu,λ.
Moreover, by §5.3(a) we have

Tsaz′u′,λ′ = azu,λ, Tsaσ′z′u′σ′,λ′ = aσzuσ,λ,

Tsaz′u′σ′,λ′ = azuσ,λ. Hence (a)–(d) for σ, z, u follow from (a′)–(d′) by applying Ts
to both sides. Here we use that the condition that z′u′σ′ = σ′z′u′ is equivalent
to the condition zuσ = σzu and the inequality |u′σ′|λ′ > |u′|λ′ is equivalent to
the inequality |uσ|λ > |u|λ (conjugation by s is a Coxeter group isomorphism
Wλ′ → Wλ). The lemma is proved.
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5.7. For any λ ∈ O letHλ be theC(v)-subspace ofHO spanned by {Tu1λ;u ∈ Wλ}.
This is a subalgebra of HO with unit 1λ; it can be identified with the Hecke algebra
of the Coxeter group Wλ (see [L4, 1.4(g), (h)]) so that the standard generators of
the last algebra correspond to the elements Tsα1λ of Hλ with α ∈ Π̌λ.

For (z, λ) ∈ Ξ0 let Mz,λ be the subspace of M spanned by {azu,λ;u ∈ Iz,λ}.
From Lemma 5.6 we see that Mz,λ is an Hλ-module and that the action of the
generators of Hλ on Mz,λ is given by a formula which is the same (except for the
appearance of certain signs ej) as the formula for the action of the generators of
the Hecke algebra of Wλ on the module based on the twisted involutions in Wλ

constructed in [LV].

5.8. We have a direct sum decomposition HO =
⊕

(λ′,z,λ)∈Ξ TzHλ; moreover,

{TzTu1λ; (λ′, z, λ) ∈ Ξ, u ∈ Wλ} is a basis of HO compatible with this decom-

position and it coincides with the basis {Tw1λ; (w, λ) ∈ X̃1, λ ∈ O} of HO. (See
[L4, 1.4(d)].) Similarly, by §5.2(b), we have a direct sum decomposition MO =⊕

(z̃,λ̃)∈Ξ0 Mz̃,λ̃ where Mz̃,λ̃ is as in §5.7. From Lemmas 5.5 and 5.6 we see that

the direct sum decompositions of HO and MO are compatible in the following
sense:

(TzHλ)Mz̃,λ̃ ⊂ δλ̃,λMzz̃z−1,z(λ̃).

Moreover the action of the basis element TzTu1λ = (Tz1λ)(Tu1λ) of HO on a basis
element az̃u′,λ̃ of MO is particularly simple: the operator Tz1λ applied to a basis
element az̃u′,λ̃ is ±δλ̃,λ times another basis element; the operator Tu1λ applied to

a basis element az̃u′,λ̃ is as in §5.7 if λ̃ = λ and is zero if λ̃ �= λ.

5.9. Results similar to those in Lemmas 5.4–5.6 and §§5.7, 5.8 hold for MO when
m = q with (p, q) as in §0.2 and O ⊂ X̄m except that in this case the ± signs in
Lemmas 5.4–5.6 and §§5.7, 5.8 have to be replaced by roots of 1 of possibly higher
order.

6. Proof of Theorem 0.9

6.1. We now fix an integer m ≥ 1. Recall from §0.8 that Mm is the C(v)-vector

space with basis {aw,λ; (w, λ) ∈ X̃m}. We fix a W -orbit O in X̄m. Let MO be the

subspace of Mm spanned by {aw,λ; (w, λ) ∈ X̃m, λ ∈ O}.
For any λ ∈ O let Hλ be as in §5.7. For (z, λ) ∈ Ξ0 let Mz,λ be the subspace

of MO spanned by {azu,λ;u ∈ Iz,λ}. By [LV] applied to the Coxeter group Wλ

with the involutive automorphism ιz, there is a well defined Hλ-module structure
(h, ξ) �→ h ◦ ξ on Mz,λ such that for any u ∈ Wλ and any σ = sα, α ∈ Π̌λ we have

(a) (Tσ1λ) ◦ azu,λ = azιz(σ)uσ,λ if uσ �= ιz(σ)u, |uσ|λ > |u|λ;
(b) (Tσ1λ) ◦ azu,λ = azιz(s)uσ,λ + (v2 − v−2)azu,λ if uσ �= ιz(σ)u, |uσ|λ < |u|λ;
(c) (Tσ1λ) ◦ azu,λ = azu,λ + (v + v−1)azuσ,λ if uσ = ιz(σ)u, |uσ|λ > |u|λ;
(d) (Tσ1λ) ◦ azu,λ = (v − v−1)azuσ,λ + (v2 − v−2 − 1)azu,λ if uσ = ιz(σ)u,

|uσ|λ < |u|λ.

6.2. By [L4, 1.4(d)], the basis {Tw1λ; (w, λ) ∈ X̃1, λ ∈ O} of HO coincides with
{TuTz1λ; (λ′, z, λ) ∈ Ξ, u ∈ Wλ′}. We define a bilinear multiplication HO ×MO →
MO (denoted by (h, ξ) �→ h • ξ) by the rule

(TuTz1λ) • az̃ũ,λ̃ = 0
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if λ �= λ̃, while if λ = λ̃,

(TuTz1λ) • az̃ũ,λ̃ = (Tu1λ′) ◦ a(zz̃z−1)(zũz−1),λ′

for (λ′, z, λ) ∈ Ξ, u ∈ Wλ′ , (z̃, λ̃) ∈ Ξ0, ũ ∈ Wλ̃, where ◦ is as in §6.1 with λ replaced
by λ′. (We have (zz̃z−1, λ′) ∈ Ξ0 and zũz−1 ∈ Wλ′ .) We show:

(a) this is an HO-module structure.
It is enough to show that for

(λ′, z, λ) ∈ Ξ, (λ′
1, z1, λ1) ∈ Ξ, u ∈ Wλ′ , u1 ∈ Wλ′

1
, (z̃, λ̃) ∈ Ξ0, ũ ∈ Wλ̃,

with λ′ = λ1, λ = λ̃ we have

(Tu1
Tz11λ1

) • ((TuTz1λ) • az̃ũ,λ̃) = (Tu1
Tz1uz−1

1
Tz1z1λ) • az̃ũ,λ̃

or that

(Tu1
1λ′

1
) ◦ ((Tz1uz−1

1
Tz1zz−1

1
1z1λ) • a(z1z̃z−1

1 )(z1ũz
−1
1 ),z1λ

)

=
∑

u2∈Wλ′
1

(Tu2
Tz1z1λ) • az̃ũ,λ̃,

where we have written Tu1
Tz1uz−1

1
1λ′

1
=

∑
u2∈Wλ′

1

γu2
Tu2

1λ′
1
, γu2

∈ C(v). (We have

used [L4, 1.4(d), (e)].) We have

(Tz1uz−1
1

Tz1zz−1
1

1z1λ) • az1z̃z−1
1 )(z1ũz

−1
1 ),z1λ

= (Tz1uz−1
1

1λ′
1
) ◦ a(z1zz̃z−1z−1

1 )(z1zũz−1z−1
1 ),λ′

1
.

We have
∑

u2∈Wλ′
1

(Tu2
Tz1z1λ) • az̃ũ,λ̃

=
∑

u2∈Wλ′
1

(Tu2
1λ′

1
) ◦ a(z1zz̃z−1z−1

1 )(z1zũz−1z−1
1 ),λ′

1
.

Thus it is enough to prove

(Tu1
1λ′

1
) ◦ ((Tz1uz−1

1
1λ′

1
) ◦ a(z1zz̃z−1z−1

1 )(z1zũz−1z−1
1 ),λ′

1
)

=
∑

u2∈Wλ′
1

(Tu2
1λ′

1
) ◦ a(z1zz̃z−1z−1

1 )(z1zũz−1z−1
1 ),λ′

1
.

This follows from the fact that ◦ defines a module structure. This proves (a).

6.3. Let Hm be the C(v)-vector space with basis {Tw,λ; (w, λ) ∈ W × X̄m}. Note
thatHm is a subalgebra ofH. There is a unique Hm-module structure (h, ξ) �→ h•ξ
on Mm (see §0.8) such that for any two orbits O,O′ in X̄m and any h ∈ HO, ξ ∈
MO′ we have h • ξ = 0 if O �= O′ and h • ξ is as in §6.2 if O = O′.

6.4. We now prove Theorem 0.9. It is enough to show that Theorem 0.9(a)–(b) hold
when Ts is replaced by Ts1λ ∈ Hm acting on Mm via the Hm-module structure
on Mm. We can write w = zu where (z, λ) ∈ Ξ0 and u ∈ Wλ. If s ∈ Wλ, then
s = σ as in §6.1 and the desired formulas follow from §6.1. If s /∈ Wλ, then s
has minimal length in sWλ and hence s ∈ [s(λ), λ]. Then by definition we have
(Ts1λ) • aw,λ = asws,sλ and the desired formulas hold again. This proves Theorem
0.9.
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6.5. In [L4], an affine analogue of H is considered; it has a basis indexed by the

semidirect product W̃ X̄ where W̃ is an affine Weyl group acting on X̄ via its
quotient W . The analogue of Theorem 0.9 continues to hold in this case (with the
same proof).

7. Bar operator

7.1. Let m be an integer ≥ 1. In this section we construct a bar operator on Mm

generalizing a definition in [LV]. To do this we will use the method of [L3].
For s ∈ S the operator Ts : Mm → Mm in Theorem 0.9 has an inverse T −1

s . For
w ∈ W we set Tw = Ts1 . . .Tsk : Mm → Mm, T −1

w = T −1
sk

. . . T −1
s1 : Mm → Mm,

where w = s1s2 . . . sk with s1, . . . , sk in S, |w| = k.
Let c �→ c̄ be the field automorphism of C(v) which is the identity on C and

maps v to v−1. For (w, λ) ∈ X̃m we write E(w, λ) = (−1)|u| where

(a) w = zu, (z, λ) ∈ X̃0
m, u ∈ Iz,λ ⊂ Wλ;

see §5.2(b).
We show:
(b) If (w, λ) ∈ X̃m, s ∈ S, then E(sws, sλ) = E(w, λ);

(c) if (w, λ) ∈ X̃m, s ∈ S are such that sw = ws and s ∈ Wλ, then E(ws, λ) =
−E(w, λ).

We write w = zu as in (a). Assume first that s ∈ Wλ. We have sws = zιz(s)us
and ιz(s) ∈ Wz(λ) = Wλ = Wsλ and hence ιz(s)us ∈ Iz,λ and E(sws, sλ) =

(−1)|ιz(s)us| = (−1)|u| = E(w, λ). If sw = ws, we have ws = zus and us ∈
Iz,λ and hence E(ws, λ) = (−1)|us| = −(−1)|u| = −E(w, λ). Next we assume

that s /∈ Wλ; then s ∈ [λ, λ] (see §5.1) and hence (szs, sλ) ∈ X̃0
m. Moreover,

sws = szus = (szs)(sus) and sus ∈ Wsλ and more precisely sus ∈ Iszs,sλ. Hence

E(sws, sλ) = (−1)|sus| = (−1)|u| = E(w, λ). This proves (b) and (c).
Clearly, there is a unique C-linear map B : Mm → Mm such that for any

(w, λ) ∈ X̃m and any f ∈ C(v) we have

B(faw,λ) = f̄E(w, λ)T −1
w aw,−mλ.

We state the main result of this section.

Proposition 7.2.
(a) For any s ∈ S and any ξ ∈ Mm we have B(Tsξ) = T −1

s B(ξ).
(b) The square of the map¯: Mm → Mm is equal to 1.

To prove (a) it is enough to show that for any (w, λ) ∈ X̃m and any s ∈ S we
have

(c) B(Tsaw,λ) = E(w, λ)T −1
s T −1

w aw,−mλ.
We set Δ = 1 if s ∈ Wλ and Δ = 0 if s /∈ Wλ.
Assume that sw �= ws, |sw| > |w|. We have

B(Tsaw,λ) = B(asws,sλ) = E(sws, sλ)T −1
swsasws,−msλ,

E(w, λ))T −1
s T −1

w aw,−mλ = E(w, λ)T −1
s T −1

w T −1
s Tsaw,−mλ

= E(sws, sλ)T −1
swsasws,−msλ.

Hence (c) holds in this case.
Assume that sw �= ws, |sw| < |w|. We must show that

B(asws,sλ +Δ(v2 − v−2)aw,λ) = E(w, λ)T −1
s T −1

w aw,−mλ,
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or that

E(sws, sλ)T −1
swsasws,−msλ +Δ(v−2 − v2)E(w, λ)T −1

w aw,−mλ

= E(w, λ)T −1
s T −1

w aw,−mλ,

or that

T −1
swsasws,sλ +Δ(v−2 − v2)T −1

s T −1
swsT −1

s aw,−mλ

= T −1
s T −1

s T −1
swsT −1

s aw,−λ,

or that

TsTsT −1
swsasws,−sλ + δ(v−2 − v2)TsT −1

swsT −1
s aw,−mλ = T −1

swsT −1
s aw,−mλ,

or that

T −1
swsasws,−msλ + (v2 − v−2)ΔTsT −1

swsasws,−msλ

+Δ(v−2 − v2)TsT −1
swsT −1

s aw,−mλ = T −1
swsT −1

s aw,−mλ.

Here we substitute T −1
swsasws,−msλ = T −1

swsT −1
s aw,−mλ. It remains to note that

T −1
swsT −1

s aw,−mλ + (v2 − v−2)ΔTsT −1
swsT −1

s aw,−mλ

+Δ(v−2 − v2)TsT −1
swsT −1

s aw,−mλ = T −1
swsT −1

s aw,−mλ.

This proves (c) in our case.
Assume that sw = ws, |sw| > |w|. We must show that

B(aw,sλ +Δ(v + v−1)asw,λ) = E(w, λ)T −1
s T −1

w aw,−mλ,

or that

E(w, λ)T −1
w aw,−msλ +Δ(v + v−1)E(sw, λ)T −1

sw asw,−mλ

= E(w, λ)T −1
s T −1

w aw,−mλ,

or that

T −1
w aw,−msλ −Δ(v + v−1)T −1

w T −1
s asw,−mλ

= T −1
s T −1

w aw,−mλ,

or that

aw,−msλ −Δ(v + v−1)T −1
s asw,−mλ = T −1

s aw,−mλ,

or that

Tsaw,−msλ −Δ(v + v−1)asw,−mλ = aw,−mλ,

or that

Tsaw,−msλ = aw,−mλ +Δ(v + v−1)asw,−mλ.

This follows from the definitions. This proves (c) in our case.
Assume that sw = ws, |sw| < |w|. We must show that

B(Δ(v − v−1)asw,λ +Δ(v2 − v−2 − 1)aw,λ + (1−Δ)aw,sλ)

= E(w, λ)T −1
s T −1

w aw,−mλ,

or that

Δ(v−1 − v)E(sw, λ)T −1
sw asw,−mλ +Δ(v−2 − v2 − 1)E(w, λ)T −1

w aw,−mλ

+ (1−Δ)E(w, sλ)T −1
w aw,−msλ = E(w, λ)T −1

s T −1
w aw,−mλ,
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or that

Δ(v−1 − v)T −1
sw asw,−mλ −Δ(v−2 − v2 − 1)T −1

sw T −1
s aw,−mλ

− (1−Δ)T −1
sw T −1

s aw,−msλ = −T −1
sw T −1

s T −1
s aw,−mλ,

or that

Δ(v−1 − v)asw,λ −Δ(v−2 − v2 − 1)T −1
s aw,−mλ − (1−Δ)T −1

s aw,−msλ

= −T −1
s T −1

s aw,−mλ,

or that

Δ(v−1−v)TsTsasw,−mλ−Δ(v−2−v2−1)Tsaw,−mλ−(1−Δ)Tsaw,−msλ = −aw,−mλ

or that

Δ(v−1 − v)asw,−mλ +Δ(v−1 − v)(v2 − v−2 − 1)Tsasw,−mλ

−Δ(v−2 − v2 − 1)Tsaw,−mλ − (1−Δ)Tsaw,−msλ = −aw,−mλ.

When Δ = 0 this is just Tsaw,−msλ = aw,−mλ which follows from the definitions.
When Δ = 1 we see that it is enough to observe the following obvious equality:

(v−1 − v)asw,−mλ + (v−1 − v)(v2 − v−2)(asw,−mλ + (v + v−1)aw,−mλ)

+ (v2 − v−2 + 1)((v − v−1)asw,−mλ + (v2 − v−2 − 1))aw,−mλ = −aw,−mλ.

This completes the proof of (c) and hence that of (a).

We prove (b). We first show that for (w, λ) ∈ X̃m and s ∈ S we have

(d) B(T −1
s aw,λ) = TsB(aw,λ).

Indeed, the left-hand side equals B(Tsaw,λ)+B((v2−v−2)aw,λ) which by (a) equals
T −1
s B(aw,λ) + (v−2 − v2)B(aw,λ) and this equals TsB(aw,λ). Using (d) repeatedly

we see that B(T −1
w′ aw,λ) = Tw′B(aw,λ) for any w′ ∈ W . To prove (b) it is enough

to prove that for any (w, λ) ∈ X̃m we have

B(B(aw,λ)) = aw,λ,

that is,

B(T −1
w aw,−mλ) = E(w, λ)aw,λ.

The left-hand side is equal to TwB(aw,−mλ) and hence to

E(w, λ)TwT −1
w aw,λ = E(w, λ)aw,λ.

This completes the proof of (b).

7.3. Let (z, λ) ∈ X̃0
m. We show:

(a) B(az,λ) = az,λ.
We must show that T −1

z az,−mλ = az,λ or that Tzaz,λ = az,−mλ. This follows
the definition of the Hm-module structure on Mm since zzz−1 = z, z(λ) = −mλ.
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7.4. Let L be the Z[v−1]-submodule of Mm with basis {aw,λ; (w, λ) ∈ X̃m}. From
Proposition 7.2 one can deduce (a), (b) below by standard arguments (see, for
example, [L1, 24.2.1]).

(a) For any (w, λ) ∈ X̃m there is a unique element âw,λ ∈ Mm such that
(i) âw,λ ∈ L, âw,λ − aw,λ ∈ v−1Z[v−1],
(ii) B(âw,λ) = âw,λ.
Moreover,
(b) {âw,λ; (w, λ) ∈ X̃m} is a Z[v−1]-basis of L and a C(v)-basis of Mm.

For example if (z, λ) ∈ X̃0
m, then âz,λ = az,λ.
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