HECKE MODULES BASED ON INVOLUTIONS IN EXTENDED WEYL GROUPS

G. LUSZTIG

Abstract

Let X be the group of weights of a maximal torus of a simply connected semisimple group over \mathbf{C} and let W be the Weyl group. The semidirect product $W((\mathbf{Q} \otimes X) / X)$ is called an extended Weyl group. There is a natural $\mathbf{C}(v)$-algebra \mathbf{H} called the extended Hecke algebra with basis indexed by the extended Weyl group which contains the usual Hecke algebra as a subalgebra. We construct an \mathbf{H}-module with basis indexed by the involutions in the extended Weyl group. This generalizes a construction of the author and Vogan.

Introduction and statement of Results

0.1 . Let \mathbf{k} be an algebraically closed field. Let G be a connected reductive group over \mathbf{k}. Let T be a maximal torus of G and let U be the unipotent radical of a Borel subgroup of G containing T. Let N be the normalizer of T and let $W=N / T$ be the Weyl group; let $w \mapsto|w|$ be the length function on W, let $S=\{w \in W ;|w|=1\}$, and let $\kappa: N \rightarrow W$ be the obvious map. The obvious action of W on T is denoted by $w: t \mapsto w(t)$. Let $Y=\operatorname{Hom}\left(\mathbf{k}^{*}, T\right), X=\operatorname{Hom}\left(T, \mathbf{k}^{*}\right)$ and let $\langle\rangle:, Y \times X \rightarrow \mathbf{Z}$ be the obvious pairing. We regard Y, X as groups with operation written as addition. Let K be a field of characteristic zero and let $X_{K}=K \otimes X=\operatorname{Hom}(Y, K)$. Let $\bar{X}=X_{K} / X=(K / \mathbf{Z}) \otimes X$. The obvious pairing $\langle\rangle:, Y \times X_{K} \rightarrow K$ restricts to a pairing $Y \times X \rightarrow \mathbf{Z}$ and hence it induces a pairing $\lfloor\rfloor:, Y \times \bar{X} \rightarrow K / \mathbf{Z}$. We define an action of W on Y by $w: y \mapsto y^{\prime}$, where $y^{\prime}(z)=w(y(z))$ for $z \in \mathbf{k}^{*}$. We define an action of W on X_{K} by the equality $\langle w(y), w(x)\rangle=\langle y, x\rangle$ for all $y \in Y, x \in X_{K}, w \in W$. This action preserves X and hence it induces a W-action on \bar{X}. Let $\check{R} \subset Y$ be the set of coroots, let $\check{R}^{+} \subset \check{R}$ be the set of positive coroots determined by U, let $\check{R}^{-}=\check{R}-\check{R}^{+}$. For $s \in S$ we denote by $\check{\alpha}_{s} \in Y$ the simple coroot such that $s\left(\check{\alpha}_{s}\right)=-\check{\alpha}_{s}$. For $\lambda \in \bar{X}, s \in S$ we write $s \in W_{\lambda}$ if $\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$; we write $s \notin W_{\lambda}$ if $\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor \neq 0$. Note that if $s \in W_{\lambda}$, then $s \lambda=\lambda$. For $s \in S$ let T_{s} be the image of $\check{\alpha}_{s}: \mathbf{k}^{*} \rightarrow T$.
0.2. Let $W_{2}=\left\{w \in W ; w^{2}=1\right\}$. For any integer $m \geq 1$ we set

$$
\begin{gathered}
\bar{X}_{m}=\left\{\lambda \in \bar{X} ; m^{2} \lambda=\lambda\right\} \\
\tilde{X}_{m}=\left\{(w, \lambda) \in W_{2} \times \bar{X} ; w(\lambda)=-m \lambda\right\} .
\end{gathered}
$$

We write $W \bar{X}$ instead of $W \times \bar{X}$ with the group structure

$$
(w, \lambda)\left(w^{\prime}, \lambda^{\prime}\right)=\left(w w^{\prime}, w^{\prime-1}(\lambda)+\lambda^{\prime}\right) .
$$

We call $W \bar{X}$ the extended Weyl group. Then

$$
\tilde{X}_{1}=\left\{(w, \lambda) \in W_{2} \times \bar{X} ; w(\lambda)=-\lambda\right\}=\left\{(w, \lambda) \in W \bar{X} ;(w, \lambda)^{2}=(1,0)\right\}
$$

is exactly the set of involutions in the extended Weyl group $W \bar{X}$.
More generally, if $m \geq 1$, then $\left\{(w, \lambda) \in W \times \bar{X} ; \lambda \in \bar{X}_{m}\right\}$ is a subgroup of $W \bar{X}$ denoted by $W \bar{X}_{m}$ and $(w, \lambda) \mapsto(w, \lambda)^{*}:=(w, m \lambda)$ is an involutive automorphism of $W \bar{X}_{m}$. Moreover, \tilde{X}_{m} is the set of $*$-twisted involutions of $W \bar{X}_{m}$, that is, the set of all $(w, \lambda) \in W \bar{X}_{m}$ such that $(w, \lambda)(w, \lambda)^{*}=(1,0)$.

If $m \geq 1$ and $(w, \lambda) \in \tilde{X}_{m}$, then $\lambda \in \bar{X}_{m}$. Note that if $(w, \lambda) \in \tilde{X}_{m}$ and $s \in S$, then $(s w s, s \lambda) \in \tilde{X}_{m}$; if in addition $s w=w s$, then $(w, s \lambda) \in \tilde{X}_{m}$. If we have both $s w=w s$ and $s \lambda=\lambda$, then $(s w, \lambda) \in \tilde{X}_{m}$.

Let p be a prime number and let $q>1$ be a power of p. We set $Q=q^{2}$. We assume that the characteristic of \mathbf{k} is either 0 or p. Then $\bar{X}_{q}, \tilde{X}_{q}$ are defined.

We fix a square root $\sqrt{-1}$ of -1 in \mathbf{C}. For $\lambda \in \bar{X}_{q}, s \in S$, we define $[\lambda, s] \in$ $\{1,-1\}$ as follows. We have $\left\langle\check{\alpha}_{s}, \lambda\right\rangle=e /(Q-1)$ with $e \in \mathbf{Z}$. When $p \neq 2$ we set $[\lambda, s]=1$ if $e \in 2 \mathbf{Z}$ and $[\lambda, s]=\sqrt{-1}$ if $e \in \mathbf{Z}-2 \mathbf{Z}$; when $p=2$ we set $[\lambda, s]=1$.
0.3. For $w \in W_{2}, s \in S$ such that $s w=w s$ we define, following [L5, 1.18], a number $(w: s) \in\{-1,0,1\}$ as follows. Assume first that G is almost simple, simply laced. In [L5, 1.5, 1.7], a root system with a set of coroots $\check{R}_{w} \subset \check{R}$ and a set of simple coroots $\check{\Pi}_{w}$ for \check{R}_{w} was associated to w; we have $\check{\alpha}_{s} \in \check{\Pi}_{w}$. This root system is simply laced and has no component of type $A_{l}, l>1$. If the component containing $\check{\alpha}_{s}$ is not of type A_{1}, there is a unique sequence $\check{\alpha}_{1}, \breve{\alpha}_{2}, \ldots, \breve{\alpha}_{e}$ in $\check{\Pi}_{w}$ such that $\check{\alpha}_{i}, \check{\alpha}_{i+1}$ are joined in the Dynkin diagram of \breve{R}_{w} for $i=1,2, \ldots, e-1, \check{\alpha}_{1}=\check{\alpha}_{s}$ and $\check{\alpha}_{e}$ corresponds to a branch point of the Dynkin diagram of \check{R}_{w}; if the component containing $\check{\alpha}_{s}$ is of type A_{1} we define $\check{\alpha}_{1}, \check{\alpha}_{2}, \ldots, \check{\alpha}_{e}$ as the sequence with one term $\check{\alpha}_{s}$ (so that $e=1$). We define $(w: s)=(-1)^{e}$ if $|s w|<|w|$ and $(w: s)=(-1)^{e+1}$ if $|s w|>|w|$. Next we assume that G is almost simple, simply connected, not simply laced. Then G can be regarded as a fixed point set of an automorphism of a simply connected, almost simple, simply laced group G^{\prime} (as in [L5, 1.14]) with Weyl group W^{\prime}, a Coxeter group with a length preserving automorphism $W^{\prime} \rightarrow W^{\prime}$ with fixed point set W. When s is regarded as an element of W^{\prime}, it is a product of k commuting simple reflections $s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{k}^{\prime}$ of W^{\prime}; here $k \in\{1,2,3\}$. If $k \neq 2$, we define $(w: s)$ for W to be $\left(w: s_{i}\right)$ for G^{\prime}, where i is any element of $\{1, \ldots, k\}$. If $k=2$ we have either $w s_{1}=s_{1} w, w s_{2}=s_{2} w$ (in which case $(w: s)$ for G is defined to be $\left(w: s_{1}\right)=\left(w: s_{2}\right)$ for $\left.G^{\prime}\right)$ or $w s_{1}=s_{2} w, w s_{2}=s_{1} w$ (in which case $(w: s)$ for G is defined to be 0). We now drop the assumption that G is almost simple. Let $G^{\prime \prime}$ be the simply connected cover of an almost simple factor of the adjoint group of G with Weyl group $W^{\prime \prime} \subset W$ such that $s \in W^{\prime \prime}$ and let $w^{\prime \prime}$ be the W^{\prime}-component of w. Then $(w: s)$ for G is defined to be $\left(w^{\prime \prime}: s\right)$ for $G^{\prime \prime}$ (which is defined as above).

For p, q as in $\S 0.2,(w, \lambda) \in \tilde{X}_{q}, s \in S$ such that $s w=w s$, we set

$$
\delta_{w, \lambda ; s}=\exp \left(2 \pi \sqrt{-1}((q-e) / 2)(1-(w: s))\left\langle\check{\alpha}_{s}, \lambda\right\rangle\right)
$$

if $p \neq 2, e=|w|-|s w|= \pm 1$ and $\delta_{w, \lambda ; s}=1$ if $p=2$. (Note that $\exp (2 \pi \sqrt{-1} x)$ is well defined for $x \in \mathbf{Q} / \mathbf{Z}$.) If G is simply laced, then $\delta_{w, \lambda ; s}=1$ (since $(w: s)= \pm 1$). In general we have $\delta_{w, \lambda ; s}= \pm 1$. Indeed, we can assume that $p \neq 2$. It is enough to
show that $(q-e)\left\langle\check{\alpha}_{s}, \lambda\right\rangle=0$. From our assumption we have

$$
\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=\left\lfloor w \check{\alpha}_{s}, w \lambda\right\rfloor=\left\lfloor-e \check{\alpha}_{s},-q \lambda\right\rfloor=q e\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=q e^{-1}\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor
$$

and hence $(q-e)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$; our claim follows.
The following assumption will be made in parts of the paper (it will simplify some proofs).
(a) For $s \in S, \check{\alpha}_{s} ; \mathbf{k}^{*} \rightarrow T_{s}$ is an isomorphism.

This is certainly satisfied if G is simply connected.
Here is one of the main results of this paper.
Theorem 0.4. Let q, p be as in $\S 0.2$, Assume that $\S 0.3$ (a) holds. Let M_{q} be the \mathbf{C}-vector space with basis $\left\{a_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{q}\right\}$. If $p \neq 2$ let $z \in \mathbf{Z}$ be such that $2 z \notin\left(q^{2}-1\right) \mathbf{Z}$; if $p=2$ let $z \in \mathbf{Z}$ be arbitrary. There is a unique action of the braid group of W on M_{q} in which the generators $\left\{\mathcal{T}_{s} ; s \in S\right\}$ of the braid group applied to the basis elements of M_{q} are as follows. (We set $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$.)
(a) $\mathcal{T}_{s} a_{w, \lambda}=a_{s w s, \lambda}$ if $s w \neq w s,|s w|>|w|, \Delta=1$;
(b) $\mathcal{T}_{s} a_{w, \lambda}=a_{s w s, \lambda}+\left(q-q^{-1}\right) a_{w, \lambda}$ if $s w \neq w s,|s w|<|w|, \Delta=1$;
(c) $\mathcal{T}_{s} a_{w, \lambda}=a_{w, \lambda}+(q+1) a_{s w, \lambda}$ if $s w=w s,|s w|>|w|, \Delta=1$;
(d) $\mathcal{T}_{s} a_{w, \lambda}=\left(1-q^{-1}\right) a_{s w, \lambda}+\left(q-q^{-1}-1\right) a_{w, \lambda}$ if $s w=w s,|s w|<|w|, \Delta=1$;
(e) $\mathcal{T}_{s} a_{w, \lambda}=[\lambda, s] a_{s w s, s \lambda}$ if $s w \neq w s,|s w|>|w|, \Delta=0$;
(f) $\mathcal{T}_{s} a_{w, \lambda}=[\lambda, s]^{-1} a_{s w s, s \lambda}$ if $s w \neq w s,|s w|<|w|, \Delta=0$;
(g) $\mathcal{T}_{s} a_{w, \lambda}=\delta_{w, s \lambda ; s} a_{w, s \lambda}$ if $s w=w s,|s w|>|w|, \Delta=0$;
(h) $\mathcal{T}_{s} a_{w, \lambda}=-\delta_{w, s \lambda ; s} \exp \left(2 \pi \sqrt{-1}(w: s) z\left\langle\check{\alpha}_{s}, \lambda\right\rangle\right) a_{w, s \lambda}$ if $s w=w s,|s w|<$ $|w|, \Delta=1$.

Note that the subspace of M_{q} spanned by $\left\{a_{w, 0} ; w \in W_{2}\right\}$ is stable under the braid group action; the resulting braid group action on that subspace involves only the cases where $\Delta=1$ and in fact is the representation of the Hecke algebra of W with parameter q introduced in [V]. Thus the theorem is a generalization of a part of [LV]. In the general case we can define operators $1_{\lambda}: M_{q} \rightarrow M_{q}\left(\right.$ for $\lambda \in \bar{X}_{q}$) by $1_{\lambda} a_{w, \lambda^{\prime}}=\delta_{\lambda, \lambda^{\prime}} a_{w, \lambda^{\prime}}$ for all $\left(w, \lambda^{\prime}\right) \in \tilde{X}_{q}$. The operators \mathcal{T}_{s} and 1_{λ} on M_{q} satisfy the relations of an "extended Hecke algebra", isomorphic to the endomorphism algebra of the representation of $G\left(F_{q}\right)$ induced by the trivial representation of $U\left(F_{q}\right)$ (assuming that \mathbf{k} is an algebraic closure of a finite field F_{q} and G is split over F_{q}). This endomorphism algebra was studied by Yokonuma [Y] and a description of it in terms of generators like $\mathcal{T}_{s}, 1_{\lambda}$ was given in [L2]. The proof of the theorem is given in $\S 4$, in terms of $G\left(F_{q}\right), U\left(F_{q}\right)$ as above. Namely, we show that M_{q} can be interpreted as the vector space spanned by the double cosets $\Gamma_{1} \backslash \Gamma / \Gamma_{2}$ regarded naturally as a module over the algebra spanned as a vector space by the double cosets $\Gamma_{1} \backslash \Gamma / \Gamma_{1}$ for suitable finite groups $\Gamma_{1} \subset \Gamma \supset \Gamma_{2}$. (In our case we have $\Gamma=G\left(F_{q^{2}}\right), \Gamma_{1}=U\left(F_{q^{2}}\right)$, $\Gamma_{2}=G\left(F_{q}\right)$.) A key role in our proof is played by a certain non-standard lifting (introduced in LL5) to N for the involutions in W. (The usual lifting, due to Tits [T], is not suitable for the purposes of this paper.)
0.5 . We now assume that $\mathbf{k}=\mathbf{C}$. Let v be an indeterminate and let \mathbf{M} be the $\mathbf{C}(v)$-vector space with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}\right\}$. For any
(a) $(w, \lambda) \in \tilde{X}_{1}$ and $s \in S$ such that $|s w|>|w|$ we set

$$
\delta_{w, \lambda ; s}^{\prime}=\exp \left(2 \pi \sqrt{-1}(1-(w: s))\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right)
$$

We note that for w, λ, s as in (a) we have

$$
\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=\left\lfloor w \check{\alpha}_{s}, w \lambda\right\rfloor=\left\lfloor\check{\alpha}_{s},-\lambda\right\rfloor=-\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor
$$

and hence
(b) $2\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$ so that $\delta_{w, \lambda ; s}^{\prime}$ is well defined and is in $\{1,-1\}$.

The following result is a generic version of Theorem 0.4 in which q is replaced by v^{2} and M_{q} is replaced by \mathbf{M}.

Theorem 0.6. We assume that $\mathbf{k}=\mathbf{C}$ and that $\mathbb{8} 0.3(\mathrm{a})$ holds. There is a unique action of the braid group of W on \mathbf{M} in which the generators $\left\{\mathcal{T}_{s} ; s \in S\right\}$ of the braid group applied to the basis elements of \mathbf{M} are as follows. (We write $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$.)
(a) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}$ if $s w \neq w s,|s w|>|w|$;
(b) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}+\Delta\left(v^{2}-v^{-2}\right) \mathbf{a}_{w, \lambda}$ if $s w \neq w s,|s w|<|w|$;
(c) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\delta_{w, s \lambda ; s}^{\prime} \mathbf{a}_{w, s \lambda}+\Delta\left(v+v^{-1}\right) \mathbf{a}_{s w, \lambda}$ if $s w=w s,|s w|>|w|$;
(d) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\Delta\left(v-v^{-1}\right) \mathbf{a}_{s w, \lambda}+\Delta\left(v^{2}-v^{-2}\right) \mathbf{a}_{w, \lambda}-\mathbf{a}_{w, s \lambda}$ if $s w=w s,|s w|<|w|$.

This can be deduced from Theorem 0.4 (see §4).
We can interpret the theorem as providing an \mathbf{H}-module structure on \mathbf{M} where \mathbf{H} is the extended Hecke algebra (see 84.5). The subspace of \mathbf{M} spanned by $\left\{\mathbf{a}_{w, 0} ; w \in\right.$ $\left.W_{2}\right\}$ is stable under the operators \mathcal{T}_{s} and this defines a representation of the generic Hecke algebra of W which was defined in [V].
0.7. The action in Theorem 0.6 can be specialized to $v=1$. It becomes the braid group action on the \mathbf{C}-vector space with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}\right\}$ in which the generators \mathcal{T}_{s} of the braid group act as follows. (Notation and assumptions are from Theorem 0.6)
(a) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}$ if $s w \neq w s$;
(b) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\delta_{w, s \lambda ; s}^{\prime} \mathbf{a}_{w, s \lambda}+2 \Delta \mathbf{a}_{s w, \lambda}$ if $s w=w s,|s w|>|w|$;
(c) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=-\mathbf{a}_{w, s \lambda}$ if $s w=w s,|s w|<|w|$.

This is actually a W-action since \mathcal{T}_{s}^{2} acts as 1 .
0.8 . Let m be an integer ≥ 1 and let \mathbf{M}_{m} be the $\mathbf{C}(v)$-vector space with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}\right\}$. In the following result (a variant of Theorems 0.4 and 0.6) the assumption $\mathbb{0 . 3}(\mathrm{a})$ is not used.

Theorem 0.9. There is a unique action of the braid group of W on \mathbf{M}_{m} in which the generators $\left\{\mathcal{T}_{s} ; s \in S\right\}$ of the braid group applied to the basis elements of \mathbf{M}_{m} are as follows. (We write $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$.)
(a) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}$ if $s w \neq w s,|s w|>|w|$;
(b) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}+\Delta\left(v^{2}-v^{-2}\right) \mathbf{a}_{w, \lambda}$ if $s w \neq w s,|s w|<|w|$;
(c) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{w, s \lambda}+\Delta\left(v+v^{-1}\right) \mathbf{a}_{s w, \lambda}$ if $s w=w s,|s w|>|w|$;
(d) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\Delta\left(v-v^{-1}\right) \mathbf{a}_{s w, \lambda}+\Delta\left(v^{2}-v^{-2}-1\right) \mathbf{a}_{w, \lambda}+(1-\Delta) \mathbf{a}_{w, s \lambda}$ if $s w=$ $w s,|s w|<|w|$.

The proof is given in 93 . It relies on results in [LV] and [L4.
0.10. The action in Theorem 0.9 can be specialized to $v=1$. It becomes the braid group action on the \mathbf{C}-vector space with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}\right\}$ in which the generators \mathcal{T}_{s} of the braid group act as follows. (Notation and assumptions are from Theorem 0.9.)
(a) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}$ if $s w \neq w s$;
(b) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{w, s \lambda}+2 \Delta \mathbf{a}_{s w, \lambda}$ if $s w=w s,|s w|>|w|$;
(c) $\mathcal{T}_{s} \mathbf{a}_{w, \lambda}=\mathbf{a}_{w, s \lambda}-2 \Delta \mathbf{a}_{w, \lambda}$ if $s w=w s,|s w|<|w|$.

This is actually a W-action.
0.11. Notation. If $X \subset X^{\prime}$ are sets and $\iota: X^{\prime} \rightarrow X^{\prime}$ satisfies $\iota(X) \subset X$ we write $X^{\iota}=\{x \in X ; \iota(x)=x\}$.

1. The algebra \mathcal{F}

1.1. Let p, q, Q be as in 80.2 . We now assume that \mathbf{k} is an algebraic closure of the finite field F_{q} with $\sharp\left(F_{q}\right)=q$. We fix a pinning ($x_{s}: \mathbf{k} \rightarrow G, y_{s}: \mathbf{k} \rightarrow G ; s \in S$) corresponding to T, U. (We have $x_{s}(\mathbf{k}) \subset U$.) Let $W \rightarrow N, w \mapsto \dot{w}$ be the Tits cross section of $\kappa: N \rightarrow W$ associated to this pinning; see [T]. We fix an F_{q}-rational structure on G with Frobenius map $\phi: G \rightarrow G$ such that $\phi(t)=t^{q}$ for all $t \in T$ and $\phi\left(x_{s}(z)\right)=x_{s}\left(z^{q}\right), \phi\left(y_{s}(z)\right)=y_{s}\left(z^{q}\right)$ for all $z \in \mathbf{k}$. We have $\phi(\dot{w})=\dot{w}$ for any $w \in W$ and $\phi(U)=U$. Let F_{Q} be the subfield of \mathbf{k} with $\sharp\left(F_{Q}\right)=Q$. We set $\Phi=\phi^{2}$. We set $\epsilon=-1 \in \mathbf{k}^{*}$.

For $s \in S, z \in \mathbf{k}^{*}$ we set $z_{s}=\check{\alpha}_{s}(z) \in T_{s}$. In particular, $\epsilon_{s} \in T_{s}$ is defined and we have $\dot{s}^{2}=\epsilon_{s}$.
1.2. Let $\mathcal{X}=G / U$. Now G acts on \mathcal{X} by $g: x U \mapsto g x U$ and on \mathcal{X}^{2} by g : $(x U, y U) \mapsto(g x U, g y U)$. We have $\mathcal{X}^{2}=\bigsqcup_{n \in N} O_{n}$, where $O_{n}=\{(x U, y U) \in$ $\left.\mathcal{X}^{2} ; x^{-1} y \in U n U\right\}$. Now ϕ, Φ induce endomorphisms of \mathcal{X} and \mathcal{X}^{2} denoted again by ϕ, Φ. For $n \in N$, we have $\phi\left(O_{n}\right)=O_{\phi(n)}$ and hence $\Phi\left(O_{n}\right)=O_{\Phi(n)}$. Thus we have $\left(\mathcal{X}^{2}\right)^{\Phi}=\bigsqcup_{n \in N^{\Phi}} O_{n}^{\Phi}$ and $O_{n}^{\Phi}\left(n \in N^{\Phi}\right)$ are exactly the orbits of G^{Φ} on $\left(\mathcal{X}^{2}\right)^{\Phi}$.

1.3. Let

$$
\mathcal{F}=\left\{f:\left(\mathcal{X}^{2}\right)^{\Phi} \rightarrow \mathbf{C} ; f \text { constant on the orbits of } G^{\Phi}\right\}
$$

This is a C-vector space with basis $\left\{k_{n} ; n \in N^{\Phi}\right\}$ where k_{n} is 1 on O_{n}^{Φ} and is 0 on $\left(\mathcal{X}^{2}\right)^{\Phi}-O_{n}^{\Phi}$. Now \mathcal{F} is an associative algebra with 1 under convolution:

$$
\left(f_{1} f_{2}\right)(x U, z U)=\sum_{y U \in \mathcal{X}^{\Phi}} f_{1}(x U, y U) f_{2}(y U, z U)
$$

here $f_{1} \in \mathcal{F}, f_{2} \in \mathcal{F},(x U, z U) \in\left(\mathcal{X}^{2}\right)^{\Phi}$.
The following two lemmas are well known; they are also used in Y.
Lemma 1.4. Assume that $n, n^{\prime} \in N, \kappa(n)=w, \kappa\left(n^{\prime}\right)=w^{\prime}$ satisfy $\left|w w^{\prime}\right|=|w|+$ $\left|w^{\prime}\right|$.
(a) If $(x U, y U) \in O_{n},(y U, z U) \in O_{n^{\prime}}$, then $(x U, z U) \in O_{n n^{\prime}}$.
(b) If $(x U, z U) \in O_{n n^{\prime}}$, then there is a unique $y U \in X$ such that $(x U, y U) \in$ $O_{n},(y U, z U) \in O_{n^{\prime}}$.
Lemma 1.5. Assume that $s \in S$. Assume that $40.3(\mathrm{a})$ holds.
(a) If $\left(x U, x^{\prime} U\right) \in O_{\dot{s}},\left(x^{\prime} U, z U\right) \in O_{\dot{s}^{-1}}$, then $(x U, z U) \in O_{1}$ or $(x U, z U) \in$ $\bigsqcup_{y \in T_{s}} O_{\dot{s} y}$.
(b) If $(x U, z U) \in O_{1}$, then $\left\{x^{\prime} U \in X ;\left(x U, x^{\prime} U\right) \in O_{\dot{s}},\left(x^{\prime} U, z U\right) \in O_{\dot{s}^{-1}}\right\}$ is an affine line.
(c) If $(x U, z U) \in O_{\dot{s} y}$ with $y \in T_{s}$, then $\left\{x^{\prime} U \in X ;\left(x U, x^{\prime} U\right) \in O_{\dot{s}},\left(x^{\prime} U, z U\right) \in\right.$ $\left.O_{\dot{s}^{-1}}\right\}$ is a point.

The following result can be deduced from Lemmas 1.4, 1.5

Lemma 1.6. Assume that $s \in S, n \in N, \kappa(n)=w$ satisfy $|w s|<|w|$. Assume that 0.3 (a) holds.
(a) If $\left(x U, x^{\prime} U\right) \in O_{n},\left(x^{\prime} U, x^{\prime \prime} U\right) \in O_{\dot{s}^{-1}}$, then $\left(x U, x^{\prime \prime} U\right) \in O_{n \dot{s}^{-1}}$ or $\left(x U, x^{\prime \prime} U\right)$ $\in \bigsqcup_{\tau \in T_{s}} O_{n \tau}$.
(b) If $\left(x U, x^{\prime \prime} U\right) \in O_{n \dot{s}^{-1}}$, then $\left\{x^{\prime} U \in X ;\left(x U, x^{\prime} U\right) \in O_{n},\left(x^{\prime} U, x^{\prime \prime} U\right) \in O_{\dot{s}^{-1}}\right\}$ is an affine line.
(c) If $\left(x U, x^{\prime \prime} U\right) \in O_{n \tau}$ with $y \in T_{s}$, then

$$
\left\{x^{\prime} U \in X ;\left(x U, x^{\prime} U\right) \in O_{n},\left(x^{\prime} U, x^{\prime \prime} U\right) \in O_{\dot{s}^{-1}}\right\}
$$

is a point.
1.7. Assume that $\oint 0.3$ (a) holds. From Lemma 1.4 we deduce that for $n, n^{\prime} \in N^{\Phi}$ such that $\left|\kappa\left(n n^{\prime}\right)\right|=|\kappa(n)|+\left|\kappa\left(n^{\prime}\right)\right|$ we have
(a)

$$
k_{n} k_{n^{\prime}}=k_{n n^{\prime}}
$$

in \mathcal{F}. In particular, k_{1} is the unit element of \mathcal{F}. From Lemma 1.5 we deduce as in [Y] that for $s \in S$ we have

$$
\begin{equation*}
k_{\dot{s}} k_{\dot{s}}=Q k_{\epsilon_{s}}+\sum_{y \in T_{s}^{\Phi}} k_{\dot{s}} k_{y} . \tag{b}
\end{equation*}
$$

It follows that for $s \in S, w \in W, n \in N^{\Phi}$ such that $|s w|<|w|, \kappa(n)=w$ we have

$$
\begin{equation*}
k_{\dot{s}} k_{n}=Q k_{\dot{s} n}+\sum_{y \in T_{s}^{\Phi}} k_{y n} \tag{c}
\end{equation*}
$$

and for $s \in S, w \in W, n \in N^{\Phi}$ such that $|w s|<|w|, \kappa(n)=w$ we have

$$
\begin{equation*}
k_{n} k_{\dot{s}^{-1}}=Q k_{n \dot{s}^{-1}}+\sum_{y \in T_{s}^{\Phi}} k_{n y} . \tag{d}
\end{equation*}
$$

From (a), (c), and (d) we deduce that for $s \in S, w \in W, n \in N^{\Phi}$ such that $s w=$ $w s,|s w|<|w|, \kappa(n)=w$ we have
(e)

$$
k_{\dot{s}} k_{n} k_{\dot{s}^{-1}}=Q k_{\dot{s} n \dot{s}^{-1}}+Q \sum_{y \in T_{s}^{\Phi}} k_{\dot{s} n y}+\sum_{y \in T_{s}^{\Phi}, y^{\prime} \in T_{s}^{\Phi}} k_{y n y^{\prime}} .
$$

1.8. We set $\mathfrak{s}=\operatorname{Hom}\left(T^{\Phi}, \mathbf{C}^{*}\right)$. Here T^{Φ} is as in 0.11 . Now W acts on \mathfrak{s} by $w: \nu \mapsto w \nu$ where $(w \nu)(t)=\nu\left(w^{-1}(t)\right)$ for $t \in T^{\Phi}$. For $\nu \in \mathfrak{s}$ we set
(a)

$$
1_{\nu}=\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{\tau} \in \mathcal{F}
$$

We have
(b)

$$
\sum_{\nu \in \mathfrak{s}} 1_{\nu}=k_{1}=1 .
$$

Indeed,

$$
\sum_{\nu \in \mathfrak{s}} 1_{\nu}=\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \sum_{\nu \in \mathfrak{s}} \nu(\tau) k_{\tau}=\sum_{\tau \in T^{\Phi}} \delta_{\tau, 1} k_{\tau}=k_{1} .
$$

For ν, ν^{\prime} in \mathfrak{s} we have

$$
\begin{equation*}
1_{\nu} 1_{\nu^{\prime}}=\delta_{\nu, \nu^{\prime}} 1_{\nu} \tag{c}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& 1_{\nu} 1_{\nu^{\prime}}=\left|T^{\Phi}\right|^{-2} \sum_{\tau \in T^{\Phi}, \tau^{\prime} \in T^{\Phi}} \nu(\tau) \nu^{\prime}\left(\tau^{\prime}\right) k_{\tau \tau^{\prime}} \\
& =\left|T^{\Phi}\right|^{-2} \sum_{\tau \in T^{\Phi}, \tau^{\prime \prime} \in T^{\Phi}} \nu(\tau) \nu^{\prime}\left(\tau^{\prime \prime} \tau^{-1}\right) k_{\tau^{\prime \prime}} \\
& =\delta_{\nu, \nu^{\prime}}\left|T^{\Phi}\right|^{-1} \sum_{\tau^{\prime \prime} \in T^{\Phi}} \nu^{\prime}\left(\tau^{\prime \prime}\right) k_{\tau^{\prime \prime}}=\delta_{\nu, \nu^{\prime}} 1_{\nu}
\end{aligned}
$$

For $\nu \in \mathfrak{s}, n \in N^{\Phi}, w=\kappa(n) \in W$ we have

$$
\begin{equation*}
k_{n} 1_{\nu}=1_{w \nu} 1_{\nu} \tag{d}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& k_{n} 1_{\nu}=\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{n \tau}=\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{w(\tau) n} \\
& =\left|T^{\Phi}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}} \nu\left(w^{-1}\left(\tau^{\prime}\right)\right) k_{\tau^{\prime} n}=1_{w \nu} k_{n}
\end{aligned}
$$

For $t \in T^{\Phi}, \nu \in \mathfrak{s}$ we have
(e)

$$
k_{t} 1_{\nu}=\nu\left(t^{-1}\right) 1_{\nu}
$$

Indeed,

$$
\begin{aligned}
& k_{t} 1_{\nu}=\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{t \tau}=\left|T^{\Phi}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}} \nu\left(t^{-1} \tau^{\prime}\right) k_{\tau^{\prime}} \\
& =\nu\left(t^{-1}\right)\left|T^{\Phi}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}} \nu\left(\tau^{\prime}\right) k_{\tau^{\prime}}=\nu\left(t^{-1}\right) 1_{\nu}
\end{aligned}
$$

For $\nu \in \mathfrak{s}, s \in S$ we write $s \in W_{\nu}$ if $\nu\left(\check{\alpha}_{s}(z)\right)=1$ for all $z \in F_{Q}^{*}$ or equivalently if $\left.\nu\right|_{T_{s}^{\Phi}}=1$; we write $s \notin W_{\nu}$ if $\left.\nu\right|_{T_{s}^{\Phi}}$ is not identically 1 .

For $\nu \in \mathfrak{s}, \check{\alpha} \in \check{R}$ we define $[\nu, \check{\alpha}]$ as follows. If $\nu(\check{\alpha}(\epsilon))=1$ we set $[\nu, \check{\alpha}]=1$; if $\nu(\check{\alpha}(\epsilon))=-1$ we set $[\nu, \check{\alpha}]=\sqrt{-1}$. (Since $\check{\alpha}(\epsilon)^{2}=1$ we must have $\nu(\check{\alpha}(\epsilon)) \in$ $\{1,-1\}$.) If $p=2$ we have $\check{\alpha}(\epsilon)=1$ and hence $[\nu, \check{\alpha}]=1$. We have $[\nu, \check{\alpha}]^{2}=\nu(\check{\alpha}(\epsilon))$.

For $s \in S$ we set

$$
\begin{equation*}
\mathcal{T}_{s}=q^{-1} k_{\dot{s}} \sum_{\nu \in \mathfrak{s}}\left[\nu, \check{\alpha}_{s}\right] 1_{\nu} \in \mathcal{F} \tag{f}
\end{equation*}
$$

We show
(g)

$$
\mathcal{T}_{s} \mathcal{T}_{s}=1+\left(q-q^{-1}\right) \sum_{\nu \in \mathfrak{s} ; s \in W_{\nu}} \mathcal{T}_{s} 1_{\nu}
$$

Indeed, we have

$$
\begin{aligned}
& \mathcal{T}_{s} \mathcal{T}_{s}=Q^{-1} \sum_{\nu \in \mathfrak{s}, \nu^{\prime} \in \mathfrak{s}}\left[\nu, \check{\alpha}_{s}\right]\left[\nu^{\prime}, \check{\alpha}_{s}\right] k_{\dot{s}} 1_{\nu} k_{\dot{s}} 1_{\nu^{\prime}} \\
& =Q^{-1} \sum_{\nu \in \mathfrak{s}, \nu^{\prime} \in \mathfrak{s}}\left[\nu, \check{\alpha}_{s}\right]\left[\nu^{\prime}, \check{\alpha}_{s}\right] k_{\dot{s}} k_{\dot{s}} 1_{s \nu} 1_{\nu^{\prime}} \\
& =Q^{-1} \sum_{\nu^{\prime} \in \mathfrak{s}}\left[s \nu^{\prime}, \check{\alpha}_{s}\right]\left[\nu^{\prime}, \check{\alpha}_{s}\right] k_{\dot{s}} k_{\dot{s}} 1_{\nu^{\prime}} \\
& =Q^{-1} \sum_{\nu \in \mathfrak{s}} \nu\left(\epsilon_{s}\right) k_{\dot{s}} k_{\dot{s}} 1_{\nu} \\
& =\sum_{\nu \in \mathfrak{s}} \nu\left(\epsilon_{s}\right) k_{\epsilon_{s}} 1_{\nu}+Q^{-1} \sum_{\nu \in \mathfrak{s}, y \in T_{s}^{\Phi}} \nu\left(\epsilon_{s}\right) k_{\dot{s}} k_{y} 1_{\nu} \\
& =\sum_{\nu \in \mathfrak{s}} 1_{\nu}+Q^{-1} \sum_{\nu \in \mathfrak{s}, y \in T_{s}^{\Phi}} \nu\left(\epsilon_{s}\right) \nu\left(y^{-1}\right) k_{\dot{s}} 1_{\nu} \\
& =1+Q^{-1}(Q-1) \sum_{\nu \in \mathfrak{s},\left.\nu\right|_{T_{s}^{\Phi}} ^{\Phi}=1} k_{\dot{s}} 1_{\nu} .
\end{aligned}
$$

It remains to use that if $\left.\nu\right|_{T_{s}^{\Phi}}=1$, then $\nu\left(\epsilon_{s}\right)=1$ and hence $\left[\nu, \check{\alpha}_{s}\right]=1$.
Now (g) implies that $\mathcal{T}_{s}^{-1} \in \mathcal{F}$ is well defined and we have
(h)

$$
\mathcal{T}_{s}^{-1}=\mathcal{T}_{s}-\left(q-q^{-1}\right) \sum_{\nu \in \mathfrak{s} ; s \in W_{\nu}} 1_{\nu}
$$

From (h) we see that for any $\nu \in \mathfrak{s}$:

$$
\begin{equation*}
\mathcal{T}_{s}^{-1} 1_{\nu}=\mathcal{T}_{s} 1_{\nu}-\Delta\left(q-q^{-1}\right) 1_{\nu} \tag{i}
\end{equation*}
$$

where $\Delta=1$ if $s \in W_{\nu}$ and $\Delta=0$ if $s \notin W_{\nu}$.
For any $\nu \in \mathfrak{s}$ we show

$$
\begin{equation*}
1_{\nu} \mathcal{T}_{s}=\mathcal{T}_{s} 1_{s \nu} \tag{j}
\end{equation*}
$$

Indeed, we have

$$
\begin{gathered}
1_{\nu} \mathcal{T}_{s}=q^{-1} 1_{\nu} k_{\dot{s}} \sum_{\nu^{\prime} \in \mathfrak{s}}\left[\nu^{\prime}, \check{\alpha}_{s}\right] 1_{\nu^{\prime}}=q^{-1} \sum_{\nu^{\prime} \in \mathfrak{s}} k_{\dot{s}}\left[\nu^{\prime}, \check{\alpha}_{s}\right] 1_{s \nu} 1_{\nu^{\prime}}=q^{-1} k_{\dot{s}}\left[\nu, \check{\alpha}_{s}\right] 1_{s \nu} \\
\mathcal{T}_{s} 1_{s \nu}=q^{-1} k_{\dot{s}} \sum_{\nu^{\prime} \in \mathfrak{s}}\left[\nu^{\prime}, \check{\alpha}_{s}\right] 1_{\nu^{\prime}} 1_{\sigma \nu}=q^{-1} k_{\dot{s}}\left[\nu, \check{\alpha}_{s}\right] 1_{\sigma \nu}
\end{gathered}
$$

1.9. For any $w \in W$ we set

$$
\mathcal{T}_{w}=q^{-|w|} k_{\dot{w}} \sum_{\nu \in \mathfrak{s}} \prod_{\check{\alpha} \in \check{R}^{+} ; w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu, w^{-1} \check{\alpha}\right] 1_{\nu} \in \mathcal{F}
$$

When $w=s \in S$, this definition agrees with the earlier definition of \mathcal{T}_{s}. For $s \in S$, $w \in W$ such that $|w s|>|w|$ we show
(a)

$$
\mathcal{T}_{w s}=\mathcal{T}_{w} \mathcal{T}_{s}
$$

Since $|w s|>|w|$, we have $w\left(\check{\alpha}_{s}\right) \in R^{+}$and $\left\{\check{\alpha} \in \check{R}^{+} ;(w s)^{-1}(\check{\alpha}) \in \check{R}^{-}\right\}=\{\check{\alpha} \in$ $\left.R^{+} ; w^{-1}(\check{\alpha}) \in \check{R}^{-}\right\} \sqcup\left\{w\left(\check{\alpha}_{s}\right)\right\}$. Hence we have

$$
\begin{aligned}
& \mathcal{T}_{w s}=q^{-|w s|} k_{\dot{w} \dot{s}} \sum_{\nu \in \mathfrak{s}} \prod_{\left.\check{\alpha} \in \check{R}^{+},(w s)^{-1}\right)(\check{\alpha}) \in \check{R}^{-}}\left[\nu,(w s)^{-1} \check{\alpha}\right] 1_{\nu} \\
& =q^{-|w s|} k_{\dot{w} \dot{s}} \sum_{\nu \in \mathfrak{s}}\left[\nu,(w s)^{-1}\left(w\left(\check{\alpha}_{s}\right)\right)\right] \prod_{\check{\alpha} \in \check{R}^{+} ; w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu,(w s)^{-1}(\check{\alpha})\right] 1_{\nu} \\
& =q^{-|w s|} k_{\dot{w} \dot{s}} \sum_{\nu \in \mathfrak{s}}\left[\nu, \check{\alpha}_{s}\right] \prod_{\check{\alpha} \in \check{R}^{+} ; w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu,(w s)^{-1}(\check{\alpha})\right] 1_{\nu} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \mathcal{T}_{w} \mathcal{T}_{s}=q^{-|w|} q^{-1} k_{\dot{w}} \sum_{\nu \in \mathfrak{s}, \nu^{\prime} \in \mathfrak{s}} \prod_{\check{\alpha} \in \check{R}^{+}, w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu, w^{-1}(\check{\alpha})\right]\left[\nu^{\prime}, \check{\alpha}_{s}\right] 1_{\nu} k_{\dot{s}^{\prime} 1_{\nu^{\prime}}}\left[\nu w^{-1}(\check{\alpha})\right] 1_{s \nu} 1_{\nu^{\prime}} \\
& =q^{-|w s|} k_{\dot{w}} k_{\dot{s}} \sum_{\nu \in \mathfrak{s}, \nu^{\prime} \in \mathfrak{s}}\left[\nu^{\prime}, \check{\alpha}_{s}\right] \prod_{\check{\alpha} \in \check{R}^{+}, w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu, w^{-1}(\check{\alpha})\right] 1_{\nu} . \\
& =q^{-|w s|} k_{\dot{w \dot{s} \dot{s}}}\left[\nu, \check{\alpha}_{s}\right] \prod_{\check{\alpha} \in \check{R}^{+}, w^{-1}(\check{\alpha}) \in \check{R}^{-}}\left[\nu,(w s)^{-1}(\alpha)\right.
\end{aligned}
$$

This proves (a).
From (a) we deduce:

$$
\begin{equation*}
\mathcal{T}_{w w^{\prime}}=\mathcal{T}_{w} \mathcal{T}_{w^{\prime}} \text { if } w, w^{\prime} \text { in } W \text { satisfy }\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right| \tag{b}
\end{equation*}
$$

Using $\$ 1.8(\mathrm{j})$ we see that

$$
\begin{equation*}
1_{\nu} \mathcal{T}_{w}=\mathcal{T}_{w} 1_{w^{-1} \nu} \text { for } w \in W, \nu \in \mathfrak{s} \tag{c}
\end{equation*}
$$

We note that
(d) $\left\{\mathcal{T}_{w} 1_{\nu} ; w \in W, \nu \in \mathfrak{s}\right\}$ is a \mathbf{C}-basis of \mathcal{F}.

This follows from the fact that (up to a non-zero scalar) $\mathcal{T}_{w} 1_{\nu}$ is equal to

$$
\sum_{\tau \in T^{\Phi}} \nu(\tau) k_{\dot{w} \tau}
$$

2. The \mathcal{F}-module \mathcal{F}^{\prime}

2.1. In this section we assume that $0.3(\mathrm{a})$ holds. We preserve the setup of 1.1 We define $\phi^{\prime}: N \rightarrow N$ by $\phi^{\prime}(n)=\phi(n)^{-1}$. We define $\psi: \mathcal{X}^{2} \rightarrow \mathcal{X}^{2}$ by $\psi(x U, y U)=$ $(\phi(y) U, \phi(x) U)$. This is a Frobenius map for an F_{q}-rational structure on \mathcal{X}^{2}. The G-action on \mathcal{X}^{2} in $\$ 1.2$ is compatible with this F_{q}-rational structure on \mathcal{X}^{2} and with the F_{q}-rational structure on G given by ϕ. It follows that any G-orbit O_{n} on \mathcal{X}^{2} such that $\psi\left(O_{n}\right)=O_{n}$ satisfies the condition that $O_{n}^{\psi} \neq \emptyset$ and that G^{ϕ} acts transitively on O_{n}^{ψ}. (We use Lang's theorem La and the connectedness of the stabilizers of the G-action on O_{n}.) For $n \in N$ we have $\psi\left(O_{n}\right)=O_{\phi^{\prime}(n)}$; thus $\psi\left(O_{n}\right)=O_{n}$ precisely when $n \in N^{\phi^{\prime}}$. Thus we have $\left(\mathcal{X}^{2}\right)^{\psi}=\bigsqcup_{n \in N^{\phi^{\prime}}} O_{n}^{\psi}$ and O_{n}^{ψ} (for various $n \in N^{\phi^{\prime}}$) are precisely the G^{ϕ}-orbits in $\left(\mathcal{X}^{2}\right)^{\psi}$. Let

$$
\mathcal{F}^{\prime}=\left\{h:\left(\mathcal{X}^{2}\right)^{\psi} \rightarrow \mathbf{C} ; h \text { is constant on the orbits of } G^{\phi}\right\} .
$$

This is a C-vector space with basis $\left\{\theta_{m} ; m \in N^{\phi^{\prime}}\right\}$, where θ_{m} is 1 on O_{m}^{ψ} and is 0 on $\left(\mathcal{X}^{2}\right)^{\psi}-O_{m}^{\psi}$. Now \mathcal{F}^{\prime} is an \mathcal{F}-module under convolution

$$
(f h)(x U, \phi(x) U)=\sum_{y U \in \mathcal{X}^{\Phi}} f(x U, y U) h(y U, \phi(y) U) ;
$$

here $f \in \mathcal{F}, h \in \mathcal{F}^{\prime},(x U, \phi(x) U) \in\left(\mathcal{X}^{2}\right)^{\psi}$. (In this \mathcal{F}-module, multiplication by the unit element of \mathcal{F} is the identity map of \mathcal{F}^{\prime}.)
2.2. Now $\phi^{\prime}: N \rightarrow N$ is an F_{q}-structure on N not necessarily compatible with the group structure of N. But it is compatible with the $T \times T$-action on N given by $\left(t_{1}, t_{2}\right): n \mapsto t_{1} n t_{2}^{-1}$ and the F_{q}-rational structure on $T \times T$ with Frobenius $\operatorname{map}\left(t_{1}, t_{2}\right) \mapsto\left(\phi\left(t_{2}\right), \phi\left(t_{1}\right)\right)$. Hence any $T \times T$-orbit of the action on N which is stable under $\phi^{\prime}: N \rightarrow N$ must have a ϕ^{\prime}-fixed point. Such an orbit is of the form $\kappa^{-1}(w)$ with $w \in W$ satisfying $w^{-1}=w$, that is, $w \in W_{2}$. Using Lang's theorem and the connectedness of the stabilizers of the $T \times T$-action on $\kappa^{-1}(w)$, we see that for $w \in W_{2}, \kappa^{-1}(w) \cap N^{\phi^{\prime}}$ is non-empty and is exactly one orbit for the subgroup $\left\{\left(t_{1}, t_{2}\right) \in T \times T ;\left(t_{1}, t_{2}\right)=\left(\phi\left(t_{2}\right), \phi\left(t_{1}\right)\right)\right\}$ of $T \times T$. Thus,
(a) $N^{\phi^{\prime}}=\bigsqcup_{w \in W_{2}} N(w)$, where for any $w \in W_{2}, N(w):=\kappa^{-1}(w) \cap N^{\phi^{\prime}}$ is nonempty and is a single orbit for the action of T^{Φ} on $N^{\phi^{\prime}}$ given by $t: n \mapsto \operatorname{tn\phi }(t)^{-1}$.

For $w \in W_{2}$ we have $N(w)=\left\{\dot{w} t ; t \in T, w\left(t^{q}\right) t \dot{w}^{2}=1\right\}$. Let $T(w)=\{t \in$ $\left.T ; w\left(t^{q}\right) t=1\right\}$. Clearly,
(b) $N(w)$ is a single orbit under right translation by $T(w)$.

We note:
(c) For $w \in W_{2}, z \in W$ we have $\dot{z} N(w) \dot{z}^{-1}=N\left(z w z^{-1}\right)$.

It is enough to show that $\dot{z} N^{\phi^{\prime}} \dot{z}^{-1}=N^{\phi^{\prime}}$. More generally, if $n \in N^{\Phi}$, then $n N^{\phi^{\prime}} \phi(n)^{-1}=N^{\phi^{\prime}}$. This is easily verified.

For $w \in W_{2}$, we define a homomorphism $e_{w}: T^{\Phi} \rightarrow T(w)$ by $\tau \mapsto w(\tau) \tau^{-q}$. We show:
(d) e_{w} is surjective.

Let $t \in T(w)$. By Lang's theorem we have $t=w(\tau) \tau^{-q}$ for some $\tau \in T$. Since $t \in T(w)$ we have automatically $\tau \in T^{\Phi}$ and (d) follows.

For $w \in I, s \in S$ such that $s w=w s$ we show:
(e) If $|s w|>|w|$, then $\left\{c_{s} ; c \in F_{Q}, c^{q+1}=1\right\} \subset T(w)$; if $|s w|<|w|$, then $\left\{c_{s} ; c \in F_{Q}, c^{q-1}=1\right\} \subset T(w)$.

Assume first that $|s w|>|w|$ and that $c^{q+1}=1$. We have $w\left(c_{s}\right)=c_{s}$ and hence $w\left(c_{s}^{q}\right) c_{s}=c_{s}^{q+1}=1$. Next we assume that $|s w|<|w|$ and that $c^{q-1}=1$. We have $w\left(c_{s}\right)=c_{s}^{-1}$ and hence $w\left(c_{s}^{q}\right) c_{s}=c_{s}^{-q+1}=1$. This proves (e).
2.3. For $n \in N^{\Phi}, m \in N^{\phi^{\prime}}$ we have $k_{n} \theta_{m}=\sum_{m^{\prime} \in N_{*}} \mathcal{N}_{n, m, m^{\prime}} \theta_{m^{\prime}}$, where

$$
\mathcal{N}_{n, m, m^{\prime}}=\sharp\left\{y U \in X^{\Phi} ;(x U, y U) \in O_{n}^{\Phi},(y U, \phi(y) U) \in O_{m}^{\psi}\right\} .
$$

We have also

$$
\mathcal{N}_{n, m, m^{\prime}}=\sharp Z_{x U, \phi(x) U}^{\psi},
$$

where

$$
Z_{x U, \phi(x) U}=\left\{\left(y U, y^{\prime} U\right) \in O_{m} ;(x U, y U) \in O_{n},\left(y^{\prime} U, \phi(x) U\right) \in O_{\phi(n)^{-1}}\right\}
$$

with $(x U, \phi(x) U)$ fixed in $O_{m^{\prime}}^{\psi}$ (note that $Z_{x U, \phi(x) U}$ is ψ-stable).
Lemma 2.4. Assume that $n=t \in T^{\Phi}, m \in N^{\phi^{\prime}}$. We have $k_{t} \theta_{m}=\theta_{\operatorname{tm\phi }(t)^{-1}}$.

If $m^{\prime} \in N^{\phi^{\prime}}$ satisfies $\mathcal{N}_{n, m, m^{\prime}} \neq 0$, then from Lemma 1.4 (applied twice) we see that $Z_{x U, \phi(x) U}$ is a point and $m^{\prime}=\operatorname{tm\phi }(t)^{-1}$; moreover we have $\mathcal{N}_{n, m, m^{\prime}}=1$. The result follows.

Lemma 2.5. Assume that $s \in S, w \in I, m \in N(w), s w \neq w s,|w s|>|w|$. Recall that $\dot{s} m \dot{s}^{-1} \in N(s w s)$. We have

$$
k_{\dot{s}} \theta_{m}=\theta_{\dot{s} m \dot{s}^{-1}}
$$

In this case we have $|s w s|=|w|+2$. If $m^{\prime} \in N^{\phi^{\prime}}$ satisfies $\mathcal{N}_{n, m, m^{\prime}} \neq 0$, then from Lemma 1.4 (applied twice) we see that $Z_{x U, \phi(x) U}$ (in 2.3 with $n=\dot{s}$) is a point and $m^{\prime}=\dot{s} m \phi(\dot{s})^{-1} ;$ moreover we have $\mathcal{N}_{n, m, m^{\prime}}=1$. The result follows.
Lemma 2.6. Assume that $s \in S, w \in I, m \in N(w), s w=w s,|w s|>|w|$. Write $m=\dot{w} t$ where $t \in T$ satisfies $w\left(t^{q}\right) t \dot{w}^{2}=1$.
(a) We have $\dot{w} s(t)=\dot{s} m \dot{s}^{-1} \in N(w)$. We have $s(t)^{-1} t \epsilon_{s}=\dot{s} m^{-1} \dot{s} m \in T_{s}$, $\left(\dot{s} m^{-1} \dot{s} m\right)^{q+1}=1$.
(b) For $y \in T_{s}$ we have $\dot{s} \dot{w} t y=\dot{s} m y \in N(s w)$ if and only if $y^{q-1}=s(t)^{-1} t \epsilon_{s}=$ $\dot{s} m^{-1} \dot{s} m$. There are exactly $q-1$ such y; they are all automatically in T_{s}^{Φ}.
(c) We have

$$
k_{\dot{s}} \theta_{m}=q \theta_{\dot{s} m \dot{s}^{-1}}+\sum_{y \in T_{s} ; y^{q-1}=\dot{s} m^{-1} \dot{s} m} \theta_{\dot{s} m y}
$$

The equalities in (a) are easily checked; the inclusion $\dot{s} n \dot{s}^{-1} \in N(w)$ follows from $\% 2.2$ (c). We have $s(t)^{-1} t \epsilon_{s} \in T_{s}$. To prove (a) it remains to show that $\left(s(t)^{-1} t \epsilon_{s}\right)^{q+1}=1$. We have $\dot{s} \dot{w}^{2}=\dot{w}^{2} \dot{s}$ and hence $\dot{w}^{2}=\dot{s} \dot{w}^{2} \dot{s}^{-1}=s\left(\dot{w}^{2}\right)=$ $\dot{w}^{2} \check{\alpha}_{s}\left(\alpha_{s} \dot{w}^{-2}\right)$. Thus we have $\check{\alpha}_{s}\left(\alpha_{s}\left(\dot{w}^{-2}\right)\right)=1$, that is, $\check{\alpha}_{s}\left(\alpha_{s}\left(w\left(t^{q}\right) t\right)\right)=1$. Since $w\left(\alpha_{s}\right)=\alpha_{s}$ it follows that $\check{\alpha}_{s}\left(\alpha_{s}\left(t^{q+1}\right)\right)=1$ and hence $\left(\check{\alpha}_{s}\left(-\alpha_{s}(t)\right)\right)^{q+1}=1$. Thus (a) holds.

From our assumptions we have that $w\left(y^{\prime}\right)=y^{\prime}$ and $s\left(y^{\prime}\right)=y^{\prime-1}$ for any $y^{\prime} \in T_{s}$; since $s(t) t^{-1} \in T_{s}$, it follows that $w\left(s(t) t^{-1}\right)=s(t) t^{-1}$. Moreover we have $w\left(\dot{s}^{2}\right)=$ \dot{s}^{2}. Hence for $y \in T_{s}$ we have

$$
s w\left(t^{q} y^{q}\right) t y(\dot{s} \dot{w})^{2}=s\left(w\left(t^{q}\right) t \dot{w}^{2}\right) s w\left(y^{q}\right) s(t)^{-1} t y \dot{s}^{2}=y^{-q} s(t)^{-1} t y \dot{s}^{2}
$$

This equals 1 if and only if $y^{q-1}=s(t)^{-1} t \dot{s}^{2}$. This proves the first sentence of (b). The second sentence of (b) follows from (a).

We prove (c). For $m^{\prime} \in N^{\phi^{\prime}}$ and $(x U, \phi(x) U) \in O_{m^{\prime}}^{\psi}$ fixed, the variety $Z_{x U, \phi(x) U}$ in 2.3 (with $n=\dot{s}$) can be identified with

$$
Z_{x U, \phi(x) U}^{\prime}=\left\{x^{\prime} U \in X ;\left(x U, x^{\prime} U\right) \in O_{\dot{s} m},\left(x^{\prime} U, \phi(x) U\right) \in O_{\dot{s}^{-1}}\right\}
$$

(We use Lemma 1.4 and the equality $|s w|=|w|+1$.) By Lemma 1.6, $Z_{x U, \phi(x) U}^{\prime}$ is an affine line if $m^{\prime}=\dot{s} m \dot{s}^{-1}$, is a point if $m^{\prime}=\dot{s} m y$ for some $y \in T_{s}$, and is empty otherwise. Hence $\sharp\left(Z_{x U, \phi(x) U}^{\psi}\right)$ is q if $m^{\prime}=\dot{s} m \dot{s}^{-1}$, is 1 if $m^{\prime}=\dot{s} m y$ for some $y \in T_{s}$, and is 0 otherwise. Now (c) follows from (a), (b).

Lemma 2.7. Assume that $s \in S, w \in I, m \in N(w)$ and that $s w=w s,|w s|<|w|$. Write $m=\dot{w} t$, where $t \in T$ satisfies $w\left(t^{q}\right) t \dot{w}^{2}=1$.
(a) For $y \in T_{s}$ we have $\dot{s} m \dot{s}^{-1} y \in N(w)$ if and only if $y^{q-1}=1$.
(b) We have $s(t) t^{-1} \epsilon_{s}=m^{-1} \dot{s} m \dot{s} \in T_{s}^{\phi}$.
(c) For $y \in T_{s}$ we have $\dot{s} m y \in N(s w)$ if and only if $y^{q+1}=s(t) t^{-1} \epsilon_{s}=m^{-1} \dot{s} m \dot{s}$.

There are exactly $q+1$ such y; they are all automatically in T_{s}^{Φ}.
(d) We have

$$
k_{\dot{s}} \theta_{m}=q \sum_{y \in T_{s} ; y^{q+1}=m^{-1} \dot{s} m \dot{s}} \theta \dot{s} m y+\theta_{\dot{s} m \dot{s}^{-1}}+(q+1) \sum_{y \in T_{s} ; y^{q-1}=1, y \neq 1} \theta_{\dot{s} m \dot{s}^{-1} y} .
$$

We prove (a). We have

$$
\begin{aligned}
& \phi\left(\dot{s} m \dot{s}^{-1} y\right) \dot{s} m \dot{s}^{-1} y=\dot{s} \phi(m) \dot{s}^{-1} y^{q} \dot{s} m \dot{s}^{-1} y=\dot{s} m^{-1} y^{-q} m \dot{s}^{-1} y \\
& =\dot{s} w\left(y^{-q}\right) \dot{s}^{-1} y=\dot{s} y^{q} \dot{s}^{-1} y=y^{-q} y=y^{1-q}
\end{aligned}
$$

This proves (a).
The equality in (b) is easily checked. We have $s(t) t^{-1} \epsilon_{s} \in T_{s}$. To prove (b) it remains to show that $\left(s(t) t^{-1} \epsilon_{s}\right)^{q-1}=1$. We have $\dot{s}^{-1} \dot{w}^{2}=\dot{w}^{2} \dot{s}^{-1}$ and hence $\dot{w}^{2}=\dot{s}^{-1} \dot{w}^{2} \dot{s}=s\left(\dot{w}^{2}\right)=\dot{w}^{2} \check{\alpha}_{s}\left(\alpha_{s} \dot{w}^{-2}\right)$. Thus we have $\check{\alpha}_{s}\left(\alpha_{s}\left(\dot{w}^{-2}\right)\right)=1$, that is, $\check{\alpha}_{s}\left(\alpha_{s}\left(w\left(t^{q}\right) t\right)\right)=1$. Since $w\left(\alpha_{s}\right)=\alpha_{s}^{-1}$ it follows that $\breve{\alpha}_{s}\left(\alpha_{s}\left(t^{-q+1}\right)\right)=1$ and hence $\left(\check{\alpha}_{s}\left(-\alpha_{s}(t)\right)\right)^{-q+1}=1$. Thus (b) holds.

We prove (c). We have

$$
\begin{aligned}
& \phi(\dot{s} m y) \dot{s} m y=\dot{s} \phi(m) y^{q} \dot{s} m y=\dot{s} m^{-1} y^{q} \dot{s} m y=\dot{s} t^{-1} \dot{w}^{-1} y^{q} \dot{s} \dot{w} t y \\
& =\dot{s} t^{-1} \dot{w}^{-1} y^{q} \dot{w} \dot{s} t y=\dot{s} t^{-1} w\left(y^{q}\right) \dot{s} t y=\dot{s} t^{-1} y^{-q} \dot{s} t y \\
& =s\left(t^{-1} y^{-q}\right) \epsilon_{s} t y=y^{q+1} s\left(t^{-1}\right) t \epsilon_{s} .
\end{aligned}
$$

This proves the first sentence of (c). The second sentence of (c) follows from (b).
We prove (d). For $m^{\prime} \in N^{\phi^{\prime}}$ and $(x U, \phi(x) U) \in O_{m^{\prime}}^{\psi}$ fixed, the variety $Z_{x U, \phi(x) U}$ in 2.3 (with $n=\dot{s}$) is
(i) an affine line if $m^{\prime}=\dot{s} m y$ for some $y \in T_{s}$ such that $\dot{s} m y \in N(s w)$,
(ii) an affine line minus a point if $m^{\prime}=\dot{s} m \dot{s}^{-1} y$ with $y \in T_{s}-\{1\}$,
(iii) a union of two affine lines with one point in common if $m^{\prime}=\dot{s} m \dot{s}^{-1}$.

This is a geometric reinterpretation (and refinement) of the formula 1.7(e), in which the number of Φ-fixed points on these varieties enter; this number is Q in case (i), is $Q-1$ in case (ii), and is $2 Q-1$ in case (iii). It is enough to show that the number of ψ-fixed points on $Z_{x U, \phi(x) U}$ is q in case (i), is $q+1$ in case (ii), and is 1 in case (iii). This is verified directly by calculation in each case. (In case (iii), ψ interchanges the two lines, keeping fixed the point common to the two lines.) We give the details of the calculation assuming that $G=S L_{2}(\mathbf{k}), T$ is the diagonal matrices, $T U$ is the upper triangular matrices, $\dot{s}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and ϕ raises each matrix entry to the q th power. We have $N^{\phi^{\prime}}=\left\{M_{a} ; a \in F_{Q}^{*} ; a^{q}+a=\right.$ $0\} \sqcup\left\{M_{a}^{\prime} ; a \in F_{Q}^{*} ; a^{q+1}=1\right\}$, where $M_{a}=\left(\begin{array}{cc}0 & -a^{-1} \\ a & 0\end{array}\right), M_{a}^{\prime}=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. We must show:
if $x \in G, x^{-1} \phi(x)=M_{a}$, then $\sharp\left(y U \in G / U ; y^{-1} \phi(y) \in U M_{b} U, x^{-1} y \in U \dot{s} U\right)=$ $1+\delta_{a, b} q\left(\right.$ here $\left.a^{q}+a=0, b^{q}+b=0\right)$;
if $x \in G, x^{-1} \phi(x)=M_{a^{\prime}}$, then $\sharp\left(y U \in G / U ; y^{-1} \phi(y) \in U M_{b} U, x^{-1} y \in U \dot{s} U\right)=$ $q\left(\right.$ here $\left.a^{\prime q+1}+a^{\prime}=0, b^{q+1}=0\right)$.

Setting $y=x D$ we see that we must show that if $b^{q}+b=0$, then:
if $a^{q}+a=0$, then $\sharp\left(D U \in(U \dot{s} U) / U ; D^{-1} M_{a} \phi(D) \in U M_{b} U\right)=1+\left(1-\delta_{a, b}\right) q$;
if $a^{\prime q+1}=1$, then $\sharp\left(D U \in(U \dot{s} U) / U ; D^{-1} M_{a^{\prime}} \phi(D) \in U M_{b} U\right)=q$.
Equivalently, we must show that if $b^{q}+b=0$, then:
(e) if $a^{q}+a=0$, then $\sharp\left(d \in F_{Q} ; d^{q+1} a-a^{-1}=b\right)=1+\left(1-\delta_{a, b}\right) q$;
(f) if $a^{\prime q+1}=1$, then $\sharp\left(d \in F_{Q} ;-a^{\prime} d^{q}+a^{\prime-1} d=b\right)=q$.

If $a=b$, the equation in (e) is $d^{q+1}=0$ which has one solution, namely $d=0$. If $a \neq b$ the equation in (e) is $d^{q+1}=b a^{-1}+a^{-2}$. Here $\left(b a^{-1}+a^{-2}\right)^{q}=b a^{-1}+a^{-2} \neq 0$. Hence the equation in (e) has exactly $q+1$ solutions. Setting $d^{\prime}=a^{\prime-1} d$, the equation in (f) is $-d^{\prime q}+d^{\prime}=b$ and this has exactly d solutions in F_{Q} since $b^{q}+b=0$. This completes the proof.
2.8. Let $T(w)^{*}=\operatorname{Hom}\left(T(w), \mathbf{C}^{*}\right)$. Since e_{w} is surjective (see $\$ 2.2(\mathrm{~d})$), the map $T(w)^{*} \rightarrow \mathfrak{s}, \zeta \mapsto \zeta e_{w}$ is an injective homomorphism. Let \mathfrak{s}_{w} be the image of this homomorphism. We have $\mathfrak{s}_{w}=\left\{\nu \in \mathfrak{s} ; w(\nu) \nu^{q}=1\right\}$. Note that if $w \in W_{2}, z \in W$, then $z\left(\mathfrak{s}_{w}\right)=\mathfrak{s}_{z w z^{-1}}$.

For $\nu \in \mathfrak{s}_{w}$ we denote by $\underline{\nu}_{w}$ the element of $T(w)^{*}$ such that $\nu=\underline{\nu}_{w} e_{w}$. We set $\mathfrak{K}_{w}=\operatorname{ker}\left(e_{w}\right)$.

For any $w \in I, n \in N(w)$, and $\nu \in \mathfrak{s}_{w}$ we define $a_{n, \nu}^{\prime} \in \mathcal{F}^{\prime}$ by

$$
a_{n, \nu}^{\prime}=\sum_{t \in T(w)} \underline{\nu}_{w}(t) \theta_{n t}=\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) \theta_{\tau n \tau^{-q}} .
$$

To verify the last equality we note that the sum over $t \in T(w)$ is equal to $\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}} \underline{\nu}_{w}\left(e_{w}(\tau)\right) \theta_{n e_{w}(\tau)}$. We show:
(a) If $w \in I, n \in N(w), \tau \in T^{\Phi}, t \in T(w)$, and $\nu \in \mathfrak{s}_{w}$, then $a_{n t, \nu}^{\prime}=\underline{\nu}_{w}\left(t^{-1}\right) a_{n, \nu}^{\prime}$ and $a_{\tau n \tau^{-q}, \nu}^{\prime}=\nu\left(\tau^{-1}\right) a_{n, \nu}^{\prime}$. In particular, the line spanned by $a_{n, \nu}^{\prime}$ depends only on w, ν and not on n.

Indeed, we have

$$
\begin{aligned}
& \quad a_{n t, \nu}^{\prime}=\sum_{t^{\prime} \in T(w)} \underline{\nu}_{w}\left(t^{\prime}\right) \theta_{n t t^{\prime}}=\sum_{t^{\prime \prime} \in T(w)} \underline{\nu}_{w}\left(t^{\prime \prime} t^{-1}\right) \theta_{n t^{\prime \prime}}=\underline{\nu}_{w}\left(t^{-1}\right) a_{n, \nu}^{\prime} \\
& a_{\tau n \tau^{-q}, \nu}^{\prime} \\
& =\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}} \nu\left(\tau^{\prime}\right) \theta_{\tau^{\prime} \tau n \tau \tau^{\prime}-q}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau_{1} \in T^{\Phi}} \nu\left(\tau_{1} \tau^{-1}\right) \theta_{\tau_{1} n \tau_{1}^{-q}}=\nu\left(\tau^{-1}\right) a_{n, \nu}^{\prime} .
\end{aligned}
$$

This proves (a).
From \$2.1, \$2.2(a), (b), we see that:
(b) if $\left\{t_{w} ; w \in W_{2}\right\}$ is a collection of elements in T such that $\dot{w} t_{w} \in N(w)$ for all $w \in W_{2}$, then $\left\{a_{\dot{w} t_{w}, \nu}^{\prime} ; w \in W_{2}, \nu \in \mathfrak{s}_{w}\right\}$ is a \mathbf{C}-basis of \mathcal{F}^{\prime}.

For $\nu \in \mathfrak{s}, w \in I, n \in N(w), \nu^{\prime} \in \mathfrak{s}_{w}$ we show:

$$
\begin{equation*}
1_{\nu} a_{n, \nu^{\prime}}^{\prime}=\delta_{\nu, \nu^{\prime}} a_{n, \nu^{\prime}}^{\prime} \tag{c}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
& 1_{\nu} a_{n, \nu^{\prime}}^{\prime}=\left|\mathfrak{K}_{w}\right|^{-1}\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{\tau} \sum_{\tau^{\prime} \in T^{\Phi}} \nu^{\prime}\left(\tau^{\prime}\right) \theta_{\tau^{\prime} n \tau^{\prime}-q} \\
& =\left|\mathfrak{K}_{w}\right|^{-1}\left|T^{\Phi}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) \sum_{\tau^{\prime} \in T^{\Phi}} \nu^{\prime}\left(\tau^{\prime}\right) \theta_{\tau \tau^{\prime} n \tau^{\prime}-q} t^{-q} .
\end{aligned}
$$

Setting $\tau \tau^{\prime}=\tau_{1}$ we obtain

$$
\begin{aligned}
& 1_{\nu} a_{n, \nu^{\prime}}^{\prime}=\left|\mathfrak{K}_{w}\right|^{-1}\left|T^{\Phi}\right|^{-1} \sum_{\tau_{1} \in T^{\Phi}} \nu^{\prime}\left(\tau_{1}\right) \sum_{\tau \in T^{\Phi}} \nu(\tau) \nu^{\prime}\left(\tau^{-1}\right) \theta_{\tau_{1} n \tau_{1}^{-1}-q} \\
& =\delta_{\nu, \nu^{\prime}}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau_{1} \in T^{\Phi}} \nu^{\prime}\left(\tau_{1}\right) \theta_{\tau_{1} n \tau_{1}^{-1}-q}=\delta_{\nu, \nu^{\prime}} a_{n, \nu^{\prime}}^{\prime}
\end{aligned}
$$

This proves (c).

For $s \in S, w \in W, n \in N(w), \nu \in \mathfrak{s}_{w}$, we have (using (c)):
(d)

$$
\mathcal{T}_{s} a_{n, \nu}^{\prime}=q^{-1}\left[\nu, \check{\alpha}_{s}\right] k_{\dot{s}} a_{n, \nu} .
$$

Lemma 2.9. Let $s \in S, w \in I, n \in N(w), \nu \in \mathfrak{s}_{w}$. Note that $s \nu \in \mathfrak{s}_{\text {sws }}$. Assume that $s w \neq w s,|s w|>|w|$. We have

$$
\mathcal{T}_{s} a_{n, \nu}^{\prime}=q^{-1}\left[\nu, \check{\alpha}_{s}\right] a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime} .
$$

$$
k_{\dot{s}} a_{n, \nu}^{\prime}=a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime}
$$

Using Lemma 2.5 and the equality $\left|\mathfrak{K}_{w}\right|=\left|\mathfrak{K}_{s w s}\right|$ we see that

$$
\begin{aligned}
& k_{\dot{s}} a_{n, \nu}^{\prime}=\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) k_{\dot{s}} \theta_{\tau n \tau^{-q}} \\
& =\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) \theta_{\dot{s} \tau n \tau^{-q} \dot{s}^{-1}} \\
& =\left|\mathfrak{K}_{s w s}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}} \nu\left(s\left(\tau^{\prime}\right)\right) \theta_{\tau^{\prime} \dot{s} n \dot{s}^{-1} \tau^{\prime}-q}=a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime}
\end{aligned}
$$

The lemma is proved.
Lemma 2.10. Let $s \in S, w \in I, n \in N(w), \nu \in \mathfrak{s}_{w}$. Assume that $s w=w s$, $|s w|>|w|$. If $s \in W_{\nu}$ we set $\Delta=1$; if $s \notin W_{\nu}$ we set $\Delta=0$. Note that we have $s \nu \in \mathfrak{s}_{w}$; moreover, if $\Delta=1$, then $s \nu=\nu \in \mathfrak{s}_{s w}$. We set $z=\dot{s} n^{-1} \dot{s} n \in T_{s}$; see Lemma 2.6(a). We have $z^{q+1}=1$; see Lemma 2.6(a). We have

$$
\begin{gathered}
\mathcal{T}_{s} a_{n, \nu}^{\prime}=a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime} \text { if } \Delta=0, \\
\mathcal{T}_{s} a_{n, \nu}^{\prime}=a_{n, \nu}^{\prime}+\left(q^{-1}+1\right) a_{\dot{s} n u, \nu}^{\prime} \text { if } \Delta=1,
\end{gathered}
$$

where $u \in T_{s}^{\Phi}$ is such that $u^{q-1}=z$ (see Lemma 2.6(b)).

$$
A=\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}} \nu(\tau) \theta_{\dot{s} \tau n t^{-q} \dot{s}^{-1}},
$$

and

$$
B=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}, y \in T_{s} ; y^{q-1}=\dot{s} \tau^{q} n^{-1} \tau^{-1} \dot{\dot{s}} \tau n \tau^{-q}} \nu(\tau) \theta_{\dot{\delta} \tau n \tau^{-q} y} .
$$

We have used that $\nu\left(\epsilon_{s}\right)=1$ (and hence $\left[\nu, \check{\alpha}_{s}\right]=1$). Indeed, we have $\nu\left(\epsilon_{s}\right)=$ $\underline{\nu}_{w}\left(e_{w}\left(\epsilon_{s}\right)\right)=\underline{\nu}_{w}\left(w\left(\epsilon_{s}\right) \epsilon_{s}\right)=\underline{\nu}_{w}(1)=1$ since $w\left(\epsilon_{s}\right)=\epsilon_{s}$.

In the sum A we set $\tau^{\prime}=s(\tau)$. We get

$$
A=\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}}(s \nu)\left(\tau^{\prime}\right) \theta_{t^{\prime} \dot{s} n \dot{s}^{-1} t^{\prime}-q}=a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime} .
$$

We now show that if $\Delta=1$, then

$$
a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime}=a_{n, \nu}^{\prime}
$$

We write $n=\dot{w} t$ with $t \in T$. We have $\dot{s} n \dot{s}^{-1}=\dot{s} \dot{w} t \dot{s}^{-1}=\dot{w} \dot{s} t \dot{s}^{-1}=n t^{-1} s(t)$. By Lemma[2.6(a) we have $\left(t^{-1} s(t)\right)^{q+1}=1$. Since $t^{-1} s(t) \in T_{s}$ we have $t_{1}^{-1} s(t)=t_{1}^{q-1}$ with $t_{1} \in T_{s}^{\Phi}$. Thus we have $\dot{s} n \dot{s}^{-1}=n t_{1}^{q-1}$ and hence $a_{\dot{s} n \dot{s}^{-1}, \nu}^{\prime}=a_{n t_{1}^{q-1}, \nu}^{\prime}=$ $a_{t_{1}^{-1} n t_{1}^{q}, \nu}^{\prime}=a_{n, \nu}^{\prime}$ since $\nu\left(t_{1}\right)=1$. This proves our claim.

We now consider the sum B. In that sum we have

$$
\begin{aligned}
& \dot{s} \tau^{q} n^{-1} \tau^{-1} \dot{s} \tau n \tau^{-q}=s\left(\tau^{q}\right) \dot{s} n^{-1} \dot{s} s(\tau)^{-1} \tau n \tau^{-q} \\
& =\dot{s} n^{-1} \dot{s} n s(\tau)^{-1} \tau \tau^{-q} s\left(\tau^{q}\right)=z\left(\tau s(\tau)^{-1}\right)^{1-q}
\end{aligned}
$$

Thus we have

$$
B=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{(\tau, y) \in \mathcal{Y}} \nu(\tau) \theta_{\dot{\operatorname{s} n} w(\tau) \tau^{-q} y},
$$

where $\mathcal{Y}=\left\{(\tau, y) \in T^{\Phi} \times T_{s} ; y^{q-1}=z\left(\tau s(\tau)^{-1}\right)^{1-q}\right\}$. Let $\mathcal{Y}^{\prime}=\left\{\left(\tau^{\prime}, u\right) \in T^{\Phi} \times\right.$ $\left.\left(T_{s}^{\Phi}\right) ; u^{q-1}=z\right\}$. The map $\xi: \mathcal{Y}^{\prime} \rightarrow \mathcal{Y},\left(\tau^{\prime}, u\right) \mapsto\left(s\left(\tau^{\prime}\right), s\left(\tau^{\prime}\right)^{q} \tau^{\prime-q} u\right)$ is a well defined bijection. Now the sum B can be written in terms of this bijection as follows:

$$
B=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\left(\tau^{\prime}, u\right) \in \mathcal{Y}^{\prime}} \nu\left(s\left(\tau^{\prime}\right)\right) \theta_{\dot{s} n w\left(s\left(\tau^{\prime}\right)\right) \tau^{\prime-q} u}
$$

We have a free action of T_{s}^{Φ} on \mathcal{Y}^{\prime} given by $e:\left(\tau^{\prime}, u\right) \mapsto\left(\tau^{\prime} s(e), u e^{-q-1}\right)$. Note that the quantity $\theta_{\left.\dot{s} n w\left(s\left(\tau^{\prime}\right)\right) \tau^{\prime}-q_{u}\right)}$ is constant on the orbits of this action. Hence if \mathcal{Y}_{0}^{\prime} is a set of representatives for the T_{s}^{Φ}-orbits on \mathcal{Y}^{\prime} we have

$$
B=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\left(\tau^{\prime}, y\right) \in \mathcal{Y}_{0}^{\prime}, e \in T_{s}^{\Phi}}(s \nu)\left(\tau^{\prime}\right) \nu(e) \theta_{\tau^{\prime} \dot{s} n \tau^{\prime}-q_{u}}
$$

Note that $\sum_{e \in T_{s}^{\Phi}} \nu(e)=\delta\left(q^{2}-1\right)$. In particular, if $\Delta=0$ we have $B=0$. We now assume that $\Delta \stackrel{s}{=} 1$. For any $u \in T_{s}^{\Phi}$ such that $u^{q-1}=z$ we set

$$
B_{u}=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}}(s \nu)\left(\tau^{\prime}\right) \theta_{\tau^{\prime} \dot{s} n \tau^{\prime}-q_{u}} .
$$

We have $B=\sum_{u \in T_{s}^{\Phi} ; u^{q-1}=z} B_{u}$. For any u as above and any $e \in T_{s}^{\Phi}$ we have $B_{u e^{-1-q}}^{\prime}=B_{u}^{\prime}$ since $\nu(e)=1$. If u, u^{\prime} in T_{s}^{Φ} are such that $u^{q-1}=u^{\prime q-1}=z$, we have $u^{\prime}=u \tilde{e}$, where $\tilde{e} \in T_{s}^{\Phi}$ satisfies $\tilde{e}^{q-1}=1$. Hence we have $\tilde{e}=e^{-q-1}$ for some $e \in T_{s}^{\Phi}$ so that $u^{\prime}=u e^{-q-1}$. Thus we have $B_{u^{\prime}}=B_{u}$. We see that $B=(q-1) B_{u}$ where $u \in T_{s}^{\Phi}$ is such that $u^{q-1}=z$. We have $B_{u}=q^{-1}\left|\mathfrak{K}_{s w}\right|\left|\mathfrak{K}_{w}\right|^{-1} a_{\text {snu, }}^{\prime}$. It remains to show that $(q-1)\left|\mathfrak{K}_{s w}\right|\left|\mathfrak{K}_{w}\right|^{-1}=q+1$ or equivalently, that $|T(s w)||T(w)|^{-1}=$ $(q-1)(q+1)^{-1}$. This follows from the following fact: there exists c, c^{\prime} in \mathbf{N} such that $|T(w)|=(q-1)^{c}(q+1)^{c^{\prime}},|T(s w)|=(q-1)^{c+1}(q+1)^{c^{\prime}-1}$. The lemma is proved.

Lemma 2.11. Let $s \in S, w \in I, n \in N(w), \nu \in \mathfrak{s}_{w}$. Assume that $s w=w s$, $|s w|<|w|, s \notin W_{\nu}$. Note that $s \nu \in \mathfrak{s}_{w}$. We have

$$
\mathcal{T}_{s} a_{n, \nu}^{\prime}=-a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime}
$$

Using Lemma 2.7(d) and $\S 2.8(\mathrm{~d})$ we have $\mathcal{T}_{s} a_{n, \nu}^{\prime}=A+B$ where

$$
A=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}, y \in T_{s} ; y^{q-1}=1} c_{y} \nu(\tau) \theta_{\dot{\boldsymbol{s}} \tau n \tau^{-q} \dot{s}^{-1} y}
$$

where $c_{y}=q+1$ if $y \neq 1, c_{y}=1$ if $y=1$ and

$$
B=\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau \in T^{\Phi}, y \in T_{s} ; y^{q+1}=\tau^{q} n^{-1} \tau^{-1} \dot{\dot{s}} \tau n \tau^{-q} \dot{\dot{s}}} \nu(\tau) \theta_{\dot{\boldsymbol{s}} \tau n \tau^{-q} y} .
$$

We have used that, as in the proof of Lemma 2.10, we have $\nu\left(\epsilon_{s}\right)=1$ (and hence $\left.\left[\nu, \check{\alpha}_{s}\right]=1\right)$. In the sum A we set $\tau^{\prime}=s(\tau)$. We get

$$
A=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} \sum_{\tau^{\prime} \in T^{\Phi}, y \in T_{s} ; y^{q-1}=1} c_{y}(s \nu)\left(\tau^{\prime}\right) \theta_{\tau^{\prime} \dot{s} n \dot{s}^{-1} \tau^{\prime-q} y}
$$

For $y \in T_{s}$ such that $y^{q-1}=1$ we can find $y^{\prime} \in T_{s}$ such that $y^{\prime q+1}=y$ (there are $q+1$ such y^{\prime}) and we have automatically $y^{\prime} \in T^{\Phi}$. Thus we have

$$
\begin{aligned}
& A=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1}(q+1)^{-1} \sum_{\tau^{\prime} \in T^{\Phi}, y^{\prime} \in T_{s}^{\Phi}} c_{y^{\prime-q-1}}(s \nu)\left(\tau^{\prime}\right) \theta_{\tau^{\prime} \dot{s} n \dot{s}^{-1} \tau^{\prime}-q} y_{y^{\prime}-q-1} \\
& =q^{-1}\left|\mathfrak{K}_{w}\right|^{-1}(q+1)^{-1} \sum_{\tau^{\prime} \in T^{\Phi}, y^{\prime} \in T_{s}^{\Phi}} c_{y^{\prime-q-1}}(s \nu)\left(\tau^{\prime}\right) \theta_{y^{\prime} \tau^{\prime} \dot{s} n \dot{s}^{-1} y^{\prime-q} \tau^{\prime}-q}
\end{aligned}
$$

With the change of variable $\tau^{\prime} y^{\prime}=\tau^{\prime \prime}$ we obtain

$$
A=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1}(q+1)^{-1} \sum_{\tau^{\prime \prime} \in T^{\Phi}, y^{\prime} \in T_{s}^{\Phi}} c_{y^{\prime-q-1}}(s \nu)\left(\tau^{\prime \prime}\right) \nu\left(y^{\prime}\right) \theta_{\tau^{\prime \prime} \dot{s} \dot{s^{-1} \tau^{\prime \prime}-q}} .
$$

(We have used that $s\left(y^{\prime}\right)=y^{\prime-1}$.) Using our assumption that $s \notin W_{\nu}$, we have

$$
\begin{aligned}
& \sum_{y^{\prime} \in T_{s}^{\Phi}} c_{y^{\prime}-q-1} \nu\left(y^{\prime}\right) \\
& =\sum_{y^{\prime} \in T_{s}^{\Phi} ; y^{\prime} q+1} \nu\left(y^{\prime}\right)+(q+1) \sum_{y^{\prime} \in T_{s}^{\Phi} ; y^{\prime} q+1} \neq 1 \\
& =(q+1) \sum_{y^{\prime} \in T_{s}^{\Phi}} \nu\left(y^{\prime}\right)-q \sum_{y^{\prime} \in T_{s}^{\Phi} ; y^{\prime} q+1} \nu\left(y^{\prime}\right) \\
& =-q \sum_{y^{\prime} \in T_{s}^{\Phi} ; y^{\prime} q+1} \nu\left(y^{\prime}\right)=-q \sum_{y^{\prime} \in T_{s}^{\Phi} ; y^{\prime \prime q+1}=1} \underline{\nu}_{w}\left(y^{\prime-q-1}\right) \\
& =-q \sharp\left(y^{\prime} \in T_{s}^{\Phi} ; y^{\prime q+1}=1\right)=-q(q+1) .
\end{aligned}
$$

It follows that

$$
A=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1}(q+1)^{-1}(-q)(q+1) \sum_{\tau^{\prime \prime} \in T^{\Phi}} \nu\left(\tau^{\prime \prime}\right) \theta_{\tau^{\prime \prime} \dot{s} n \dot{s}^{-1} \tau^{\prime \prime}-q}=-a_{\dot{s} n \dot{s}^{-1}, s \nu}^{\prime} .
$$

It remains to prove that $B=0$. We set $z=n^{-1} \dot{s} n \dot{s} \in T_{s}$; see Lemma 2.7(b). In the sum B we have

$$
\begin{aligned}
& \tau^{q} n^{-1} \tau^{-1} \dot{s} \tau n \tau^{-q} \dot{s}=\tau^{q} n^{-1} \tau^{-1} s(\tau) \dot{s} n \dot{s} s(\tau)^{-q} \\
& =\tau^{q} \tau s(\tau)^{-1} n^{-1} \dot{s} n \dot{s} s(\tau)^{-q}=z \tau^{q} \tau s(\tau)^{-1} s(\tau)^{-q}=z\left(\tau s(\tau)^{-1}\right)^{q+1} .
\end{aligned}
$$

Thus we have

$$
B=q^{-1}\left|\mathfrak{K}_{w}\right|^{-1} q \sum_{(\tau, y) \in \mathcal{Z}} \nu(\tau) \theta_{\dot{\mathcal{s}} \tau n \tau^{-q} y},
$$

where $\mathcal{Z}=\left\{(\tau, y) \in T^{\Phi} \times T_{s} ; y^{q+1}=z\left(\tau s(\tau)^{-1}\right)^{q+1}\right\}$. The group T_{s}^{Φ} acts freely on \mathcal{Z} by $e:(\tau, y) \mapsto\left(\tau e, y e^{q+1}\right)$. (We must show that the equation $y^{q+1}=$ $z\left(\tau s(\tau)^{-1}\right)^{q+1}$ implies $\left(y e^{q+1}\right)^{q+1}=z\left(\tau e s(\tau e)^{-1}\right)^{q+1}$; it is enough to show that $e^{(q+1)^{2}}=e^{2(q+1)}$ and this follows from $e^{q^{2}-1}=1$.) We show that the last sum restricted to any T_{s}^{Φ}-orbit is zero. Since $\theta_{\dot{\boldsymbol{s}} \tau n \tau-q_{y}}$ is constant on any T_{s}^{Φ}-orbit it is enough to show that $\sum_{e \in T_{s}^{\Phi}} \nu(e)=0$; this follows from our assumption that $s \notin W_{\nu}$. We deduce that $B=0$. The lemma is proved.
2.12. For $w \in I$ let $\|w\|$ be the dimension of the -1 eigenspace of the linear map induced by w on the real vector space $\mathbf{R} \otimes Y$. We have $|w|=\|w\| \bmod 2$. For $w \in N(w), \nu \in \mathfrak{s}_{w}$ we set

$$
\tilde{a}_{n, \nu}=q^{-(|w|+\|w\|) / 2} a_{n, \nu}^{\prime} \in \mathcal{F}^{\prime}
$$

We have the following result.
Lemma 2.13. Let $s \in S, w \in W_{2}, n \in N(w), \nu \in \mathfrak{s}_{w}$. Write $n=\dot{w}$ t where $t \in T$. We have:
(a) $\mathcal{T}_{s} \tilde{a}_{n, \nu}=\left[\nu, \check{\alpha}_{s}\right] \tilde{a}_{\dot{s n \dot{s}^{-1}, s \nu}}$ if $s w \neq w s,|s w|>|w|$;
(b) $\mathcal{T}_{s} \tilde{a}_{n, \nu}=\tilde{a}_{\text {sns }}{ }^{-1}, s \nu$ if $s w=w s,|s w|>|w|, s \notin W_{\nu}$;
(c) $\mathcal{T}_{s} \tilde{a}_{n, \nu}=\tilde{a}_{n, \nu}+(q+1) \tilde{a}_{\dot{s} n u, \nu}$ (where $u \in T_{s}^{\Phi}$ is such that $u^{q-1}=\dot{s} n^{-1} \dot{s} n=$ $s(t)^{-1} t \epsilon_{s}$; see Lemma 2.6(a), (b)) if $s w=w s,|s w|>|w|, s \in W_{\nu}$;
(d) $\mathcal{T}_{s} \tilde{a}_{n, \nu}=-\tilde{a}_{\dot{s} n \dot{s}^{-1}, s \nu}$ if $s w=w s,|s w|<|w|, s \notin W_{\nu}$.
(a) is a reformulation of Lemma 2.9, (b), (c) are reformulations of Lemma 2.10 (d) is a reformulation of Lemma 2.11.

3. Proof of Theorem 0.4

3.1. We preserve the setup of 1.1 Let L be the subgroup of Y generated by $\left\{\check{\alpha}_{s} ; s \in S\right\}$. Let S^{\prime} be a halving of S, that is, a subset S^{\prime} of S such that $s_{1} s_{2}=s_{2} s_{1}$ whenever s_{1}, s_{2} in S are both in S^{\prime} or both in $S-S^{\prime}$. (Such S^{\prime} always exists.) Let $W_{2} \rightarrow Y, w \mapsto r_{w}$, and $W_{2} \rightarrow L / 2 L, w \mapsto b_{w}=b_{w}^{S^{\prime}}$ be the maps defined in L5, 0.2, 0.3]. From [L5, 0.2, 0.3] and from the proof of [L5, 1.14(a)] we have:
(i) $r_{1}=0, r_{s}=\check{\alpha}_{s}$ for any $s \in S, b_{1}=0, b_{s}=\check{\alpha}_{s}$ for any $s \in S^{\prime}, b_{s}=0$ for any $s \in S-S^{\prime}$;
(ii) for any $w \in W_{2}, s \in S$ such that $s w \neq w s$ we have $s\left(r_{w}\right)=r_{s w s}, s\left(b_{w}\right)=$ $b_{s w s}+\check{\alpha}_{s}$;
(iii) for any $w \in W_{2}, s \in S$ such that $s w=w s$ we have $r_{s w}=r_{w}+\mathcal{N} \check{\alpha}_{s}$, $b_{s w}=b_{w}+l \check{\alpha}_{s}$ where $l \in\{0,1\}, \mathcal{N} \in\{-1,0,1\}$.
(iv) for any $w \in W_{2}, s \in S$ such that $s w=w s,|s w|>|w|$ we have $s\left(r_{w}\right)=r_{w}$;
(v) for any $w \in W_{2}, s \in S$ such that $s w=w s$ we have $s\left(b_{w}\right)=b_{w}+(1-\mathcal{N}) \check{\alpha}_{s}$ where \mathcal{N} is as in (iii).

Moreover, by LL5, 0.5],
(vi) if $c \in F_{Q}, c^{q-1}=\epsilon$, the element $n_{w, c}=\dot{w} r_{w}(c) b_{w}(\epsilon) \in \kappa^{-1}(w)$ belongs to $N(w)$.

Here $r_{w}(c) \in T, b_{w}(\epsilon) \in T$ are obtained by evaluating a homomorphism $\mathbf{k}^{*} \rightarrow Y$ at c or ϵ. Note that $b_{w}(\epsilon)=b_{w}(\epsilon)^{-1}$. From [L5, 1.18] we deduce:
(vii) in the setup of (iii) we have $\mathcal{N}=(w: s)$.

The following equality complements (iv):
(viii) for any $w \in W_{2}, s \in S$ such that $s w=w s,|s w|<|w|$ we have $s\left(r_{w}\right)=$ $r_{w}+2(w: s) \check{\alpha}_{s}$.

Indeed, using (iii), (iv), (vii) we have
$s\left(r_{w}\right)=s\left(r_{s w}-(w: s) \check{\alpha}_{s}\right)=r_{s w}+(w: s) \check{\alpha}_{s}=r_{w}+2(w: s) \check{\alpha}_{s}$.
For any $w \in W_{2}$, any $c \in F_{Q}$ such that $c^{q-1}=\epsilon$, and any $\nu \in \mathfrak{s}_{w}$ we set

$$
a_{w, c, \nu}=\tilde{a}_{n_{w, c}, \nu}
$$

This is well defined by (vi). By 2.8 (b),
(a) for any c as above, $\left\{a_{w, c, \nu} ; w \in W_{2}, \nu \in \mathfrak{s}_{w}\right\}$ is a \mathbf{C}-basis of \mathcal{F}^{\prime}.

In the remainder of this section we assume that 0.3 (a) holds. We have the following result.
Proposition 3.2. Let $s \in S, w \in W_{2}, \nu \in \mathfrak{s}_{w}$. Let c be as in 3.1(vi). We have
(a) $\mathcal{T}_{s} a_{w, c, \nu}=a_{s w s, c, s \nu}$ if $s w \neq w s,|s w|>|w|, s \in W_{\nu}$;
(b) $\mathcal{T}_{s} a_{w, c, \nu}=a_{s w s, c, s \nu}+\left(q-q^{-1}\right) a_{w, c, \nu}$ if $s w \neq w s,|s w|<|w|, s \in W_{\nu}$;
(c) $\mathcal{T}_{s} a_{w, c, \nu}=a_{w, c, \nu}+(q+1) a_{s w, c, \nu}$ if $s w=w s,|s w|>|w|, s \in W_{\nu}$;
(d) $\mathcal{T}_{s} a_{w, c, \nu}=\left(1-q^{-1}\right) a_{s w, c, \nu}+\left(q-q^{-1}-1\right) a_{w, c, \nu}$ if $s w=w s,|s w|<|w|, s \in W_{\nu}$;
(e) $\mathcal{T}_{s} a_{w, c, \nu}=\left[\nu, \check{\alpha}_{s}\right] a_{s w s, c, s \nu}$ if $s w \neq w s,|s w|>|w|, s \notin W_{\nu}$;
(f) $\mathcal{T}_{s} a_{w, c, \nu}=\left[\nu, \check{\alpha}_{s}\right]^{-1} a_{s w s, c, s \nu}$ if $s w \neq w s,|s w|<|w|, s \notin W_{\nu}$;
(g) $\mathcal{T}_{s} a_{w, c, \nu}=\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right) a_{w, c, s \nu}$ if $s w=w s,|s w|>|w|, s \notin W_{\nu}$;
(h) $\mathcal{T}_{s} a_{w, c, \nu}=-\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right) \underline{s \nu_{w}}\left(c_{s}^{-2(w: s)}\right) a_{w, c, s \nu}$ if $s w=w s,|s w|<|w|, s \notin$ W_{ν}.

This will be deduced in $\S \$ 3.3-3.8$ from Lemma 2.13 with $n=n_{w, c}$ as in $\S 3.1(\mathrm{vi})$, using the equality $\tilde{a}_{n^{\prime} t, \nu^{\prime}}=\underline{\nu}_{w^{\prime}}^{\prime}\left(t^{-1}\right) \tilde{a}_{n^{\prime}, \nu^{\prime}}$ where $w^{\prime} \in W_{2}, n^{\prime} \in N(w), \nu^{\prime} \in \mathfrak{s}_{w^{\prime}}, t \in$ $T\left(w^{\prime}\right)$, which follows from $\$ 2.8(\mathrm{a})$.
3.3. Assume that we are in the setup of Proposition 3.2(a) or Proposition 3.2(e). Using Lemma 2.13(a) and 3.1(ii) we obtain

$$
\begin{aligned}
& \mathcal{T}_{s} a_{w, c, \nu}=\left[\nu, \check{\alpha}_{s}\right] \tilde{a}_{\dot{s} \dot{w} r_{w}(c) b_{w}(\epsilon) \dot{s}^{-1}, s \nu} \\
& =\left[\nu, \check{\alpha}_{s} \tilde{a}_{\dot{s} \dot{w} \dot{s} \dot{s}^{-1} r_{w}(c) b_{w}(\epsilon) \dot{s}^{-1}, s \nu}\right. \\
& =\left[\nu, \check{\alpha}_{s}\right] \tilde{a}_{n_{s w s, c}, r_{s w s}(c)-1} b_{s w s}\left(\epsilon-1{ }^{-1} d^{-1} r_{w}(c) b_{w}(\epsilon) \dot{s}^{-1}, s \nu\right. \\
& =\left[\nu, \check{\alpha}_{s}\right] \underline{s \nu_{s w s}}\left(\dot{s} b_{w}(\epsilon) r_{w}(c)^{-1} \dot{s} r_{s w s}(c) b_{s w s}(\epsilon)\right) a_{s w s, c, s \nu} \\
& =\left[\nu, \check{\alpha}_{s}\right] \underline{s \nu}_{s w s}\left(b_{s w s}(\epsilon) \epsilon_{s} r_{s w s}(c)^{-1} \epsilon_{s} r_{s w s}(c) b_{s w s}(\epsilon)\right) a_{s w s, c, s \nu}=\left[\nu, \check{\alpha}_{s}\right] a_{s w s, c, s \nu} .
\end{aligned}
$$

This proves Propposition 3.2(e). Now Proposition 3.2 follows also since in that case we have $\left[\nu, \check{\alpha}_{s}\right]=1$. (It is enough to show that $\nu\left(\epsilon_{s}\right)=1$. This follows from $s \in W_{\nu}$.) This proves Proposition 3.2(a).
3.4. Assume that we are in the setup of Proposition 3.2(g). Using Lemma 2.13(b), 43.1(iv), (v), (vii), we obtain

$$
\begin{aligned}
& \mathcal{T}_{s} a_{w, c, \nu}=\tilde{a}_{\dot{s} \dot{w} r_{w}(c) b_{w}(\epsilon) \dot{s}^{-1}, s \nu}=\tilde{a}_{\dot{w} s\left(r_{w}(c) b_{w}(\epsilon)\right), s \nu} \\
& =\tilde{a}_{\dot{w} r_{w}(c) b_{w}(\epsilon) \epsilon_{s}^{1-(w: s)}, s \nu}=\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right) a_{w, c, s \nu} .
\end{aligned}
$$

This proves Proposition 3.2(g).
3.5. Assume that we are in the setup of Lemma 2.13(c) with $n=n_{w, c}$. Using 93.1(iv), (v), (vii), we have

$$
u^{q-1}=s\left(r_{w}(c) b_{w}(e)\right)^{-1} r_{w}(c) b_{w}(e) \epsilon_{s}=s\left(b_{w}(e)\right)^{-1} b_{w}(e) \epsilon_{s}
$$

(a) $\quad=\epsilon_{s}^{1-(w: s)} \epsilon_{s}=\epsilon_{s}^{(w: s)}$.

For $l \in\{0,1\}$ we show:

$$
\begin{equation*}
\underline{\nu}_{s w}\left(c_{s}^{(w: s)} \epsilon_{s}^{l} u^{-1}\right)=1 \tag{b}
\end{equation*}
$$

Since ν is 1 on $T_{s}^{\Phi}, \underline{\nu}_{s w}$ must be trivial on $e_{s w}\left(T_{s}^{\Phi}\right)$, that is, on the image of $T_{s}^{\Phi} \rightarrow$ $T_{s}^{\Phi}, t \mapsto t^{q+1}$ which is the same as $\left\{t^{\prime} \in T_{s} ; t^{\prime q-1}=1\right\}$. Since $c_{s}^{(w: s)} \epsilon_{s}^{l} u^{-1} \in T_{s}$, it is enough to show that

$$
\begin{equation*}
\left(c_{s}^{(w: s)} \epsilon_{s}^{l} u^{-1}\right)^{q-1}=1 \tag{c}
\end{equation*}
$$

Using (a) and the equations $c^{q-1}=\epsilon, \epsilon^{q-1}=1$, we see that the left-hand side of (c) is $\epsilon_{s}^{(w: s)} \epsilon_{s}^{-(w: s)}=1$. This completes the proof of (b).

We now assume that we are in the setup of Proposition 3.2(c) (which is the same as the setup of Lemma 2.13(c) with $n=n_{w, c}$). From Lemma 2.13(c) we deduce using (b) and $\sqrt{3.1}$ (iii) that for some $l \in\{0,1\}$ we have

$$
\begin{aligned}
& \mathcal{T}_{s} a_{w, c, \nu}-a_{w, c, \nu}=(q+1) \tilde{a}_{s \dot{w} r_{w}(c) b_{w}(\epsilon) u, \nu} \\
& =(q+1) \tilde{a}_{\dot{s} r_{s w}(c) b_{s w}(\epsilon) r_{s w}(c)^{-1} b_{s w}(\epsilon) r_{w}(c) b_{w}(\epsilon) u, \nu} \\
& =(q+1) \underline{\nu}_{s w}\left(r_{s w}(c) b_{s w}(\epsilon) r_{w}(c)^{-1} b_{w}(\epsilon) u^{-1}\right) a_{s w, c, \nu} \\
& =(q+1) \underline{\nu}_{s w}\left(c_{s}^{(w: s)} \epsilon_{s}^{l} u^{-1}\right) a_{s w, c, \nu}=(q+1) a_{s w, c, \nu}
\end{aligned}
$$

This completes the proof of Proposition 3.2(c).
3.6. Assume that we are in the setup of Proposition 3.2(h). From Lemma 2.13(d) we deduce using 83.1 (viii):

$$
\begin{aligned}
& \mathcal{T}_{s} a_{w, c, \nu}=-\tilde{a}_{\dot{s} \dot{w} r_{w}(c) b_{w}(\epsilon) \dot{s}^{-1}, s \nu}=-\tilde{a}_{\dot{w} s\left(r_{w}(c) b_{w}(\epsilon)\right), s \nu} \\
& =-\tilde{a}_{\dot{w} r_{w}(c) b_{w}(\epsilon) c_{s}^{2(w: s)} \epsilon_{s}^{1-(w: s)}, s \nu}=\underline{s \nu_{w}}\left(c_{s}^{-2(w: s)} \epsilon_{s}^{1-(w: s)}\right) a_{w, c, s \nu} \\
& =\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)} \underline{s \nu_{w}}\left(c_{s}^{-2(w: s)}\right) a_{w, c, s \nu} .\right.
\end{aligned}
$$

This proves Proposition 3.2(h).
3.7. Assume that $s w \neq w s,|s w|<|w|$. Then Proposition 3.2(a), (e) are applicable with $s w s, s \nu$ instead of w, ν so that

$$
\mathcal{T}_{s} a_{s w s, c, s \nu}=\left[s \nu, \check{\alpha}_{s}\right] a_{w, c, \nu}
$$

We apply \mathcal{T}_{s}^{-1} to both sides; we obtain

$$
\mathcal{T}_{s}^{-1} a_{w, c, \nu}=\mathcal{T}_{s}^{-1} 1_{\nu} a_{w, c, \nu}=\left[s \nu, \check{\alpha}_{s}\right]^{-1} a_{s w s, c, s \nu} .
$$

Using $41.8(\mathrm{i})$ we deduce

$$
\mathcal{T}_{s} a_{w, c, \nu}-\delta\left(q-q^{-1}\right) a_{w, c, \nu}=\left[s \nu, \check{\alpha}_{s}\right]^{-1} a_{s w s, c, s \nu}
$$

where $\Delta=1$ if $s \in W_{\nu}, \Delta=0$ if $s \notin W_{\nu}$. This proves Proposition 3.2(b), (f). (We use that $\left[s \nu, \check{\alpha}_{s}\right]=\left[\nu, \check{\alpha}_{s}\right]$ is 1 when $s \in W_{\nu}$ since $\nu\left(\epsilon_{s}\right)=1$ in that case.)
3.8. Assume that s, w, ν are as in Proposition 3.2(d). Then Proposition 3.2(c) is applicable to $s w, \nu$ instead of w, ν and gives:
(a)

$$
\mathcal{T}_{s} a_{s w, c, \nu}=a_{s w, c, \nu}+(q+1) a_{w, c, \nu}
$$

We apply \mathcal{T}_{s} to (a). We obtain

$$
\mathcal{T}_{s} \mathcal{T}_{s} a_{s w, c, \nu}=\mathcal{T}_{s} a_{s w, c, \nu}+(q+1) \mathcal{T}_{s} a_{w, c, \nu}
$$

Using $\sqrt{1.8}(\mathrm{~h})$ we deduce

$$
a_{s w, c, \nu}+\left(q-q^{-1}\right) \mathcal{T}_{s} a_{s w, c, \nu}=\mathcal{T}_{s} a_{s w, c, \nu}+(q+1) \mathcal{T}_{s} a_{w, c, \nu}
$$

and hence, using (a):

$$
a_{s w, c, \nu}+\left(q-q^{-1}-1\right)\left(a_{s w, c, \nu}+(q+1) a_{w, c, \nu}\right)=(q+1) \mathcal{T}_{s} a_{w, c, \nu}
$$

Dividing by $q+1$ we get Proposition 3.2(d). This completes the proof of Proposition 3.2
3.9. We choose a generator γ of the cyclic group F_{Q}^{*} so that we have an isomorphism
(a)

$$
\mathbf{Z} /(Q-1) \mathbf{Z} \xrightarrow{\sim} F_{Q}^{*}
$$

which takes 1 to γ.
Let $z \in \mathbf{Z}$ be as in 0.2 . Let $c=\gamma^{z(q+1) / 2} \in F_{Q}^{*}$. (If $p=2$ so that $(q+1) / 2$ is not an integer, this is interpreted as a square root of $\gamma^{z(q+1)}$ which is uniquely defined.) If $p \neq 2$ we have $c^{q-1}=\gamma^{z\left(q^{2}-1\right) / 2}=\epsilon$ by the choice of z. If $p=2$, then $\left(c^{q-1}\right)^{2}=\left(c^{2}\right)^{q-1}=\gamma^{z\left(q^{2}-1\right)}=1$ and hence $c^{q-1}=1=\epsilon$. Thus in any case we have $c^{q-1}=\epsilon$.

We have an isomorphism of groups $F_{Q}^{*} \otimes Y \xrightarrow{\sim} T^{\Phi}, z \otimes y \mapsto y(z)$. Using (a) this can be viewed as an isomorphism of groups $(\mathbf{Z} /(Q-1) \mathbf{Z}) \otimes Y \xrightarrow{\sim} T^{\Phi}$; it takes $n \otimes y$ to $y\left(\gamma^{n}\right)$. We have a pairing

$$
(,):((\mathbf{Z} /(Q-1) \mathbf{Z}) \otimes Y) \times \bar{X}_{q} \rightarrow \mathbf{C}^{*}
$$

given by

$$
\left(d \otimes y, \frac{a}{Q-1} \otimes x\right)=\exp \left(2 \pi \sqrt{-1} \frac{d a}{Q-1}\lfloor y, x\rfloor\right),
$$

where $y \in Y, x \in X, a \in \mathbf{Z}, d \in \mathbf{Z}$. This pairing identifies \bar{X}_{q} with $\operatorname{Hom}((\mathbf{Z} /(Q-$ 1) $\left.\mathbf{Z}) \otimes Y, \mathbf{C}^{*}\right)=\operatorname{Hom}\left(T^{\Phi}, \mathbf{C}^{*}\right)=\mathfrak{s}$. This identification is compatible with the natural W-actions on \bar{X}_{q} and \mathfrak{s}; it induces an identification $\tilde{X}_{q}=\{(w, \nu) ; w \in$ $\left.W_{2}, \nu \in \mathfrak{s}_{w}\right\}$. Thus, the basis $\}$ 3.1(a) of \mathcal{F}^{\prime} can be naturally indexed by the elements of \tilde{X}_{q}. We shall interpret the quantities

$$
\left[\nu, \check{\alpha}_{s}\right], \underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right), \underline{s \nu_{w}}\left(c_{s}^{-2(w: s)}\right)
$$

which appear in Proposition 3.2 in terms of the corresponding parameter in \tilde{X}_{q}. Assume that $(w, \nu) \in W_{2} \times \mathfrak{s}$ (with $\nu \in \mathfrak{s}_{w}$) corresponds to $(w, \lambda) \in \tilde{X}_{q}$. Then for any $s \in S$ we have
(b)

$$
\nu\left(\check{\alpha}_{s}(\gamma)\right)=\exp \left(2 \pi \sqrt{-1}\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right)
$$

We show:
(c) If $s w=w s,|s w|<|w|, s \notin W_{\nu}$, then

$$
\underline{s \nu}_{w}\left(c_{s}^{-2(w: s)}\right)=\exp \left(2 \pi \sqrt{-1}(w: s) z\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right) .
$$

Let $\tilde{c}=\gamma^{z}$. We have $\tilde{c}_{s}^{q+1}=c_{s}^{2}$ and hence

$$
\underline{s \nu}_{w}\left(c_{s}^{-2(w: s)}\right)=\underline{s \nu}_{w}\left(\left(\tilde{c}_{s}^{-(w: s)}\right)^{q+1}\right)=\underline{s \nu}_{w}\left(e_{w}\left(\tilde{c}_{s}^{-(w: s)}\right)\right)=(s \nu)\left(\tilde{c}_{s}^{-(w: s)}\right)=\nu\left(\tilde{c}_{s}^{(w: s)}\right) .
$$

It remains to show:

$$
\nu\left(\check{\alpha}_{s}\left(\gamma^{z}\right)=\exp \left(2 \pi \sqrt{-1} z\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right) .\right.
$$

This clearly follows from (b).
We show:
(d) If $s w=w s$, then $\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right)=\delta_{w, s \lambda, s}$.

If $p=2$, both sides are 1 . Thus we can assume that $p \neq 2$. We must show that

$$
\underline{s \nu}_{w}\left(\epsilon_{s}^{1-(w: s)}\right)=\exp \left(2 \pi \sqrt{-1}((q-e) / 2)(1-(w: s))\left\lfloor\check{\alpha}_{s}, s \lambda\right\rfloor\right),
$$

where $e=|w|-|s w|= \pm 1$. It is enough to show that

$$
{\underline{s \nu_{w}}}_{w}\left(\epsilon_{s}\right)=\exp \left(2 \pi \sqrt{-1}((q-e) / 2)\left\lfloor\check{\alpha}_{s}, s \lambda\right\rfloor\right) .
$$

We have $\epsilon_{s}=\left(\gamma_{s}^{(q-e) / 2}\right)^{q+e}=e_{w}\left(\gamma_{s}^{(q-e) / 2}\right)$ so that

$$
{\underline{s \nu_{w}}}_{w}\left(\epsilon_{s}\right)=\underline{s \nu}_{w}\left(e_{w}\left(\gamma_{s}^{(q-e) / 2}\right)\right)=(s \nu)\left(\gamma_{s}^{(q-e) / 2}\right) .
$$

Thus it is enough to show that

$$
(s \nu)\left(\check{\alpha}_{s}(\gamma)\right)=\exp \left(2 \pi \sqrt{-1}\left\lfloor\check{\alpha}_{s}, s \lambda\right\rfloor\right)
$$

This clearly follows from (b).
We show:
(e) If $s \in S$, then $[\lambda, s]=\left[\nu, \check{\alpha}_{s}\right]$.

If $p=2$ both sides are 1 . Thus we can assume that $p \neq 2$. We must show that we have $[\lambda, s]=1$ if and only if $\left[\nu, \check{\alpha}_{s}\right]=1$ or that $\exp \left(2 \pi \sqrt{-1}(1 / 2)(Q-1)\left\lfloor\check{\alpha}_{s}, s \lambda\right\rfloor\right)=1$ if and only if $\nu\left(\breve{\alpha}_{s}(\epsilon)\right)=1$ or (using (b)) that $\nu\left(\breve{\alpha}_{s}(\gamma)\right)^{(1 / 2)(Q-1)}=1$ if and only if $\nu\left(\check{\alpha}_{s}(\epsilon)\right)=1$. This follows from the equality $\gamma^{(1 / 2)(Q-1)}=\epsilon$.

From (b) and the definitions we see that:
(f) If $s \in S$, then we have $s \in W_{\lambda}$ if and only if $s \in W_{\nu}$.

We now see that Proposition 3.2 implies the truth of Theorem 0.4 in the special case where \mathbf{k} is as in $\$ 1.1$ But then Theorem 0.4 follows immediately for any \mathbf{k} as in 0.1 such that the characteristic of \mathbf{k} is 0 or p. This completes the proof of Theorem 0.4

4. The generic case

4.1. In this section we assume that $\mathbf{k}=\mathbf{C}$ and that $\tilde{X}_{0.3(\mathrm{a})}$ holds. We have $\bar{X}_{1}=\bar{X}$. Hence $\tilde{X}_{1}=\left\{(w, \lambda) \in W_{2} \times \bar{X} ; w(\lambda)=-\lambda\right\}$.

Until the end of 44.2 , we fix a W-orbit \mathcal{O} in \bar{X} which is contained in the image of $X_{\mathbf{Q}}$ under $X_{K} \rightarrow \bar{X}$. We can find an integer $\mathfrak{e} \geq 1$ such that $\mathfrak{e}\lfloor y, \lambda\rfloor=0$ for any $y \in Y$ and any $\lambda \in \mathcal{O}$. We can write $\mathfrak{e}=\prod_{p \in \mathfrak{P}} p^{c_{p}}$ where \mathfrak{P} is a finite set of prime numbers and $c_{p} \geq 1$ are integers. Let \mathfrak{P}^{\prime} be the set of prime numbers which do not divide $2 \mathfrak{e}$. Note that $\mathfrak{P} \cap \mathfrak{P}^{\prime}=\emptyset$. Hence if $p \in \mathfrak{P}, p^{\prime} \in \mathfrak{P}^{\prime}$, then p^{\prime} is a unit in the ring $\mathbf{Z} / p^{c_{p}} \mathbf{Z}$ and hence for some integer $a_{p} \geq 1$ independent of p^{\prime} we have $p^{\prime a_{p}}=1 \mathrm{in} \mathbf{Z} / p^{c_{p}} \mathbf{Z}$, that is, $p^{c_{p}}$ divides $p^{a_{p}}-1$. Let \mathcal{S} be the set of all integers $z \geq 1$ such that z is divisible by $\prod_{\pi \in \mathfrak{P}} a_{p}$. Then for any $p \in \mathfrak{P}, p^{\prime} \in \mathfrak{P}^{\prime}$ and any $z \in \mathcal{S}, p^{c_{p}}$ divides $p^{\prime z}-1$. Hence for any $p^{\prime} \in \mathfrak{P}^{\prime}$ and any $z \in \mathcal{S}, \mathfrak{e}$ divides $p^{\prime z}-1$. Let \mathfrak{Q} be the set of all numbers of the form $p^{\prime z}$ with $p^{\prime} \in \mathfrak{P}^{\prime}, z \in \mathcal{S}$. Then we have $(q-1)\lfloor y, \lambda\rfloor=0$ for any $q \in \mathfrak{Q}$, any $y \in Y$, and any $\lambda \in \mathcal{O}$. Hence
(a) $(q-1) \lambda=0$ for any $q \in \mathfrak{Q}$ and any $\lambda \in \mathcal{O}$.

It follows that
(b) if $(w, \lambda) \in \tilde{X}_{1}$ and $\lambda \in \mathcal{O}$, then $(w, \lambda) \in \tilde{X}_{q}$ for any $q \in \mathfrak{Q}$.

Indeed, we have $w(\lambda)=-\lambda$ and we must show that $w(\lambda)=-q \lambda$. It is enough to show that $q \lambda=\lambda$ and this follows from (a).
4.2. Let $\tilde{\mathfrak{Q}}$ be the set of squares of the numbers in \mathfrak{Q}. We have $\tilde{\mathfrak{Q}} \subset \mathfrak{Q}$. We now fix $q \in \tilde{\mathfrak{Q}}$. We have $q=q^{\prime 2}$ with $q^{\prime} \in \mathfrak{Q}$. Note that $q=4 t+1$ for some $t \in \mathbf{N}$. Let $(w, \lambda) \in \tilde{X}_{1}$ with $\lambda \in \mathcal{O}$ (so that $(w, \lambda) \in \tilde{X}_{q^{\prime}}$ and $(w, \lambda) \in \tilde{X}_{q}$ by 4.1(b)) and let $s \in S$. We show:
(a) $[\lambda, s]$ defined as in 80.2 in terms of q is equal to 1 .

Since $(w, \lambda) \in \tilde{X}_{q^{\prime}}$ we have $\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=e^{\prime} /\left(q^{\prime 2}-1\right)$ with $e^{\prime} \in \mathbf{Z}$. Hence $\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=$ $e /\left(q^{2}-1\right)$ with $e=e^{\prime}\left(q^{\prime 2}+1\right)$. Since e is even we see that (a) holds.

We show:
(b) If $s w=w s,|s w|>|w|$, then $\delta_{w, \lambda ; s}$ defined as in 0.3 in terms of q is equal to $\delta_{w, \lambda ; s}^{\prime}$ defined as in 0.5

It is enough to show that $\exp \left(2 \pi \sqrt{-1}((q+1) / 2)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right)=\exp \left(2 \pi \sqrt{-1}\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right)$ or that $(-1+(q+1) / 2)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$, or that $2 t\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$. This follows from $00.5(\mathrm{~b})$.

We show:
(c) If $s w=w s,|s w|<|w|$, then $\delta_{w, \lambda ; s}$ defined as in 0.3 in terms of q is equal to 1.

It is enough to show that

$$
\exp \left(2 \pi \sqrt{-1}((q-1) / 2)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor\right)=1
$$

or that $((q-1) / 2)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$. Since $\lambda \in \bar{X}_{q^{\prime}}$ we have $\left(q^{\prime}-1\right)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0$ by the argument at the end of 80.3 . We have $(q-1) / 2=\left(q^{\prime}-1\right)\left(q^{\prime}+1\right) / 2$ where $q^{\prime}+1 \in 2 \mathbf{Z}$ and hence

$$
((q-1) / 2)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=\left(\left(q^{\prime}+1\right) / 2\right)\left(q^{\prime}-1\right)\left\lfloor\check{\alpha}_{s}, \lambda\right\rfloor=0 .
$$

This proves (c).
Proposition 4.3. Let \mathbf{q} be an indeterminate and let $\tilde{\mathbf{M}}$ denote the $\mathbf{C}(\mathbf{q})$-vector space with basis $\left\{\tilde{\mathbf{a}}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}\right\}$. There is a unique action of the braid group of W on $\tilde{\mathbf{M}}$ in which the generators $\left\{\mathcal{T}_{s} ; s \in S\right\}$ of the braid group applied to the basis elements of $\tilde{\mathbf{M}}$ are as follows. (We write $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$.)
(a) $\mathcal{T}_{s} \tilde{\mathbf{a}}_{w, \lambda}=\tilde{\mathbf{a}}_{s w s, \lambda}$ if $s w \neq w s,|s w|>|w|$;
(b) $\mathcal{T}_{s} \tilde{\mathbf{a}}_{w, \lambda}=\tilde{\mathbf{a}}_{s w s, s \lambda}+\Delta\left(\mathbf{q}-\mathbf{q}^{-1}\right) \tilde{\mathbf{a}}_{w, \lambda}$ if $s w \neq w s,|s w|<|w|$;
(c) $\mathcal{T}_{s} \tilde{\mathbf{a}}_{w, \lambda}=\delta_{w, s \lambda ; s}^{\prime} \tilde{\mathbf{a}}_{w, s \lambda}+\Delta(\mathbf{q}+1) \tilde{\mathbf{a}}_{s w, \lambda}$ if $s w=w s,|s w|>|w|$;
(d) $\mathcal{T}_{s} \tilde{\mathbf{a}}_{w, \lambda}=\Delta\left(1-\mathbf{q}^{-1}\right) \tilde{\mathbf{a}}_{s w, \lambda}+\Delta\left(\mathbf{q}-\mathbf{q}^{-1}\right) \tilde{\mathbf{a}}_{w, \lambda}-\tilde{\mathbf{a}}_{w, s \lambda}$ if $s w=w s,|s w|<|w|$.

Here $\delta_{w, s \lambda ; s}^{\prime}= \pm 1$ is as in $\oint 0.5$. (It is 1 in the simply laced case; it is also 1 if $\Delta=1$.)

It is enough to prove the proposition with $\tilde{\mathbf{M}}$ replaced by the $\mathbf{C}(\mathbf{q})$-vector space $\tilde{\mathbf{M}}_{\mathcal{O}}$ with basis $\left\{\tilde{\mathbf{a}}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}, \lambda \in \mathcal{O}\right\}$, where \mathcal{O} is any W-orbit in \bar{X}.

Assume first that \mathcal{O} is as in $\$ 4.1$ and let $\mathfrak{e}, \mathfrak{Q}, \tilde{\mathfrak{Q}}$ be as in 44.2 Let $\tilde{\mathfrak{Q}}^{\prime}=\{q \in$ $\left.\tilde{\mathfrak{Q}} ; 2 \mathfrak{e}<q^{2}-1\right\}$. Clearly, $\tilde{\mathfrak{Q}}^{\prime}$ is an infinite set.

Let $M_{\mathcal{O}}$ be the \mathbf{C}-vector space with basis $\left\{\tilde{\mathbf{a}}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1} ; \lambda \in \mathcal{O}\right\}$. By $\notin 4.1(\mathrm{~b})$ we can identify $M_{\mathcal{O}}$ with a subspace of M_{q} (for any $q \in \mathfrak{Q}$) by $\tilde{\mathbf{a}}_{w, \lambda} \mapsto a_{w, \lambda}$. This subspace of M_{q} is stable under the operators $\mathcal{T}_{s}, s \in S$ attached in Theorem 0.4 to $z=\mathfrak{e}$, provided that $q \in \tilde{\mathfrak{Q}}^{\prime}$. (Note for $q \in \tilde{\mathfrak{Q}}^{\prime}$ we have $2 z \notin\left(q^{2}-1\right) \mathbf{Z}$ since $0<2 f e<q^{2}-1$.) Hence $\mathcal{T}_{s}: M_{q} \rightarrow M_{q}$ can be regarded as an operator $\mathcal{T}_{s}^{(q)}: M_{\mathcal{O}} \rightarrow M_{\mathcal{O}}$ for any $q \in \tilde{\mathfrak{Q}}^{\prime}$. This operator is given by a matrix in the basis of $M_{\mathcal{O}}$ given by Laurent polynomials in q with integer coefficients independent of q. (This follows from the formulas $0.4(\mathrm{a})-(\mathrm{h})$, from $\$ 4.2(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ and from the equality $\exp \left(2 \pi \sqrt{-1}(w: s) \mathfrak{e}\left\langle\check{\alpha}_{s}, \lambda\right\rangle\right)=1$ for $\lambda \in \mathcal{O}$.) Since q runs through an infinite set, we deduce that the braid group relations satisfied by the $\mathcal{T}_{s}^{(q)}$ remain valid when q is replaced by the indeterminate \mathbf{q}. We see that if we identify $\tilde{\mathbf{M}}_{\mathcal{O}}=\mathbf{C}(\mathbf{q}) \otimes M_{\mathcal{O}}$, then there is a unique action of the braid group of W on $\tilde{\mathbf{M}}_{\mathcal{O}}$ in which the generators $\left\{\mathcal{T}_{s} ; s \in S\right\}$ of the braid group applied to the basis elements of $\tilde{\mathbf{M}}_{\mathcal{O}}$ are as in (a)-(d) above.

We now consider a W-orbit \mathcal{O} in \bar{X} which is not necessarily as in 84.1 . We choose $\xi_{0} \in X_{K}$ such that the image of x_{0} in \bar{X} belongs to \mathcal{O}. Let \mathfrak{H} be the collection of affine hyperplanes
$\left\{\xi \in X_{K} ;\langle\check{\alpha}, \xi\rangle=e\right\}$ for various $\check{\alpha} \in \check{R}, e \in \mathbf{Z}$;
$\left\{\xi \in X_{K} ; w(\xi)=\xi+x\right\}$ for various $w \in W-\{1\}, x \in X$;
$\left\{\xi \in X_{K} ; w(\xi)=-\xi+x\right\}$ for various $w \in W_{2}, x \in X$ such that $w+1$ is not identically zero on X.

We can find $\xi_{0}^{\prime} \in X_{\mathbf{Q}}$ such that a hyperplane in \mathfrak{H} contains ξ_{0} if and only if it contains ξ_{0}^{\prime}. Let \mathcal{O}^{\prime} be the W-orbit of the image of ξ_{0}^{\prime} in \bar{X}. There is a unique W equivariant bijection $j: \mathcal{O}^{\prime} \xrightarrow{\sim} \mathcal{O}$ under which the image of ξ_{0}^{\prime} in \bar{X} corresponds to the image of ξ_{0} in \bar{X}. We define an isomorphism $\tilde{\mathbf{M}}_{\mathcal{O}^{\prime}} \xrightarrow{\sim} \tilde{\mathbf{M}}_{\mathcal{O}}$ by $\tilde{\mathbf{a}}_{w, \lambda^{\prime}} \mapsto \tilde{\mathbf{a}}_{w, j\left(\lambda^{\prime}\right)}$. This isomorphism is compatible with the operators \mathcal{T}_{s} on these two vector spaces. Since these operators satisfy the braid group relations on $\tilde{\mathbf{M}}_{\mathcal{O}}^{\prime}$ (by the first part of the proof) they will satisfy the braid group relations on $\tilde{\mathbf{M}}_{\mathcal{O}}$. This completes the proof of the proposition.
4.4. Let v be an indeterminate such that $v^{2}=\mathbf{q}$. Let $\mathbf{M}=\mathbf{C}(v) \otimes_{\mathbf{C}(\mathbf{q})} \tilde{\mathbf{M}}$. We consider the basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}\right\}$ defined by $\mathbf{a}_{w, \lambda}=v^{\|w\|} \tilde{\mathbf{a}}_{w, \lambda}$ where $\|w\|$ is as in 2.12, The linear maps $\mathcal{T}_{s}: \tilde{\mathbf{M}} \rightarrow \tilde{\mathbf{M}}$ with $s \in S$ extend to linear maps $\mathcal{T}_{s}: \mathbf{M} \rightarrow \mathbf{M}$ which satisfy the equalities in Theorem 0.6 Thus Theorem 0.6 is a consequence of Proposition 4.3.
4.5. Let \mathbf{H} be the $\mathbf{C}(v)$-vector space with basis $\left\{\mathcal{T}_{w, \lambda} ;(w, \lambda) \in W \bar{X}\right\}$. There is a unique structure of associative $\mathbf{C}(v)$-algebra (without 1 in general) on \mathbf{H} such that (a), (b) below hold.
(a)

$$
\mathcal{T}_{w, \lambda} \mathcal{T}_{w^{\prime}, \lambda^{\prime}}=\delta_{w^{-1}(\lambda), \lambda^{\prime}} \mathcal{T}_{w w^{\prime}, \lambda^{\prime}}
$$

if $(w, \lambda) \in W \bar{X},\left(w^{\prime}, \lambda^{\prime}\right) \in W \bar{X},\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right|$;

$$
\begin{equation*}
\mathcal{T}_{s, \lambda} \mathcal{T}_{s, \lambda^{\prime}}=\delta_{\lambda, \lambda^{\prime}} \mathcal{T}_{1, \lambda^{\prime}}+\Delta \delta_{s(\lambda), \lambda^{\prime}}\left(v^{2}-v^{-2}\right) \mathcal{T}_{s, \lambda^{\prime}} \tag{b}
\end{equation*}
$$

if $s \in S, \lambda \in \bar{X}, \lambda^{\prime} \in \bar{X}$ (here $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$). We call \mathbf{H} the extended Hecke algebra. This algebra has been studied in L2], L4] (at least when $K=\mathbf{Q}$). It is similar but not the same to an algebra studied in MS.

For any $w \in W$ we define a linear map $\mathcal{T}_{w}: \mathbf{M} \rightarrow \mathbf{M}$ by $\mathcal{T}_{w}=\mathcal{T}_{s_{1}} \mathcal{T}_{s_{2}} \ldots \mathcal{T}_{s_{k}}$, where $s_{1}, s_{2}, \ldots, s_{k}$ are elements of S such that $w=s_{1} s_{2} \ldots s_{k},|w|=k$. By Theorem [0.6] this is independent of the choice of s_{1}, \ldots, s_{k}. For $\lambda \in \bar{X}$ we define a linear map $1_{\lambda}: \mathbf{M} \rightarrow \mathbf{M}$ by $1_{\lambda}\left(\mathbf{a}_{w, \lambda^{\prime}}\right)=\delta_{\lambda, \lambda^{\prime}} \mathbf{a}_{w, \lambda^{\prime}}$ for any $\left(w, \lambda^{\prime}\right) \in \tilde{X}_{1}$. For $(w, \lambda) \in W \bar{X}$ we define a linear map $\mathcal{T}_{w, \lambda}: \mathbf{M} \rightarrow \mathbf{M}$ as the composition $\mathcal{T}_{w} 1_{\lambda}$. These maps define an \mathbf{H}-module structure on \mathbf{M}. (This follows from Theorem 0.6 the relation (b) on \mathbf{M} can be deduced from the analogous relation in M_{q}.) From (b) we deduce that $\mathcal{T}_{s}^{-1}: \mathbf{M} \rightarrow \mathbf{M}$ is well defined and we have

$$
\begin{equation*}
\mathcal{T}_{s}^{-1}=\mathcal{T}_{s}-\left(v^{2}-v^{2}\right)^{-1} \sum_{\lambda \in \bar{X} ; s \in W_{\lambda}} 1_{\lambda} \tag{c}
\end{equation*}
$$

(The last sum may be infinite but at most one term in the sum applied to a given basis element of \mathbf{M} can be non-zero.) It follows that for any $w \in W, \mathcal{T}_{w}: \mathbf{M} \rightarrow \mathbf{M}$ is invertible. Its inverse satisfies $\mathcal{T}_{w_{1} w_{2}}^{-1}=\mathcal{T}_{w_{2}}^{-1} \mathcal{T}_{w_{1}}^{-1}: \mathbf{M} \rightarrow \mathbf{M}$ for any w_{1}, w_{2} in W such that $\left|w_{1} w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|$.

For any W-orbit \mathcal{O} in \bar{X} we denote by $\mathbf{H}_{\mathcal{O}}$ the subspace of \mathbf{H} spanned by

$$
\left\{\mathcal{T}_{w, \lambda} ;(w, \lambda) \in W \times \mathcal{O}\right\}
$$

This is a subalgebra of \mathbf{H}, this time with unit, namely $\sum_{\lambda \in \mathcal{O}} \mathcal{T}_{1, \lambda}$.
For any $w \in W$ we set $\mathcal{T}_{w}=\sum_{\lambda \in \mathcal{O}} \mathcal{T}_{w, \lambda} \in \mathbf{H}_{\mathcal{O}}$; for any $\lambda \in \mathcal{O}$ we set $1_{\lambda}=$ $\mathcal{T}_{1, \lambda} \in \mathbf{H}_{\mathcal{O}}$. We see that the elements $\mathcal{T}_{w}, 1_{\lambda}$ exist separately in $\mathbf{H}_{\mathcal{O}}$, not only in the combination $\mathcal{T}_{w, \lambda}=\mathcal{T}_{w} 1_{\lambda}$.

We denote by $\mathbf{M}_{\mathcal{O}}$ the subspace of \mathbf{M} spanned by $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{1}, \lambda \in \mathcal{O}\right\}$. Note that the \mathbf{H}-module structure on \mathbf{M} restricts to an $\mathbf{H}_{\mathcal{O}}$-module structure on $\mathrm{M}_{\mathcal{O}}$.

5. On the structure of the \mathbf{H}-module \mathbf{M}

5.1. In this section we assume that $\mathbf{k}=\mathbf{C}$. For $\lambda \in \bar{X}$ let $\check{R}_{\lambda}=\{\check{\alpha} \in \check{R} ;\lfloor\check{\alpha}, \lambda\rfloor=0\}$, $\check{R}_{\lambda}^{+}=\check{R}_{\lambda} \cap \check{R}^{+}$. Then \check{R}_{λ} is the set of coroots of a root system and \check{R}_{λ}^{+}is a set of positive coroots for it. Let $\check{R}_{\lambda}^{-}=\check{R}_{\lambda}-\check{R}_{\lambda}^{+}$. Let $\check{\Pi}_{\lambda}$ be the set of simple coroots for \check{R}_{λ} contained in \check{R}_{λ}^{+}. For each $\beta \in \check{R}$ let $s_{\beta}: Y \rightarrow Y$ be the reflection in W such that $s_{\beta}(\beta)=-\beta$. Let W_{λ} be the subgroup of W generated by $\left\{s_{\beta} ; \beta \in \check{R}_{\lambda}\right\}$. This is a Coxeter group with generators $\left\{s_{\beta} ; \beta \in \check{\Pi}_{\lambda}\right\}$ and with length function $w \mapsto|w|_{\lambda}=\sharp\left(\beta \in \check{R}_{\lambda}^{+} ; w(\beta) \in \check{R}_{\lambda}^{-}\right)$. Note that for $s \in S$ the condition that $s \in W_{\lambda}$ coincides with the condition denoted in the same way in $\$ 0.1$ this follows from [44, $1.2(\mathrm{c})$].

If $w \in W$, then there is a unique element $z \in w W_{\lambda}$ such that $z\left(\check{R}_{\lambda}^{+}\right) \subset \check{R}^{+}$; we have $|z|<|z u|$ for any $u \in W_{\lambda}-\{1\}$; we write $z=\min \left(w W_{\lambda}\right)$. (See [L4, 1.2(e)].)

We now fix an integer $m \geq 1$. We fix a W-orbit \mathcal{O} in \bar{X}_{m}. For any $\lambda, \lambda^{\prime}$ in \mathcal{O} we set

$$
\left[\lambda^{\prime}, \lambda\right]=\left\{z \in W ; \lambda^{\prime}=z(\lambda), z=\min \left(z W_{\lambda}\right)\right\}=\left\{z \in W ; \lambda^{\prime}=z(\lambda), z\left(\check{R}_{\lambda}^{+}\right)=\check{R}_{\lambda^{\prime}}^{+}\right\}
$$

Clearly,
(a) $\left[\lambda, \lambda^{\prime}\right]=\left[\lambda^{\prime}, \lambda\right]^{-1}$; moreover, if $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}$ are in \mathcal{O}, then $\left[\lambda^{\prime \prime}, \lambda^{\prime}\right]\left[\lambda^{\prime}, \lambda\right] \subset\left[\lambda^{\prime \prime}, \lambda\right]$. Hence the group structure on W makes
(b) $\Xi:=\left\{\left(\lambda^{\prime}, z, \lambda\right) \in \mathcal{O} \times W \times \mathcal{O} ; z \in\left[\lambda^{\prime}, \lambda\right]\right\}$
into a groupoid; see [L4, 1.2(f)].
5.2. If $\lambda \in \bar{X}$, then $\check{R}_{\lambda} \subset \check{R}_{-m \lambda}$. If $(w, \lambda) \in \tilde{X}_{m}$, then $\sharp\left(\check{R}_{\lambda}\right)=\sharp\left(\check{R}_{-m \lambda}\right)$ so that $\check{R}_{\lambda}=\check{R}_{-m \lambda}$ and $W_{\lambda}=W_{-m \lambda}$. We show:
(a) If $\lambda \in \bar{X}_{m}$ and $z \in[-m \lambda, m]$, then $z\left(\check{R}_{\lambda}^{+}\right)=\check{R}_{\lambda}^{+}$so that $\iota_{z}: u \mapsto z u z^{-1}$ is a Coxeter group automorphism of W_{λ}.

We have $z\left(\check{R}_{\lambda}\right)=\check{R}_{z \lambda}=\check{R}_{-m \lambda}=\check{R}_{\lambda}$; moreover since $z\left(\check{R}_{\lambda}^{+}\right) \subset \check{R}^{+}$we have $z\left(\check{R}_{\lambda}^{+}\right)=\check{R}_{\lambda}^{+}$. This proves (a).

Let $\tilde{X}_{m}^{0}=\left\{(z, \lambda) \in W_{2} \times \bar{X} ; z \in[-m \lambda, \lambda]\right\}$. Note that $\tilde{X}_{m}^{0} \subset \tilde{X}_{m}$. For $(z, \lambda) \in$ \tilde{X}_{m}^{0} let $I_{(z, \lambda)}=\left\{u \in W_{\lambda} ; \iota_{z}(u) u=1\right\}$ be the set of ι_{z}-twisted involutions of W_{λ}. If $u \in I_{z, \lambda}$, then $(z u, \lambda) \in \tilde{X}_{m}$; indeed we have $(z u)^{2}=1$ and $z u(\lambda)=z(\lambda)=-m \lambda$. Conversely,
(b) if $(w, \lambda) \in \tilde{X}_{m}$ we have $(w, \lambda)=(z u, \lambda)$ for a well defined $(z, \lambda) \in \tilde{X}_{m}^{0}$ and $u \in I_{z, \lambda}$.

Indeed, let $z=\min \left(w W_{\lambda}\right)$. Since $w(l)=-m \lambda$ we have also $z(\lambda)=-m \lambda$ and hence $z \in[-m \lambda, \lambda]$. We have $w=z u$ where $u \in W_{\lambda}$. We have $w=w^{-1}=$ $u^{-1} z^{-1}=z^{-1} z u z^{-1}=z^{-1} \iota_{z}(u)$. Since $\iota_{z}(u) \in W_{\lambda}$ (see (a)) we have $w \in z^{-1} W_{\lambda}$. Since $z\left(\check{R}_{\lambda}^{+}\right)=\check{R}_{\lambda}^{+}$we must have also $z^{-1}\left(\check{R}_{\lambda}^{+}\right)=\check{R}_{\lambda}^{+}$so that $z^{-1}=\min \left(w W_{\lambda}\right)$. It follows that $z=z^{-1}$ so that $(z, \lambda) \in \tilde{X}_{m}^{0}$. Since $1=w^{2}=(z u)^{2}$ we see that $\iota_{z}(u) u=1$ so that $u \in I_{z, \lambda}$. This proves (b).

We see that
(c) we have a bijection $\bigsqcup_{(z, \lambda) \in \tilde{X}_{m}^{0}} I_{z, \lambda} \xrightarrow{\sim} \tilde{X}_{m}$ given by $(z, \lambda, u) \mapsto(z u, \lambda)$ where $(z, \lambda) \in \tilde{X}_{m}^{0}, u \in I_{z, \lambda}$.
5.3. Let Ξ be as in §5.1(b). Let $\Xi^{0}=\left\{(z, \lambda) \in \tilde{X}_{m}^{0} ; \lambda \in \mathcal{O}\right\}$.

We can view Ξ_{m}^{0} as a subset of Ξ by $(z, \lambda) \mapsto(-m \lambda, z, \lambda)$. This subset is the fixed point set of the antiautomorphism

$$
\left(\lambda^{\prime}, z, \lambda\right) \mapsto\left(\lambda^{\prime}, z, \lambda\right)^{*}:=\left(-m \lambda, z^{-1},-m \lambda^{\prime}\right)
$$

of the groupoid Ξ (the composition of the inversion $\left(\lambda^{\prime}, z, \lambda\right) \mapsto\left(\lambda, z^{-1}, \lambda^{\prime}\right)$ with the involutive automorphism $\left(\lambda^{\prime}, z, \lambda\right) \mapsto\left(-m \lambda^{\prime}, z,-m \lambda\right)$ of the groupoid $\left.\Xi\right)$. Hence this subset can be viewed as the set of $*$-twisted "involutions" of this groupoid.

Until the end of $\$ 5.8$ we assume that $m=1$. From Theorem 0.6 we deduce
(a) If $(w, \lambda) \in \tilde{X}_{1}, s \in S$, and $s \notin W_{\lambda}$, then $\mathcal{T}_{s}\left(\mathbf{a}_{w, \lambda}\right)= \pm \mathbf{a}_{s w s, s \lambda}$.

Note also that in $\mathbf{H}_{\mathcal{O}}$, for $s \in S, w \in W, \lambda \in \mathcal{O}$ we have
(b) $\mathcal{T}_{s} \mathcal{T}_{w} 1_{\lambda}=\mathcal{T}_{s w} 1_{\lambda}$ if $s \notin W_{w(\lambda)} ; \mathcal{T}_{w} \mathcal{T}_{s} 1_{\lambda}=\mathcal{T}_{w s} 1_{\lambda}$ if $s \notin W_{\lambda}$.

Lemma 5.4. Let $\lambda \in \mathcal{O}$. Let $(w, \lambda) \in \tilde{X}_{1}, z \in[\lambda, \lambda]$. Then $\left(z w z^{-1}, \lambda\right) \in \tilde{X}_{1}$ and $\mathcal{T}_{z} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{z w z^{-1}, \lambda}$.

The proof is similar to that of [44, 1.4(c)]. We have $w(\lambda)=-\lambda$ and hence $z w z^{-1}(\lambda)=-\lambda$ since $z(\lambda)=\lambda$. Thus $\left(z w z^{-1}, \lambda\right) \in \tilde{X}_{1}$.

We write $z=s_{k} s_{k-1} \ldots s_{1}$ where s_{1}, \ldots, s_{k} are in $S,|z|=k$. As in the proof of L4, 1.4(c)] we have $s_{1} \notin W_{\lambda}, s_{1} s_{2} s_{1} \notin W_{\lambda}, \ldots s_{1} s_{2} \ldots s_{k} \ldots s_{2} s_{1} \notin W_{\lambda}$. We have $\mathcal{T}_{s_{1}} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{s_{1} w s_{1}, s_{1} \lambda}$ since $s_{1} \notin W_{\lambda} ;$ see $\$ 5.3(\mathrm{a})$. We have $\mathcal{T}_{s_{2}} \mathbf{a}_{s_{1} w s_{1}, s_{1} \lambda}=$ $\pm \mathbf{a}_{s_{2} s_{1} w s_{1} s_{2}, s_{2} s_{1} \lambda}$ since $s_{2} \notin W_{s_{1} \lambda}$; see §5.3(a). Continuing in this way we get

$$
\mathcal{T}_{s_{k}} \mathbf{a}_{s_{k-1} \ldots s_{1} w s_{1} \ldots s_{k-1}, s_{k-1} \ldots s_{1} \lambda}= \pm \mathbf{a}_{s_{k} \ldots s_{1} w s_{1} \ldots s_{k}, s_{k} \ldots s_{1} \lambda}
$$

Combining these equalities we get

$$
\mathcal{T}_{z} \mathbf{a}_{w, \lambda}=\mathcal{T}_{s_{k}} \ldots \mathcal{T}_{s_{1}} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{s_{k} \ldots, s_{1} w s_{1} \ldots s_{k}, s_{k} \ldots s_{1} \lambda}= \pm \mathbf{a}_{z w z^{-1}, z \lambda}= \pm \mathbf{a}_{z w z^{-1}, \lambda}
$$

The lemma is proved.
The following result is a generalization of the lemma above.
Lemma 5.5. Let $(w, \lambda) \in \tilde{X}_{1}, z \in\left[\lambda^{\prime}, \lambda\right]$ where $\lambda, \lambda^{\prime}$ are in \mathcal{O}. Then $\left(z w z^{-1}, \lambda^{\prime}\right) \in$ \tilde{X}_{1} and $\mathcal{T}_{z} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{z w z^{-1}, \lambda^{\prime}}$.

The proof is similar to that of [44, 1.4(d)]. We have $w(\lambda)=-\lambda$ and hence $z w z^{-1}\left(\lambda^{\prime}\right)=-\lambda^{\prime}$ since $z^{-1}\left(\lambda^{\prime}\right)=\lambda^{\prime}$. Thus $\left(z w z^{-1}, \lambda^{\prime}\right) \in \tilde{X}_{1}$.

Since $\lambda, \lambda^{\prime}$ are in the same W-orbit, we can find $r \geq 0$ and $s_{1}, s_{2}, \ldots, s_{r}$ in S such that, setting

$$
\lambda_{0}=\lambda, \lambda_{1}=s_{1} \lambda, \lambda_{2}=s_{2} s_{1} \lambda, \ldots, \lambda_{r}=s_{r} \ldots s_{2} s_{1} \lambda
$$

we have $\lambda_{0} \neq \lambda_{1} \neq \lambda_{2} \neq \cdots \neq \lambda_{r}=\lambda^{\prime}$. For $j=1, \ldots, r$, we have $s_{j} \notin W_{\lambda_{j-1}}$ since $s_{j}\left(\lambda_{j-1}\right)=\lambda_{j} \neq \lambda_{j-1}$ and hence s_{j} has minimal length in $s_{j} W_{\lambda_{j-1}}$ and $s_{j} \in\left[\lambda_{j}, \lambda_{j-1}\right]$. It follows that $s_{r} \ldots s_{2} s_{1} \in\left[\lambda_{r}, \lambda_{0}\right]=\left[\lambda^{\prime}, \lambda\right]$ (we use 55.1(a)). We define $\tilde{z} \in W$ by $z=s_{r} \ldots s_{2} s_{1} \tilde{z}$. Then $\tilde{z} \in[\lambda, \lambda]$ (we use again §5.1(a)). For $^{\text {(a) }}$ $j \in[1, r]$ we have $s_{j} \notin W_{s_{j-1} \ldots s_{1} \lambda}$ (since $\lambda_{j} \neq \lambda_{j-1}$) and hence, using $\$ 5.3$ (a) we have

$$
\mathcal{T}_{s_{j}} \mathbf{a}_{s_{j-1} \ldots s_{1} \tilde{z} w \tilde{z}^{-1} s_{1} \ldots s_{j-1}, s_{j-1} \ldots s_{1} \lambda}= \pm \mathbf{a}_{s_{j} s_{j-1} \ldots s_{1} \tilde{z} w \tilde{z}^{-1} s_{1} \ldots s_{j-1} s_{j}, s_{j} s_{j-1} \ldots s_{1} \lambda} .
$$

Applying this repeatedly we deduce

$$
\mathcal{T}_{s_{r}} \ldots \mathcal{T}_{s_{2}} \mathcal{T}_{s_{1}} \mathbf{a}_{\tilde{z} w \tilde{z}^{-1}, \tilde{z} \lambda}= \pm \mathbf{a}_{s_{r} \ldots s_{2} s_{1} \tilde{z} w \tilde{z}^{-1} s_{1} s_{2} \ldots s_{r}, s_{r} \ldots s_{2} s_{1} \tilde{z} \lambda}= \pm \mathbf{a}_{z w z^{-1}, z \lambda}
$$

We now apply Lemma 5.4 with z replaced by \tilde{z}; we see that $\mathcal{T}_{\tilde{z}} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{\tilde{z} w \tilde{z}^{-1}, \lambda}$. Substituting this in the previous equation we obtain
(a)

$$
\mathcal{T}_{s_{r}} \ldots \mathcal{T}_{s_{2}} \mathcal{T}_{s_{1}} \mathcal{T}_{\tilde{z}} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{z w z^{-1}, z \lambda} .
$$

For $j \in[1, r]$ we have $s_{j} \notin W_{s_{j-1} \ldots s_{1} \lambda}$ (as above) and hence, using 45.3 (b) we have

$$
\mathcal{T}_{s_{j}} \mathcal{T}_{s_{j-1} \ldots s_{1} \tilde{z}} \mathbf{a}_{w, \lambda}=\mathcal{T}_{s_{j} s_{j-1} \ldots s_{1} \tilde{z}} \mathbf{a}_{w, \lambda} .
$$

Applying this repeatedly we deduce

$$
\mathcal{T}_{s_{r}} \ldots \mathcal{T}_{s_{2}} \mathcal{T}_{s_{1}} \mathcal{T}_{\tilde{z}} \mathbf{a}_{w, \lambda}=\mathcal{T}_{s_{r} \ldots s_{2} s_{1} \tilde{z}} \mathbf{a}_{w, \lambda}=\mathcal{T}_{z} \mathbf{a}_{w, \lambda}
$$

Combining this with (a) gives

$$
\mathcal{T}_{z} \mathbf{a}_{w, \lambda}= \pm \mathbf{a}_{z w z^{-1}, z \lambda} .
$$

The lemma is proved.
Lemma 5.6. Let $(z, \lambda) \in \Xi^{0}$ and let $u \in W_{\lambda}$. Let $\alpha \in \check{\Pi}_{\lambda}$. We set $\sigma=\sigma_{\alpha}$; note that $|\sigma|_{\lambda}=1$. Recall that $u \mapsto \iota_{z}(u)=z u z^{-1}$ is an involutive Coxeter group automorphism of W_{λ}. For any $u \in W_{\lambda}$ we have
(a) $\mathcal{T}_{\sigma} \mathbf{a}_{z u, \lambda}=e_{1} \mathbf{a}_{z \iota_{z}(\sigma) u \sigma, \lambda}$ if $u \sigma \neq \iota_{z}(\sigma) u,|u \sigma|_{\lambda}>|u|_{\lambda}$;
(b) $\mathcal{T}_{\sigma} \mathbf{a}_{z u, \lambda}=e_{2} \mathbf{a}_{z \iota_{z}(s) u \sigma, \lambda}+e_{3}\left(v^{2}-v^{-2}\right) \mathbf{a}_{z u, \lambda}$ if $u \sigma \neq \iota_{z}(\sigma) u,|u \sigma|_{\lambda}<|u|_{\lambda}$;
(c) $\mathcal{T}_{\sigma} \mathbf{a}_{z u, \lambda}=e_{4} \mathbf{a}_{z u, \lambda}+e_{5}\left(v+v^{-1}\right) \mathbf{a}_{z u \sigma, \lambda}$ if $u \sigma=\iota_{z}(\sigma) u,|u \sigma|_{\lambda}>|u|_{\lambda}$;
(d) $\mathcal{T}_{\sigma} \mathbf{a}_{z u, \lambda}=e_{6}\left(v-v^{-1}\right) \mathbf{a}_{z u \sigma, \lambda}+e_{7}\left(v^{2}-v^{-2}-1\right) \mathbf{a}_{z u, \lambda}$ if $u \sigma=\iota_{z}(\sigma) u,|u \sigma|_{\lambda}<$ $|u|_{\lambda}$,
where $e_{1}, \ldots, e_{7} \in\{1,-1\}$.
As in the proof of [44, 1.4(f)] we can find $s_{1}, s_{2}, \ldots, s_{r}$ in S such that $\sigma=$ $s_{1} s_{2} \ldots s_{r-1} s_{r} s_{r-1} \ldots s_{1},\left|\sigma_{\alpha}\right|=2 r-1, s_{1} s_{2} \ldots s_{j-1} s_{j} s_{j-1} \ldots s_{1} \notin W_{\lambda}$ for $j=$ $1,2, \ldots r-1$. We argue by induction on $r \geq 1$. When $r=1$ the result follows from Theorem 0.6 (Note that $z \iota_{z}(\sigma) u \sigma=\sigma z u \sigma$, the condition $u \sigma=\iota_{z}(\sigma) u$ is equivalent to $z u \sigma=\sigma z u$ and if $|\sigma|=1$ the condition $|u \sigma|_{\lambda}>|u|_{\lambda}$ is equivalent to $|u \sigma|>|u|$.) Assume now that $r \geq 2$. We set $s=s_{1}, \lambda^{\prime}=s \lambda, \beta=s(\alpha) \in R_{\lambda^{\prime}}^{+}, u^{\prime}=s u s$, $z^{\prime}=s z s, \sigma^{\prime}=s_{\beta}=s \sigma s$. We have $\left(z^{\prime}, \lambda^{\prime}\right) \in \Xi_{\mathcal{O}}^{0}, u^{\prime} \in W_{\lambda^{\prime}}$ and $\sigma^{\prime} \in W_{\lambda^{\prime}},\left|\sigma^{\prime}\right|_{\lambda^{\prime}}=1$, $\left|\sigma^{\prime}\right|=|\sigma|-2$. Moreover, we have $s \notin W_{\lambda}$. By the induction hypothesis we have
(a') $\mathcal{T}_{\sigma^{\prime}} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=e_{1}^{\prime} \mathbf{a}_{\sigma^{\prime} z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}$ if $u^{\prime} \sigma^{\prime} \neq z^{\prime} \sigma^{\prime} z^{\prime} u^{\prime},\left|u^{\prime} \sigma^{\prime}\right|_{\lambda^{\prime}}>\left|u^{\prime}\right|_{\lambda^{\prime}}$;
(b') $\mathcal{T}_{\sigma^{\prime}} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=e_{2}^{\prime} \mathbf{a}_{\sigma^{\prime} z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}+e_{3}^{\prime}\left(v^{2}-v^{-2}\right) \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}$ if $u^{\prime} \sigma^{\prime} \neq z^{\prime} \sigma^{\prime} z^{\prime} u^{\prime},\left|u^{\prime} \sigma^{\prime}\right|_{\lambda^{\prime}}<$ $\left|u^{\prime}\right|_{\lambda^{\prime}} ;$
(c') $\mathcal{T}_{\sigma^{\prime}} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=e_{4}^{\prime} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}+e_{5}^{\prime}\left(v+v^{-1}\right) \mathbf{a}_{z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}$ if $u^{\prime} \sigma^{\prime}=z^{\prime} \sigma^{\prime} z^{\prime} u^{\prime},\left|u^{\prime} \sigma^{\prime}\right|_{\lambda^{\prime}}>$ $\left|u^{\prime}\right|_{\lambda^{\prime}} ;$
$\left(\mathrm{d}^{\prime}\right) \mathcal{T}_{\sigma^{\prime}} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=e_{6}^{\prime}\left(v-v^{-1}\right) \mathbf{a}_{z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}+e_{7}^{\prime}\left(v^{2}-v^{-2}-1\right) \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}$ if $u^{\prime} \sigma^{\prime}=z^{\prime} \sigma^{\prime} z^{\prime} u^{\prime}$, $\left|u^{\prime} \sigma^{\prime}\right|_{\lambda^{\prime}}<\left|u^{\prime}\right|_{\lambda^{\prime}}$,
where $e_{1}^{\prime}, \ldots, e_{7}^{\prime} \in\{1,-1\}$. By $\$ 5.3(\mathrm{a}), \$ 5.3$ (b) we have

$$
\mathcal{T}_{s} \mathcal{T}_{\sigma^{\prime}} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=\mathcal{T}_{\sigma} \mathcal{T}_{s} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}= \pm \mathcal{T}_{\sigma} \mathbf{a}_{z u, \lambda} .
$$

Moreover, by 9.3 (a) we have

$$
\mathcal{T}_{s} \mathbf{a}_{z^{\prime} u^{\prime}, \lambda^{\prime}}=\mathbf{a}_{z u, \lambda}, \mathcal{T}_{s} \mathbf{a}_{\sigma^{\prime} z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}=\mathbf{a}_{\sigma z u \sigma, \lambda},
$$

$\mathcal{T}_{s} \mathbf{a}_{z^{\prime} u^{\prime} \sigma^{\prime}, \lambda^{\prime}}=\mathbf{a}_{z u \sigma, \lambda}$. Hence (a)-(d) for σ, z, u follow from (a^{\prime})-($\left.\mathrm{d}^{\prime}\right)$ by applying \mathcal{T}_{s} to both sides. Here we use that the condition that $z^{\prime} u^{\prime} \sigma^{\prime}=\sigma^{\prime} z^{\prime} u^{\prime}$ is equivalent to the condition $z u \sigma=\sigma z u$ and the inequality $\left|u^{\prime} \sigma^{\prime}\right|_{\lambda^{\prime}}>\left|u^{\prime}\right|_{\lambda^{\prime}}$ is equivalent to the inequality $|u \sigma|_{\lambda}>|u|_{\lambda}$ (conjugation by s is a Coxeter group isomorphism $W_{\lambda^{\prime}} \rightarrow W_{\lambda}$). The lemma is proved.
5.7. For any $\lambda \in \mathcal{O}$ let \mathbf{H}_{λ} be the $\mathbf{C}(v)$-subspace of $\mathbf{H}_{\mathcal{O}}$ spanned by $\left\{\mathcal{T}_{u} 1_{\lambda} ; u \in W_{\lambda}\right\}$. This is a subalgebra of $\mathbf{H}_{\mathcal{O}}$ with unit 1_{λ}; it can be identified with the Hecke algebra of the Coxeter group W_{λ} (see [L4, 1.4(g), (h)]) so that the standard generators of the last algebra correspond to the elements $\mathcal{T}_{s_{\alpha}} 1_{\lambda}$ of \mathbf{H}_{λ} with $\alpha \in \check{\Pi}_{\lambda}$.

For $(z, \lambda) \in \Xi^{0}$ let $\mathbf{M}_{z, \lambda}$ be the subspace of \mathbf{M} spanned by $\left\{\mathbf{a}_{z u, \lambda} ; u \in I_{z, \lambda}\right\}$. From Lemma 5.6 we see that $\mathbf{M}_{z, \lambda}$ is an \mathbf{H}_{λ}-module and that the action of the generators of \mathbf{H}_{λ} on $\mathbf{M}_{z, \lambda}$ is given by a formula which is the same (except for the appearance of certain signs e_{j}) as the formula for the action of the generators of the Hecke algebra of W_{λ} on the module based on the twisted involutions in W_{λ} constructed in LV.
5.8. We have a direct sum decomposition $\mathbf{H}_{\mathcal{O}}=\bigoplus_{\left(\lambda^{\prime}, z, \lambda\right) \in \Xi} \mathcal{T}_{z} \mathbf{H}_{\lambda}$; moreover, $\left\{\mathcal{T}_{z} \mathcal{T}_{u} 1_{\lambda} ;\left(\lambda^{\prime}, z, \lambda\right) \in \Xi, u \in W_{\lambda}\right\}$ is a basis of $\mathbf{H}_{\mathcal{O}}$ compatible with this decomposition and it coincides with the basis $\left\{\mathcal{T}_{w} 1_{\lambda} ;(w, \lambda) \in \tilde{X}_{1}, \lambda \in \mathcal{O}\right\}$ of $\mathbf{H}_{\mathcal{O}}$. (See [L4, 1.4(d)].) Similarly, by $45.2(\mathrm{~b})$, we have a direct sum decomposition $\mathbf{M}_{\mathcal{O}}=$ $\bigoplus_{(\tilde{z}, \tilde{\lambda}) \in \Xi^{0}} \mathbf{M}_{\tilde{z}, \tilde{\lambda}}$ where $\mathbf{M}_{\tilde{z}, \tilde{\lambda}}$ is as in 95.7 . From Lemmas 5.5 and 5.6 we see that the direct sum decompositions of $\mathbf{H}_{\mathcal{O}}$ and $\mathbf{M}_{\mathcal{O}}$ are compatible in the following sense:

$$
\left(\mathcal{T}_{z} \mathbf{H}_{\lambda}\right) \mathbf{M}_{\tilde{z}, \tilde{\lambda}} \subset \delta_{\tilde{\lambda}, \lambda} \mathbf{M}_{z \tilde{z} z^{-1}, z(\tilde{\lambda})}
$$

Moreover the action of the basis element $\mathcal{T}_{z} \mathcal{T}_{u} 1_{\lambda}=\left(\mathcal{T}_{z} 1_{\lambda}\right)\left(\mathcal{T}_{u} 1_{\lambda}\right)$ of $\mathbf{H}_{\mathcal{O}}$ on a basis element $\mathbf{a}_{\tilde{z} u^{\prime}, \tilde{\lambda}}$ of $\mathbf{M}_{\mathcal{O}}$ is particularly simple: the operator $\mathcal{T}_{z} 1_{\lambda}$ applied to a basis element $\mathbf{a}_{\tilde{z} u^{\prime}, \tilde{\lambda}}$ is $\pm \delta_{\tilde{\lambda}, \lambda}$ times another basis element; the operator $\mathcal{T}_{u} 1_{\lambda}$ applied to a basis element $\mathbf{a}_{\tilde{z} u^{\prime}, \tilde{\lambda}}$ is as in 95.7 if $\tilde{\lambda}=\lambda$ and is zero if $\tilde{\lambda} \neq \lambda$.
5.9. Results similar to those in Lemmas 5.45 .6 and $\S \$ 5.7,5.8$ hold for $M_{\mathcal{O}}$ when $m=q$ with (p, q) as in 0.2 and $\mathcal{O} \subset \bar{X}_{m}$ except that in this case the \pm signs in Lemmas 5.4 5.6 and $\S \$ 5.7,5.8$ have to be replaced by roots of 1 of possibly higher order.

6. Proof of Theorem 0.9

6.1. We now fix an integer $m \geq 1$. Recall from $\$ 0.8$ that \mathbf{M}_{m} is the $\mathbf{C}(v)$-vector space with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}\right\}$. We fix a W-orbit \mathcal{O} in \bar{X}_{m}. Let $\mathbf{M}_{\mathcal{O}}$ be the subspace of \mathbf{M}_{m} spanned by $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}, \lambda \in \mathcal{O}\right\}$.

For any $\lambda \in \mathcal{O}$ let \mathbf{H}_{λ} be as in 95.7 . For $(z, \lambda) \in \Xi^{0}$ let $\mathbf{M}_{z, \lambda}$ be the subspace of $\mathbf{M}_{\mathcal{O}}$ spanned by $\left\{\mathbf{a}_{z u, \lambda} ; u \in I_{z, \lambda}\right\}$. By [LV] applied to the Coxeter group W_{λ} with the involutive automorphism ι_{z}, there is a well defined \mathbf{H}_{λ}-module structure $(h, \xi) \mapsto h \circ \xi$ on $\mathbf{M}_{z, \lambda}$ such that for any $u \in W_{\lambda}$ and any $\sigma=s_{\alpha}, \alpha \in \check{\Pi}_{\lambda}$ we have
(a) $\left(\mathcal{T}_{\sigma} 1_{\lambda}\right) \circ \mathbf{a}_{z u, \lambda}=\mathbf{a}_{z \iota_{z}(\sigma) u \sigma, \lambda}$ if $u \sigma \neq \iota_{z}(\sigma) u,|u \sigma|_{\lambda}>|u|_{\lambda}$;
(b) $\left(\mathcal{T}_{\sigma} 1_{\lambda}\right) \circ \mathbf{a}_{z u, \lambda}=\mathbf{a}_{z \iota_{z}(s) u \sigma, \lambda}+\left(v^{2}-v^{-2}\right) \mathbf{a}_{z u, \lambda}$ if $u \sigma \neq \iota_{z}(\sigma) u,|u \sigma|_{\lambda}<|u|_{\lambda}$;
(c) $\left(\mathcal{T}_{\sigma} 1_{\lambda}\right) \circ \mathbf{a}_{z u, \lambda}=\mathbf{a}_{z u, \lambda}+\left(v+v^{-1}\right) \mathbf{a}_{z u \sigma, \lambda}$ if $u \sigma=\iota_{z}(\sigma) u,|u \sigma|_{\lambda}>|u|_{\lambda}$;
(d) $\left(\mathcal{T}_{\sigma} 1_{\lambda}\right) \circ \mathbf{a}_{z u, \lambda}=\left(v-v^{-1}\right) \mathbf{a}_{z u \sigma, \lambda}+\left(v^{2}-v^{-2}-1\right) \mathbf{a}_{z u, \lambda}$ if $u \sigma=\iota_{z}(\sigma) u$, $|u \sigma|_{\lambda}<|u|_{\lambda}$.
6.2. By [L4, 1.4(d)], the basis $\left\{\mathcal{T}_{w} 1_{\lambda} ;(w, \lambda) \in \tilde{X}_{1}, \lambda \in \mathcal{O}\right\}$ of $\mathbf{H}_{\mathcal{O}}$ coincides with $\left\{\mathcal{T}_{u} \mathcal{T}_{z} 1_{\lambda} ;\left(\lambda^{\prime}, z, \lambda\right) \in \Xi, u \in W_{\lambda^{\prime}}\right\}$. We define a bilinear multiplication $\mathbf{H}_{\mathcal{O}} \times \mathbf{M}_{\mathcal{O}} \rightarrow$ $\mathbf{M}_{\mathcal{O}}($ denoted by $(h, \xi) \mapsto h \bullet \xi)$ by the rule

$$
\left(\mathcal{T}_{u} \mathcal{T}_{z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}}=0
$$

if $\lambda \neq \tilde{\lambda}$, while if $\lambda=\tilde{\lambda}$,

$$
\left(\mathcal{T}_{u} \mathcal{T}_{z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}}=\left(\mathcal{T}_{u} 1_{\lambda^{\prime}}\right) \circ \mathbf{a}_{\left(z \tilde{z} z^{-1}\right)\left(z \tilde{u} z^{-1}\right), \lambda^{\prime}}
$$

for $\left(\lambda^{\prime}, z, \lambda\right) \in \Xi, u \in W_{\lambda^{\prime}},(\tilde{z}, \tilde{\lambda}) \in \Xi^{0}, \tilde{u} \in W_{\tilde{\lambda}}$, where \circ is as in 6.1 with λ replaced by λ^{\prime}. (We have $\left(z \tilde{z} z^{-1}, \lambda^{\prime}\right) \in \Xi^{0}$ and $z \tilde{u} z^{-1} \in W_{\lambda^{\prime}}$.) We show:
(a) this is an $\mathbf{H}_{\mathcal{O}}$-module structure.

It is enough to show that for

$$
\left(\lambda^{\prime}, z, \lambda\right) \in \Xi,\left(\lambda_{1}^{\prime}, z_{1}, \lambda_{1}\right) \in \Xi, u \in W_{\lambda^{\prime}}, u_{1} \in W_{\lambda_{1}^{\prime}},(\tilde{z}, \tilde{\lambda}) \in \Xi^{0}, \tilde{u} \in W_{\tilde{\lambda}}
$$

with $\lambda^{\prime}=\lambda_{1}, \lambda=\tilde{\lambda}$ we have

$$
\left(\mathcal{T}_{u_{1}} \mathcal{T}_{z_{1}} 1_{\lambda_{1}}\right) \bullet\left(\left(\mathcal{T}_{u} \mathcal{T}_{z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}}\right)=\left(\mathcal{T}_{u_{1}} \mathcal{T}_{z_{1} u z_{1}^{-1}} \mathcal{T}_{z_{1} z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}}
$$

or that

$$
\begin{aligned}
& \left(\mathcal{T}_{u_{1}} 1_{\lambda_{1}^{\prime}}\right) \circ\left(\left(\mathcal{T}_{z_{1} u z_{1}^{-1}} \mathcal{T}_{z_{1} z z_{1}^{-1}} 1_{z_{1} \lambda}\right) \bullet \mathbf{a}_{\left(z_{1} \tilde{z} z_{1}^{-1}\right)\left(z_{1} \tilde{u} z_{1}^{-1}\right), z_{1} \lambda}\right) \\
& =\sum_{u_{2} \in W_{\lambda_{1}^{\prime}}}\left(\mathcal{T}_{u_{2}} \mathcal{T}_{z_{1} z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}}
\end{aligned}
$$

where we have written $\mathcal{T}_{u_{1}} \mathcal{T}_{z_{1} u z_{1}^{-1}} 1_{\lambda_{1}^{\prime}}=\sum_{u_{2} \in W_{\lambda_{1}^{\prime}}} \gamma_{u_{2}} \mathcal{T}_{u_{2}} 1_{\lambda_{1}^{\prime}}, \gamma_{u_{2}} \in \mathbf{C}(v)$. (We have used [L4, 1.4(d), (e)].) We have

$$
\begin{aligned}
& \left(\mathcal{T}_{z_{1} u z_{1}^{-1}} \mathcal{T}_{z_{1} z z_{1}^{-1}} 1_{z_{1} \lambda}\right) \bullet \mathbf{a}_{\left.z_{1} \tilde{z} z_{1}^{-1}\right)\left(z_{1} \tilde{u} z_{1}^{-1}\right), z_{1} \lambda} \\
& \left.=\left(\mathcal{T}_{z_{1} u z_{1}^{-1}} 1_{\lambda_{1}^{\prime}}\right) \circ \mathbf{a}_{\left(z_{1} z \tilde{z} z^{-1} z_{1}^{-1}\right.}\right)\left(z_{1} \tilde{u} \tilde{u} z^{-1} z_{1}^{-1}\right), \lambda_{1}^{\prime}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \sum_{u_{2} \in W_{\lambda_{1}^{\prime}}}\left(\mathcal{T}_{u_{2}} \mathcal{T}_{z_{1} z} 1_{\lambda}\right) \bullet \mathbf{a}_{\tilde{z} \tilde{u}, \tilde{\lambda}} \\
= & \sum_{u_{2} \in W_{\lambda_{1}^{\prime}}}\left(\mathcal{T}_{u_{2}} 1_{\lambda_{1}^{\prime}}\right) \circ \mathbf{a}_{\left(z_{1} z \tilde{z} z^{-1} z_{1}^{-1}\right)\left(z_{1} z \tilde{u} z^{-1} z_{1}^{-1}\right), \lambda_{1}^{\prime}}
\end{aligned}
$$

Thus it is enough to prove

$$
\begin{aligned}
& \left(\mathcal{T}_{u_{1}} 1_{\lambda_{1}^{\prime}}\right) \circ\left(\left(\mathcal{T}_{z_{1} u z_{1}^{-1}} 1_{\lambda_{1}^{\prime}}\right) \circ \mathbf{a}_{\left(z_{1} z \tilde{z} z^{-1} z_{1}^{-1}\right)\left(z_{1} z \tilde{u} z^{-1} z_{1}^{-1}\right), \lambda_{1}^{\prime}}\right) \\
& =\sum_{u_{2} \in W_{\lambda_{1}^{\prime}}}\left(\mathcal{T}_{u_{2}} 1_{\lambda_{1}^{\prime}}\right) \circ \mathbf{a}_{\left(z_{1} z \tilde{z} z^{-1} z_{1}^{-1}\right)\left(z_{1} z \tilde{u} z^{-1} z_{1}^{-1}\right), \lambda_{1}^{\prime}} .
\end{aligned}
$$

This follows from the fact that o defines a module structure. This proves (a).
6.3. Let \mathbf{H}_{m} be the $\mathbf{C}(v)$-vector space with basis $\left\{\mathcal{T}_{w, \lambda} ;(w, \lambda) \in W \times \bar{X}_{m}\right\}$. Note that \mathbf{H}_{m} is a subalgebra of \mathbf{H}. There is a unique \mathbf{H}_{m}-module structure $(h, \xi) \mapsto h \bullet \xi$ on \mathbf{M}_{m} (see $\mathbb{(0 . 8)}$) such that for any two orbits $\mathcal{O}, \mathcal{O}^{\prime}$ in \bar{X}_{m} and any $h \in \mathbf{H}_{\mathcal{O}}, \xi \in$ $\mathbf{M}_{\mathcal{O}^{\prime}}$ we have $h \bullet \xi=0$ if $\mathcal{O} \neq \mathcal{O}^{\prime}$ and $h \bullet \xi$ is as in $¢ 6.2$ if $\mathcal{O}=\mathcal{O}^{\prime}$.
6.4. We now prove Theorem 0.9, It is enough to show that Theorem0.9(a)-(b) hold when \mathcal{T}_{s} is replaced by $\mathcal{T}_{s} 1_{\lambda} \in \mathbf{H}_{m}$ acting on \mathbf{M}_{m} via the \mathbf{H}_{m}-module structure on \mathbf{M}_{m}. We can write $w=z u$ where $(z, \lambda) \in \Xi^{0}$ and $u \in W_{\lambda}$. If $s \in W_{\lambda}$, then $s=\sigma$ as in 6.1 and the desired formulas follow from 6.1 If $s \notin W_{\lambda}$, then s has minimal length in $s W_{\lambda}$ and hence $s \in[s(\lambda), \lambda]$. Then by definition we have $\left(\mathcal{T}_{s} 1_{\lambda}\right) \bullet \mathbf{a}_{w, \lambda}=\mathbf{a}_{s w s, s \lambda}$ and the desired formulas hold again. This proves Theorem 0.9 .
6.5. In [L4], an affine analogue of \mathbf{H} is considered; it has a basis indexed by the semidirect product $\tilde{W} \bar{X}$ where \tilde{W} is an affine Weyl group acting on \bar{X} via its quotient W. The analogue of Theorem 0.9 continues to hold in this case (with the same proof).

7. Bar operator

7.1. Let m be an integer ≥ 1. In this section we construct a bar operator on \mathbf{M}_{m} generalizing a definition in [LV]. To do this we will use the method of [L3].

For $s \in S$ the operator $\mathcal{T}_{s}: \mathbf{M}_{m} \rightarrow \mathbf{M}_{m}$ in Theorem 0.9 has an inverse $\mathcal{T}_{s}{ }^{-1}$. For $w \in W$ we set $\mathcal{T}_{w}=\mathcal{T}_{s_{1}} \ldots \mathcal{T}_{s_{k}}: \mathbf{M}_{m} \rightarrow \mathbf{M}_{m}, \mathcal{T}_{w}^{-1}=\mathcal{T}_{s_{k}}^{-1} \ldots \mathcal{T}_{s_{1}}^{-1}: \mathbf{M}_{m} \rightarrow \mathbf{M}_{m}$, where $w=s_{1} s_{2} \ldots s_{k}$ with s_{1}, \ldots, s_{k} in $S,|w|=k$.

Let $c \mapsto \bar{c}$ be the field automorphism of $\mathbf{C}(v)$ which is the identity on \mathbf{C} and maps v to v^{-1}. For $(w, \lambda) \in \tilde{X}_{m}$ we write $E(w, \lambda)=(-1)^{|u|}$ where
(a) $w=z u,(z, \lambda) \in \tilde{X}_{m}^{0}, u \in I_{z, \lambda} \subset W_{\lambda}$;
see $55.2(\mathrm{~b})$.
We show:
(b) If $(w, \lambda) \in \tilde{X}_{m}, s \in S$, then $E(s w s, s \lambda)=E(w, \lambda)$;
(c) if $(w, \lambda) \in \tilde{X}_{m}, s \in S$ are such that $s w=w s$ and $s \in W_{\lambda}$, then $E(w s, \lambda)=$ $-E(w, \lambda)$.

We write $w=z u$ as in (a). Assume first that $s \in W_{\lambda}$. We have $s w s=z \iota_{z}(s) u s$ and $\iota_{z}(s) \in W_{z(\lambda)}=W_{\lambda}=W_{s \lambda}$ and hence $\iota_{z}(s) u s \in I_{z, \lambda}$ and $E(s w s, s \lambda)=$ $(-1)^{\left|\iota_{z}(s) u s\right|}=(-1)^{|u|}=E(w, \lambda)$. If $s w=w s$, we have $w s=z u s$ and $u s \in$ $I_{z, \lambda}$ and hence $E(w s, \lambda)=(-1)^{|u s|}=-(-1)^{|u|}=-E(w, \lambda)$. Next we assume that $s \notin W_{\lambda}$; then $s \in[\lambda, \lambda]$ (see \$5.1) and hence $(s z s, s \lambda) \in \tilde{X}_{m}^{0}$. Moreover, $s w s=s z u s=(s z s)(s u s)$ and sus $\in W_{s \lambda}$ and more precisely sus $\in I_{s z s, s \lambda}$. Hence $E(s w s, s \lambda)=(-1)^{|s u s|}=(-1)^{|u|}=E(w, \lambda)$. This proves (b) and (c).

Clearly, there is a unique C-linear map $B: \mathbf{M}_{m} \rightarrow \mathbf{M}_{m}$ such that for any $(w, \lambda) \in \tilde{X}_{m}$ and any $f \in \mathbf{C}(v)$ we have

$$
B\left(f \mathbf{a}_{w, \lambda}\right)=\bar{f} E(w, \lambda) \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
$$

We state the main result of this section.

Proposition 7.2.

(a) For any $s \in S$ and any $\xi \in \mathbf{M}_{m}$ we have $B\left(\mathcal{T}_{s} \xi\right)=\mathcal{T}_{s}^{-1} B(\xi)$.
(b) The square of the map ${ }^{-}: \mathbf{M}_{m} \rightarrow \mathbf{M}_{m}$ is equal to 1 .

To prove (a) it is enough to show that for any $(w, \lambda) \in \tilde{X}_{m}$ and any $s \in S$ we have
(c) $B\left(\mathcal{T}_{s} \mathbf{a}_{w, \lambda}\right)=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}$.

We set $\Delta=1$ if $s \in W_{\lambda}$ and $\Delta=0$ if $s \notin W_{\lambda}$.
Assume that $s w \neq w s,|s w|>|w|$. We have

$$
\begin{aligned}
& \quad B\left(\mathcal{T}_{s} \mathbf{a}_{w, \lambda}\right)=B\left(\mathbf{a}_{s w s, s \lambda}\right)=E(s w s, s \lambda) \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda} \\
& E(w, \lambda)) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathcal{T}_{s}^{-1} \mathcal{T}_{s} \mathbf{a}_{w,-m \lambda} \\
& =E(s w s, s \lambda) \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda}
\end{aligned}
$$

Hence (c) holds in this case.
Assume that $s w \neq w s,|s w|<|w|$. We must show that

$$
B\left(\mathbf{a}_{s w s, s \lambda}+\Delta\left(v^{2}-v^{-2}\right) \mathbf{a}_{w, \lambda}\right)=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
$$

or that

$$
\begin{aligned}
& E(s w s, s \lambda) \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda}+\Delta\left(v^{-2}-v^{2}\right) E(w, \lambda) \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda} \\
& \quad=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\begin{aligned}
& \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s, s \lambda}+\Delta\left(v^{-2}-v^{2}\right) \mathcal{T}_{s}^{-1} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda} \\
& =\mathcal{T}_{s}^{-1} \mathcal{T}_{s}^{-1} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-\lambda}
\end{aligned}
$$

or that

$$
\mathcal{T}_{s} \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-s \lambda}+\delta\left(v^{-2}-v^{2}\right) \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}=\mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
$$

or that

$$
\begin{aligned}
& \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda}+\left(v^{2}-v^{-2}\right) \Delta \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda} \\
& +\Delta\left(v^{-2}-v^{2}\right) \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}=\mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

Here we substitute $\mathcal{T}_{s w s}^{-1} \mathbf{a}_{s w s,-m s \lambda}=\mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}$. It remains to note that

$$
\begin{aligned}
& \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}+\left(v^{2}-v^{-2}\right) \Delta \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda} \\
& +\Delta\left(v^{-2}-v^{2}\right) \mathcal{T}_{s} \mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}=\mathcal{T}_{s w s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

This proves (c) in our case.
Assume that $s w=w s,|s w|>|w|$. We must show that

$$
B\left(\mathbf{a}_{w, s \lambda}+\Delta\left(v+v^{-1}\right) \mathbf{a}_{s w, \lambda}\right)=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
$$

or that

$$
\begin{aligned}
& E(w, \lambda) \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m s \lambda}+\Delta\left(v+v^{-1}\right) E(s w, \lambda) \mathcal{T}_{s w}^{-1} \mathbf{a}_{s w,-m \lambda} \\
& =E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\begin{aligned}
& \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m s \lambda}-\Delta\left(v+v^{-1}\right) \mathcal{T}_{w}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{s w,-m \lambda} \\
& =\mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\mathbf{a}_{w,-m s \lambda}-\Delta\left(v+v^{-1}\right) \mathcal{T}_{s}^{-1} \mathbf{a}_{s w,-m \lambda}=\mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
$$

or that

$$
\mathcal{T}_{s} \mathbf{a}_{w,-m s \lambda}-\Delta\left(v+v^{-1}\right) \mathbf{a}_{s w,-m \lambda}=\mathbf{a}_{w,-m \lambda}
$$

or that

$$
\mathcal{T}_{s} \mathbf{a}_{w,-m s \lambda}=\mathbf{a}_{w,-m \lambda}+\Delta\left(v+v^{-1}\right) \mathbf{a}_{s w,-m \lambda}
$$

This follows from the definitions. This proves (c) in our case.
Assume that $s w=w s,|s w|<|w|$. We must show that

$$
\begin{aligned}
& B\left(\Delta\left(v-v^{-1}\right) \mathbf{a}_{s w, \lambda}+\Delta\left(v^{2}-v^{-2}-1\right) \mathbf{a}_{w, \lambda}+(1-\Delta) \mathbf{a}_{w, s \lambda}\right) \\
& =E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\begin{aligned}
& \Delta\left(v^{-1}-v\right) E(s w, \lambda) \mathcal{T}_{s w}^{-1} \mathbf{a}_{s w,-m \lambda}+\Delta\left(v^{-2}-v^{2}-1\right) E(w, \lambda) \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda} \\
& +(1-\Delta) E(w, s \lambda) \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m s \lambda}=E(w, \lambda) \mathcal{T}_{s}^{-1} \mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\begin{aligned}
& \Delta\left(v^{-1}-v\right) \mathcal{T}_{s w}^{-1} \mathbf{a}_{s w,-m \lambda}-\Delta\left(v^{-2}-v^{2}-1\right) \mathcal{T}_{s w}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda} \\
& -(1-\Delta) \mathcal{T}_{s w}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m s \lambda}=-\mathcal{T}_{s w}^{-1} \mathcal{T}_{s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that

$$
\begin{aligned}
& \Delta\left(v^{-1}-v\right) \mathbf{a}_{s w, \lambda}-\Delta\left(v^{-2}-v^{2}-1\right) \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}-(1-\Delta) \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m s \lambda} \\
& =-\mathcal{T}_{s}^{-1} \mathcal{T}_{s}^{-1} \mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

or that
$\Delta\left(v^{-1}-v\right) \mathcal{T}_{s} \mathcal{T}_{s} \mathbf{a}_{s w,-m \lambda}-\Delta\left(v^{-2}-v^{2}-1\right) \mathcal{T}_{s} \mathbf{a}_{w,-m \lambda}-(1-\Delta) \mathcal{T}_{s} \mathbf{a}_{w,-m s \lambda}=-\mathbf{a}_{w,-m \lambda}$ or that

$$
\begin{aligned}
& \Delta\left(v^{-1}-v\right) \mathbf{a}_{s w,-m \lambda}+\Delta\left(v^{-1}-v\right)\left(v^{2}-v^{-2}-1\right) \mathcal{T}_{s} \mathbf{a}_{s w,-m \lambda} \\
& -\Delta\left(v^{-2}-v^{2}-1\right) \mathcal{T}_{s} \mathbf{a}_{w,-m \lambda}-(1-\Delta) \mathcal{T}_{s} \mathbf{a}_{w,-m s \lambda}=-\mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

When $\Delta=0$ this is just $\mathcal{T}_{s} \mathbf{a}_{w,-m s \lambda}=\mathbf{a}_{w,-m \lambda}$ which follows from the definitions. When $\Delta=1$ we see that it is enough to observe the following obvious equality:

$$
\begin{aligned}
& \left(v^{-1}-v\right) \mathbf{a}_{s w,-m \lambda}+\left(v^{-1}-v\right)\left(v^{2}-v^{-2}\right)\left(\mathbf{a}_{s w,-m \lambda}+\left(v+v^{-1}\right) \mathbf{a}_{w,-m \lambda}\right) \\
& +\left(v^{2}-v^{-2}+1\right)\left(\left(v-v^{-1}\right) \mathbf{a}_{s w,-m \lambda}+\left(v^{2}-v^{-2}-1\right)\right) \mathbf{a}_{w,-m \lambda}=-\mathbf{a}_{w,-m \lambda}
\end{aligned}
$$

This completes the proof of (c) and hence that of (a).
We prove (b). We first show that for $(w, \lambda) \in \tilde{X}_{m}$ and $s \in S$ we have

$$
\begin{equation*}
B\left(\mathcal{T}_{s}^{-1} \mathbf{a}_{w, \lambda}\right)=\mathcal{T}_{s} B\left(\mathbf{a}_{w, \lambda}\right) \tag{d}
\end{equation*}
$$

Indeed, the left-hand side equals $B\left(\mathcal{T}_{s} \mathbf{a}_{w, \lambda}\right)+B\left(\left(v^{2}-v^{-2}\right) \mathbf{a}_{w, \lambda}\right)$ which by (a) equals $\mathcal{T}_{s}^{-1} B\left(\mathbf{a}_{w, \lambda}\right)+\left(v^{-2}-v^{2}\right) B\left(\mathbf{a}_{w, \lambda}\right)$ and this equals $\mathcal{T}_{s} B\left(\mathbf{a}_{w, \lambda}\right)$. Using (d) repeatedly we see that $B\left(\mathcal{T}_{w^{\prime}}^{-1} \mathbf{a}_{w, \lambda}\right)=\mathcal{T}_{w^{\prime}} B\left(\mathbf{a}_{w, \lambda}\right)$ for any $w^{\prime} \in W$. To prove (b) it is enough to prove that for any $(w, \lambda) \in \tilde{X}_{m}$ we have

$$
B\left(B\left(\mathbf{a}_{w, \lambda}\right)\right)=\mathbf{a}_{w, \lambda}
$$

that is,

$$
B\left(\mathcal{T}_{w}^{-1} \mathbf{a}_{w,-m \lambda}\right)=E(w, \lambda) \mathbf{a}_{w, \lambda}
$$

The left-hand side is equal to $\mathcal{T}_{w} B\left(\mathbf{a}_{w,-m \lambda}\right)$ and hence to

$$
E(w, \lambda) \mathcal{T}_{w} \mathcal{T}_{w}^{-1} \mathbf{a}_{w, \lambda}=E(w, \lambda) \mathbf{a}_{w, \lambda}
$$

This completes the proof of (b).
7.3. Let $(z, \lambda) \in \tilde{X}_{m}^{0}$. We show:
(a) $B\left(\mathbf{a}_{z, \lambda}\right)=\mathbf{a}_{z, \lambda}$.

We must show that $\mathcal{T}_{z}^{-1} \mathbf{a}_{z,-m \lambda}=\mathbf{a}_{z, \lambda}$ or that $\mathcal{T}_{z} \mathbf{a}_{z, \lambda}=\mathbf{a}_{z,-m \lambda}$. This follows the definition of the \mathbf{H}_{m}-module structure on \mathbf{M}_{m} since $z z z^{-1}=z, z(\lambda)=-m \lambda$.
7.4. Let \mathcal{L} be the $\mathbf{Z}\left[v^{-1}\right]$-submodule of \mathbf{M}_{m} with basis $\left\{\mathbf{a}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}\right\}$. From Proposition 7.2 one can deduce (a), (b) below by standard arguments (see, for example, [L1, 24.2.1]).
(a) For any $(w, \lambda) \in \tilde{X}_{m}$ there is a unique element $\hat{\mathbf{a}}_{w, \lambda} \in \mathbf{M}_{m}$ such that
(i) $\hat{\mathbf{a}}_{w, \lambda} \in \mathcal{L}, \hat{\mathbf{a}}_{w, \lambda}-\mathbf{a}_{w, \lambda} \in v^{-1} \mathbf{Z}\left[v^{-1}\right]$,
(ii) $B\left(\hat{\mathbf{a}}_{w, \lambda}\right)=\hat{\mathbf{a}}_{w, \lambda}$.

Moreover,
(b) $\left\{\hat{\mathbf{a}}_{w, \lambda} ;(w, \lambda) \in \tilde{X}_{m}\right\}$ is a $\mathbf{Z}\left[v^{-1}\right]$-basis of \mathcal{L} and a $\mathbf{C}(v)$-basis of \mathbf{M}_{m}.

For example if $(z, \lambda) \in \tilde{X}_{m}^{0}$, then $\hat{\mathbf{a}}_{z, \lambda}=\mathbf{a}_{z, \lambda}$.

Acknowledgment

The author thanks David Vogan for helpful discussions.

References

[La] Serge Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563, DOI 10.2307/2372673. MR0086367
[L1] George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR2759715
[L2] G. Lusztig, Character sheaves on disconnected groups. VII, Represent. Theory 9 (2005), 209-266, DOI 10.1090/S1088-4165-05-00278-5. MR2133758
[L3] G. Lusztig, A bar operator for involutions in a Coxeter group, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 355-404. MR 3051318
[L4] G.Lusztig, Conjugacy classes in reductive groups and two sided cells, Bull. Inst. Math. Acad. Sinica (N.S.), arXiv:1706.02389 (2017) (to appear).
[L5] G. Lusztig, Lifting involutions in a Weyl group to the torus normalizer, Represent. Theory 22 (2018), 27-44, DOI 10.1090/ert/513. MR 3789878
[LV] George Lusztig and David A. Vogan Jr., Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 323-354. MR3051317
[MS] J. G. M. Mars and T. A. Springer, Character sheaves, Astérisque 173-174 (1989), 9, 111198. Orbites unipotentes et représentations, III. MR1021511
[T] J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus (French), J. Algebra 4 (1966), 96-116, DOI 10.1016/0021-8693(66)90053-6. MR 0206117
[Y] Takeo Yokonuma, Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini (French), C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A344-A347. MR0218467

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Email address: gyuri@mit.edu

