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ON TYPICAL REPRESENTATIONS FOR DEPTH-ZERO

COMPONENTS OF SPLIT CLASSICAL GROUPS

SANTOSH NADIMPALLI AND AMIYA KUMAR MONDAL

Abstract. Let G be a split classical group over a non-Archimedean local field
F with the cardinality of the residue field qF > 5. Let M be the group of F -
points of a Levi factor of a proper F -parabolic subgroup of G. Let [M,σM ]M
be an inertial class such that σM contains a depth-zero Moy–Prasad type of
the form (KM , τM ), where KM is a hyperspecial maximal compact subgroup
of M . Let K be a hyperspecial maximal compact subgroup of G(F ) such that
K contains KM . In this article, we classify s-typical representations of K. In
particular, we show that the s-typical representations of K are precisely the

irreducible subrepresentations of indKJ λ, where (J, λ) is a level-zero G-cover
of (K ∩M, τM ).

1. Introduction

Let F be a non-Archimedean local field with ring of integers oF . Let pF be the
maximal ideal of oF . Let kF be the residue field of oF , and we assume that kF has
cardinality qF > 5. Let G be any reductive algebraic group over F , and let G be
the group of F -rational points of G. Let K be any maximal compact subgroup of
G. All representations in this article are defined over complex vector spaces.

Let (M,σM ) be a pair consisting of a Levi factor M of an F -parabolic subgroup
of G, and a cuspidal representation σM of M . Recall that two such pairs (M1, σM1

)
and (M2, σM2

) are called inertially equivalent if there exists an element g ∈ G such
that

M1 = gM2g
−1 and σM1

� σg
M2

⊗ χ,

where χ is an unramified character of M1. Equivalence classes for this relation are
called inertial classes. The inertial class containing the pair (M,σM ) is denoted by
[M,σM ]G (or by [M,σM ] if G is clear from the context). The set of inertial classes
of G is denoted by B(G). An inertial class of the form [G, σ]G is called a cuspidal
inertial class of G.

Let R(G) be the category of smooth representations of G. Let s = [M,σM ]G
be an inertial class of G, and let Rs(G) be the full subcategory of R(G) consisting
of smooth G-representations whose irreducible subquotients occur as subquotients
of iGP (σM ⊗ χ), where P is an F -parabolic subgroup such that M is a Levi factor
of P and χ is an unramified character of M . Here, the functor iGP denotes the
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normalised parabolic induction. Bernstein in the article [Ber84] showed that the
category R(G) can be decomposed as

R(G) =
∏

s∈B(G)

Rs(G).

The category Rs(G) is indecomposable. In particular, every smooth representation
of G can be written as a direct sum of subrepresentations which belong to Rs(G).
The category Rs(G) is called the Bernstein component associated to s.

Based on extensive examples for GLn, SLn, it turns out that for a given indecom-
posable block Rs(G), there is a natural set of irreducible smooth representations of
K called s-typical representations: if an s-typical representation of K occurs in an
irreducible smooth representation π of G, then π belongs to Rs(G). In this article,
when K is hyperspecial, we classify s-typical representations of K for depth-zero
inertial classes s of split classical groups. We refer to the articles [BM02], [Pas05],
[Nad19], [Nad17], [Lat17], and [Lat18] for some earlier works. We will now try to
make this notation precise and describe our main theorem.

The theory of types, developed by Bushnell–Kutzko, describes the category
Rs(G) in terms of modules over Hecke algebras. We refer to [BK98] for a sys-
tematic treatment. In particular, the formalism aims to construct a pair (Js, λs)
consisting of a compact open subgroup Js of G and an irreducible smooth repre-
sentation λs of Js such that, for any irreducible smooth representation π of G,

(1) HomJs
(λs, π) �= 0 if and only if π ∈ Rs(G).

Such a pair (Js, λs) is called a type for s or an s-type.
A type (Js, λs), for an inertial class s = [M,σM ]G, is generally constructed

in two steps. First, a type (Jt, λt) is constructed for the cuspidal inertial class
t = [M,σM ]M . For the inertial class [M,σM ]G, a type (Js, λs) is then constructed
as a G-cover of (Jt, λt), in the sense of [BK98, Section 8]. In particular, for any
F -parabolic subgroup P of G such that M is a Levi factor of P , a G-cover (Js, λs)
has Iwahori decomposition with respect to the pair (P,M), i.e., Js ∩M is equal to
Jt,

resJs∩M λs = λt,

and the groups Js ∩U and Js ∩ Ū are both contained in the kernel of λs. Here U is
the unipotent radical of P , and Ū is the unipotent radical of the opposite parabolic
subgroup of P with respect to M .

Types (Js, λs) are now constructed for many classes of reductive groups G.
There are several constructions leading to different pairs (Js, λs) as types for s.
These types contain important arithmetic information. For GLn(F ), Bushnell and
Kutzko [BK93a] constructed a set of types, which they called maximal types, for
any cuspidal component. Later in the article [BK99], they constructed explicit
G-covers for these maximal types. For SLn(F ), similar constructions are due to
Bushnell–Kutzko and Goldberg–Roche (see [BK93b], [BK94], [GR02] and [GR05]),
for inner forms of GLn by Sécherre and Stevens (see [SS08] and [SS12]), for Sp4(F )
by Blasco and Blondel in [BB99] and [BB02]. Types for inertial classes of the form
[T, χ], where T is a maximal split torus, are constructed by Roche [Roc98]. For
an arbitrary connected reductive group and depth-zero components, types are con-
structed by Morris, and Moy and Prasad in [Mor99] and [MP96]; respectively. For
classical groups (with p odd), these construction are due to Stevens [Ste08], and by
Miyauchi and Stevens [MS14].



DEPTH-ZERO COMPONENTS OF SPLIT CLASSICAL GROUPS 251

Let K be a maximal compact subgroup of G, and let s be an inertial class of G.
An irreducible smooth representation τ of K is called s-typical if every irreducible
smooth representation π of G such that HomK(τ,π) �= 0 is in Rs(G). This notion
weakens that of an s-type introduced by Bushnell and Kutzko: τ is an s-type if
it is s-typical and HomK(τ, π) �= 0, for all irreducible smooth representations π in
Rs(G). An irreducible smooth representation τ of K is called atypical if τ is not
an s-typical representation for any s ∈ B(G). Let (Js, λs) be an s-type such that
Js ⊆ K. Then Frobenius reciprocity shows that any irreducible subrepresentation
of

(2) indKJs
τs

is s-typical. In general, the representation (2) is not irreducible, and hence, the
isomorphism classes of s-typical representations of K are not necessarily unique. In
the interest of arithmetic applications, it is important to understand the existence
and classification of s-typical representations of K.

The representation theory of maximal compact subgroups of p-adic groups is
quite involved. For example, a parametrisation of all irreducible smooth represen-
tations for K = GLn(oF ) is not yet known. In this regard, it is interesting to
understand irreducible smooth representations of K in terms of the Bernstein de-
composition of G. Precisely, for any finite set of inertial classes S of G, one wants
to understand those irreducible smooth representations τ of K such that, for an
irreducible smooth representation π of G,

HomK(τ, π) �= 0 ⇒ π ∈ Rs(G), for some s ∈ S.

This paper belongs to this theme.
We now state the main results of this paper. Let (W, q) be a pair consisting

of an F -vector space W , and a nondegenerate alternating or symmetric F -bilinear
form q on W . Let G be the group of F -points of G—the connected component
of the isometry group associated to the pair (W, q). We assume that G is an
F -split group. For any parahoric subgroup K of G we denote by K+ the pro-p-

unipotent radical of K. Let t be an inertial class [M,σM ]M such that σ
K+

M

M �= 0,
for some maximal parahoric subgroup KM of M . The representation σM is called
a depth-zero cuspidal representation of M and the inertial class t is called a depth-

zero inertial class. Any irreducible KM -subrepresentation of σ
K+

M

M is the inflation

of a cuspidal representation of the finite reductive group KM/K+
M . Let τM be an

irreducibleKM -subrepresentation of σ
K+

M

M . The pair (KM , τM ) is called an unrefined
minimal K-type by Moy and Prasad (see [MP94, Definition 5.1]). When KM is a
hyperspecial maximal compact subgroup, the pair (KM , τM ) is also a [M,σM ]M -
type in the sense of Bushnell and Kutzko; in this case, we simply call the pair
(KM , τM ) a depth-zero type.

Assume that KM is a hyperspecial maximal compact subgroup of M . Let K be
a hyperspecial maximal compact subgroup of G such that KM ⊂ K. Let P be a
parabolic subgroup of G such that M is a Levi factor of P . Let P (1) be the group
(P ∩K)K+. Note that the group P (1) is a parahoric subgroup of G, and we have
P (1) ∩ M = KM . The representation τM of KM extends as a representation of
P (1) such that P (1)∩U and P (1)∩ Ū are contained in the kernel of this extension.
Here, U is the unipotent radical of P and Ū is the unipotent radical of the opposite
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parabolic subgroup of P with respect to M . With this notation, our main result
can be stated as follows.

Theorem 1.1. Let s = [M,σM ]G be an inertial class such that M �= G. Let KM be

a hyperspecial maximal compact subgroup of M . Assume that σ
K+

M

M �= 0, and let τM

be an irreducible KM -subrepresentation of σ
K+

M

M . Let K be a hyperspecial maximal
compact subgroup of G such that KM ⊆ K. Then s-typical representations of K
are exactly the subrepresentations of indKP (1) τM .

Let G be the group of F -points of a reductive algebraic group defined over F .
For the depth-zero inertial classes of the form s = [G, σ]G, and K is any maximal
compact subgroup, Latham [Lat17] showed that an s-typical representation of K, if
it exists, is unique. We will apply this result for split classical groups. However, for
the present purposes of this article, we only need to consider hyperspecial maximal
compact subgroups (see Lemma 4.4).

Let T be a maximal split torus of G defined over F . Using a Witt basis, we
identify T(F ) with the following subtorus of the diagonal torus of GL(W ):

{diag(t1, . . . , t−1
1 ) : ti ∈ F×, 1 ≤ i ≤ n}.

Let χ be a character of T(F ), and let

χ(diag(t1, . . . , t
−1
1 )) = χ1(t1) · · ·χn(tn),

where χi is a character of F×, for 1 ≤ i ≤ n. The inertial class [T(F ), χ]G is called
a toral inertial class. For any character η of F×, let l(η) be the least positive integer
k such that 1 + pkF is contained in the kernel of η. In this article, we assume that

(3) l(χi) �= l(χj), for 1 ≤ i �= j ≤ n.

Let K be a hyperspecial maximal compact subgroup of G such that T(F ) ∩
K is the maximal compact subgroup of T(F ). The proof of Theorem 1.1 can
also be extended to obtain a classification of s-typical representations of K. In
Section 7, we describe Roche’s construction of a G-cover (Jχ, χ) for the pair (T(F )∩
K, resT(F )∩K χ) (see [Roc98, Section 2,3]). This construction depends on the choice
of a pinning. It is possible to choose a pinning such that Jχ ⊂ K. We prove the
following theorem for the toral inertial class [T(F ), χ].

Theorem 1.2. Let K be any hyperspecial maximal compact subgroup of G. Let
T be any maximal split torus of G defined over F . Assume that K ∩T(F ) is the
maximal compact subgroup of T(F ). Let χ be a character of T(F ) which satisfies
the condition (3). Then [T(F ), χ]G-typical representations of K are exactly the

subrepresentations of indKJχ
χ.

2. Notation

Let F be a non-Archimedean local field with ring of integers oF . Let pF be the
maximal ideal of oF with residue field kF = oF /pF . Let qF be the cardinality of
kF . In this article, we assume that qF > 5. Let �F be a uniformiser of F . For any
F -algebraic group H, we denote by H the group H(F ). The group H is considered
as a topological group whose topology is induced from F .

Let G be any reductive algebraic group over F . For any closed subgroup H of G
and a smooth representation σ of H, we denote by indGH σ the compactly induced
representation from H to G. For any parabolic subgroup P of G and σ any smooth
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representation of a Levi factor M of P , we denote by iGPσ the normalised paraboli-
cally induced representation of G. For any representations ρ1 and ρ2 of the groups
G1 and G2 respectively, we denote by ρ1 � ρ2 the tensor product representation of
the group G1 ×G2.

Let (V, q) be any pair consisting of a vector space V over a field k, and a k-
bilinear form q on V . We denote by G(V, q) (or by G(V ) when q is clear from the
context) the group of k-points of the connected component of the isometry group
of the pair (V, q).

3. Preliminaries

Let ε ∈ {±1}, and let W be an F -vector space with a nondegenerate F -bilinear
form q such that

q(w1, w2) = εq(w2, w1), for w1, w2 ∈ W.

Let W+ be any maximal totally isotropic subspace of W . Let

(w1, w2, . . . , wn)

be a basis of W+. There exists a maximal totally isotropic subspace W− with basis

(w−1, w−2, . . . , w−n)

such that

(4) q(wi, wj) = 0, for − n ≤ i �= −j ≤ n, and q(wi, w−i) = 1, for 1 ≤ i ≤ n.

The space W+ ⊕W− is a hyperbolic subspace of W . Let (W+ ⊕W−) ⊥ W0 be a
Witt decomposition of W . Note that W0 is an anisotropic subspace of W . In this
article, we assume that dimF W0 ≤ 1. Let w0 be any nonzero vector in W0, if
W0 �= {0}. The tuple of vectors

(5) B :=

{
(wn, wn−1, . . . , w1, w−1, w−2, . . . , w−n) if dim(W ) = 2n,

(wn, wn−1, . . . , w1, w0, w−1, w−2, . . . , w−n) if dim(W ) = 2n+ 1

is a basis of the space W . Any tuple of vectors as in B is called a standard basis of
W . Let N be the cardinality of the basis B. Let G/F be the connected component
of the isometry group associated to the pair (W, q). The group G is an F -split
semisimple group. Any standard basis B gives the following isomorphism:

G �

⎧⎪⎨
⎪⎩
SO2n/F if ε = 1, and N = 2n,

SO2n+1/F if ε = 1 and N = 2n+ 1,

Sp2n/F if ε = −1.

(6)

Given any maximal split torus T (defined over F ) of G, there exists a stan-
dard basis B = (wi : −n ≤ i ≤ n) of W such that T is the G-stabilizer of the
decomposition

W = Fwn ⊕ Fwn−1 ⊕ · · · ⊕ Fw−n+1 ⊕ Fw−n.

Conversely, any standard basis B gives rise to a maximal split torus T in G such
that T is the G-stabilizer of the decomposition as above. We say that the torus T
is associated to the standard basis B.

A lattice chain Λ is a function from Z to the set of lattices in W which satisfies
the following conditions:

(1) Λ(j) � Λ(i), for i < j, and
(2) there exists an integer e(Λ) such that Λ(i+ e(Λ)) = pFΛ(i), for all i ∈ Z.
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Given any lattice L, let L# be the lattice

L# := {w ∈ W | q(v,L) ⊂ pF }.
Let Λ# be the lattice chain defined by setting

Λ#(i) = Λ(−i)#, for all i ∈ Z.

A lattice chain Λ is called self-dual if there exists d ∈ Z such that Λ#(i) = Λ(i+d),
for all i ∈ Z. For any integer i, let ai(Λ) be the set defined by

ai(Λ) := {T ∈ EndF (W ) | TΛ(j) ⊂ Λ(j + i) ∀ j ∈ Z}.
Let U0(Λ) be the set of units in a0(Λ). Let Ui(Λ) be the group idV +ai(Λ), for any
i > 0. Given any self-dual lattice chain L, there exists a standard basis B, called a
splitting of Λ, such that for any i ∈ Z:

(7) Λ(i) = p
an+i
F wn ⊕ p

a(n−1)+i

F wn−1 ⊕ · · · ⊕ p
a(−n+1)+i

F w−n+1 ⊕ p
a(−n)+i

F w−n.

Given any hyperspecial maximal compact subgroup K of G, there exists a self-
dual lattice chain Λ such that K is equal to G ∩ U0(Λ). Note that e(Λ) = 1. Let
K(m) be the group Um(Λ) ∩ G, for m ≥ 1. The group K(m) is the principal
congruence subgroup of level m. The group K(m) is a normal subgroup of K, for
m ≥ 1. Let B be a standard basis such that B is a splitting of Λ. Let T be the
maximal split torus of G associated to the standard basis B. The group K ∩ T is
the maximal compact subgroup of T . Let L be the lattice

(8) L := Λ(0) = p
an

F wn ⊕ p
an−1

F wn−1 ⊕ · · · ⊕ p
a−n+1

F w−n+1 ⊕ p
a−n

F w−n.

The lattice L is determined by the set of integers {ai : −n ≤ i ≤ n}. Let L0 be the
ideal generated by the set {q(w1, w2) : w1, w2 ∈ L} in oF . Let q̄ be the following
bilinear form:

q̄ :
L

pFL
× L

pFL
→ L0

pFL0
, q(w1, w2) �→ q(w1, w2) ∀ w1, w2 ∈ W,

where q(w1, w2) is the image of q(w1, w2) in L0/pFL0. Since K is hyperspecial, the
form q̄ is nondegenerate (see [Tit79, 3.8.1]). We refer to the article [Lem09, Section
1.6] for these results.

Let T be any maximal split torus of G, defined over F , such that K ∩ T is the
maximal compact subgroup of T . Let B be the standard basis of W associated to
the torus T. There exists a self-dual lattice chain Λ such that B is a splitting of Λ
and K is equal to U0(Λ) ∩G.

Until the end of Section 5, we fix a hyperspecial maximal compact subgroup K
of G. We fix a self-dual lattice chain Λ defining K. We fix a standard basis

(9) B = (wi : −n ≤ i ≤ n)

such that B is a splitting of Λ. We fix the set of integers {ai : −n ≤ i ≤ n} as in
(8). We have a canonical homomorphism

(10) π1 : K → K/K(1) � G(L ⊗ kF , q̄).

Let I be a sequence of positive integers

(11) n ≥ n1 ≥ n2 ≥ · · · ≥ nr ≥ 1.

Consider the sets

S±
i := {w±n, w±(n−1), . . . , w±(ni)},
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for 1 ≤ i ≤ r. Let W±
i be the subspace of W spanned by the set S±

i . We denote
by V ±

i the space spanned by the set S±
i+1\S±

i , for i ≤ r. Let Vr+1 be the space

(W+
r ⊕W−

r )⊥. Let FI be the flag

(12) W+
1 ⊂ W+

2 ⊂ · · · ⊂ W+
r .

Let PI be the G-stabiliser of the flag FI . Let MI be the G-stabiliser of the decom-
position

V +
1 ⊕ · · · ⊕ V +

r ⊕ Vr+1 ⊕ V −
r ⊕ · · · ⊕ V −

1 .

The group PI is the group of F -points of an F -parabolic subgroup of G. Let UI be
the unipotent radical of PI . We have PI = MI�UI . We denote by ŪI the unipotent
radical of the opposite parabolic subgroup of PI with respect to the group MI .

Assume that G is a symplectic or special orthogonal group of odd dimension. In
this case, the group of F -points of any F -parabolic subgroup of G is G-conjugate to
PI , for some sequence I as in (11). The subgroups PI are called standard parabolic
subgroups. The group MI will be called a standard Levi subgroup of PI .

Assume that G is a special orthogonal group of even dimension. In this case,
there are two orbits of maximal totally isotropic subspaces of W . The representa-
tives for these orbits are given by the spaces

W+ = Fwn ⊕ Fwn−1 ⊕ · · · ⊕ Fw1,(13)

(W+)′ = Fwn ⊕ Fwn−1 ⊕ · · · ⊕ Fw2 ⊕ Fw−1.(14)

Let F ′
I be a flag defined as in (12), except replacing w1 with w−1. Let P ′

I and
M ′

I be parabolic subgroups, and Levi subgroups, respectively, defined similarly as
above for the flag F ′

I . The group of F -points of an F -parabolic subgroup of G is G
conjugate to at least one of the groups PI or P ′

I for some sequence (n1, n2, . . . , nr)
as in (11). The parabolic subgroups P ′

I and PI are called the standard parabolic
subgroups. The Levi factors MI and M ′

I , for PI and P ′
I , respectively, are called the

standard Levi subgroups.

Remark 3.1. There exist sequences I such that PI and P ′
I are G-conjugate. Hence,

for even special orthogonal groups these groups PI and P ′
I are not a parametrisation.

Nevertheless, any parabolic subgroup of G is conjugate to at least one such group.

Let P be a standard parabolic subgroup, and let M be a standard Levi factor
of P . Let U be the unipotent radical of P , and let Ū be the unipotent radical of
the opposite parabolic subgroup, P̄ , of P with respect to M . Let P (m) be the
following compact open group of G:

P (m) = K(m)(P ∩K).

Note that the group P (1) is a parahoric subgroup of G. The group P (m) has an
Iwahori decomposition with respect to the pair (P,M). The group K/K(1) can
be identified with kF -points of the connected component of the isometry subgroup
associated to the pair (L ⊗oF

kF , q̄); let π1 be the homomorphism as in (10). Let
P (kF ) be the image of P (1) under π1. P (kF ) is a parabolic subgroup of K/K(1).
The group M(kF ) = π1(K ∩M) is a Levi factor of P (kF ).

We identify M with the group

G1 ×G2 × · · · ×Gr ×Gr+1,

where Gi = GL(Vi), for 1 ≤ i ≤ r, and Gr+1 is the group of F -points of the
connected component of the isometry group associated to a nonsingular subspace
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(Vr+1, q) of (W, q). Any cuspidal representation σM of M is isomorphic to

σ1 � · · · � σr � σr+1,

where σi is a cuspidal representation of Gi, for 1 ≤ i ≤ r + 1. Any inertial class s
of G is equal to [M,σM ].

Let KM be the group M ∩K. Note that KM is a hyperspecial maximal compact
subgroup of M . Let γM be a cuspidal representation of M(kF ). Let τM be a
representation of KM , obtained as the inflation of γM via the map

π1 : KM = M ∩K → M(kF ).

Note that τM extends as a representation of P (1) via inflation from the map

π̃1 : P (1)
π1−→ P (kF ) → M(kF ).

Let σM be a cuspidal representation of M containing the pair (KM , τM ).

Lemma 3.2. Let s be the inertial class [M,σM ]G. The pair (P (1), τM ) is an s-type
in the sense of Bushnell and Kutzko.

Proof. This is essentially proved in [Mor99, Theorem 4.9]. However, we have to
show that the group P (1) coincides with the full normaliser of the facet corre-

sponding to the parahoric subgroup P (1), which is denoted by P̂ in [Mor99]. First,

we have P (1) ⊆ P̂ . From the Iwahori decomposition of P̂ with respect to (P,M),
we get that

P̂ = (P̂ ∩ U)(P̂ ∩M)(P̂ ∩ Ū).

Since the groups P̂ ∩ U and P̂ ∩ Ū are pro-p groups, they are contained in P (1).
Since KM = P (1) ∩ M is a hyperspecial maximal compact subgroup, the group

P (1) ∩M is equal to P̂ ∩M . This shows that P̂ = P (1). �

In this article, we classify the [M,σM ]G-typical representation of K. In par-
ticular, we show that the [M,σM ]G-typical representations of K are exactly the

subrepresentations of indKP (1) τM .

4. The first reduction

We begin with a few preliminary results. We will make a mild modification to the
uniqueness result of typical representations proved for depth-zero inertial classes of
GLn(F ). The following lemmas are essentially proved by Paškūnas in [Pas05] but
are not stated in the form we need.

Lemma 4.1. Let G be the group of kF -points of a connected reductive group over
kF . Let H be a subgroup of G. Assume that there exists a proper parabolic sub-
group P of G, with unipotent radical U such that H ∩ U = {id}. Let τ be an
irreducible representation of G. For any irreducible subrepresentation ξ of resH τ ,
there exists an irreducible noncuspidal G-representation τ ′ such that ξ occurs as a
subrepresentation of resH τ ′.

Proof. Using Mackey decomposition, we observe that the space

HomU (ind
G
H ξ, id)

is nontrivial. Therefore, there exists an irreducible noncuspidal G-subrepresentation
τ ′ of indGH ξ. Frobenius reciprocity implies that ξ occurs in the irreducible noncus-
pidal representation τ ′ of G. �
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For simplicity until the end of Lemmas 4.2 and 4.3, we denote the group GLn(F )
by Gn and the group GLn(oF ) by Kn.

Lemma 4.2. Let n > 1, and let s = [Gn, σ]Gn
be a depth-zero inertial class. The

representation resKn
σ admits a decomposition:

resKn
σ = τ ⊕ τ ′

such that τ is an s-typical representation of Kn, and any irreducible Kn-subrepresen-
tation ξ of τ ′ occurs in resKn

πξ for some irreducible noncuspidal representation πξ

of G.

Proof. The representation σ is an unramified twist of the representation indGn

F×Kn
τ ,

where τ is a representation of F×Kn such that: resKn
τ is obtained by inflation of

a cuspidal representation of GLn(kF ), and �F acts trivially on τ . Using Car-
tan decomposition for the group Gn, the representatives for the double cosets
F×Kn\Gn/Kn are given by the elements of the form diag(�i1

F , . . . , �in
F ), where

i1 ≥ · · · ≥ in ≥ 0. Now

resKn
σ ∼=

⊕
t∈Kn\GLn(F )/Kn

indKn

Kn∩tKnt−1 τ.

Assume t �= id. Let H be the image of the group Kn ∩ tKnt
−1 under the reduction

map π1 : Kn → GLn(kF ). The group H is contained in a proper parabolic subgroup
Q of GLn(kF ).

Let U be the unipotent radical of an opposite parabolic subgroup of Q. Note
that H ∩ U is the trivial group. Let ξ be an irreducible H-subrepresentation of
τ . Using Lemma 4.1, we get that ξ occurs as a subrepresentation of resH γ, where
γ is a noncuspidal irreducible representation of GLn(kF ). This implies that any
irreducible subrepresentation of resKn∩tKnt−1 τ occurs as a subrepresentation of
resKn∩tKnt−1 τ ′ where τ ′ is the inflation of γ. This shows that any Kn-irreducible

subrepresentation of indKn

Kn∩tKnt−1 τ occurs in indKn

Kn∩tKnt−1 τ
′ for some τ ′ as above.

The representation indKn

Kn∩tKnt−1 τ
′ is a subrepresentation of resKn

indGKn
τ ′. Let

Q(1) be a subgroup of Kn, obtained as the inverse image of Q via the map
π1 : Kn → GLn(kF ). Let N be a Levi factor of Q. The representation γ is a subrep-

resentation of i
GLn(kF )
Q γN , where γN is a cuspidal representation of N . Let τN be

the representation of Q(1) obtained by inflation of γN via the map π1 : Q(1) → Q.

The representation indGKn
τ ′ is a subrepresentation of indGQ(1) τN . Any irreducible

G-subquotient of indGQ(1) τN is a noncuspidal representation (see [BK93a, chapter

8]). This shows that irreducible subrepresentations of indKn

Kn∩tKnt−1 τ
′ occur in the

restriction to Kn of a noncuspidal representation of G. �

Lemma 4.3. Let s = [M,σ]Gn
be a depth-zero noncuspidal inertial class. Let P

be a parabolic subgroup of G such that M is a Levi factor of P . The representation
resKn

iGn

P σ admits a decomposition

resKn
iGn

P σ = τ ⊕ τ ′

such that any irreducible Kn-subrepresentation of τ is s-typical, and any irreducible
Kn-subrepresentation of τ ′ is atypical. Moreover, any irreducible Kn-subrepresenta-
tion of τ ′ occurs as a subrepresentation of resKn

iGn

R σ1 such that P and R are not
associate parabolic subgroups.
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Proof. The first part of the lemma is proved in [Nad17, Theorem 3.2]. The last
assertion follows from the proof of the result [Nad17, Theorem 3.2]. Note that there
are no assumptions on qF in the proof of this lemma. �

Let K be any hyperspecial maximal compact subgroup of G. We need the
uniqueness of s-typical representations of K for the inertial class [G, σ], where
σ contains a depth-zero type of the form (K,λ). We only give a sketch of the
following standard lemma for the completeness of the exposition. This result is
generalised by Latham for arbitrary maximal compact subgroups and depth-zero
cuspidal Bernstein components of a wide class of reductive groups G (see [Lat17]).

Lemma 4.4. The K-representation λ is the unique [G, σ]G-typical representation
contained in σ.

Proof. The representation σ is isomorphic to indGK λ. Now

resK indGK λ �
⊕

g∈K\G/K

indKKg∩K λg.

Assume that g /∈ K. Observe that the Cartan decomposition for K\G/K gives

a representative t ∈ KgK such that Kt−1 ∩ K ⊂ P (1) for some proper standard
parabolic subgroup P of G. Using Lemma 4.1, we get that any irreducible subrep-
resentation ξ of

resKt−1∩K λ

occurs as a subrepresentation of resKt−1∩K indKR(1) τ
′, where τ ′ is the inflation of a

cuspidal representation γ of L(kF ), the standard Levi factor of R(kF ), via the map

R(1) → R(kF ) → L(kF ).

Hence, any irreducible representation of indKKg∩K λg occurs as a subrepresentation
of

resK indGR(1) τ
′.

The pair (R(1), τ ′) is a type for the Bernstein component [L, σL], where σL is any
cuspidal representation of L containing the type (K∩L, τ ′). Now any irreducible G-

subquotients of indGR(1) τ
′ are noncuspidal. Hence the irreducible subrepresentations

of indKKg∩K λg are atypical. �

Consider a standard parabolic subgroup P with the standard Levi factor M
isomorphic to

G1 ×G2 × · · · ×Gr+1,

where Gi is the group of F -points of a general linear group over F , for i ≤ r,
and Gr+1 is the group of F -points of the connected component of the isometry
subgroup of a nonsingular subspace (W ′, q) of (W, q). The factor Gr+1 is assumed
to be trivial if M is contained in a maximal parabolic subgroup fixing a maximal
totally isotropic flag. Let ti = [Mi, σi]Gi

be an inertial class of Gi, for i ≤ r, and
let tr+1 = [Gr+1, σr+1] be a cuspidal inertial class of Gr+1.

We assume that ti is a depth-zero inertial class of Gi for 1 ≤ i ≤ r. We assume
that σr+1 contains a depth-zero type (K ∩ Gr+1, λ). Let Pi be an F -parabolic
subgroup of Gi with Mi as a Levi factor, and let

(15) resK∩Gi
iGi

Pi
σi = τi ⊕ τ ′i
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such that: any K ∩ Gi-irreducible subrepresentation of τ ′i is atypical, τi �= 0, and
any K ∩ Gi-subrepresentation of τi is ti-typical. Such a decomposition is possible
by Lemmas 4.2 and 4.3 for i ≤ r, and for Gr+1 from Lemma 4.4.

Let s be the inertial class [L, σL]G, where L ⊂ M is a standard Levi factor of a
standard parabolic subgroup such that

L � M1 × · · · ×Mr ×Gr+1,

and σL is isomorphic to σ1 � · · · � σr � σr+1. We denote by τM the K ∩ M -
representation

τ1 � τ2 � · · · � τr+1.

Let R be a standard parabolic subgroup such that L is the standard Levi factor of
R. Let τ ′M be the representation indMR∩M σL/τM . With this notation, we have the
following preliminary classification of s-typical representations of K.

Lemma 4.5. Let s be the inertial class [L, σL]G. Any s-typical representation τ of

K occurs as a subrepresentation of indKK∩P τM .

Proof. The representation indGK τ is finitely generated and hence has an irreducible
quotient π. From Frobenius reciprocity, the representation π occurs as a subquo-
tient of iGR(σL ⊗ χ), where R is a standard parabolic subgroup G with Levi factor
L, and χ is some unramified character of L.

Let σ̃M be the representation iMR∩MσL. Then τ occurs as a subrepresentation of
resK iGRσL, and we have the restriction

resK iGRσL = indKP∩K(resK∩M σ̃M ) = indKP∩K τM ⊕ indKP∩K τ ′M .

The Levi subgroup M is isomorphic to G1×G2×· · ·×Gr ×Gr+1. We identify σ̃M

with the representation σ̃1 � σ̃2 � · · · � σ̃r � σ̃r+1, where σ̃i is the representation

iGi

Pi
(σi ⊗ χi). Here Pi is the parabolic subgroup R ∩ Gi of Gi containing Mi as a

Levi factor, and χi = resMi
χ is an unramified character of Mi for all 1 ≤ i ≤ r+1.

Let

resK∩Gi
σ̃i =

⊕
j

ξji ,

where ξ0i = τi as defined in the decomposition of resK∩Gi
σ̃i in (15), and for j > 0

the representation ξji is an irreducible subrepresentation of τ ′i in (15). Now the
representation τM is isomorphic to ξ01 � · · ·� ξ0r � ξ0r+1. Similarly define the repre-
sentation τ ′M as the representation⊕

(i1,i2,...,ir+1) �=0

ξi11 � ξi22 � · · · � ξ
ir+1

r+1 .

We denote by ξI the summand corresponding to the tuple I = (i1, i2, . . . , ir+1).
Let I be the nonzero tuple (i1, i2, . . . , ir+1), and fix 1 ≤ j ≤ r+ 1 such that ij �= 0.

Now ξ
ij
j is atypical and hence occurs in

resK∩Gj
i
Gj

R′
j
γj ,

where R′
j is a parabolic subgroup of Gj , with a Levi factor M ′

j , and γj is a cuspidal
representation of M ′

j such that [M ′
j , γj ] is not equal to [Mj , σj ].
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Let L′ be the Levi subgroup M1 ×M2 × · · · ×Mj−1 ×M ′
j × · · · ×Gr+1, and let

σ′
L′ be the cuspidal representation σ1 � · · ·� σj−1 � γj � · · ·� σr+1. Let R

′ be any
parabolic subgroup such that L′ is a Levi factor of R′. Note that

indKK∩P ξI ⊂ resK iGR′σ′
L′ .

Now the cuspidal support of iGR′σ′
L′ is given by [L′, σ′

L′ ]. If j < r + 1, then using
Lemmas 4.2 and 4.3, we know that Mj and M ′

j are not conjugate in Gj . This
shows that L and L′ are not conjugate in G. Hence the inertial class [L′, σ′

L′ ] is
not equal to [L, σL]. Assume that j = r + 1. In this case, Lemma 4.4 shows that
L′ is a proper Levi subgroup of L. Hence the pairs (L, σL) and (L′, σ′

L′) represent
two distinct inertial classes. This shows that any irreducible subrepresentation of
indKK∩PI

ξI is atypical. �

5. Decomposition of an auxiliary representation

Let P be any standard parabolic subgroup of G. Let U be the unipotent radical
of P . Let M be the standard Levi subgroup of P . Let P̄ be the opposite parabolic
subgroup of P with respect to M . Let Ū be the unipotent radical of P̄ . Let
s = [M,σM ] be a depth-zero Bernstein component such that σM contains a type
(KM , τM ), where τM is the inflation of a cuspidal representation γM of M(kF ).

Let m ≥ 1 be any positive integer. Recall that P (m) is defined as the group
(P ∩ K)K(m). The group P (m) has Iwahori decomposition with respect to the
pair (P,M). Moreover,

P (m) ∩M = K ∩M and P (m) ∩ U = U ∩K.

The representation τM extends as a representation of P (m) via inflation from the
map π1 : P (1) → P (kF ) defined in (10). The groups U ∩ P (m) and Ū ∩ P (m) are
contained in the kernel of this inflation. Note that⋂

m≥1

P (m) = P ∩K.

We obtain

indKK∩P τM =
⋃
m≥1

indKP (m) τM .

We will show that the irreducible subrepresentations of the quotient

indKP (m+1) τM/(indKP (m) τM )

are atypical.
Given any irreducible representation τ of M(kF ), we consider τ first as a repre-

sentation of P (kF ) via inflation. Then τ is considered as a representation of P (1)
via inflation from the map π1 : P (1) → P (kF ) in (10). There exists a standard
parabolic subgroup R ⊂ P in G, containing L as its standard Levi factor, such
that: L ⊂ M , and τ is a subrepresentation of

ind
M(kF )
R(kF )∩M(kF ) τ

′,

where τ ′ is a cuspidal representation of L(kF ). If

HomP (1)(τ, π) �= 0,

for some irreducible smooth representation π of G, then the representation τ ′ of
R(1) occurs in π. The cuspidal support of the representation π is [L, σL], where
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σL is a cuspidal representation of L containing the pair (KL, τ
′). We call the

component [L, σL]G the inertial class associated to the pair (P (1), τ ).
For the purpose of inductive arguments it is useful to introduce more classes of

compact open subgroups and prove some basic properties of these groups. Let I be
a sequence of integers

n ≥ n1 ≥ · · · ≥ nr ≥ 1.

Let I1 be the sequence of integers as above consisting of a single integer nr. Let
FI be the flag W+

1 ⊂ · · · ⊂ W+
r of totally isotropic subspaces of W , as defined in

(12), corresponding to I (or possibly the flag defined for (14), if G is isomorphic to
special orthogonal subgroup SO2n(F )). Let P be the standard parabolic subgroup
fixing the flag FI . Let FI1 be the flag W+

r (or possibly the space (W+
r )′ if G is

isomorphic to SO2n(F )). The standard parabolic subgroup P1 fixing the flag FI1 is
the maximal proper parabolic subgroup containing the parabolic subgroup P . Let
M1 be the standard Levi factor of P1. Let U1 be the unipotent radical of P . Let
P̄1 be the opposite parabolic subgroup of P1 with respect to M1. Let Ū1 be the
unipotent radical of P1.

Let 1 ≤ i ≤ r be any positive integer. Let V̄ ±
i be the subspace L ⊗ kF spanned

by set of vectors {�ai

F wi ⊗ 1 | wi ∈ S±
i }. Let V̄r+1 be the space (W̄+

r ⊕ W̄−
r )⊥. Let

W̄i be the totally isotropic space

V̄ +
1 ⊕ V̄ +

2 ⊕ · · · ⊕ V̄ +
i .

The parabolic subgroup P (kF ) is the G(L ⊗ kF , q̄)-stabilizer of the flag

W̄+
1 ⊂ W̄+

2 ⊂ · · · ⊂ W̄+
r .

The group M(kF ) is the G(L ⊗ kF , q̄)-stabilizer of the decomposition

V̄ +
1 ⊕ V̄ +

2 ⊕ · · · ⊕ V̄ +
r ⊕ V̄r+1 ⊕ V̄ −

r ⊕ V̄ −
r−1 ⊕ · · · ⊕ V̄ −

1 .

Moreover, the group P1(kF ) is the G(L ⊗ kF , q̄)-stabilizer of the space W̄+
r , and

M1(kF ) is the G(L ⊗ kF , q̄)-stabilizer of the decomposition

W+
r ⊕ Vr+1 ⊕W−

r .

Let m be a positive integer. We introduce a compact open subgroup P (1,m) ⊆
P (1), which helps in inductive arguments. We set

P (1,m) = K(m)(P (1) ∩ P1).

Using Iwahori decomposition of the group K(m), we get that the group P (1,m)
admits an Iwahori decomposition with respect to the pair (P1,M1). Let U1 be
the unipotent radical of P1, and let Ū1 be the unipotent radical of the opposite
parabolic subgroup of P1 with respect to M1. Using the Iwahori decomposition of
P (1) with respect to the pair (P1,M1), we get that

P (1) = (P (1) ∩ Ū1)(P (1) ∩ P1).

Now, the group P (1) ∩ Ū is contained in K(1). Hence, we have P (1, 1) = P (1).
One of the main ingredients in the classification of typical representations is the
description of the induced representation

ind
P1(1,m)
P1(1,m+1) id .

Since the unipotent radical of P1 is not necessarily abelian, it is useful to introduce
another family of compact subgroups R(m) such that

P (1,m+ 1) ⊂ R(m) ⊂ P (1,m).
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With respect to the basis

(16) (�an

F wn, �
an−1

F wn−1, . . . , �
a−n+1

F w−n+1, �
a−n

F w−n),

we identify the groupK as a subgroup of GLN (oF ) and P as a subgroup of invertible
upper block matrices. With this identification, let R(m) be the compact open
subgroup of P (1,m) consisting of matrices of the form⎛

⎜⎜⎜⎜⎝
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
Z ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠ ,

where entries of the matrix Z belong to Mnr×nr
(pm+1

F ). Since m ≥ 1, the group
R(m) is well defined. Let n1 be the Lie algebra of Ū1(kF ). Now, with respect to
the basis

(17) (�an

F wn ⊗ 1, �
an−1

F wn−1 ⊗ 1, . . . , �
a−n+1

F w−n+1 ⊗ 1, �
a−n

F w−n ⊗ 1)

of L ⊗ kF , let n̄
1
1 and n̄21 be the space of matrices in n1 of the form⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
X 0 0 0 0
a 0 0 0 0
Y 0 0 0 0
0 Y ′ a′ X ′ 0

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Z 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

respectively, whereX,Y, (X ′)tr, (Y ′)tr∈M(n−nr)×nr
(kF ), and a, (a′)tr∈M1×nr

(kF ).

The space n1 is equal to n11 ⊕ n21. Note that for symplectic groups and even orthog-
onal groups, the n+ 1th rows and columns are assumed to be absent.

Now we want to decompose the representations

ind
P (1,m)
R(m) id and ind

R(m)
P (1,m+1) id .

We first consider two normal subgroups K1 and K2 of P (1,m) and R(m), respec-
tively, with the properties that

K1 ∩R(m) � K1 and K2 ∩ P (1,m) � K2.

The groups K1 and K2 are kernels of the quotient maps

P (1,m) → M1(kF ) and R(m) → M1(kF ),

respectively. Since K1 and K2 differ from P (1,m) and R(m) only by their inter-
sections with Levi group M1, we get that

K1R(m) = P (1,m) and K2P (1,m+ 1) = R(m).

Lemma 5.1. The subgroup K1 ∩ R(m) is a normal subgroup of K1, and K2 ∩
P (1,m+ 1) is a normal subgroup of K2.

Proof. The groups K1 and K2 satisfy Iwahori decomposition with respect to the
pair (P1,M1). Observe that

K1 ∩ P1 = (K1 ∩R(m)) ∩ P1 and K2 ∩ P1 = (K2 ∩ P (1,m+ 1)) ∩ P1.
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We need to check that K1 ∩ Ū1 normalizes K1 ∩ R(m), and K2 ∩ Ū1 normalizes
K2 ∩ PI(1,m+ 1). We have M1 ∩ P (1,m)-equivariant isomorphisms

K1 ∩ Ū1

(K1 ∩R(m)) ∩ Ū1
� n̄

1
1

and
K2 ∩ Ū1

(K2 ∩ PI(1,m+ 1)) ∩ Ū1
� n̄

2
1.

Since K1 ∩ M1 (respectively, K2 ∩ M1) acts trivially on n̄11 (respectively, on n̄21),
we get that u−j(u−)−1 belongs to K1 ∩ R(m) (respectively, K2 ∩ P (1,m)) for all
u− ∈ Ki ∩ Ū1 and j ∈ Ki ∩M1 for i ∈ {1, 2}.

With this, we are left with showing that u−u+(u−)−1 belongs to K1 ∩ R(m)
(respectively, K2 ∩ P (1,m)) for all u− in K1 ∩ Ū1 (respectively, K2 ∩ Ū1) and u+

in K1 ∩ U1 (respectively, K2 ∩ U1). We break the verification into two cases
when Wr is a maximal or nonmaximal totally isotropic subspace. Because
of dimension reasons, we consider the symplectic and even orthogonal cases first
and then consider the odd orthogonal case.

For any block matrix A in Mm×n(oF ), let val(A) be the least positive integer k
such that A ∈ Mm×n(p

k
F ). Let t be the dimension of Wr. First, suppose Wr is a

maximal totally isotropic space, i.e., t = n. Consider the case where G is either a
symplectic or an even orthogonal group. In this case, we have R(m) = P (1,m+1).
Let (

In 0
X In

)
∈ K1 ∩ Ū1 and

(
In A
0 In

)
∈ K1 ∩ U1,

where X ∈ Mn(p
m+1
F ) and A ∈ Mn(oF ). We have(

In 0
X In

)(
In A
0 In

)(
In 0
X In

)−1

=

(
In −AX A
−XAX In +XA

)
.

The lemma in this situation follows from the observation that XAX ∈ Mn(p
m+1
F ).

For odd orthogonal groups,

u− =

⎛
⎝In 0 0

a 1 0
X a′ In

⎞
⎠ and u+ =

⎛
⎝In b Y

0 1 b′

0 0 In

⎞
⎠ ,

where a′ and b′ are uniquely determined by a and b, respectively. Now, the matrix

u−u+(u−)
−1

in its block matrix form as above is equal to⎛
⎝ ∗ ∗ ∗

a1 ∗ ∗
X1 a′1 ∗

⎞
⎠ ,

where

a1 = −aba− (ay + b′)(X + a′a),

X1 = X − (Xb+ a′)a− (XY + a′b′ + 1)(X + aa′),

a′1 = Xb− (XY + a′b′)a′.

Clearly, val(a1), val(a
′
1), and val(X1) are greater than or equal to m+1. This shows

that u−u+(u−)
−1 ∈ K1 ∩R(m) for similar reasons.
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Now assume thatWr is a nonmaximal totally isotropic subspace ofW , i.e., t < n.
We first consider the symplectic or even orthogonal case. Let

u−=

⎛
⎜⎜⎝
It 0 0 0
A In−t 0 0
B 0 In−t 0
C B′ A′ It

⎞
⎟⎟⎠ ∈ Ki∩Ū1 and u+=

⎛
⎜⎜⎝
It X Y Z
0 In−t 0 Y ′

0 0 In−t X ′

0 0 0 It

⎞
⎟⎟⎠ ∈ Ki∩U1,

for i = 1, 2. Hence valF {A,B,C} ≥ m. Here again, A′, B′, X ′, and Y ′ are uniquely
determined by A,B,X, and Y, respectively. The matrix u−u+(u−)−1 looks like

u−u+(u−)−1 =

⎛
⎜⎜⎝

∗ ∗ ∗ ∗
P ∗ ∗ ∗
Q ∗ ∗ ∗
R Q′ P ′ ∗

⎞
⎟⎟⎠ ,

where

P =−AXA−AY B −AZC − Y ′C,

Q =−BXA−BY B −BZC −X ′C,(18)

R =− CXA−B′A− CY B −A′B − CZC −B′Y ′C −A′X ′C.

Since valF (R) ≥ m+ 1, it follows that K1 ∩R(m) is normal in K1. The remaining
case, i.e., K2∩P (m+1) is normal inK2, is similar. Indeed, in this case valF {A,B} ≥
m and valF (C) ≥ m+ 1. Hence normality follows from the fact that valF {P,Q} ≥
m+ 1.

Now finally we consider the odd orthogonal case. We have

u− =

⎛
⎜⎜⎜⎜⎝
It 0 0 0 0
A In−t 0 0 0
x 0 1 0 0
B 0 0 In−t 0
C B′ x′ A′ It

⎞
⎟⎟⎟⎟⎠ and u+ =

⎛
⎜⎜⎜⎜⎝
It X a Y Z
0 In−t 0 0 Y ′

0 0 1 0 a′

0 0 0 In−t X ′

0 0 0 0 It

⎞
⎟⎟⎟⎟⎠ ,

where x ∈ M1,t(p
m+1
F ). Let A1 denote the matrix (Ax ) ∈ Mn−t+1,t(p

m+1
F ). Similarly,

we define the matrix X1 to be X1 = (X a) ∈ Mt,n−t+1(oF ). After redefining B′

and Y ′ appropriately, we get

u− =

⎛
⎜⎜⎝

It 0 0 0
A1 In−t+1 0 0
B 0 In−t 0
C B′ A′ It

⎞
⎟⎟⎠ and u+ =

⎛
⎜⎜⎝
It X1 Y Z
0 In−t+1 0 Y ′

0 0 In−t X ′

0 0 0 It

⎞
⎟⎟⎠ .

Now the normality follows from calculations similar to (18). �

Using Mackey decomposition and the fact that the quotients

K1/(K1 ∩R(m)) and K2/(K2 ∩ P (1,m+ 1))

are abelian, we have

resK1
ind

P (1,m)
R(m) id =

⊕
Λ1

η and resK2
ind

R(m)
P (1,m+1) id =

⊕
Λ2

η,

where Λ1 and Λ2 are characters on the quotients K1/(K1 ∩ R(m)) and K2/(K2 ∩
P (1,m + 1)), respectively. The groups P (1,m) and R(m) act on Λ1 and Λ2, re-
spectively. We denote by Λ′

1 and Λ′
2 for a set of representatives for the action of
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P (1,m) and R(m), respectively. Now using Clifford theory, we obtain

(19) ind
P (1,m)
R(m) id �

⊕
η∈Λ′

1

ind
P (1,m)
ZP (1,m)(η)

Uη

and

(20) ind
R(m)
P (m+1) id �

⊕
η∈Λ′

2

indRm

ZR(m)(η)
U ′
η,

where Uη and U ′
η are some irreducible representations of ZP (1,m)(η) and ZR(m)(η),

respectively. The precise description of Uη is not used in any argument.
It is crucial to understand the images of the groups ZP (1,m)(η) and ZR(m)(η)

in the quotient K/K(1). This is achieved in Lemma 5.4, and we begin with some
preparations. We first note that the Iwahori decomposition gives us

ZP (1,m)(η) = ZP (1,m)∩M1
(η)K1

and

ZR(m)(η) = ZR(m)∩M1
(η)K2.

We have the following isomorphisms:

K1/(K1 ∩R(m)) ∼= n̄
1
1

and

K2/(K2 ∩ P (1,m+ 1)) ∼= n̄
2
1,

respectively. The kF -dual of the space n̄i1 is isomorphic to n̄i1 for i ∈ {1, 2} in a
M1(kF )-equivariant way. This is because the representation of M1(kF ) on n̄i1 is a
self-dual for i ∈ {1, 2}. Note that P (1,m) ∩M1 = R(m) ∩M1. Observe that the
action of the groups P (1,m)∩M1 and R(m) ∩M1 on the characters in Λ1 and Λ2

factors through the quotient map

(21) π1 : K ∩M1 → M1(kF ).

We identify the group M1(kF ) with

(22) GL(W̄+
r )×G(V̄ +

r+1 ⊕ V̄ −
r+1),

where G(V̄ +
r+1⊕ V̄ −

r+1) is the group of kF -points of the connected component of the

isometry group of the pair (V̄ +
r+1 ⊕ V̄ −

r+1, q̄). The image of P (1,m) ∩M1 under the
map (21) is contained in a group of the form

(23) Q×G(V̄ +
r+1 ⊕ V̄ −

r+1),

where Q is the parabolic subgroup of GL(W̄+
r ) fixing the flag W̄+

1 ⊂ · · · ⊂ W̄+
r .

With the above observation, it is useful to recall the stabilisers in the case of
general linear groups (see [Nad17, Lemma 3.8]). Let r > 1 be an integer, and let
I = (n1, n2, . . . , nr) be a partition of n. We denote by PI the parabolic subgroup
of upper block diagonal matrices of size ni×nj . The partition (n1, n2, . . . , nr−1) is
denoted by J . Let OA be an orbit for the action of PJ(kF )×GLnr

(kF ) on the set
of matrices M(n−nr)×nr

(kF ) given by

(g1, g2)X = g1Xg−1
2 ∀ g1 ∈ PJ(kF ), g2 ∈ GLnr

(kF ), X ∈ M(n−nr)×nr
(kF ).

Let pj be the composition of the quotient map PJ(kF )×GLnr
(kF ) → MI(kF ) and

the projection onto the jth factor of MI(kF ) =
∏r

i=1 GLni
(kF ), i.e.,

pj : PJ(kF )×GLnr
(kF ) → GLnj

(kF ).
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Lemma 5.2. Let OA be an orbit consisting of nonzero matrices in M(n−nr)×nr
(kF ).

We can choose a representative A such that the PJ(kF ) × GLnr
(kF )-stabiliser

ZPJ (kF )×GLnr (kF )(A) of A satisfies one of the following conditions:

(1) There exists a positive integer j with j ≤ r such that the image of

pj : ZPJ (kF )×GLnr (kF )(A) → GLnj
(kF )

is contained in a proper parabolic subgroup of GLnj
(kF ).

(2) There exists a positive integer i with 1 ≤ i ≤ r− 1 such that pi(g) = pr(g),
for all g in

ZPJ (kF )×GLnr (kF )(A).

Now let us note a small observation which will be useful in the proof of Lemma
5.4.

Lemma 5.3. Let G be a split reductive group with an automorphism θ. There exists
a parabolic subgroup of G×G with unipotent radical U such that {(g, θ(g))|g ∈ G}
has trivial intersection with U .

Proof. Let P be any proper parabolic subgroup of G, and let P̄ be any opposite
parabolic subgroup of P . The unipotent radical of P × P̄ has trivial intersection
with the diagonal subgroup of G×G. The group {(g, θ(g))|g ∈ G} is the image by
the automorphism id×θ of the diagonal subgroup of G×G, and hence the lemma
follows. �

The following is the technical heart of this article. Here we use the condition
that qF > 5. Let H̃ be the image of P (1,m)∩M1 under the map π1 in (21). This
is contained in the group Q×G(V̄ +

r+1⊕ V̄ −
r+1) as in (23). Hence the lemma is based

on the Q × G(V̄ +
r+1 ⊕ V̄ −

r+1)-stabilisers (which contain H̃-stabilisers) of nontrivial

elements in n̄11 and n̄21. There are several cases to consider, primarily depending on
whether or not the subspace W̄+

r of the flag W̄+
1 ⊂ · · · ⊂ W̄+

r is maximal. Let θ be
the quotient map

θ : Q×G(V̄ +
r+1 ⊕ V̄ −

r+1) → M(kF ).

Lemma 5.4. Let u be any nontrivial element of n̄11 or n̄21, and let H be the image of
ZH̃(u) under the map θ. Let τ be a cuspidal representation of M(kF ), and let ξ be an
irreducible subrepresentation of resH τ . There exists an irreducible representation
τ ′ of M(kF ) such that ξ occurs in the restriction resH τ ′, and the inertial classes
associated to the pairs (P (1), τ ) and (P (1), τ ′) are distinct.

Proof. We will show that there exists a parabolic subgroup S of M(kF ) such that
Rad(S) ∩H is trivial. Using Lemma 4.1 we get a noncuspidal irreducible M(kF )-
representation τ ′ such that ξ occurs in resH τ. The inertial classes associated to the
pairs (PI(1), τ ) and (PI(1), τ

′) are clearly distinct.
We begin with the case where the space W+

r is a maximal isotropic sub-
space of (W, q). In this case, P is contained in the maximal parabolic subgroup
P1 fixing the maximal isotropic subspace W+

r of W . Recall that the standard Levi
factor of P1 is denoted by M1. The adjoint action of M1(kF ) � GL(W̄+

r ) on n̄1, the
Lie algebra of the unipotent radical of P̄1(kF ), is the representation of GL(W̄+

r ) on
the space of −ε forms on W̄+

r .

Let B be a −ε bilinear form on W̄+
r corresponding to u. In this case H̃ is

contained in Q. Let g = (gkl) and B = (Bk′l′) be the block matrix representation
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of the elements g in Q and the −ε bilinear form B on W̄+
r with respect to the

decomposition V̄ +
1 ⊕ · · · ⊕ V̄ +

r of W̄+
r . Let p be the largest positive integer such

that Bpq is nonzero for some 1 ≤ q ≤ r. Let q be the largest positive integer such
that Bpq �= 0. For any g ∈ ZQ(B) we have

gppBpqg
T
qq = Bpq,

where Bpq is a bilinear form on V̄ +
p × V̄ +

q . Without loss of generality assume that

dim V̄ +
p > dim V̄ +

q .

Let S be the stabiliser of the kernel of the map V̄ +
p → (V̄ +

q )∨ induced by Bpq. Then

gpp belongs to a proper parabolic subgroup S̄ of GL(V̄ +
p ). Hence H is contained in

a proper parabolic subgroup S̄ of M(kF ). The required parabolic subgroup S can
be taken to be any opposite parabolic subgroup of S̄.

Consider the case where dim V̄ +
p is equal to dim V̄ +

q > 1. If the map

V̄ +
p → (V̄ +

q )∨ induced by Bpq has a nontrivial kernel, then gpp belongs to the

proper parabolic subgroup of GL(V̄ +
p ) fixing this kernel. Hence H is contained in a

proper parabolic subgroup S̄ of M(kF ). Let S be an opposite parabolic subgroup
of S̄. We get that Rad(S) ∩H is a trivial group. We assume that the map V̄ +

p →
(V̄ +

q )∨, induced by Bpq, is an isomorphism. Now using Lemma 5.3, we get a proper
parabolic subgroup S of M(kF ), with unipotent radical U , such that H ∩ U is
trivial.

We consider the case where dim V̄ +
p is equal to dim V̄ +

q = 1. In this case,
the group H consists of elements of the form

diag(g1, . . . , gp, . . . , gq, . . . , gr),

where gi ∈ GL(V̄ +
i ) for i ∈ {p, q} and gpgq = 1. We identify the representation τ

with τ1 � τ2 � · · · � τr, where τi is a cuspidal representation of GL(V̄ +
i ). Let η be

a nontrivial character of k×F , and let τ ′ be the representation

τ1 � · · · � τpη � · · · � τqη
−1 � · · · � τr.

Now the Bernstein components associated to the pairs (PI(1), τ ) and (PI(1), τ
′)

are the same if and only if the set {τpη, τ−1
p η−1} is either equal to {τp, τ−1

p } or

to {τqη−1, τ−1
p η}. Hence, the character η belongs to the set {τ−2

p , τpτq, τpτ
−1
q }.

Since qF > 5, we can find a character η such that η does not belong to the set
{τ−2

p , τpτq, τpτ
−1
q }. For such a choice of η the Bernstein components associated to

the pairs (P (1), τ ) and (P (1), τ ′) are distinct, and from construction resH τ is equal
to resH τ ′.

We come to the case when W̄+
r is not a maximal isotropic subspace. In this

case, the space V̄r+1 is nonzero. The standard Levi factor M1 of P1 is isomorphic
to

GL(W̄+
r )×G(V̄r+1).

Recall the notation V̄r+1 for the space (W̄+
r ⊕ W̄−

r )⊥. The adjoint action of M1 on
n21 factors through the map

GL(W̄r)×G(V̄r+1) → GL(W̄r).

In this case, the action of GL(W̄r) on n21 is its representation on the space of −ε
forms. This case is similar to the case where W̄+

r is maximal, and the proof of the
lemma, in this case, follows from the analysis in the previous case.
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The action of M1(kF ) on n11 � Hom(W̄+
r , V̄r+1) is given by

(g1, g2)X = g1Xg−1
2 ∀ g1 ∈ GL(W̄+

r ), g2 ∈ G(V̄r+1).

We have to consider the stabilisers of Q × G(V̄r+1) on the space Hom(W̄+
r , V̄r+1).

Let X be a nonzero element of Hom(W̄+
r , V̄r+1). We have the decomposition

Hom(W̄+
r , V̄r+1) �

r⊕
i=1

Hom(V̄ +
r , V̄r+1).

Now decompose X as the sum
∑r

i=1 Xi such that Xi belongs to Hom(V̄ +
r , V̄r+1).

Let g = (gmn) be the block matrix form of any element in Q with respect to the
decomposition

W̄+
r = V̄ +

1 ⊕ · · · ⊕ V̄ +
r .

Let t be the least positive integer such that Xt is nonzero. We then have

gttXtg
−1 = Xt ∀ gtt ∈ GL(V̄ +

t ), g̃ ∈ G(V̄r+1).

Now let R be the group GL(V̄ +
t )×G(V̄r+1).

Consider the case when dim(V̄ +
t ) > dim(V̄r+1). In this case ZR(Xt) is con-

tained in a subgroup of the form P ×G(V̄r+1), where P is a proper parabolic sub-
group of GL(V̄ +

t ) (see Lemma 5.2). Hence the unipotent radical of P̄×G(V̄r+1), for
any opposite parabolic subgroup P̄ of P , has trivial intersection with ZR(Xt). This
shows that there exists a unipotent radical of M(kF ) which has trivial intersection
with H, and hence we get the lemma.

Now assume that dim(V̄ +
t ) is equal to dim(V̄r+1). In this case if the rank

of Xt is not equal to dim(V̄ +
t ), then ZR(Xt) is contained in P×G(V̄ +

r+1), where P

is a proper parabolic subgroup of GL(V̄ +
t ). From similar arguments of the previous

case we prove the lemma. If the rank of Xt is equal to dim(V̄t), then ZR(Xt)
is contained in a group of the form

{(XtgX
−1
t , g); g ∈ G(V̄ +

r+1)}.

Consider any Borel subgroup B of GL(V +
r+1) such that B ∩ G(V̄ +

r+1) is the Borel

subgroup of G(V̄ +
r+1). Let B̄ be any opposite Borel subgroup of B. The group

B̄ × B can be identified with a Borel subgroup of GL(V̄ +
t ) × G(V̄r+1). Now the

unipotent radical of the Borel subgroup XtB̄X−1
t ×B has trivial intersection with

ZR(Xt), which proves the lemma in this case.
Let (g1, g2) be an element of the group ZR(Xt) such that g1 ∈ GL(V̄ +

t ) and
g2 ∈ G(V̄r+1). We are left with the case when dim(V̄ +

t ) < dim(V̄r+1). Let
Xt ∈ HomkF

(V̄ +
t , V̄r+1) be an operator such that ker(Xt) is a nonzero subspace

(since Xt is nonzero operator, ker(Xt) is not equal to V̄ +
r ). The group ZR(Xt) is

contained in a group of the form P × G(V̄r+1), where P is a parabolic subgroup
of GL(V̄ +

t ) fixing ker(Xt). This shows that H is contained in a proper parabolic
subgroup of M(kF ). Now assume that Xt is surjective. If Rad(XtV̄

+
t ) is a proper

nonzero subspace of (XtV̄
+
t , q̄), then for any (g1, g2) in ZR(Xt) the element g2

stabilises the space XtV̄
+
t . This implies that g2 stabilises the space Rad(XtV̄

+
t ).

This shows that g2 stabilises a proper isotropic subspace and hence is contained in
a proper parabolic subgroup of G(V̄r+1).

Finally, consider the case where the space XtV̄
+
t is either totally isotropic

or nonsingular. If the spaceXtV̄
+
t is totally isotropic, then the element g2 belongs

to a proper parabolic subspace of G(V̄r+1). If XtV̄
+
t is a nonsingular space, then
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the form h̄′, obtained by pulling h̄ restricted to XtV̄
+
t to V̄ +

t , is preserved by g1.
Hence g1 belongs to G((V̄ +

t , h′)). In both the cases we can find a proper parabolic
subgroup P of GLr(W̄

+
r )×G(V̄r+1) such that ZR(Xt) has trivial intersection with

Rad(P ) and hence prove the lemma. �

6. Classification of K-typical representations

We need the following well-known lemma (see [Nad17, Lemma 2.6]). For the
sake of the next lemma consider any parabolic subgroup P of a reductive group G
with a Levi factor M . Let U be the unipotent radical of P . Let Ū be the unipotent
radical of the opposite parabolic subgroup of P with respect to M . Let J1 and J2
be two compact open subgroups of G such that J1 contains J2. Suppose J1 and J2
both satisfy an Iwahori decomposition with respect to the pair (P,M). Assume

J1 ∩ U = J2 ∩ U and J1 ∩ Ū = J2 ∩ Ū .

Let λ be an irreducible smooth representation of J2 which admits an Iwahori de-
composition, i.e., J2 ∩ U and J2 ∩ Ū are contained in the kernel of λ.

Lemma 6.1. The representation indJ1

J2
(λ) is the extension of the representation

indJ1∩M
J2∩M (λ) such that J1∩U and J1∩Ū are contained in the kernel of the extension.

Let us resume with the present case where G is a split classical group. Let
s = [M,σM ]G be an inertial class such that M �= G. Let KM be a hyperspecial
maximal compact subgroup of M . Let σM be a cuspidal representation of M such
that σM contains a depth-zero type of the form (KM , τM ). Let the hyperspecial
vertex in the Bruhat–Tits building of M , corresponding to KM , be contained in the
apartment corresponding to a maximal split torus T (defined over F ) of M . Such
a torus T is characterised by the property that KM ∩ T is the maximal compact
subgroup of T (see [MP94, 2.6]).

Let K be a hyperspecial maximal compact subgroup of G such that K contains
KM . Let T be a torus defined as in the above paragraph. Now K ∩ T is the
maximal compact subgroup of T . This shows that K is the parahoric subgroup of
G associated to a hyperspecial vertex in the apartment corresponding to T . Let B
be the standard basis of W associated to T . There exists a self-dual lattice chain
Λ such that B is a splitting of Λ and K = U0(Λ) ∩G.

Now the group M is K-conjugate to a standard Levi subgroup defined with
respect to the basis B and a flag FI as defined in (12), for some sequence of
integers I as defined in (11). Hence, we may (and do) assume that M is a standard
Levi subgroup corresponding to FI . Let P be the standard parabolic subgroup
fixing the flag FI . The group M is a Levi factor of P . Let P (1) be the group
K(1)(P ∩K). The representation τM extends as a representation of P (1) such that
P (1) ∩ U and P (1) ∩ Ū are contained in the kernel of this extension. With this we
have the following theorem.

Theorem 6.2. Let s = [M,σM ]G be an inertial class such that M �= G. Assume
that σM contains a depth-zero type of the form (KM , τM ), where KM is a hyper-
special maximal compact subgroup of M . Let K be a hyperspecial maximal compact
subgroup of G containing KM . If τ is an s-typical representation of K, then τ is a
subrepresentation of indKP (1) τM .
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Proof. Let P be the G stabilizer of the flag

FI = W+
1 ⊂ W+

2 ⊂ · · · ⊂ W+
r .

Let P1 be the G-stabiliser of the space W+
r . Let FJ be the flag

W+
1 ⊂ W+

2 ⊂ · · · ⊂ W+
r−1.

Let PJ be the parabolic subgroup of G(W+
r ) fixing the flag FJ . Let MJ be the

subgroup of GL(W+
r ) fixing the decomposition

V +
1 ⊕ V +

2 ⊕ · · · ⊕ V +
r .

The group MJ is a Levi factor of the parabolic subgroup PJ . We recall that

M � G1 ×G2 × · · · ×Gr ×Gr+1,

where Gi = GL(V +
i ), for 1 ≤ i ≤ r, and Gr+1 is the F -point of the connected

component of the isotropy subgroup of (Vr+1, q).
We then identify σM with σ1 � · · ·� σr+1, where σi is a cuspidal representation

of the group Gi, for all 1 ≤ i ≤ r + 1. Let τi be the unique K ∩ Gi-typical
representation occurring in the cuspidal representation σi, for 1 ≤ i ≤ r + 1. The
KM representation τM is isomorphic to the representation

τ1 � · · · � τr � τr+1.

From Lemma 4.5 we know that any irreducible K-subrepresentation of

iGPσM/ indKP∩K τM

is atypical. Now the representation indKP∩K τM is the union of the representations

indKP (m) τM for m ≥ 1.

Let K ′ be the compact open subgroup GL(W+
r )∩K of GL(W+

r ). Let K ′(m) be
the principal congruence subgroup of level m contained in K. The compact group
K ′(m) ∩ (PJ ∩K ′) is denoted by PJ(m). Let τJ be the K ′ ∩MJ -representation

τ1 � τ2 � · · · � τr.

The representation τJ extends as a representation of PJ(m) via inflation from the
map

PJ (m) → PJ(kF ) → MJ (kF ).

From transitivity of induction and using Lemma 6.1, we see that

indKP (m) τM � indKP1(m){(indK
′

PJ (m) τJ) � τr+1}.

The irreducible K ′-subrepresentations of indK
′

PJ (m) τJ/ ind
K′

PJ (1) τJ are atypical from

the result [Nad17, Theorem 1.1]. Hence s-typical representations of K can only
occur as subrepresentations of

indKP1(m){(indK
′

PJ (1) τJ) � τ ′} � indKP (1,m) τM .

Now from Lemmas 3.2 and 2.5 we get that

ind
P (1,m)
P (1,m+1) id = id⊕

k⊕
i=1

ind
P (1,m)
Hi

Ui
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such that any irreducible subrepresentation χ of resHi
τI occurs in resHi

τ ′I . More-
over, the Bernstein components associated to the pairs (PI(1), τI) and (PI(1), τ

′
I)

are distinct. Note that

indKP (1,m+1) τM � indKP (1,m){ind
P (1,m)
P (1,m+1) id} ⊗ τM

� indKP (1,m) τM ⊕ ind
P (1,m)
Hi

(Ui × resHi
τM ).

Using induction on m, any s-typical representation occurs as a subrepresentation
of indKP (1) τM . Recall that the subgroup P (1, 1) is equal to P (1). Since (P (1), τM )

is a Bushnell–Kutzko type for [M,σM ], we complete the proof of the theorem. �

7. Principal series components

Let G be the split classical group defined as the connected component of the
isometry group of (W, q), as in Section 3. LetK be a hyperspecial maximal compact
subgroup of G. Let T be a maximal split torus of G defined over F such that K∩T
is the maximal compact subgroup of T . Let

(24) (wi : −n ≤ i ≤ n)

be a standard basis associated to T . Now there exists a self-dual lattice chain Λ
such that the basis (24) is a splitting of Λ and K = U0(Λ) ∩G. Let

Λ(0) = p
an

F wn ⊕ p
an−1

F wn−1 ⊕ · · · ⊕ p
a−n+1

F w−n+1 ⊕ p
a−n

F w−n.

We fix a basis

{�an

F wn, �
an−1

F wn−1, . . . , �
a−n+1

F w−n+1, �
a−n

F w−n}
of W . Now, using this basis, we get an embedding

(25) ι : G → GLN (F )

of G in GLN (F ). The image of the maximal compact subgroup K can be identified
with GLN (oF )∩ ι(G). The torus T is the group of diagonal matrices of ι(G). Let B
be the Borel subgroup of G such that B is a subgroup of upper triangular matrices
in GLN (F ). We denote by B̄ the opposite Borel subgroup of B with respect to T.
Let U and Ū be the unipotent radicals of B and B̄, respectively.

We identify the torus T with (F×)n by the map

diag(t1, t2, . . . , tn, t
−1
n , . . . , t−1

2 , t−1
1 ) �→ (t1, . . . , tn), ti ∈ F×.

We also identify a character χ of T with

χ = χ1 � · · · � χn,

where χi is a character of F×. The conductor of χi, denoted by l(χi), is the least
positive integer n such that 1+pnF is contained in the kernel of χ. In this section,
we assume that

l(χi) �= l(χj) for all i �= j.

Let s be the inertial class [T, χ]. Let τ be an s-typical representation of K. The
representation τ occurs as a subrepresentation of an irreducible smooth represen-
tation π of G. By definition, the inertial support of the representation π is equal
to s. Hence, τ is an irreducible subrepresentation resK iGBχ. The G-representations
iGBχ and iGBχ

w have the same Jordan–Holder factors for all w ∈ NG(T ). This shows
that, for the purpose of understanding s-typical representations of K, we may (and
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do) arrange the characters χ1, χ2, . . . , χn (conjugating by an element in the Weyl
group if necessary) such that

(26) l(χi) > l(χj) for i < j.

The types for any Bernstein component [T, χ] of a split reductive group G are
constructed by Roche in [Roc98]. We recall his constructions from [Roc98, Section
2,3]. Let B be any Borel subgroup of G containing a maximal split torus T. Let U
be the unipotent radical of B, and let Ū be the unipotent radical of the opposite
Borel subgroup B̄ of B with respect to T. Let Φ be the set of roots of G with
respect to T. Let Φ+ and Φ− be the set of positive and negative roots with respect
to the choice of the Borel subgroup B, respectively. Let fχ be the function on Φ
defined by

fχ(α) =

{
[l(χα∨)]/2 if α ∈ Φ+,

[(l(χα∨) + 1)/2] if α ∈ Φ−.
(27)

Let xα : Ga → Uα be the root group isomorphism, and let Uα,t be the group
xα(p

t
F ). Let T0 be the maximal compact subgroup of T . Let U±

χ be the group

generated by Uα,fχ(α), for all α ∈ Φ±. Let Jχ be the group generated by U+
χ , T0,

and U−
χ . The group Jχ has Iwahori decomposition with respect to the pair (B, T )

such that

Jχ ∩ U = U+
χ , Jχ ∩ Ū = U−

χ , and Jχ ∩ T = T0.

The representation χ of T0 extends to a representation of Jχ such that U+
χ and U−

χ

are both contained in the kernel of this extension. We use the same notation χ for
this extension. The pair (Jχ, χ) is a type for the Bernstein component [T, χ]. We
apply these results to a split classical group G with the diagonal torus T and the
Borel subgroup B of G whose F -points are upper triangular matrices, to get a type
(Jχ, χ) for s. Let I be the group K(1)(B∩K). The group I is an Iwahori subgroup
of G, contained in K. We may (and do) choose the set of root group isomorphisms
{xα : Ga → Uα| α ∈ Φ} such that Jid is equal to I. Moreover, for such a choice,
we get that Jχ is a subgroup of I.

Before going any further, we need some notation. Consider the isotropic space
W+

1 spanned by w1, and W−
1 the space spanned by w−1. Let P1 be a parabolic

subgroup of G fixing the space W+
1 . Let M1 be the standard Levi factor of P1, i.e.,

the G-stabiliser of the decomposition

W+
1 ⊕ (W+

1 ⊕W−
1 )⊥ ⊕W−

1 .

The group M1 isomorphic to F× × G(W ′), where W ′ is equal to (W+
1 ⊕ W−

1 )⊥.
Let Ū1 be the unipotent radical of the opposite parabolic subgroup P̄1 of P1 with
respect to M1. Let m be any positive integer such that m ≥ l(χ1). Define the
compact open subgroups P 0

1 (m) and R0(m) by

P 0
1 (m) = (U1 ∩ P1(m))(M1 ∩ Jχ)(Ū1 ∩ P1(m))

and

R0(m) = (U1 ∩R(m))(M1 ∩ Jχ)(Ū1 ∩R(m)),

respectively. Here R(m) is the group as defined in Section 5.
For inductive arguments we will use the decomposition of the following repre-

sentations:

ind
P 0

1 (m)

R0(m) id and ind
R0(m)

P 0
1 (m+1)

id .
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Let K1 and K2 be the kernels of the maps

P 0
1 (m)

π1−→ P1(kF ) → M1(kF ) and R0(m)
π1−→ P1(kF ) → M1(kF ),

respectively. Recall that the map π1 is a reduction mod pF map. Using the argu-
ments similar to Lemma 5.1 we get that

K1 ∩R0(m) � K1 and K2 ∩ P 0
1 (m+ 1) � K2.

Now let Λ1 and Λ2 be the set of representatives for the orbits of the action of the
groups P 0

1 (m) and R0(m) on the set of characters of the groups K1/(K1 ∩R0(m))
and K2/(K2 ∩ P 0

1 (m+ 1)). We then have

ind
P 0

1 (m)

R0(m) id �
⊕
η∈Λ1

ind
P 0

1 (m)

Z
P0
1 (m)

(η) Uη

and

ind
R0(m)
P1(m+1) id �

⊕
η∈Λ2

ind
R0(m)
ZR0(m)(η)

Uη.

We note that

ZP 0
1 (m)(η) = ZP 0

1 (m)∩M1
(η)K1 and ZR0(m)(η) = ZR0(m)∩M1

(η)K2.

The group of characters of K1/(K1∩R0(m)) and K2/(K2∩P 0
1 (m+1)) are isomor-

phic to the groups n̄11 and n̄21, respectively. The action of the group P 0
1 (m)∩M1 =

R0(m) ∩M1 factors through the quotient map

P 0
1 (m) ∩M1 → M1(kF ).

The image of this quotient map is contained in B(kF ) ∩M1(kF ).

Lemma 7.1. Let u be any nontrivial element of n̄i1 for i ∈ {1, 2}. Let H be the
group ZM1(kF )∩B(kF )(u). There exists a character χ′ of T such that

resH χ = resH χ′

and the inertial classes [T, χ] and [T, χ′] are distinct.

Proof. The group M1(kF ) ∩ B(kF ) is isomorphic to k×F × B′, where B′ is a Borel

subgroup of G(W̄ ′, q̄). The action of the group k×F × B′ on n̄21 factors through the
projection

k×F ×B′ → k×F .

The action is given by the character x �→ x2. Hence if (x, b) belongs to Zk×
F ×B′(u)

where u ∈ n̄11\{0}, then x2 = 1. In this case, consider a nontrivial character η of
k×F which is trivial on the group {±1}. We consider the character η as a character

of o×F via inflation. Set χ′ to be the character χ1η �χ2 � · · ·�χn. From the above
definition we get

resH χ = resH χ′.

If the Bernstein component [T, χ1] is equivalent to [T, χ2], then η−1 = χ2
1. This is

not possible as l(χ1) �= 1. Hence the character χ′ is the character satisfying the
lemma.

Now consider the case when u belongs to n̄11. The unipotent radical U of k×F ×B′

is a p-group. Hence there exists a flag {Vi;Vi ⊂ Vi+1} of n̄11 stabilised by k×F × B′

such that U acts trivially on Vi/Vi+1. Let i be the least positive integer such that
u ∈ Vi. The group H is contained in the k×F × B′-stabiliser of ū in Vi/Vi−1. The
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group U acts trivially on Vi/Vi−1. Hence the image of H under the natural map
k×F ×B′ → T (kF ) is contained in a group of the form

{diag(t1, t2, . . . , tn, 1, t−n, . . . , t1)| t1t−1
j = 1}.

Without loss of generality, assume that j > 0. Consider the character χ′ given by

χ′ = χ1η � · · · � χjη
−1 � · · · � χn.

If (T, χ) and (T, χ′) are inertially equivalent, then the multiplicity of {χ1, χ
−1
1 } in

the multisets

{{χ1, χ
−1
1 }, . . . , {χn, χ

−1
n }}

and

{{χ1η, χ
−1
1 η−1}, . . . , {χjη

−1, χ−1
j η}, . . . , {χn, χ

−1
n }}

must be the same. This implies that η belongs to {χ−2
1 , χ1χj , χ1χ

−1
j }. Since k×F

has cardinality bigger than 5, there exists a character η such that [T, χ] and [T, χ′]
are not inertially equivalent. This completes the proof of the lemma. �

We need the following technical observation. Let χ and η be two characters of
T . Recall that T is identified with (F×)n using the diagonal embedding using ι in
(25). We identify χ with �n

i=1χi and η with �n
i=1ηi.

Lemma 7.2. Let n > 1, and let [T, χ]M1
and [T, η]M1

be two inertial classes such
that res

o
×
F
χ1 = res

o
×
F
η1. If [T, χ]M1

�= [T, η]M1
, then [T, χ]G �= [T, η]G.

Proof. Since [T, χ]M1
�= [T, η]M1

, there exists an integer i with 2 ≤ i ≤ n such that
the multiplicity of the multiset {res

o
×
F
χi, reso×

F
χ−1
i } has different multiplicities in

the multisets

{{res
o
×
F
χ2, reso×

F
χ−1
2 }, . . . , {res

o
×
F
χn, reso×

F
χ−1
n }}

and

{{res
o
×
F
η2, reso×

F
η−1
2 }, . . . , {res

o
×
F
ηn, reso×

F
η−1
n }}.

Hence, the multiset {res
o
×
F
χi, reso×

F
χ−1
i } will have different multiplicities in

{{res
o
×
F
χ1, reso×

F
χ−1
1 }, {res

o
×
F
χ2, reso×

F
χ−1
2 }, . . . , {res

o
×
F
χn, reso×

F
χ−1
n }}

and

{{res
o
×
F
η1, reso×

F
η−1
1 }, {res

o
×
F
η2, reso×

F
η−1
2 }, . . . , {res

o
×
F
ηn, reso×

F
η−1
n }}.

This shows the lemma. �

We are now ready to classify s = [T, χ]-typical representations of K.

Theorem 7.3. Let K be the fixed hyperspecial maximal compact subgroup G. Let
s = [T,�n

i=1χi]G be a toral inertial class such that l(χi) > l(χi) for all i < j. If τ

is an s-typical representation of K, then τ is a subrepresentation of indKJχ
χ.

Proof. Using induction on n we show that the representation indKJχ
χ is a subrep-

resentation of resK iGBχ, and any irreducible subrepresentation of

(resK iGBχ)/ ind
K
Jχ

χ

is atypical.
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Assume this hypothesis to be true for all n′ < n. From induction hypothesis, we
get that

resK iM1

B∩M1
χ = indK∩M1

Jχ∩M1
χ⊕ τ ′

such that any irreducible (K ∩M1)-subrepresentation of τ ′ is atypical. Let ξ be a
(K ∩M1)-irreducible subrepresentation of τ ′. Since the (K ∩M1)-representation ξ

is atypical, it occurs as a subrepresentation of resK∩M1
iM1

S κ, where S is a standard
parabolic subgroup of M1 with Levi factor L and κ is a cuspidal representation of
L such that [L, κ]M1

�= [T, χ]M1
. Any irreducible K-subrepresentation of indK1

K∩P1
ξ

occurs as a K-subrepresentation of

(28) iGP1
(iM1

S κ).

If L �= T , then the cuspidal support of the representation (28) is not equal to [T, χ]G.
Assume that L = T . Since we have [T, κ]M1

�= [T, χ]M1
, using Lemma 7.2, we get

that [T, κ]G �= [T, χ]G. Hence, the irreducible subrepresentations of indK1

K∩P1
ξ are

atypical.
Let τ be any s-typical representation of K. From the above discussion, we get

that τ is a subrepresentation of

(29) indKK∩P1
γ with γ = indK∩M1

Jχ∩M1
χ.

Now let N be the integer l(χ1), the largest among the set of integers {l(χi) : 1 ≤ i ≤
n}. Now the representation (29) is the union of the representations indK

P1(m) γ for
m ≥ N . Hence any s-typical representation of K occurs as a subrepresentation of
indKP1(m) γ for some m ≥ N . Note that the representation indKP1(m) γ is isomorphic

to the representation indKP 0
1 (m) χ (see Lemma 6.1).

We use induction on m ≥ N to show that irreducible subrepresentations of

indKP 0
1 (m+1) χ/ ind

K
P 0

1 (m) χ

are atypical for all m ≥ N . Now we have the isomorphism

indKP 0
1 (m+1) χ � indKP 0

1 (m){χ⊗ (ind
P 0

1 (m)

P 0
1 (m+1)

id)}

� indKP 0
1 (m) χ⊕η∈Λ1

indKZ
P0
1 (m)

(η)(χ⊗ Uη)

⊕η∈Λ2
indKZR0(m)(η)

(χ⊗ Uη).

Using Lemma 7.1, we obtain a character χ′ such that resH χ′ is equal to resH χ,
where H is either ZP 0

1 (m)(η) or ZR0(m)(η). Moreover, [T, χ] and [T, χ′] are distinct

inertial classes. Hence, τ is contained in the representation indKP 0
1 (N) χ.

Let I be the Iwahori subgroup K(1)(B∩K); we have Jχ ⊆ I. Using the support
of the G-intertwining of the pair (Jχ, χ) in [Roc98, Theorem 4.15], we note that

the representation indIJχ
χ is irreducible. Moreover, we have that

HomI(ind
I
Jχ

χ, indIP 0
1 (N) χ) �= 0.

From the definition of Jχ, we note that the dimensions of the representations indIJχ
χ

and indIP 0
1 (N) χ are the same. This shows that these representations are isomorphic.

We conclude that, for any s-typical representation τ of K, we get that τ is a subrep-
resentation of indKJχ

χ. Moreover, the representation indKJχ
χ is a subrepresentation

of resK iGBχ. �
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de Sp4(F ) (French), Proc. London Math. Soc. (3) 85 (2002), no. 3, 659–685, DOI
10.1112/S0024611502013667. MR1936816

[Ber84] J. N. Bernstein, Le “centre” de Bernstein (French), Representations of reductive groups
over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32. Edited by P.
Deligne. MR771671

[BK93a] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of GL(N) via compact
open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press,

Princeton, NJ, 1993. MR1204652
[BK93b] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of SL(N). I, Ann. Sci.
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