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LOCAL FUNCTIONS ON FINITE GROUPS

I. M. ISAACS AND GABRIEL NAVARRO

ABSTRACT. We study local properties of finite groups using chains of p-subgroups.

1. INTRODUCTION

There are a number of character-counting conjectures for finite groups that sug-
gest that certain global information is determined locally. For example, the famous
McKay conjecture is of this type. (Recall that for a given prime p, and writing
m(X) to denote the number of irreducible characters with degree not divisible by
p for a finite group X, the McKay conjecture proposes that for an arbitrary finite
group G, we have m(G) = m(N), where N is the normalizer of a Sylow p-subgroup
of G.)

A fruitful approach to some of these local/global counting conjectures involves
chains of p-subgroups. The first application of this technique to a character-
counting conjecture was in the paper [11] of R. Knérr and G. R. Robinson, where
p-group chains arose fairly naturally to yield a reformulation of the Alperin weight
conjecture. (The original statement of this conjecture appears in [I].) Additional
connections between p-group chains and character counting appeared in papers by
E. C. Dade, B. Kiilshammer, G. R. Robinson, J. Thévenaz, and others. (See, for
example, [6], [12], [I6], and [I7].) Also, note that subgroup chains that are not
necessarily p-group chains appear in [12].) It is not our intention here to give
a complete history of the appearance of p-group chains in the literature, but we
should mention early work of K. Brown and D. Quillen, where it seems that chains
of subgroups, and specifically of p-subgroups, were first studied. (See [3], [4], and
[15].)

In this partially expository paper, we adopt an entirely elementary point of
view that enables us to recover results (or at least weaker, block-free forms of
these results) of some of the aforementioned authors. More generally, we explore
connections between p-group chains and the local/global counting of characters
and other objects, and using our approach, we will see that in a surprisingly large
number of cases, the various counts are determined locally. (To give one non-
character example, we mention that given any p-group J, the number of conjugacy
classes of subgroups of G that are isomorphic to J is locally determined.)

We should explain the phrase “block-free” in the previous paragraph. Character
counts that involve a given prime p often come in two varieties: block-free and
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block-by-block. For example, the McKay conjecture, as we stated it above, does
not mention Brauer’s p-blocks, and so we refer to it as “block-free”, but a block-by-
block refinement of the McKay conjecture due to Alperin is more precise: Instead
of merely counting p’-degree characters of a group G, the Alperin-McKay conjec-
ture counts height zero characters in individual p-blocks of G. Usually, block-free
versions of character-counting conjectures can easily be derived from their more
general block-by-block formulations, and it is generally these simpler block-free
statements that are amenable to our elementary methods, and which we discuss
here.

We fix a prime p for the remainder of this paper, and we recall that it is customary
to say (somewhat vaguely) that information about a group G is “p-local” or simply
“local” if that information is somehow determined by considering only subgroups
that are the normalizers in G of nontrivial p-subgroups. In this paper, we use
p-group chains in G to give a precise definition that seems to capture remarkably
well the informal notion of “local information”. (Although our definition of “chain-
local” is new in a formal sense, connections between chains and local control have
been known for some time, as, for example, in the Knorr-Robinson paper [11].)

We mention that using a different but related point of view, J. Thévenaz [17] has
also given a precise definition of “local”, for finite groups, and there is nontrivial
intersection between his approach and ours. After we present our definition of
“chain local” following Theorem [C] below, we offer for the sake of comparison, a
brief description of Thévenaz’s definition of “locally determined”.

If G is a finite group, a p-chain in G is a collection C' = {P; | 0 < i < n} of
p-subgroups of G, where 1 = Py < P; < --- < P,. We say that n is the length of
C, denoted len(C'), and we refer to the unique p-chain with length 0 as the trivial
chain. (Since we are holding the prime p fixed, we will usually refer to p-chains
simply as “chains”.)

A variant of this, which has been used by several authors, is based on the obser-
vation that since by our definition, the identity subgroup P, is a member of every
chain, it contributes no information, and so it can be ignored. From that point of
view (which we do not adopt), a p-chain would be a possibly empty totally ordered
collection of nonidentity p-subgroups; its length would be its cardinality, and the
trivial chain would be the empty chain.

We write G¢ to denote the stabilizer of the chain C' in the conjugation action
of G on the set of chains. Note that if p divides |G|, then p divides |G¢| for all
chains C'. In fact, if C is a nontrivial chain in G, then G¢ has a nonidentity normal
p-subgroup, namely Z(P,,), where n = len(C).

Most of what follows will apply to arbitrary finite groups, but for a few of our
results, it is convenient to be able to restrict attention to a smaller collection of
groups, for example p-solvable groups. For this purpose we fix a family F of finite
groups, with the property that if a group G is isomorphic to a subgroup of some
member of F, then G also lies in . We will refer to F as the “underlying family”
of groups, but since almost all of our results will apply for an arbitrary underlying
family, there will seldom be a need to refer to F explicitly. In the statements of
the results in this paper, we will generally assume that a given group G lies in the
underlying family, and unless we specify otherwise, there is no loss in assuming that
the underlying family consists of all finite groups.
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If G is a finite group, we write [G] to denote the isomorphism class of G, and
we let A be the free-abelian group generated by the symbols [G], where G lies in
the underlying family F, and |G| is divisible by p. We let B be the subgroup of A
generated by all elements of the form

BG) = 3 (—1)* ]G],
CeR
where G runs over groups in the underlying family that have order divisible by p,
and R is a set of representatives of the orbits of the conjugation action of G on the
set of chains in G. (Note that the element B(G) of A defined by the above sum
depends only on the isomorphism class of GG, and it is independent of the choice of
the representative set R.)

In the literature, alternating p-chain sums (as, for example, in our definition
of B(G) above) have appeared using several different types of p-group chains. A
somewhat surprising result (that we will not actually use in this paper) appears as
Proposition 3.3 of [I1], where Knérr and Robinson show that if instead of working
with chains of arbitrary p-subgroups of G, we limit ourselves to chains of certain
specific types of p-subgroups, this will not affect the values of the chain sums.
We could, for example, work with chains of elementary abelian p-subgroups, as in
Quillen’s paper [15], or alternatively, we could use chains of radical p-subgroups.
(Recall that a p-subgroup @ of G is said to be radical if Q = O,(N¢(Q)), and note
that if we elect to work with radical chains, we require only that the nonidentity
chain members P; with ¢ > 0 should be radical.) It follows, for example, that
the element B(G) of the free abelian group A is uniquely determined, regardless
of which flavor of p-chain we decide to use, and so for simplicity, we always use
chains of arbitrary p-subgroups in this paper. We have noticed, however, that for
computer experiments that involve computations of chain sums, it seems that it is
most efficient to work with chains of radical p-subgroups.

Next, we present a result that appears to be new.

Theorem A. Let G be a finite group with order divisible by p. Then there exist
uniquely determined (up to isomorphism) pairwise nonisomorphic finite groups H;
and nonzero integers n; with 1 < ¢ < r, where Op(Hi) > 1 for all i, and such that

[G] =ni[H1] + - +n.[H;] mod B.

Also, Y- n; =1, and each of the groups H; is isomorphic to the stabilizer of some
nontrivial chain in G.

Although each of the subgroups H; in Theorem [A] is isomorphic to some chain
stabilizer G¢, where C' is a nontrivial p-chain of G, we do not know how to predict
in advance, which chain stabilizers appear as the H;.

The following are some examples (for the prime p = 2) of congruences modulo
B, as in Theorem [Al

[S5] = [Sa] + [D12] — [C2 x Co]
[Se] = 2[Cs x S4] — [C2 x Ds],
[SL3(2)] = [Ae] = 2[S4] — [Ds],
[My1] = [PSL3(3)] = [S4] + [GL2(3)] — [Ds]
[

[As]

Ad.
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Also, some examples for the prime p = 3 are:
[PSL3(4)} = [Mlo] = [(Cg X Cg) : Qg],
[A] = [(C5 x C3) : C4],

[S6] = [(C3 x Cs) : Ds],
[PSL3(3)] = 2[(C3 x C3) : GLa(3)] — [N],
where in the first example, Mg is a point stabilizer in the Mathieu group M1, and
in the last example, N is the normalizer of a Sylow 3-subgroup in PSL3(3).

Note that among the above examples, there are several pairs of groups G and H
for which [G] = [H]. We are able to describe precisely when this happens, and this

defines a new equivalence relation on finite groups that we believe deserves further
study.

Theorem B. Let G and H be finite groups with orders divisible by p. Then [G] =
[Hlmod B if and only if for every group J such that O,(J) > 1, the numbers of
conjugacy classes of subgroups isomorphic to J in G and in H are equal.

In the case where H is a subgroup of G, there is a criterion that seems somewhat
easier to understand.

Theorem C. Let H C G be finite groups with order divisible by p. Then [G] =
[Hlmod B, if and only if No(Q) C H for every nonidentity p-subgroup Q of H.

Recall that a proper subgroup H of G is said to be strongly p-embedded in
G if p divides |H| but p does not divide |H N HI| for elements g € G such that
g ¢ H. It is not hard to see that a proper subgroup H of G with order divisible
by p is strongly p-embedded in G if and only if H contains the full normalizer in
G of every nonidentity p-subgroup of H. (See Lemma [B1] below.) The content of
Theorem [C] therefore, is that if H is a proper subgroup of G with order divisible
by p, then [H] = [G] mod B if and only if H is strongly p-embedded in G.

What is the connection, one might ask, between the group A /B and global-local
counting problems? Suppose that f is an integer-valued function such that f(G) is
defined for all groups G that lie in the underlying family and have order divisible by
p, and assume that f(G) = f(H) whenever G = H. (We say that such a function f
is isomorphism constant.) For example, f(G) could be the number of irreducible
characters of G for which the p-part of the degree is exactly p, or the number of
irreducible characters in the principal p-block of G, or the number of p-blocks of
G. Some other examples that we will consider are the order of a Sylow p-subgroup
of G, the number of conjugacy classes of p-singular elements of G (i.e., elements
that have order divisible by p) and the number of conjugacy classes of subgroups
of G that are isomorphic to some given group J, where O,(J) > 1. Also, if the
underlying family is p-solvable groups, we could take f(G) to be the p-length of G.

In these examples, f has values in Z, but more generally, we consider isomorph-
ism-constant functions with values in an arbitrary abelian group U. Observe
that such a function defines a group homomorphism from A to U by setting
f([G]) = f(G), and we will often identify the function f defined on groups with the
corresponding homomorphism on the free-abelian group A.

If f is an isomorphism-constant function (or equivalently, f is a homomorphism
defined on A), it may be possible to compute f(G) using only local information
about GG, and in that case, it is customary to say that “f is a local function”.
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(For example, if f(G) is the order of a Sylow p-subgroup of G, then f is certainly
local.) Tt is not completely clear, however, what information about a group should
be considered to be local, nor is it always obvious for a given function f, whether
or not f(G) can be computed using only local information.

It is convenient, therefore, to have a precise definition of what it means for a
function to be local. To avoid conflict with the existing definitions of “local”, and
since our definition relies on p-group chains, we shall say that a homomorphism
defined on the free-abelian group A is chain local if the subgroup B of A is
contained in ker(f). (To be more precise, we should say that “f is chain local for
F7, but generally we will not mention the underlying family F.)

Equivalently, if f is viewed as a function defined on groups, it is chain local
precisely when

Y (=)D f(Ge) =0

CeR
for all groups G (in the underlying family) having order divisible by p, where as
before, R is a set of representatives of the G-classes of chains of p-subgroups of G.
A sum of the above form is independent of the choice of the representative set R,
and we refer to it as the chain sum on G for the function f.

It seems appropriate to give a brief comparison of our definition of a chain
local function and Thévenaz’s definition of a locally determined function in [I7].
We consider functions defined for all groups of order divisible by p, but Thévenaz
considers functions f defined on the poset of subgroups of a fixed group G, and
he does not limit himself to subgroups having order divisible by p. He assumes
that f(H) = f(K) whenever H and K are conjugate in G, and he says that such
a function f is “locally determined” if the function f , defined from f via Md&bius
inversion vanishes on all subgroups H such that O,(H) = 1. Thévenaz then shows
that his locally determined functions on the subgroups of a group G are exactly
the functions for which the chain sums vanish for all subgroups. Although these
definitions are closely related, there are differences. For example, we shall see that
the constant function f(G) = 1 is chain local, but the function defined by f(H) =1
for every subgroup H of G is not locally determined in Thévenaz’s sense.

Given a chain-local homomorphism f defined on A, it should be clear that if
[G] = >_n;[H;] as in Theorem [Al then f(G) = > n;f(H;). If f is chain local,
therefore, then f(G) is determined by the values of f at the groups H;, and thus
Theorem [Al can be used as a tool to prove that certain functions are not chain local.

For example, suppose p = 2 and f(G) is the number of irreducible characters of
G whose degree has 2-part exactly equal to 2. To see that f fails to be chain local,
we calculate f on both sides of the expression

[S5] = [Sa] + [D12] — [C2 x Co

and we observe that we obtain unequal results. In fact, f(Ss5) = 1 while f(S4) +
f(D12) — f(Cy x C3) = 3. We will show, however, that the function whose value at
G is the order of a Sylow p-subgroup is chain local, as is the number of conjugacy
classes of G that consist of p-singular elements. Also, it is a consequence of Dade’s
“ordinary conjecture” (see [6]) that the number of irreducible characters in the
principal p-block of G is chain local.

In order to link our definition of “chain-local” with the traditional notion of
“local information”, observe that the groups H; of Theorem [A] are isomorphic to
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subgroups of G, and each of them has a nonidentity normal p-subgroup. We can
thus view f(H;) as local information for G, and so if f is chain local, then since
f(G) is determined by the f(H;), we see that f(G) can also be viewed as local
information about G.

The chain local functions, therefore, are “local” in the traditional sense. Al-
though perhaps it is somewhat less obvious, it is also true that conversely, if
f(G) = S n;f(H;) whenever [G] = . n;[H;] as in Theorem [A] then f must be
chain local.

Next, we discuss some further connections between character-counting conjec-
tures and chain-local functions. For example, the following shows that the McKay
conjecture is equivalent to the assertion that the McKay function m is chain local,
where m(G) is the number of irreducible characters of a group G that have degree
not divisible by p.

Theorem D. The McKay function m is chain local if and only if for every finite
group G, we have m(G) = m(N), where N = Ng(P) and P € Syl,(G).

We recall now some fairly standard notation. The function k(G) is the number of
irreducible characters of G and I(G) is the number of irreducible p-Brauer characters
of G. (Of course, k and [ also count the number of classes of G and the number of
classes of p-regular elements of G, respectively.) For integers d > 0, we write kq(G)
to denote the number of irreducible characters of G that have defect d. (Recall that
the defect of a character y € Irr(G) is the number d such that p? is the p-part of
the integer |G|/x(1).)

The Alperin weight conjecture in the Knorr-Robinson reformulation [11] asserts
that the function [ — kg is chain local. (This was also explored by J. Thévenaz in
[T7].) Also, it can be seen that Dade’s ordinary conjecture in its block-free form,
stated as Conjecture 9.25 in [14], implies that all of the functions k4 for d > 0 are
chain local. Since sums and differences of chain-local functions are clearly chain
local, Dade’s conjecture implies that the function

k—kO:de

d>0

is chain local. Now Knorr and Robinson proved in [I1I] that the function k — !
is chain local, so assuming Dade’s ordinary conjecture, we see that the function
Il — ko= (k—ko)— (k—1) is chain local, and as we remarked, this is equivalent to
the Alperin weight conjecture. This shows that in their block-free forms, Dade’s
ordinary conjecture implies the Alperin weight conjecture. (Actually, Dade proved
a stronger result in [6], namely that in their full block-by-block generality, Alperin’s
conjecture follows from Dade’s.)

Of course, the Knorr-Robinson observation in [I1] that the function k& —1 is chain
local, is the key to the above proof that the block-free form of the Alperin weight
conjecture is a consequence of the block-free form of Dade’s ordinary conjecture.
As we shall see in Theorem [Elb), below, our methods yield an elementary and
character-free proof that £ — [ is chain local, but we stress that our result is con-
siderably weaker than the theorem in [I1]: Working with characters and Brauer
characters, Knorr and Robinson obtained results for individual p-blocks. To be
specific, they showed that for each block B, the function k(B) — I(B) is locally
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determined, where k(B) and [(B) are, respectively, the numbers of irreducible or-
dinary and Brauer characters in B. (We mention that Knérr and Robinson claim
that the fact that k(B)—1(B) is locally determined was actually known to Brauer.)

We will also use our methods to give an elementary proof that the block-free
form of Dade’s ordinary conjecture implies the McKay conjecture. (Another proof
of this fact appeared recently in [14].) We mention that Dade claims in [6] that his
more comprehensive “projective” conjecture implies the full block-by-block Alperin-
McKay conjecture, and more recently, it was shown by R. Kessar and M. Linckel-
mann [10] that in fact, Dade’s ordinary conjecture is sufficent to prove the Alperin-
McKay conjecture.

Are there other chain-local functions that might interest us? How can we build
local functions? What other local (in the traditional sense) properties of a group
are reflected in chain-local functions? In Theorems E and F, below, we address
these questions. (As we have said, Theorem E(b) below, is a weak form of a result
of Knérr and Robinson. In fact, several of the functions described in Theorem [E]
are already known to be “local”, at least to the experts, but we give proofs here
that all of these functions are chain local in the sense of our formal definition.)

For Theorem [Ei), we recall that by definition, the defect of a conjugacy class
K of a group G is the integer d such that p? is the full p-part of |G|/|K]|.

Theorem E. The following specific integer-valued isomorphism-constant functions
defined on finite groups having order divisible by p are chain local:

(a) the function that counts the conjugacy classes of G that consist of p-elements,
including the identity;

(b) the function k — 1, which counts the conjugacy classes of G that consist of
p-singular elements;

(c) the function that counts the p-blocks of G that have positive defect;

(d) the function kq, which counts the irreducible characters of G that have defect

1;

(e) the function that counts the conjugacy classes of subgroups of G that are
isomorphic to some given group J, where Op(J) > 1;

(f) the function that counts the conjugacy classes of nontrivial p-subgroups Q
of G such that Ng(Q) is isomorphic to some given group J;

(g) the function that counts the conjugacy classes of nontrivial radical p-sub-
groups Q of G such that Ng(Q) is isomorphic to some given group J.

(h) The constant function f(G) =1;

(i) the function that counts the conjugacy classes of G that have defect d, where
d>0.

Theorem [E] below, describes some general conditions that guarantee that a func-
tion is chain local, and it provides a way to construct new chain-local functions.
(For example, we use Theorem [Flin Corollary 6.3 to construct a chain-local function
that detects whether or not a group G is p-nilpotent.) We show in Theorem [G]
that this technique can, in principle, be used to construct all possible chain-local
functions.

Theorem F. A function f defined on finite groups having order divisible by p is
chain local if it satisfies one of the following conditions:
(a) f is isomorphism constant and f(G) = f(N) whenever N is the normalizer
of a Sylow p-subgroup of G;
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(b) f(G) = >2g MNa(Q)) for some isomorphism-constant function h, where
Q runs over a set of representatives of the conjugacy classes of nonidentity
p-subgroups of G;

(c) f(G) = 3o h(Ng(Q)) for some isomorphism-constant function h, where
Q runs over a set of representatives of the conjugacy classes of nonidentity
radical p-subgroups of G.

For Theorem [[](a), we should not ignore the fact that our underlying family F
may be smaller than “all groups”. What this result actually says is that if f is
isomorphism constant and f(G) = f(N) for all groups G having order divisible by
p and lying in the underlying family F, then f is chain local for F. There is no
need to verify the hypothesis that f(G) = f(IV) for groups G not lying in F, and in
fact, f(G) may be undefined for such groups. For example, suppose that F is the
family of p-solvable groups, and let f(G) be the number of p’-special characters of
G. (See [9] for the definition of a w-special character of a m-separable group, where
7 is an arbitrary set of primes.) It is a fact that f(G) = f(N) for all p-solvable
groups GG, and that is sufficient for us to conclude that f is chain local for p-solvable
groups.

It follows by Theorem F(a) that a function f is chain local if it is possible to
compute f(G) by looking only at the normalizer N of a Sylow p-subgroup P of G.
For example, the function f(G) = |N|, has this property, and so it is chain local.
For the same reason, we see that if f is a constant function, then f is chain local,
as is the function f(G) = |Irr(P)|. Also, observe that if the McKay conjecture is
true, then Theorem [[fa) guarantees that the McKay function m is chain local, and
this proves half of Theorem

By Theorem [Elb), every function f that is local (in the sense that f(G) is
determined by the normalizers of nontrivial p-subgroups of G) is guaranteed to be
chain local. In fact, to prove that a function f is chain local, it is sufficient by
Theorem [Ff(c) to check that f is determined by the normalizers of the nontrivial
radical p-subgroups of G.

We shall see that Theorem [El(c) follows from Theorem F(c) by Brauer’s first
main theorem. Also, Theorem [Ed), which is a special case of Dade’s conjecture,
follows from Theorem [E[b), but its proof requires some deep results of Brauer and
Dade.

Theorem [[f(c) also provides an alternative proof that the Alperin weight conjec-
ture in its original form implies the Knorr-Robinson reformulation of the conjecture.
To see this, observe that Alperin’s original statement of his conjecture is essentially
that

> ko(Na(Q) = UG) = ko(@),
Q

where the sum runs over a set of representatives of the conjugacy classes of noniden-
tity radical p-subgroups of G. Assuming this, it follows by Theorem [El(c) that the
function [ — kg is chain local, and as we have seen, this is exactly the Knorr-Robinson
reformulation of the Alperin weight conjecture.

The following shows that Theorems F(b) and F(c) provide machines that are
powerful enough to construct essentially all chain-local functions.

Theorem G. Let [ be a chain-local function with values in an abelian group U.
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(a) If U = Q7, the additive group of the rational numbers, then there ewists
a unique U-valued isomorphism-constant function h defined on groups N
with Op(N) > 1 and such that if p divides |G|, then f(G) = 325 hM(Na(Q)),
where QQ Tuns over a set of representatives of the conjugacy classes of non-
identity p-subgroups of G.

(b) With no extra assumption on U, there exists a unique U-valued isomorphism-
constant function h defined on groups N with O,(N) > 1 and such that if
p divides |G|, then f(G) = > o h(Na(Q)), where Q runs over a set of rep-
resentatives of the conjugacy classes of nonidentity radical p-subgroups of

G.

Note that the requirement in Theorem[Gl(a) that f must be rational valued does
not preclude the possibility that f is actually integer valued. In that case, however,
the unique function h whose existence is guaranteed by the theorem may not be
integer valued, although of course, it is rational valued.

We return now to the McKay conjecture. If the conjecture is true, then as we
have seen, the McKay function m is chain local, but in fact, even more is true: m is
“strongly” chain local. To explain this, consider an isomorphism-constant function
f with values in some abelian group U. Given u € U, we can define a new, integer-
valued isomorphism-constant function f(,) by setting f,)(G) = 1 if f(G) = u and
J(w)(G) = 0 otherwise. Clearly,

1) =" fuw(Gu,

uelU

so if f(y) is chain local for every element u € U, it follows that f is chain local. In
this case, we say that f is strongly chain local.

Note that if f is an arbitrary chain local function with values in an abelian
group U, and if h is a function from U into an abelian group V, then the composite
function A(f(G)) is chain local whenever h is a homomorphism. If f is strongly
chain local, however, then in fact, the composite function h(f(G)) is chain local
for every choice of the function h : U — V', whether or not h is a homomorphism.
Thus, for example, if f is an integer-valued strongly chain-local function, then the
function f(G)? is also chain local.

To see that h(f(G)) is chain local if f is strongly chain local, let v € U, and
observe that since f(, is chain local, we have

0= Z (_1)len(c)f(u)(GC) — Z (_1)1en(C) ,
CeR CeR,

where R, = {C € R | f(G¢) = u}. Since R is partitioned by the subsets R, for
u € U, we have

DD MOR(f(Ge)) =D h(u) Y (~1)D =0,
CeR uelU CERL

so the function h(f(G)) is chain local, as claimed.

Although the functions kg for d > 0 are expected to be chain local by Dade’s
conjecture, experiment shows that these functions are not generally strongly chain
local. For example, taking p = 2, one can compute that

[83 X 53] = 2[D12] — [CQ X CQ] mod B.
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Now k1 (S3 x S3) = 4, and we see that ki(D12) = 2 and k1(Cqy x C) = 0, so we
have

k1(53 X Sd) = 2]€1(D12) — ]{71(02 X CQ),
as expected. The corresponding equality fails, however, if we replace k; by the
function (k1)?, and we conclude that ki is not strongly chain local. In fact, most of
the chain-local functions that we have discussed are not strongly chain local, but
the McKay function appears to be an exception.

Theorem H. Assuming that the McKay conjecture is true, it follows that the
McKay function m is strongly chain local.

We shall see that if our underlying family F is the family of p-solvable groups,
then there are many functions that are strongly chain local.

Theorem I. Suppose that f is a function defined for p-solvable groups G, and
assume that f(G) = f(G/L) whenever L is a normal p'-subgroup of G. Then f is
strongly chain local for p-solvable groups.

For example, consider the following four isomorphism-constant functions:
(a) f1(G) =G : OP(G)],
(b) f2(G) is the number of classes of p-elements in G,
(¢) f3(G) is the number of irreducible characters in the principal p-block of G,
and
(d) f4(G) is the p-length of G, where G is p-solvable.

By Theorem [[, each of these functions is strongly chain local for p-solvable groups.

If the underlying family is all finite groups, the function f; is defined, but ex-
amples show that it is not chain local. The function fs is defined and by Theorem
[Ela), it is chain local, but one can check that (f2)? is not chain local, so fs is not
strongly chain local. Dade’s ordinary conjecture (for blocks) implies that f3 is chain
local, but a computation establishes that (f3)? is not chain local, so f3 is definitely
not strongly chain local. Finally the function f; is not even defined for all finite
groups.

We mention also that for p-solvable groups, Theorem [[] guarantees that the func-
tion that counts the p-special characters of G is strongly chain local. We shall also
see that the function that counts the p’-special characters is strongly chain local,
but this lies much deeper, and it is not a consequence of Theorem [Il

Finally, our methods allow us to give an elementary proof of the following re-
markable result. This is essentially a result of P. Webb, and it also appears as
Corollary 9.20 of [I4], with a more complicated proof.

Theorem J. If G is a finite group, then the generalized character

0 = Z (_l)lcn(c)(ch)G

CeR
vanishes on the p-singular elements of G.
2. THEOREM [A]

Recall that given a group G having order divisible by p, we defined the element
B(G) of the free-abelian group A by setting

B(G)= ) (~1)*9[Gc],

CeR
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where R is a set of representatives of the orbits of the conjugation action of G on
the set of chains in G, and G is the stabilizer of the chain C'. Recall also that by
definition, B is the subgroup of A generated by all elements of the form B(G).

The trivial chain (with length 0) must lie in R, and its stabilizer is the full group
G. Tt follows that one of the terms in the sum defining B(G) is [G], and hence we
have

6] = BG) - S (-1 ©[Ge],
c

where here, the sum runs over the nontrivial chains C in R. Collecting terms
corresponding to isomorphic chain stabilizers, we obtain an equation of the form
[G] = B(G) + >_n;[H;], where the coefficients n; are nonzero integers, and the
groups H; are pairwise nonisomorphic. Also, each of the groups H; is isomorphic to
the stabilizer in G of some nontrivial chain, and thus O,(H;) > 1. Since B(G) € B,
we have [G] = Y n;[H;] mod B, so to complete the proof of Theorem [A] it suffices
to show that > n; = 1 and that the coefficients n; and the isomorphism types of
the groups H; are uniquely determined. To do this, we will need two of the parts of
Theorem [E] and we restate these here. (Proofs will be provided in later sections.)
First, we recall Theorem [Elh).

Lemma 2.1. The constant function f(G) =1 is chain local.

Now suppose that [G] = > n;[H;] mod B, as in Theorem [Al Since the function
f with constant value 1 is chain local by Lemma [2.]] we obtain equal results when
we apply f to the left and right sides of this congruence, and this yields 1 = f(G) =
Sonif(H;) = > n;, as wanted.

Next, we restate Theorem [Ele).

Theorem 2.2. Given a group J with O,(J) > 1, let f;(G) be the number of
conjugacy classes of subgroups X of G such that X = J. Then the isomorphism-
constant function fj is chain local.

In the following, we view the functions f; of Theorem as homomorphisms
from A to the integers Z, and we write J to denote the intersection of the kernels
of all of the homomorphisms f; for finite groups J such that O,(J) > 1. Theorem
asserts that B C ker(f;) whenever O,(J) > 1, and it follows that B C J.

Theorem 2.3. We have B =J. Also, if s € B is a linear combination of elements
of the form [J], where O,(J) > 1, then s = 0.

Proof. Suppose first that s € A is a linear combination of the symbols [J] for
groups J such that O,(J) > 1. If s € J, we argue that s = 0. To see this, suppose
that s # 0, and write s = Y n;[J;] for 1 < i < r, where the integer coefficients n;
are all nonzero and the finite groups J; are pairwise nonisomorphic and satisfy the
condition that O,(J;) > 1. By choice of notation, we can assume that |J,.| > |J;|
for all 7, and for notational simplicity, we write J = J,.

Note that if ¢ < r, then either |J;| < |J|, or else |J;] = |J|, but J; is not
isomorphic to J. In either case, J; contains no isomorphic copy of J, and thus
by the definition of f;, we have f;(J;) = 0. Also f;(J.) = 1, and since we are
assuming that s € J, we have s € ker(fy), and so

0=fs(s) = fJ(Z”i[JiD =n,[J].
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It follows that n, = 0, and since this is a contradiction, we conclude that s = 0, as
claimed. The final assertion of the theorem now follows because B C J.

We have B C J, so to prove equality, we let ¢ € J, and we work to show that
t € B. Let u be an element of the coset B +¢ C J. Write u = Y ¢;[G,], where
the coefficients g; are integers, and let a be the number of subscripts j for which
0,(G,) = 1. Finally, suppose that the coset representative u is chosen so that a is
as small as possible.

If @ > 0, let G be one of the groups G such that O,(G) = 1. We know that [G]
is congruent modulo B to a sum of the form " n;[H;], where O,(H;) > 1. If we
replace [G] in the expression ) ¢;[G;] by > n;[H;], we obtain another element v’ of
the coset B+, and v’ is a linear combination of symbols [G;], where exactly a — 1
of the groups G fail to have a nontrivial normal p-subgroup. This contradicts the
minimality of a, and we deduce that a = 0, and thus w is a linear combination of
symbols [J] such that O,(J) > 1. Since u € J, the first part of the proof guarantees
that v = 0, and thus B+t = B 4+« = B, and we have ¢t € B, as required. |

To complete the proof of Theorem [Al we must show that the coefficients n; and
the symbols [H;] in the theorem are uniquely determined. To see this, suppose
that [G] = > n;[H;] mod B, where the groups H; are pairwise nonisomorphic, and
suppose also that [G] = > m;[K;] mod B, where the K; are pairwise nonisomorphic.
Assume also that the groups H; and K; have nontrivial normal p-subgroups, and

write

so s € B. By Theorem 2.3, we deduce that s = 0, and so since A is free on the
symbols [X], we see that after appropriate renumbering, we have n; = m; and
[H;] = [K,], as required. Once we establish Lemma 2T and Theorem [22] therefore,
the proof of Theorem [A] will be complete.

3. WHEN ARE [G] AND [H] CONGRUENT MOD B?

In this section, we assume that G and H have orders divisible by p, and (assuming
Theorem 2.2) we establish Theorems B and C, which address the question of when
it is true that [G] = [H] mod B. The assertion of Theorem [Blis that this happens
if and only if f;(G) = f;(H) for all finite groups J such that O,(J) > 1. By the
definition of J, this latter condition is equivalent to saying that [G] = [H]| mod J,
and because Theorem 2.3 guarantees that B = J, we see that Theorem [B] follows
without further proof.

In the case where H C G, an alternative necessary and sufficient condition to
have [G] = [H] mod B is provided by Theorem[C] which asserts that this congruence
holds if and only if Ng(Q) C H for every nonidentity p-subgroup @ of H.

We begin with a fairly standard preliminary result.

Lemma 3.1. Let H C G, where p divides |H|. Then the following are equivalent:

(1) If g € G and |H N HY| is divisible by p, then g € H.
(2) Ng(Q) € H for every nonidentity p-subgroup Q of H.

Proof. First, assume (1), and suppose that Q) C H is a nonidentity p-subgroup. We
must show that Ng(Q) C H, so suppose g € Ng(Q), and observe that @Q = Q9 C
HY9,s0 Q C HNHY. Then p divides |H N HY|, and thus g € H, by (1). This proves
that Ng(Q) C H, as wanted.
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Conversely now, assume (2). Suppose that p divides |H N HY| for some element
g € G, so we must show that g € H. Write D = HNHY, and let S € Syl,(D). Then
S is a nonidentity p-subgroup of H, and hence Ng(S) C H by (2). Also, S C HY,
so §9° C H, and thus (Ng(5))¢  =Ng(S9 ) C H by (2). Then N¢(S) C HY,
and so Ng(S) C D, and we deduce that S is a full Sylow p-subgroup of H.

Now, 9 C H and |S9 | =S|, s0 S9 ' is also a Sylow p-subgroup of H, and
therefore, 597" = Sh for some element h € H. Then hg € Ng(S)C H,s0g € H,
as required. 0

Proof of Theorem [Cl First, assume that N (Q) C H for all nonidentity p-subgroups
Q of H. Fix P € Syl,(H), and observe that P > 1 because p divides |[H|. By as-
sumption, Ng(P) C H, and it follows that P is a full Sylow p-subgroup of G.

We must prove that [G] = [H] mod B, and we see by Theorem [B] that it
suffices to show that f;(G) = f;(H), for every finite group J such that O,(J) > 1.
We fix J, and we argue that every subgroup X of G that is isomorphic to J
is conjugate in G to some subgroup of H. To see this, observe that O,(X) is
conjugate to a subgroup of P, so replacing X by a conjugate if necessary, we can
assume that O,(X) C P C H. Now O,(X) = O,(J) > 1, and thus we have
X C Ng(0,(X)) € H, where the final containment holds by assumption. We
have now shown that as claimed, every subgroup of G that is isomorphic to J is
G-conjugate to a subgroup of H.

By the result of the previous paragraph, we can choose a set S of representatives
of the G-conjugacy classes of subgroups of G that are isomorphic to J, where each
member of S is a subgroup of H. We argue next that S is also a set of representatives
of the H-conjugacy classes of subgroups of H isomorphic to J. The members of S
are contained in H, and since distinct members of S are not G-conjugate, they are
certainly not H-conjugate. It suffices, therefore, to show that if X is a subgroup of
H that is isomorphic to J, then X is H-conjugate to some member of S. By the
choice of S, we know that X9 lies in S, for some element g € G, so it is enough to
show that X and X9 are conjugate in H.

Now X9 C HY and since X9 € S, we also have X9 C H. Then X9 C H N HY,
and since p divides |J| = |X Y|, it follows that p divides |H N HY|. By Lemma [31]
we have g € H, so X and XY are conjugate in H, as wanted.

We now know that S is simultaneously a set of representatives of the classes of
subgroups of G that are isomorphic to J and of the classes of subgroups of H that
are isomorphic to J, and thus f;(G) = |S| = f;(H), as required.

Conversely now, assume that [G] = [H| mod B, so by Theorem [Bl we have
fi(G) = f;(H) for every finite group J such that O,(J) > 1. Taking J to be a
Sylow p-subgroup of G, we see that H contains an isomorphic copy of J, and thus
H contains a Sylow p-subgroup P of G.

Given a p-subgroup U of H, we claim that every G-conjugate of U that is con-
tained in H is H-conjugate to U. We can assume that U > 1, and we let A be the
set of H-classes of subgroups of H that are isomorphic to U. Similarly, we let B
be the set of G-classes of subgroups of G that are isomorphic to U, and we observe
that since O,(U) = U > 1, we have |A| = fu(H) = fu(G) = |B|.

Each conjugacy class of subgroups of H is contained in a unique conjugacy class
of subgroups of G, so containment defines a map 7 from A to B, and we argue
that 7 is surjective. To see this, let L be a member of B, so L is a conjugacy class
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of p-subgroups of GG, and hence some member T of L is a subgroup of the Sylow
subgroup P of G. Now P C H, so T C H, and thus if K is the class of subgroups
of H that contains T, we have K C L. Then 7(K) = L, so 7 is surjective, as
wanted. We have seen that |A| = |B|, and it follows that 7 is injective, and hence
different H-classes of subgroups isomorphic to U cannot be contained in the same
G-class. It follows that as claimed, every G-conjugate of U that is contained in H
is H-conjugate to U.

Let @ be a nonidentity p-subgroup of H, and let N = Ng(Q). We must show
that N C H, so we assume that this is false, and we work to obtain a contradiction.
Choose @ so that N € H, and subject to this condition, assume that | N| is as large
as possible.

Now suppose that M C Hand M = N, andlet U = O,(M),soU = O,(N) 2 @Q,
and thus U > 1. We argue now that Ng(U) C H. This is clear if Ng(U) = M, so
we can suppose that [Ng(U)| > |M| = |N|, and thus by the maximality of N, we
have N¢(U) C H, as wanted.

Suppose now that M9 C H for some element g € G. Then U9 C H, and as
we have seen, it follows that U9 = U" for some element h € H. We thus have
gh ' € Ng(U)C H,andso g € H.

Let S be a set of representatives of the H-conjugacy classes of subgroups M
of H such that M =2 N. No two distinct members of S are conjugate in H, and
it follows by the foregoing argument that no two distinct members of S can be
conjugate in G. Now |S| = fy(H) = fn(G) > |S|, where the second equality holds
because O,(N) > 1. Equality thus holds, and thus N must be G-conjugate to some
member of §. We can thus write N9 C H for some element g € GG, and we have
Q9 C H. By an earlier argument, Q9 = Q" for some element h € H, so we have
N" = Ng(Q") = Ng(Q9) = N9 C H, and it follows that N C H. This is the
desired contradiction. |

We have now proved Theorems [Al [B] and [C] assuming Lemma 2.1} and Theo-
rem [2.2)

4. COMPUTATIONS WITH CHAINS

In this section, we prove that certain isomorphism-constant functions are chain
local. Recall that by our definition, an isomorphism-constant function f with values
in an abelian group U is chain local if when we view f as a homomorphism from
the free-abelian group A into U, we have B C ker(f).

For the purposes of this section, it is convenient to set aside temporarily the
free-abelian group A. Instead, we use the equivalent condition that f is chain local
precisely when the chain sum for f vanishes, or in other words,

Z (_1)1cn(C)f(GC) =0

CeR
for every finite group G (in the underlying family) having order divisible by p,
where R is a set of representatives of the orbits of the conjugation action of G on
its chains.

This point of view gives us the freedom to consider functions f defined only on
the set of subgroups of order divisible by p of a given group G. Also, it allows us
to relax the condition that f is isomorphism constant, and to assume only that f
is conjugation constant on G, which means that for subgroups X and Y of G
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having orders divisible by p, we have f(X) = f(Y) whenever X and Y are conjugate
in G. (Observe that this condition is sufficient to guarantee that the chain sum for
f on G is independent of the choice of the representative set R.) We say that the
conjugation-constant function f on G is chain local on G if the chain sum for f
on G vanishes.

Given an isomorphism-constant function f and a group G having order divis-
ible by p, we see that the restriction « of f to the set of subgroups of G having
order divisible by p is a conjugation-constant function on G. (We will usually use
Latin letters for isomorphism-constant functions and Greek letters for conjugation-
constant functions defined on subgroups of some fixed group G.) Continuing to
assume that f is isomorphism constant, we observe that f is chain local if and only
if the restrictions of f to G are chain local on G for all groups G having order
divisible by p.

Next, we present several preliminary results that will enable us to evaluate certain
chain sums. The first of these is a fairly standard tool for working with chains.

Lemma 4.1. Suppose C is a chain in G, and let Q be a nontrivial p-subgroup of
G. Assume that either

(1) Q normalizes every member of C or
(2) every member of C normalizes Q.

Then C and @ determine a chain C* such that the condition corresponding to (1)
or (2) is satisfied with C* in place of C. Also, either C is a proper subset of C* or
C* is a proper subset of C, and the following hold:

(a) len(C*) =len(C) £ 1.

(b) (C*)*=C.
Furthermore, every subgroup of G stabilizing C' and normalizing Q also stabilizes
C*. In particular, if Q< G, the stabilizers of C' and C* in G are equal.

Note that our notation is somewhat deficient because it does not indicate that
the chain C'* depends on the subgroup @ as well as on the chain C. We trust,
however, that this will not create confusion.

Proof of Lemma [A1l Write C = {P; | 0 < i < n}, where n =len(C) and
1=Fh<P<---<P,.

Since Q € Py, there exists a unique maximum subscript m, with 0 < m < len(C),
and such that Q@ € P,,. In particular, we have P,, < P,,Q, and also P,,QQ C P;
whenever m < ¢ < n.

If the p-subgroup P,,@ is not a member of the chain C, then since P, < P,,Q
and P,,Q < P; for all subscripts 4 such that m < i < n, we can insert the p-group
P,,Q into the chain C, and we define C* = CU{P,,Q}. (Note that if m = len(C), it
would be more accurate to say that C* is obtained from C' by “appending”, rather
than by “inserting” the group P,,Q.) Observe that in this case, C* is a chain of
length n+ 1, and C* properly contains C. (We write C* C C.) On the other hand,
if P,,Q is a member of C, we can delete it, and we define C* = C' — {P,,Q}, so in
this case, C* is a chain of length n — 1, and C* is properly contained in C.

Note that if each member of C normalizes @, or if @) normalizes each member
of C, the same condition holds with C'* in place of C. We can thus use the same
procedure to construct the chain (C*)*. In either case, where C C C* or C* C C,
we see that C' and C* agree on all terms P; with 0 <4 < m, so none of these terms
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in the chain C* contains (). The following term in C* (if there is one) does contain
@, and thus P,, is the largest term in C* that fails to contain Q). It follows that
if P,Q is in C*, then (C*)* = C* — {P,,Q} = C, and if P,Q is not in C*, then
(C*)* =C*U{P,Q} =C, so in all cases (C*)* = C. O

Corollary 4.2. Suppose that O,(G) > 1. Then every conjugacy-constant function
on G is chain local.

Proof. Let Q = O,(G) > 1, so condition (2) of Lemma 1] applies, and we have a
map C' — C* on chains. This map defines a bijection from the set of even-length
chains on G to the set of odd-length chains on G, and each of these sets of chains
is invariant under conjugation by elements of G. Furthermore, because @ < G, it
follows that (C9)* = (C*)9, and in particular, the chain stabilizers G¢ and G-
are equal.

Now choose a set R of representatives of the G-orbits of even-length chains,
and note that R* = {C* | C € R} is a set of representatives of the G-orbits of
odd-length chains. Given a conjugacy-constant function o on G, therefore, the
corresponding chain sum is

> (D) DaGe)+ Y (-1 Da(Ge-)

CeR CeR
and this sum vanishes because len(C*) = len(C) £ 1 and G¢ = G¢~. We conclude
that « is chain local on G, as required. ([l

We are now ready to introduce our principal tool for evaluating chain sums.
Given a group G, let C' be a chain in G and let P be a nontrivial p-subgroup of
G. Let X be a subset of Ng(P), and assume that P and X are contained in the
stabilizer G¢ of C. In this situation, we say that (C, P, X) is a normalizing triple.

Note that G acts by conjugation on its set of normalizing triples. For each orbit
O of the action of G on this set, the left components of the members of O form an
orbit of the action of G on its chains, so the lengths of all of the chains appearing
as left components of members of O are equal, and we write s(O) = (—1)(¢),
where C' is any chain that occurs as a left component of a member of O. Also, if
R is a set of representatives of the G-orbits of chains, we see that for each G-orbit
O of normalizing triples, exactly one member of R appears as a left component of
a member of O, and thus the orbit O determines a unique member of R.

Now let (C, P, X) be a normalizing triple. Since P stabilizes C, it follows by
Lemma 1] that C' and P uniquely determine a chain C*. Also, since X nor-
malizes both C' and P, we see that X also normalizes C*, and thus (C*, P, X) is
a normalizing triple that is uniquely determined by the triple (C, P, X), Writing
(C,P,X)* = (C*, P, X), we see that x defines a permutation on the set of normal-
izing triples.

If O is a G-orbit of normalizing triples, we write

O* ={(C,P,X)" | (C,P,X) € O}.
We see that O* is an orbit of normalizing triples because ((C, P, X)9)*=((C, P, X )*)9

for all elements g € G. Also |O*| = |O], and since s(0*) = —s(0O), we see that
O* # 0. We observe that (O*)* = O, and we refer to O and O* as paired orbits.

Lemma 4.3. Let (C, P, X) be a normalizing triple. Write (C, P, X)* = (C*, P, X),
and let H=G¢ and H* = Ge+. The following then hold:
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(a) If X = Npg(P), then X = Ny« (P).
(b) If X = Ng(P) and P € Syl,(H), then P € Syl (H*).
(c) If P € Syl,(Cg (X)), then P € Syl,(Cg~(X)).

Proof. Since (C, P, X) and (C*, P, X) are normalizing triples, each of P and X is
contained in both H and H*. We have Ny (P) = X C H*, so Ny (P) C Ny« (P).
We must prove that equality holds here, so it suffices to show that Ny« (P) C H.
Now Ny« (P) stabilizes both P and C*, so it stabilizes (C*)* = C, and thus
Npy+(P) C H, proving (a).

For (b), we assume that P € Syl,(H). If C C C*, then P C H* C H, and it is
clear that P € Syl,,(H*), as required.

We can suppose, therefore, that C* C C, so P C H C H*, and since P €
Syl,(H), it suffices to show that Ng-(P) C H. By hypothesis, Ny (P) = X, so by
(a), we have Ny« (P) = X C H, as required.

Finally, for (c), write U = Cy(X) and U* = Cy+(X). If C C C*, then H* C H,
so U* =UNH* D P. Then P C U* C U, and since we are assuming that
P € Syl,(U), it is clear that P € Syl,(U*), as required.

We can suppose, therefore, that C* C C, so H C H*, and thus P C U C U*.
Since P € Syl,(U), we see that to show that P € Syl,(U*), it suffices to show
that Ny« (P) € U. Now Ny« (P) C U* C H*, so Ny« (P) stabilizes both C*
and P, and thus Ny« (P) stabilizes (C*)* = C. Then Ny« (P) C H, and we have
Ny« (P) C HNU* = U, as wanted. O

The following is somewhat technical, but it is completely elementary. Lemma
[£4(a) and (b) are essential for most of the main results in this section, but Lemma
[4l(c) will not be used until we prove Corollary 210, which is Theorem [Jl

Lemma 4.4. Let G be a finite group, and let T be a G-invariant set of normalizing
triples in G. Given a chain C with stabilizer H in G, let Q be the (possibly empty)
set of pairs (Q,Y) such that (C,Q,Y) lies in T, and note that Q is H-invariant.

(a) Let U be an H-orbit on Q. Then there is a unique G-orbit O on T such
that the set

S={(C,Q,Y) | (Q,Y) U}

is contained in O, and we write T(U) = O.

(b) The map 7 in (a) is a bijection from the set of H-orbits on Q onto the set
of those G-orbits O on T such that C' is the left component of some member
of O.

(¢) Let U be an H-orbit in Q and let O = 7(U) as in (b). Then |O| = |G :

Proof. Observe first that S C 7. Also, by hypothesis, U is an orbit on Q, so U is
nonempty, and thus S is nonempty. Now H stabilizes C' and acts transitively on
U, and thus H acts transitively on S. It follows that S is contained in a unique
G-orbit O on T, and this defines the map 7. Also, since S C O, we see that O
contains a triple with left component C'.

To show that 7 is injective, suppose V is an H-orbit on Q such that 7(U) = O =
7(V). Let (P,X) € U and (Q,Y) € V, so by the definition of 7, both (C, P, X) and
(C,Q,Y) lie in the G-orbit O, and hence there exists an element g € G such that
(C,P,X)9 =(C,Q,Y). Then g stabilizes C, so g € H, and also (P, X)J = (Q,Y),
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so (P,X) and (@,Y) lie in the same H-orbit on Q. It follows that & = V, and thus
T is injective, as required.

To see that 7 maps onto the set of G-orbits on T that contain a triple with
left component C, let O be such an orbit, and suppose (C,Q,Y) € O. Since
(C,Q,Y) € T, we have (Q,Y) € Q, and thus (Q,Y) lies in some H-orbit & on Q.
Then 7(U) = O, and the proof of (b) is complete.

For (c), suppose 7(U) = O, and let (Q,Y) € U. Let N be the stabilizer in H of
(Q,Y), so [U| = |H|/|N|. Now (C,Q,Y) € O, and N is the stabilizer in G of the
triple (C,Q,Y), and thus

G| _ |Gl |H|

o= =Bl e H |,

as required. 0

Next, we use Lemma 4] to construct some chain-local conjugacy-constant func-
tions.

Theorem 4.5. Fiz a nontrivial p-subgroup P of a group G and a subset X of
G. Let apxy, Bpx), VPx), Opx), and €p x) be the integer-valued conjugacy-
constant functions on G defined as follows for subgroups H of G such that |H| is
divisible by p:
(a) a(px)(H) is the number of H-orbits of pairs (Q,Y) that are G-conjugate
to (P, X), where Q C H and Y C Ny (Q).
(b) Bp,x)(H) is the number of H-orbits of pairs (Q,Y) that are G-conjugate
to (P, X), where Q C H and Y = Ny (Q).
(¢) vpx)(H) is the number of H-orbits of pairs (Q,Y) that are G-conjugate
to (P, X), where Q C H and Y = Ng(Q), and also Q@ = O,(Y).
(d) O(p,x)(H) is the number of H-orbits of pairs (Q,Y) that are G-congugate to
(P, X), where @ C H and Y = Ng(Q), and also Q is a Sylow p-subgroup
of H.
(e) ep,x)(H) is the number of H-orbits of pairs (Q,Y) that are G-conjugate
to (P, X), where Y C H and Q is a Sylow p-subgroup of Cy(Y).

Then a(p,x), Bp,x), V(P,X), 0(P.x), and €p x) are chain-local functions on G.

Proof. Note that in all five function definitions, Y normalizes @), and both Y and
Q@ are contained in the subgroup H. If H is the stabilizer in G of some chain C,
therefore, we see that (C, @,Y) is a normalizing triple. We propose to apply Lemma
AA4(a),(b), so we define five G-invariant sets of normalizing triples that will play
the role of T in the lemma.

(1) T is the set of normalizing triples (C, @, Y) such that (Q,Y) is G-conjugate
to (P, X).

(2) T is the set of normalizing triples (C, @, Y) such that (Q,Y) is G-conjugate
to (P, X), and also Y = Ng (Q).

(3) T; is the set of normalizing triples (C, @, Y) such that (Q,Y) is G-conjugate
to (P,X) and also Y = Ng,(Q) and Q = O,(Y).

(4) Ty is the set of normalizing triples (C, @, Y) such that (Q,Y") is G-conjugate
to (P, X), and also Y = Ng(Q) and Q € Syl,(Go).

(5) Ts is the set of normalizing triples (C, @, Y) such that (Q,Y") is G-conjugate
to (P, X), and also Q € Syl,(Cg.(Y)).
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If (C,Q,Y) lies in 77, then since (C,Q,Y) is a normalizing triple, it follows
that (C,Q,Y)* is defined, and it too lies in 7;. Theorem 4.3(a) guarantees that if
(C,Q,Y) lies in Ta, then (C, Q,Y)* lies in T3 and similarly for 73. Also, if (C,Q,Y)
lies in Ty, then (C,Q,Y)* lies in T4 by Theorem 4.3(b), and by Theorem 4.3(c), we
see that if (C,Q,Y) lies in 75, then (C, @, Y)* also lies in T5. Thus for each G-orbit
O on any of the sets T;, the paired orbit O* is also contained in ;.

Simplifying the notation, we drop the subscript (P, X), and we write «, 3, 7,
6, and € for the five conjugacy-constant functions we have defined. Also, we tem-
porarily fix the chain C.

By the definition of the set 77, we see that a(G¢) is the number of G¢-orbits of
pairs (@,Y) such that (C,Q,Y) lies in 7;. Also, 5(G¢) is the number of G¢-orbits
of pairs (@,Y) such that the triple (C,Q,Y) lies in 73, and similarly for ~, J, and
€

It follows by Lemma[£4(a) and (b) that

(1) a(Ge) is the number of G-orbits O in Ty, such that O contains a triple
with left component C'.

(2) B(Gc) is the number of G-orbits O in Tz, such that O contains a triple
with left component C.

(3) v(G¢) is the number of G-orbits O in T3, such that O contains a triple
with left component C'.

(4) 0(G¢) is the number of G-orbits O in Ty, such that O contains a triple with
left component C.

(5) €(G¢) is the number of G-orbits O in 75, such that O contains a triple with
left component C.

Recall now that if C is the left component of a member of a G-orbit O of
normalizing triples, then (—1)'"(¢) = 5(0). It follows that

(~)*@a(Ge) = s(0),

(@]

where the sum runs over all of those G-orbits O in 77 that contain a member having
left component equal to C'. Similar formulas hold for 3, v, 4, and €, where we sum
over the G-orbits in T3, T3, T4, and 75, respectively, that contain a member with
left component C.

Now let R be a set of representatives of the G-orbits of chains. For every G-orbit
O on Ty, there is exactly one chain C in R such that C is the left component of a
member of @. Summing the above over all members of R, therefore, we see that
each G-orbit in 7 is counted exactly once, and so we have

3 (-1 Oa(Ge) = 3 s(0),

CeRr (@]

where the sum on the right runs over all G-orbits O in 7;. Similarly, the chain
sums corresponding to the functions g, v, J, and € are equal to sums of the form
>~ 5(0), where O runs over the G-orbits in T3, T3, Ta, and Ts, respectively.

Every G-orbit O of triples in 7; for ¢ € {1,2,3,4,5} is paired with a unique G-
orbit O*, and as we have seen, this paired orbit also lies in 7;. Since s(Q) = —s(O*),
it follows that the chain sums corresponding to the functions «, 3, v, §, and €
vanish, and hence each of these conjugacy constant functions is chain local on G,
as required. ([l
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Corollary 4.6. Let N be a finite group, and let fy, gy, TN, and sy be the
isomorphism-constant functions defined below for groups G having order divisible
by p. Then fn is chain local if O,(N) > 1, and the functions gn, rn, and sy are
chain local unconditionally.

(a) fn(Q) is the number of conjugacy classes of subgroups X of G such that
X =N.

(b) gn(G) is the number of conjugacy classes of nontrivial p-subgroups Q of G
such that Ng(Q) = N.

(¢) rn(G) is the number of conjugacy classes of nontrivial radical p-subgroups
Q of G such that Ng(Q) = N.

(d) sn(G) =1if Ng(P)= N, where P € Syl,(G), and sy(G) = 0, otherwise.

Note that Corollary FL6(a) is exactly Theorem [El(e), which was restated as The-
orem 2.2. Also, Corollary E6|(b) is Theorem [Elf), and Corollary [4.6{(c) is Theorem
[Elg). Finally, we remark that if O,(N) = 1, then the functions gy, rn, and sy
are identically 0, and hence they are trivially chain local. (This is obvious for gy
and 7y, and since by assumption p divides |G|, we see that if O,(N) = 1, then N
cannot be isomorphic to the normalizer of a Sylow p-subgroup of G, so sy(G) = 0.)

Proof of Corollary 26l Fix a group G having order divisible by p, and let «, 3, 7,
and 0 be the restrictions of fx, gn, n, and sy, respectively, to the subgroups of G.
It suffices to show for every choice of GG that each of these four conjugacy-constant
functions is chain local on G.

Let S be a set of representatives of the G-orbits of subgroup pairs (Q,Y) of G,
where @ is a nonidentity p-subgroup, @ <Y and Y = N. Also, recall that for (a),
the hypothesis guarantees that O,(N) > 1, and as we have seen, for (b), (c), and
(d), we can assume without loss that O,(N) > 1.

Let H be a subgroup of G of order divisible by p. Each H-orbit K of subgroups
Y C H such that Y = N uniquely determines a set of pairs

A ={(QY)|Y € K and Q@ = O,(Y)},

and we see that H acts transitively on Ag.
Now let Py be the set of pairs (Q,Y") such that
(2) YN,
(3) Y CH,
and observe that the map K — A is a bijection from the set of H-orbits of
subgroups Y C H such that Y = N onto the set of H-orbits on P;. Also note that
if (@,Y) is an arbitrary member of Py, then @ = O,(Y) =Z O,(N) > 1.
By definition, a(H) is the number of H-orbits of subgroups Y of H such that
Y = N, and so we see that «(H) is the number of H-orbits on P;. Also, every
member of each H-orbit on P; is G-conjugate to some unique member (P, X) of S,
where (P, X) has the property that P = O,(X). The number of H-orbits on P;
whose members are G-conjugate to some given member (P, X) of S is a(p,x)(H),
where a(p xy is the function of Theorem 4.5(a), and it follows that

a(H) =Y apx)(H),
(P.X)

where the sum runs over members (P, X) € S such that P = O,(X).
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Since (P, X) € S, we have P > 1, and it follows by Theorem 4.5 that the function
a(p,x) is chain local on GG. We conclude that « is chain local, and this completes
the proof of (a).

For (b), recall that by definition, S(H) is the number of H-orbits of nontriv-
ial p-subgroups @ of H such that Ny (Q) = N. Each such H-orbit K uniquely
determines a set of pairs

Ak ={(Q,Y) |Q € K and Y = Ng(Q)}

and we see that H acts transitively on Ag.
Now let P, be the set of pairs (Q,Y") such that

(2) @ is a nonidentity p-subgroup of H,
(3) Y 2N,

and observe that the map K — A is a bijection from the set of H-orbits of
subgroups @ C H such that Ny (Q) = N onto the set of H-orbits on Ps.

Then S(H) is the number of H-orbits on the set Ps. Also, every member of each
H-orbit on P, is G-conjugate to some unique member (P, X) of S. The number of
H-orbits on Py whose members are G-conjugate to some given member (P, X) of
S'is Bp,x)(H), where (p x) is the function of Theorem 4.5(b), and it follows that

BH)= > Bipx)(H).

(P,X)eS

Theorem 4.5 guarantees that for each member (P, X) of S, the function Bp x is
chain local on G, so 8 is a sum of chain local functions, and thus f is chain local,
as required, proving (b).

Recall next that v(H) is the number of H-orbits of nontrivial p-subgroups @
of H such that Ny (Q) = N, with the additional requirement that @ is radical in
H, or equivalently @ = O,(Ng(Q)). As in the proof of (b), each such H-orbit K
uniquely determines a set of pairs

Ak ={(Q.Y)|Q € K and Y =Ny(Q)},

where H acts transitively on K.
Now let P3 be the set of pairs (Q,Y") such that

(2) Q = Op(Y),
(3) V=N,

and observe that the map K — A is a bijection from the set of H-orbits of
subgroups @ C H such that Ng(Q) =2 N and Q = O,(Ng(Q)), onto the set of
H-orbits on Ps.

Then «y(H) is the number of H-orbits on the set Ps. Also, every member of each
H-orbit on P5 is G-conjugate to some unique member (P, X) of S. The number of
H-orbits on Ps whose members are G-conjugate to some given member of (P, X)
of S'is y(px)(H), where v(p x) is the function of Theorem 4.5(c), and it follows
that

YH) = Y vex)(H).

(P,X)eS
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Theorem 4.5 guarantees that for each member (P, X) of S, the function yp x) is
chain local on G, so 7y is a sum of chain local functions, and thus -~y is chain local,
as required, proving (c).

By definition, §(H) = 1 if Ng(Q) = N, where Q € Syl (H), and §(H) = 0,
otherwise. By Sylow’s theorem, therefore, 6(H) is the number of H-orbits on the
set Py of pairs (Q,Y) such that

(1) Y =Ngu(Q),

(2) Q €Syl (H),

(3) Y=N.
Reasoning as before, it follows that ¢ is the sum of functions of the form ¢ p x),
as in Theorem 4.5(d), where (P, X) runs over the set S. By Theorem 4.5, the
functions dp, x) are chain local on G, and hence ¢ is chain local. O

The proofs of Theorems E(e), E(f), and E(g) are now complete, and the following
is a restatement of Theorem [El(i).

Corollary 4.7. Let f4(G) denote the number of conjugacy classes of G that have
defect d, where d > 0. Then the isomorphism-constant function fq is chain local.

Proof. Fix a group G having order divisible by p, and let a4 be the conjugacy-
constant function on G obtained by restricting f; to the set of subgroups of G
having order divisible by p. It suffices to show that ay is chain local on G.

Let H C G, where |H| is divisible by p. Each conjugacy class K of elements of
H uniquely determines a set of pairs

Ax ={(Q,y) |y € K and Q € Syl,(Cx(y))},

and we see that H acts transitively by conjugation on Ag. Also, if the class K has
defect d, then for each pair (Q,y) in Ag, we have |Q| = p®.

Now let P be the set of pairs (@, y) such that

(1) ye H,

(2) Q €5y, (Cu(y)),
and observe that the map K — Ag is a natural bijection from the set of conjugacy
classes of H onto the set of H-orbits on P, and thus ay(H) is the number of H-orbits
on P that correspond to classes having defect d.

Now let S be a set of representatives of the G-orbits of pairs (P, ), where x € G
and P C G is a nonidentity p-subgroup that centralizes x. All members of each
H-orbit on P are G-conjugate to some unique member (P, z) of S, and we see that
the number of H-orbits on P whose members are G-conjugate to a given pair (P, z)

in S is equal to € p 4 (H), where €(p 4 is the function €(p xy of Theorem 4.5(e) and
X = {z}. Tt follows that

aqg(H) = Z €y (H),
(P)

where the sum runs over those members (P,z) of S such that |P| = p?. We are
assuming that d > 0, so P is a nonidentity p-group, and hence Theorem 4.5(e)
guarantees that the functions €p ;) are chain local on G. It follows that aq is chain
local, as required. O

Our next result includes Theorem [Efb) and most of Theorem [El(a).
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Corollary 4.8. Fiz a set T of integers divisible by p, and let f be the isomorphism-
constant function that counts the conjugacy classes of elements of G having orders
in the set T. Then f is chain local.

If T is the set of all multiples of p, then f counts the p-singular classes of G,
and the fact that f is chain local is Theorem [E[b). If we take T to be the set of all
powers of p exceeding 1, then f counts the classes of nonidentity p-elements of G,
so the total number of classes of elements of G that have p-power order is f(G) + 1.
In order to deduce Theorem [El(a) from Corollary 8] therefore, we would need to
establish that the constant function f(G) =1 is chain local. This fact was stated
as Theorem [E(h), and again as Lemma 2.1l but we have not yet presented a proof.

Proof of Corollary [£8l Suppose G is a group having order divisible by p, and let
1 be the conjugacy-constant function on G obtained by restricting f to subgroups
of G. It suffices, therefore, to show that u is chain local on G for every choice of G.

Let H C G, where p divides |H|, and suppose that K is a conjugacy class of
H consisting of elements having order divisible by p. Then K uniquely determines
the set of pairs

Ax ={(Q,y) |y € K and Q = O,((9))},

so H acts transitively by conjugation on Ag, and we observe that if (Q,y) € Ak,
then @ > 1 since (y) is cyclic and by assumption, the order of y is divisible by p.

Now let P be the set of pairs (@, y) such that

(1) ye H,
(2) @=0,({y) > 1,

and observe that the map K — Ag is a bijection from the set of classes of H
consisting of elements having order divisible by p onto the set of H-orbits on P.

Now let S be a set of representatives of the G-orbits of pairs (P, z), where P is a
nonidentity p-subgroup of G and € Ng(P). Then every member of each H-orbit
on P is G-conjugate to some unique member of S, and we see that the number of
H-orbits on P whose members are G-conjugate to a given pair (P, ) in S is equal
to a(p ) (H), where o p ) is the chain-local function o p x) of Theorem 4.5(a) and
X ={z}.

Now f(H) is the number of classes of elements of H that have orders in the set
T, and it follows that

f(H) = Z a(P,w)(H)a
(P)

where the sum runs over those pairs (P,z) € S such that the order of z lies in
T. Since the functions a(p,) are chain local, it follows that f is chain local, as
required. ([l

As our final application of the techniques of this section, we prove the following,
which will yield Theorem [l

Theorem 4.9. Fizx an element x having order divisible by p in a group G, and let
o be the integer-valued conjugacy-constant function for G defined by letting o, (H)
be the number of right cosets Ht of H in G such that Htx = Ht. Then «y is chain
local on G.

Proof. Let X = {z} and P = O,((z)), and note that P > 1 because we are
assuming that x has order divisible by p. Also, let 7 be the set of normalizing
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triples (C,@,Y) in G such that (@,Y) is G-conjugate to (P, X), and note that 7
is G-invariant, so we can apply Lemma 44l Observe also, that for every G-orbit O
on T, the paired orbit O* is also a G-orbit on 7.

Now fixing a chain C', we write H = G¢, and we let Q be the (possibly empty) H-
invariant set of pairs (@, Y") such that (C,Q,Y) lies in 7. For each pair (Q,Y) € Q,
we have Y = {y}, where y € H and y is a member of the set S of elements of H that
are conjugate to x in G. In fact, S is exactly the set of elements y of H such that
{y} is the right component of some pair in Q. To see this, observe that if y € S,
and @ = O,((y)), then (@, {y}) is the unique pair in Q with right component {y}.

Now S is the union of some set I of classes of H, and each member K of K
uniquely determines a set of pairs

U ={(Q,Y) | Y = {y}, where y € K and Q = O,({y))} ,

where Ux C Q, and |K| = |Ugk|. Also, since K is a conjugacy class of H, we see
that H acts transitively on Uk, and thus the map K — Uk is a bijection from K
onto the set of H-orbits on Q.

By Lemma [ 4)(a), there is a bijection 7 from the set of H-orbits on Q onto the
set of those G-orbits O on T such that C is the left component of some member of
O. Given K € K, we write 7(Ux) = Ok, and we observe that Lemma L. 4(b) yields

|Ok| = |G : H||Uk| = |G : H||K].
Now consider the chain sum

a= 3 (-1 Da,(Ge).

CeR

where R is a set of representatives of the G-orbits of chains. To show that «, is
chain local on G, we must show that a = 0, so we proceed to compute the term
in the sum that corresponds to the given chain C. For notational convenience, we
write @ = a, and we recall that we have defined H = G¢. We begin by computing
a(H).

We see that a(H) = m/|H|, where m is the number of elements ¢ € G such
that Htx = Ht, or equivalently, tat~' € H, and thus tzt~! € S. For each element
y € S, the number of elements t € G such that tzt~! = y is exactly |Cg(7)]|, so
m = |Cg(z)||S], and we have

m  |Cg(z)[[S|  [Cq(w)] |Cq ()|
alH) = — = = G: H|S G:H K
(H) | | G| | 18] = c | |K§e:lc\ |
_ [Cq(x) Z
= |OK| .
Gl =

Recall now that the map K — Ok is a bijection from the set K onto the set of
all G-orbits on 7 that contain a triple with left component C'. The final sum above,
therefore, is equal to > |O|, where O runs over all G-orbits on T that contain a
triple with left component C. We thus have

_ |Cc(=)|
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For each G-orbit O on T, there is a unique member of the representative set R
that occurs as a left component of a member of O, and we see now that

a = Z (_1)len(C)a(G C|CZ; ‘ Z |O|

CeR

where here, the sum on the right runs over all G-orbits on 7. Then a = 0, as
required, because for each orbit O on 7T, the paired orbit O* is also one of the
terms in the sum, and we have |O*| = |O| and s(O*) = —s(0). O

Next, we restate and prove Theorem [Jl which is essentially a result of Webb.

Corollary 4.10. If G is a finite group, then the generalized character

9 = Z (_1)len(C)(1GC)G

CeR

vanishes on the p-singular elements of G.

Proof. Observe that (1g,)¢ is the permutation character corresponding to the
right multiplication action of G on the set of right cosets of G¢ in G. Given a
p-singular element x € G, therefore, we see that 6(z) is exactly the chain sum for
the conjugacy-constant function «, defined in Theorem 4.9. Since «, is chain local,
this chain sum vanishes. O

n [I8], Webb defined what he called the “Steinberg module” of a group G, and
this corresponds to the negative of the generalized character 6 in Corollary I0
Webb’s “module” is virtually projective, and this implies that the corresponding
generalized character vanishes at p-singular elements.

5. FUNCTIONS FOR WHICH f(G) = f(N)

We return now to the point of view of the introduction, where isomorphism-
constant functions defined on the underlying family F, and having values in an
abelian group U, can be viewed as homomorphisms from the free-abelian group A
into U. Also, we recall that the isomorphism-constant functions that are chain local
for F correspond exactly to those homomorphisms that vanish on the subgroup B
of A.

The following powerful result is Theorem [F](a).

Theorem 5.1. Let f be an isomorphism-constant function with values in some
abelian group U. For every finite group G that lies in the underlying set F and
has order divisible by p, assume that f(G) = f(N), where N is the normalizer of a
Sylow p-subgroup of G. Then f is chain local for F.

Proof. Given a finite group M, let sj; be the integer-valued isomorphism-constant
function of Corollary FL6I(d), so sps is chain local, and by definition, sy (G) =1 if
M is isomorphic to the normalizer of a Sylow p-subgroup of G, and s/ (G) = 0,
otherwise.

Now let G lie in F and have order divisible by p. Let N be the normalizer of a
Sylow p-subgroup of G, and note that N € F, so f(N) is defined. We argue now

that
F(G) = f(N) =" su(G)f(M)
[M]
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where the sum runs over all isomorphism classes [M] of groups M lying in F. The
first equality holds by hypothesis, and the second equality is clear since sp;(G) = 0
unless M = N, in which case s/ (G) = 1.

Now let b € B, so we can write b = Y n;[X;], where the sum is finite, the
coefficients n; lie in Z, and the groups X; lie in F. Then

FO) = "nif(Xo) =Y iy sa(X) (M) = nisar(X;) f(M)
i (M]

i M] i

where the final equality holds because the functions sy, are chain local, and thus
sy (b) =0 for all M. Then f(b) =0 for all b € B, and we conclude that f is chain
local for F, as required. O

We now present some consequences of Theorem 5.1. The first of these is the
following, which is Theorem [El(h), and which was restated as Lemma 21 Also,
recall that this is the final ingredient needed to complete the proof of Theorem [Al
and to derive Theorem [Ea) from Corollary A8

Corollary 5.2. The constant function f(G) = 1 for groups G having order divisible
by p s chain local.

Proof. If N is the normalizer of a Sylow p-subgroup of G, we have f(G) =1 = f(N),
so f is chain local by Theorem 5.1. O

Next, we recall that an isomorphism constant function f with values in an abelian
group U is “strongly chain local” if all of the functions f,) are chain local for
elements u € U, where by definition f,)(G) = 1 if f(G) = v and f,)(G) = 0,
otherwise. (Also, if we wish to mention the underlying family F explicitly, we say
that f is strongly chain local for F if each of the functions f, is chain local for
F.)

We saw that strongly chain local functions are guaranteed to be chain local, but
that not every chain local function is strongly chain local. We have the following,
however.

Corollary 5.3. Let f be as in Theorem 5.1, so f has values in an abelian group U,
and f(G) = f(N) whenever N is the normalizer of a Sylow p-subgroup of G, where
G lies in the underlying set F and G has order divisible by p. Then f is strongly
chain local for F.

Proof. Let u € U, and let N be the normalizer of a Sylow p-subgroup of GG, where
G lies in F and |G| is divisible by p. By hypothesis, there exists an element v € U
such that f(G) = v = f(N), so if u = v, we have f,)(G) = 1 = f,)(N), and
otherwise, f(,)(G) =0 = fr,)(N). In both cases, therefore, f(,)(G) = f)(V), and
hence Theorem 5.1 guarantees that f,) is chain local for . It follows by definition
that f is strongly chain local for F. (]

Now let m be the McKay function, so m(G) is the number of irreducible char-
acters of G’ having degrees not divisible by p. Recall that the McKay conjecture
posits that m(G) = m(N) for all groups G, where N is the normalizer of a Sylow
p-subgroup of G. If the McKay conjecture is true, therefore, then Theorem 5.1
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applies, and we deduce that the function m is chain local, and in fact, if the McKay
conjecture is true, then m is strongly chain local by Corollary This proves
Theorem [H

Conversely, if m is chain local, then the McKay conjecture holds. The following
is Theorem

Theorem 5.4. The McKay function m is chain local if and only if m(G) = m(N)
for all finite groups G, where N is the normalizer of a Sylow p-subgroup of G.

To prove this, we will use the fact that if G is a minimal counterexample to the
McKay conjecture, then O,(G) = 1. This is proved by fairly standard character-
theoretic techniques in [14], where it appears as the first part of the proof of The-
orem 9.27. (We mention that Theorem 9.27 of [14] asserts that Dade’s ordinary
conjecture implies the McKay conjecture. We will present a different proof of this
fact following the proof of Theorem 5.4, below.) We need the following preliminary
result.

Lemma 5.5. Suppose that G is a finite group such that p divides |G|. Also, let f
and g be chain-local functions, and assume that f(X) = g(X) for every subgroup
X of G such that Op(X) > 1. Then f(G) = g(G).

Proof. By Theorem [A] there exist subgroups H; of G such that [G] = > n;[H;]
mod B, where O,(H;) > 1. By assumption, f(H;) = g(H;) for all i, and since f
and g are chain local, we have

HG) =S nif (Hy) = 3 nig(Hy) = (G),
as required. O

Proof of Theorem 5.4. As we have seen, Theorem 5.1 guarantees that if the McKay
conjecture is true, then the function m is chain local. It suffices, therefore, to assume
that m is chain local, and to prove that m(G) = m(N) for all finite groups G, where
N is the normalizer of a Sylow p-subgroup of G. Assuming that this is false, let G
be a minimal counterexample, and note that N # G because m(N) # m(G), and
thus |G| is divisible by p. Also, as we remarked, the minimality of G guarantees
that O,(G) = 1.

Let mg be the isomorphism-constant function defined by setting mg(X) = m(M),
where M is the normalizer of a Sylow p-subgroup of X. Then mo(M) = m(M) =
mo(X), and so my is chain local by Theorem 5.1.

Now if X C G and O,(X) > 1, then X < G because O,(G) = 1. By the
minimality of G, therefore, we have m(X) = m(M) = my(X), where as before, M
is the normalizer of a Sylow p-subgroup of X. By Lemma [5.3] therefore, m(G) =
mo(G) = m(N), and this is a contradiction. O

Recall that by definition, the defect of a character x € Irr(G) is the nonnegative
integer d such that p? is the p-part of |G|/x(1). Also, kq(G) is the number of
irreducible characters of G that have defect d, and Dade’s ordinary conjecture (in
its block-free form) asserts that the functions kq are chain local for d > 0.

Theorem 5.6. If the block-free form of Dade’s ordinary conjecture is true, then
the McKay conjecture is also true.

Proof. We must show that if N is the normalizer of a Sylow p-subgroup of a group
G, then m(G) = m(N), so we assume that this is false, and we let G be a minimal
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counterexample. Then m(G) # m(N), and (as before) we conclude that p divides
|G| and that O,(G) = 1.

Let p® be the p-part of |G|, so a > 0. If X is a finite group and the p-part of
| X is less than p®, then k,(X) = 0. Also, if the p-part of |X| is equal to p®, then
ko (X) = m(X).

Now let f be the isomorphism-constant function defined by setting f(X) =
ko (Y), where X is arbitrary and Y is the normalizer of a Sylow p-subgroup of X.
We see by Theorem 5.1 that f is chain local.

Now let H be a proper subgroup of GG, and let M be the normalizer of a Sylow
p-subgroup of H, so m(H) = m(M) by the minimality of G, and we argue that
f(H) = ko(H). To see this, let p® be the p-part of |H|, so b < a and p® is the p-part
of |M|. Also, by definition, f(H) = k.(M).

Now if b = a, then

fH) = ka(M) = m(M) = m(H) = ko(H),

as required, where the second and fourth equalities hold because the functions m
and k, agree on groups whose order has p-part equal to p®. If b < a, on the other
hand, we have

f(H) =ko(M) =0=ko(H),

so in all cases, f(H) = k,(H), as claimed.

Now f is chain local, and since we are assuming Dade’s conjecture, k, is also
chain local. We have seen that f and k, agree on proper subgroups of GG, and since
0,(G) = 1, we deduce that f and k, agree on all subgroups H C G such that
O,(H) > 1. Lemma [5.5] thus guarantees that k,(G) = f(G). Then

m(G) = ka(G) = f(G) = ka(N) = m(N),

where the third equality holds by the definition of f. This is a contradiction. [

6. FUNCTIONS THAT ARE DEFINED LOCALLY

The following is Theorem F(b).

Theorem 6.1. Let h be an arbitrary isomorphism-constant function with values in
an abelian group U, and let

F(G) =Y h(NG(Q)),
Q

where QQ Tuns over a set of representatives of the G-classes of nonidentity p-sub-
groups of G. Then f is a chain-local function.

The function f in Theorem 6.1 is defined in terms of the values of h on what
are traditionally referred to as the “local” subgroups of G, and so we can think
of f as being defined locally. The assertion of the theorem, therefore, is that an
isomorphism-constant function that can be defined locally must be chain local. We
shall see later that in fact, every chain local function can be defined locally.

Proof of Theorem 6.1. Let gn be the function defined in Corollary [£6|(b), so gy (G)
is the number of conjugacy classes of nonidentity p-subgroups @ of GG such that
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N¢g(Q) =2 N. Then gn(G) is the number of terms in the sum defining f for which
N¢g(Q) = N, and this yields

F(G) =) gn(G)h(N),

(V]

where [N] runs over the isomorphism classes of groups that occur as normalizers
of nonidentity p-subgroups in G. Since gny(G) = 0 for groups N that are not
isomorphic to any of the subgroups of the form N¢g(@Q), it follows that in the above
sum, we can allow [N] to run over all isomorphism classes of groups.

Now let b € B, and write b = > n;[X;], where the sum is finite and the coeffi-
cients n; are integers. Then

f(b) = Znif(Xi) = an ZQN(Xi)h(N) = ZznigN(Xi)h(N)
; PN

(V] i

= ZQN(b)h(N)

[N]
:O’

where the final equality holds because gy is chain local by Corollary [£.6 and thus
gn(b) = 0. Then f(b) =0 for all b € B, and thus f is chain local. O

What is essentially the same argument proves the following, which is Theorem
[El(c). In this modification of Theorem 6.1, we sum over radical subgroups only, and
this proves to be useful for some applications.

Theorem 6.2. Let h be an arbitrary isomorphism-constant function with values in
an abelian group U, and let

F(G) = h(Ne(Q)),
Q

where @ runs over a set of representatives of the G-classes of nonidentity radical
p-subgroups of G. Then the function f is chain local.

Proof. The proof of Theorem 6.1 goes through with essentially no change except
that in place of the function gy of Corollary [L8(b), we use the function ry of
Corollary 6l(c). Recall that rn(G) is the number of G-classes of nonidentity
radical p-subgroups @ of G such that Ng(Q) = N. |

As an application of Theorem 6.1, we produce a chain-local function that detects
whether or not a group G is p-nilpotent. Observe that the following does not
really provide a new p-nilpotence criterion; it is simply a restatement of Frobenius’
theorem in the language of chain-local functions.

Corollary 6.3. Let f(G) be the number of conjugacy classes of p-subgroups Q of G
such that Ng(Q) fails to be p-nilpotent. Then f is chain local, and G is p-nilpotent
if and only if f(G) = 0.

Proof. By the Frobenius normal p-complement theorem (Theorem 5.26 of [§]), G
is p-nilpotent if and only if N¢(Q) is p-nilpotent for every nonidentity p-subgroup
Q of G. Tt follows that G is p-nilpotent if and only f(G) = 0.
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Now let h be the isomorphism-constant function defined by setting A(X) = 0 if
X is p-nilpotent and h(X) = 1, otherwise. Clearly then,

F(G) =Y nNG(Q)),
Q

where the sum runs over a set of representatives of the conjugacy classes of non-
identity p-subgroups @ of G. It follows by Theorem 6.1 that f is chain local, as
required. O

Corollary 6.4. Let G have order divisible by p and suppose [G] = > n;[H;] mod B,
as in Theorem [Bl. Then G is p-nilpotent if and only if each of the groups H; is
p-nilpotent.

Proof. We know that the groups H; are isomorphic to subgroups of G, so if G is
p-nilpotent, all of the groups H; are also p-nilpotent. Conversely, assume that all
of the groups H; are p-nilpotent, and let f be the function of Corollary [Z.3] so
f(H;) = 0 for all ¢. Since f is chain local, we have f(G) = > n,;f(H;) = 0, and
thus G is p-nilpotent by another application of Corollary [Z.3] O

We have now established all of Theorem [E] except for E(c) and E(d), which
involve Brauer blocks. Before we present proofs of these two results, we offer a very
brief review of a few relevant facts from block theory.

We view the blocks of G as forming a partition of the set Irr(G), and we note
that the defect of a block B is the maximum of the defects of the characters in
B. Tt is well known that if B contains a character x having defect 0, then x is the
unique character in B, and thus B has defect 0. Also, by a result of Brauer, if a
block B contains a character with defect 1, then the defect of every character in
B is at most 1. (This is Theorem 3 of [2], and we note that the case where p = 2
is proved separately in Section 8 of Brauer’s paper.) Since a block that contains a
character having defect 1 cannot also contain a character having defect 0, we see
that if B contains a defect 1 character, then all characters in B have defect 1, and
it follows that B has defect 1. The union of all blocks of defect 1, therefore, is
exactly the set of irreducible characters having defect 1.

Associated with each block B of G is a unique conjugacy class of p-subgroups
of G called the defect groups of B, and these subgroups have order p¢, where d is
the defect of B. Also, O,(G) is contained in the defect groups of every block of G.
(See Corollary 15.39 of [7].)

Brauer’s first main theorem asserts that for every p-subgroup @ of G, there is
a bijection from the set of blocks of G for which @ is a defect group onto the
set of blocks of N = Ng(Q) for which @ is a defect group. (See, for example,
Theorem 15.45 of [7] or Theorem 4.12 of [I3].) Thus if @ is a defect of some block
of G, then @ is also a defect group of some block of N, and thus O,(N) C Q. If Q
is a defect group of a block, therefore, it follows that @ = O,(Ng(Q)), and thus Q
is a radical p-subgroup of G.

Next, we restate Theorem [Efc), which we prove as an application of Theorem 6.2.

Theorem 6.5. Let G have order divisible by p, and write b(G) to denote the number
of Brauer p-blocks of G that have positive defect. Then the function b is chain local.

Proof. The defect groups of a block B of G form a conjugacy class of radical p-
subgroups of G having order p¢, where d is the defect of B. This defines a map from
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the set of blocks of G having positive defect to the set of conjugacy classes of non-
identity radical p-subgroups of G. Writing f(X, Q) to denote the number of blocks
of a group X for which @ is a defect group, we thus have b(G) = >, f(G,Q),
where Q runs over a set of representatives of the conjugacy classes of noniden-
tity radical p-subgroups of G. Also, by Brauer’s first main theorem, we see that
f(G,Q) = f(N,Q) for each p-subgroup Q of G, where N = N (Q).

Now define the isomorphism-constant function h by letting h(X) be the number
of blocks of X for which O,(X) is a defect group. If @ is a radical subgroup of
G and N = Ng(Q), then Q = O,(N), and thus h(N) = f(NV,Q) = f(G,Q). It

follows that
b(G) = h(Na(Q)),
Q

where () runs over a set of representatives of the conjugacy classes of nonidentity
radical p-subgroups of G. By Theorem 6.2, therefore, the function b is chain local,
as required. (Il

By the block-free version of Dade’s ordinary conjecture, we expect that all of
the functions kg4 for d > 0 are chain local, but using some deep results from block
theory, we can actually prove that the function ki is chain local. The following is
Theorem [Eld).

Theorem 6.6. The function ky is chain local, where k1(G) is the number of irre-
ducible characters of G that have defect 1.

Proof. We have observed that the irreducible characters of G that have defect 1 are
exactly the irreducible characters that lie in blocks of defect 1. Also, the blocks of
defect 1 are exactly the blocks that have a subgroup @ of order p as a defect group.
Writing g(Q) to denote the number of irreducible characters of G that lie in blocks
having defect group @, it follows that

k(G =Y 9(Q),
Q

where the sum runs over a set a representatives of the G-classes of subgroups @ of
G having order p.

Suppose now that @ C G, where |Q| = p, and write N = Ng(Q). By Brauer’s
first main theorem, there is a bijection B — b from the set of blocks B of G for
which @ is a defect group to the set of blocks b of N for which Q is a defect group.
It follows by results of Dade that the numbers of irreducible characters in B and
in b are equal. (More precisely, Part 1 of Theorem 1 of [5] describes the number
of irreducible characters of B, expressed in terms of the group N and the block b.
Applying this to the block b of N, we of course obtain the same answer.)

It follows by Dade’s theorem that g(@Q) is equal to the number of irreducible
characters of N = N¢(Q) that belong to blocks having defect group Q. Since
@ < N, we see that @ is contained in the defect groups of each block of N, so the
blocks of N that have defect group @ are all of the blocks of N that have defect
1. The characters of N that lie in the blocks having defect group @, therefore, are
exactly the characters that lie in blocks of defect 1, and we have seen these are
exactly the defect 1 irreducible characters of N. It follows that

ki (G) =Y k1 (Na(Q)),
Q
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where, as before, we sum over representatives @ of the conjugacy classes of sub-
groups of order p in G.

Finally, we argue that if Q is a p-subgroup with order exceeding p, then since Q) is
contained in every defect group of a block of N¢(Q), no such block can have defect
1, and thus k1 (N¢(Q)) = 0. In the above formula for k1 (G), therefore, we can sum
over a set of representatives of all conjugacy classes of nonidentity p-subgroups of
G, and it follows by Theorem 6.1 that k; is chain local. |

It is natural to ask which chain-local functions with values in an abelian group
U can be constructed using Theorems 6.1 and 6.2. The answer is “all of them”
except that for Theorem 6.1, we must assume that the group U is divisible. (Recall
that an abelian group U is divisible if for every element u € U and every positive
integer ¢, there exists a unique element v € U such that tv = u.) Since the additive
group of the rational numbers is divisible, we see that the following result includes
Theorem [Gl

Theorem 6.7. Let [ be a chain-local function with values in an abelian group U.

(a) IfU is divisible, there exists a unique U-valued isomorphism-constant func-
tion h defined on groups N with O,(N) > 1 and such that if p divides |G|,
then f(G) =3 o h(Ng(Q)), where Q runs over a set of representatives of
the conjugacy classes of nonidentity p-subgroups of G.

(b) With no extra assumption on U, there exists a unique U-valued isomorphism-
constant function h defined on groups N with O,(N) > 1 and such that if
p divides |G|, then f(G) = 5 h(Na(Q)), where Q runs over a set of rep-
resentatives of the conjugacy classes of nonidentity radical p-subgroups of

G.

Proof. Given an arbitrary finite group N with O, (N) > 1, we use induction on |N|
to define the element h(N) of U and to prove that h(N) is uniquely determined.
We assume, therefore, that h(M) has already been defined and that its uniqueness
has been established for all groups M with O,(M) > 1 and |M| < |N|.

To prove (a), let S be a set of representatives of the conjugacy classes of non-
identity p-subgroups @ of N such that Ny(Q) < N. Also, let T be the set of
nonidentity normal p-subgroups of N, and note that S may be empty, but |7| > 0
since by assumption, O,(N) > 1.

Now S U T is a set of representatives of the conjugacy classes of all nonidentity
p-subgroups @ of N, and we require that

FIN) = > h(NN(Q) =D h(Na(@) + Y h(Ne(Q))

QeESUT QES QeT
= > h(Ng(Q)) + [T|A(N).
QeS

Since the sum over Q € S is known by the inductive hypothesis, we are forced to
define

1
b = o (f(N) - (;Sh(NN(Q))) ,

where division by the positive integer |7 | makes sense since by assumption, U is a
divisible group.
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We see now that h is uniquely defined, and the definition guarantees that the re-
quired equation f(G) = >4 h(N¢(Q)) holds for all groups G such that O,(G) > 1,
where the sum runs over a representative set for the conjugacy classes of noniden-
tity p-subgroups of G. To show that this equation holds for all groups G having
order divisible by p, we define fo(G) = >_, M(Ng(Q)), and we show that fy = f.

Now f is chain local by hypothesis, and f; is chain local by Theorem 6.1, and
we know that f and fy agree on groups G such that O,(G) > 1. It follows by
Lemma that fo(G) = f(G) for all groups G having order divisible by p, and
this completes the proof of (a).

The proof for (b) is similar, but in this case, we take S to be a set of representa-
tives of the conjugacy classes of nonidentity radical p-subgroups @ of N such that
Ny (Q) < N, and we let T be the set of nonidentity radical normal p-subgroups
of N. Observe that T = {O,(N)}, so |T| =1, and in this case, we are forced to
define

h(N) = f(N) = > h(Nx(Q)),
QEeS
and since we have no need to divide by an integer that may exceed 1, we can drop
the requirement that the abelian group U is divisible.

The definition of h guarantees that f(G) = > 5 h(Ng(Q)) for groups G such
that O,(G) > 1, where the sum runs over representatives of the conjugacy classes
of nonidentity radical p-subgroups of G. We complete the proof as we did for (a)
by defining fo(G) = ZQ h(Ng(Q)) and deducing by Lemma that fo = f. In
this case, however, we appeal to Theorem 6.2 to show that fj is chain local. (]

7. p-SOLVABLE GROUPS

We assume now that the underlying family F is the family of p-solvable groups.
Suppose that f is an isomorphism-constant function defined for p-solvable groups
G having order divisible by p, and assume that the values of f lie in some abelian
group U. Recall that f is chain local for p-solvable groups if

> (~1) ) f(Ge) =0

CeR

for all such groups G, where as usual, R is a set of representatives of the G-orbits
of chains in G. Recall also that f is strongly chain local for p-solvable groups if for
all elements u € U, the functions f, are chain local for p-solvable groups.

Theorem 7.1. Let f be a U-valued isomorphism-constant function defined for p-
solvable groups G having order divisible by p, and suppose that f(G/L) = f(G)
whenever L is a normal p’'-group of G. Then f is strongly chain local for p-solvable
groups.

To prove Theorem 7.1, we need the following preliminary result, which relates
the p-chains of a group G to the p-chains of a factor group G/L, where L is a
normal p’-subgroup of G. We use the standard “bar convention”, so if L < G and
G = G/L, then for each subset X C G, we write X to denote the image of X under
the canonical homomorphism from G onto G/L, and in particular, if z € G, then
T is the coset Lzx.
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Lemma 7.2. Let L< G, where L is a p’'-group, and write G = G/L. If C = {P,;} is
a collection of p-subgroups of G, write C = {P;}, so C is a collection of p-subgroups
of G. The following then hold:
(a) If C is a chain in G, then C is a chain in G, and len(C) = len(C).
(b) Every chain in G has the form C for some chain C in G.
(c) If B and C are chains in G such that B = C, then B® = C for some
element x € L.
If H is the stabilizer of a chain C in G, then H is the stabilizer of C in G.
(e) If R is a set of representatives of the G-orbits of chains in G, then R =
{C'| C € R} is a set of representatives of the G-orbits of chains in G, and
the map C +— C is a bijection from R onto R.

—
£

Proof. If C' = {P;} is a chain, we have 1 = Py < P; < --- < P, and n = len(C), so
to prove (a), it suffices to show that if P < Q are p-subgroups of G, then P < Q.
Clearly, P C @, and since L is a p/-group, we have |P| = |P| < |Q| = |@Q|. Then
P # @Q, and thus P < Q, as required.

For (b), consider a chain in G. Since every subgroup of G has the form X for
some subgroup X C G with L C X, the given chain in G has the form {X,},
where L = Xy < X; < --- < X,, and the X; are p-groups. Let Q be a Sylow
p-subgroup of X,,, and write P, = X; NQ,s01 =P C P C---C P, =@Q. Now
X, = LQ because X,,/L = X, is a p-group, so we have L C X; C X,, = LQ.
Dedekind’s lemma yields X; = L(X; N Q) = LP;, and thus X; = P; for all i. Since
the subgroups X; are distinct, it follows that the P; must also be distinct, and so
1=Py< P, <---<P,. Then C = {P;} is a chain, and C = {P;} = {X;}, which
is the given chain in G.

To prove (c¢) we show that up to conjugacy by an element of L, each chain C
in G is uniquely determined by its image C. Let C = {P,} where 1 = Py < P; <

. < P,, and observe that the full preimage in G of the term P; of C is LP;.
The subgroups LP; are thus uniquely determined by C, and in particular, LP, is
uniquely determined by C. Since P, is a Sylow p-subgroup of LP,, it follows that
up to conjugacy by an element of L, the subgroup P, is uniquely determined by
C. We will show that P; = P, N LP;, and that will imply that P, and C together
uniquely determine the chain {P;} = C, and it will then follow, as required, that
C' determines C up to conjugacy by an element of L.

We show now that P; = P, N LP;. Observe that

P,C(P,NLP)CP, and P, C(P,NLP)CLP;,

so |(P,NLP;) : P;| divides both the p-power |P, : P;| and the p’-number |LP; : F;|.
It follows that |(|P,NLP;) : P;| =1, so P, = P,NLP; as wanted, and this completes
the proof of (c).

Next, let C' be a chain in G with stabilizer Go = H. If h € H, then (O)" =
Ch = C, so H stabilizes C. To complete the proof of (d), we must show that each
element of G that stabilizes C lies in H. Suppose, then, that ¢ € G and g stabilizes
C. We have C = (C)9 = C9, so we can apply (c) to deduce that (C9)® = C for
some element x € L. Then gz € H, so § = gz € H, as required.

Now, suppose that R is a set of representatives of the G-orbits of chains in G. To
show that R is a set of representatives of the G-orbits of chains in G, we must show
that every chain in G is G-conjugate to some member of R, and we must also show
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that distinct members of R cannot be conjugate in G. By (b), an arbitrary chain
in G has the form C for some chain C in G, so we must show that C is conjugate
to a member of R. Now C9 € R for some element g € G, and thus (C)7 = C9 € R,
as required.

Now let B,C € R, so B and C are typical members of R. We will show that if
B and C are conjugate in G, then B = C, and thus B = C. This will complete the
proof that R is a set of representatives of the chains of G, and it will also show that
our map R — R is injective, and hence it is a bijection. We suppose, therefore,
that (B)7 = C for some element g € G. Then B9 = C, and thus (c) guarantees
that B9% = C for some element x in L. It follows that B and C' are conjugate in G,
and since we are assuming that B, C € R, we deduce that B = C'. This completes

the proof of (e). O

Proof of Theorem 7.1. Let G be an arbitrary p-solvable group having order divisible
by p, and let R be a set of representatives of the G-orbits of chains in G. Also, let
L =0, (G), and write G = G/L, so O,(G) > 1.

Let a be the conjugacy-constant function on G obtained by restricting f to the
subgroups of G. Corollary guarantees that a is chain local on G, and since we
know by Lemma [T.2(e) that R is a set of representatives of the G-orbits of chains
of G, we have

0= (-1)Oa(Gpr) = Y (-1)"Of(Gc) = D (-1)"f(Ge).

TR CeR CeR

Here, to obtain the second equality, we observe that « agrees with f on subgroups
of G, and we apply several of the conclusions of Lemma Specifically, we use
the equalities len(C) = len(C) and G = Gg, and we use the fact that the map
C + C defines a bijection from R onto R. The third equality above holds by the
hypothesis on f, which applies because G¢ = G¢/(GoNL) and GeN L is a normal
p’-subgroup of G¢.

Since G is an arbitrary p-solvable group having order divisible by p, and we have
just seen that the chain sum on G with respect to f vanishes, it follows that f is
chain local for p-solvable groups.

To complete the proof, we must show that each of the functions f,) for u € U is
chain local for p-solvable groups. By the first part of the proof, it suffices to show
for all u € U that f,)(G/L) = fu)(G) whenever L is a normal p’-subgroup G.
To see this, let f(G) = v, where v € U. Then f(G/L) = v, so if v = u, we have
f(u)(G) =1= f(u) (G/L), and otherwise, f(u)(G) =0= f(u)(G/L). O

Recall now that by Theorem [El(a), the function that counts the conjugacy classes
of p-elements in a group G is chain local. Experiment shows that in general, this
function is not strongly chain local, but nevertheless, we have the following.

Corollary 7.3. Let f be the isomorphism-constant function defined by letting f(G)
be the number of conjugacy classes consisting of p-elements in a group G. Then the
function f is strongly chain local for p-solvable groups.

Proof. By Theorem 7.1, it suffices to show that if G is p-solvable and L < G is a
p'-subgroup, then f(G) = f(G), where G = G/L. Since this is fairly well known,
we sketch the proof, omitting some details.

It is easy to see that the map x — T carries the set of p-elements of G onto the
set of p-elements of G, and it is clear that if z and y are conjugate elements of G,
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then Z and 7 are conjugate in G. The map x — T thus induces a surjective map
from the set of classes of p-elements of G onto the set of classes of p-elements of G,
so to prove that f(G) = f(G), it suffices to show that this map is injective.

If z and y are p-elements of G and T and 7 are conjugate in G, we must show
that = and y are conjugate in GG. Replacing = by a conjugate, we can assume that
T = 7, and thus L{z) = L{y). Now (z) and (y) are Sylow p-subgroups of L(z),
so replacing x by a conjugate once again, we can assume that (x) = (y). Then
ry~t € LN {(z) =1, so x = y, and the proof is complete. O

Our final two results concern p-special and p’-special characters of p-solvable
groups, and we refer the reader to [J] for the definitions and basic properties of
these objects.

Corollary 7.4. Let f be the isomorphism-constant function defined by letting f(G)
be the number of p-special irreducible characters of a p-solvable group G. Then f
is strongly chain local for p-solvable groups.

Proof. Let L < G and write G = G/L. It is well known that there is a natural
bijection 4 + v from Trr(G) onto {x € Irr(G) | L C ker(x)}, where by definition,
blg) = (7). B

Suppose now that G is p-solvable. Given ¢ € Irr(G), it is not hard to see that
1/; is p-special if and only if 1 is p-special. Also, if L is a p/-group, then for all
p-special characters x of G, we have L C ker(x), and thus x = 1 for some character
¥ € Trr(G), and we see that ) must be p-special. It follows that if L is a p’-group,
then the map ) — v defines a bijection from the set of p-special characters of G
onto the set of p-special characters of G, and thus f(G) = f(G). We conclude by
Theorem 7.1 that f is strongly chain local, as required. O

The corresponding result for p’-special characters is true, but the only proof
that we see relies on the following relatively deep result, which is a consequence of
a theorem of Isaacs, proved by Wolf in [19].

Corollary 7.5. Let [ be the isomorphism-constant function defined for p-solvable
groups G by letting f(G) be the number of p’-special irreducible characters of G.
Then f(G) = f(N), where N is the normalizer in G of a Sylow p-subgroup.

Proof. Given a p-solvable group G, it is a consequence of Corollary 1.16 of [19)]
that f(G) = k(H), where H is a Hall p’-subgroup of N, and as usual, k is the
function that counts conjugacy classes. Applying this to the group IV, we see that

also f(N) = f(H), and so f(G) = f(N). O

Corollary 7.6. Let [ be the isomorphism-constant function defined for p-solvable
groups by letting f(G) be the number of p'-special irreducible characters of G. Then
f is strongly chain local for p-solvable groups.

Proof. Corollary guarantees that the hypothesis of Corollary B3] is satisfied,
and thus f is strongly chain local for p-solvable groups. ([l
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