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A PROOF OF THE FIRST KAC–WEISFEILER CONJECTURE

IN LARGE CHARACTERISTICS

BENJAMIN MARTIN, DAVID STEWART, AND LEWIS TOPLEY,
WITH AN APPENDIX BY AKAKI TIKARADZE

Abstract. In 1971, Kac and Weisfeiler made two influential conjectures de-
scribing the dimensions of simple modules of a restricted Lie algebra g. The
first predicts the maximal dimension of simple g-modules and in this paper we
apply the Lefschetz Principle and classical techniques from Lie theory to prove
this conjecture for all restricted Lie subalgebras of gln(k) whenever k is an al-
gebraically closed field of sufficiently large characteristic p (depending on n).
As a consequence we deduce that the conjecture holds for the Lie algebra of

an affine algebraic group scheme over any commutative ring, after specialising
to an algebraically closed field of almost any characteristic.

In the appendix to this paper, written by Akaki Tikaradze, an alternative,
short proof of the first Kac–Weisfeiler conjecture is given for the Lie algebra
of a group scheme over a finitely generated ring R ⊆ C, after base change to a
field of large positive characteristic.

1. Introduction

Since the pioneering work of Zassenhaus [Zas54], it has been known that the
dimensions of simple modules of finite-dimensional Lie algebras over a field k of
characteristic p > 0 are bounded, and that the maximal dimension, which we
denote M(g), is a power of p. Jacobson introduced the notion of a restricted
Lie algebra with a view to developing a Galois theory for purely inseparable field
extensions [Jac37]. Very briefly, restricted Lie algebras are those that admit a p-
power map x �→ x[p] satisfying axioms which are modelled on the properties of the
map Derk(A) → Derk(A) given by d �→ dp, where A is an associative k-algebra.
Many of the modular Lie algebras arising in nature are restricted: for example,
when g is the Lie algebra of an algebraic group scheme G of finite type over k, then
there is a natural G-equivariant restricted structure on g [Jan03, I.7.10].

Now let k be algebraically closed. In [VslK71] Kac and Weisfeiler carried out the
first intensive study of representations of restricted Lie algebras. The key property
of the restricted structure on g is that the elements xp − x[p] are central in U(g)
for x ∈ g, and the subalgebra Zp(g) ⊆ U(g) generated by these elements is known
as the p-centre. One of the fundamental insights of [VslK71] is that the maximal
ideals of Zp(g) are parametrised by g∗. Since the universal enveloping algebra U(g)
is finite over its p-centre it follows from Hilbert’s Nullstellensatz that every simple
g-module is annihilated by a unique maximal ideal of Zp(g), and so to every simple
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g-module M we may assign some linear form χ ∈ g∗ known as the p-character of
M . This situation is reminiscent of Kirillov’s orbit method, and so it is natural
to hope that global properties of the module category g -mod will be controlled by
geometric properties of the module g∗. These aspirations were formalised by Kac–
Weisfeiler in the form of two conjectures: the first of these predicts the maximal
dimension of simple g-modules, and in the current paper we apply techniques from
model theory to confirm that conjecture for all restricted Lie subalgebras of gln(k)
when the characteristic of the field k is large. The second conjecture proposes lower
bounds on powers of p dividing the dimensions of g-modules with p-character χ;
for more detail see [PS99] and the references therein.

The coadjoint stabiliser of χ ∈ g∗ is denoted gχ and the index of g is defined by

ind(g) := min
χ∈g∗

dim gχ.(1.1)

The first Kac–Weisfeiler conjecture (KW1) predicts that when g is any restricted
Lie algebra the maximal dimension of simple g-modules is

M(g) = p
1
2 (dim g−ind g).(1.2)

Theorem 1.1. For all d ∈ N there exists p0 ∈ N depending only on n such that,
if k = k is a field of characteristic p > p0, and g ⊆ gld(k) is a restricted Lie
subalgebra, then the first Kac–Weisfeiler conjecture holds for g.

In future work we hope to provide an explicit bound on p0 in the theorem. We
now outline the proof of the result stated. It was first demonstrated by Mil’ner in
[Mi75, Theorem 2] (see also [PS99, Remark 5.4]) that M(g) ≥ p

1
2 (dim g−ind g) for

any restricted Lie algebra g, and so it remains to prove the opposite inequality. In
his thesis Kirillov introduced the notion of a polarisation of a linear form χ, which
is a Lie subalgebra s ⊆ g satisfying χ[s, s] = 0 and dim s = 1

2 (dim g + dim gχ).
These turn out to be central to the classification of primitive ideals in enveloping
algebras of complex solvable Lie algebras [Dix96, Ch. 6], as well as the classification
of simple modules over restricted solvable Lie algebras [VslK71, §2]. We say that s
is a weak polarisation of χ ∈ g∗ if s ⊆ g is a Lie subalgebra of dimension 1

2 (dim g+
ind g) satisfying χ[s, s] = 0. Solvable weak polarisations are known to exist for
every linear form on every finite-dimensional complex Lie algebra, and we deduce
that the same holds for all modular Lie algebras in large characteristics. To do
this we apply a first-order version of the Lefschetz Principle. The condition for a
solvable weak polarisation to exist involves polynomials in the structure constants
of g; we need to express this condition in terms of first-order sentences, and the
key idea is to quantify over all Lie algebras of a fixed dimension simultaneously.
The proof concludes by observing that every simple module is a quotient of a
module induced from a restricted Lie subalgebra containing a solvable polarisation
(Theorem 3.3). This places the required upper bound on the dimension of simple
modules. After providing an elementary introduction to the Lefschetz Principle
and the representation theory of restricted Lie algebras in §2, we give the proof of
Theorem 1.1 in §3.

It is worth comparing the proof sketched above to the situation for Lie algebras
of reductive groups. When g is such a Lie algebra it is known that for every
χ ∈ g∗ there exists a Borel subalgebra b ⊆ g such that χ([b, b]) = 0, dim b =
1
2 (dim g+ind g) and [b, b] is unipotent (that is, [b, b] is annihilated by a sufficiently
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high power of the p-map). It follows quickly that every simple g-module of p-
character χ is a quotient of some baby Verma module. These are defined to be
the Uχ(g)-modules induced from one-dimensional Uχ(b)-modules. Hence the Borel
subalgebras play the role of solvable weak polarisations in the reductive case.

Let R be a commutative unital ring and say that k is an R-field if k is a field
with an R-algebra structure. If G is an R-group scheme and k is an R-field, then
we write Gk for the base change of G from R to k. In our next theorem we describe
a fruitful source of examples to which our main theorem can be applied; note that
we do not need the group schemes Gk to be reduced.

Theorem 1.2. Let G be an affine algebraic group scheme over R. There exists
p0 ∈ N such that when p > p0 is prime and k = k is an R-field of characteristic p,
the first Kac–Weisfeiler conjecture holds for the Lie algebra Lie(Gk).

Thus for a fixed group scheme, the KW1 conjecture holds in almost all charac-
teristics. The proof, which is presented in §3.1, demonstrates that the Lie algebra
Lie(Gk) admits a faithful restricted representation of dimension d independent of
the choice of characteristic p > 0 of the field k, which allows us to apply Theo-
rem 1.1.

Until recently it was considered to be possible that (1.2) might hold for non-
restricted Lie algebras; however, counterexamples to this hope were found by the
third author, by presenting pairs of Lie algebras with isomorphic enveloping alge-
bras and distinct indexes [Top17]. We give some new examples in §3.2. We produce
a family of Lie algebras parameterised by the primes p with the property that gp

is restricted if and only if (1.2) holds, which is the case if and only if p ≡ 1 modulo
4 (see Proposition 3.8).

2. Preliminaries

2.1. Model theory and the Lefschetz Principle. Since the main results and
motivations of this paper come from representation theory, we expect that some
of the readers will be unfamiliar with the model-theoretic methods which we use
at several points. Hence we include here a short recap of some of the elements of
model theory; a more detailed introduction to the theory may be found in [Mar02].
Since our goal is to explain the Lefschetz Principle, we work exclusively with the
language of rings.

The language of rings Lring consists of the binary function symbols +,−,× and
the constant symbols 0, 1 [Mar02, Example 1.2.8]. We consider the collection of
first-order formulas in this language: these are the formulas that can be built from
the symbols {∀, ∃,∨,∧,¬,+,−,×, 0, 1,=} along with arbitrary choice of variables
(see [Mar02, Section 1.1] for a precise definition of first-order formula). For example,
for n > 0 fixed the following are formulas in Lring:

(∀x)(∀y)¬(xn + yn = zn);(2.1)

(∀x)(∃y) ((xy = 1) ∨ (x = 0)) ;(2.2)

(∀x0)(∀x1) · · · (∀xn−1)(∃y)(yn + xn−1y
n−1 + · · ·+ x0 = 0).(2.3)

We say that a formula is a sentence if every variable is bound to a quantifier; for
example the formula (2.1) is not a sentence because z is a free variable, whilst
(2.2) and (2.3) are both sentences in Lring. If φ is a formula with free variables
x1, ..., xn, then we might indicate this by writing φ = φ(x1, ..., xn). In this case
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we can obtain a sentence from φ by binding the free variables to quantifiers. For
example, if φ = φ(z) is the formula from (2.1), then (∀z)φ(z) is a sentence in the
language of rings. In this way we may use formulas to build sentences.

For p ≥ 0 we record one more first-order sentence ψp in Lring:

ψp : 1 + · · ·+ 1︸ ︷︷ ︸
p times

= 0.(2.4)

An Lring-structure is a set R together with elements 0R, 1R ∈ R, binary opera-
tions +R,−R,×R : R × R → R, and the binary relation =R which is always taken
to be the diagonal embedding R ⊆ R ×R. For example, every ring R gives rise to
an Lring-structure in the obvious way.

Later in this paper we will need to express some statements about elements of
vector spaces as formulas and sentences in the language Lring. To prepare for those
arguments we now record a few examples which illustrate this procedure.

Example 2.1. Let k be a field and fix a positive integer m ∈ N. The following
statements can be formulated as sentences and formulas in Lring using appropriate
variables:

(1) there exist elements x1, . . . , xm ∈ kn which are linearly independent in kn;
(2) a given bilinear map f : kn × kn → kn defines a Lie bracket [·, ·]f on kn;
(3) the Lie algebra (kn, [·, ·]f ) is solvable.

Moreover, the sentences and formulas we obtain do not depend on the choice of k.
To see this, we view kn as the set of tuples (a1, . . . , an) of elements of k. Then (1)
is equivalent to the following first-order sentence:

(∃ai,j)i=1,...,n;j=1,...,m(∀b1, ..., bm)

((
m∑
j=1

bja1,j =
m∑
j=1

bja2,j = · · · =
m∑
j=1

bjam,j = 0) ⇒ (b1 = b2 = · · · = bm = 0)),

where we take xj = (a1,j , . . . , an,j) for 1 ≤ j ≤ m. This sentence does not depend
on k.

Let v1, . . . , vn ∈ kn denote the standard basis. A bilinear map f : kn × kn → kn

is defined by f(vi, vj) =
∑n

l=1 fi,j;lvl for some scalars fi,j;l, and we identify f with

the array (fi,j;l)1≤i,j,l≤n ∈ kn
3

. Now the claim that f defines a Lie bracket can be
encoded as a collection of linear and quadratic polynomial relations not depending
on k with integral coefficients in the variables

(fi,j;l)1≤i,j,l≤n.(2.5)

These relations correspond to skew-symmetry and the Jacobi identity. Since every
integer can be constructed using only the symbols {+,−, 1, 0} it follows that f
defines a Lie bracket as a first-order formula not depending on k in Lring with free
variables (2.5). Similarly the statement the Lie algebra (kn, [·, ·]f ) is solvable can
be encoded in terms of the vanishing of all n-fold iterations of the Lie bracket,
which is equivalent to the vanishing of a collection of homogeneous polynomials of
degree 2n − 1 amongst the variables (2.5). Again this is a first-order formula not
depending on k in Lring with free variables (2.5).

An Lring-theory is a set T of first-order sentences in Lring. If φ is a sentence and
M := (R,+R,−R,×R, 0R, 1R,=R) is an Lring-structure, then we say that M is a
model of φ, and write M � φ, if the sentence φ is true when interpreted in M . If T
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is an Lring-theory, then we say that M is a model of T and write M � T if M � φ
for all φ ∈ T .

One way to obtain a theory is to take the collection of all sentences that are true
for every model of a particular class of mathematical object. Since mathematical
objects are usually determined by axioms, we shall briefly explain (by way of an
example) how to pass from a set of axioms to a theory of this type. Consider the
set A of axioms of commutative rings, which are clearly first-order sentences in
Lring. We may then consider the set CR ⊆ Lring of sentences that are true for every
model of A: i.e., those that are true in every commutative ring. Thus CR denotes
the theory of commutative rings. To illustrate the notation introduced above,
observe that (R,+R,−R,×R, 0R, 1R,=R) � CR is equivalent to the statement that
(R,+R,−R,×R, 0R, 1R) is a commutative ring. As such the class of models of CR
is precisely the class of commutative rings.

In this paper we will be primarily interested in the theory of fields. The axioms
of a field can obviously be written as first-order sentences in Lring; for instance (2.2)
expresses the existence of multiplicative inverses. The axioms of the algebraically
closed fields are obtained by including the sentences (2.3) for all n > 0. If p > 0 is
prime, then we may include the sentence ψp, defined in (2.4), to obtain the axioms
of the algebraically closed fields of characteristic p > 0; the corresponding theory
is denoted ACFp. Alternatively we may include the sentences {¬ψp | p > 0} to
obtain the axioms of the algebraically closed fields of characteristic zero, and we
denote their theory by ACF0 (cf. [Mar02, Example 1.2.8]). As was the case for
commutative rings, we see that the class of all models of ACFp is precisely the class
of all algebraically closed fields of characteristic p.

The following result is Gödel’s completeness theorem in the context of Lring (cf.
[Mar02, Theorem 2.1.2]).

Lemma 2.2. Let φ be a first-order sentence and let T be any theory in Lring. Then
φ is true when interpreted in every model of T if and only if φ can be deduced from
T by means of a formal proof in Lring.

We say that an Lring-theory T is complete if, for every first-order sentence φ
in Lring, either φ is true when interpreted in every model of T , or ¬φ is true
when interpreted in every model of T . By Lemma 2.2 this is equivalent to saying
that for every sentence φ we can derive either φ or ¬φ from T by means of a
formal proof. The following well-known result is proved by quantifier elimination
[Mar02, Corollary 3.2.3].

Theorem 2.3. For p = 0 or p prime, the theory ACFp is complete.

As an immediate consequence we obtain a first-order version of the Lefschetz
Principle from algebraic geometry [Mar02, Corollary 2.2.10].

Corollary 2.4 (Lefschetz Principle). If φ is a sentence in Lring, then:

(1) If φ is true in some model of ACFp where p ≥ 0, then φ is true in every
model of ACFp.

(2) If φ is true in some model of ACF0, then there exists p0 ∈ N such that φ is
true in every model of ACFp for p > p0.

Proof. Part (1) is precisely Theorem 2.3. For part (2) suppose that φ is true over
some field satisfying the axioms of ACF0. Then by part (1) it is true for every such
field, and by Lemma 2.2 we conclude that there exists a formal proof for φ in Lring
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using only the axioms of ACF0. Since the proof of φ involves only finitely many
sentences in Lring, it follows that the set of primes

Pφ := {p | ¬ψp occurs in the proof of φ}
is finite, where ψp is defined in (2.4). Hence for p > max(Pφ) there is a formal
proof of φ using the axioms of ACFp. Using Lemma 2.2 once more we see that φ is
true for every Lring-structure satisfying the axioms of ACFp. �

2.2. Restricted Lie algebras and reduced enveloping algebras. Fix a field
k of characteristic p > 0 and let g be a Lie algebra over k. As usual we write
U(g) for the enveloping algebra and Z(g) for the centre of U(g). Then g is said
to be a restricted Lie algebra over k if it comes equipped with a p-map g → g,
written x �→ x[p], which satisfies two axioms: if we write ξ : g → U(g) for the map
x �→ xp − x[p], then (−)[p] must satisfy

(1) ξ(g) ⊆ Z(g);
(2) ξ is p-semilinear in the sense of [Jan98, Lemma 2.1].

We refer the reader to [SF88] for a comprehensive introduction to the theory of
restricted Lie algebras. It follows from the PBW theorem that the vector space
ξ(g) generates a polynomial algebra of rank equal to dim(g) inside U(g). This
algebra is referred to as the p-centre of U(g), and is denoted Zp(g). If {xi | i ∈ I}
is a basis for g, then the PBW theorem for U(g) implies that Zp(g) is isomorphic
to a polynomial ring generated by {ξ(xi) | i ∈ I}. Hence Zp(g) can be naturally

identified with the coordinate ring k[(g∗)(1)] on the Frobenius twist of g∗.
When k is an algebraically closed field we have g∗ = (g∗)(1) as sets and so

for every χ ∈ g∗ there is a maximal ideal Iχ ∈ SpecZp(g). Explicitly we have

Iχ := (xp−x[p]−χ(x)p | x ∈ g) and the reduced enveloping algebra with p-character
χ is defined to be

Uχ(g) := U(g)/U(g)Iχ.

We have dimUχ(g) = pdim g, so a simple module for Uχ(g) can have dimension

at most p
1
2dim g. If g0 ⊆ g is a restricted subalgebra and χ ∈ g∗, then we can

abuse notation by identifying Uχ|g0
(g0) with the subalgebra of Uχ(g) generated

by g0, and denote this subalgebra by Uχ(g0). We say that a g-module M has p-
character χ if the corresponding representation U(g) → Endk(M) factors through
the quotient U(g) → Uχ(g). If g0 ⊆ g are restricted Lie algebras, χ ∈ g∗ and M0 is
a Uχ(g0)-module, then we may define the induced module

Indg,χg0
(M0) := Uχ(g)⊗Uχ(g0) M0.(2.6)

We have

dim Indg,χg0
(M0) = pdim g−dim g0 dim(M0)(2.7)

and this induced module is universal amongst Uχ(g)-modules M such that the
restriction to Uχ(g0) contains a submodule isomorphic to M0: that is, any nonzero
homomorphism of Uχ(g0)-modules M0 → M induces a nonzero homomorphism
Indg,χg0

(M0) → M of Uχ(g)-modules.
The coadjoint g-module is the vector space g∗ with module structure given by

(x · χ)(y) := χ([y, x]) where x, y ∈ g and χ ∈ g∗. The stabiliser of χ ∈ g∗ is then
defined to be

gχ := {x ∈ g | x · χ = 0} = {x ∈ g | χ([x, g]) = 0}
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and the index of g—commonly denoted ind(g)—is the minimal dimension of gχ as
χ varies over all elements of g∗.

3. The maximal dimensions of simple modules

In this section we prove Theorem 1.1. In order to do so we recall a few pieces
of terminology. If g is a Lie algebra over a field k and χ ∈ g∗ we say that a Lie
subalgebra s ⊆ g is subordinate to χ if s is an isotropic subspace with respect to
the skew-symmetric form

Bχ : g× g → k
(x, y) �→ χ([x, y]) :

(3.1)

in other words, if χ([s, s]) = 0. We say that a Lie subalgebra s ⊆ g is a polarisation
of χ if s is a Lagrangian for Bχ, i.e., s is a maximal isotropic subspace of g. Since
the stabiliser gχ coincides with the radical of Bχ it follows from [Dix96, 1.12.1] that

dim(s) ≤ 1

2
(dim(g) + dim(gχ))(3.2)

if s is subordinate to χ. Furthermore equality holds if and only if s is a polarisation
of χ. Finally we say that a Lie subalgebra s ⊆ g is a weak polarisation of χ if s is
isotropic for the form (3.1) and

dim(s) =
1

2
(dim(g) + ind(g)).(3.3)

The proof of Theorem 1.1 rests on the existence of solvable weak polarisations
for linear forms, and the following result is the key step.

Proposition 3.1. For all n, d ∈ N, there exists p1 = p1(n, d) ∈ N such that if:

(1) k is an algebraically closed field of characteristic p > p1,
(2) g is a Lie algebra of dimension n over k,
(3) there exists a faithful representation ρ : g → gld(k),

then for every χ ∈ g∗ there is a solvable weak polarisation s ⊆ g such that ρ(s) is
upper-triangularisable in gld(k).

Proof. Fix n, d ∈ N, r ∈ {0, . . . , n} and let k be an algebraically closed field of
characteristic p ≥ 0. Let {v1, . . . , vn} denote the standard basis for kn. If f is a
bilinear map from kn × kn to kn, then f(vi, vj) =

∑n
l=1 fi,j;lvl and so we identify

the set of such bilinear maps with kn
3

and identify f with (fi,j;l)1≤i,j,l≤n ∈ kn
3

.

For i = 1, . . . , n we write Ai for an element of Matd(k) ∼= kd
2

, so that the n-tuple

A = (A1, . . . , An) is an element of knd
2

. Finally pick χ = (χ1, . . . , χn) ∈ kn and
identify kn with (kn)∗ = Homk(k

n, k) by letting χ be the linear map determined
by vi �→ χi.

Fix r ∈ {0, . . . , n} and for any (f,A, χ) ∈ kn
3+nd2+n we consider the following

four statements:

(i) f = (fi,j;l) are the structure constants of a Lie bracket [·, ·]f on kn;
(ii) the Lie algebra (kn, [·, ·]f ) has index equal to r;
(iii) the linear map kn → Matd(k) given by vi �→ Ai is a faithful Lie algebra

representation ρ : kn → gld(k);
(iv) there exist elements x1, . . . , xs ∈ kn where s = 1

2 (n+ r) which are linearly
independent and span a solvable Lie subalgebra s of (kn, [·, ·]f ) such that
χ([s, s]f ) = 0 and ρ(s) is upper-triangularisable inside gld(k).
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Now consider the following statements indexed by r:

Φr : ∀(f,A, χ) ∈ kn
3+d2n+n((i)∧ (ii)∧ (iii)) ⇒ (iv) .(3.4)

Claim. Each statement Φr can be formulated as a first-order sentence in the lan-
guage Lring of rings (in the notation of §2.1). Moreover, the resulting sentences do
not depend on the choice of k.

In Example 2.1(2) we showed that (i) is given by a formula independent of
k in the language Lring with free variables (fi,j;l). If (fi,j;l) are the structure
constants of a Lie bracket [·, ·]f , then the structure constants of the coadjoint
representation ad∗f : kn → Matn(k) are (−fi,l;j)1≤i,j,l≤n. It follows that for

x = (a1, ..., an) ∈ kn the statement ad∗f (x)χ = 0 can be expressed by the vanishing
of certain polynomial functions, with integral coefficients, in the variables (fi,j;l)
and a1, ..., an, χ1, ..., χn. The statement (ii) can be phrased in the following way:
there exists ψ = (ψ1, ..., ψn) ∈ kn ∼= Homk(k

n, k) and linearly independent elements
x1, ..., xr ∈ kn that satisfy ad∗f (xi)ψ = 0, and there does not exist ϕ ∈ Homk(k

n, k)

such that if x1, ..., xr ∈ kn satisfy ad∗f (xi)ϕ = 0, then x1, ..., xr must be linearly
dependent. This is a first-order formula which does not depend on the choice of
k in Lring with free variables (fi,j;l) thanks to part (1) of Example 2.1 and the
previous remarks. The fact that (iii) is a first-order formula which does not depend
on the choice of k in Lring with free variables (f,A) follows similarly. Statement
(iv) asserts the existence of linearly independent x1, ..., xs spanning a solvable Lie
subalgebra of (kn, [·, ·]f ). The existence of linearly independent elements x1, ..., xs

that satisfy χ([xi, xj ]f ) = 0 and span a solvable Lie algebra is a first-order formula
not depending on k—indeed this follows quickly from Example 2.1. The fact that
the solvable subalgebra can be upper-triangularised in gld(k) can be expressed by
the existence of a basis of kd satisfying special properties which can also be ex-
pressed as first-order formulas not depending on k in Lring. Since the last remark
is proved in a manner almost identical to the previous parts, we leave the details to
the reader. The only free variables in (iv) are (f,A, χ) and so we have shown that
all of the variables in the formulas (i), (ii), (iii), (iv) are bound to quantifiers in Φr.
Hence Φr is a first-order sentence in Lring which is independent of the choice of k,
and this proves the claim.

Keep n, d ∈ N, let r ∈ {0, ..., n} be fixed, and now suppose that k is algebraically
closed of characteristic zero. By Lie’s theorem [Dix96, Theorem 1.3.12] we know
that every solvable Lie subalgebra of gld(k) is upper-triangularisable, and thanks to
[Dix96, Corollary 1.12.17] we know that when g is a Lie algebra over k of dimension
n and index r, then for all χ ∈ g∗ there exists a weak polarisation of χ. Hence
every algebraically closed field of characteristic zero is a model for Φr. It follows
by the Lefschetz Principle (Corollary 2.4) that there is a number pr1 = pr1(n, d) ∈
N such that Φr is also true when interpreted in any algebraically closed field of
characteristic p > pr1. If we set p1 := max{p01, p11, ..., pn1}, then it follows from the
above remarks that for all r = 0, ..., n, Φr is true for every algebraically closed field
of characteristic p > p1. This completes the proof of the current proposition. �

The next result follows from [VslK71, Corollary 2.6].

Lemma 3.2. Let s be a restricted solvable Lie algebra over k with a faithful re-
stricted representation s → gld(k). If s is upper-triangularisable in gld(k) and
χ ∈ s∗, then all irreducible Uχ(s)-modules have the same dimension.
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Theorem 3.3. For all d ∈ N there exists p0 = p0(d) ∈ N such that if k = k is
a field of characteristic p > p0, if g ⊆ gld(k), and M is a simple g-module with
p-character χ, then M is a quotient of a module of the form Indg,χs̄ (M0), where s̄

is a restricted Lie subalgebra of g which contains a solvable weak polarisation of χ,
and M0 is a one-dimensional Uχ(s̄)-module.

Proof. Fix d ∈ N, let p0 := max{d, p1(1, d), p1(2, d), ..., p1(d2, d)} where p1(n, d)
was defined in Proposition 3.1, and let k be an algebraically closed field of char-
acteristic p > p0. Let g ⊆ gld(k) be restricted and let χ ∈ g∗. Thanks to Propo-
sition 3.1 we know there exists a solvable weak polarisation s ⊆ g of χ with s

upper-triangularisable. Let s̄ denote the restricted closure of s in gld(k), which is
the smallest restricted Lie subalgebra of gld(k) containing s. Evidently we have
s ⊆ s̄ ⊆ g. Since the upper-triangular matrices form a restricted Lie subalgebra of
gld(k) it follows that s̄ is upper-triangularisable and solvable. Since [s̄, s̄] consists
of strictly upper-triangularisable matrices, our assumption p > d ensures that the
p-power map vanishes identically on [s̄, s̄] and so this derived ideal is restricted. By
[SF88, Proposition 2.1.3(1)], s̄ is spanned by elements of the form x[p]m where x ∈ s

and m ≥ 0. Since [x[p], y] = ad(x[p])(y) = ad(x)p(y) for all x, y ∈ g, we see that
[s̄, s̄] = [s, s].

Now [s̄, s̄] is a proper restricted ideal of s̄, so [s̄, s̄] generates a proper ideal of
Uχ(s̄). The quotient is a nonzero finite-dimensional abelian k-algebra and therefore
all of its simple modules are one-dimensional. This shows that Uχ(s̄) has at least
one one-dimensional module. We deduce from Lemma 3.2 that every simple Uχ(s̄)-
module is one-dimensional. Now let M be a simple g-module with p-character χ.
According to our previous deductions there is a one-dimensional Uχ(s̄)-submodule,
which we call M0. Now the existence of a surjection Indg,χs̄ (M0) � M follows from
the universal property of induced modules, along with the fact thatM is simple. �

Now the proof of Theorem 1.1 follows from the previous theorem, combined with
(2.7).

Remark 3.4. It has been conjectured that for a restricted Lie algebra g the following
are equivalent:

(i) g is Frobenius, meaning ind(g) = 0;
(ii) there exists a nonempty open subset O ⊆ g∗ such that Uχ(g) is simple for

all χ ∈ O.

Our main theorem implies that the conjecture holds for Lie subalgebras of gld(k)
provided char(k) > p0(d). In fact (i) ⇒ (ii) holds in general thanks to [PS99,
Theorem 4.4]. Conversely, supposing Uχ(g) is simple, there is a simple g-module

of the maximal possible dimension
√
dimUχ(g) = p

1
2 dim g. If the KW1 conjecture

holds for g, then M(g) = p
1
2 dim g = p

1
2 (dim g−ind g) and so g is Frobenius.

3.1. Example: The Lie algebras of group schemes. In this final subsection
we draw attention to families of important Lie algebras to which Theorem 1.1 can
be applied, proving Theorem 1.2 from the introduction. We recall some of the
elements of the theory of affine algebraic group schemes, following [DG70], [Jan03].
Throughout the subsection we fix a commutative unital ring R, we write R -alg for
the category of R-algebras, and we say that k is an R-field if k is both a field and an
object of R -alg. An affine group scheme G over R is a functor from R-algebras to
groups, naturally equivalent to one of the form SpecR R[G] := HomR -alg(R[G],−)
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where R[G] is some R-algebra. We call R[G] the coordinate ring of G. We say that
G is algebraic if R[G] is a finitely generated R-algebra. The archetypal example of
an affine algebraic group scheme is GLd. Endowing an R-algebra R[G] with the
structure of an affine algebraic group scheme is equivalent to endowing a finitely
generated R-algebra R[G] with a Hopf algebra structure (R[G],Δ, σ, ε). Associated
to G we have the Lie algebra g = Lie(G) over R [DG70, II.4.1.2]; we may identify
g with the kernel of the homomorphism G(R[ε]/(ε2)) → G(R) induced by the R-
algebra homomorphism R[ε]/(ε2) → R, ε �→ 0.

When G is an affine group scheme over R and k is any R-algebra then we can
consider the base change Gk, which is an affine group scheme over k obtained by
viewing k-algebras as R-algebras. The coordinate ring k[Gk] of Gk is given by
k[Gk] = R[G] ⊗R k. We write gk = Lie(Gk). If G is affine algebraic, then we can
write R[G] ∼= R[x1, ..., xn]/I for some n and some ideal I of the polynomial ring
R[x1, ..., xn]; we obtain a map ω : R[x1, ..., xn] → k[x1, ..., xn] and we have

Gk
∼= Speck k[x1, ..., xn]/Ik(3.5)

for some ideal Ik of k[x1, ..., xn].

Lemma 3.5. Let G be an affine algebraic group scheme over R. There exists
d ∈ N depending only on G such that for each R-field k there exists a representation
ρ : Gk → (GLd)k, with dρ : gk → (gld)k faithful.

Proof. Suppose that G corresponds to the Hopf algebra (R[G],Δ, σ, ε), with R[G] =

R[x1, ..., xn]/I. Fix i ∈ {1, ..., n}, write Δ(xi) =
∑r(i)

j=1 f
(1)
i,j ⊗ f

(2)
i,j , and define d :=∑n

i=1 r(i). Choose any R-field k and let M be the R-submodule of R[G] generated

by the elements {f (1)
i,j | i = 1, ..., n, j = 1, ..., r(i)}. Write ω : R[G] → k[Gk] for the

natural homomorphism.
Thanks to (3.5) there is a surjection M ⊗R k � ω(M) and so ω(M) identi-

fies with a subspace of k[Gk] of dimension ≤ d. We observe that the coproduct

Δ(ω(xi)) =
∑r(i)

i=1 ω(f
(1)
i,j ) ⊗ ω(f

(2)
i,j ) can be rewritten in the form Δ(ω(xi)) =∑rk(i)

i=1 hi,j ⊗ ω(f
(2)
i,j ) for some rk(i) ≤ r(i) and certain elements hi,j ∈ ω(M),

such that ω(f
(2)
i,1 ), ..., ω(f

(2)
i,rk(i)

) are k-linearly independent. According to [Jan03,

I.2.13(4)] the space Ni :=
∑rk(i)

j=1 khi,j is a Gk-submodule of ω(M) containing xi.

Furthermore it follows from [Mil17, Proof of Prop. 4.7] that N =
∑n

i=1 Ni is a

faithful Gk-submodule of k[Gk] of dimension ≤ d. Therefore N ⊕ k⊕(d−dimN) is a
faithfulGk-module of dimension d. Finally observe thatN⊕k⊕(d−dimN) is a faithful
gk-module. To see this, note, for example, that by faithfulness 1 → G(k[ε]/(ε2)) →
GLd(k[ε]/(ε

2)) is exact; also Lie(Gk) ∼= ker(G(k[ε]/(ε2)) → G(k)) for the map
ε �→ 0, and similarly for GLd. Hence the claim follows from the commutativity of
the following diagram [DG70, II.4.1.3]:

0 −−−−→ gk −−−−→ Gk(k[ε]/(ε
2))⏐⏐
 ⏐⏐


0 −−−−→ gld −−−−→ GLd(k[ε]/(ε
2)).

�

Remark 3.6. Given a faithful representation σ : G → GLd, we obtain by base change
for any R-field k a representation σk : Gk → (GLd)k such that dσk is faithful. The
question, however, of when such σ exists is rather subtle—this is not known even
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when R is the ring of dual numbers over a field k and G is flat and of finite type
over R. On the other hand, the existence of such a representation is known when
G is flat and of finite type over a Dedekind domain R, such as Z, or indeed if R
is any field. Fortunately we do not need such a σ: any family of representations
ρ : Gk → (GLd)kp

for p prime will do because we quantify over all representations
simultaneously. (Here kp denotes the algebraic closure of the finite field Fp.)

Proof of Theorem 1.2. This follows immediately from Theorem 1.1 and Lemma 3.5.
�

Example 3.7. Fix a Dynkin type and a nonnegative integer r. There exists a
prime p0 depending only on r and the Dynkin type with the following property.
Suppose G is a connected reductive algebraic group over an algebraically closed
field k of characteristic p > 0 such that [G,G] has the given Dynkin type and
Z := Z(G)0 has dimension r. If p > p0, then for any restricted Lie subalgebra h

of g := LieG, the first Kac-Weisfeiler conjecture holds for h. To see this, note first
that if p is very good, then Lie[G,G] has trivial centre, so any isogeny of connected
reductive groups with domain or codomain equal to G is separable and therefore
gives rise to an isomorphism of restricted Lie algebras. Hence without loss we can
take G to be of the form [G,G]×Z, where Z is a torus of dimension r and [G,G] is
adjoint. Then G admits a faithful representation of dimension dimG+ r (just take
the direct sum of the adjoint representation of [G,G] and a faithful r-dimensional
representation of Z). This yields a faithful restricted representation of g, and hence
of h. The assertion now follows from Theorem 1.1.

In particular, the result applies when h is a parabolic subalgebra of g, or when
h is the Lie algebra centraliser of some (possibly nonsmooth) subgroup scheme K
of G—note that in the latter case, h is the Lie algebra of the scheme-theoretic
centraliser CG(K), so h is restricted. In the special case h = g, it has been known
for some time that the first Kac-Weisfeiler conjecture holds, at least when p > 2
(see [PS99, Section 4.1]).

3.2. Example: Families of nonalgebraic Lie algebras. Let g be a Lie algebra
over a commutative unital ring R such that g is finitely generated as an R-module.
If k is an algebraically closed R-field, then base change yields a finite-dimensional
Lie algebra gk over k. It is natural to ask whether the equality (1.2) from the first
Kac-Weisfeiler conjecture holds when char(k) � 0. In this final subsection we show
that the answer is no; to see this we construct a Lie algebra g over the Gaussian
integers Z[i] such that the Lie algebras gp obtained by base change from Z[i] to kp
exhibit some striking behaviour, quite different from the situation for Lie algebras
of group schemes. The underlying reason is that for infinitely many p, gp does not
admit a restricted structure. This cannot happen in the setting of Theorem 1.2
because the Lie algebra of the affine group scheme Gk is automatically restricted.

Let g be the free Z[i]-module with basis {h, x, y} and equip it with a Z[i]-linear
Lie algebra structure by defining brackets [h, x] = x, [h, y] = iy, [x, y] = 0. Since
Z ⊆ Z[i] is an integral extension, the going-up theorem implies that for every
prime number p ∈ N there is a prime ideal pp ∈ Spec(Z[i]) such that Z[i]/pp
has characteristic p. Since Z[i] is a principal ideal domain it follows that these
quotients are fields, and we may write kp for the algebraic closure of Z[i]/pp. Now
define gp := g⊗Z[i] kp. Note that g has a faithful representation in GL3(Z[i]) given
by the adjoint, and this gives rise by base change to a faithful representation of
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gp in gl3(kp) for every prime p. Since the example is elementary enough we can
actually describe the representation theory explicitly.

Proposition 3.8. Suppose that p > 2. The following are equivalent:

(1) M(gp) = p
1
2 (dim(gp)−ind(gp));

(2) gp is a restricted Lie algebra;
(3) p ≡ 1 modulo 4.

Proof. By Jacobson’s theorem [SF88, Theorem 2.2.3] we know that gp is restricted
if and only if there exist elements {h0, x0, y0} such that ad(h)p = ad(h0), ad(x)

p =
ad(x0), ad(y)

p = ad(y0). Elementary considerations in linear algebra confirm that

this is the case if and only if ad(h)p = ad(h) which is equivalent to (−1)
p−1
2 iy = iy.

This is the case precisely when p ≡ 1 mod 4. Thus we see (2) ⇔ (3).
We now show that (1) ⇔ (2). Observe that dim gχp = 1 whenever χ(x) �= 0,

and so ind(gp) = 1. Thanks to [PS99, Remark 5.4,(1)] we know that (1) holds if
and only if M(gp) ≤ p. First suppose that gp is not restricted: gp �= ḡp, where

we write ḡp for the restricted hull of gp. Since ad(h)p
2

= ad(h) it follows that ḡp

is isomorphic to gp � kpd where d = ad(h)p ∈ Derk(gp). Any linear form on ḡp

satisfying χ(x) �= 0 �= χ(y) has ḡχp = 0 and so ind ḡp = 0. Thanks to the universal
property of ḡp, simple g-modules are precisely the same as simple ḡ-modules. Now
we have M(gp) = M(ḡp) ≥ p2, which shows that (1) ⇒ (2). Finally we show (2) ⇒
(1). Suppose gp is restricted and so sp = kx ⊕ ky is a unipotent abelian restricted
Lie subalgebra. This implies that every simple module is one-dimensional. The
argument in the last paragraph of the proof of Theorem 3.3 shows that every
simple gp-module is a quotient of a module induced from a one-dimensional sp-
module. Such induced modules have dimension p by (2.7) and so M(gp) ≤ p,
implying (1). This concludes the proof. �

Appendix A. Appendix by Akaki Tikaradze

In this appendix a short, alternative proof of Theorem 1.2 is presented, which
applies to group schemes defined over a finitely generated ring R ⊆ C. As was
noted previously, in order to prove the KW1 conjecture for a restricted Lie algebra
g it suffices to demonstrate that M(g) ≤ p

1
2 (dim g−ind g). Thanks to the work of

Zassenhaus this is equivalent to showing that the dimension of the skew division
ringD(g) of fractions of U(g) is a field extension of rank ≤ pdim g−ind g over its centre
(see Lemma A.5 for more detail); this shall be proven by combining Rosenlicht’s
theorem with reduction modulo p and deformation arguments. As a by-product of
the proof, a description of the centre of D(g) is obtained which confirms a slight
modification of a conjecture of Kac [KPre].

Given a commutative (noncommutative Noetherian) domain R, denote by
Frac(R) its quotient field (skew field) of fractions. If R is commutative and M
is any R-module and S is an R-algebra write MS := M ⊗R S and, when R is also
an integral domain and M is finitely generated, we refer to dimFrac(R)MFrac(R) as
the rank of M .

Continue to write k for a field of characteristic p > 0. Given a restricted Lie
algebra g over k recall that Zp(g) denotes the p-centre of g. Furthermore, whenever
G is an R-group scheme and k is an R-field write gk for the Lie algebra of the
scheme Gk obtained by base change.
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Theorem A.1. Let R ⊂ C be a finitely generated ring, let G be an R-group scheme,
and let R → k be a base change to an algebraically closed field. Then provided
char(k) = p � 0 the KW1 conjecture holds for gk.

As a consequence of the proof of Theorem A.1, we also show the following.

Theorem A.2. Let G be a group scheme over a finitely generated ring R ⊆ C.
Then provided char(k) = p � 0 the centre of D(gk) is generated as a field by
Zp(gk) along with central elements obtained by reduction modulo p.

For the proof we will need to recall a couple of simple lemmas from commutative
algebra.

Lemma A.3. Let R ⊂ C be a finitely generated ring. Let A be a finitely generated
commutative algebra over R such that AC is a domain. Let B ⊂ A be a finitely
generated R-subalgebra. Then for all p � 0 and any base change R → k to an alge-
braically closed field of characteristic p the rank of Ak over BkA

p
k is pdim(A)−dim(B),

where dim(A) and dim(B) denote the Krull dimension of A and B, respectively.

Proof. By localising B if necessary, we may assume by the Noether normalisation
lemma that A is a finite module over B[x1, . . . , xn], where x1, . . . , xn ∈ A are
algebraically independent over B. Let m be a number of generators of A as a
module over B[x1, ..., xn]. Since A is a finite extension of B[x1, ..., xn] we have n =
dim(A)−dim(B). Now let S → k be a base change to an algebraically closed field of
characteristic p � 0 (in particular p > m.) So Ak is a finite module with at most m
generators over Bk[x1, · · · , xn]. Clearly the rank of Ak over Bk[x

p
1, ..., x

p
n] ⊂ BkA

p
k

is pnl, where l ≤ m is the rank of Ak over Bk[x1, · · · , xn]. On the other hand, it can
easily be seen that if K is a field of characteristic p > 0 which is finitely generated
over a perfect subfield, then K/Kp is a finite extension and [K : Kp] is a power of
p (by picking a transcendence basis over the perfect subfield we can reduce to the
case of finite field extensions, and then use the fact that every finite extension of
a perfect field is perfect). It follows that the rank Ak over Ap

k is a power of p. So,
the rank of Ak over BkA

p
k is a power of p and divides pnl, hence it must divide pn.

However, the rank of BkA
p
k over Bk[x

p
1, ..., x

p
n] is at most m. Thus the rank of Ak

over BkA
p
k is pdim(A)−dim(B). �

Lemma A.4. Let R be a nonnegatively filtered commutative algebra over a field
k such that gr(R) is a finitely generated k-domain. Let M be a filtered R-module
such that gr(M) is a finitely generated gr(R)-module. Then the rank of M over R
equals the rank of gr(M) over gr(R).

For a proof of Lemma A.4 see for example [Tik11, Lemma 2.3]. For a more gen-
eral result covering noncommutative algebras see [Gor07, Lemma 6.2]. We record
one final useful lemma which is needed to complete the proof of Theorems A.1 and
A.2.

Lemma A.5. If g is a restricted Lie algebra over an algebraically closed field k,
then the following are equivalent:

(i) the first Kac–Weisfeiler conjecture holds for g;
(ii) the rank of U(g) over Z(g) is at most pdim g−ind g;
(iii) the rank of Z(g) over Zp(g) is at least pind(g).
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Proof. It was demonstrated in [Zas54, Theorem 6] that M(g)2 equals the rank of
U(g) over FracZ(g), hence (i) holds if and only if we have equality in (ii). The
inequality M(g)2 ≥ pdim g−ind g was deduced in [PS99, Remark 5.4] and so (i) ⇔
(ii). The equivalence (ii) ⇔ (iii) follows from the fact that the rank of U(g) over
Zp(g) is p

dim g. �

Proof of Theorems A.1 and A.2. Let G be the connected complex algebraic group
corresponding to gC. Let m be the index of gC. By Rosenlicht’s theorem C(g∗

C
)G

has transcendence degree m over C. Let fi, gi ∈ C[g∗
C
] be elements such that{

fi
gi

∈ C(g∗C)
G | 1 ≤ i ≤ m

}

are algebraically independent elements, written as reduced fractions. We write
SR(g) for the symmetric R-algebra generated by the R-module g, and identify
C(g∗

C
) with FracS(gC). By localizing R if necessary, we may assume that fi, gi ∈

SR(g), 1 ≤ i ≤ m. Denote by φi (respectively, ψi) the image of fi (respectively, gi)
under the symmetrisation map S(gC) → U(gC). Localising R further if necessary
we can assume that φi, ψi are elements of the enveloping R-algebra UR(g) (the
R-tensor algebra of g modulo the usual relations). It is well known that φi, ψi are
semi-invariants for the action of gC of the same weight. After localising R further
we deduce that there is an R-linear map χi : g → R such that ad(x)φi = χi(x)φi

and ad(x)ψi = χi(x)ψi for all x ∈ g. Now if R → k is a base change to any

algebraically closed field, then it follows that the quotient φi⊗1
ψi⊗1 ∈ FracU(gk) is

central. Furthermore it follows from elementary linear algebra that m = ind(gk)
provided char(k) = p � 0.

Thanks to Lemma A.5, to establish the KW1 conjecture for gk we need to show
that the rank of U(gk) over Z(U(gk)) is at most pdim gk−m. For this purpose, it
is enough to show that the rank of S(gk) as a gr(Z(U(gk))-module is at most
pdim gk−m thanks to Lemma A.4. Let zi ∈ U(gk) be such that ψizi ∈ Z(U(gk)). So
φizi ∈ Z(U(gk)). Now since

gr(φi) gr(zi), gr(ψi) gr(zi) ∈ grZ(U(gk)),

it follows that

fi ⊗ 1

gi ⊗ 1
∈ Frac(grZ(U(gk))), 1 ≤ i ≤ m.(A.1)

If we put A = SR(g)[g
−1
1 , ..., g−1

m ] and B = R[ f1g1 , · · · ,
fm
gm

], then for any base change

R → k we may view Ak and Bk as subalgebras of FracS(gk). Since ψi ⊗ 1 is a
semi-invariant for ad(gk) it follows that ψp

i ⊗ 1 ∈ U(g) ⊗R k ∼= U(gk) is actually
central for i = 1, ..., p. Therefore gpi ⊗ 1 = grψp

i ⊗ 1 ∈ grZ(U(gk)). Combining
this with (A.1) it follows that Frac(grZ(U(gk))) contains Ap

kBk, and so it suffices
to show that the rank of Ak over Ap

kBk is at most pdim gk−m, which follows from
Lemma A.3. This completes the proof of Theorem A.1.

Applying Lemma A.5, we see that the rank of Z(gk) over Zp(gk) is pm for
chark � 0. Let Q denote the subfield of FracZ(gk) generated by FracZp(gk) and
the elements

φi ⊗ 1

ψi ⊗ 1
for i = 1, ...,m.
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The above argument actually shows that [D(g) : Q] = pdim g−m, which implies
[Q : FracZp(g)] = pm. It follows that the inclusion Q ⊆ FracZ(gk) must be an
equality. This completes the proof of Theorem A.2. �

Remark A.6. Let g be a Lie algebra of a Z-group scheme and let k be a field of
large characteristic p > 0. Then it is natural to ask whether the centre of U(gk)
is generated by Zp(gk) and the mod p reduction of the centre of U(g) (this was
conjectured by Kac in [KPre]). Unfortunately this is not always true: let g be a
three-dimensional free Z-module spanned by h, x, y with Lie brackets given by

[h, x] = nx, [h, y] = my, [x, y] = 0, n,m ∈ Z>0, (n,m) = 1.

Then the centre of U(gk) is generated by hp − h, xp, yp, xiyj where ni + mj = 0
mod p and 0 < i, j < p. On the other hand the centre of U(g) is trivial, hence
Z(U(gk)) �= Zp(gk). Meanwhile, the centre of D(gC) is generated by the elements
xmy−n which are also generators for the centre of D(gk) over Zp(gk).
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