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AN INDUCTION THEOREM FOR GROUPS ACTING ON TREES

MARTIN H. WEISSMAN

Abstract. If G is a group acting on a locally finite tree X, and S is a G-
equivariant sheaf of vector spaces on X, then its compactly-supported coho-
mology is a representation of G. Under a finiteness hypothesis, we prove that
if H0

c (X, S) is an irreducible representation of G, then H0
c (X, S) arises by in-

duction from a vertex or edge stabilizing subgroup.

If G is a reductive group over a nonarchimedean local field F , then Schnei-
der and Stuhler realize every irreducible supercuspidal representation of G =
G(F ) in the degree-zero cohomology of a G-equivariant sheaf on its reduced
Bruhat-Tits building X. When the derived subgroup of G has relative rank
one, X is a tree. An immediate consequence is that every such irreducible
supercuspidal representation arises by induction from a compact-mod-center
open subgroup.

1. Introduction

According to a folklore conjecture, every irreducible supercuspidal representation
of a reductive p-adic group arises by induction from a compact-mod-center open
subgroup. This is proven for GLn by Bushnell-Kutzko [BK93], for many classical
groups by Stevens [Ste08], and for tame supercuspidals by Ju-Lee Kim [Kim07]
(exhaustion) and Jiu-Kang Yu [Yu01] (construction). Outside of GLn, these results
require some assumptions on characteristic and residue characteristic.

Here we prove the conjecture for all groups of relative rank one—those whose
Bruhat-Tits building is a tree. Our method is less constructive, but follows directly
from results of Schneider-Stuhler [SS97] and the geometry of equivariant sheaves
on trees. No restrictions on residue characteristic (or characteristic!) are required,
so the result seems new in many cases, e.g., for SU3 in residue characteristic two
and for quaternionic unitary groups.

There are nine classes of groups of relative rank one over a nonarchimedean
local field F , if one uses the Tits index to organize them [Tit79, §4]. These are
conveniently tabulated and described in notes of Carbone [Car]. Their simply-
connected forms are SL2(F ) and SL2(D) (for D a division algebra of any degree
over F ), the quasisplit unitary groups SUE

3 and SUE
4 (E/F a separable quadratic

field extension), and five types of quaternionic unitary groups SU2(D, s), SU3(D, s),
SU3(D,h), SU4(D,h), SU5(D,h) which have absolute types C2, C3, D3, D4, and
D5, respectively. For these, D denotes a quaternion division algebra over F , h a
nondegenerate Hermitian form, and s a nondegenerate skew-hermitian form. Pre-
vious results have addressed groups in three of these nine classes in a nonuniform
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manner, typically under restrictions on isogeny class, characteristic, and residue
characteristic.

Main results. The main result of the paper is Theorem 2.4, described here.

Theorem. Let S be a G-equivariant sheaf on a locally finite tree X. Suppose that
S has finite 0-rank (see §2.5). If H0

c (X, S) is an irreducible representation of G,
then H0

c (X, S) is isomorphic to a representation of G induced from the stabilizer of
a vertex or edge.

Now let G be a reductive group over a nonarchimedean local field F , whose
derived subgroup has relative rank one. Let G = G(F ) and let (π, V ) be an
irreducible supercuspidal representation of G. The Bruhat-Tits building of G is
a locally finite tree X. In [SS97], Schneider and Stuhler prove that (π, V ) arises
as H0

c (X, S) for a suitable G-equivariant sheaf on X. This sheaf has finite 0-rank,
by the admissibility of smooth irreducible representations. Stabilizers of vertices
and edges are compact-mod-center open subgroups of G. Hence the theorem above
implies the result below.

Corollary. (π, V ) is isomorphic to a representation of G induced from a compact-
mod-center open subgroup.

In [Ol’77], Ol′sanskĭı proves a similar result for the full automorphism group of
a Bruhat-Tits tree X. The automorphism group Aut(X) is a much larger group
than G, but some of the representation theory of p-adic groups can be adapted to
Aut(X). Irreducible representations of Aut(X) are classified as spherical, special, or
cuspidal, and Ol′shanskĭı proves [Ol’77, Theorem 1] that cuspidal representations
are induced from compact open subgroups. But this result does not prove that
supercuspidal representations of G are induced from compact open subgroups, nor
does Ol′shanskĭı’s proof seem to adapt to the representation theory of G.

The proof of the main result relies on an inductive argument, whittling down a
sheaf S as much as possible while tracking its cohomology. The key idea is that a
sheaf S on a tree has an elliptic subsheaf Sell supported on the zero-skeleton, and
(when Sell = 0) a unifacial subsheaf Suni in which sections propagate only in one
direction from each vertex. The cohomology of elliptic and unifacial sheaves are
easily computed, and relate to representations induced from vertex and edge sta-
bilizers, respectively. By pulling out elliptic and unifacial subsheaves, repeatedly if
necessary, we can relate the cohomology of S to the cohomology of such subsheaves.

The first part of the article reviews the theory of equivariant sheaves on trees,
and describes these elliptic and unifacial subsheaves. The inductive argument for
Theorem 2.4 proceeds immediately after. After reviewing the relevant results of
Schneider and Stuhler [SS97], we discuss the implications for supercuspidal repre-
sentations at the end.

2. Sheaves on trees

Let X be a locally finite tree with vertex set V and edge set E. If v ∈ V and
e ∈ E, then we write v < e to mean that v is an endpoint of e. Fix a field k. A
sheaf on X will mean a cellular sheaf of k-vector spaces on X. Such a sheaf consists
of k-vector spaces Sv for every vertex v ∈ V , and Se for every edge e ∈ E, and
linear maps

γv,e : Sv → Se
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for all v < e. The maps γv,e are called restriction maps and the spaces Sv, Se are
called the stalks of S. We write (S, γ) or sometimes just S for such a sheaf.

Let G be a group acting on X. A G-equivariant structure on a sheaf (S, γ)
consists of linear maps

ηg,v : Sv → Sgv, ηg,e : Se → Sge

for all g ∈ G, v ∈ V , e ∈ E, satisfying the following axioms:

• For all v ∈ V , e ∈ E, the linear maps η1,v and η1,e are the identity.
• For all g, h ∈ G, v ∈ V , and e ∈ E, ηg,hv ◦ ηh,v = ηgh,v and ηg,he ◦ ηh,e =
ηgh,e.

• For all g ∈ G, and v < e, we have γgv,ge ◦ ηg,v = ηg,e ◦ γv,e.
A G-equivariant sheaf on X will mean a sheaf (S, γ) endowed with a G-equivariant
structure.

2.1. Cohomology. For convenience, fix an orientation on every edge e ∈ E. This
orders the endpoints of every edge e, and we write xe, ye for the first and second
endpoint, respectively. If v < e, then write or(v, e) = 1 if v = xe and or(v, e) = −1
if v = ye.

Fix a sheaf (S, γ) on X in what follows. If v ∈ V , and s ∈ Sv, define

d s =
∑

e>v

or(v, e) · γv,e(s) ∈
⊕

e>v

Se.

Note that local finiteness is necessary here, i.e., every vertex is incident to a finite
number of edges. The compactly-supported cohomology of S is then computed by
the complex

0 →
⊕

v∈V

Sv
d−→

⊕

e∈E

Se → 0.

With reference to the complex above,

H0
c (X, S) = Ker d, H1

c (X, S) = Cokd .

If S is a G-equivariant sheaf, then the complex above and its cohomology inherit
actions of G. Explicitly, if g ∈ G and v ∈ V , then g sends the summand Sv to
the summand Sgv by ηg,v. For an edge e ∈ E, g sends the summand Se to the
summand Sge by ±ηg,e, where the sign depends on whether (xge, yge) = (gxe, gye)
or (xge, yge) = (gye, gxe). In this way, Hi

c(X, S) is a representation of G on a
k-vector space for i = 0, 1.

2.2. The elliptic subsheaf. Fix a G-equivariant sheaf (S, γ, η) on X in what
follows. If v ∈ V and s ∈ Sv, we say that s is elliptic if d s = 0, i.e., if

γv,e(s) = 0 for all e > v.

The elliptic elements of Sv form a subspace Sellv ⊂ Sv. If e is an edge, define Selle = 0.
This defines a G-equivariant subsheaf of S, which we call the elliptic subsheaf

Sell ⊂ S.

By construction, we have

(2.1) H0
c (X, Sell) =

⊕

v∈V

Sellv and H1
c (X, Sell) = 0.
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For x ∈ V , let Gx denote its stabilizer andG·x its orbit. Then Sx is naturally (via
η) a representation of Gx, and Sellx is a Gx-subrepresentation. Algebraic induction
gives a natural identification of G-representations,

⊕

v∈G·x
Sellv ≡ cIndGGx

Sellx .

Above and in what follows, if K is a subgroup of G and (σ, S) is a representation of

K, cIndGK(S) denotes “algebraic induction”, i.e., the space of functions f : G → S
supported on a finite number of left K-cosets, satisfying f(gk) = σ(k)−1f(g) for
all g ∈ G, k ∈ K.

It follows that H0
c (X, Sell) is a direct sum of such induced representations:

(2.2) H0
c (X, Sell) ≡

⊕

G·x∈G\V
cIndGGx

Sellx .

2.3. The unifacial subsheaf. Suppose now that Sell = 0. If v ∈ V and s ∈ Sv,
we say that s is unifacial if there exists a unique edge e > v such that γv,e(s) �= 0.
Define

Suniv,e = Spank{s ∈ Sv : s is unifacial and γv,e(s) �= 0}.
Since we assume Sell = 0, we find that

Suniv,e = {s ∈ Sv : s is unifacial and γv,e(s) �= 0} � {0}.

The spaces Suniv,e , for various e, are linearly independent in Sv. Hence putting these
spaces together for various edges, we define

(2.3) Suniv = Spank{s ∈ Sv : s is unifacial} =
⊕

e>v

Suniv,e .

If e is an edge with endpoints x, y, define

Sunie = γx,e(S
uni
x,e) + γy,e(S

uni
y,e) ⊂ Se.

The spaces Suniv and Sunie define a G-equivariant subsheaf Suni ⊂ S, whose cohomol-
ogy can be described explicitly.

Proposition 2.1. H1
c (X, Suni) = 0.

Proof. We demonstrate that d is surjective as follows. Suppose e ∈ E and s ∈ Sunie .
Write x = xe and y = ye. Then there exists a ∈ Sunix,e and b ∈ Suniy,e such that

s = γx,e(a) + γy,e(b).

We assume that a = 0 if γx,e(a) = 0, and b = 0 if γy,e(b) = 0. Since γx,e′(a) = 0
and γy,e′(b) = 0 for all e′ �= e, we find that s = d(a− b). Hence d is surjective and
H1

c (X, Suni) vanishes. �

Proposition 2.2. H0
c (X, Suni) =

⊕
e∈E

(
γxe,e(S

uni
xe,e) ∩ γye,e(S

uni
ye,e)

)
.

Proof. We define auxiliary sheaves (R, ρ) and (T, τ ) as follows. For every vertex v,
define Rv = Suniv and Tv = 0. For every edge e, with endpoints x, y, define

Re = γx,e(S
uni
x,e)⊕ γy,e(S

uni
y,e), Te = γx,e(S

uni
x,e) ∩ γy,e(S

uni
y,e).

For v < e, define τv,e : Tv → Te to be the zero map. Define ρv,e : Rv → Re by
ρv,e(s) = γv,e(s), where the latter is viewed in the summand γv,e(S

uni
v,e ) of Re.
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There is a natural short exact sequence of sheaves on X,

T ↪→ R � Suni.

At vertices, the maps are obvious; for edges, the map Te → Re sends an element

t ∈ γx,e(S
uni
x,e) ∩ γy,e(S

uni
y,e)

to the ordered pair (t,−t). The map from Re to Sunie is addition.
Essentially by construction, H0

c (X,R) = H1
c (X,R) = 0. Indeed, we can decom-

pose R as a product of sheaves,

R =
∏

v∈V

R(v),

where R(v) is supported on the star-neighborhood of v: R
(v)
v := Rv = Suniv and

R
(v)
e = γv,e(S

uni
v,e ) for all e > v. Since γv,e : S

uni
v,e → γv,e(S

uni
v,e ) is an isomorphism for

all v < e (recall Sell = 0), we find that

d: R(v)
v −→

⊕

e>v

R(v)
e

is an isomorphism (see (2.3)). Hence Hi
c(X,R(v)) = 0 for i = 0, 1. The compactly-

supported cohomology of R is the direct sum of these, which vanishes.
From the short exact sequence of sheaves, T ↪→ R � Suni, the long exact sequence

in cohomology gives an identification,

H0
c (X, Suni) ≡ H1

c (X,T).

Since Tv = 0 for all vertices v, we find that

H1
c (X,T) =

⊕

e∈E

Te =
⊕

e∈E

(
γxe,e(S

uni
xe,e) ∩ γye,e(S

uni
ye,e)

)
. �

A G-equivariant structure on S transports to G-equivariant structures on T and
R. It follows that, for any edge e ∈ E, the space Te is naturally a representation of
the stabilizer Ge. Therefore, we find an identification of representations of G,

(2.4) H0
c (X, Suni) ≡ H1

c (X,T) ≡
⊕

G·e∈G\E
cIndGGe

Te.

2.4. Multifacial sheaves. Now, suppose that (S, γ) is a sheaf on X and Sell = 0
and Suni = 0. Thus, for every v ∈ V and every nonzero s ∈ Sv, there exist at least
two edges e, f ∈ E such that v < e and v < f and

γv,e(s) �= 0 and γv,f (s) �= 0.

We call such a sheaf multifacial.

Proposition 2.3. If S is a multifacial sheaf, then H0
c (X, S) = 0.

Proof. Suppose that s = (sv : v ∈ V ) ∈ H0
c (X, S). Assume that s �= 0. Then

there exists a nonempty finite set W ⊂ V of vertices such that sv �= 0 if and only
if v ∈ W . Let Ω be the convex hull of W in the tree X. In other words, Ω is the
smallest connected subgraph of X containing every vertex from W . In particular,
Ω is a finite tree. Moreover, if 	 is a leaf of Ω, then 	 ∈ W ; otherwise one could
prune the leaf while maintaining connectedness and containment of W . Figure 1
displays the geometric argument we give here.
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Let 	 be a leaf of Ω, so there is at most one edge of Ω having 	 as an endpoint.
Since 	 ∈ W , we have s� �= 0. Since S is multifacial, there exists an edge e such
that 	 < e, e does not belong to Ω, and γ�,e(s�) �= 0. Let v be the other endpoint
of e. Since 	 was a leaf of Ω, v �∈ Ω.

Ω
e 	v

Figure 1. 	 is a leaf of the finite tree Ω (the subgraph contained
in the shaded box), and e is an edge that protrudes outside of Ω.

Since d s = 0, we have (d s)e = 0. Equivalently,

γv,e(sv)− γ�,e(s�) = 0.

Since γ�,e(s�) �= 0, this implies γv,e(sv) �= 0, which implies sv �= 0. But this
contradicts the fact that v �∈ Ω.

This contradiction proves that H0
c (X, S) = 0. �

2.5. The induction theorem. Suppose that S is a G-equivariant sheaf on X. We
define its 0-rank to be the cardinal number

Rank0(S) =
∑

G·v∈G\V
dim(Sv).

For example, if G\V is finite and every stalk of S is finite-dimensional, then
Rank0(S) will be finite.

Theorem 2.4. Assume that Rank0(S) is finite. If H0
c (X, S) = 0 or H0

c (X, S) is
an irreducible representation of G, then H0

c (X, S) is isomorphic to a representation
induced from the stabilizer of a vertex or edge.

Proof. We proceed by induction on Rank0(S). If H0
c (X, S) = 0, then H0

c (X, S) is
induced from the zero representation via any subgroup, and the result is trivial.
This takes care of the Rank0(S) = 0 base case, in particular.

So assume that Rank0(S) > 0 and the result has been proven for lower 0-rank.
If H0

c (X, S) = 0, then we are done. Otherwise, by Proposition 2.3, we find that
Sell �= 0 or (Sell = 0 and Suni �= 0). We consider these two cases below.

If Sell �= 0, then H0
c (X, Sell) is a nonzero subrepresentation of H0

c (X, S). By
irreducibility, we find that

H0
c (X, S) ≡ H0

c (X, Sell).

By (2.2), this is a direct sum of representations induced from stabilizers of vertices.
By irreducibility again, only one G-orbit of vertices can support Sell and

H0
c (X, S) ≡ cIndGGx

Sellx

for some vertex x ∈ V . Thus if Sell �= 0, the result holds.
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Next, suppose that Sell = 0 and Suni �= 0. Consider the short exact sequence,

Suni ↪→ S � S/Suni.

Since Suni �= 0, Suniv �= 0 for some vertex v, and so Rank0(S/Suni) < Rank0(S).
By Proposition 2.1, the long exact sequence in cohomology yields

0 → H0
c (X, Suni) → H0

c (X, S) → H0
c (X, S/Suni) → 0.

This is a short exact sequence of G-representations, so irreducibility of the middle
term yields

H0
c (X, S) ≡ H0

c (X, Suni) or H0
c (X, S) ≡ H0

c (X, S/Suni).

In the first case, (2.4) and irreducibility yields

H0
c (X, S) ≡ cIndGGe

Te

for some edge e ∈ E and the result holds.
In the second case, H0

c (X, S) ≡ H0
c (X, S/Suni). But S/Suni has lower 0-rank.

Hence the second case follows from the theorem for sheaves of lower 0-rank. �

2.6. Supercuspidal representations. Let G be a reductive group over a nonar-
chimedean local field F , and let X be the reduced Bruhat-Tits building of G =
G(F ). Then X is a cell complex, and G acts on X in such a way that

• there are finitely many G-orbits on the set of cells of X;
• if x ∈ X, the stabilizer Gx is a compact-mod-center open subgroup of G.

In [SS97], Schneider and Stuhler relate finite-length smooth representations of
G to G-equivariant sheaves on X. We sketch their construction briefly here. Let
(π, V ) be an finite-length smooth representation of G on a complex vector space.
For all x ∈ X, Schneider and Stuhler define a filtration of Gx by compact open

subgroups G
(e)
x (for 0 ≤ e ∈ Z). The subgroup G

(e)
x depends only on the cell

containing x. If x ≤ y, i.e., the cell containing x is contained in the closure of the

cell containing y, then G
(e)
x ⊂ G

(e)
y (see [SS97, Proposition I.2.11]).

Define a G-equivariant cellular sheaf S(e) on X by putting S
(e)
x = V G(e)

x ; these
stalks are finite-dimensional, since finite-length smooth representations are admis-

sible. The restriction maps for S(e) are defined by projecting G
(e)
x -fixed vectors onto

G
(e)
y -fixed vectors, when x ≤ y. In [SS97, Theorem IV.4.17], Schneider and Stuhler

prove the following theorem.

Theorem 2.5. Suppose that V = IndGP (E) for some F -parabolic subgroup P =
LU ⊂ G, and irreducible supercuspidal representation E of L. Then, for e suffi-
ciently large, H•

c (X, S(e)) is nonzero in a single degree d, where it is isomorphic to

IndGP (
nE) as a representation of G. Here n is a certain element of NG(L) and the

degree d lies between 0 (for P = G) and RankF (Gder) (for P minimal).

In particular, when (π, V ) is an irreducible supercuspidal representation of G,

H0
c (X, S(e)) ∼= V for e 
 0.

Corollary 2.6. Let G be a reductive group over a nonarchimedean local field F ,
whose derived subgroup has relative rank one. Let G = G(F ). Then every irre-
ducible supercuspidal representation of G on a complex vector space is isomorphic
to cIndGK σ for some compact-mod-center open subgroup K ⊂ G and some irre-
ducible representation σ of K.
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Proof. Since Gder has relative rank one, the Bruhat-Tits building X is a locally
finite tree. Let (π, V ) be an irreducible supercuspidal representation of G. By
Theorem 2.5, there exists a G-equivariant sheaf S on X, such that H0

c (X, S) ≡ V .
Admissibility implies that dim(Sv) < ∞ for all v ∈ V . Since G\V is finite, Rank0(S)
is finite. Theorem 2.4 applies and proves the result. �

Note that Vignéras [Vig97, Theorem 4.6] has proven that the main results of
Schneider and Stuhler adapt to representations of G on R-vector spaces, when
R is a field whose characteristic is coprime to the residue characteristic of F .
Hence the previous result holds for cuspidal (see [Vig97, §3.7] for the definition)
R-representations as well as for supercuspidal complex representations.
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[Vig97] Marie-France Vignéras, Cohomology of sheaves on the building and R-representations,
Invent. Math. 127 (1997), no. 2, 349–373, DOI 10.1007/s002220050124. MR1427623

[Yu01] Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc.
14 (2001), no. 3, 579–622, DOI 10.1090/S0894-0347-01-00363-0. MR1824988

Department of Mathematics, University of California, Santa Cruz, California 95064

Email address: weissman@ucsc.edu

https://www.ams.org/mathscinet-getitem?mr=1204652
https://www.ams.org/mathscinet-getitem?mr=2276772
https://www.ams.org/mathscinet-getitem?mr=0578650
https://www.ams.org/mathscinet-getitem?mr=1471867
https://www.ams.org/mathscinet-getitem?mr=2390287
https://www.ams.org/mathscinet-getitem?mr=546588
https://www.ams.org/mathscinet-getitem?mr=1427623
https://www.ams.org/mathscinet-getitem?mr=1824988

	1. Introduction
	Main results

	2. Sheaves on trees
	2.1. Cohomology
	2.2. The elliptic subsheaf
	2.3. The unifacial subsheaf
	2.4. Multifacial sheaves
	2.5. The induction theorem
	2.6. Supercuspidal representations

	Acknowledgments
	References

