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QUANTISATION AND NILPOTENT LIMITS

OF MISHCHENKO–FOMENKO SUBALGEBRAS

ALEXANDER MOLEV AND OKSANA YAKIMOVA

Abstract. For any simple Lie algebra g and an element μ ∈ g∗, the corre-
sponding commutative subalgebra Aμ of U(g) is defined as a homomorphic
image of the Feigin–Frenkel centre associated with g. It is known that when μ
is regular this subalgebra solves Vinberg’s quantisation problem, as the graded
image of Aμ coincides with the Mishchenko–Fomenko subalgebra Aμ of S(g).
By a conjecture of Feigin, Frenkel, and Toledano Laredo, this property extends
to an arbitrary element μ. We give sufficient conditions on μ which imply the
property. In particular, this proves the conjecture in type C and gives a new
proof in type A. We show that the algebra Aμ is free in both cases and produce
its generators in an explicit form. Moreover, we prove that in all classical types
generators of Aμ can be obtained via the canonical symmetrisation map from

certain generators of Aμ. The symmetrisation map is also used to produce
free generators of nilpotent limits of the algebras Aμ and to give a positive
solution of Vinberg’s problem for these limit subalgebras.

Introduction

The universal enveloping algebra U(q) of a Lie algebra q is equipped with a
canonical filtration so that the associated graded algebra is isomorphic to the sym-
metric algebra S(q). The commutator on q induces the Lie–Poisson bracket on S(q)
defined by taking {X,Y } to be equal to the commutator of X,Y ∈ q and then
extending the bracket to the entire S(q) by the Leibniz rule. If A is a commutative
subalgebra of U(q), then its graded image grA is a Poisson-commutative subalgebra

of S(q). The quantisation problem for a given Poisson-commutative subalgebra A

of S(q) is to find a commutative subalgebra A of U(q) with the property grA = A.
In the case where q = g is a finite-dimensional simple Lie algebra over C , a

family of commutative subalgebras of U(g) can be constructed with the use of
the associated Feigin–Frenkel centre z(ĝ) which is a commutative subalgebra of
U
(
t−1g[t−1]

)
. Given any μ ∈ g∗ and a nonzero z ∈ C , the image of z(ĝ) with

respect to the homomorphism

�μ,z : U
(
t−1

g[t−1]
)
→ U(g), X tr �→ Xzr + δr,−1 μ(X), X ∈ g,

is a commutative subalgebra Aμ of U(g) which is independent of z. This subalgebra
was used by Rybnikov [R06] and Feigin, Frenkel, and Toledano Laredo [FFTL] to
give a positive solution of Vinberg’s quantisation problem for regular μ. Namely,
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the graded image grAμ in the symmetric algebra S(g) turns out to coincide with

the Mishchenko–Fomenko subalgebra Aμ [MF78] which is generated by all μ-shifts
of the g-invariants of S(g); a precise definition is recalled in Section 2 below. It was

conjectured in [FFTL, Conjecture 1] that the property grAμ = Aμ extends to all
μ ∈ g∗ (it clearly holds for μ = 0). The conjecture was confirmed in [FM15] for
type A.

Our first main result is a proof of the FFTL-conjecture for type C. The same
approach can be used in type A which leads to another proof of the conjecture.
It is known by [FFTL, Proposition 3.12] that the inclusion Aμ ⊂ grAμ holds for
any simple Lie algebra g and any μ ∈ g∗. Our argument relies on this fact and is
based on a general result establishing a maximality property of the Mishchenko–
Fomenko subalgebra Aγ associated with an arbitrary Lie algebra q and an element

γ ∈ q∗. In more detail, we show that under certain additional assumptions, Aγ is
a maximal Poisson-commutative subalgebra of the algebra of qγ-invariants S(q)

qγ ,
where qγ denotes the stabiliser of γ (see Theorem 2.3 (ii) below). This property
is quite analogous to the main result of [PY08] establishing the maximality of the

Mishchenko–Fomenko subalgebra Aμ in S(g) for regular μ.
Applying the results of [PPY], for any given μ ∈ g∗ we then produce families

of free generators of the algebra Aμ in types A and C in an explicit form. This
provides a new proof of the corresponding results of [FM15] in type A.

As another principal result of the paper, we show that the free generators of
Aμ can be obtained via the canonical symmetrisation map; see (3·2) below. This
map was used by Tarasov [T00] to construct a commutative subalgebra of U(glN )

quantising the Mishchenko–Fomenko subalgebra Aμ ⊂ S(glN ). By another result
of Tarasov [T03], that commutative subalgebra of U(glN ) coincides with Aμ if μ is
regular semisimple. We extend these properties of the symmetrisation map to all
classical Lie algebras g by showing that the algebra of invariants S(g)g admits a
family of free generators such that the images of their μ-shifts with respect to the
symmetrisation map generate the algebra Aμ for any μ. The respective generators
of Aμ are given explicitly in the form of symmetrised minors or permanents; see
Theorems 3.1 and 3.2. We state as a conjecture that free generators of S(g)g with
the same properties exist for all simple Lie algebras (Conjecture 3.3).

By the work of Vinberg [V91] and Shuvalov [Sh02], new families of Poisson-
commutative subalgebras of S(g) of maximal transcendence degree can be con-
structed by taking certain limits of the Mishchenko–Fomenko subalgebras; see
also [V14]. For instance, the graded image of the Gelfand–Tsetlin subalgebra
GT(glN ) ⊂ U(glN ) is a Poisson-commutative subalgebra of S(glN ) which does not

occur as Aμ for any μ. However, it can be obtained by choosing a parameter-

depending family μ(t) and taking an appropriate limit of Aμ(t) as t → 0. We show
that the Vinberg–Shuvalov limit subalgebras admit a quantisation. In particular,
in the case of the symplectic Lie algebra g = sp2n this leads to a construction
of a Gelfand–Tsetlin-type subalgebra GT(sp2n). This is a maximal commutative
subalgebra of U(sp2n) which contains the centres of all universal enveloping al-
gebras U(sp2k) with k = 1, . . . , n associated with the subalgebras of the chain
sp2 ⊂ · · · ⊂ sp2n. There is evidence to believe that this new subalgebra GT(sp2n)
is useful in the representation theory of sp2n. In particular, it can be applied to
separate multiplicities in the reduction sp2n ↓ sp2n−2 [HKRW] thus leading to a
new basis for each finite-dimensional irreducible representation.
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We also consider certain versions of the limit subalgebras which are different
from those of [Sh02], but arise within the general scheme described in [V14]. We
give a solution of the quantisation problem for these nilpotent limit subalgebras in
types A and C; see Proposition 5.2.

It was already pointed out by Tarasov [T03] that the symmetrisation map
commutes with taking limits thus allowing one to quantise the limit Poisson-
commutative subalgebras of S(g). Therefore, the quantisations can be obtained
equivalently either by applying the symmetrisation map, or by taking the nilpotent
limits of the subalgebras Aμ.

As a consequence of the nilpotent limit construction, we get a solution of Vin-
berg’s quantisation problem for centralisers of nilpotent elements in types A and C.
In their recent work [AP17] Arakawa and Premet extended the approach of [R06]
and [FFTL] by replacing the Feigin–Frenkel centre with the centre of the affine
W-algebra associated with a simple Lie algebra g and a nilpotent element e ∈ g.
Under certain restrictions on the data, they produce a positive solution of Vinberg’s
problem for the centralisers ge. It appears to be likely that their solution coincides
with ours based on the nilpotent limits; see Conjecture 5.8.

Symmetric invariants of centralisers have been extensively studied at least since
[PPY]. Certain polynomials eH ∈ S(ge) are defined in that paper via the restriction
to a Slodowy slice. Notably, these elements are related to the e-shifts of H; see
Lemma 1.5. Let H1, . . . , Hn ∈ S(g) with n = rk g be a set of homogeneous gener-
ating symmetric invariants. Then

∑n
i=1 deg

eHi � b(ge), where b(ge) is a certain
integer related to ge. This inequality is one of the crucial points in [PPY] and it
is proven via finite W-algebras. We found a more direct line of argument, which
works for Lie algebras of Kostant-type; see Lemma 1.8.

Our ground field is C. However, since semisimple Lie algebras are defined over
Z, it is not difficult to deduce that the main results are valid over any field of
characteristic zero.

1. Preliminaries on Lie–Poisson structures

Let Q be a non-Abelian connected algebraic group and let q = LieQ be its Lie
algebra. For γ ∈ q∗, let γ̂ be the corresponding skew-symmetric form on q given by
γ̂(ξ, η) = γ

(
[ξ, η]

)
. Note that the kernel of γ̂ is equal to the stabiliser

qγ = {ξ ∈ q | ad∗(ξ)γ = 0}.
We will identify the symmetric algebra S(q) with the algebra C [q∗] of polynomial

functions on q∗. Suppose that dim q = r and choose a basis {ξ1, . . . , ξr} of q. Let
{x1, . . . , xr} be the dual basis of q∗. Let

(1·1) π =
∑
i<j

[ξi, ξj ]xi ∧ xj

be the Poisson tensor (bivector) of q. It is a global section of Λ2Tq∗ and at each
point γ ∈ q∗ we have π(γ) = γ̂. Let dF denote the differential of F ∈ S(q) and let
dγF denote the differential of F at γ ∈ q∗. A well-known property of π is that

{F1, F2}(γ) = π(γ)(dγF1, dγF2)

for all F1, F2 ∈ S(q). As defined by Dixmier, the index of q is the number

ind q = min
γ∈q∗

dim qγ = dim q−max
γ∈q∗

dim(Qγ) = dim q−max
γ∈q∗

rk π(γ).
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For a reductive g, one has ind g = rk g. In this case, (dim g+rk g)/2 is the dimension
of a Borel subalgebra of g. For an arbitrary q, set b(q) = (ind q+dim q)/2. Observe
that ind qγ � ind q for all γ ∈ q∗ by Vinberg’s inequality [P03, Sect. 1].

One defines the singular set q∗sing of q∗ by

q
∗
sing = {γ ∈ q

∗ | dim qγ > ind q}.

Set also q∗reg = q∗ \ q∗sing. Further, q is said to have the codim-m property (or to

satisfy the codim-m condition), if dim q∗sing � dim q −m. A reductive Lie algebra

g satisfies the codim-3 condition [K63]. Recall that an open subset is called big if
its complement does not contain divisors. The codim-2 condition holds for q if and
only if q∗reg is big.

Suppose that γ ∈ q∗reg. Then

dim qγ = ind q � ind qγ .

Therefore ind qγ = dim qγ = ind q and qγ is a commutative Lie algebra.

1.1. Transcendence degree bounds. For any subalgebra A ⊂ S(q) and any
x ∈ q∗ set

dxA = 〈dxF | F ∈ A〉
C
⊂ T ∗

x q
∗.

Then we have tr.degA = maxx∈q∗ dim dxA. If A is Poisson-commutative, then

x̂(dxA, dxA) = 0

for each x ∈ q∗ and thereby

tr.degA � dim q− ind q

2
+ ind q = b(q).

Applying a classical result of Borho and Kraft [BK76, Satz 5.7], one obtains that
tr.degA � b(q) for any commutative subalgebra A ⊂ U(q).

For any subalgebra l ⊂ q, let S(q)l denote the Poisson centraliser of l, i.e.,

S(q)l = {F ∈ S(q) | {ξ, F} = 0 for all ξ ∈ l}.

If l = LieL and L ⊂ Q is a connected subgroup, then S(q)l coincides with the
subalgebra of L-invariants

S(q)L = {F ∈ S(q) | gF = F for all g ∈ L}.

Proposition 1.1. Let A ⊂ S(q)l be a Poisson-commutative subalgebra. Then

tr.degA � 1

2
(dim q− ind q− dim l+ ind l) + ind q = b(q)− b(l) + ind l.

Proof. For any point x ∈ q∗, we have x̂(dxA, dxA) = 0 and x̂(l, dxA) = 0. For
a generic point x, the form x̂ is of rank dim q−ind q and x|l ∈ l∗reg, therefore the
restriction of x̂ to l is of rank dim l−ind l. The quotient dxA/(dxA ∩ qx) is an
isotropic subspace of q/qx orthogonal to l/(l ∩ qx). Knowing that the rank of x̂
on l is equal to dim l−ind l, we can conclude that the dimension of this quotient is
bounded by 1

2 dim(Qx)− 1
2 (dim l− ind l). Thereby

dim dxA � 1

2

(
(dim q− ind q)− (dim l− ind l)

)
+ ind q.

This completes the proof. �
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The inequality tr.degA � b(q)−b(l)+ind l has a different, less elementary proof.
According to [S04], there is a Poisson-commutative subalgebra lA ⊂ S(l) such that
tr.deg lA = b(l). Clearly {A, lA} = 0 and therefore dim(dxA + dx

lA) � b(q). In
addition dim(dxA ∩ dx

lA) � ind l for generic x ∈ q∗.

Example 1.2. (i) Suppose that q = glN and l = glN−1. Then tr.degA � 2N − 1

for any Poisson-commutative subalgebra A ⊂ S(q)l. More generally, if l = glm,
then

tr.degA � N(N+1)

2
− m(m+1)

2
+m.

(ii) Take q = sp2n and l = sp2m. Then tr.degA � n(n+1)−m(m+1) +m.

Example 1.3. Suppose that l = qγ . If ind qγ = ind q, then the bound of Proposi-
tion 1.1 is simpler

tr.degA � 1

2
(dim q− dim qγ) + ind q =

1

2
dim(Qγ) + ind q.

If ind qγ �= ind q, then ind qγ > ind q and the bound is larger than the sum above.

Checking the equality ind qγ = ind q is an intricate task. It does not hold for all
Lie algebras; see, e.g., [PY06, Ex. 1.1].

Remark 1.4. The symplectic linear algebra calculation in the proof of Proposi-
tion 1.1 brings up the following observation. LetA⊂S(q)l be a Poisson-commutative
subalgebra with the maximal possible transcendence degree. Suppose that x ∈ q∗

is generic, in particular dim dxA = tr.degA. Then the orthogonal complement of
dxA w.r.t. x̂ equals l+ dxA+ ker x̂.

1.2. Lie algebras of Kostant-type. Throughout the paper we will use the di-
rection derivatives ∂γH of elements H ∈ S(q) = C [q∗] with respect to γ ∈ q∗ which
are defined by

∂γH(x) =
d

dt
H(x+ t γ)

∣∣∣
t=0

.

Given a nonzero γ ∈ q∗ we fix a decomposition q = Cy ⊕ ker γ, where γ(y) = 1.
For each nonzero H ∈ S(q), we have a decomposition

H = ymH[m] + ym−1H[m−1] + · · ·+ yH[1] +H[0],

where H[m] �= 0 and H[i] ∈ S(ker γ) for every i. Following [PPY] set γH = H[m].
Note that γH does not depend on the choice of y. Note also that H[m] ∈ C if and
only if H(γ) �= 0.

We will denote by Qγ the stabiliser of γ in Q with respect to the coadjoint action.

Lemma 1.5. Suppose that H ∈ S(q)q. Let m and H[m] =
γH be as above. Then

γH ∈ S(qγ)
Qγ . Furthermore, ∂m

γ H = m!H[m] and for all k � 0, we have ∂k
γH = 0

if and only if k > m.

Proof. We repeat the argument of [PPY, Appendix]. Suppose that H[m] �∈ S(qγ).

Then there is ξ ∈ q such that {ξ,H[m]} = yH̃ + H̃0 with H̃ �= 0 and H̃, H̃0 ∈
S(ker γ). Since degy{ξ, ym} � m and degy{ξ, ydH[d]} � d+1 for each d, we see that
{ξ,H} �= 0, a contradiction. Observe that ker γ is a Qγ-stable subspace and that
Qγy ∈ y + ker γ. Since H is a Q-invariant and hence also a Qy-invariant, H[m] is a
Qγ-invariant as well. The statements concerning derivatives follow from the facts
that ∂γy = 1 and that ∂γH[d] = 0 for each d. �
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Recall that ξ1, . . . , ξr is a basis of q and let n = ind q. Using notation (1·1), for
any k > 0, set

Λkπ = π ∧ π ∧ . . . ∧ π︸ ︷︷ ︸
k factors

and regard it as an element of Sk(q)⊗Λ2kq∗. Then Λ(r−n)/2π �= 0 and all higher
exterior powers of π are zero. We have dF ∈ S(q)⊗q for each F ∈ S(q). We will
also regard dF as a differential 1-form on q∗. Take H1, . . . , Hn ∈ S(q)q. Then
dH1 ∧ . . . ∧ dHn ∈ S(q)⊗Λnq. At the same time, Λ(r−n)/2π ∈ S(q)⊗Λr−nq∗. The
volume form ω = ξ1 ∧ . . . ∧ ξr defines a nondegenerate pairing between Λnq and
Λr−nq. If u ∈ Λnq and v ∈ Λr−nq, then u ∧ v = c ω with c ∈ C. We write this
as u∧v

ω = c and let u
ω be an element of (Λr−nq)∗ such that u

ω (v) =
u∧v
ω . For any

u ∈ S(q)⊗Λnq, we let u
ω be the corresponding element of

S(q)⊗(Λr−nq)∗ ∼= S(q)⊗Λr−nq∗.

One says that H1, . . . , Hn satisfy the Kostant identity if

(1·2) dH1 ∧ . . . ∧ dHn

ω
= CΛ(r−n)/2π

for some nonzero constant C. Identity (1·2) encodes the following equivalence:

dγH1 ∧ . . . ∧ dγHn �= 0 ⇐⇒ γ ∈ q∗reg.

Definition 1.6 (cf. [Y14, Def. 2.2]). A Lie algebra q is of Kostant-type if S(q)Q is
freely generated by homogenous polynomials H1, . . . , Hn that satisfy the Kostant
identity.

Any reductive Lie algebra is of Kostant-type [K63, Thm 9]. Another easy obser-
vation is that

n∑
i=1

degHi =
r − n

2
+ n = b(q)

if homogeneous invariantsH1, . . . , Hn satisfy the Kostant identity. If q is of Kostant-
type, then any set of algebraically independent homogeneous generators of S(q)Q

satisfies the Kostant identity.

Definition 1.7 (cf. [PPY, Sect. 2.7]). Let H1, . . . , Hn ∈ S(q)Q be algebraically
independent homogeneous elements that satisfy the Kostant identity (1·2). If∑n

i=1 deg
γHi = b(qγ), then {Hi} is a good system ( g.s.) for γ. If in addition

the polynomials {Hi} generate S(q)Q, then they form a good generating system
( g.g.s.) for γ ∈ q∗.

Lemma 1.8. Suppose that homogeneous elements H1, . . . , Hn ∈ S(q)q satisfy the
Kostant identity and γ ∈ q∗ is such that ind qγ = ind q. Then

(i)
∑n

i=1 deg
γHi � b(qγ);

(ii) {Hi} is a g.s. (for γ) if and only if the polynomials γHi are algebraically
independent;

(iii) if {Hi} is a g.s., then the invariants γHi satisfy the Kostant identity related
to qγ ;

(iv) if {Hi} is a g.s. and qγ has the codim-2 property, then S(qγ)
Qγ = S(qγ)

qγ =
C[{γHi}].
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Proof. We may suppose that the basis elements ξ1, . . . , ξr of q are chosen in such a
way that the last dim qγ elements ξi form a basis of qγ . Whenever ξ ∈ qγ , we have

γ
(
[ξ, η]

)
= 0 for each η ∈ q and hence degy[ξ, η] � 0. The y-degree of Λ(r−n)/2π is

at most 1
2 dim(Qγ). We note that

r − n = r − ind qγ = (r − dim qγ) + (dim qγ − ind qγ).

Choosing two complementary subspaces of q/qγ that are Lagrangian w.r.t. γ̂, we

derive that the highest y-component of Λ(r−n)/2π is equal (up to a nonzero scalar)
to

y(r− dim qγ)/2(x1 ∧ . . . ∧ xr− dim qγ
) ∧ Λ(dim qγ−n)/2πγ �= 0,

where πγ is the Poisson tensor of qγ . The y-degree of the expression on the left
hand side of (1·2) is at most

∑n
i=1(degHi − deg γHi). This leads to the inequality

n∑
i=1

(degHi − deg γHi) �
1

2
dim(Qγ)

which is equivalent to
n∑

i=1

deg γHi �
n∑

i=1

degHi −
1

2
dim(Qγ) =

1

2
(r + n− r + dim qγ) = b(qγ).

We have the equality here if and only if

y(r−dim qγ)/2
d γH1 ∧ . . . ∧ d γHn

ω

is the highest y-component of the left hand side in (1·2). Moreover, this is the case
if and only if the polynomials γHi are algebraically independent. Therefore (i) and
(ii) follow.

If
∑n

i=1 deg
γHi = b(qγ), then

y(r−dim qγ)/2
d γH1 ∧ . . . ∧ d γHn

ω

= C̃y(r− dim qγ)/2(x1 ∧ . . . ∧ xr− dim qγ
) ∧ Λ(dim qγ−n)/2πγ

for some nonzero C̃ ∈ C. Writing ω = (ξ1 ∧ . . . ∧ ξr−dim qγ
) ∧ ωγ , one proves that

d γH1 ∧ . . . ∧ d γHn

ωγ
= C̃Λ(dim qγ−n)/2πγ .

Thus (iii) is proved as well.
The Kostant identity implies that the differentials d γHi are linearly indepen-

dent on (q∗γ)reg. If qγ has the codim-2 property, then q∗reg is a big open subset.
Thereby the homogeneous invariants γHi generate an algebraically closed subalge-
bra of S(qγ); see [PPY, Thm 1.1]. Since tr.deg S(qγ)

Qγ = tr.deg S(qγ)
qγ = n, the

assertion (iv) follows. �

The statements of Lemma 1.8 generalise analogous assertions proven in [PPY]
for q = g reductive and γ nilpotent. Parts (i), (ii), and (iii) of Lemma 1.8 constitute
[PPY, Thm 2.1], which is proven via finite W-algebras. Our current approach is
more direct and more general. Examples of nonreductive Lie algebras of Kostant-
type can be found in [Y14].

Suppose that ind qγ = ind q and H1, . . . , Hn is a g.s. for γ. Then no γHi can be
a constant; see Lemma 1.8(ii). Therefore we must have Hi(γ) = 0 for each i.
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1.3. Sheets and limits in reductive Lie algebras. Suppose now that q = g is
reductive and Q = G. Choose a G-isomorphism g ∼= g∗. Recall that the sheets in g

are the irreducible components of the locally closed subsets

X(d) = {ξ ∈ g | dim(Gξ) = d}.

At a certain further point in this paper, we will have to pass from nilpotent to
arbitrary elements. To this end, sheets in g and the method of associated cones
developed in [BK79, § 3] will be used. The associated cone of μ ∈ g∗ is the inter-

section C
×(Gμ)∩N, where N is the nilpotent cone. Each irreducible component of

C
×(Gμ) ∩N is of dimension dim(Gμ). Let Gγ be the dense orbit in an irreducible

component of the associated cone. The set C
×
(Gμ) is irreducible, hence is contained

in a sheet. The orbit Gγ is also contained in the same sheet. Therefore this orbit
is unique and the associated cone is irreducible.

The following statement should be well known in algebraic geometry. We still
give a short proof.

Lemma 1.9. There is a morphism of algebraic varieties τ : C → C
×(Gμ) with

the properties τ (C \ {0}) ⊂ C
×
(Gμ) and τ (0) = γ. Moreover, τ is given by a

1-parameter subgroup of GL(g∗).

Proof. Let f ∈ g be the image of γ under the G-isomorphism g∗ ∼= g. We keep
the same letter μ for the image of μ. Since γ is nilpotent, f can be included into
an sl2-triple {e, h, f} ⊂ g. The element ad(h) induces a Z-grading on g, where the
components are

gm = {ξ ∈ g | [h, ξ] = mξ}.

The centraliser G0 = Gh of h acts on g−2 and Ghf is a dense open subset of g−2.
Since g�0 is a parabolic subalgebra of g, we have G (g�−2) = g and G (G0f +g�−1)

is a dense open subset of g, which meets C×(Gμ). Hence

G (G0f + g�−1) ∩ C
×(Gμ)

is a nonempty open subset of C
×(Gμ) and there is cgμ ∈ G(G0f + g�−1) with

g ∈ G, c ∈ C
×
. We may assume that μ ∈ f + g�−1.

Let {χ(t) | t ∈ C
×} ⊂ GL(g) be the 1-parameter subgroup defined by

χ(t) = t2 idg exp(ad(th)).

Then limt→0 χ(t)μ = f and τ is given by τ (t) = χ(t)μ for t �= 0 and τ (0) = f . �

The existence of τ and the fact that dim(Gγ)=dim(Gμ) imply that lim
t→0

gτ(t)=gγ ,

where the limit is taken in a suitable Grassmannian.
Let μ = x+y be the Jordan decomposition of μ in g, where x is semisimple

and y is nilpotent. Then l = gx is a Levi subalgebra of g. Set L = exp(l). By
[Bor, Sect. 3], the nilpotent orbit Gγ in a sheet of μ is induced from Ly ⊂ l. In
standard notation, Gγ = Indg

l
(Ly). For the classical Lie algebras, the description

of this induction is given in [K83].
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Type A. Let g = glN . Suppose that the distinct eigenvalues of μ ∈ glN are
λ1, . . . , λr and that the Jordan canonical form of μ is the direct sum of the re-
spective Jordan blocks

(1·3) J
α

(1)
1
(λ1), . . . , Jα(1)

m(1)

(λ1), . . . , Jα(r)
1
(λr), . . . , Jα(r)

m(r)

(λr),

of sizes α
(i)
1 � α

(i)
2 � · · · � α

(i)
m(i) � 1 for i = 1, . . . , r. We let α(i) denote the

corresponding Young diagram whose jth row is α
(i)
j . The nilpotent orbit Gγ cor-

responds to the partition Π such that the row k of its Young diagram is the sum
of the kth rows of all diagrams α(i). That is,

(1·4) Π = α(1) + · · ·+ α(r) =
( r∑

i=1

α
(i)
1 ,

r∑
i=1

α
(i)
2 , . . .

)
,

where we assume that α
(i)
j = 0 for j > m(i); see [K83, §1] and in particular Cor. 2

there.

Type C. Suppose now that g = sp2n. Keep notation (1·3) for the Jordan blocks of
μ ∈ sp2n. To separate the zero eigenvalue we will assume that λ1 = 0. The case
where zero is not an eigenvalue of μ will be taken care of by the zero multiplicity
m(1) = 0. In type C, the following additional conditions on the parameters of the
Jordan canonical form must be satisfied, cf. [K83, §2] and [J04, Sect. 1],

� any row of odd length in α(1) must occur an even number of times;
� for each k > 1 there is k′ such that λk = −λk′ and α(k) = α(k′).

Define the partition Π by (1·4). It may happen that some rows of odd length
in Π occur an odd number of times. We will modify Π in order to produce a new
partition Πγ , which corresponds to a nilpotent orbit in sp2n, by the sequence of
steps described in the proof of [K83, Lemma 2.2]. Working from the top of the
current Young diagram, consider the first row β of odd length which occurs an odd
number of times. Remove one box from the last occurrence of β and add this box
to the next row. This operation is possible because the length of the next row
is necessarily odd due to the conditions on the Jordan canonical form in type C.
Repeating the procedure will yield a diagram Πγ with the property that any row of
odd length occurs an even number of times. The orbit Gγ is given by the partition
Πγ [K83, Prop. 3.2].

2. Mishchenko–Fomenko subalgebras and their limits

Take γ ∈ q∗ and let Aγ denote the corresponding Mishchenko–Fomenko subal-
gebra of S(q) which is generated by all γ-shifts ∂ k

γ H with k � 0 of all elements

H ∈ S(q)q. Note that ∂ k
γ H is a constant for k = degH. The generators ∂k

γH of

Aγ can be equivalently defined by shifting the argument of the invariants H. Set
Hγ,t(x) = H(x+ tγ). Suppose that degH = m. Then Hγ,t(x) expands as

(2·1) H(x+ tγ) = H(0)(x) + tH(1)(x) + · · ·+ tmH(m)(x),

where H(k) =
1
k!∂

k
γH. The subalgebra Aγ is generated by all elements H(k) associ-

ated with all q-invariantsH ∈ S(q)q. WhenH is a homogeneous polynomial, we will
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also use an equivalent form of (2·1), where we make the substitution x �→ γ+ z−1x
for a variable z, and expand as

H
(
γ + z−1x) = z−mH(0)(x) + · · ·+ z−1H(m−1)(x) +H(m)(x).

Take now λ ∈ C and considerHγ,λ ∈ S(q) withHγ,λ(x) = H(x+λγ). A standard

argument with the Vandermonde determinant shows that Aγ is generated by Hγ,λ

with H ∈ S(q)q and λ ∈ C. One readily sees that

Aγ ⊂ S(q)Qγ .

Clearly it suffices to take only homogeneous H and only nonzero λ in order to
generate Aγ . Under these assumptions on H and λ, we have

(2·2) dμHγ,λ = dμ+λγH = λm−1dλ−1μ+γH = λm−1dγHμ,λ−1 ,

where m = degH. Hence

(2·3) dμAγ = dγAμ

for any γ, μ ∈ q∗, where both sides are regarded as subspaces of q.

2.1. Maximal Poisson-commutative subalgebras. Our next goal is to formu-
late certain conditions that assure that Aγ is a maximal Poisson-commutative sub-
algebra of S(q)qγ . From now on assume that q is of Kostant-type with ind q = n
and that H1, . . . , Hn are homogeneous generators of S(q)q. Then the Mishchenko–

Fomenko subalgebra Aγ is generated by the γ-shifts ∂ k
γ Hi with 1 � i � n and

0 � k � degHi − 1.

Lemma 2.1. Suppose that q is of Kostant-type and has the codim-2 property.
Suppose further that ind qγ = n. Then

(i) tr.degAγ = 1
2 dim(Qγ) + n;

(ii) dim dxAγ = 1
2 dim(Qγ) + n if x+ Cγ ⊂ q∗reg and x|qγ

∈ (q∗γ)reg.

Proof. By (2·3), dxAγ = dγAx. According to [B91, Thm 3.2 and its proof], see also

[B91, Thm 2.1], if x+Cγ ⊂ q∗reg and x|qγ
∈ (q∗γ)reg, then dγAx contains a subspace

U of dimension 1
2 dim(Qγ) such that U ∩ qγ = 0. A part of [B91, Thm 3.2] asserts

that such an element x exists. For each H ∈ S(q)q and each μ ∈ q∗, we have
dμH ∈ ker μ̂ = qμ. Since q is of Kostant-type, the differentials dux+γHi are linearly

independent for each u ∈ C
×
and therefore their linear span is equal to qux+γ . In

view of (2·2), qux+γ ⊂ dγAx and hence Uγ = limu→0 qux+γ is a subspace of dγAx

as well. Clearly dimUγ = n and Uγ ⊂ qγ . It follows that

dim dγAx � dimU + dimUγ =
1

2
dim(Qγ) + n.

Since dxAγ � 1
2 dim(Qγ) + n by Proposition 1.1, part (ii) follows. To prove (i)

recall that tr.degAγ = maxx∈q∗ dim dxAγ = 1
2 dim(Qγ) + ind q. �

Proposition 2.2. Suppose that q satisfies the codim-2 condition and that H1, . . . ,
Hn is a g.g.s. for γ ∈ q∗. If in addition ind qγ = n, then Aγ is freely generated by
∂k
γHi with 1 � i � n and 0 � k � degHi − deg γHi.
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Proof. Since
n∑

i=1

deg γHi = b(qγ), there are only

n∑
i=1

(degHi − deg γHi + 1) =
dim q+ n

2
− dim qγ + n

2
+ n =

1

2
dim(Qγ) + n

nonzero elements ∂k
γHi and they have to be algebraically independent according to

Lemma 2.1(i). �

Theorem 2.3. Suppose that q satisfies the codim-3 condition and that H1, . . . , Hn

is a g.g.s. for γ. Suppose further that qγ satisfies the codim-2 condition and
ind qγ = n. Let F1, . . . , Fs with s = 1

2 dim(Qγ) + n be algebraically independent

homogeneous generators of Aγ such that each Fj is a γ-shift ∂k
γHi as in Proposi-

tion 2.2. Then

(i) the differentials of Fj are linearly independent on a big open subset;

(ii) Aγ is a maximal (with respect to inclusion) Poisson-commutative subalge-
bra of S(q)qγ .

Proof. (i) We have dxAγ = 〈dxFj | 1 � j � s〉
C
. Whenever dim dxAγ = s, the

differentials dxFj are linearly independent. According to Lemma 2.1, the equality

dim dxAγ = s holds if x+Cγ ⊂ q∗reg and x|qγ
∈ (q∗γ)reg. Choosing any complement

of qγ in q, we can embed q∗γ into q∗. If x|qγ
is nonregular, then x belongs to

(q∗γ)sing + Ann(qγ). This is a closed subset of codimension at least 2, since qγ

satisfies the codim-2 condition.
Let us examine the property x + Cγ ⊂ q∗reg. The desired condition on x holds

if x ∈ q∗reg and γ + cx ∈ q∗reg for all c ∈ C
×
. The first restriction is inessential. In

order to deal with the second one, γ + C
×
x ⊂ q∗reg, we choose γ as the origin in q∗

and consider the corresponding map

ψ : q∗ \ {γ} → Pq∗

with ψ(x) = C(x−γ). We have

dimψ(q∗sing) � dim q∗sing � dim q− 3.

Hence the preimage ψ−1(ψ(q∗sing)) is a closed subset of q∗ \ {γ} of codimension at
least 2. Assume that x �= 0. Note that

γ + C
×
x = ψ−1

(
ψ(x+ γ)

)
.

If (γ + C
×
x) ∩ q∗sing �= ∅, then ψ(x+ γ) ∈ ψ(q∗sing) and x+ γ ∈ ψ−1

(
ψ(q∗sing)

)
.

Since

ψ−1
(
ψ(q∗sing)

)
∪ {γ}

is a closed subset of q∗ of dimension at most dim q−2, part (i) follows.
(ii) We have tr.degAγ = 1

2 dim(Qγ)+n. Assume on the contrary that Aγ is not

maximal. Then Aγ � A ⊂ S(q)qγ , where A is a Poisson-commutative subalgebra.

In view of Proposition 1.1, tr.degA � tr.degAγ and hence A is a nontrivial algebraic

extension of Aγ . Since (i) holds, Aγ is an algebraically closed subalgebra of S(q)
by [PPY, Thm 1.1]. This contradiction completes the proof. �
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Now suppose that g = LieG is reductive. Then g has the codim-3 property
[K63]. It will be convenient to consider elements of g as linear functions on g. We
have ind gγ = rk g = n for each γ ∈ g∗ [Y06, dG08,CM10]. A nilpotent element γ
may or may not possess a good generating system [PPY]. But if an element is not
nilpotent, then there is no g.g.s. for it. Our next step will be to develop a transition
from nilpotent to arbitrary elements of g.

We point out a few properties of directional derivatives to be used below. We
have

∂gμ(gF ) = g(∂μF )

for all g ∈ G, μ ∈ g∗, and F ∈ S(g). Hence, ∂k
gμH = g(∂k

μH) for H ∈ S(g)G.

Moreover, ∂tμF = t∂μF for each t ∈ C
×
.

Consider an arbitrary element μ ∈ g∗ and the associated nilpotent orbit Gγ ⊂ g∗

as defined in the first paragraph of Section 1.3.

Proposition 2.4. Suppose that γ has a g.g.s. and that gγ satisfies the codim-2

condition. Then Aμ is a maximal Poisson-commutative subalgebra of S(g)gμ .

Proof. Let F1, . . . , Fs with s = 1
2 dim(Gγ) + rk g = 1

2 dim(Gμ) + rk g be alge-

braically independent homogeneous generators of Aγ . As in Theorem 2.3, we have

Fj = ∂k
γHi, where 0 � k � degHi − deg γHi. Set accordingly F̂j = ∂k

μHi. By
Theorem 2.3(i), the differentials dFj are linearly independent on a big open subset.

Assume on the contrary that this is not the case for the differentials of F̂j . Then

s∧
j=1

dF̂j = FR,

where F is a nonconstant homogenous polynomial and R ∈ S(g)⊗ Λsq is a regular
differential s-form that is nonzero on a big open subset of q∗.

Let τ be the map of Lemma 1.9, which is constructed as an orbit of

{χ(t) = t2 idg∗ exp(ad∗(th)) | t ∈ C
×} ⊂ GL(g∗).

Then limt→0 ∂
k
τ(t)Hi = ∂k

γHi for all i and all k. The appearing partial derivatives

can be expressed via the group action:

∂k
τ(t)Hi = ∂k

χ(t)μHi = t2k exp(ad∗(th))(∂k
μHi).

Letting G act on the differential forms as well, we obtain that

s∧
j=1

dFj = lim
t→0

tK(exp(ad∗(th))F)(exp(ad∗(th))R),

where K ∈ Z�0. Since F �∈ C is a homogeneous polynomial, the lowest t-component
of exp(ad∗(th))F is a nonconstant homogeneous polynomial as well. This compo-

nent divides dF1∧ . . .∧dFs, a contradiction. Thus, the differentials dF̂j are linearly
independent on a big open subset.

By [PPY, Thm 1.1], the homogeneous elements F̂1, . . . , F̂s generate an alge-

braically closed subalgebra of S(g), which is contained in Aμ and is of transcendence

degree s. Since tr.degAμ = s, these elements actually generate Aμ. By Proposi-

tion 1.1, a Poisson-commutative extension of Aμ in S(g)gμ must be algebraic and
is therefore trivial. �
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If q = g is of type A or C and γ is nilpotent, then gγ has the codim-2 property
and there is a g.g.s. for γ; see [PPY]. Therefore, the assumptions of Theorem 2.3
are satisfied and we have the following.

Corollary 2.5. Suppose that g is of type A or C. Then Aμ is a maximal Poisson-
commutative subalgebra of S(g)gμ for each μ ∈ g∗. �

If γ ∈ q∗sing, then tr.degAγ < b(q) [B91, Thm 2.1], i.e., this algebra does not have
the maximal possible transcendence degree. On the one hand, this property can
be a disadvantage for some applications, while on the other, Aγ Poisson-commutes
with qγ and can be extended, in many ways, to a Poisson-commutative subalgebra
of the maximal possible transcendence degree. Below we present a construction of
such an extension.

2.2. Vinberg’s limits in the nilpotent case. Take γ ∈ q∗sing, μ ∈ q∗reg, and

u ∈ C and consider the Mishchenko–Fomenko subalgebra Aγ+uμ of S(q). For F ∈
SN (q), we have dF ∈ SN−1(q) ⊗ q and ∂xF = dF ( . , x) for any x ∈ q∗. Hence
∂γ+uμF = ∂γF + u∂μF . More generally, ∂k

γ+uμF ∈ S(q)[u]. We have

(2·4) ∂k
γ+uμ = ∂k

γ + ku∂μ∂
k−1
γ + · · ·+

(
k

s

)
us∂s

μ∂
k−s
γ + · · ·+ uk∂k

μ.

Obviously limu→0 ∂
k
γ+uμF = ∂k

γF . If ∂k
γF = 0, but ∂k

γ+uμF �= 0, then the limit

limu→0 C∂
k
γ+uμF still makes sense as an element of the projective space P S(q). This

limit line is spanned by the lowest u-component of ∂k
γ+uμF . In the same projective

sense set

Cγ,μ = lim
u→0

Aγ+uμ.

Formally speaking, Cγ,μ is a subspace of S(q) such that

Cγ,μ ∩ Sm(q) = lim
u→0

(
Aγ+uμ ∩ Sm(q)

)
for each m � 0. In other words,
(2·5)
Cγ,μ =

〈
lowest u-component of F =F0 + uF1 + · · ·+ ukFk | k�0, Fi ∈ Aγ+uμ

〉
C
.

We call Cγ,μ Vinberg’s limit at γ along μ; see [V14]. Note that Cγ,μ is a subalgebra
of S(q) and that it does depend on μ.

Clearly Aγ ⊂ Cγ,μ. By [BK76, Satz 4.5], we have tr.degCγ,μ = tr.degAγ+uμ

with a generic u ∈ C. Therefore tr.degCγ,μ = b(q) assuming that q satisfies the
codim-2 condition and has enough symmetric invariants [B91]. Set μ̄ = μ|qγ

.

Theorem 2.6. Suppose that q satisfies the codim-2 condition, ind qγ = n, there is

a g.g.s. for γ, qγ has the codim-2 property, and μ̄ ∈ (q∗γ)reg. Then Cγ,μ is a free

algebra generated by Aγ and the Mishchenko–Fomenko subalgebra Aμ̄ ⊂ S(qγ).

Proof. Let H1, . . . , Hn be a g.g.s. for γ. Set Fi,k = ∂k
γHi. For k = degHi− deg γHi,

we have ∂k
γHi = k!γHi ∈ S(qγ) and ∂P

γ Hi = 0 if P > k; see Lemma 1.5. Together
with (2·4) this gives

lim
u→0

C∂k
γ+uμHi =

{
CFi,k if k � degHi − deg γHi,

C∂k̄
μ̄(

γHi) if k > degHi − deg γHi,
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where k̄ = k − (degHi − deg γHi). According to Proposition 2.2, the elements Fi,k

with k satisfying the conditions k � degHi − deg γHi freely generate Aγ .
Since H1, . . . , Hn is a g.g.s. for γ, the elements γH1, . . . ,

γHn are algebraically
independent, they fulfil the Kostant identity (1·2) and freely generate S(qγ)

qγ ; see
Lemma 1.8. In particular, qγ is of Kostant-type. Applying Proposition 2.2 to S(qγ),

we see that Aμ̄ is freely generated by the elements ∂k̄
μ̄(

γHi) with 0 � k̄ < deg γHi.
It remains to show that there are no algebraic relations among Fi,k with k �

degHi− deg γHi and ∂k̄
μ̄(

γHi) with 1 � k̄ < deg γHi. Once this is done, we will

know that the lowest u-components of the generators ∂k
γ+uμHi are algebraically

independent and therefore the lowest u-component of a polynomial in us∂k
γ+uμHi

is a polynomial in the lowest u-components of ∂k
γ+uμHi.

Take x ∈ q∗. Then U1 = 〈dxFi,k〉C is a subspace of q and x̂(U1, qγ) = 0. At the
same time

U2 =
〈
dx∂

k̄
μ̄(

γHi) | 0 � k̄ < deg γHi

〉
C

is a subspace of qγ . Therefore x̂(U1 ∩U2, qγ) = 0 and U1 ∩U2 ⊂ (qγ)x̄ for x̄ = x|qγ
.

Suppose that x is a generic point, x ∈ q∗reg and x̄ ∈ (q∗γ)reg. Since ind qγ = n, we

have dim(qγ)x̄ = n. Hence dim(U1 ∩ U2) = n. It follows that U1 + U2 = U1 ⊕ Ũ2,
where

Ũ2 =
〈
dx∂

k̄
μ̄(

γHi) | 1 � k̄ < deg γHi

〉
C

.

This completes the proof. �

The assumptions of Theorem 2.6 are satisfied in types A and C for all nilpotent
elements γ and for generic elements μ.

Remark 2.7. Suppose that g is of type A. Then gγ has the codim-3 property [Y09]

and thereby Aν is a maximal Poisson-commutative subalgebra of S(gγ) for each ν ∈
(g∗γ)reg; see [PY08] and also [AP17]. Hence Cγ,μ is a maximal Poisson-commutative
subalgebra of S(g) for any nilpotent γ and any generic μ.

3. Quantisation and symmetrisation

As we recalled in the Introduction, Vinberg’s quantisation problem [V91] con-
cerns the existence and construction of a commutative subalgebra Aμ of U(g) with

the property grAμ = Aμ. In the case where μ ∈ g∗ is regular semisimple, explicit
constructions of the subalgebras Aμ in the classical types were given by Nazarov
and Olshanski [NO96] with the use of the Yangian for glN and the twisted Yangians
associated with the orthogonal and symplectic Lie algebras. Positive solutions in
the general case were given by Rybnikov [R06] for regular semisimple μ and Feigin,
Frenkel, and Toledano Laredo [FFTL] for any regular μ. The solutions rely on the
properties of a commutative subalgebra z(ĝ) of the universal enveloping algebra
U
(
t−1g[t−1]

)
. This subalgebra is known as the Feigin–Frenkel centre and is de-

fined as the centre of the universal affine vertex algebra associated with the affine
Kac–Moody algebra ĝ at the critical level. In particular, each element of z(ĝ) is
annihilated by the adjoint action of g. Furthermore, the subalgebra z(ĝ) is invariant
with respect to the derivation T = −∂t of the algebra U

(
t−1g[t−1]

)
. By a theo-

rem of Feigin and Frenkel [FF92] (see also [F07]), there exists a family of elements
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S1, . . . , Sn ∈ z(ĝ) (a complete set of Segal–Sugawara vectors), where n = rk g, such
that

z(ĝ) = C [T rSl | l = 1, . . . , n, r � 0].

One can assume that each Sl is homogeneous with respect to the gradation on
U
(
t−1g[t−1]

)
defined by degX[r] = −r, where we set X[r] = Xt r.

For any μ ∈ g∗ and a nonzero z ∈ C , the mapping

(3·1) �μ,z : U
(
t−1

g[t−1]
)
→ U(g), X[r] �→ Xzr + δr,−1 μ(X), X ∈ g,

defines a Gμ-equivariant algebra homomorphism. The image of z(ĝ) under �μ,z

is a commutative subalgebra Aμ of U(g) which does not depend on z. If S ∈
U
(
t−1g[t−1]

)
is a homogeneous element of degree d, then regarding �μ,z(S) as a

polynomial in z−1, define the elements S(i) ∈ U(g) by the expansion

�μ,z(S) = S(0)z−d + · · ·+ S(d−1)z−1 + S(d).

Suppose that μ ∈ g∗ is regular and that S1, . . . , Sn ∈ z(ĝ) is a complete set of
homogeneous Segal–Sugawara vectors of the respective degrees d1, . . . , dn. Then

� the elements S
(i)
k with k = 1, . . . , n and i = 0, 1, . . . , dk−1 are algebraically

independent generators of Aμ and grAμ = Aμ;
� the subalgebra Aμ of U(g) is maximal commutative.

The first of these statements is due to [FFTL] and the second is implied by the

results of [PY08]. The elements S
(i)
k generate Aμ for any μ ∈ g∗ and the inclusion

grAμ ⊃ Aμ holds. It was conjectured in [FFTL, Conjecture 1], that the property

grAμ = Aμ extends to all μ. Its proof in type A was given in [FM15]. In what
follows we give a more general argument which will imply the conjecture in types
A and C thus providing another proof in type A. We will rely on the properties of
the canonical symmetrisation map

(3·2) � : S(g) → U(g).

This map was already used by Tarasov [T00] in type A to show that if μ ∈ gl
∗
N

is semisimple, then the images of the μ-shifts of certain generators of S(glN )glN

under the map (3·2) generate a commutative subalgebra of U(glN ). By another
result of Tarasov [T03] this subalgebra coincides with Aμ if μ is regular semisimple.
Below we prove a similar statement for all classical types B, C, and D and all
μ ∈ g∗, which allows us to suggest that it holds for all simple Lie algebras; see
Conjecture 3.3 below.

In what follows we will identify any element X ∈ g with its images under the
canonical embeddings g ↪→ S(g) and g ↪→ U(g). It should always be clear from the
context whether X is regarded as an element of S(g) or U(g).

3.1. Symmetrised determinants and permanents. Consider the symmetriser
h(m) and anti-symmetriser a(m) in the group algebra C [Sm] of the symmetric group
Sm. These are the idempotents defined by

h(m) =
1

m!

∑
σ∈Sm

σ and a(m) =
1

m!

∑
σ∈Sm

sgnσ · σ.

We let H(m) and A(m) denote their respective images under the natural action of
Sm on the tensor product space (CN )⊗m. We will denote by Pσ the image of
σ ∈ Sm with respect to this action.
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For an arbitrary associative algebra M we will identify H(m) and A(m) with the
respective elements H(m) ⊗ 1 and A(m) ⊗ 1 of the algebra

(3·3) EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗M.

Any N ×N matrix M = [Mij ] with entries in M will be represented as the element

(3·4) M =

N∑
i,j=1

eij ⊗Mij ∈ EndCN ⊗M.

For each a ∈ {1, . . . ,m} introduce the element Ma of the algebra (3·3) by

(3·5) Ma =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗Mij .

The partial trace tra will be understood as the linear map

tra : End (C
N )⊗m → End (CN )⊗(m−1)

which acts as the trace map on the ath copy of EndCN and is the identity map on
all the remaining copies.

For any m = 1, . . . , N define the mth symmetrised minor of the matrix M by

Detm(M) = tr1,...,m A(m)M1 . . .Mm,

or explicitly,

Detm(M) =
1

m!

∑
1�a1<···<am�N

∑
σ,τ∈Sm

sgnστ ·Maσ(1) aτ(1)
. . .Maσ(m) aτ(m)

.

The symmetrised determinant of M is Det(M) = DetN (M). It coincides with the
usual determinant det(M) in the case of a commutative algebra M. For any m � 1
the mth symmetrised permanent is defined by

Perm(M) = tr1,...,m H(m)M1 . . .Mm,

which is written explicitly as

Perm(M) =
1

m!

∑
1�a1�···�am�N

1

α1! . . . αN !

∑
σ,τ∈Sm

Maσ(1) aτ(1)
. . .Maσ(m) aτ(m)

,

where αk denotes the multiplicity of k ∈ {1, . . . , N} in the multiset {a1, . . . , am}.
Both symmetrised determinants and permanents were considered by Itoh [I07,

I09] in relation to Casimir elements for classical Lie algebras.

3.2. Generators of Aμ in type A. We will work with the reductive Lie algebra
glN rather than the simple Lie algebra slN . We will denote the standard basis
elements of glN by Eij for i, j = 1, . . . , N and combine them into the N ×N matrix
E = [Eij ]. Regarding the entries of E as elements of the symmetric algebra S(glN ),
consider the characteristic polynomial

det(u+ E) = uN +Φ1 u
N−1 + · · ·+ΦN .

Its coefficients Φ1, . . . ,ΦN are algebraically independent generators of the algebra
of glN -invariants S(glN )glN . All coefficients Ψi of the series

det(1− q E)−1 = 1 +Ψ1 q +Ψ2 q
2 + . . .
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belong to the algebra S(glN )glN and Ψ1, . . . ,ΨN are its algebraically independent
generators. Writing the matrix E in the form (3·4) with M = S(glN ) we can
represent the generators Φm and Ψm in the symmetrised form

Φm = Detm(E) and Ψm = Perm(E).

The respective μ-shifts are found as the coefficients of the polynomials in z−1 so
that

(3·6) Detm(μ+ Ez−1) = Φm z−m +
1

1!
∂μΦm z−m+1 + · · ·+ 1

m!
∂m
μ Φm

and

(3·7) Perm(μ+ Ez−1) = Ψm z−m +
1

1!
∂μΨm z−m+1 + · · ·+ 1

m!
∂m
μ Ψm,

where μ ∈ gl
∗
N is regarded as the N ×N matrix μ = [μij ] with μij = μ(Eij).

The next theorem shows that Conjecture 3.3 holds for each of the families
Φ1, . . . ,ΦN and Ψ1, . . . ,ΨN . It is the first family which was considered by Tarasov
[T00], [T03].

Theorem 3.1. Suppose that μ ∈ gl
∗
N is arbitrary. The algebra Aμ is generated

by each family of elements �(∂ k
μΦm) and �(∂ k

μΨm) with m = 1, . . . , N and k =
0, 1, . . . ,m− 1.

Proof. Since the coefficients of the polynomials in (3·6) and (3·7) are already written
in a symmetrised form, their images under the symmetrisation map (3·2) are given
by the same expressions Detm(μ+ Ez−1) and Perm(μ+ Ez−1), where the matrix
E is now regarded as the element

(3·8) E =
N∑

i,j=1

eij ⊗ Eij ∈ EndCN ⊗ U(glN ).

This follows from the easily verified property of the symmetrisation map (3·2):

(3·9) � : (c1 + Y1) . . . (ck + Yk) �→
1

k!

∑
σ∈Sk

(cσ(1) + Yσ(1)) . . . (cσ(k) + Yσ(k))

for any constants ci and any elements Yi ∈ g. It remains to show that Aμ is gener-
ated by the coefficients of each family of polynomials Detm(μ+Ez−1) and Perm(μ+
Ez−1) with m = 1, . . . , N , where the matrix E is defined in (3·8). However, these
properties of the coefficients were already established in [FM15, Sect. 4]. �

3.3. Generators of Aμ in types B, C, and D. Define the orthogonal Lie algebras
oN with N = 2n+ 1 and N = 2n and symplectic Lie algebra spN with N = 2n, as
subalgebras of glN spanned by the elements Fi j with i, j ∈ {1, . . . , N},

Fi j = Ei j − Ej ′i ′ and Fi j = Ei j − εi εj Ej ′i ′ ,

respectively, for oN and spN . We use the notation i ′ = N − i + 1, and in the
symplectic case set εi = 1 for i = 1, . . . , n and εi = −1 for i = n + 1, . . . , 2n. We
will denote by gN any of the Lie algebras oN or spN . Introduce the N ×N matrix
F = [Fij ]. Regarding its entries as elements of the symmetric algebra S(gN ), in the
symplectic case consider the characteristic polynomial

(3·10) det(u+ F ) = u2n +Φ2 u
2n−2 + · · ·+Φ2n.
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The coefficients Φ2, . . . ,Φ2n are algebraically independent generators of the algebra
of sp2n-invariants S(sp2n)

sp2n . In the orthogonal case, all coefficients Ψ2k of the
series

det(1− q F )−1 = 1 +Ψ2 q
2 +Ψ4 q

4 + . . .

belong to the algebra S(oN )oN . In the case of even N = 2n we also define the
Pfaffian by

Pf F =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1) σ(2)′ . . . Fσ(2n−1)σ(2n)′ .

The coefficients Ψ2, . . . ,Ψ2n are algebraically independent generators of the algebra
S(o2n+1)

o2n+1 , while the elements Ψ2, . . . ,Ψ2n−2,Pf F are algebraically indepen-
dent generators of S(o2n)

o2n .
Write the matrix F in the form (3·4) with M = S(gN ) and represent the gener-

ators Φm and Ψm for even values of m in the symmetrised form

Φm = Detm(F ) and Ψm = Perm(F ).

Then the respective μ-shifts are found as the coefficients of the polynomials in z−1,

(3·11) Detm(μ+ Fz−1) = Φm z−m +
1

1!
∂μΦm z−m+1 + · · ·+ 1

m!
∂m
μ Φm

and

(3·12) Perm(μ+ Fz−1) = Ψm z−m +
1

1!
∂μΨm z−m+1 + · · ·+ 1

m!
∂m
μ Ψm,

where μ ∈ g∗N is regarded as the N × N matrix μ = [μij ] with μij = μ(Fij). The
μ-shifts of the Pfaffian Pf F are the coefficients of the polynomial

Pf
(
μ+ F z−1

)
= π(0)z

−n + · · ·+ π(n−1)z
−1 + π(n), π(k) ∈ S(o2n),

where
(3·13)
Pf

(
μ+F z−1

)
=

1

2nn!

∑
σ∈S2n

sgnσ ·
(
μ+F z−1

)
σ(1) σ(2)′

. . .
(
μ+F z−1

)
σ(2n−1) σ(2n)′

.

The following theorem implies Conjecture 3.3 for the orthogonal and symplectic
Lie algebras for the families of generators of S(gN )gN described above.

Theorem 3.2. Suppose that μ ∈ g∗N is arbitrary.

� The family �(∂ p
μΦm) with m = 2, 4, . . . , 2n and p = 0, 1, . . . ,m−1 generates

the algebra Aμ in type C.
� The family �(∂ p

μΨm) with m = 2, 4, . . . , 2n and p = 0, 1, . . . ,m− 1 gener-
ates the algebra Aμ in type B.

� The family �(∂ p
μΨm) with m = 2, 4, . . . , 2n − 2 and p = 0, 1, . . . ,m − 1

together with the elements �(π(k)) for k = 0, . . . , n− 1 generate the algebra

Aμ in type D.

Proof. It follows from the results of [M13] that the generators of S(gN )gN introduced
above admit the well-defined forms

Ψm = γm(N) tr1,...,m S(m)F1 . . . Fm

and

Φm = γm(−2n) tr1,...,m S(m)F1 . . . Fm
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in the orthogonal and symplectic case, respectively, where

γm(ω) =
ω +m− 2

ω + 2m− 2
,

and S(m) ∈ End (CN )⊗m is the Brauer algebra symmetriser which admits a few
equivalent expressions; see also [M18]. The corresponding μ-shifts are found as the
coefficients of the polynomial

(3·14) γm(ω) tr1,...,m S(m)
(
μ1 + F1 z

−1
)
. . .

(
μm + Fm z−1

)
,

where we extend notation (3·5) to the matrix μ and assume the specialisations
ω = N and ω = −2n in the orthogonal and symplectic case, respectively. Due to
(3·9), the images of the polynomials (3·11) and (3·12) under the symmetrisation
map (3·2) are given by the same expressions Detm(μ+Fz−1) and Perm(μ+Fz−1)
where the matrix F is now regarded as the element

(3·15) F =

N∑
i,j=1

eij ⊗ Eij ∈ EndCN ⊗ U(gN ).

The same observation shows that the image of the polynomial (3·14) under the
symmetrisation map (3·2) is given by the expression (3·14) where the matrix F is
given by (3·15). This allows us to conclude that the following identities hold for
polynomials with coefficients in U(gN ):

Detm(μ+ Fz−1)(3·16)
= γm(−2n) tr1,...,m S(m)

(
μ1 + F1 z

−1
)
. . .

(
μm + Fm z−1

)
in the symplectic case, and

Perm(μ+ Fz−1)(3·17)
= γm(N) tr1,...,m S(m)

(
μ1 + F1 z

−1
)
. . .

(
μm + Fm z−1

)
in the orthogonal case.

Now consider the orthogonal and symplectic Lie algebras simultaneously and
define the polynomials φm(z) in z−1 by

φm(z)(3·18)
= γm(ω) tr1,...,m S(m)

(
−∂z + μ1 + F1 z

−1
)
. . .

(
−∂z + μm + Fm z−1

)
1,

where ∂z is understood as the differential operator with ∂z 1 = 0 so that

φm(z) = φm (0)z
−m + · · ·+ φm (m−1)z

−1 + φm (m), φm (k) ∈ U(gN).

As for the expression (3·14), the right hand side of (3·18) in the symplectic case
is assumed to be written in a certain equivalent form which is well-defined for all
1 � m � 2n+ 1; see [M13] and [M18] for details. The same assumption will apply
to all expressions of this kind throughout the rest of the proof.

In the case gN = o2n the �-image of Pf
(
μ+F z−1

)
coincides with the expression

defined by (3·13), where F is now defined by (3·15). With this interpretation of F
we can write

(3·19) Pf
(
μ+ F z−1

)
= �(π(0))z

−n + · · ·+�(π(n−1))z
−1 +�(π(n)).

By the general properties of the algebra Aμ from [FFTL] which we recalled
in the beginning of this section and the results of [M13], given any μ ∈ g∗N , all
coefficients of the polynomials φm(z) belong to the commutative subalgebra Aμ of
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U(gN). All coefficients of the polynomial (3·19) belong to the subalgebra Aμ of
U(o2n). Moreover, the elements

φ2k (p) with k = 1, . . . , n and p = 0, 1, . . . , 2k − 1

generate the algebra Aμ in the cases B and C, while the elements

φ2k (p) with k = 1, . . . , n− 1 and p = 0, 1, . . . , 2k − 1

together with �(π(0)), . . . , �(π(n−1)) generate the algebra Aμ in the case D.

Due to (3·18), φm (p) is found as the coefficient of z−m+p in the expression∑
i1<···<ip

∑
j1<···<jm−p

γm(ω) tr1,...,m S(m)μi1 . . . μip

(
−∂z+Fj1z

−1
)
. . .

(
−∂z+Fjm−p

z−1
)
1,

summed over disjoint subsets of indices {i1, . . . , ip} and {j1, . . . , jm−p} of {1, . . . ,m}.
Note that for any σ ∈ Sm we have S(m)Pσ = Pσ S

(m) = ±S(m). Hence, apply-
ing the cyclic property of trace together with the relations Pσ μi = μσ(i)Pσ and
PσFj = Fσ(j)Pσ, we get

φm (p)=zm−p

(
m

p

)
γm(ω) tr1,...,m S(m)μ1 . . . μp

(
−∂z+Fp+1z

−1
)
. . .

(
−∂z+Fmz−1

)
1.

Furthermore,

zm−p
(
−∂z + Fp+1z

−1
)
. . .

(
−∂z + Fmz−1

)
1

= Fp+1 . . . Fm + a linear combination of {Fa1
. . . Fas

}
with p + 1 � a1 < · · · < as � m. Applying again the cyclic property of trace and
appropriate conjugations by the elements Pσ, we bring the expression for φm (p) to

the form

φm (p) =

(
m

p

)
γm(ω) tr1,...,m S(m)μ1 . . . μp Fp+1 . . . Fm

+

m−1∑
r=p+1

cr γm(ω) tr1,...,m S(m)μ1 . . . μp Fp+1 . . . Fr

for certain constants cr. For the partial trace of the symmetriser we have

trm γm(ω)S(m) = ± ω +m− 2

m
γm−1(ω)S

(m−1),

with the plus and minus sign taken in the orthogonal and symplectic case, respec-
tively (assuming m � n for the latter); see [M13]. This yields

φm (p) =

(
m

p

)
γm(ω) tr1,...,m S(m)μ1 . . . μp Fp+1 . . . Fm

+

m−1∑
r=p+1

dr γr(ω) tr1,...,r S(r)μ1 . . . μp Fp+1 . . . Fr

for certain constants dr. Introduce the coefficients of the respective polynomials on
the right hand sides of (3·16) and (3·17) by

γm(ω) tr1,...,m S(m)
(
μ1 + F1 z

−1
)
. . .

(
μm + Fm z−1

)
= ϕm (0)z

−m + · · ·+ ϕm (m−1)z
−1 + ϕm (m)
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with ϕm (p) ∈ U(gN ). The same argument as for the coefficients φm (p) gives

ϕm (p) =

(
m

p

)
γm(ω) tr1,...,m S(m)μ1 . . . μp Fp+1 . . . Fm.

This yields a triangular system of linear relations

φm (p) = ϕm (p) +

m−1∑
r=p+1

d ′
r ϕr (p).

Therefore, we may now conclude that the elements ϕm (p) with evenm = 2, 4, . . . , 2n

and p = 0, 1, . . . ,m − 1 generate the algebra Aμ in types B and C, while the
elements ϕm (p) with m = 2, 4, . . . , 2n − 2 and p = 0, 1, . . . ,m − 1 together with

�(π(0)), . . . , �(π(n−1)) generate the algebra Aμ in type D. The proof is completed

by taking into account the relations (3·16) and (3·17). �
Conjecture 3.3. For any simple Lie algebra g, there exist generators H1, . . . , Hn

of the algebra S(g)g such that for any element μ ∈ g∗, the images �(∂k
μHi) of their

μ-shifts with respect to the symmetrisation map � generate the algebra Aμ.

4. Quantisations of MF subalgebras with a nonregular μ

Take any μ ∈ g∗. As we already know, grAμ is a Poisson-commutative sub-

algebra of S(g) and Aμ ⊂ grAμ by [FFTL, Prop. 3.12]. As can be seen from
the construction (3·1), Aμ ⊂ U(g)Gμ and thereby grAμ ⊂ S(g)Gμ . According to

Proposition 1.1, tr.deg(grAμ) � 1
2 dim(Gμ) + rk g. At the same time, tr.degAμ =

1
2 dim(Gμ) + rk g by Lemma 2.1. Hence we have the following general result.

Proposition 4.1. For any reductive g and any μ ∈ g∗, grAμ is an algebraic

extension of Aμ. �
Suppose that Aμ is a maximal Poisson-commutative subalgebra of S(g)gμ . Then

necessarily grAμ = Aμ. In view of Corollary 2.5, the FFTL-conjecture in types A
and C follows.

Theorem 4.2. Suppose that g is of type A or C. Then grAμ = Aμ for each
μ ∈ g∗. �

We can rely on Proposition 2.4 to conclude that grAμ = Aμ for some μ ∈ g∗ ∼= g

in the other types.

Example 4.3 (The minimal nilpotent orbit). Let γ ∈ g be a minimal nilpotent
element in a simple Lie algebra g. Suppose that g is not of type E8. Then there is
a g.g.s. for γ and gγ has the codim-2 property; see [PPY]. Hence grAγ = Aγ .

Example 4.4 (The subregular case). Keep the assumption that g is simple and
assume that dim(Gμ) = dim g − rk g − 2. Let γ be as in Lemma 1.9. Then Gγ
is the subregular nilpotent orbit. There is a g.g.s. for γ and gγ has the codim-2
property if g is not of type G2; see [PY13, Sect. 6]. In view of Proposition 2.4, we

have grAμ = Aμ outside of type G2.

In types A and C, it is possible to describe the generators of Aμ explicitly. If
g = glN , then Φ1, . . . ,ΦN is a g.g.s. for any nilpotent γ ∈ g; if g = sp2n, then
Φ2, . . . ,Φ2n is a g.g.s. for any nilpotent γ ∈ g; see [PPY]. The degrees of γΦi can
be found in [PPY, Sect. 4]. We give more details below.
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Type A. Suppose that g = glN and that μ ∈ glN has the Jordan blocks as in (1·3).
Then the nilpotent element of Lemma 1.9 is given by the partition Π defined in
(1·4). Let Π = (β1, . . . , βM ). Using the results of Sections 2 and 3.2 we find that
the algebra Aμ is freely generated by the elements �(∂k

μΦm) with 1 � m � N and
0 � k � m−r(m), where r(m) is uniquely determined by the conditions

r(m)−1∑
i=1

βi < m �
r(m)∑
i=1

βi.

To give an equivalent definition of r(m), consider the row-tableau of shape Π which
is obtained by writing the numbers 1, 2, . . . , N consecutively from left to right in
the boxes of each row of the Young diagram Π beginning from the top row. Then
r(m) equals the row number of m in the tableau.

Note that in the case where Π corresponds to a nilpotent element μ, the elements
�(∂k

μΦm) with k > m−r(m) are equal to zero. In the general case, associate

the elements of the family Φmk = �(∂k
μΦm) with the boxes of the diagram Γ =

(N,N − 1, . . . , 1), as illustrated:

Γ =

ΦN N−1 ΦN N−2 . . . ΦN 1 ΦN 0

ΦN−1N−2 ΦN−1N−3 . . . ΦN−1 0

. . . . . . . . .

Φ 2 1 Φ 2 0

Φ 1 0

Then the free generators of Aμ correspond to the skew diagram Γ/σ, where

σ =
(
r(N)− 1, . . . , r(1)− 1

)
.

This agrees with the results of [FM15] which were applied to a few different families
of generators, where the transpose of Γ/σ was used instead. The transpose of σ is
found by

σ ′ =
(
β2 + · · ·+ βM , β3 + · · ·+ βM , . . . , βM

)
which coincides with the diagram γ in the notation of that paper. It was shown
there that any generator Φmk associated with a box of the diagram σ is represented
by a linear combination of the generators corresponding to the boxes of Γ/σ which
occur in the column containing Φmk.

Type C. Now suppose that g = sp2n. Keep the notation of (1·3) for the Jordan
blocks of μ ∈ sp2n. The nilpotent element of Lemma 1.9 is associated with the
partition Πγ = (β1, . . . , βM ) produced in Section 1.3. Similar to type A, for each
m = 1, . . . , n define positive integers r(2m) by the conditions

r(2m)−1∑
i=1

βi < 2m �
r(2m)∑
i=1

βi.

Equivalently, they can be defined in terms of the initial Young diagram Π given in
(1·4) by the following rule. Consider the row-tableau of shape Π which is obtained
by writing the numbers 1, 2, . . . , 2n consecutively from left to right in the boxes of
each row of Π beginning from the top row. Then r(2m) equals the row number of
2m in the tableau.
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The algebra Aμ is freely generated by the elements Φ2mk = �(∂k
μΦ2m) with

1 � m � n and 0 � k � 2m − r(2m). To illustrate this result in terms of
diagrams, associate the elements of the family Φ2mk with the boxes of the diagram
Γ = (2n, 2n− 2, . . . , 2), as follows:

Γ =

Φ2n 2n−1 Φ2n 2n−2 . . . Φ2n 2 Φ2n 1 Φ2n 0

Φ2n−2 2n−3 Φ2n−2 2n−4 . . . Φ2n−2 0

. . . . . . . . .

Φ 2 1 Φ 2 0

Then the free generators of Aμ correspond to the skew diagram Γ/σ, where

σ =
(
r(2n)− 1, r(2n− 2)− 1, . . . , r(2)− 1

)
.

If μ is regular, then σ is empty and all generators in Γ are algebraically independent.
In the other extreme case where μ = 0 the diagram σ is (2n− 1, 2n− 3, . . . , 1) and
Aμ coincides with the center of the universal enveloping algebra U(sp2n). It is freely
generated by the elements Φ2 0,Φ4 0, . . . ,Φ2n 0.

For another illustration consider sp10 and suppose that μ ∈ sp10 has the zero
eigenvalue with the corresponding Young diagram (1, 1) and two opposite sign eigen-
values, each corresponding to the diagram (2, 1, 1). Then Π = (5, 3, 2) with

r(2) = r(4) = 1, r(6) = r(8) = 2, and r(10) = 3.

Hence σ = (2, 1, 1, 0, 0) and the algebra Aμ is freely generated by all elements in Γ
except for Φ10 9,Φ10 8,Φ8 7, and Φ6 5.

Remark 4.5. Let γ ∈ g∗ be a nilpotent element and assume that there is a g.g.s.
H1, . . . , Hn for γ. Then Aγ is freely generated by F1, . . . , Fs , where each Fj is
a γ-shift ∂k

γHi ; see Section 2. Take elements Fj ∈ Aγ such that the symbol of

Fj is Fj . Then the commutative subalgebra Ãγ ⊂ U(g) generated by F1, . . . ,Fs

is a quantisation of Aγ , i.e., gr Ãγ = Aγ , and therefore solves Vinberg’s problem.

However we cannot claim that Ãγ = Aγ .

Suppose now that g = oN . There are nilpotent elements γ ∈ g that have a g.g.s.
and the codim-2 property [PPY, Thm 4.7]. There are some other elements that
have only a g.g.s. [PPY, Lemmas 4.5, 4.6]. We postpone the detailed exploration
of subalgebras Aμ ⊂ U(g) until a forthcoming paper.

5. Quantisations of Vinberg’s limits

Take γ ∈ g∗, μ ∈ g∗reg and let Cγ,μ be Vinberg’s limit at γ along μ as defined in
Section 2.2. By the construction (3·1), we have Aγ+uμ ⊂ U(g)[u]. Let

Cγ,μ = lim
u→0

Aγ+uμ

be the limit taken in the same sense as in (2·5). Clearly Cγ,μ is a commutative

subalgebra. One could expect that this subalgebra is a quantisation of Cγ,μ subject
to some reasonable conditions. However, this is not necessarily the case because
the operations of taking the limit and the symbol may not commute.

Lemma 5.1. Suppose that Aγ+uμ is freely generated by some elements F1(u), . . . ,
Fs(u), depending on u, such that the nonzero vectors Fj ∈ limu→0 CFj(u) are
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algebraically independent. Suppose further that Aγ+uμ is generated by Fj(u) =

�
(
(Fj(u)

)
. Then grCγ,μ = Cγ,μ.

Proof. Since Fj(u) is the symmetrisation of Fj(u), we have

lim
u→0

CFj(u) = �
(
lim
u→0

CFj(u)
)
= �(CFj) = C�(Fj).

Furthermore, the elements �(Fj) are algebraically independent. Hence Cγ,μ is

freely generated by �(Fj). Because Cγ,μ is (freely) generated by Fj , the result
follows. �

Proposition 5.2. Let g be of type A or C. Suppose that the element γ ∈ g∗ ∼= g is
nilpotent, μ ∈ g∗reg and μ̄ := μ|gγ

∈ (g∗γ)reg. Then grCγ,μ = Cγ,μ.

Proof. Under the assumptions, gγ has the codim-2 property [PPY]. Furthermore,
let {H1, . . . , Hn} ⊂ S(g)g be the set of generators, where Hi = Φi in type A
and Hi = Φ2i in type C. Then H1, . . . , Hn is a g.g.s. for any nilpotent γ ∈ g

[PPY]. Since μ̄ ∈ (gγ)
∗, Theorem 2.6 applies and asserts that Cγ,μ has a set of

algebraically independent generators, say F1, . . . , Fb(g). Here Fj ∈ limu→0 CFj(u),

where Fj(u) = ∂k
γ+uμHi. By Theorems 3.1 and 3.2, each subalgebra Aγ+uμ is

generated by �
(
Fj(u)

)
. Hence Lemma 5.1 applies thus completing the proof. �

5.1. Limits along regular series and symmetrisation. Limits of Mishchenko–
Fomenko subalgebras have been studied since [V91]. A rather general definition
and a detailed discussion can be found in [V14]. The following construction will be
sufficient for our purposes.

Let h ⊂ g be a Cartan subalgebra. Consider a sequence of elements h(0), . . . , h(�)
of h such that gh(0) ∩ gh(1) ∩ . . . ∩ gh(
) = h for the centralisers of h(m). Set

μ(u) = h(0) + uh(1) + u2h(2) + · · ·+ u
h(�).

Then Aμ(u) ⊂ S(g)[u]. Further, set

C = lim
u→0

Aμ(u)

in the same sense as in (2·5). In our previous considerations � was equal to 1, h(1)
was regular, but neither of h(0), h(1) had to be semisimple.

The first interesting property is that tr.degC = b(g) [V91,BK76,V14]. Another

one is that C is a free algebra [Sh02]. Moreover, each C is a maximal Poisson-
commutative subalgebra of S(g) [T02]. In type A, the symmetrisation map �

provides a quantisation of C and a quantisation of this subalgebra is unique [T00,
T03].

Set g0 = gh(0) and gi = gi−1 ∩ gh(i) for each i � 1. Regard h(i) as a linear

function on g and on each gj . Denote by A
(i)

h(i) the Mishchenko–Fomenko subalgebra

of S(gi−1) associated with h(i).

Theorem 5.3 ([Sh02, Thm 1]). The algebra C is generated by the Mishchenko–

Fomenko subalgebras Ah(0) and A
(i)

h(i) with 1 � i � �, and by h = g
.

Recall that the subalgebra Ah(0) of U(g) is defined as the image of the Feigin–
Frenkel centre under the homomorphism (3·1) with μ = h(0). Consider the sub-

algebras A
(i)
h(i) ⊂ U(gi−1) for i � 1 defined in the same way. Let C̃ ⊂ U(g) be the
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subalgebra generated by Ah(0) and A
(i)
h(i) with 1 � i � �, and by h. Since A

(i)
h(i)

commutes with gi, the subalgebra C̃ is commutative.

Theorem 5.4. Let g be a reductive Lie algebra. Then gr C̃ = C.

Proof. By the construction C ⊂ gr C̃. Since C is a maximal Poisson-commutative
subalgebra [T02], we have the equality here. �

According to [HKRW, Sect. 10], we have C̃ = C, where C = limu→0 Aμ(u) ⊂ U(g).
Suppose now that g is a classical Lie algebra. Then each gi is also a classical

Lie algebra and every simple factor of gi is either of type A or of the same type as

g. In this case, C has a set of generators F1, . . . , Fb(g) such that C̃ is generated by
�(Fi); see Section 3.

Example 5.5 (cf. [R06, Lemma 4]). Take μ(u) = E11+uE22+ · · ·+uN−1ENN in

glN . Then C = limu→0 Aμ(u) is generated by h, S(g)g, and S(gi)
gi with 0 � i � N−2

[V91]. It is the graded image of the Gelfand–Tsetlin subalgebra GT(glN ) ⊂ U(glN ).
For γ = E11, we have deg γΦm = m−1 and ∂γΦ1 = 1 and hence

Aγ = C [Φ1, . . . ,ΦN , ∂γΦ2, . . . , ∂γΦN ].

Arguing as in the proof of Theorem 2.6, we conclude that C is freely generated by
the lowest u-components of the elements ∂k

μ(u)Φm with 1 � m � N and 0 � k �
m−1. At the same time, Aμ(u) is generated by �(∂k

μ(u)Φm). Therefore, applying

Lemma 5.1 we get grC = C. It is clear now that C = GT(glN ). �
The main property of GT(glN ) is that this subalgebra has a simple spectrum

in any irreducible finite-dimensional GLN -module V . It was noticed in [R06] that
Aμ ⊂ U(glN ) has the same property if μ ∈ h is sufficiently generic. The observation
was extended to all reductive Lie algebras g in [FFR]. In [HKRW, Sect. 11], it
is proven that C = limu→0 Aμ(u) has a simple spectrum in any irreducible finite-
dimensional g-module V .

Example 5.6. Suppose that g = sp2n. The subalgebras C̃ admit an explicit de-
scription. For a particular choice of the parameters h(i), we obtain a symplectic
analogue GT(sp2n) of the Gelfand–Tsetlin subalgebra. In the notation of Section 3.3
take

h(i−1) = Fi i for i = 1, . . . , n.

Then gm−1 = Cm⊕sp2n−2m, where we identify sp2n−2m with the Lie subalgebra of
sp2n spanned by the elements Fij with m+1 � i, j � (m+1)′. The arising algebra

GT(sp2n) = C̃ is freely generated by the centres U(sp2k)
sp2k with 1 � k � n and by

the symmetrisations

�
(
∂h(m)Φ

(m)
2i

)
∈ U(sp2n−2m) for m = 0, . . . , n− 1 and i = 1, . . . , n−m,

where Φ
(0)
2i = Φ2i and Φ

(m)
2i ∈ S(sp2n−2m) ⊂ S(gm−1) with m � 1 denotes the

2ith coefficient of the characteristic polynomial associated with sp2n−2m as defined
in (3·10). The subalgebra GT(sp2n) is maximal commutative. Making use of the
anti-involution on U

(
t−1g[t−1]

)
defined in the proof of [FFR, Lemma 2], one shows

that the action of GT(sp2n) on any finite-dimensional irreducible sp2n-module V
is diagonalisable [HKRW]. Moreover, this subalgbera has a simple spectrum in V
[HKRW], thus providing a basis of Gelfand–Tsetlin-type; cf. [M99].
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In the first nontrivial example with n = 2 the subalgebra GT(sp4) ⊂ U(sp4) is
generated by the centres of U(sp2) and U(sp4), the Cartan elements F11, F22 and
one more element

Det

⎡⎣F22 F23 F24

F32 F33 F34

F42 F43 F44

⎤⎦−Det

⎡⎣F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤⎦ ,

where we used the symmetrised determinants introduced in Section 3.1.

5.2. Vinberg’s problem for centralisers. Let γ ∈ g ∼= g∗ be a nilpotent element.
Set q = gγ , take ν ∈ q∗, and consider the Mishchenko–Fomenko subalgebra Aν ⊂
S(q). In this setting, Vinberg’s problem was recently solved by Arakawa and Premet
[AP17] under the assumptions that q has the codim-2 property, there is a g.g.s. for
γ, and ν ∈ q∗reg. We will restrict ourselves to types A and C, where the first two
assumptions are satisfied.

Let {H1, . . . , Hn} ⊂ S(g)g be the set of generators, where Hi = Φi in type A
and Hi = Φ2i in type C. Recall that H1, . . . , Hn is a g.g.s. for any nilpotent γ ∈ g

[PPY]. Set Pi :=
γHi. Then S(q)q = C[P1, . . . , Pn] by [PPY].

Proposition 5.7. Suppose that g is of type A or C. Take any ν ∈ q∗. Then the

elements �(∂k
νPi) generate a commutative subalgebra Ãν of U(q). If ν ∈ q∗reg, then

gr Ãν = Aν .

Proof. Suppose first that ν ∈ q∗reg and that ν = μ̄ = μ|q with μ ∈ g∗reg. Then

�(∂k
γ+uμHi) ∈ Aγ+uμ

as in the proof of Proposition 5.2. Recall that if k � degPi and k̄ = k − degPi,
then

lim
u→0

C∂k
γ+uμHi = C∂k̄

νPi.

Hence �(∂k
νPi) ∈ Cγ,μ for all k � 0 and therefore any two such elements commute.

The statement holds for all ν in a dense open subset implying that[
�(∂k

ν′Pi), �(∂k′

ν′Pi′)
]
= 0

for all ν′ ∈ q∗, all k, k′ ∈ Z�0, and all i, i′ ∈ {1, . . . , n}.
The Lie algebra q satisfies the codim-2 condition and has n, where n = ind q, al-

gebraically independent symmetric invariants [PPY]. Hence tr.degAν = b(q) if ν ∈
q∗reg [B91, Thm 3.1]; see also [PY08, Sect. 2.3]. At the same time

∑n
i=1 degPi = b(q)

[PPY]. Therefore the elements ∂ k
ν Pi with 0 � k < degPi have to be algebraically

independent for each ν ∈ q∗reg; see also Proposition 2.2. By a standard argument,

the symbol of Q
(
�(∂k

νPi)
)
is equal to Q(∂k

νPi) for every polynomial Q in b(q)

variables. Hence gr Ãν = Aν . �

Conjecture 5.8. If ν ∈ q∗reg, then Ãν coincides with the quantisation of Aν con-
structed in [AP17].

For a reductive g, the uniqueness of the quantisation in the case of a generic
semisimple element μ ∈ g ∼= g∗ is proven by Rybnikov [R05]. However, it is not

known whether this uniqueness property extends to the quantisation of Aν and we
cannot conclude that the symmetrisation in the sense of Proposition 5.7 coincides
with the quantisation of Arakawa and Premet.
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