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HECKE MODULES BASED ON INVOLUTIONS
IN EXTENDED WEYL GROUPS

G. LUSZTIG

ABSTRACT. Let X be the group of weights of a maximal torus of a simply con-
nected semisimple group over C and let W be the Weyl group. The semidirect
product W ((Q ® X)/X) is called an extended Weyl group. There is a natu-
ral C(v)-algebra H called the extended Hecke algebra with basis indexed by
the extended Weyl group which contains the usual Hecke algebra as a subal-
gebra. We construct an H-module with basis indexed by the involutions in
the extended Weyl group. This generalizes a construction of the author and
Vogan.

INTRODUCTION AND STATEMENT OF RESULTS

0.1. Let k be an algebraically closed field. Let G be a connected reductive group
over k. Let T be a maximal torus of G and let U be the unipotent radical of a Borel
subgroup of G containing T'. Let N be the normalizer of T and let W = N/T be the
Weyl group; let w — |w| be the length function on W, let S = {w € W;|w| = 1},
and let K : N — W be the obvious map. The obvious action of W on T is denoted
by w:t+— w(t). Let Y = Hom(k*,T), X = Hom(7T,k*) and let (,) : Y x X — Z be
the obvious pairing. We regard Y, X as groups with operation written as addition.
Let K be a field of characteristic zero and let Xx = K @ X = Hom(Y, K). Let
X = Xg/X = (K/Z) ® X. The obvious pairing (,) : Y x Xx — K restricts to
a pairing Y x X — Z and hence it induces a pairing |,] : ¥ x X — K/Z. We
define an action of W on Y by w : y — ¢/, where y/'(z) = w(y(z)) for z € k*.
We define an action of W on Xk by the equality (w(y),w(x)) = (y,x) for all
yeY x e Xg,we W. This action preserves X and hence it induces a W-action
on X. Let R C Y be the set of coroots, let R C R be the set of positive coroots
determined by U, let R~ = R — Rt. For s € S we denote by &, € Y the simple
coroot such that s(cs) = —cs. For A € X,s € S we write s € W)y, if |ds,A\| = 0;
we write s ¢ W), if | &g, A\| # 0. Note that if s € Wy, then sA = \. For s € S let Ty
be the image of ¢, : k* — T.

0.2. Let Wy = {w € W;w? = 1}. For any integer m > 1 we set
X ={Ae X;m?A =)},
X = {(w,\) € Wy x X;w(\) = —mA}.
We write WX instead of W x X with the group structure
(w, \)(w', ) = (ww', w' " (A) + \).
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We call WX the extended Weyl group. Then
X, = {(w,\) € Wy x X;w(\) = =2} = {(w,\) € WX; (w,\)? = (1,0)}

is exactly the set of involutions in the extended Weyl group W.X.

More generally, if m > 1, then {(w,\) € W x X;\ € X,,,} is a subgroup of WX
denoted by WX, and (w,\) = (w, \)* := (w,m)\) is an involutive automorphism
of WX,,. Moreover, X,, is the set of x-twisted involutions of WX,,, that is, the
set of all (w,\) € WX, such that (w, \)(w, \)* = (1,0).

If m > 1 and (w,\) € X,,, then X\ € X,,. Note that if (w,\) € X,, and s € S,
then (sws, s\) € X,,; if in addition sw = ws, then (w,s\) € X,,. If we have both
sw = ws and sA = \, then (sw,\) € X,,,.

Let p be a prime number and let ¢ > 1 be a power of p. We set Q = ¢>. We
assume that the characteristic of k is either 0 or p. Then X,, X, are defined.

We fix a square root v/—1 of —1 in C. For A € X, s € S, we define [\, s] €
{1,—-1} as follows. We have (d,,\) = e/(Q — 1) with e € Z. When p # 2 we set
[\, s] =1if e € 2Z and [\, s] = /—1if e € Z — 2Z; when p = 2 we set [\, s] = 1.

0.3. For w € Wa, s € S such that sw = ws we define, following [L5, 1.18], a number
(w:s) e {-1,0,1} as follows. Assume first that G is almost simple, simply laced.
In [L3, 1.5, 1.7], a root system with a set of coroots R, C R and a set of simple
coroots I1,, for R, was associated to w; we have a, € II,. This root system is
simply laced and has no component of type A;,l > 1. If the component containing
@, is not of type Ay, there is a unique sequence é1,ds,...,d&. in II, such that
@, (iy1 are joined in the Dynkin diagram of R,, fori =1,2,...,e—1, &y = d&, and
@, corresponds to a branch point of the Dynkin diagram of R,,; if the component
containing ¢, is of type A; we define &1, do, ..., & as the sequence with one term
@s (so that e = 1). We define (w : s) = (—1)¢ if |sw| < |w| and (w : s) = (=1)¢*!
if [sw| > |w|. Next we assume that G is almost simple, simply connected, not
simply laced. Then G can be regarded as a fixed point set of an automorphism of
a simply connected, almost simple, simply laced group G’ (as in [L5, 1.14]) with
Weyl group W', a Coxeter group with a length preserving automorphism W/ — W'
with fixed point set W. When s is regarded as an element of W', it is a product of
k commuting simple reflections s}, s5, ..., s} of W'; here k € {1,2,3}. If k # 2, we
define (w : s) for W to be (w : s;) for G’, where i is any element of {1,...,k}. If
k = 2 we have either ws; = sjw, wsy = sqw (in which case (w : s) for G is defined
tobe (w:s1) = (w: s2) for G') or ws; = sow, wse = syw (in which case (w : s) for
G is defined to be 0). We now drop the assumption that G is almost simple. Let G”
be the simply connected cover of an almost simple factor of the adjoint group of G
with Weyl group W” C W such that s € W and let w” be the W’-component of
w. Then (w : s) for G is defined to be (w” : s) for G” (which is defined as above).
For p,q as in 0.2 (w,\) € Xq, s € S such that sw = ws, we set

S x;s = exp(2mV=1((g — €)/2)(1 — (w : 5)){@s, A))
if p#2, e=|w| —|sw| ==x1 and §, r,s = 1 if p = 2. (Note that exp(2mv/—1x) is

well defined for € Q/Z.) If G is simply laced, then 6, »,s = 1 (since (w : s) = £1).
In general we have d,, ;s = £1. Indeed, we can assume that p # 2. It is enough to



248 G. LUSZTIG

show that (¢ — €)(ds, A) = 0. From our assumption we have
LQSa /\J = Lwdsa UJ)\J = L_edsv _q)‘J = qe Ldsv )\J = q671 Ldsv )\J

and hence (¢ — e)| s, A] = 0; our claim follows.

The following assumption will be made in parts of the paper (it will simplify
some proofs).

(a) For s € S, ds; k* — T is an isomorphism.
This is certainly satisfied if G is simply connected.

Here is one of the main results of this paper.

Theorem 0.4. Let ¢,p be as in §0.2 Assume that §03(a) holds. Let M, be the
C-vector space with basis {ay x; (w,\) € Xq}. If p # 2 let z € Z be such that
22 ¢ (¢*—1)Z; if p=2 let z € Z be arbitrary. There is a unique action of the braid
group of W on M, in which the generators {Ts;s € S} of the braid group applied
to the basis elements of M, are as follows. (We set A =1 if s € Wy and A =0 if
S ¢ W)\)

(a) 7;(111;,)\ = Asws,\ if sw 7£ ws, ‘Sw| > |w|aA =1

(b) 7;0,107)\ = Qsws,\ + (q - qil)a’w)\ ’Lf sw 7£ ws, ‘Sw| < |w" A= 1,

(€) Tsawr = awxr+ (@ + 1asyr if sw=ws,|sw| > |w],A=1;

(d) Tsawr = (1 —qg Vaswr+ (q—q¢ ' = Day if sw=ws,|sw| < |w],A =1,

(€) Tsawx = [, Slasws,sx if sw# ws, |sw| > |w], A = 0;

(f) Tsawx = [A, 5]71asws,s)\ if sw # ws, [sw| < |w|, A = 0;

(g) 7-saw,)\ = 5w,s)\;saw,s)\ 'Lf SW = ws, |Sw| > |w|ﬂ A= 07.

(h) Tsawr = —bwsns exp(2my/—1(w : 8)z{ds, A))awsx if sw = ws,|sw| <
|lw|, A = 1.

Note that the subspace of M, spanned by {ay,0;w € Wa} is stable under the
braid group action; the resulting braid group action on that subspace involves only
the cases where A =1 and in fact is the representation of the Hecke algebra of W
with parameter g introduced in [LV]. Thus the theorem is a generalization of a part
of [LV]. In the general case we can define operators 1, : M, — M, (for A € X,) by
Iaawx = O nay,n for all (w,N) € Xq. The operators 75 and 1) on M, satisfy
the relations of an “extended Hecke algebra”, isomorphic to the endomorphism
algebra of the representation of G(F,) induced by the trivial representation of U (F})
(assuming that k is an algebraic closure of a finite field F, and G is split over Fy).
This endomorphism algebra was studied by Yokonuma [Y] and a description of it in
terms of generators like Ty, 1) was given in [L2]. The proof of the theorem is given in
84, in terms of G(Fy), U(Fy) as above. Namely, we show that M, can be interpreted
as the vector space spanned by the double cosets I'1\I'/T's regarded naturally as a
module over the algebra spanned as a vector space by the double cosets I'1\I'/T"; for
suitable finite groups I'y C I' D I's. (In our case we have I' = G(F2), I'y = U(F,2),
'y = G(F,).) A key role in our proof is played by a certain non-standard lifting
(introduced in [L5]) to N for the involutions in W. (The usual lifting, due to Tits
[T], is not suitable for the purposes of this paper.)

0.5. We now assume that k = C. Let v be~an indeterminate and let M be the
C(v)-vector space with basis {a, ; (w,\) € X1}. For any
(a) (w,\) € X7 and s € S such that |sw| > |w| we set

Stynes = exp(2myV/=1(1 — (w : s))[ s, A)).
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We note that for w, A, s as in (a) we have
[Gs, A = |was, wh| = | &g, —A] = —| s, A

and hence

(b) 2[és, A| = 0 so that &, ., is well defined and is in {1, —1}.

The following result is a generic version of Theorem [(.4] in which ¢ is replaced
by v? and M, is replaced by M.

Theorem 0.6. We assume that k = C and that §03(a) holds. There is a unique
action of the braid group of W on M in which the generators {Ts;s € S} of the
braid group applied to the basis elements of M are as follows. (We write A =1 if
seWxand A=0if s¢ Wy.)

(a) an)\ = Asws,s\ Zf sw 7& ws, ‘SU)| > |’LU‘,

(b) Tsaw,/\ = Agws,s\ + A(’UQ - ’Uiz)aw,)\ Zf sw 7é ws, |5’LU| < |w|7

(c) Teawr = 0y ox.s@uw,sn + A0 + 07 g,y if sw = ws, [sw| > |w];

(d) Tsawr = A(v—v Hagyr+ A2 —v7H)ay ) —ay sy if sw = ws,|sw| < |w]|.

This can be deduced from Theorem (see ).
We can interpret the theorem as providing an H-module structure on M where H
is the extended Hecke algebra (see §4.5]). The subspace of M spanned by {a,, o;w €

Wh} is stable under the operators 7, and this defines a representation of the generic
Hecke algebra of W which was defined in [LV].

0.7. The action in Theorem can be specialized to v = 1. It becomes the braid
group action on the C-vector space with basis {a, x; (w,\) € X1} in which the
generators T; of the braid group act as follows. (Notation and assumptions are
from Theorem [0.6])

(a) 7;a'w,/\ = Asws,s\ if sw 7£ ws;

(b) Tsawr = (5{”’5/\;551“)13)\ + 2Aay,  if sw = ws, |sw| > |w];

(€) Tsawr = —aysx if sw=ws,|sw| < |w]|.

This is actually a W-action since 72 acts as 1.

0.8. Let m be an integer > 1 and let M,,, be the C(v)-vector space with basis
{ay; (w,A) € X, }. In the following result (a variant of Theorems and [0.0))
the assumption §0.3)a) is not used.

Theorem 0.9. There is a unique action of the braid group of W on M, in which
the generators {Tg;s € S} of the braid group applied to the basis elements of M,,
are as follows. (We write A=1ifs€ Wy and A =0 if s ¢ Wy.)

(a) 7-saw,)\ = QAsws,s\ Zf sw 7£ ws, ‘SU)| > |w‘a

(

(c

b) 7;aw,)\ = Asws,s\ + A(U2 - U_2)aw,)\ Zf sw 7é ws, |Sw| < |’LU|,
) Tt = Ay sx + A(v + v Hagy \ if sw = ws,|sw| > |wl;

(d) Tsawr = A(v — v Hagyr + A(w? —v72 — Dayy + (1 — A)ay sy if sw =

ws, [sw| < |w].

The proof is given in §8l It relies on results in [LV] and [L4].

0.10. The action in Theorem can be specialized to v = 1. It becomes the braid
group action on the C-vector space with basis {a, ; (w,\) € X,,} in which the
generators T, of the braid group act as follows. (Notation and assumptions are
from Theorem [0.01)
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(a) 7-saw,)\ = QAsws,s\ if sw # ws;

(b) Tsaw = Ay sx + 2084, 5 if sw = ws, |sw| > |w|;
(€) Tsawr = Ay sx — 202, if sw = ws, [sw| < |w].
This is actually a W-action.

0.11. Notation. If X C X' are sets and ¢ : X' — X’ satisfies ¢(X) C X we write
Xt ={x e X;u(x) =z}

1. THE ALGEBRA F

1.1. Let p,q,Q be as in §0.21 We now assume that k is an algebraic closure of the
finite field F, with #(F,) = q. We fix a pinning (z, : k = G,ys : k = G;s € 5)
corresponding to T, U. (We have z4(k) C U.) Let W — N, w — @ be the Tits
cross section of k : N — W associated to this pinning; see [T]. We fix an Fj-rational
structure on G with Frobenius map ¢ : G — G such that ¢(t) =t for all t € T
and ¢(zs(2)) = x5(29), d(ys(2)) = ys(27) for all z € k. We have ¢(w) = w for
any w € W and ¢(U) = U. Let Fg be the subfield of k with #(Fp) = Q. We set
® = ¢2. We set € = —1 € k*.

For s € S, z € k* we set z; = ds(z) € Ts. In particular, €5 € Ty is defined and

we have §2 = ¢,.

1.2. Let X = G/U. Now G acts on X by g : 2U + gaU and on X? by g :
(U, yU) = (gaU,gyU). We have X? = ||, .y On, where O, = {(zU,yU) €
X% 27y € UnU}. Now ¢, ® induce endomorphisms of X and &2 denoted again
by ¢,®. For n € N, we have ¢(O,) = Og(,) and hence ®(0,) = Og (). Thus we
have (X?)® =| |, cye OF and Of (n € NT) are exactly the orbits of G® on (X?)®.

1.3. Let
F ={f:(X*)® — C; f constant on the orbits of G*}.

This is a C-vector space with basis {k,;n € N®} where k, is 1 on OF and is 0 on
(X%)® — O2. Now F is an associative algebra with 1 under convolution:

(1)U, 20) = 37 hUyU) fa(yU; 2U);
yUueXx®
here f1 € F, fo € F, (2U,2U) € (X?)?.
The following two lemmas are well known; they are also used in [Y].

Lemma 1.4. Assume that n,n’ € N, k(n) = w,k(n') = w' satisfy |ww'| = |w| +
]

(a) If (zU,yU) € Oy, (yU, zU) € Oy, then (xU,2U) € Opyy .

(b) If (zU,2U) € Oy, then there is a unique yU € X such that (zU,yU) €
O, (YU, zU) € Oyy.

Lemma 1.5. Assume that s € S. Assume that §0.3(a) holds.
(a) If (2U,2'U) € O, (2'U,2U) € Oy-1, then (zU,2U) € O1 or (z2U,zU) €

S Osy.

y(b) If (2U,zU) € Oy, then {2'U € X;(2U,2'U) € O;, (2'U,2U) € Oz-1} is an
affine line.

(c) If (zU,2U) € Oy with y € Ts, then {z'U € X; (zU,2'U) € Oy, (2'U, 2U) €
O;-1} is a point.

The following result can be deduced from Lemmas [[.4],
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Lemma 1.6. Assume that s € S, n € N, k(n) = w satisfy |ws| < |w|. Assume
that §0.3Ka) holds.

(a) If (2U,2'U) € Oy, (2'U,2"U) € O;-1, then (zU,2"U) € Ops—1 or (xU,2"U)
€ |_|7'€TS OnT'

(b) If (2U,2"U) € O,4-1, then {2'U € X;(2U,2'U) € O, (2'U,z"U) € Oz—1}
is an affine line.

(¢) If (zU,2"U) € Oy, with y € Ty, then
{2'U € X;(2U,2'U) € Oy, (2'U,2"U) € O4-1}

1S a point.

1.7. Assume that §0.3(a) holds. From Lemma [[4] we deduce that for n,n’ € N®
such that |k(nn')| = |k(n)| + |k(n’)| we have

(a) knkn = kpp

in F. In particular, k; is the unit element of F. From Lemma we deduce as in
[Y] that for s € S we have

(b) kiks = Qke, + Y kiky.

yeT®
It follows that for s € S,w € W,n € N® such that |sw| < |w|, x(n) = w we have
(c) kakn = Qkan + Y kyn

yeT®
and for s € S,w € W,n € N?® such that |ws| < |w|, k(n) = w we have
(d) knks—1 = Qkns—1 + Y kny.

yeTe

From (a), (c), and (d) we deduce that for s € S,w € W,n € N® such that sw =
ws, [sw| < Jwl|, kK(n) = w we have

(e) kéknké*1 = Qkéns‘*l + Q Z ksny + Z kyny’-

yeTE yeTE y' eTE

1.8. We set s = Hom(T?®,C*). Here T? is as in Now W acts on s by
w: v — wr where (wv)(t) = v(w™(t)) for t € T®. For v € 5 we set

(a) L =[T%"" Y v(r)k, € F.
TET®
We have
(b) =k =1L
veESs

Indeed,

DL =TT D0 vk =Y Seake =k

vESs TET® vES reT®

For v,V in s we have

(C) 11,1,,/ = 61,’,/1,,.
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Indeed,

]-1/11/’ = |T<I>|72 Z V(T)V/(T,)k‘m”

TET® 7/€T®
=T > v (T ke
TET® 7 eT®
:5v,y/|T¢|*1 Z I/(T”)kr/’:(SVW/lV'
T//ETCD

For v € s5,n € N® w = r(n) € W we have
(d) Fnly = Loy l,.

Indeed,

Faly = T%170 Y v(kar = [T*170 Y v(T)ku(on

TET® TET®
= |T?|~* Z v(w N TNk = Luwkn.
T eT®
For t € T® v € s we have
(e) ki1, =v(t™H1,.

Indeed,

kil = T%)70 Y vk = [T%)70 Y vt

TET?® T'eT®
=v(t T D vk = vt 1,
T'eT®

For v € 5,5 € S we write s € W, if v(as(2)) = 1 for all z € F{) or equivalently if
vlre = 1; we write s ¢ W, if v|pe is not identically 1.

For v € s,& € R we define [v,d] as follows. If V(V( )) =1 we set [v,a] = 1;
if v(a(e)) = —1 we set [v,a] = v/—1. (Since é(e)? = 1 we must have v(da(e)) €
{1,-1}.) If p = 2 we have é&(e) = 1 and hence [, &] = 1. We have [v, d@]? = v(d(e)).

For s € S we set

() To=q ks Z[V, as]l, € F.
ves

We show

(2) TT=1+(q-q¢") > Tl

ves;seW,
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Indeed, we have

7:,:7: = Q71 Z [V7 ds][V/7ds]kéluké1y’

veEs, V' Es
- Q_l Z [1/7 ds}[ylads]kéks'lsylyl
vEs, V' Es
- Q71 Z [51/’ ds} [V/v ds]kgks'ly/
v'Es
= Qil Z v(es)ksksl,
ves
= ZV(Es)keslu +Q_1 Z V(Es)kékyly
ves VEs,yeTS‘P
=D L+Q D wlevly haly
ves ves,yeT®

=14+Q7 Q-1 Z ksl,.

veEs,vlre=1
s

It remains to use that if v|7e = 1, then v(e5) = 1 and hence [v, &5] = 1.
Now (g) implies that 7,7! € F is well defined and we have

(h) T =To—(g—a") Y, L.

ves;seW,
From (h) we see that for any v € s:
(1) 7;_1111 :TslV_A(q_q_l)lV77

where A=1ifse W, and A=0if s ¢ W,.
For any v € s we show

(J) ]-1/7-5 = 7-slsu~

Indeed, we have

1,7 = qilluké Z[Vlvds]lu/ = qil Z ké[Vlvds]lsyly' = qilks'[l/a ds}lsuv

v'Es V'Es

Tlsy = qilké Z[V/ads]lu’lau = qilks'[l/a dshau-

v'Es
1.9. For any w € W we set

To=0 "ks ) 11 v, wta)l, € F.

VES geRtw—1(&)ER~

When w = s € S, this definition agrees with the earlier definition of 7;. For s € .S,
w € W such that |ws| > |w| we show

(a) Tws = TuTs-
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Since |ws| > |w|, we have w(ds) € R and {@ € R*;(ws) (&) € R~} = {a €
Rt;w (&) € R~} U{w(ds)}. Hence we have

Tos = ¢ ks Z H [v, (ws)~tall,

VES el (ws) ") (a)ER

=g s Sl (w) Hw(@)] [T [ (ws) @)L

ves &ERTw—(&)ER~
=q 1"y Z[l/, Gs) H [V, (ws) " H(&)]1,.
veEs aeR+T;w—t(a)eR~
We have
ToTe=q g ke > 11 [, w™H @)V, @)1 ks 1o

ves,v'es geRt,w—1(a)ER~

:qi‘ws%wks‘ Z [Vlvds] H [Vawil(d)]lsull/’

VEs, V' Es &GERY w1 (&)ER~
= q 1"y Z[Vv s H v (ws) N @)Ly
= acR+t,w-1(a)eR~

This proves (a).
From (a) we deduce:

(b) Tww = ToTe if w,w' in W satisfy Jww'| = |w| + |w'].
Using §1.8(j) we see that
(c) 1,Tw = Twly—1, forw e W,v € s.

We note that
(d) {Twly;w € W,v € s} is a C-basis of F.
This follows from the fact that (up to a non-zero scalar) 7,1, is equal to

Z v(T) ke

TET®

2. THE F-MODULE F’

2.1. In this section we assume that §0.3(a) holds. We preserve the setup of g1l
We define ¢' : N — N by ¢'(n) = ¢(n)~t. We define v : X2 — X2 by o(2U,yU) =
(¢(y)U, ¢(x)U). This is a Frobenius map for an Fj-rational structure on X2. The
G-action on X? in §2 is compatible with this F,-rational structure on X? and
with the Fj-rational structure on G given by ¢. It follows that any G-orbit O,
on X2 such that (0,) = O, satisfies the condition that O¥ # ) and that G*
acts transitively on OY. (We use Lang’s theorem [La] and the connectedness of
the stabilizers of the G-action on O,.) For n € N we have ¢(0,) = Oy (y); thus
¥(0,) = O, precisely when n € N¢'. Thus we have (X2)¥ = Unene OF and OY
(for various n € N¢') are precisely the G?-orbits in (X2)¥. Let

F' ={h:(X*)¥ = C;h is constant on the orbits of G¢}.
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This is a C-vector space with basis {f,,;m € N®'}, where 6,, is 1 on O% and is 0
on (X%)¥ — O¥%. Now F' is an F-module under convolution

(FR)@U,e@U) = 3 f@UyU)h(yU, éy)U);
yUuex®
here f € F,h € F', (2U, ¢(z)U) € (X?)¥. (In this F-module, multiplication by the
unit element of F is the identity map of F'.)

2.2. Now ¢/ : N — N is an F-structure on N not necessarily compatible with
the group structure of N. But it is compatible with the T' x T-action on N given
by (t1,t2) : n — tlntgl and the Fj-rational structure on T' x T' with Frobenius
map (t1,t2) — (é(t2), ¢(t1)). Hence any T x T-orbit of the action on N which is
stable under ¢’ : N — N must have a ¢'-fixed point. Such an orbit is of the form
k1 (w) with w € W satisfying w™! = w, that is, w € W,. Using Lang’s theorem
and the connectedness of the stabilizers of the T x T-action on x~!(w), we see that
for w € Wy, s Hw) NN ¢ is non-empty and is exactly one orbit for the subgroup
{(t1,t2) € T x T (t1,12) = (¢(t2), #(t1))} of T x T Thus,

(a) N¢' = Uwew, N(w), where for any w € Wy, N(w) := ™" (w) NAN? is non-
empty and is a single orbit for the action of T® on N¢' given by t :m — tng(t) L.

For w € W we have N(w) = {wt;t € T,w(t?)tw? = 1}. Let T(w) = {t €
T;w(t?)t = 1}. Clearly,

(b) N(w) is a single orbit under right translation by T (w).

We note:

(c) For w € Wa, z € W we have 2N (w)z~! = N(zwz"1).

It is enough to show that N9 :71 = N9 More generally, if n € N®, then
nN? ¢(n)~1 = N®'. This is easily verified.

For w € Ws, we define a homomorphism e, : T® — T(w) by 7+ w(7)779. We
show:

(d) ey is surjective.

Let t € T(w). By Lang’s theorem we have ¢ = w(7)7~9 for some 7 € T. Since
t € T(w) we have automatically 7 € T® and (d) follows.

For w € I, s € S such that sw = ws we show:

(e) If |sw| > |w|, then {cs;c € Fg,ci™ = 1} C T(w); if |sw| < |wl|, then
{es;c € Fg, et =1} C T(w).

Assume first that |sw| > |w| and that ¢?™1 = 1. We have w(cs) = ¢s and hence
w(cd)es = ¢t = 1. Next we assume that |sw| < |w| and that ¢?~1 = 1. We have
w(cs) = 5t and hence w(cl)c, = c; 971 = 1. This proves (e).

2.3. For n € N®,m € N* we have kp0,, = Y men., Nomm/ O, Where
Nogmmr = #{yU € X%; (zU,yU) € Oy, (yU, p(y)U) € O}, }.
‘We have also

——y
Nn,m,m’ - ﬁZzU@(x)U’

where
ZrU,d)(z)U = {(yU7 y/U) € Om; (an yU) € On> (y/U7 qu(LL')U) € qu(n)*l}
with (zU, ¢(x)U) fixed in O¥

m/’

(note that Z,y ¢(z)u is ¥-stable).

Lemma 2.4. Assume thatn =t € T®, m € N®'. We have k,0,, = Otme(t)—1-
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If m' € N? satisfies Npm,ms # 0, then from Lemma [[4] (applied twice) we see
that Z,u, 4 is a point and m’ = tme(t)~'; moreover we have Ny, m m = 1. The
result follows.

Lemma 2.5. Assume that s € S, w € I, m € N(w), sw # ws, |ws| > |w|. Recall
that sms~! € N(sws). We have

ksem == Hémé—l .

In this case we have |sws| = |w| + 2. If m’ € N? satisfies Ny, ym # 0, then
from Lemma [[4 (applied twice) we see that Z,y 4myv (in §23 with n = 3) is a
point and m’ = $mg($)~!; moreover we have Ny, . m' = 1. The result follows.

Lemma 2.6. Assume that s € S, w € I, m € N(w), sw = ws, |ws| > |w|. Write
m =it where t € T satisfies w(t?)tw? = 1.

(a) We have ws(t) = $ms~! € N(w). We have s(t)"*es = sm~1tém € Ty,
(sm~tsm)at! = 1.

(b) For y € Ty we have $ity = smy € N(sw) if and only if y1=' = s(t) e, =
sm~1ém. There are exactly q — 1 such y; they are all automatically in T2.

(¢) We have

yeT;yi~1=sm—1sm

The equalities in (a) are easily checked; the inclusion $ns~! € N(w) follows
from §22(c). We have s(t)"'tes € Ts. To prove (a) it remains to show that
(s(t)"Mtes)? = 1. We have $i? = w?$ and hence w? = $i?s~! = s(v?) =
w2cs(asw™2). Thus we have ds(as(=?)) = 1, that is, d,(as(w(t?)t)) = 1. Since
w(a) = g it follows that d,(as(t971)) = 1 and hence (ds(—as(t)))?! = 1. Thus
a) holds.

From our assumptions we have that w(y’) = 3’ and s(y’) = ' ~! for any ¢’ € Ty;
since s(t)t~! € Ty, it follows that w(s(t)t~1) = s(t)t~1. Moreover we have w(s?) =
52. Hence for y € T, we have

sw(tlyty(sw)? = s(w(t?)tw?)sw(y?)s(t)  Htys? =y~ 9s(t) " Htys®

This equals 1 if and only if y9~! = s(¢)~1¢52. This proves the first sentence of (b).
The second sentence of (b) follows from (a).

We prove (c). For m’ € N? and (xU, p(x)U) € O:/;L, fixed, the variety Z,u,4(z)u
in 23] (with n = $) can be identified with

ws@u = 12U € X; (2U,2'U) € O, (2'U, ¢(2)U) € Oz}

(We use Lemma [[.4]and the equality |sw| = |w| + 1.) By Lemma L8, Z/ , ., is
an affine line if m’ = $ms~!, is a point if m’ = $émy for some y € T, and is empty
otherwise. Hence ﬁ(Z;Z’U ¢(I)U) is g if m' = $ms~1, is 1 if m’ = smy for some y € T,

and is 0 otherwise. Now (c) follows from (a), (b).

Lemma 2.7. Assume that s € S, w € I, m € N(w) and that sw = ws, |ws| < |w|.
Write m = it, where t € T satisfies w(t?)tw? = 1.

(a) Fory € T, we have sms~'y € N(w) if and only if y?=* = 1.

(b) We have s(t)t te, =m~tsms € TO.

(c) Fory € Ts we have smy € N(sw) if and only if y?+1 = s(t)t e, = m~1éms.
There are exactly q + 1 such y; they are all automatically in TE.
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(d) We have

ks0m = q Z Osmy + gz + (¢ + 1) Z Oims—1y-

yeTs;yitl=m—15ms y€Ts;y9~1=1,y#1

We prove (a). We have

d(smsry)smsty = sp(m)s tylsmsty = sm~ly " Ims Ty

1

=sw(y s ly=$ylsly=y ly=y'"

This proves (a).

The equality in (b) is easily checked. We have s(t)t"'e; € Ts. To prove (b)
it remains to show that (s(t)t les)?9™t = 1. We have §1i? = w?$~! and hence
w? = § %5 = s(i?) = w?ds(asw™2). Thus we have d,(as(w™2)) = 1, that is,
as(as(w(t9)t)) = 1. Since w(as) = a;! it follows that d,(as(t79T1)) = 1 and
hence (cs(—as(t))) 9Tt = 1. Thus (b) holds.

We prove (c). We have

B(smy)smy = 50(m)ylémy = sm~ylsmy = st~ tylsuty
= sttty sty = st tw(y?)sty = sty 95ty
= s(t 7y ety =y s(t 7 tes.

This proves the first sentence of (c¢). The second sentence of (c) follows from (b).

We prove (d). For m’ € N? and (xU, p(x)U) € OZ)@' fixed, the variety Z,u ¢ (v
in 2.3 (with n = §) is

(i) an affine line if m’ = $my for some y € Ty such that $my € N(sw),

(ii) an affine line minus a point if m’ = $ms~ty with y € Ty — {1},

(iii) a union of two affine lines with one point in common if m’ = $ms—1.

This is a geometric reinterpretation (and refinement) of the formula [[7(e), in
which the number of ®-fixed points on these varieties enter; this number is @ in
case (i), is @ — 1 in case (ii), and is 2Q) — 1 in case (iii). It is enough to show
that the number of 9-fixed points on Z,y, 4y is ¢ in case (i), is ¢ + 1 in case
(ii), and is 1 in case (iii). This is verified directly by calculation in each case. (In
case (iii), ¢ interchanges the two lines, keeping fixed the point common to the
two lines.) We give the details of the calculation assuming that G = SLy(k), T
is the diagonal matrices, TU is the upper triangular matrices, $ = ((1) _01), and ¢
raises each matrix entry to the gth power. We have N? = {Mg;a € Fgia+a=
0} U{M};a € F5;att = 1}, where M, = (9 -¢"), M} = (& % ). We must
show:

ifv € G, 27 t¢(x) = M,, then t(yU € G/U;y 1o(y) € UMU, 2~y € UsU) =
14 6apq (here a? +a=0,b7 + b= 0);

ifv € G, v71¢(x) = My, then #(yU € G/U;y 1o(y) € UMpU, 2=ty € UsU) =
q (here a’7 +a' =0, b7 =0).

Setting y = xD we see that we must show that if 6 + b = 0, then:

if a? 4+ a =0, then §(DU € (UsU)/U; D™*M,¢(D) € UMU) =1+ (1 — da.p)q;

if a’9t1 =1, then #(DU € (UsU)/U; DM, ¢p(D) € UMU) = q.

Equivalently, we must show that if 69 4+ b = 0, then:

(e) if a? +a =0, then #(d € Fp;d9™a—a ™t =b) =1+ (1 — 6a)q;

(f) if /91 =1, then #(d € Fg; —d’d? +a'~'d =b) = q.
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If a = b, the equation in (e) is d?*! = 0 which has one solution, namely d = 0. If
a # bthe equation in (e) is d?*! = ba~1+a~2. Here (ba '+a~2)? = ba~1+a=2 # 0.
Hence the equation in (e) has exactly ¢ + 1 solutions. Setting d’ = a’~1d, the
equation in (f) is —d'74d’ = b and this has exactly d solutions in Fi since b7+b = 0.
This completes the proof.

2.8. Let T(w)* = Hom(T'(w),C*). Since e, is surjective (see §2.2(d)), the map
T(w)* — s, ( = (e, is an injective homomorphism. Let s,, be the image of this
homomorphism. We have s,, = {v € s; w(v)v? = 1}. Note that if w € W,z € W,
then z(5y) = S,4p.-1.

For v € s,, we denote by v,, the element of T'(w)* such that v = v, e,. We set
Ry = ker(ey).

For any w € I, n € N(w), and v € 5,, we define a;, , € ' by

Uy = Z Vo ()0t = [Ru| ™ Z v(7)0pr—a.
teT (w) TeT®

To verify the last equality we note that the sum over t € T(w) is equal to
R0t ere Vi (€w(7))0ne,, (). We show:

(a) Ifwe I,ne N(w),7 € T* t € T(w), and v € s, then a},, , = v, (t")a], ,
and a’TnT,q’V = V(Til)a{my. In particular, the line spanned by ay, ,, depends only on

w,v and not on n.
Indeed, we have

a;zt,u = Z Zw(t/)ontt/ = Z Zw(t”til)ent” = Zw(til)a%,w

t'eT(w) t""eT(w)
a;”I’LT_q,V
=Rl ™ D ()0 —al Rl T DY V(TN e = V(77 al,
TeT® T ET®

This proves (a).

From §2.1] §22(a), (b), we see that:
(b) if {tw;w € Wa} is a collection of elements in T such that wt,, € N(w) for

all w € Wy, then {ay, ,;w € Wa,v €5y} is a C-basis of F'.
For v € s,w € I,n € N(w),v' € 5, we show:
(c) 1'/“:1,1/’ = 5l,,l,fa;)l,,.
Indeed, we have
L), = R TP vk Y V(70—
TET® T'eT®
= ‘ﬁwl_lqu)'_l Z V(T) Z VI(T/)GTT/nT’*qt*q'
TET® T'eT®
Setting 77’ = 7; we obtain

Lal, =R TP D V(m) Y v (T 0, e,

T eT® TET®
-1
= S0 |Ru| ™t D V()0 ey = Suprty
T1ET®

This proves (c).
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For s € S, w e W,n € N(w),v € s,, we have (using (c)):
(d) Tga;w, = qil[y, Gislksan, .
Lemma 2.9. Let s € S,w € I,n € N(w),v € 6,. Note that sv € sg,5. Assume
that sw # ws, |sw| > |w|. We have
Tsa;z,y = qil[Vv ds}alsns'—l,su'

Using §2.8(d) we see that it is enough to show

/

/ _
ksan,v - a’.éns'_l,su'

Using Lemma 275 and the equality |&,| = |Rsws| We see that
ksay, , = |Ro| " Z v(T)ksO rpr—a

TeT?®
= |ﬁw‘71 Z V(T)as'TnT_qs'—l
TeT?®
= |ﬁsw8|_l Z v(8(1)0r sns—171-a = a;nkz}*lvsy'
TIET®

The lemma is proved.

Lemma 2.10. Let s € S;w € I,n € N(w),v € s,. Assume that sw = ws,
|sw| > |w|. If s € W, we set A =1; if s ¢ W, we set A = 0. Note that we have
SV € §y,; moreover, if A = 1, then sv = v € s4,. We set z = sn"'én € Ty; see
Lemma Z6(a). We have 247! = 1; see Lemma Z6l(a). We have

Tsay,, ! if A=0,

v = a’énéfl,sy
7;04“” = a;z,z/ + (qil + 1)a{énu,u ZfA =1,
where u € TE is such that u?~! = z (see Lemma 26(b)).
Using Lemma 2.6(c) and §2.8(d) we have Tia;, , = A+ B, where

A=|8,|™ Z V(T)Osrni-ag—1,

TeT®
and
B=q 'Ryl > V(T)0srnr—ay-
TET® yeTs;yd—t=s1in—1r—lirnr—4
We have used that v(e;) = 1 (and hence [v,&,] = 1). Indeed, we have v(es) =
Vo (ew(€s)) = vy, (w(eg)es) = v, (1) = 1 since w(es) = €.
In the sum A we set 7/ = s(7). We get

A= |‘ﬁ”w|_1 Z (Sy)(Tl)et’s'néflt’*q = als‘ns‘fl)sy-
TeT®
We now show that if A =1, then

!/ !/

a

a’s‘ns’*l,sv - Ynue

We write n = 1wt with t € T. We have sns~! = swts~! = wsts~! = nt~1s(t). By
Lemma [Z6)(a) we have (¢~ 's(t))9t! = 1. Since t~'s(t) € Ty we have t7 s(t) = 47"
with t; € T®. Thus we have sns~! = nt‘{_l and hence a;m’,lyy = a;trl)u
!

a’_
t7tntd

= ay, ,, since v(t;) = 1. This proves our claim.
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‘We now consider the sum B. In that sum we have

1 1

s7in "t et = s(71)én " tas(T) e e

=én"Yns(1) " trrUs(77) = 2(7s(r) ") Y

Thus we have
B = q71|§w‘71 Z V(T)es'nw(‘r)T*‘Iw
()€Y
where Y = {(1,y) € T® x Tg;y97 1 = z(rs(7)"1)179}. Let V' = {(7',u) € T® x
(T2);u?™t = 2z}, The map € : V' — Y, (7, u) — (s(7),s(7")97' ") is a well
defined bijection. Now the sum B can be written in terms of this bijection as
follows:

B=q &, Z V(s(7')0snw(s(r))r'—au-
(" u)ey’
We have a free action of T on )’ given by e : (7/,u) — (7's(e),ue"9"1). Note
that the quantity 0s,,(s())r —au) 15 constant on the orbits of this action. Hence if
Y| is a set of representatives for the T;I) -orbits on )’ we have

B= q_l“ﬁ’w|_1 Z (Sy)(T/)V(e)eT/énT’*‘lu'
(7" Y) €V} e€TS
Note that Y .qe v(e) = 6(¢*> —1). In particular, if A = 0 we have B = 0. We now
assume that A = 1. For any u € T such that u?~! = 2 we set

By =q &l Y (1) (70 snr—su-

T'ET®

We have B = ZHGT?;M,IZZ B,. For any u as above and any e € T we have
B! _._, = B, since y(e) = 1. Ifu,u in T are such that u?~! = u/¢71 = 2, we have
u' = ué, where é € T2 satisfies €2~! = 1. Hence we have é = e~ for some e € T
so that v/ = ue=9~!. Thus we have B,, = B,. We see that B = (¢ — 1) B,, where
u € T is such that u?~! = z. We have B, = ¢~ "|Rqu|Rw| "}, . It remains
to show that (¢ — 1)[fsw||Rw|™" = ¢ + 1 or equivalently, that |T(sw)||T(w)|~' =
(¢ — 1)(g + 1)t This follows from the following fact: there exists ¢, ¢’ in N such
that |T(w)| = (¢ — 1)¢(¢ + 1), |T(sw)| = (¢ — 1)t (¢ + 1)¢~'. The lemma is
proved.

Lemma 2.11. Let s € S;w € I,n € N(w),v € 8,. Assume that sw = ws,
|sw| < |w|, s ¢ W,,. Note that sv € s,,. We have

/ /
7;an,l/ = T0gn5-1 5p-

Using Lemma 2.7(d) and §2.8(d) we have Tsa;, , = A+ B where
A= q_l‘ﬁ“w‘_l Z CyV(T)géTnT_qé_lyv
TET® yeTs;yi—1=1
where ¢y = ¢+ 1ify#1,¢,=1ify=1and
B = ‘ﬁ’w‘il Z V(T)es’ﬂm-*qy-

TET® yeTs;yitl=rin—1r—lgrnr—a4
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We have used that, as in the proof of Lemma 210, we have v(e;) = 1 (and hence
[v,ds] =1). In the sum A we set 7/ = s(7). We get

A=gq R Z y(SV)(T)071sng—171-ay.
T'eT® yeTsyi—1=1

For y € Ty such that y9=! = 1 we can find y’ € T, such that y'9*! = y (there are
¢+ 1 such y') and we have automatically 3’ € T®. Thus we have

A = q71|ﬁw|71(q —+ 1)71 Z Cyl—q—l (Sl/) (T/)g.rls'né—l,rl—qy/—q—l
TET? y eTE

= q_1|ﬁw|_1(q+ ].)_1 Z Cyl—q—l(Sl/)(T/)gleléné—ly/—qT/—q.
TET? y €T
With the change of variable 7'y’ = 7" we obtain
A: q_llﬁw|_l(Q+ 1)_1 Z Cy'_q_l(SV)(T”)V(y/)a‘r'”éné_lT”_q'
T”ET‘I’,yIET;P
(We have used that s(y’) = 3’ ~1.) Using our assumption that s ¢ W, we have

Z cyr—a—1v(y')

y' eT®
= > vW)+a+y D> vl
Yy €TE;y'ati=1 Yy €TEy at1#£1

=(q+1) > v@)-a¢ Y. vl

y' €T Y ETEy at=1

=—q¢ > vl)=-a Y, Y
y €TEy a+1=1 y €Tdy a+1=1
= —qi(y € TE;y/ 9" =1) = —q(q +1).
It follows that

A= q71|ﬁw|71(q + 1)71(—q)(q + 1) Z V(Tl/)e‘r”éns‘*l‘r”*q = _a/s'ns'*l,su'
7_//6T<I>
It remains to prove that B = 0. We set z = n~'$ns € Ty; see Lemma 27|(b). In
the sum B we have

1—-1

Tin Yy Yernr 9 = 7t

77 s(T)énss(T) 74
= 797s(1) 'n " énss(1) "9 = 2r7rs(7) " ts(T) "1 = 2(1s(T) 1)L
Thus we have
B = q_llﬁw|_1q Z V(T)eé*rn‘r*qu
(ryy)ez

where Z = {(1,y) € T® x Tg;y9™t = 2(rs(7)71)9"1}. The group T2 acts freely
on Z by e : (1,y) = (re,ye?™). (We must show that the equation yi*t! =
2(1s(7)71)?*! implies (ye?t1)4tt = z(res(re)1)4TL; it is enough to show that
(@)’ = ¢2(a+1) and this follows from €4~} = 1.) We show that the last sum
restricted to any T2-orbit is zero. Since Osrnr—ay is constant on any T, ®_orbit it
is enough to show that ZeeTq, v(e) = 0; this follows from our assumption that
s ¢ W,. We deduce that B = 0. The lemma is proved.
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2.12. For w € I let ||w|| be the dimension of the —1 eigenspace of the linear map
induced by w on the real vector space R ® Y. We have |w| = ||w|| mod 2. For
w € N(w),v € 5, we set

I q‘“wHHwH)/Qa;# c F.
We have the following result.

Lemma 2.13. Let s € S,w € Wa,n € N(w),v € s5,,. Write n = wt wheret € T.
We have:

(a) Tsln,y = [V, Qslagns—1 5 if sW # ws, [sw| > |wl;

(b) Tsln,y = Geng—1.5 if sw = ws,|sw| > |wl|,s ¢ W;

(¢) Tstny = Gny + (4 )asnu,, (where u € TE is such that ui™! = én~tén =
s(t)"ltes; see Lemma Z8(a), (b)) if sw = ws, |sw| > |w|,s € W,;

(d) Tsn,y = —Aspg—1 5 if s =ws, [sw| < |wl|, s ¢ W,.

(

a) is a reformulation of Lemma 2.9 (b), (c) are reformulations of Lemma
(d) is a reformulation of Lemma 2111

3. PROOF OF THEOREM [0.4]

3.1. We preserve the setup of §I.1l Let L be the subgroup of Y generated by
{as;s € S}. Let S’ be a halving of S, that is, a subset S’ of S such that s3s9 = s981
whenever s1, so in S are both in S’ or both in S — S’. (Such S’ always exists.) Let
Wy =Y, w—ry, and Wo — L/2L, w +— b, = bf)/ be the maps defined in [L5], 0.2,
0.3]. From [L3, 0.2, 0.3] and from the proof of [L5] 1.14(a)] we have:

(i) r1 =0, rs = &, for any s € S, by =0, bs = &, for any s € S/, by = 0 for any
se S -5

(ii) for any w € Wa,s € S such that sw # ws we have s(ry) = Tsws, S(by) =
bsws + As;

(iii) for any w € Wa,s € S such that sw = ws we have rg, = ry + Nds,
bsw = by + lds where [ € {0,1}, N € {-1,0,1}.

(iv) for any w € Wa, s € S such that sw = ws, [sw| > |w| we have s(ry) = ry;

(v) for any w € Wa, s € S such that sw = ws we have s(b,) = by, + (1 — N)d;
where NV is as in (iii).

Moreover, by [L5l 0.5],

(vi) if ¢ € Fg,c?™! = ¢, the element ny, . = ry(c)by(e) € K~ (w) belongs to
N(w).

Here ry(c) € T, by (€) € T are obtained by evaluating a homomorphism k* — Y
at c or e. Note that by (€) = by, (€)1, From [L5, 1.18] we deduce:

(vii) in the setup of (iii) we have N' = (w : s).

The following equality complements (iv):

(viii) for any w € Wa,s € S such that sw = ws, [sw| < |w| we have s(ry,) =
T + 2(w : 8)ds.

Indeed, using (iii), (iv), (vii) we have

$(rw) = $(rsw — (W 8)s) = Tsw + (Wi 8)ds = T + 2(w : 8) .

For any w € Wa, any ¢ € Fg such that ¢?~! = ¢, and any v € s,, we set

Qw,c,v = Qny, c,v-

This is well defined by (vi). By §2.8|(b),
(a) for any ¢ as above, {ay c;w € Wa,v € 5,,} is a C-basis of F'.



HECKE MODULES BASED ON EXTENDED WEYL GROUPS 263

In the remainder of this section we assume that §0.3[a) holds. We have the
following result.

Proposition 3.2. Let s € S,w € Wo, v € 5,,. Let ¢ be as in BT (vi). We have
(@) Tsw.cp = Asws,c,sv if SWF ws,|sw| > |w|,s € W,;

b) Tetw.er = Asws.csr + (@ — ¢ V) aw . if SW # ws, |sw| < |w|,s € Wy;

) TsOw,ep = w,ep + (@ + 1)asw,cp if sw=ws,|sw| > |w|,s € W,;

d) Tsaw cv = (1_qil)asw,c,u‘k(q_qil_l)aw,c,u if sw = ws, |5w| < |w|as e Wy,

e) Tstuw e = [V, Os|asws,c.sv if swF# ws,|sw| > |w|,s ¢ Wy;

) Tstw.cp = [V, 6] Lasws.csn if SW # ws, |sw| < |w|, s & Wy;

g8) Tstw,cp = gw(ei_(ws))aqusy if sw = ws, |[sw| > |w|,s & Wy;
h) Tetwer = _&w(ek(“"s))ﬂw(cgz(“))aw,c,sy if sw = ws,|sw| < |w|,s ¢
w,.

This will be deduced in §§3.3H3.8 from Lemma 213 with n = n,, . as in §37I1(vi),
using the equality @t = v, (t71)a, ,» where w' € Wa,n' € N(w),v' € syt €
T'(w'"), which follows from §2:8|(a).

3.3. Assume that we are in the setup of Proposition B.2(a) or Proposition B.2(e).
Using Lemma 213[a) and §3.1(ii) we obtain

7-saw,c,u = [V, ds]a’s'u')rw(c)bw (€)§—1,sv

SV g5 (800 (€)720 (€) 71875005 (€)Dsuns (€) ) Osaws .50

sws(bsws(€)€s7asws(C)_lesrsws(c)bsws(6))a5ws,c7su = [V7 OVés]asws,c,sw

This proves Propposition B2(e). Now Proposition follows also since in that
case we have [v, &) = 1. (It is enough to show that v(e;) = 1. This follows from
s € W,.) This proves Proposition B.2(a).

]

= [V Q] oras () b ()~ ds =174 ()b ()51 5
]
]

B

3.4. Assume that we are in the setup of Proposition B:2(g). Using Lemma 213|b),
$1iv), (v), (vii), we obtain

Tstw,cr = Gsior,, ()b ()51 50 = Givs(r,, ()b (e)).sv

= éwrw(C)bw(e)ei_(“’:S),su = gw(ei*(w:s))aqusw

This proves Proposition B2(g).

3.5. Assume that we are in the setup of Lemma [ZI3c) with n = n, .. Using

$31iv), (v), (vii), we have
ul™! = 5(ry(c)by (€))L ru(c)by (e)es = s(by(e))  Thy (e)es

(a) — 6;—(w:s)€s — Ggw:s).
For [ € {0,1} we show:
(b) Vi (e eu™) =

Since v is 1 on T, v,,, must be trivial on eg, (T), that is, on the image of T® —
T2, t s t9%1 which is the same as {t' € T,;#'9"! = 1}. Since cngs)elsu’l e T, it is
enough to show that

(c) (c(w:s)elu_l)q_l =1.

S S
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Using (a) and the equations ¢?=! = ¢, €71 = 1, we see that the left-hand side of
(w:s) —(w:s)
s €s

(c)ise = 1. This completes the proof of (b).

We now assume that we are in the setup of Proposition B.2l(c) (which is the same
as the setup of Lemma 2I3|(c) with n = ny ). From Lemma 213|c) we deduce
using (b) and §3.11(iii) that for some [ € {0,1} we have

Tstw,ep = tw,er = (4 + Dsir, (c)bu ()uv

= (@4 Dsire (€)bew (rew (€)= baw ()7 (€)bu (u,w

= (¢ + D)V (7500 (€)bsan (€)70 (¢) " b (€)u™ ) s e

= (q+ vy, (ngzs)eiu_l)asw,c,v = (¢+ asw,c-
This completes the proof of Proposition B.2l(c).

3.6. Assume that we are in the setup of Proposition B2(h). From Lemma 2T3|(d)
we deduce using §8.T(viii):

7.dsa'w,C,l/ = _as'u')rw(c)bw(e)s'*l,su = _dws(rw(c)bw(e))7sy
C;Q(w:s)ei—(w:s))

= _awrw(c)bw(E)Ci(ww)ééi(ww)vsy = &w(

Qo c,sv
= s, (65~ 51, (€2 ), o0
This proves Proposition B2|(h).
3.7. Assume that sw # ws, |sw| < |w|. Then Proposition B.2(a), (e) are applicable
with sws, sv instead of w, v so that
Tstsws,c.sv = [SV, Os]@uw,c,u-

We apply 7,7 to both sides; we obtain

T awew =Ty ytu e = [0, 85) ™ Gsus e, 50
Using §I.8(i) we deduce

Tew,ewr = 6(0 = 41w e = [0, &)™ s c, 50
where A =11if s € W,, A =0if s ¢ W,. This proves Proposition B:2(b), (f). (We
use that [sv, &) = [v, ds] is 1 when s € W, since v(es) = 1 in that case.)

3.8. Assume that s,w,v are as in Proposition B.2(d). Then Proposition B.2(c) is
applicable to sw, v instead of w, v and gives:

(a) Tssw,ep = Asw,ew + (¢ + 1)@w,cn-
We apply T to (a). We obtain
TsTstsw,er = Ts@sw,ew + (@4 1) Tsuw e
Using §I.8(h) we deduce
Gswew + (4= 4 ) Ts0sw,er = Tstswew + (4 + 1) Tetu,c
and hence, using (a):
aswew + (0= a0 = Daswer + @+ Dawes) = (+ 1) Tt e

Dividing by ¢ + 1 we get Proposition B:2[(d). This completes the proof of Proposi-
tion
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3.9. We choose a generator «y of the cyclic group F¢) so that we have an isomorphism
(a) Z/(Q-1)Z = F}
which takes 1 to ~.

Let z € Z be as in §0.2 Let ¢ = y*at1)/2 ¢ F5. (If p = 2 so that (¢ +1)/2
is not an integer, this is interpreted as a square root of 4*(4t1) which is uniquely
defined.) If p # 2 we have ¢9~! = 4*(¢’~1)/2 = ¢ by the choice of z. If p = 2, then
(c71)2 = ()41 = 42(@~1) = 1 and hence ¢4~> = 1 = ¢. Thus in any case we
have c?~! = e.

We have an isomorphism of groups F; ® Y = T® 2@y — y(z). Using (a) this
can be viewed as an isomorphism of groups (Z/(Q —1)Z)®Y = T®; it takes n®y
to y(y™). We have a pairing

():((Z/(Q-1Z)®Y) x X, > C*
given by

G @) = (/T L),

where y € Y, € X, a € Z, d € Z. This pairing identifies X, with Hom((Z/(Q —
1)Z) ® Y,C*) = Hom(T?®,C*) = 5. This identification is compatible with the
natural W-actions on X, and s; it induces an identification X, = {(w,v);w €
Wo,v € 5, }. Thus, the basis §3.1(a) of 7’ can be naturally indexed by the elements

of X,. We shall interpret the quantities
il s (), 020

which appear in Proposition in terms of the corresponding parameter in Xq.
Assume that (w,v) € Wy x s (with v € 5,,) corresponds to (w,A) € X,. Then for
any s € S we have

(b)
We show:
(c) If sw = ws, |sw| < |wl|,s ¢ W,, then

s, (e 2@ %)) = exp(2mV/—1(w : 8)z| s, A)).
Let & = v*. We have ¢2t! = ¢2 and hence
s, (€5 2%)) = s, (67 0) 1Y) = sy, (e (67 1))) = (s) (7)) = w(E").

It remains to show:

(d®wy,

(G5(7)) = exp(2mv/~1Gs, Al).

™~

v(ds(v?) = exp(2mv/—1z| s, A)).
This clearly follows from (b).
We show:
(d) If sw = ws, then ﬂw(eif(w:s)) = 0w, s),s-
If p = 2, both sides are 1. Thus we can assume that p # 2. We must show that

s, (e, ) = exp(2mV=1((q — €)/2)(1 = (w : 8)) [, 8A]),
where e = |w| — |sw| = £1. It is enough to show that
s, (e5) = exp(2ny/=T((q — €)/2) ks, 57)).
We have ¢, = (7§q78)/2)q+6 = ey (75‘176)/2) so that
s, (€s) = 1, (ew (7 V2)) = (sv)(3{17972).
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Thus it is enough to show that
(5)((7)) = exp(2my/=T[ s, 5A)).

This clearly follows from (b).

We show:

(e) If s € S, then [\, s] = [v, ds].

If p = 2 both sides are 1. Thus we can assume that p # 2. We must show that we
have [, s] = 1if and only if [v, &s] = 1 or that exp(27v/—1(1/2)(Q—1)|cs, sA|) = 1
if and only if v(d(€)) = 1 or (using (b)) that v(ds(y)) /(@D =1 if and only if
v(és(€)) = 1. This follows from the equality 4(1/2(@~1) = ¢,

From (b) and the definitions we see that:

(f) If s € S, then we have s € W), if and only if s € W,.

We now see that Proposition implies the truth of Theorem in the special
case where k is as in §I.J] But then Theorem [(0.4] follows immediately for any k
as in §0.0 such that the characteristic of k is 0 or p. This completes the proof of
Theorem [0.4]

4. THE GENERIC CASE

4.1. In this section we assume that k = C and that §0.3|(a) holds. We have X; = X.
Hence X1 = {(w,\) € Wa x X;w(\) = —A}.

Until the end of §4.2 we fix a W-orbit O in X which is contained in the image
of Xq under Xz — X. We can find an integer ¢ > 1 such that e[y, \| = 0 for
any y € Y and any A € 0. We can write ¢ = Hpem p°? where B is a finite set of
prime numbers and ¢, > 1 are integers. Let P’ be the set of prime numbers which
do not divide 2¢. Note that P NP’ = (. Hence if p € P, p’ € P, then p’ is a unit
in the ring Z/p°»Z and hence for some integer a, > 1 independent of p’ we have
p'® =1 in Z/p°rZ, that is, p» divides p’* — 1. Let S be the set of all integers
z > 1 such that z is divisible by Hnem ap. Then for any p € PB,p’ € P’ and any
z € 8, p°» divides p’* — 1. Hence for any p’ € ' and any z € S, ¢ divides p'* — 1.
Let 9 be the set of all numbers of the form p’# with p’ € ',z € S. Then we have
(g—1D|y,A\| =0for any ¢ € Q, any y € Y, and any A € O. Hence

(a) (g—1)A =0 for any ¢ € Q and any A € O.

It follows that

(b) if (w,\) € X; and X € O, then (w,\) € X, for any ¢ € Q.

Indeed, we have w(A) = —\ and we must show that w(A) = —¢\. It is enough
to show that ¢\ = X and this follows from (a).

4.2. Let Q be the set of squares of the numbers in Q. We have Q € 9. We now
fix ¢ € Q. We have ¢ = ¢’2 with ¢’ € Q. Note that ¢ = 4¢ + 1 for some ¢ € N. Let
(w,\) € X; with A\ € O (so that (w,)\) € X, and (w,\) € X, by §&II(b)) and let
s € S. We show:

(a) [A, s] defined as in §0.21in terms of ¢ is equal to 1.

Since (w,\) € X, we have [, A\] = ¢//(¢'*> — 1) with ¢’ € Z. Hence | s, \| =
e/(¢*> — 1) with e = ¢/(¢’? + 1). Since e is even we see that (a) holds.

We show:

(b) If sw = ws, |sw| > |w|, then &, ;s defined as in §0.3in terms of ¢ is equal
to dy, . defined as in §0.5]
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It is enough to show that exp(2mv/—1((¢ + 1)/2)|ds, A]) = exp(2mv/—1| s, A])
or that (—=1+(¢+1)/2)| s, A] =0, or that 2¢|cds, A| = 0. This follows from §0.5(b).

We show:

(c) If sw = ws, |sw| < |w|, then J, x,s defined as in §0.3] in terms of ¢ is equal
to 1.

It is enough to show that

exp(2mV/~1((q — 1)/2)[és,A]) = 1

or that ((¢ — 1)/2)|és,A] = 0. Since A € X,/ we have (¢’ — 1)[ds,A] = 0 by the
argument at the end of §0.31 We have (¢—1)/2 = (¢'—1)(¢'+1)/2 where ¢ +1 € 2Z
and hence

((g—1)/2)[as,A] = ((¢' +1)/2)(¢" — 1)] @5, A] = 0.
This proves (c).

Proposition 4.3. Let q be an indeterminate and let M denote the C(q)-vector
space with basis {a, x; (w, ) € Xl}. There is a unique action of the braid group of
W on M in which the generators {Ts;s € S} of the braid group applied to the basis
elements of M are as follows. (We write A=1if s€ Wy and A =0 if s ¢ W).)

(a) 7;510,)\ = ésws,)\ Zf sw 7& ws, |Sw| > |w|7

(b) Tsdw . = Asws.sx + A(q — g7 Hay \ if sw # ws, |sw| < |w|;

(¢) Ts@wr = 0,y ox.s@uw,sx + A(Q + 1)agy x if sw = ws, [sw] > |w];

(d) Tsawr = A1 —q Hagwr +A(g— g 1)a, \ —awsy if sw = ws,|sw| < |w]|.

Here &, ., = 1 is as in §0.5. (It is 1 in the simply laced case; it is also 1 if
A=1)

It is enough to prove the proposition with M replaced by the C(q)-vector space
Mo with basis {&, x; (w,\) € X1, \ € O}, where O is any W-orbit in X.

Assume first that O is as in §@1] and let ¢,9,9 be as in §&2A Let Q' = {q €
0:2% < ¢% — 1}. Clearly, €' is an infinite set.

Let Mo be the C-vector space with basis {&, x; (w, \) € XA\ e 0O}. By #.1i(b)
we can identify Mo with a subspace of M, (for any ¢ € Q) by &, — Q-
This subspace of M, is stable under the operators 7,s € S attached in Theorem
04 to z = ¢, provided that ¢ € Q. (Note for ¢ € Q' we have 2z ¢ (¢> — 1)Z

since 0 < 2fe < ¢*> —1.) Hence T; : M, — M, can be regarded as an operator

s(q) : Mo — Mo for any g € Q. This operator is given by a matrix in the basis

of Mo given by Laurent polynomials in ¢ with integer coeflicients independent of
g. (This follows from the formulas [0.4[(a)—(h), from §2(a), (b), (c) and from the
equality exp(2my/—1(w : s)e{ds, A)) = 1 for A € O.) Since g runs through an infinite
set, we deduce that the braid group relations satisfied by the 7;((1) remain valid when
q is replaced by the indeterminate . We see that if we identify Mo = C(q) ® Mo,
then there is a unique action of the braid group of W on M in which the generators
{Ts; 5 € S} of the braid group applied to the basis elements of M are as in (a)—(d)
above.

We now consider a W-orbit O in X which is not necessarily as in §.11 We choose
£ € Xk such that the image of 2o in X belongs to O. Let $) be the collection of
affine hyperplanes

{€ € Xg; (&, &) = e} for various & € R, e € Z;

{€ € Xk;w(€) =&+ x} for various w e W — {1}, 2 € X;
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{¢£ € Xk;w(§) = —€ + «} for various w € Wy, z € X such that w + 1 is not
identically zero on X.

We can find £ € Xq such that a hyperplane in $ contains & if and only if it
contains &). Let O’ be the W-orbit of the image of & in X. There is a unique W-
equivariant bijection j : O = O under which the i Jimage of 50 in X corresponds to
the image of & in X. We define an isomorphism Mo = Mo by &, x> &y (-
This isomorphism is compatible with the operators 7, on these two vector spaces.
Since these operators satisfy the braid group relations on M/o (by the first part of
the proof) they will satisfy the braid group relations on Mo. This completes the
proof of the proposition.

4.4. Let v be an indeterminate such that v?> = q. Let M = C(v) ®c(q) M. We
consider the basis {a, x; (w,A) € Xl} defined by a,, \ = v!l*lla, \ where [|w]| is
as in §2I121 The linear maps 7, : M — M with s € S extend to linear maps
Ts : M — M which satisfy the equalities in Theorem [0.6l Thus Theorem [0l is a
consequence of Proposition

4.5. Let H be the C(v)-vector space with basis {7, x; (w,\) € WX}. There is a
unique structure of associative C(v)-algebra (without 1 in general) on H such that
(a), (b) below hold.

(a) TuwaTw 2 = w123 Tww N
if (w,\) € WX, (w',\N) e WX, |ww'| = |w| + |v'];
(b) TonTox =6 nTin + Adgny v (02 =07 %) T w

ifse S, e X, NeX (here A=1ifse W, and A=0ifs ¢ W,). We call H the
extended Hecke algebra. This algebra has been studied in [[2], [L4] (at least when
K = Q). It is similar but not the same to an algebra studied in [MS].

For any w € W we define a linear map 7, : M — M by Ty = 75, Tsy - - Tsys
where s1,89,...,5, are elements of S such that w = s189...8;, |lw| = k. By
Theorem [0.6] this is independent of the choice of sq,...,s;. For A € X we define
a linear map 1y : M — M by 1x(ay,n) = 0xxay,n for any (w,\) € X;. For
(w,\) € WX we define a linear map Twx : M — M as the composition 7,1y.
These maps define an H-module structure on M. (This follows from Theorem [0.6
the relation (b) on M can be deduced from the analogous relation in M,.) From
(b) we deduce that 7,7' : M — M is well defined and we have

(c) T =T — (v* =07t Z 1.

AEX;sEW,,

(The last sum may be infinite but at most one term in the sum applied to a given
basis element of M can be non-zero.) It follows that for any w € W, T, : M — M
is invertible. Its inverse satisfies 7, %, = T, ' Tt : M — M for any wy, wp in W
such that |wiws| = |wi| + [wal.

For any W-orbit O in X we denote by Hp the subspace of H spanned by

{Tw; (w, ) € W x O}

This is a subalgebra of H, this time with unit, namely » 7, 71,x-

For any w € W we set Ty, = > yco Twx € Ho; for any A € O we set 1) =

Ti,x € Hp. We see that the elements 7,1 exist separately in Hp, not only in
the combination Ty, » = Ty 1a.



HECKE MODULES BASED ON EXTENDED WEYL GROUPS 269

We denote by Mo the subspace of M spanned by {a, x; (w, A) € X1, )\ € O}.
Note that the H-module structure on M restricts to an Hp-module structure on
Mop.

5. ON THE STRUCTURE OF THE H-MODULE M

5.1. In this section we assume that k = C. For A € X let Ry = {& € R; |&, \| = 0},
R;\r = RxN R*. Then R) is the set of coroots of a root system and R;\r is a set of
positive coroots for it. Let R; =R, — Ri Let IIy be the set of simple coroots
for Ry contained in Rj\' For each 8 € R let sg 1 Y — Y be the reflection in W
such that sg(8) = —8. Let Wy be the subgroup of W generated by {sg; 3 € Ry}
This is a Coxeter group with generators {sg;f € 14} and with length function
w i Jw|y = 4(8 € Ry ;w(B) € Ry ). Note that for s € S the condition that s € W)
coincides with the condition denoted in the same way in §0.IF this follows from
[L4 1.2(c)].

If w € W, then there is a unique element z € wW) such that z(R}) C R*; we
have |z| < |zul for any v € Wy — {1}; we write z = min(wW)). (See [L4, 1.2(e)].)

We now fix an integer m > 1. We fix a W-orbit O in X,,. For any A, X’ in O we
set

WA ={zeW; XN =2(0),z=min(zWy)} = {z € W; XN = z(\), 2(R}) = R}, }.

Clearly,
(a) [\, N] = [N, \]7Y; moreover, if A, X, X are in O, then [\, N][N,A] C [\, A].
Hence the group structure on W makes
(b) E:={(N,2,A) e Ox W x O;z € [N,\]}
into a groupoid; see [L4] 1.2(f)].

5.2. If A € X, then Ry C R_,x. If (w,\) € X,,,, then #(Ry) = #(R_,nx) so that
Ry =R_,,, and W) = W_,,,». We show:

(a) If A € X, and z € [-mA,m], then z(RY) = R} so that v, 1 u s zuz™' is a
Cozeter group automorphism of W.

We have Z(R)\) = R.» = R_,,» = Ry; moreover since Z(R;f) C R* we have
z(RY) = RY. This proves (a).

Let X0 = {(2,\) € Wy x X;z € [-m), \]}. Note that X% C X,,. For (z,)) €
X0 let Iz = {u € Wy;t.(u)u = 1} be the set of ¢.-twisted involutions of Wy. If
u € Iy, then (zu,\) € X,,; indeed we have (zu)? = 1 and zu(\) = z(\) = —m.
Conversely,

(b) if (w,\) € X,,, we have (w,\) = (zu, \) for a well defined (z,\) € X9 and
u e Iz,)\'

Indeed, let z = min(wW)). Since w(l) = —mA we have also z(A) = —mA and
hence z € [-mA,\]. We have w = zu where u € W). We have w = w™! =
u 27t =27 zuz™t = 271 (u). Since ¢, (u) € Wy (see (a)) we have w € 2~ W,
Since z(RY) = Ry we must have also 2~ }(R}) = R} so that z=! = min(wWW)).
It follows that z = 2~' so that (2,)) € X9. Since 1 = w? = (2u)? we see that
tz(w)u =1 so that u € I, x. This proves (b).

We see that

(c) we have a bijection | |, y)jego Lx = X,, given by (2, \,u) — (zu, \) where

(z,A\) € Xgl,u €I,
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5.3. Let Z be as in §5.1I(b). Let Z° = {(2,)\) € X0; A € O}.
We can view ZU as a subset of Z by (z,\) = (—mA\,2,\). This subset is the

m
fixed point set of the antiautomorphism

N, 2,0) = (N, 2,0 = (=mA, 27 —m))

of the groupoid Z (the composition of the inversion (X, z,\) = (A, =%, \’) with the
involutive automorphism (X, z,\) — (—mM, z, —m) of the groupoid E). Hence
this subset can be viewed as the set of *-twisted “involutions” of this groupoid.

Until the end of §5.8 we assume that m = 1. From Theorem we deduce

(a) If (w, ) € X1, s€8, and s ¢ Wy, then Tg(aw x) = Tasuws,sx-

Note also that in Hp, for s € S,w € W, A € O we have

(b) 7—87;,1)\ = Ewl)\ if s §é Ww()\); 7:117—31/\ = 7:1,51,\ if s ¢ W,\.

Lemma 5.4. Let A € O. Let (w,\) € X1, z € [\, \. Then (z2wz=",\) € X; and
T.awx = Fa,,,-1 ).

The proof is similar to that of [L4, 1.4(c)]. We have w(A) = —A\ and hence
2wz~ (\) = =X since z(\) = X. Thus (zwz~1,\) € X.

We write z = S$gSp_1...51 where s1,...,8; are in S, |z| = k. As in the proof
of [L4, 1.4(c)] we have s1 ¢ Wy, s18281 ¢ Wi, ... 8182...8...8281 ¢ Wy. We
have T, a2 = £8s,ws; 5,2 Sice s1 ¢ Wy; see §5.3(a). We have Ty, a5, 05,50 =
Fag, 5, wsys9,5051 1 SiCE So & W y; see §5.3[a). Continuing in this way we get

Tskask,l...51w51...sk,l,sk,l...slx\ = iask...slwsl...sk,sk...slx\-

Combining these equalities we get
7—zaw,)\ = 7;k ce. 7;13-71),)\ = iask.‘.slwsl.‘.sk,sk..‘sl)\ = iazwzfl,z)\ = :l:azwzfl,)\-

The lemma is proved.
The following result is a generalization of the lemma above.

Lemma 5.5. Let (w,\) € X1, z € [N, \] where \, N are in O. Then (zwz"", \') €
X1 and 7;aw7,\ = :tazwzf17)\/.

The proof is similar to that of [L4l 1.4(d)]. We have w(A) = —X and hence
2wz (N) = =X since 2z~ (\) = X. Thus (zwz"", X) € X.

Since A\, \ are in the same W-orbit, we can find » > 0 and s1,82,...,s, In S
such that, setting

/\0 = )\,/\1 = 81>\,/\2 = 8281>\,...,)\7ﬂ = Sr,r-...SQSl)\,

we have A\g # A\ # Ao # -+ # X\, = X. For j = 1,...,7, we have s; ¢ W, _,
since s;(Aj—1) = Aj # Aj_1 and hence s; has minimal length in s;W,, , and
s; € [Aj,Aj_1]. Tt follows that s,...s251 € [Ar, Ao] = [N, A] (we use §5.I)(a)). We
define Z € W by z = s,...s2512. Then Z € [\, A] (we use again §5.1l(a)). For
J € [1,r] we have s; ¢ W, | s (since \; # A;j_1) and hence, using §5.3(a) we
have

7;jaSj_l...Slg’LUZ~7131...Sj_l,Sj_l...Sl)\ = iaSij_l...sléwz~*131...Sj_lsj,Sij_l...sl)\~
Applying this repeatedly we deduce

7 N 7 7 Az,3-1 3\ = Ta sws—1 ;)\ = ta -1 .
S s2 /s1%zZwz JEA Sp...82812WZ"18182...81,85...8281 ZA ZWZ JZA
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We now apply Lemma [5.4] with z replaced by Z; we see that Tza, » = *az,z-1 x.
Substituting this in the previous equation we obtain

(a) 7';r s 7-527;17-52110,)\ = iazwz—17z>\~
For j € [1,7r] we have s; ¢ W, | 4, (as above) and hence, using §5.3(b) we have

7;]-7;]-,1.4.3123111,)\ = ﬂjsj,l..Aslfaw,)v
Applying this repeatedly we deduce

7;7. ce. 7;27;17—231117)\ = Ts,,.,..szsliaw,)\ = an,/\-
Combining this with (a) gives
7;aw,)\ = :Eazwzflvz/\.

The lemma is proved.

Lemma 5.6. Let (z,)) € Z° and let u € Wy. Let o € . We set 0 = 04
note that |o|yx = 1. Recall that u — v, (u) = zuz=! is an involutive Cozeter group
automorphism of Wy. For any u € Wy we have

(a) nazu,)\ = €13z, (0)uc,\ Zf uo # LZ(O')U, |UU|A > |U|)\,'
(b) 7:razu,)\ = €23z, (s)uo,\ + 63(’1)2 - /U_z)azu,)\ lf uo # Lz (O’)’LL, |U’U|)\ < |’U,|)\,'
(€) Totsur = €sazyr + e5(v+ v asyer if uo = 1(0)u, [uo|y > |ulx;
(d) Toazur = es(v—v azuor +e7(v? —v72 = Dag, \ if us = 1.(0)u, Juo|y <
‘u|>\7

where ey, ..., e7 € {1,—1}.

As in the proof of [L4l 1.4(f)] we can find si,82,...,8, in S such that o =
8182 ...8,-18rSr—-1...851, |0’a| = 2r — 1, §182...5j-1558j—-1...851 ¢ W>\ for j =
1,2,...7—1. We argue by induction on r > 1. When 7 = 1 the result follows from
Theorem[0:6l (Note that zt,(0)uo = ozuo, the condition uo = ¢, (0)u is equivalent
to zuo = ozu and if |o| = 1 the condition |uc|y > |u|y is equivalent to |uo| > |ul.)
Assume now that » > 2. We set s = s1, N = s\, 8 = s(a) € R:\",, u' = sus,
2/ = szs, 0/ = s3 = sos. We have (2/, ) € E), v/ € Wy and o/ € Wy, |0’y = 1,
|o’| = |o| — 2. Moreover, we have s ¢ W). By the induction hypothesis we have

(a’) %/azlu/,,\/ = e’laglzlu/a/)\/ lf U/O'/ # Z/(')'/Z/u/7 ‘U/O'/|)\/ > |u’|>\/;

(b/) %/az/u/7)\/ = e/zao-lz/u/a'/,)\/ + 6/3(1)2 — v’2)azfu/7>\/ lf u'a' 7& ZIO'/Z/UI7 |u/0'\>\/ <
Ju'x;

‘ /|(C/) 7—0"a2'u',)\’ = eﬁiaz’u’,)\’ + eir)('U + /U_l)azlulo./’)\l if o' = Z/O'/ZI’U,/, "LLIO'/|)\/ >
U N
(dl) %/az/u/,)\/:e%(v — ’Ufl)az/u/o./)\/ —|— 6/7(’112 — ’U72 _ 1)az'u',)\/ lf U/O'/:Z/OJZ/’U,/7

[u'o’ | < |[u/]x,
where €f,...,¢e} € {1,—1}. By §53(a), §53(b) we have
7;7:7’az/u/,)\’ = 7:77;az/u’,)\’ = :l:,]:fazu,)\-
Moreover, by §5.3[(a) we have
Tsazuw x = zun; Ts@o /0! N = Bozuo,\s

Ts@zuor v = 8zyuox. Hence (a)—(d) for o, z, u follow from (a’)—(d’) by applying 7
to both sides. Here we use that the condition that z’u'c’ = o'z’u’ is equivalent
to the condition zuc = ozu and the inequality |u'c’|y > |u/|x is equivalent to
the inequality |uo|x > |u|x (conjugation by s is a Coxeter group isomorphism
Wy — W)). The lemma is proved.
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5.7. For any A € O let H), be the C(v)-subspace of Hp spanned by {7, 1x;u € Wy }.
This is a subalgebra of Hp with unit 1y; it can be identified with the Hecke algebra
of the Coxeter group W) (see [L4, 1.4(g), (h)]) so that the standard generators of
the last algebra correspond to the elements 75, 15 of Hy with o € II,.

For (z,A) € 2% let M, ) be the subspace of M spanned by {a,,x;u € I, \}.
From Lemma we see that M,  is an Hy-module and that the action of the
generators of Hy on M,  is given by a formula which is the same (except for the
appearance of certain signs e;) as the formula for the action of the generators of
the Hecke algebra of W) on the module based on the twisted involutions in W)
constructed in [LV].

5.8. We have a direct sum decomposition Hp = @(A’,Z,A)EE T.H,; moreover,
{T:Tulx;(N,2,)\) € E,u € Wy} is a basis of Ho compatible with this decom-
position and it coincides with the basis {7, 1x; (w,\) € X1,A € O} of Hp. (See
[L4, 1.4(d)].) Similarly, by §5.2(b), we have a direct sum decomposition My =
@(2,5\)650 ME,S\ where Ms,i is as in §5.71 From Lemmas and we see that
the direct sum decompositions of Hp and My are compatible in the following
sense:
(EHA)ME,S\ c 55\,)\Mzz~z*1,z(5\)'

Moreover the action of the basis element T, 7,1y = (T:1,)(7,1,) of Hp on a basis
element a , 5 of M is particularly simple: the operator 7.1y applied to a basis

element a, , 5 is 05 , times another basis element; the operator 7,1, applied to

a basis element a. , 5 is as in §5.7]if A = X and is zero if X # .

5.9. Results similar to those in Lemmas [5.4H5.6] and §§5.7), 5.8 hold for Mo when
m = q with (p,q) as in 02 and O C X,,, except that in this case the £ signs in
Lemmas and §§5.7 5.8 have to be replaced by roots of 1 of possibly higher
order.

6. PROOF OF THEOREM [0.0]

6.1. We now fix an integer m > 1. Recall from §0.8 that M,, is the C(v)-vector
space with basis {a, x; (w, A) € X, }. We fix a W-orbit O in X,,,. Let Mo be the
subspace of M, spanned by {a, x; (w,\) € X, A € O}.

For any A € O let Hy be as in §5.71 For (z,\) € Z° let M, \ be the subspace
of Mo spanned by {a,x;u € I, }. By [LV] applied to the Coxeter group W
with the involutive automorphism ¢, there is a well defined Hy-module structure
(h,&) = ho& on M, ) such that for any u € W and any o = s,, a € II, we have

(a) (7771)\) O Qzu, A = Az, (0)uo,A if uo 7& LZ(U)U’7 ‘UO'|/\ > ‘u|>\a

(b) (T51x) © Azu, A = Az (s)uo,A T (v2 - U72)azu,k if uo # 12 (0)u, [uo|y < |uly;

(€) (Tolxn) 0 asur = asun + (V+ v Ve if us = 1,(0)u, [uo|y > |uly;

(d) (Tola) 0o @z = (v — v Hasuen + (02 — v72 = Dag,y if uc = 1.(0)y,
luo|x < |ulx.

6.2. By [L4, 1.4(d)], the basis {T;,1x;(w,\) € X1,A € O} of Hp coincides with
{TaT:10; (N, 2,A) € Z,u € Wy }. We define a bilinear multiplication Ho X Mo —
Mo (denoted by (h,£) — h e &) by the rule

(TuT-1x) eaz; 5 =0
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if A # X, while if A = X,
(TuT:1x) e az; 5 = (Tuly) 0@z 1) zaz-1)x

for (N, z,\) € E,u € W, (3,\) € 2,0 € W5, where o is as in 6.1l with A replaced
by N. (We have (22271, \) € 2% and 227! € Wy,.) We show:
(a) this is an Ho-module structure.
It is enough to show that for
(XN,2,X) € E,(X, 21, \1) € E,u € Wy, ug € Wy, (2,A) € E°, 4 € Wy,
with M = A, A = A we have
(T T 15,) (T T:15) @ aza,ﬁ\) = (Tu, T, 1—17;121>\) ®az; 5

zZiuz

or that
(7:141 1)\/1) © ((7;111,,21717;122;1121)‘) i a(zl,%zfl)(zlﬁzfl),zlx\)
= Z (Tuy Tzi210) @ Azg o

U EVV/\/1

where we have written 7o, 7, .11z, = ZUQEWA/ Yaus Tus In75 Yur € C(v). (We have
used [L4, 1.4(d), (e)].) We have 1
(T,

zluzfltlzzfllzlk) i azlézfl)(zlﬂzfl),zl)\

= (Eluzfl 1)\/1) °© a(zlzizflzfl)(zlzﬁzflzfl),)\/1 '
We have

§ (TusTzi210) @ Aza

T,LQEW)\/l

= § (7;2 1)\/1) 0 a(zlziz_lzf1)(21217,2_12;1),)\’1 '

u2€W>\/l
Thus it is enough to prove

(7;1 1>\'1) ° ((7;1712;11)\/1) 0 a(zlz%z*lzfl)(zlzﬂzflzfl),)\’l)

= § (7;21/\’1) 0 a(z1ziz*lzfl)(zlzﬂzflzfl),)\’l'
ugEszl

This follows from the fact that o defines a module structure. This proves (a).

6.3. Let H,, be the C(v)-vector space with basis {7 x; (w,\) € W x X,,}. Note
that H,, is a subalgebra of H. There is a unique H,,,-module structure (h, &) — he{
on M, (see §0.8) such that for any two orbits O, 0’ in X,, and any h € Hp, ¢ €
Mo we have he £ =0if O # O and he ¢ is as in §62Aif O = O'.

6.4. We now prove Theorem[0.9l It is enough to show that Theorem[0.9a)—(b) hold
when 7, is replaced by 7,1, € H,, acting on M,, via the H,,-module structure
on M,,. We can write w = zu where (z,\) € Z° and v € W). If s € W), then
s = o as in §6.1] and the desired formulas follow from §6.I1 If s ¢ W), then s
has minimal length in sW) and hence s € [s(A),A]. Then by definition we have
(Ts1x) ® @y » = agws sx and the desired formulas hold again. This proves Theorem
0.9
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6.5. In [L4], an affine analogue of H is considered; it has a basis indexed by the
semidirect product WX where W is an affine Weyl group acting on X via its
quotient W. The analogue of Theorem [(.9] continues to hold in this case (with the
same proof).

7. BAR OPERATOR

7.1. Let m be an integer > 1. In this section we construct a bar operator on M,,
generalizing a definition in [LV]. To do this we will use the method of [L3].

For s € S the operator T : M,,, — M,,, in Theorem [I.9 has an inverse 7,~!. For
weWweset Ty =Ty ... To : My = My, Tt =TT - My, — My,
where w = 8189 ... 8 with s1,...,8; 1n S, |w| = k.

Let ¢ — ¢ be the field automorphism of C(v) which is the identity on C and
maps v to v~ 1. For (w,\) € X,, we write E(w, \) = (=1)/*l where

(a) w=zu, (z,\) € X0, u € L. C Wy;

see §5.2(b).

We show:

(b) If (w, \) € X,n, s € S, then E(sws, s\) = E(w, \);

(c) if (w,\) € X,n,s € S are such that sw = ws and s € Wy, then E(ws, \) =
—E(w, A).

We write w = zu as in (a). Assume first that s € W). We have sws = z¢,(s)us
and ¢.(s) € W) = Wy = W,y and hence . (s)us € I, and E(sws,s)\) =
(=1)l=Gusl = (—1)lvl = E(w,\). If sw = ws, we have ws = zus and us €
I and hence E(ws,\) = (=1)*| = —(=1)l"l = —E(w,)). Next we assume
that s ¢ Wy; then s € [\, A] (see §5.1) and hence (szs,s\) € X9. Moreover,
sws = szus = (szs)(sus) and sus € W,y and more precisely sus € I,,5 sx. Hence
E(sws, sA\) = (=1)!susl = (=1)l*l = E(w, \). This proves (b) and (c).

Clearly, there is a unique C-linear map B : M,, — M,, such that for any
(w,\) € X,, and any f € C(v) we have

B(faw,)\) = fE(w7 A)Ulaw,fm)\'
We state the main result of this section.

Proposition 7.2.
(a) For any s € S and any & € M,,, we have B(T;€) = T, ' B(&).
(b) The square of the map~: M,,, = M,, is equal to 1.

To prove (a) it is enough to show that for any (w,\) € X,, and any s € S we
have

(c) B(Tsaw ) = E(w, )T, T aw, —ma.
Weset A=1ifse€ Wy and A =0if s ¢ W,.
Assume that sw # ws, |sw| > |w|. We have
B(7-saw,)\) - B(asws,s)\) - E(sws 3>\)7-Swsasws —ms\y
E(w, /\))T_lT_law, ma = E(w, \)T;" 17;1 17; 1Tsaw,—m>\
= E(sws, s)\)7;wsasws —msA-

Hence (c) holds in this case.
Assume that sw # ws, |sw| < |w|. We must show that

B(asws,s)\ + A(fvz - U_2)aw,)\) = E(w7 A)t_ln_law,fm)\y
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or that
E(sws, s\) Tons@sws,—msx + A2 — 02) E(w, \) Ty ' aw,—ma
= E(w, )T, Ty aw,—mas
or that
Tows@sws,ox T A2 =) T T T aw, —ma
=T T o T aw, -,
or that

7-57;7—57_,,%935105,—5)\ + 5(U_2 - UQ)Tsqu_u%eTs_lawﬁmA = Ts:ulsTs_law,me
or that
E;éasws,fms)\ + (U2 - 0_2)A7-s7-s;;]:gasws,fms)\
+ A(U72 - UQ)TsTs;lsTsilaw,—mA = 7—5;?97—871aw7_m)\.
Here we substitute Tsjulsaswsy_ms,\ = 7;;@7;—1%7_%. It remains to note that
qu_u%eTs_law,fmA + (v - U_Q)ATSTs:ulsﬁ_lawﬁmA
+ A(U72 - U2)7;7;;%97?13w,—m/\ = ﬂ@iﬂilaw,—mk

This proves (c¢) in our case.
Assume that sw = ws, |sw| > |w|. We must show that

B(ay,sx + Av+ vil)asw,k) = F(w, )\)7?17;;1&%_7”)\,

or that
E(w, )Ty aw, —msx + A(v + 0" D E(sw, \) To 5w, —ma
= E(w7)\)7;_17zu_1aw1*m)\7
or that
ﬁuﬁlaw,—ms/\ —A(v+ Uﬁl)ﬁ;lT;lasw,—mk
= t_lﬁlaw,fmh
or that
Ay, —msx — A(v + v_l)TS_lasw’,mA = ’7'S_law’,m)\7
or that
Tetw, —msx — AW+ 07 a0 —mr = 8w, —ma,
or that

7-saw,fms)\ = QAu,—mA + A(’U + /U_l)asw,fm)\-
This follows from the definitions. This proves (c) in our case.
Assume that sw = ws, |sw| < |w|. We must show that

B(A(v — Uﬁl)asw»\ + A2 —v2 = Day+ (1 —A)aysx)
= E(w, T, ' Ty aw, —ma,
or that
A =) E(sw, N o @sw,—ma + A(v™2 — v = 1) E(w, A)T,, 'aw,—ma
+ (1= A)E(w, s\ T, aw,—msx = E(w, T, T  aw, —mas

275
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or that
A =) T asw,—my — A2 =0 = DT T A, —ma
— (1= M) T T A —max = — T To T2 aw—mas
or that
A —v)ager — A2 =0 = DT ay, mr — (1= A) T, aw, s
=TT
or that
AW =) T Tsasw,—mr— AW 2 =0 = D) Toay, —mr — (1= A) Tol, —msy = —8uw,—m
or that
Al = v)agw,—mr + AW =0)(0* =07 = DT80, -ma
— AW =0 = DT — (1= A) e mer = —au—ma-

When A = 0 this is just Tsau —msx = &w,—mx which follows from the definitions.
When A =1 we see that it is enough to observe the following obvious equality:
(U_l — V)&, —mA + (v_l - U)(U2 - U_2)(asw,fm>\ + (v + ”_l)awﬁm)\)

+ (U2 —v 4 1)((U - Ufl)asw,—m/\ + ('U2 —v7% = 1))aw,—m)\ = —Qw,—mA-

This completes the proof of (c) and hence that of (a).
We prove (b). We first show that for (w,\) € X,,, and s € S we have

(d) B(Tsilaw,k) = TsB(aw,»).

Indeed, the left-hand side equals B(Tza, )+ B((v? —v~2)a, ») which by (a) equals
T, 'B(ay ) + (v72 —v?)B(ay,») and this equals T;B(a,, ). Using (d) repeatedly
we see that B(Ulam,\) = Tw B(ay,) for any w’ € W. To prove (b) it is enough
to prove that for any (w,\) € X,,, we have
B(B(aw,)\)) = QA A,
that is,
B(mlaw,—m/\) = E(wa A)aw,/\-

The left-hand side is equal to 7y, B(ay,—mx) and hence to
E(w, A)%ﬂjlaw?,\ = E(w, N)ay .
This completes the proof of (b).

7.3. Let (z,)\) € X0 . We show:

(a) B(az7>\) = a;\.
We must show that 7';1az7,mA = a, ) or that 7,a, » = a, _,»x. This follows
the definition of the H,,-module structure on M,, since zzz~! = 2, 2(\) = —mA.



HECKE MODULES BASED ON EXTENDED WEYL GROUPS 277

7.4. Let £ be the Z[v~!]-submodule of M,, with basis {a, x; (w,\) € X,,}. From
Proposition one can deduce (a), (b) below by standard arguments (see, for
example, [L1}, 24.2.1]).

(a

) For any (w, \) € X, there is a unique element ay, \ € M, such that

(i) Ay €L, A\ —ay € Uﬁlz[vfl],
(i) B(aw) = &w,x-
Moreover,

(b

) {awa; (w,\) € X,,} is a Z[v~!]-basis of £ and a C(v)-basis of M,y,.

For example if (z,\) € X0, then a, \ = a, ).
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