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A QUANTUM MIRKOVIĆ-VYBORNOV ISOMORPHISM

BEN WEBSTER, ALEX WEEKES, AND ODED YACOBI

Abstract. We present a quantization of an isomorphism of Mirković and
Vybornov which relates the intersection of a Slodowy slice and a nilpotent
orbit closure in glN to a slice between spherical Schubert varieties in the affine
Grassmannian of PGLn (with weights encoded by the Jordan types of the
nilpotent orbits). A quantization of the former variety is provided by a par-
abolic W-algebra and of the latter by a truncated shifted Yangian. Building
on earlier work of Brundan and Kleshchev, we define an explicit isomorphism
between these non-commutative algebras and show that its classical limit is a
variation of the original isomorphism of Mirković and Vybornov. As a corol-
lary, we deduce that the W-algebra is free as a left (or right) module over its
Gelfand-Tsetlin subalgebra, as conjectured by Futorny, Molev, and Ovsienko.

1. Introduction

In [MV07a] Mirković and Vybornov construct an isomorphism between slices
to (spherical) Schubert varieties in the affine Grassmannian of PGLn on the one
hand and Slodowy slices in glN intersected with nilpotent orbit closures on the
other. This isomorphism has important applications in geometric representation
theory. To name just a few occurrences, it appears in works on the mathematical
definition of the Coulomb branch associated to quiver gauge theories [Nak16], the
analog of the geometric Satake isomorphism for affine Kac-Moody groups [BF12],
and geometric approaches to knot homologies [CK08,CKL10].

These varieties each have quantizations corresponding to natural Poisson struc-
tures on them. The main aim of this paper is to show that the Mirković-Vybornov
isomorphism is the classical limit of an isomorphism of these quantizations.

To be more precise, the Slodowy slice Se through a nilpotent element e ∈ glN is
quantized by a finite W-algebra. Finite W-algebras have been extensively studied
by Kostant, Lynch, Premet, Gan-Ginzburg, and many others (cf. [GG02] and
references therein). The quantization of Se ∩ Oe′ , the intersection of Se with the
closure of the nilpotent orbit through another nilpotent e′, is given by a parabolic
W-algebra [Los12,Web11]. Parabolic W-algebras are quotients of finite W-algebras.
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Slices to Schubert varieties in the affine Grassmannian of PGLn are indexed by
pairs μ, λ of dominant coweights of PGLn, such that μ ≤ λ in the dominant coroot

ordering. We denote the slice by Grλμ. In [KWWY14] the present authors, along

with Kamnitzer, quantized Grλμ using algebras called truncated shifted Yangians.
The Mirković-Vybornov isomorphism is an explicit isomorphism of varieties

(1.1) Se ∩Oe′
∼= Grλμ,

where e, e′ are related to μ, λ by a certain combinatorial correspondence (cf. Sec-
tions 1.2 and 4.1). Naturally one expects that (1.1) is the classical limit of an
isomorphism between the quantizations of these varieties. That is our main result.

Theorem A (Theorem 4.3, part (c)). Suppose e, e′ (respectively, μ, λ) is a pair
of nilpotent elements (respectively, dominant coweights) which are related by the
Mirković-Vybornov isomorphism (1.1). Then there is an isomorphism of filtered
algebras between the parabolic W-algebra quantizing Se ∩ Oe′ and the truncated

shifted Yangian quantizing Grλμ.

One can immediately conclude from this theorem that (1.1) is an isomorphism of
Poisson varieties (Corollary 4.4). Moreover, since truncated shifted Yangians are
explicitly presented, this theorem provides a presentation of parabolic W-algebras
in type A. This generalizes Brundan and Kleshchev’s foundational work on presen-
tations of finite W-algebras [BK08].

Our final corollary of Theorem A uses the recent interpretation of the truncated
shifted Yangian in the setting of SUSY gauge theories. The parabolic W-algebra
has a distinguished maximal commutative subalgebra, called the Gelfand-Tsetlin
subalgebra. In the case where λ is a multiple of the first fundamental weight,
this agrees with the Gelfand-Tsetlin subalgebra as defined by Futorny, Molev, and
Ovsienko. They conjecture that the finite W-algebra is free as a left (or right) mod-
ule over its Gelfand-Tsetlin subalgebra [FMO10, Conjecture 2]. Using Theorem A
we obtain (a generalization of) this conjecture by connecting it to work of Braver-
man, Finkelberg, and Nakajima on the mathematical theory of Coulomb branches
for 3d N = 4 gauge theories.

Corollary A (Corollary 4.6). The parabolic W-algebra is free as a left (or right)
module over its Gelfand-Tsetlin subalgebra.

Remark 1.1.

(1) In [MV07a], the authors consider a second family of isomorphisms, based on
work of Maffei [Maf05], between Slodowy slices and type A quiver varieties.
This isomorphism has already been quantized by Losev [Los12, Theorem
5.3.3].

(2) When λ is a multiple of the first fundamental weight, then Oe′ is the nilpo-
tent cone of glN . In this case, the quantization of Se ∩ Oe′ is a central
quotient of the finite W-algebra, and the isomorphism of Theorem A is a
variation of Brundan and Kleshchev’s theorem (using the Drinfeld presen-
tation of the Yangian instead of the RTT presentation). Indeed Losev has
speculated that Brundan and Kleshchev’s presentation should be under-
stood as a quantization of the Mirković-Vybornov isomorphism [Los12, Re-
mark 5.3.4], and Theorem A makes this precise.
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In order to prove Theorem A, we need results about the highest weight theory
of parabolic W-algebras and truncated shifted Yangians. Brundan and Kleshchev
describe the highest weights in category O of a finite W-algebra in terms of row
tableaux. First we describe those highest weights which descend to the parabolic
W-algebra using so-called parabolic-singular elements of the Weyl group (Theorem
3.26). These are elements which are simultaneously longest left coset for a par-
abolic corresponding to μ and shortest right coset representatives for a parabolic
corresponding to λ. This allows for the following new description of the parabolic
W-algebra:

Theorem B (Theorem 3.28). In type A, the parabolic W-algebra is the quotient
of the finite W-algebra by the intersection of annihilators of simple modules corre-
sponding to parabolic-singular permutations.

Now to prove Theorem A we first prove the desired isomorphism in the case
where λ is a multiple of the first fundamental coweight (Theorem 4.3(a)). This is an
explicit calculation with the Brundan-Kleshchev isomorphism, comparing different
subquotients of the Yangian of sln on the one hand and the Yangian of gln on the
other. We then use results about the highest weight theory of the truncated shifted
Yangian given by Kamnitzer, Tingley, and the authors in [KTWWY19a] and the
highest weight theory of the parabolic W-algebra from Section 3.3.5 to deduce the
general result from the special case.

In Section 5.1 we introduce general “MV slices” and prove an easy but useful
result that any two MV slices are Poisson isomorphic (Theorem 5.5). Recently
Cautis and Kamnitzer described a variation on the classical Mirković-Vybornov
isomorphism, which uses MV slices that are transposes of those used by Mirković
and Vybornov (cf. Section 5.3). This isomorphism is much simpler to express in
coordinates, and we prove that it is the classical limit of our quantum isomorphism.

Theorem C (Theorem 4.3, part (d)). The classical limit of the quantum Mirković-
Vybornov isomorphism in Theorem A agrees with Cautis and Kamnitzer’s version
of the classical Mirković-Vybornov isomorphism.

1.1. Notation. Throughout this paper, we alternate between letting g be any
simply-laced simple complex Lie algebra and specializing to the special or gen-
eral linear Lie algebra. In the beginning of every section we are careful to note
which setting we are in.

In general, we let I denote the nodes of the Dynkin diagram of g, and we write
j ∼ i to mean j and i are connected in the Dynkin diagram. Since Langlands duality
often appears in the context of the affine Grassmannian, we will use dual notation
and denote simple coroots by {αi}i∈I and fundamental coweights by {�i}i∈I and,
dually, the simple roots {α∨

i }i∈I and fundamental weights by {�∨
i }i∈I . We let

Δ+ denote the set of positive roots of g. When we specialize to g = sln we set
I = {1, . . . , n− 1}.

All spaces considered are varieties, schemes, or ind-schemes over C.

1.2. Combinatorial data. Let g = sln. Consider a pair λ, μ of dominant co-
weights for g such that λ ≥ μ. Write

(1.2) λ =

n−1∑
i=1

λi�n−i, μ =

n−1∑
i=1

μi�n−i, λ− μ =

n−1∑
i=1

miαn−i
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so that λ ≥ μmeans precisely that allmi ∈ Z≥0. (Our strange indexing conventions
above are chosen to match those of [KWWY14].) Define

(1.3) N =
n−1∑
i=1

iλn−i.

Then N�1 ≥ λ ≥ μ. Write N�1 − μ =
∑

i m
′
iαn−i.

We associate a pair of partitions to the above data as follows: first, the partition
τ � N is defined in exponential notation by

(1.4) τ =
(
1λn−12λn−2 · · · (n− 1)λ1

)t
.

Second, consider the partition π � N ,

(1.5) π = (p1 ≤ · · · ≤ pn),

defined by

(1.6) p1 = m′
1, p2 = m′

2 −m′
1, . . . , pn−1 = m′

n−1 −m′
n−2, pn = N −m′

n−1.

Then τ ≥ π with respect to the dominance order on partitions.

Remark 1.2. As a matter of convention, we will write partitions as either non-
increasing or non-decreasing as appropriate.

2. The affine Grassmannian side

In this section we recall truncated shifted Yangians in type A and their connec-
tion to slices in the affine Grassmannian of PGLn. Throughout this section g = sln,
and we fix a pair λ ≥ μ of dominant coweights as in Section 1.1.

2.1. Slices in the affine Grassmannian. Consider (spherical) Schubert cells

Grμ,Grλ in the affine Grassmannian Gr for PGLn. Our running hypothesis that

λ ≥ μ implies that Grμ ⊂ Grλ, and we let Grλμ be the slice to Grμ in Grλ at the point
tw0μ. See [KWWY14, Section 2.2] for more details and precise definitions, as well
as Section 5.2 below.

Grλμ is an irreducible affine variety of dimension 2〈ρ∨, λ−μ〉 = 2
∑

i mi. It has a

C×–action by loop rotation, which contracts it to the unique fixed point tw0μ. Grλμ
admits a Poisson structure which is homogeneous of degree −1 with respect to the
loop rotation, as described in [KWWY14, Section 2C].

Recall that Gr admits a description in terms of lattices: every point is given
by a C[[t]]–lattice in C((t))n. This is well-defined only up to multiplication by
a power of t, but we will consistently choose representatives Λ such that Λ ⊂
Λ0 = C[[t]]n. Denote Eπ =

{
tpi−1ei, . . . , tei, ei : ∀i

}
and Ep =

{
tp−1ei, . . . , ei : ∀i

}
,

where e1, . . . , en is the standard basis of Cn. Explicitly, we can identify

(2.1) GrN�1
μ =

⎧⎨⎩Λ :
(a) Λ ⊂ Λ0 a C[[t]]–submodule,
(b) image of Eπ gives basis of Λ0/Λ,
(c) ∀i, tpiei ∈ Λ + Epi

.

⎫⎬⎭
Since N�1 ≥ λ, we have inclusions of closed subvarieties Grλ ⊂ GrN�1 and Grλμ ⊂
GrN�1

μ . Considering multiplication by t as an endomorphism of Λ0/Λ, we can also
identify

(2.2) Grλμ =
{
Λ ∈ GrN�1

μ : t ∈ EndC (Λ0/Λ) has Jordan type ≤ τ
}
.
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2.2. Truncated shifted Yangians. Let Y = Y (g) be the Yangian of g. This is a

filtered C-algebra with generators E
(r)
α , F

(r)
α , H

(r)
i for α ∈ Δ+, i ∈ I, r ∈ Z>0, and

filtration defined by deg(X(r)) = r for any generator X. In fact, Y is generated by

the elements E
(r)
i := E

(r)
αi , F

(r)
i := F

(r)
αi , and H

(r)
i . For the defining relations see

Theorem 3.5 in [KWWY14].
We will frequently work with the formal generating series

Ei(u) =
∑
r>0

E
(r)
i u−r, Fi(u) =

∑
r>0

F
(r)
i u−r, Hi(u) = 1 +

∑
r>0

H
(r)
i u−r.

Definition 2.1 (Definition 3.10, [KWWY14]). The shifted Yangian Yμ ⊂ Y is

the subalgebra generated by E
(r)
i , H

(r)
i where r ≥ 1 and F

(s)
i where s > μi.

Introduce formal variables R
(j)
i where i ∈ I and j = 1, . . . , λi, and consider the

tensor product of algebras

(2.3) Yμ[R
(j)
i ] := Yμ ⊗C C[R

(j)
i : i ∈ I, j = 1, . . . , λi].

Let Ri(u) =
∑λi

j=0 R
(j)
i uλi−j , where we denote R

(0)
i = 1. We define A

(r)
i ∈ Yμ[R

(j)
i ]

by

(2.4) Hi(u) = ri(u)

∏
j∼i Aj(u− 1

2 )

Ai(u)Ai(u− 1)
,

where Ai(u) = 1 +
∑

r>0 A
(r)
i u−r and

(2.5) ri(u) = u−λiRi(u)

∏
j∼i(1− 1

2u
−1)mj

(1− u−1)mi
.

See Section 4.1 in [KWWY14] for details.

Definition 2.2 (Section 4.4, [KWWY14]). Let Iλμ be the two-sided ideal of Yμ[R
(j)
i ]

generated by A
(r)
i for r > mi. The truncated shifted Yangian is the quotient

Y λ
μ := Yμ[R

(j)
i ]/Iλμ .

The subalgebra Γλ
μ ⊂ Y λ

μ generated by the images of the elements A
(r)
i , R

(j)
i is

commutative. In fact, it is freely generated by these elements:

(2.6) Γλ
μ = C[A

(r)
i , R

(j)
i : i ∈ I, 1 ≤ r ≤ mi, 1 ≤ j ≤ λi],

as follows e.g. from Corollary 2.8 below. We call Γλ
μ the Gelfand-Tsetlin subal-

gebra of Y λ
μ .

Remark 2.3. In some situations, it will be more convenient to adjoin formal roots

γi,k for the polynomials Ri(u) =
∏λi

k=1(u− 1
2γi,k). We denote the resulting algebra

Y λ
μ (γ). This algebra carries an action of the product of symmetric groups Θ =∏
i Sλi

, and Y λ
μ is the invariant subalgebra.

Definition 2.4. A set of parameters of weight λ is a tuple R = (Ri)i∈I , where
Ri is a multiset of λi complex numbers.

Given a set of parameters of weight λ, we can specialize the formal variables R
(j)
i

via

(2.7) Ri(u) =
∏
c∈Ri

(u− 1
2c).
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We denote by Y λ
μ (R) the corresponding specialized algebra:

Y λ
μ (R) = Y λ

μ ⊗
C[R

(j)
i ]

C.

Note that R determines the roots of the specialized polynomial Ri(u), and as a

consequence we obtain a specialization of the formal variables R
(j)
i 
→ C. In terms

of elementary symmetric functions, we can make this explicit:

R
(j)
i 
→ (−1)jej(

1
2Ri).

This same algebra arises if we number the elements of Ri and specialize γi,k to
the corresponding values. Thus, no statement about the specializations depends on
which version we use, but certain statements about the families will be cleaner for
Y λ
μ (γ).

We will denote by Γλ
μ(R) ⊂ Y λ

μ (R) the image of Γλ
μ, so that

(2.8) Γλ
μ(R) = C[A

(r)
i : i ∈ I, 1 ≤ r ≤ mi].

We call Γλ
μ(R) the Gelfand-Tsetlin subalgebra of Y λ

μ (R).

Note that Y λ
μ (R) carries a canonical filtration, as it is a quotient of the fil-

tered algebra Yμ. Similarly, with notation as in the first paragraph of this sec-

tion, Y λ
μ and Y λ

μ (γ) carry filtrations defined by deg(X(r)) = r and deg(R
(j)
i ) = j

(resp., deg(γi,k) = 1).

2.3. Relationship with functions on slices. The main result of [KMWY18] is
a proof of [KWWY14, Conjecture 2.20] in the case of g = sln. By [KWWY14,
Theorem 4.10], it follows that:

Theorem 2.5. For any choice of R, there is an isomorphism

gr(Y λ
μ (R)) ∼= C[Grλμ]

of graded Poisson algebras.

This isomorphism is given explicitly in terms of generalized minors; see
[KWWY14, Section 2A] as well as Section 5.2 below.

Remark 2.6. The generalization of this theorem to g to more general type is ob-
tained in [BFN, Appendix B].

2.4. Shifted Yangians and Coulomb branches. Braverman, Finkelberg, and
Nakajima have recently developed a mathematical theory of Coulomb branches
for 3d N = 4 gauge theories [BFN18], [BFN]. For any pair (G,N) of a reductive
group G and its representation N (both over C), they associate a moduli space
RG,N carrying an action of G and an action of C× by loop rotation. They then
define a commutative ring A(G,N) := HG

∗ (RG,N) via a convolution product and

its deformation quantization A�(G,N) := HG×C
×

∗ (RG,N). The Coulomb branch
is defined as the affine scheme MC(G,N) := SpecA(G,N).

For us, the most relevant cases of this construction are for certain quiver gauge
theories and more precisely the type A cases. Letting g = sln and fixing coweights
λ, μ as in Section 1.2, we define vector spaces Wi = Cλi and Vi = Cmi for all
1 ≤ i ≤ n− 1. We can then define a pair (G,N) as follows:

(2.9) G =

n−1∏
i=1

GL(Vi), N =

n−2⊕
i=1

Hom(Vi, Vi+1)⊕
n−1⊕
i=1

Hom(Wi, Vi).
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We can also incorporate the “flavor symmetry” group F =
∏n−1

i=1 GL(Wi), and
define

A�(G,N;F) := HG×F×C
×

∗ (RG,N).

We summarize relevant results from [BFN]:

Theorem 2.7 ([BFN, Theorem 3.10 and Corollary B.28]). Consider data (G,N)
associated to λ, μ as above.

(a) There is an isomorphism of graded Poisson algebras

C[Grλμ]
∼= A(G,N).

In particular, Grλμ
∼= MC(G,N) is a Coulomb branch.

(b) The above isomorphism lifts to an isomorphism of filtered algebras

Y λ
μ

∼= A�=1(G,N;F),

which identifies the subalgebras Γλ
μ
∼= H∗

G×F(pt).

More precisely, in the isomorphism (b) the elements A
(r)
i correspond to gen-

erators of the equivariant cohomology ring H∗
GL(Vi)

(pt) and the elements R
(j)
i to

generators of H∗
GL(Wi)

(pt). Since RG,N is equivariantly formal [BFN18, Section 2],

it follows that A�=1(G,N;F) is free over H∗
G×F(pt) as a left module (and also as

a right module). Thus we deduce:

Corollary 2.8. Y λ
μ is free as a left (or right) module over Γλ

μ, and Y λ
μ (R) is free

as a left (or right) module over Γλ
μ(R).

This modest application of the theory of Coulomb branches will allow us to
deduce an analogous freeness result for W-algebra;, see Corollary 4.6 below. We
will use this connection more intensively in further work on the representation
theory of these algebras [KTWWY19b,Web].

2.5. Highest weights and product monomial crystals. Consider a module M
over the algebra Y λ

μ (R). We call a vector 1 ∈ M a highest weight vector if it
generates M and

H
(r)
i 1 ∈ C1, E

(r)
i 1 = 0 ∀i ∈ I, r > 0.

It follows that the series Hi(u) acts on 1 by multiplication by some series

Ji(u) =
∑
r≥0

J
(r)
i u−r ∈ 1 + u−1C[[u−1]].

We call the tuple J = (Ji(u))i∈I the highest weight of M .
Conversely, given a tuple J = (Ji(u))i∈I of series as above, there is a universal

highest weight module M(J) for Y λ
μ (R) (also called a Verma or standard module).

It is generated by a highest weight vector 1 with highest weight J and has a
unique simple quotient L(J). The collection of all tuples J such that M(J) �= 0
(equivalently, L(J) �= 0) is called the set of highest weights for Y λ

μ (R).
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2.5.1. The product monomial crystal. The highest weights of Y λ
μ (R) can be clas-

sified in terms of the weight μ∗ = −w0μ elements of the product monomial
crystal B(R), where here w0 ∈ Sn is the longest permutation. In this section we
briefly overview B(R) and its relation to highest weights in general. We then give
a combinatorial model of B(R) in type A using partitions.

Remark 2.9. In this paper we will not make use of the crystal structure on B(R).
Rather, we will focus on its underlying set. We refer the reader to [KTWWY19a,
Section 2] for further details regarding the crystal B(R). Note that in [KTWWY19a]
the product monomial crystal is denoted B(λ,R).

B(R) is a subset of the set Laurent monomials in variables yi,c (the “Nakajima
monomial crystal”), where i ∈ I, c ∈ C (although strictly speaking it is only a g–
crystal when the parameters R are “integral”; see Section 2.5.3). To define B(R),
one first defines the fundamental monomial crystals B(yi,c), corresponding to a
fundamental weight �i and parameter c ∈ C. It is generated by the monomial
yi,c by applying Kashiwara operators. For any c ∈ C, B(yi,c) is isomorphic to the
fundamental g–crystal of highest weight �i.

Next, the general product monomial crystal is defined by multiplying together
the elements of various fundamental crystals B(yi,c):

(2.10) B(R) =
∏

i∈I,c∈Ri

B(yi,c) :=
{
p =

∏
i∈I,c∈Ri

pi,c : ∀i, c, pi,c ∈ B(yi,c)
}
.

Here, the product symbol does not signify Cartesian product but rather the usual
product in C[y±i,c].

Remark 2.10. Note that with our conventions (1.2), λ = �i corresponds to λn−i = 1
and λj = 0 for j �= n− i. In particular a corresponding set of parameters R consists
of a singleton, namely, Rn−i = {c}, and B(R) is isomorphic to the fundamental
g-crystal of highest weight �n−i.

We’ve chosen to follow the conventions of [KWWY14], which differ from those
of [KTWWY19a] by a diagram automorphism. We pay for this choice here, since
B(R) ∼= B(λ∗,R), where B(λ∗,R) is the product monomial crystal as defined in
[KTWWY19a]. We’ll gain from this choice later on, since the formulation of our
main results is cleaner with this convention.

The weight of a monomial is defined as follows:

wt
(∏

i,k

y
ai,k

i,k

)
=
∑
i,k

ai,k�i,

where i ∈ I, k ∈ C, and only finitely many of the multiplicities ai,k ∈ Z are non-zero.
We denote the elements of weight μ by B(R)μ.

For any i ∈ I, k ∈ C, define the monomial

zi,k =
yi,kyi,k+2∏
j∼i yj,k+1

.

Any element p ∈ B(R) can be written in the form

(2.11) p = yRz−1
S :=

∏
i∈I,c∈Ri

yi,c
∏

i∈I,k∈Si

z−1
i,k

for a unique tuple of multisets S = (Si)i∈I (where products are taken with multi-
plicity). See Section 2 of [KTWWY19a] for more details.
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2.5.2. Connection to highest weights. As described in [KTWWY19a, Section 3.6],
elements of B(R)μ∗ correspond to highest weights for Y λ

μ (R). More precisely, a

monomial p =
∏

i,k y
ai,k

i,k corresponds to the series

(2.12) Ji(u) := u−μi

∏
k

(u− 1

2
k)ai,k ,

where the rational function on the right-hand side is expanded as an element of
1 + u−1C[[u−1]].

Theorem 2.11 ([KTWWY19a, Theorem 1.3]). The correspondence (2.12) defines
a bijection between B(R)μ∗ and the set of highest weights for Y λ

μ (R).

Remark 2.12. In [KTWWY19b] we show that this theorem holds in much greater
generality, using a presentation for the Yangian based on its connection to Coulomb
branches, as described in [BFN].

We note that if we write p = yRz−1
S , the tuple of multisets S = (Si)i∈I encodes

the action of the elements A
(r)
i ∈ Y λ

μ (R) on a highest weight vector 1 of weight p:

(2.13) Ai(u)1 =
∏
k∈Si

(1− 1

2
ku−1)1.

2.5.3. Monomials and partitions. There is an alternate description of B(R) and its
combinatorics in terms of tuples of Young diagrams [KTWWY19a, Section 6.2],
which we’ll now explain. This will be used in Section 4.3.2.

We call a set of parameters R integral if for every i, Ri consists of integers and,
moreover, the parity of the elements in Ri equals the parity of i. In this case, there
is a g–crystal structure on B(R). For arbitrary R we can decompose each Ri into
equivalence classes Ri =

⋃
ζ∈C/2Z Ri(ζ), where Ri(ζ) = {c ∈ Ri|c − ζ ∈ 2Z + i}.

We let R =
⋃

ζ R(ζ) be the corresponding decomposition of R.

As sets we have that B(R) ∼=
⊗

ζ B(R(ζ)); we can put a g ⊕ · · · ⊕ g–crystal
structure here, with a copy of g acting independently on each equivalence class
B(R(ζ)). Therefore, to describe B(R) it suffices to describe each B(R(ζ)). More-
over, B(R(ζ)) ∼= B(R(ζ)− ζ), and hence we can confine ourselves to the case where
R is integral.

First let us describe the case of a fundamental crystal B(yi,c), where c ≡ i mod 2.
As a set, it is in bijection with the collection of Young diagrams which fit into an
i× (n− i) box. We picture this by placing the Young diagrams in a skew-grid. The
vertices of the skew-grid are labelled by pairs (i, 
), where i ∈ I and 
 ≡ i mod 2.
The i× (n− i) box is placed in the grid with its top vertex at the point (i, c).

For example, if n = 7, i = 3, and c = 5 and the Young diagram is (4, 2), then we
have the following picture. Here we’ve circled the vertex (3, 5), the i× (n− i) box
is inscribed in blue, and the Young diagram is depicted by placing 1’s in its boxes:
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1

1

1

1

1

1

1 2 3 4 5 6

-2

-1

0

1

2
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5

To associate a monomial to such a picture, we multiply yi,c by z−1
j,� , as (j, 
)

ranges over the coordinates of the bottom vertices of all the boxes in the partition.
For example, the diagram above corresponds to the monomial

y3,6z
−1
3,4z

−1
2,3z

−1
4,3z

−1
3,2z

−1
5,2z

−1
6,1 ∈ B(y3,6).

The rest of the elements of B(y3,6) correspond to the other partitions fitting into
the blue box.

In general suppose R is any integral set of parameters. Then elements of B(R)
are identified with diagrams consisting of circled vertices and numbered boxes.
The circled vertices correspond to the elements of R: for every c ∈ Ri we circle
the vertex at (i, c). If c ∈ Ri occurs with multiplicity, then the vertex is circled
multiple times.

Such a diagram corresponds to an element of B(R) if and only if it can be
decomposed into a tuple of overlayed partitions. More precisely, we must be able
to place partitions at each circled vertex on the grid in such a way that the number
in a given box counts the times that box appears in a partition. Note that a choice
of such partitions may not be unique.

For example, consider the case where g = sl9 and we take R3 = {3, 5, 5},R5 =
{5},R6 = {2, 4}, and R7 = {5}. The left picture below depicts a candidate ele-
ment of B(R). To check that it is an element of B(R) we must be able to place
partitions at the circled vertices so that the number in each box counts the number
of partitions that contain it. The right picture depicts such a choice of partitions,
verifying that this diagram is indeed in B(R). Note that since 5 occurs twice in R3

we are able to place two partitions at (3, 5):
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6
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To associate a monomial to such a diagram we multiply yR by z−k
j,l , where (j, 
)

ranges over the bottom vertices of the numbered boxes, and k is the number of the
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box. In the example above, the diagram corresponds to the monomial

yRz−2
3,3z

−1
5,3z

−1
7,3z

−1
2,2z

−1
4,2z

−2
6,2z

−1
8,2z

−2
3,1z

−3
5,1z

−2
7,1z

−4
4,0 ∈ B(R).

We reiterate that the assumption that R is an integral set of parameters is made
only for the sake of convenience. We could set up the same combinatorics for
general R, where we depict elements of B(R) by tuples of such diagrams, one for
each ζ ∈ C/2Z such that R(ζ) is non-empty.

2.6. Maps between truncated shifted Yangians. Given λ ≥ μ, recall that we
define N =

∑
i iλn−i. Consider a set of parameters R = (Ri)i∈I of weight λ and a

set of parameters R̃ of weight N�1. Note that the latter is prescribed by the single

multiset R̃n−1 of size N . For this reason, we will abuse our notation and simply

identify R̃ = R̃n−1.
Our goal is to establish the following commutative diagram:

(2.14) Yμ
φ′
��

φ ���
��

��
��

��
� Y N�1

μ (R̃)

φ′′

���
�
�

Y λ
μ (R)

where φ, φ′ are the (defining) quotient maps. Note that φ′′ is automatically filtered,

if it exists, since Y λ
μ (R) and Y N�1

μ (R̃) have the quotient filtration from Yμ.

Theorem 2.13. A map φ′′ making the above diagram commute exists iff

(2.15) R̃ =

n−1⋃
i=1

(
Ri + (n− i− 1)

)
∪
(
Ri + (n− i− 3)

)
∪ · · · ∪

(
Ri − (n− i− 1)

)
as a union of multisets. In this case, φ′′ quantizes the inclusion Grλμ ⊂ GrN�1

μ as a

closed Poisson subvariety, and φ′′ maps the subalgebra ΓNω1
μ surjectively to Γλ

μ.

The claim that φ′′ quantizes the inclusion simply follows from the form of the

identification grY λ
μ (R) ∼= C[Grλμ]. Indeed as in [KWWY14], for any λ ≥ μ the

surjection Yμ → Y λ
μ (R) corresponds to the inclusion Grλμ ⊂ Grμ into the opposite

cell Grμ. So (2.14) expresses the inclusions

(2.16) Grμ GrN�1
μ

� ���

Grλμ

� �

��

� �

�����������

We will prove Theorem 2.13 in Section 2.6.1 below. First we record some conse-
quences.

When the map φ′′ exists, every highest weight module for Y λ
μ (R) pulls back to

a highest weight module for Y N�1
μ (R̃). Recall from Section 2.5.2 that an element

of the monomial crystal, expressed in the variables yi,k, explicitly encodes the ac-
tion of the series Hi(u) on a highest weight vector. Since Hi(u) 
→ Hi(u) under

Y N�1
μ (R̃) → Y λ

μ (R), the pull-back of highest weights corresponds to an inclusion

of sets B(R)μ∗ ⊂ B(R̃)μ∗ . Slightly more generally, we have:
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Lemma 2.14. Let R, R̃ satisfy (2.15). Then there is an inclusion of sets

B(R) ⊂ B(R̃).

If R is integral, then this is an inclusion of crystals.

Proof. The case where λ = �i is analogous to [KTWWY19a, Lemma 5.31], and
the general case follows by taking products. �

Remark 2.15. The above results are analogs of the embedding of sln representations

(Cn)⊗λ1 ⊗ (∧2Cn)⊗λ2 ⊗ · · · ⊗ (∧n−1Cn)⊗λn−1 ⊂ (∧n−1Cn)⊗N ,

and in fact whenR is sufficiently generic Lemma 2.14 can be interpreted as a crystal
version of this embedding.

Corollary 2.16. When φ′′ : Y N�1
μ (R̃) → Y λ

μ (R) as above exists, we have a con-
tainment

kerφ′′ ⊂
⋂
p

AnnLp,

the intersection being over the simple Y N�1
μ (R̃)–modules Lp with highest weights

p ∈ B(R)μ∗ ⊂ B(R̃)μ∗ .

Defining this map in the case where we consider Ri(u) as a formal polynomial,
rather than specializing to numerical values, is slightly more complicated. Of course,
Theorem 2.13 shows that we have a homomorphism Y Nω1

μ → Y λ
μ sending

(2.17) R̃n−1(u) 
→
n−1∏
i=1

n−i∏
k=1

Ri(u− n−i−1
2 + k − 1).

Unfortunately, this map is not necessarily surjective; it is more convenient to
consider the enlarged version where we have a surjective map

Y Nω1
μ (γ̃) → Y λ

μ (γ)

of the algebras from Remark 2.3. This map is defined by sending the roots of the
LHS of (2.17) to the roots of the RHS (by an arbitrary bijection).

2.6.1. Proof of Theorem 2.13. Recall that we set

(2.18) λ− μ =
∑
i

miαn−i, N�1 − μ =
∑
i

m′
iαn−i.

In addition denote N�1 − λ =
∑

i m
′′
i αn−i. In particular mi = m′

i −m′′
i . We note

the following:

Lemma 2.17.

N�1 − λ =

n−1∑
i=2

λn−i

(
(i− 1)α1 + (i− 2)α2 + · · ·+ αi−1

)
.

Thus, we have that the coefficient m′′
1 = 0.

Proof. We have N�1 − λ =
∑

i λn−i(i�1 −�i). Now observe that

i�1 −�i = (i− 1)α1 + (i− 2)α2 + · · ·+ αi−1.

�
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Recall from Section 2.2 that Y λ
μ (R) = Yμ/〈A(r)

i : i ∈ I, r > mi〉, where A(r)
i ∈ Yμ

are defined by

Hi(u) = ri(u)
Ai−1(u− 1

2 )Ai+1(u− 1
2 )

Ai(u)Ai(u− 1)

with

ri(u) =
Ri(u)

uλi

(1− 1
2u

−1)mi−1+mi+1

(1− u−1)mi
.

Above, we follow the convention that A0(u) = An(u) = 1 and m0 = mn = 0.

Similarly Y N�1
μ (R̃) = Yμ/〈Ã(r)

i : i ∈ I, r > m′
i〉, where Ã

(r)
i ∈ Yμ are defined by

Hi(u) = r̃i(u)
Ãi−1(u− 1

2 )Ãi+1(u− 1
2 )

Ãi(u)Ãi(u− 1)

where

r̃i(u) =

(
R̃(u)

uN

)δi,n−1

(1− 1
2u

−1)m
′
i−1+m′

i+1

(1− u−1)m
′
i

,

with similar conventions Ã0(u) = Ãn(0) = 1 and m′
0 = m′

n = 0.
From the definitions, for all i we therefore have an equality in Yμ:

ri(u)
Ai−1(u− 1

2 )Ai+1(u− 1
2 )

Ai(u)Ai(u− 1)
= r̃i(u)

Ãi−1(u− 1
2 )Ãi+1(u− 1

2 )

Ãi(u)Ãi(u− 1)
.

Using the definition of ri(u) and r̃i(u), for i = n− 1 we can rewrite this as

(2.19)
Ãn−2(u− 1

2 )

Ãn−1(u)Ãn−1(u− 1)
=

Rn−1(u)

R̃(u)

um′′
n−1(u− 1)m

′′
n−1

(u− 1
2 )

m′′
n−2

An−2(u− 1
2 )

An−1(u)An−1(u− 1)

and for i = 1, . . . , n− 2 as
(2.20)

Ãi−1(u− 1
2 )Ãi+1(u− 1

2 )

Ãi(u)Ãi(u− 1)
= Ri(u)

um′′
i (u− 1)m

′′
i

(u− 1
2 )

m′′
i−1+m′′

i+1

Ai−1(u− 1
2 )Ai+1(u− 1

2 )

Ai(u)Ai(u− 1)
.

Corollary 2.18. There are unique series fi(u) ∈ um′′
i (1 + u−1C[[u−1]]) such that

Ãi(u) =
fi(u)

um′′
i

Ai(u).

These satisfy

(2.21) Rn−1(u) =
R̃(u)fn−2(u− 1

2 )

fn−1(u)fn−1(u− 1)
, Ri(u) =

fi−1(u− 1
2 )fi+1(u− 1

2 )

fi(u)fi(u− 1)

for i = 1, . . . , n− 2.

Proof. By [GKLO05, Lemma 2.1], Ai(u) and Ãi(u) must differ by multiplication
by an element of 1 + u−1C[[u−1]]. The precise form above follows by rearranging
(2.19) and (2.20). �

Lemma 2.19. kerφ′ ⊂ kerφ if and only if fi(u) ∈ C[u].
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Proof. Assume that

Ã
(s)
i ∈ kerφ = 〈A(r)

i : i ∈ I, r > mi〉

for all s > m′
i. Equating coefficients in um′′

i Ãi(u) = fi(u)Ai(u), we see that fi(u)
cannot contain any negative powers of u. Indeed, if it did, then a non-trivial linear

combination of elements {A(1)
i , . . . , A

(mi)
i } would be zero in Y λ

μ (R). But these

elements are algebraically independent in Γλ
μ(R).

Conversely, if fi(u) is a polynomial, then Ã
(s)
i is a linear combination of elements

from kerφ. �

This implies that when φ′′ exists, it indeed sends ΓNω1
μ surjectively to Γλ

μ. The-
orem 2.13 follows from the next result:

Proposition 2.20. The map φ′′ exists iff the following identities hold:

R̃(u) =

n−1∏
i=1

Ri(u+ n−i−1
2 )Ri(u+ n−i−3

2 ) · · ·Ri(u− n−i−1
2 ),

fk(u− 1
2 ) =

k−1∏
i=1

Ri(u+ k−i−1
2 )Ri(u+ k−i−3

2 ) · · ·Ri(u− k−i−1
2 )

for k = 1, . . . , n− 1.

Proof. Note that φ′′ exists if and only if kerφ′ ⊂ kerφ. Hence if φ′′ exists, then
fi(u) is a polynomial by Lemma 2.19, and it is monic of degree m′′

i by Corollary
2.18. Since m′′

1 = 0 by Lemma 2.17, we know that f1(u) = 1. Applying (2.21) with
i = 1, we then obtain

R1(u) = f2(u− 1
2 ).

Proceeding by induction on i using (2.21), we get the claimed form of R̃(u) and
fi(u).

Conversely, if we define R̃(u) and fi(u) by the claimed form above, then (2.21)
holds, and the fi(u) are monic polynomials of the correct degree. By the previous
lemma, it follows that kerφ′ ⊂ kerφ. �

3. Around W-algebras

3.1. Finite W-algebras. Let g be a complex semisimple Lie algebra, and let e ∈ g

be a nilpotent element. Complete this to an sl2-triple {f, h, e}. The Slodowy slice
is the affine space S = e+ gf , where gf = {x ∈ g | [x, f ] = 0}. It naturally inherits
a Poisson structure from g ∼= g∗ [GG02]. Recall that the symplectic leaves of g are
the nilpotent orbits O, and S intersects the symplectic leaves transversally.

We recall now a construction of finite W-algebras which quantize the Slodowy
slices. Recall that a Z-grading of g,

g =
⊕
i∈Z

gi,

is called good for a nilpotent e if

(1) the operator ad(e) has degree 2,
(2) we have gi ∩ ker ad(e) = 0 for i ≤ −1,
(3) we have gi ⊂ image ad(e) if i ≥ 1.
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Note that by a simple application of sl2 representation theory, every nilpotent e
has a good grading induced by considering the weights of h.

For any good grading, the space g−1 is symplectic with the form

〈x, y〉 = (e, [x, y]) = ([e, x], y) = (x, [y, e]),

where (·, ·) is the usual Killing form. This follows from the fact that ad(e) : g−1 → g1

is an isomorphism. Choose a Lagrangian subspace l ⊂ g−1 and set

(3.1) m = l⊕
⊕
i<−1

gi.

Note that if the grading in question is even (i.e., gi �= 0 implies i ∈ 2Z), then
m =

⊕
i<−1 gi, and we can avoid the choice. Then χ = (e, ·) : m → C is a

character. Finally, let mχ := span{a− χ(a) : a ∈ m}.
Define the finite W-algebra W (e) = (U(g)/U(g)mχ)

m. By the following theo-
rem, this algebra is a quantization of S.

Theorem 3.1 (Theorem 4.1, [GG02]). There is a filtration on W (e) (the Kazhdan
filtration) such that gr(W (e)) ∼= C[S].

We will be interested in quotients of W (e), called parabolic W-algebras, which
quantize the intersection S ∩ O.

3.1.1. Conventions. We closely follow the conventions of [BK06, Section 3], [BK05,
Section 7], although we do not follow their grading conventions: Brundan and
Kleshchev divide their even gradings by two, while we will not. We will also number
the boxes of our pyramid differently. Let us briefly outline our conventions here.

For π = (p1 ≤ p2 ≤ · · · ≤ pn) a partition of N , we will consider π as a right-
justified pyramid with boxes numbered from right to left, top to bottom. For
example, π = (2, 3, 4) will correspond to

(3.2)

2 1
5 4 3

9 8 7 6

We number the columns of π from left to right and rows from top to bottom.
Corresponding to the pyramid π, we consider the nilpotent element

eπ =
∑
k,�

ek�,

summing over pairs k 
 of adjacent boxes in π. The grading on g is defined
by deg(ek�) = 2(col(
) − col(k)), where col(
) denotes the number of the column

containing 
 . Finally, the Kazhdan filtration on U(g) corresponding to π is defined
by declaring that

(3.3) deg(ek�) = 2(col(
)− col(k) + 1).

Remark 3.2. In [BK06], the authors use the convention of (3.3) in the introduction
but divide by a factor of 2 in [BK06, Section 8] to match the usual filtration on
Yangians.
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3.2. Brundan and Kleshchev’s presentation.

3.2.1. Shifted Yangians. In the case where g = glN Brundan and Kleshchev gave a
presentation of the W-algebra. To describe this result we first recall their definition
of the shifted Yangians [BK06]. Here we work with the gln-Yangian Yn, which is

a C-algebra with generators E
(r)
i , F

(r)
i for 1 ≤ i < n, and D

(r)
i for 1 ≤ i ≤ n and

r ≥ 1.
To describe the defining relations of Yn we follow [BK05, Theorem 5.2] and

introduce generating series Di(u) = 1 +
∑

r≥1D
(r)
i u−r and define D̃

(r)
i via∑

r≥0

D̃
(r)
i u−r = −Di(u)

−1.

The defining relations of Yn are as follows:

[D
(r)
i , D

(s)
j ] = 0,

[E
(r)
i , F

(s)
j ] = δi,j

r+s−1∑
t=0

D̃
(t)
i D

(r+s−1−t)
i+1 ,

[D
(r)
i , E

(s)
j ] = (δi,j − δi,j+1)

r−1∑
t=0

D
(t)
i E

(r+s−1−t)
j ,

[D
(r)
i , F

(s)
j ] = (δi,j+1 − δi,j)

r−1∑
t=0

F
(r+s−1−t)
j D

(t)
i ,

[E
(r)
i , E

(s+1)
i ]− [E

(r+1)
i , E

(s)
i ] = E

(r)
i E

(s)
i + E

(s)
i E

(r)
i ,

[F
(r+1)
i , F

(s)
i ]− [F

(r)
i , F

(s+1)
i ] = F

(r)
i F

(s)
i + F

(s)
i F

(r)
i ,

[E
(r)
i , E

(s+1)
i+1 ]− [E

(r+1)
i , E

(s)
i+1] = −E

(r)
i E

(s)
i+1,

[F
(r+1)
i , F

(s)
i+1]− [F

(r)
i , F

(s+1)
i+1 ] = −F

(s)
i+1F

(r)
i ,

[E
(r)
i , E

(s)
j ] = 0 if |i− j| > 1,

[F
(r)
i , F

(s)
j ] = 0 if |i− j| > 1,

[E
(r)
i , [E

(s)
i , E

(t)
j ]] + [E

(s)
i , [E

(r)
i , E

(t)
j ]] = 0 if |i− j| = 1,

[F
(r)
i , [F

(s)
i , F

(t)
j ]] + [F

(s)
i , [F

(r)
i , F

(t)
j ]] = 0 if |i− j| = 1.

Yn has a filtration defined as follows [BK06, Section 5]: inductively define ele-

ments E
(r)
i,j , for 1 ≤ i < j ≤ n and r > 0, by E

(r)
i,i+1 = E

(r)
i and E

(r)
i,j = [E

(r)
i,j−1, E

(1)
j−1],

and similarly by E
(r)
i+1,i = F

(r)
i and E

(r)
j,i = [F

(1)
j−1, E

(r)
j−1,i]. Also denote E

(r)
i,i = D

(r)
i .

Then the filtration is defined by declaring the elements E
(r)
i,j to have degree r; note

that Yn satisfies a PBW theorem in these elements.
Let σ = (si,j)1≤i,j≤n be a shift matrix of non-negative integers, meaning that

si,j + sj,k = si,k

whenever |i − j| + |j − k| = |i − k|. Throughout this paper, we will use only
lower-triangular shift matrices.
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Definition 3.3 (Section 2, [BK06]). The shifted gln-Yangian Yn(σ) ⊂ Yn is the

subalgebra generated by D
(r)
i for r > 0, E

(r)
i for r > si,i+1, and F

(r)
i for r > si+1,i,

with the induced filtration from Yn.

There is another family of generators for Yn(σ), denoted T
(r)
i,j for 1 ≤ i, j ≤ n,

and r > si,j . See [BK06] for the definition of these generators as well as their
relation to the presentation given above. For 1 ≤ i ≤ n we define the principal
quantum minor,

(3.4) Qi(u) =
∑
w∈Si

(−1)wTi,w(i)(u− i+ 1) · · ·T1,w(1)(u),

where Ti,j(u) = δi,j+
∑

r>sij
T

(r)
i,j u

−r. For our present purposes, the most important

relation involving these new generators is the following equation (cf. [BK05, The-
orem 8.7(i)]):

(3.5) Di(u) =
Qi(u+ i− 1)

Qi−1(u+ i− 1)
.

Remark 3.4. There is a subtle point here: the identity Di(u) =
Qi(u+i−1)

Qi−1(u+i−1) is true

in the Yangian with no shift. However, in the case of an upper-triangular shift
matrix, Brown and Brundan prove that the quantum minors are in fact the same,

so the identity is true with the shifted T
(r)
ij as well [BB09]. Unfortunately, for other

reasons, it is more convenient for us to use lower-triangular shift matrices, so we
need to confirm that the result holds in this case as well.

Since we have to be careful about shifts, and row vs. column determinants, we
include them (locally) in our notation. Define

rQσ
i (u) =

∑
w∈Si

(−1)wTσ
i,w(i)(u− i+ 1) · · ·Tσ

1,w(1)(u),(3.6)

cQσ
i (u) =

∑
w∈Si

(−1)wTσ
w(1),1(u) · · ·Tσ

w(i),i(u− i+ 1).(3.7)

Let τ : Yn → Yn be the transpose anti-automorphism, defined as in [BK08, Section
2.3], [BK05, equation (2.16)]. Then τ gives an anti-isomorphism between Yn(σ)

and Yn(σ
t), and we note that τ (cQσ

i (u)) = rQσt

i (u).
Suppose now that σ is a lower-triangular shift matrix, as we have assumed

throughout this paper. By [BK05, equation (8.6)] we have that τ (cQ0
i (u)) =

cQ0
i (u), and by [BB09, Theorem 2.2] we have that cQ0

i (u) = cQσt

i (u). Hence
cQ0

i (u) = rQσ
i (u), and (3.5) also holds in our set-up.

We’ll need also the decomposition

(3.8) Yn(σ) ∼= SYn(σ)⊗ Z(Yn(σ)),

where Z(Yn(σ)) is the center and SYn(σ) is the subalgebra of Yn(σ) generated by

H
(r)
i for r > 0, E

(r)
i for r > si,i+1, and F

(r)
i for r > si+1,i. Here H

(r)
i are coefficients

of Di+1(u)
Di(u)

[BK08, Section 2.6]). The center Z(Yn(σ)) is freely generated by the

coefficients of the series Qn(u) [BK08, Theorem 2.6].
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3.2.2. Brundan and Kleshchev’s theorem. Let π = (p1 ≤ p2 ≤ · · · ≤ pn) be a
partition of N , and consider the lower-triangular shift matrix σ where si,j = pi−pj
for i ≥ j. Let W (π) be the quotient of Yn(σ) by the two-sided ideal generated by

the elements D
(r)
1 for r > p1,

(3.9) W (π) = Yn(σ)/〈D(r)
1 : r > p1〉.

The algebra W (π) inherits a filtration from Yn(σ).

Theorem 3.5 (Theorem 10.1, [BK06]). There is an isomorphism of algebras W (π)
∼= W (eπ). This isomorphism doubles filtered degrees, i.e., F≤rW (π) ∼= F≤2rW (eπ).

We will follow the conventions of [BK08, Sections 3.3–3.4] for the above isomor-
phism, which differ from [BK06] by a certain automorphism η. This distinction will
be relevant only in Section 5.4.

Remark 3.6. Note that the above degree doubling is harmless: the filtration (3.3)
on W (eπ) is even, and so we may safely rescale it removing a factor of two. This
is the approach followed by Brundan and Kleshchev, so in their work no such
doubling appears. We have elected to maintain the factor of two to match standard
conventions on the Kazhdan filtration (e.g. [GG02, Section 4]), while also following
usual conventions for filtrations of Yangians.

Definition 3.7. The commutative subalgebra Γ(π) ⊂ W (π) generated by the
centers of the subalgebras in a chain of inclusions W (π1) ⊂ · · · ⊂ W (πn) = W (π)
is called the Gelfand-Tsetlin subalgebra of W (π), following the terminology of
[FMO10].

Remark 3.8. When π = (1, . . . , 1), we have W (π) = U(gln), and Γ(π) ⊂ U(gln) is
the usual Gelfand-Tsetlin subalgebra.

Consider a module M over the algebra W (π). We call a vector 1 ∈ M a highest
weight vector if it generates M and

D
(r)
i 1 ∈ C1 for i = 1, . . . , n, r ≥ 1,

E
(r)
i,j 1 = 0 for 1 ≤ i < j ≤ n, r ≥ 1.

As in Section 2.5, the highest weight of M is a collection of series whose coeffi-

cients record the action of the D
(r)
i on 1.

Let Row(π) be the set of row symmetrized π-tableaux, i.e., tableaux of shape
π with complex entries viewed up to row equivalence. A row tableau T ∈ Row(π)
encodes a highest weight of W (π) via

(3.10) (u− i+ 1)piDi(u− i+ 1) 
→
∏
a∈Ti

(u+ 1
2a−

n
2 ),

where Ti denotes the i-th row of T . Brundan and Kleshchev prove that this de-
scribes a bijection between highest weights of W (π) and Row(π) ([BK08, Section
6]). Given a multiset R of N complex numbers we let RowR(π) be the set of row
tableaux with entries from R (with the same multiplicities).
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3.3. Parabolic W-algebras. We will require some facts about parabolic W-
algebras which may be of some independent interest.

In type A parabolic W-algebras quantize the intersection of a Slodowy slice
with the closure of a nilpotent orbit. They arise from Hamiltonian reduction of
the primitive quotients of the universal enveloping algebra. These quotients were
studied by the first author [Web11, Section 2] and by Losev [Los12, Section 5.2].

3.3.1. Differential operators on partial flag varieties. Let G be a reductive complex
algebraic group. Given a parabolic P , we consider the homogenous space X = G/P
and the universal differential operators on it as a quotient of U(g). Let g ∼= u−⊕l⊕u

be the decomposition of g = Lie(G) into a Levi subalgebra, and two complementary
radicals, with p = l⊕ u.

We’ll be interested in sheaves of twisted differential operators on X. See [BB93,
Sections 1-2] for a general discussion of these rings. Since we wish to consider TDOs
over more general rings, let us give a complete definition. Fix a commutative C-
algebra S.

Definition 3.9. A filtered sheaf of algebras D ,

{0} = D≤−1 ⊂ D≤0 ⊂ · · · ⊂ D ,
⋃
n≥0

D≤n = D ,

is a TDO with coefficients in S if there is an isomorphism of graded Poisson
algebras

grD → Sym•(T )⊗ S,

where T = T (X) is the tangent sheaf of X. The Poisson bracket on Sym•(T )⊗ S
is the unique S-linear Poisson bracket such that {X,Y } is the Lie derivative LXY
for X a vector field and Y an arbitrary tensor.

A homogeneous TDO is a TDO equipped with a G-equivariant structure and
a Lie algebra map g → Γ(X;D≤1) lifting the action map g → Γ(X; T ).

As in [BB81], we consider the sheaf of g-valued functions g0 = g ⊗ OX . Note
that g0 is the sheaf of sections of the trivial bundle X × g, and we have a short
exact sequence of vector bundles

0 → G×P p → X × g → G×P g/p → 0.

We let p0 be the local sections of G ×P p, and so we have an exact sequence of
sheaves

0 → p
0 → g

0 → T → 0.

We consider also the algebra sheaf U0 = U(g0)⊗ S = U(g)⊗OX ⊗ S.
Given a character γ : p → S, we consider the ideal in Iγ ⊂ U0 generated by the

kernel of the map U(p0)⊗S → OX⊗S induced by the character γ−ρ+ρP : p0⊗S →
OX ⊗S. Here ρ is the usual half-sum of positive roots of G, and ρP is the half-sum
of the positive roots of the Levi subgroup L. In other words Iγ is generated by
ξ − (γ − ρ+ ρP )(ξ), where ξ ∈ p0 ⊗ S. Define Dγ = U0/Iγ .

We can define a TDO Dγ on X by considering the quotient of U0 by this ideal,
with the obvious homogeneous structure.

Proposition 3.10 ([Mil, Theorem 2.4]). This construction defines a bijection be-
tween homogeneous TDOs on X and characters γ : p → S.
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If we choose S = Sym(p/[p, p]), we can take the universal character ι : p →
p/[p, p] ⊂ S. We can consider the section algebra A(p) = Γ(X;Dι). When there is
no risk of confusion, we will simply write A. We’ll also consider two other cases:

when S = C and γ : p → C is an honest character, and when S = Ŝym(p/[p, p]),

the completion of Sym(p/[p, p]) at 0, and we have γ + ι : p → Ŝym(p/[p, p]). We
have the resulting algebras Aγ(p) = Γ(X;Dγ) and Aγ+ι(p) = Γ(X;Dγ+ι), and as
above, when there is no risk of confusion we’ll write simply Aγ , Aγ+ι.

We always have that grAγ
∼= C[T ∗X] with the grading induced by cotangent

scaling. Note that this shows that the algebra A is flat over Sym(p/[p, p]), since
its fibers have constant character for the C×-action (so actually every piece of the
order filtration is flat). This shows that Aγ+ι is flat as well.

Thus, the algebra Aγ+ι provides a family over a regular ring which interpolates
between the generic behavior around γ and the specialized behavior at γ. In this

case, we let K be the fraction field of S = Ŝym(p/[p, p]) and let D̃γ := Dγ+ι ⊗S K

denote the TDO over S associated to γ + ι, base changed to K. We let Ãγ =
Aγ+ι ⊗S K.

This last algebra is interesting because it satisfies the appropriate analog of the
Beilinson-Bernstein theorem for all γ, without any dominance hypothesis. This
should be expected, because γ is always “generic”, but the sense in which localiza-
tion holds generically is subtle, since it is not a Zariski open property. However,
it is easy to check that the original proof of Beilinson-Bernstein [BB81] and its
extension to the parabolic case by [Kit12, 2.9] work over any characteristic 0 field,
in particular over K. Here we must interpret “dominant” as in [Kit12, Section
2.6]: a weight over K is dominant if for all i, its inner product with α∨

i is not a
negative integer. The weight γ + ι is obviously dominant in this sense since this
inner product is never an integer.1 Thus we have that:

Theorem 3.11. The functor

Γ(X;−) : D̃γ -mod → Ãγ -mod

is an equivalence.

The algebra A(p) is not quite an analog of the universal enveloping algebra since
even in the case of a Borel p = b, we will not obtain U(g), but instead the finite
extension A(b) = U(g)⊗Z(g)U(h) quantizing the Grothendieck-Springer resolution.

Geometrically, we can see that A(p) is a quotient of A(b) because the pull-back
π∗Dι by the projection map G/B → G/P is a quotient of the corresponding TDO

D
(b)
ι on G/B, induced by the map h = b/[b, b] → p/[p, p]. A D

(b)
ι -module can be

thought of as a “coherent sheaf with connection” with special curvature, and this
quotient imposes the condition of flatness along fibers of the map π.

Algebraically, A(b) contains the subalgebra generated by U(p) and U(h), and this
subalgebra has a representation on Sym(p/[p, p]) where both map by the obvious
quotients. A quick computation with the Harish-Chandra homomorphism shows
these are compatible. We can algebraically express A(p) as the quotient of A(b)
that acts faithfully on the induced parabolic Verma module.

1The papers [BB81] and [Kit12] use opposite sign conventions. Luckily, this is irrelevant for
us since γ + ι is dominant and anti-dominant in this sense, so even if one mixes up the sign
conventions, one will arrive at the correct result.
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When we ultimately compare parabolic W-algebras to Yangians, this algebra
matches the larger algebra Y λ

μ (γ), where formal roots of Ri are adjoined; see Re-
mark 2.3.

We can identify Z(g) as a subalgebra of U(h) in two different ways: there is the
usual Harish-Chandra homomorphism, which sends a central element to the Cartan
term in its PBW expansion, and the ρ-shifted version of this homomorphism, which
identifies Z(g) with U(h)W , so the maximal ideal for the orbit of a weight λ is the
ideal of central elements vanishing on the Verma module of highest weight λ − ρ.
We’ll usually want to use the latter, but it will be useful to sometimes have the
former. Note that either map will give A(b) = U(g)⊗Z(g)U(h); the question is just
one of the coordinates on h.

Remark 3.12. Note that in the case of glN , this matches the convention of [BK08,

Section 3.8]: the elements Z
(r)
N are sent to the degree r elementary symmetric

function in the diagonal elements ei,i. If we identify a dominant weight of glN with

a partition ν1 ≥ · · · ≥ νN as usual, then this shift sends it to (ν1 + N−1
2 , ν2 +

N−3
2 , . . . , νN + 1−N

2 ).

We have an induced W -action on A(b) = U(g) ⊗Z(g) U(h) trivially on the first
tensor factor and as the usual action on the second (if we use the shifted Harish-
Chandra homomorphism). Thus, we can recover U(g) as the invariants of this
action.

Consider the group Θ = NG(l)/L, the normalizer of the Levi l of p in G modulo
the Levi subgroup integrating it. Since Cartan subalgebras in l are unique up to
conjugacy in L, we have that Θ is also the simultaneous normalizer of L and H
modulo H. That is, it is the subgroup of W normalizing L.

For general p, we can write p/[p, p] = z(l) as a quotient of h and thus write A(p)
as a quotient of A(b) = U(g)⊗Z(g) U(h), where here we have to be sure to use the
unshifted Harish-Chandra homomorphism (and thus act by the dot action on h).
The elements of Θ ⊂ W descend to automorphisms of A(p) under this map.

Definition 3.13. Let W (0, p) = A(p)Θ ⊂ A(p) be the invariant subalgebra.

Remark 3.14. In the type A context of primary interest to us, the Levi l will be
the block diagonal matrices with block sizes given by some composition; the group
Θ will be a product of symmetric groups permuting the blocks with the same size.
Under our ultimate match of conventions, the scalars λi will be the number of
blocks of size i, so Θ =

∏
Sλi

. Note that this matches the use of Θ in Remark 2.3.

Note that we always have a surjective map of S = Sym(p/[p, p])-algebras U(g)⊗C

S → A(p) as proven by Borho and Brylinski [BB82, 3.8]. Since this is a surjective
map, it sends the center Z(g)⊗C S to the center S of A(p).

The map Z(g) ∼= U(h)W → S is induced by the translation by ρP , followed by
the obvious projection h → p/[p, p]. That is, the induced map on spectra sends a
character γ on p to the W -orbit of the restriction of γ+ρP to h. Since the Θ-action
is constructed by pushing down the action of W in U(g)⊗Z(g) U(h), the image of
the natural map U(g) → A(p) is Θ-invariant. Though the map W (0, p) ↪→ A(p) is
not surjective, it becomes so after base change to C:

Lemma 3.15. The algebra Aγ(p) is naturally isomorphic to the quotient W (0, p)γ
of W (0, p) by the maximal ideal in Z(g) which corresponds to the weight γ + ρP
under the Harish-Chandra homomorphism.
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Proof. We have a surjective map U(g)⊗C S → Aγ , sending every element of S to a
scalar by [BB82, 3.8], so U(g) → Aγ must be surjective, and of course this factors
through the map W (0, p) → Aγ . Our calculation above of the map Z(g) → S shows
that the maximal ideal for the weight γ + ρP is indeed killed by this map. That
this gives all elements of the ideal is easily checked by considering the associated
graded. �

3.3.2. Specializing to type A. For glN , we can take the parabolic subalgebra p to
consist of block upper triangular matrices for some composition τ of N . In partic-
ular, if τ = (τ1, . . . , τ�), then the Levi subalgebra l ⊂ p comprises block diagonal
matrices where the jth block consists of τj × τj matrices. A character γ : p → C

is simply an assignment of a scalar rj to the jth block for j = 1, . . . , 
. Given γ
we define a multiset Ri to be the set of (twice) the values we assign to a block of
length i:

Ri = {2rj | τj = i, j = 1, . . . , 
}.
Combining these we obtain a set of parameters R = (Ri)i∈I (cf. Definition 2.4).
(The factor of 2 in the definition of Ri is inserted to match the conventions of
Section 2.)

The vector ρP is given by

1

2
(τ1 − 1, τ1 − 3, . . . ,−τ1 + 1, . . . , τ� − 1, τ� − 3, . . . ,−τ� + 1),

so the weight γ + ρP is a concatenation of vectors of the form 1
2 (r + i − 1, r + i −

3, . . . , r− i+1) for the different r ∈ Ri. The normalizer Θ acts by permuting these
blocks if they have the same size (cf. Remark 3.14), so after taking the Θ-invariants
of A(p), we need only remember R. In other words, given R which is compatible
with p (that is, |Ri| equals the number of i×i blocks in l), we can choose a γ so that
γ+ρP recovers R as above. The corresponding two-sided ideal of W (0, p) generated
by the maximal ideal of Z(glN ) is independent of the choice of γ. Thus, we will
use W (0, p)R to denote this quotient of W (0, p). By Lemma 3.15 that natural map
W (0, p) → A(p) induces an isomorphism W (0, p)R ∼= Aγ(p).

Remark 3.16. If we replace GLN with SLN , we simply kill the kernel of the sur-
jective map U(glN ) → U(slN ), which means that R would only be well-defined up
to simultaneous translation. Alternatively, we can think about this in terms of the

unique automorphism of U(glN ) which fixes U(slN ) and sends Z
(1)
N 
→ Z

(1)
N + k.

Thus, we have W (0, p)R ∼= W (0, p)R+k for any k ∈ C.

Note that if p = b is a Borel, then all blocks are of size 1 so we only have R1.
We let U(g)R = W (0, b)R. As discussed above (cf. Remark 3.12), the quotient

U(g)R can be defined by sending Z
(s)
N to the scalar es(R1), that is, by sending the

formal polynomial ZN (u) 
→
∏

r∈R1
(u+ r/2). Our Harish-Chandra homomorphism

calculation shows that:

Lemma 3.17. The surjective map U(g) → W (0, p)R factors through U(g)
˜R where

R̃ satisfies the condition of (2.15).

Remark 3.18. In this formalism, we can think of the deformation Aγ+ι as corre-
sponding to a similar set, where we replace each complex number r ∈ Ri with a
“point” in a formal neighborhood of this point.
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3.3.3. Definition of parabolic W-algebras. Now we consider W-algebra analogs of
the algebras defined in the previous section, which will be defined by non-commuta-
tive Hamiltonian reduction. Following the notation from Section 3.1, for any module
N of a quotient of U(g)⊗C S, we have an induced m-action where

(3.11) m · n = mn− χ(m)n for all m ∈ m, n ∈ N,

where on the RHS, the action is the module structure. LetQπ = W (0, p)/W (0, p)mχ

and consider the non-commutative Hamiltonian reductions

A(e, p) := HomA(p)

(
A(p)/A(p)mχ, A(p)/A(p)mχ

)
=
(
A(p)/A(p)mχ

)m
,(3.12)

W (e, p) := HomW (0,p)(Qπ, Qπ) = Qm
π .

The algebra W (e, p) is the parabolic W-algebra.

We can also obtain W (e, p)γ , A(e, p)γ+ι, and Ã(e, p)γ over C, Ŝym(p/[p, p]) and
K, respectively, by tensoring A(e) with the appropriate base ring or by Hamiltonian
reduction of the corresponding algebras when e = 0. The equivalence of these
descriptions follows from the flatness of A(e, p) over Sym(p/[p, p]) and the fact that
Hi(m;Qπ) = 0 for i > 0. This latter vanishing is proven exactly as in [GG02,
Proposition 5.2]; the argument there uses only that the group M integrating m acts
freely on the coadjoint orbit through χ and thus applies to any algebra with an
inner action of m. Note that W (e, b) ∼= W (e), as defined in Section 3.1. In type A,
we can use the notation W (e)R,W (e, p)R as in Section 3.3.1; as discussed there,
these algebras only depend on R up to simultaneous translation.

The algebra W (e, p)γ comprises the sections of a quantum structure sheaf on
the S3-variety Xe

p, as defined in [BLPW16, Section 9.2]. As proven in [Web11,
Proposition 10] and [Los12, Lemma 5.2.1], the associated graded of this algebra is
isomorphic to the algebra of global functions on Xe

p.
We can also write W (e, p) as a quotient of the finite W-algebra W (e) → W (e, p)

by an ideal Jp. This ideal is constructed by considering the kernel Ip of the map
U(g) → W (0, p) and then applying Losev’s lower dagger operation Jp := (Ip)†
[Los10]. Note that this ideal must be prime, since W (e, p) is a domain. Our aim is
to ultimately understand this ideal, using the geometry of X.

Definition 3.19. The Gelfand-Tsetlin subalgebra Γ(π, p) of W (π, p) is the image
under the natural quotient map of Γ(π).

Remark 3.20. We can make a slightly cleaner statement about the classical limit of
W (e, p)γ if the natural map T ∗X → g∗ is generically injective. This is always the
case in type A, but for some parabolics in other Lie algebras it fails; for the classical
groups, a criterion for this property is given by Hesselink [Hes78, Theorem 7.1]. In
this case, the obvious map induces an isomorphism C[Xe

p]
∼= C[Se ∩ (G · p⊥)].

In the case when the map is injective, we can therefore think of W (e, p)γ as a
quantization of Se ∩ (G · p⊥). In particular, in type A, if p corresponds to τ as in
Section 3.3.2, then W (e, p)γ quantizes the intersection Se ∩Oτ , where Oτ ⊂ glN is
the nilpotent orbit of type τ .

As discussed in [Los12, Remark 5.2.2], the issue about the map T ∗X → g∗ also
manifests in the natural map W (e)γ → W (e, p)γ failing to be surjective on the
associated graded for the most obvious filtrations on these algebras.

Let (D̃γ ,mχ) -mod denote the category of sheaves of D̃γ–modules on which the
module action of mχ integrates to a group action of the unipotent group M . Let
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Q̃π = D̃γ/D̃γmχ. By Theorem 3.11 we have that D̃γ ⊗Ãγ
− is left and right adjoint

to the sections functor Γ. Thus, we have that

WΓ(M) = Hom(Q̃π,M) = Hom(Q̃π,Γ(M)),

where Q̃π = Ã(p)γ/Ã(p)γmχ. Combining this with [Web11, Proposition 10], we
obtain the result:

Corollary 3.21. The functor WΓ = Hom(Q̃π,−) : (D̃γ ,mχ) -mod → Ã(e, p)γ -mod
is an equivalence of categories.

3.3.4. Aside: B-algebras. Given a Z-graded algebra A, the B-algebra with respect
to this grading is the quotient B(A) = A0/

∑
k∈Z>0

A−kAk [BLPW16, Section 5.1].
As we’ll now recall, this algebra controls aspects of the highest weight theory for A.
In the context of symplectic duality it also has geometric significance, for example,
as a cohomology ring by Hikita’s conjecture [Hik17] and its extension by Nakajima;
see [KTWWY19a, Sections 1.6 and 8].

In particular, if M is an A–module and m ∈ M a “highest-weight” element (i.e.,
A0m ⊆ Cm and Akm = 0 for k > 0), then there is an induced action of B(A) on
the line Cm. Conversely, for any homomorphism B(A) → C we get a composed
homomorphism

A≥0 =
⊕
k≥0

Ak � B(A) → C,

and so an induced A–module A⊗A≥0 C called a standard module. The element
m ∈ 1⊗1 is highest weight; this construction is left adjoint to that described above.

Remark 3.22. Suppose S ⊂ A0 is a subalgebra which is central. Then for any
commutative S-algebra S′, we can extend the grading to A⊗S S′. There is then a
natural isomorphism B(A⊗S S′) ∼= B(A)⊗S S′.

If A is a commutative ring, then its Z–grading corresponds to a Gm–action on
SpecA. In this case, B(A) is canonically isomorphic to the coordinate ring of the
scheme-theoretic fixed-point locus (SpecA)Gm . We can leverage this in the non-
commutative situation: when A is the global section ring of a quantized conical
symplectic resolution M, there is an inequality

(3.13) dimC C[MGm ] = dimCB(C[M]) ≥ dimC B(A),

by [BLPW16, Proposition 5.1].

3.3.5. Highest weights in type A. We now return to the type A setting and set
g = glN . Fix partitions π, τ � N . We let eπ ∈ g be the nilpotent defined in Section
3.1.1, and p ⊂ g (resp., P ⊂ GLN ) be the parabolic subalgebra (resp., subgroup)
corresponding to τ . We fix also a character γ : p → C and the corresponding set
of parameters R as defined in Section 3.3.2. We set W (π, p) = W (eπ, p), A(π, p) =
A(eπ, p),W (π, p)R = W (eπ, p)R, etc. Assume w ∈ W = SN is simultaneously a
longest left coset representative of Wπ and a shortest right coset representative for
Wτ . We call such a permutation parabolic-singular and let PS(π, p) be the set
of such permutations. This set is in bijection with the set of row-strict tableaux
of shape τ and type π, sending a tableau to the unique longest permutation that
sends its row reading word to a weakly ordered one. Then the transposed version
of [BO11, Corollary 2.6] shows that PS(π, p) is non-empty if and only if τ ≤ πt in
the dominance order.
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Let c = {h ∈ h | [h, eπ] = 0} be the centralizer of eπ in the Cartan subalgebra
h. If we complete eπ to an sl2 triple, this will also centralize fπ. In fact, the
simultaneous centralizer of eπ and fπ is reductive with c a Cartan.

The algebra W (π, p) carries an action of the group C exponentiating c, and
every cocharacter into this group induces a grading on W (π, p). We choose the
grading induced by any dominant cocharacter which is generic in c and consider
the associated B-algebra B(W (π, p)). By [BLPW16, 5.1], this algebra is finite over
S = Sym(p/[p, p]).

We will be particularly interested in the related algebras B(W (π, p)R) and

B(Ã(π, p)γ); these are the base change of B(A(π, p)) to the closed point γ and
to the generic point of its formal neighborhood, respectively, as in Remark 3.22.
Thus, given a point ν ∈ SpecB(Ã(π, p)γ), we can takes its Zariski closure in
SpecB(A(π, p)) and intersect that with SpecB(W (π, p)R). Since SpecB(A(π, p))
is finite and thus proper over S, this intersection will be a single point, which
we call its specialization. For a general finite map, we could have points in
SpecB(W (π, p)R) which are not the specialization of a more generic point, but
this will not happen if B(W (π, p)) is free as a module over S (or equivalently, flat
over S).

Lemma 3.23. The B-algebra B(W (π, p)) is free of rank #PS(π, p) as an S-module.
Thus, a weight for W (π, p)R is the highest weight of a module over W (π, p)R if and

only if it is the specialization of the highest weight of a module over Ã(π, p)γ.

Proof. In order to show that an S-algebra is free of a given rank, it suffices to check
that it has this rank generically and that there is no closed point where the rank
of the base change is larger.

On the one hand, the base change of B(A(π, p)) to the generic point B ⊗S K
has dimension equal to #PS(π, p) by [BLPW16, 5.3], since the S3–variety X

eπ
p has

a torus action with fixed points in bijection with PS(π, p).
On the other hand, by (3.13) the dimension of B(W (π, p)R) is bounded above

by the “commutative B-algebra”: the quotient of C[X] by the ideal generated by
functions of non-zero weight. By [Hik17, A.1 and A.2], this has dimension equal to
the Euler characteristic of another S3 variety, taking the Slodowy slice to a regular
element in the Levi l of p (which thus has Jordan type τ corresponding to the
diagonal blocks of l), and G/Q, where Q is a parabolic with e regular in its Levi (so
of type π). Thus p and π essentially switch roles. We can obtain a bijection between
PS(π, p) and PS(τ, q) by taking the inverse and multiplying by w0. Note that this
requires reversing the order on blocks of τ , but this order is immaterial, so this
presents no issue. Note the appearance of the same reversal in [BLPW16, 10.4-5].
Thus B(W (π, p)R) ≤ #PS(π, p).

Since the dimension of the fiber is a lower semi-continuous function, this shows
that this dimension must be constant, and by the usual argument, B(A(π, p)) must
be a free S-algebra. �

Thus, we can use localization to find the highest weights of modules over Ã(π, p)γ ,
and thus over W (π, p)R. Note that the parabolic-singular permutations are pre-
cisely the shortest right coset representatives such that M acts freely on the Schu-
bert cell UwP/P , where U is the unipotent of a Borel subgroup containing M .
We lose no generality by assuming we have conjugated so that this is the standard
Borel B. These are precisely the Schubert cells that carry an (M,χ)-equivariant
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local system Lw [Web11, Definition 12]. That is, Lw is a coherent D-module,
such that the action of m on Lw by m · x = αmx − χ(m)x integrates to an M -
action (where αm is the vector field on X given by the infinitesimal action of
m); cf. equation (3.11). For such w, we consider the D-modules on X given by
δw = i!Lw,∇w = i∗Lw, where i : UwP/P → G/P is the natural inclusion.

We thus have a natural map U(c) → W (π), which is a quantum moment map
for the induced action of C on the Slodowy slice Sπ.

Lemma 3.24. The highest weight of WΓ(∇w) over the torus c is given by

w(γ + ρP ) + ρ = ww0(γ − ρP ) + ρ.

Proof. This is analogous to [HTT08, 12.3.1]. Let w ∈ PS(π, p) be a parabolic-
singular permutation. The module ∇w is a pushforward ι : ww0Uw0P/P ↪→ X,
and thus we can just compute the pushforward on this open subvariety. We can
identify wU−P/P ∼= Adw(u−), with the subvariety UwP/P sent to u∩Adw(u−) =
u ∩ Adw(u−) since w is a shortest right coset representative. Now we enumerate
the roots in Adw(u−) by β1, . . . , βN , with the first k roots {β1, . . . , βk} being those
that are positive. Let xi denote the corresponding coordinates on Adw(u−) and yi
the dual basis of Adw(u−). We can also assume that {β1, . . . , βp} for some p ≤ k
are the (necessarily simple) weight spaces on which χ is non-zero. The fact that w
is a longest left coset representative guarantees that any such weight space lies in
Adw(u−), so the parabolic-singular property shows that these lie in Adw(u−).

Thus, we can identify the pushforward of Lw to this affine space with the module
over the Weyl algebra W = C[u−]⊗ Sym(u−) of u− which is generated by a single
element eχ with the relations ∂

∂xi
eχ = χ(yi)e

χ for i = 1, . . . , k, and xi · eχ = 0
for i = k + 1, . . . , n. The function eχ generates the Whittaker functions under
multiplication by functions which are constant on M -orbits and multiplication by
constant vector fields. In these coordinates, we have that c acts by the Euler
operator

(3.14) h 
→ w(γ + ρ− ρP )(h) +

N∑
i=1

βi(h)xi
∂

∂xi
.

Note that since c commutes with e, we have that βi(h) = 0 if i ≤ p. On the
function eχ, we have that

xi
∂

∂xi
eχ =

⎧⎪⎨⎪⎩
χ(yi)xie

χ i ≤ p,

0 p < i ≤ k,

−βi(h) k < i.

Thus, equation (3.14) becomes

(3.15) h · eχ 
→ (w(γ + ρ− ρP )(h) +

n∑
i=k+1

βi(h))e
χ.

Note here that βi ranges over the roots in Adw(u−) ∩ u− = AdwwP
0
(u−) ∩ u−, so

the sum is ρ − wwP
0 ρ = ρ − wρ + 2wρP . Thus, we have that the weight of eχ is

w(γ + ρP ) + ρ = ww0(γ − ρP ) + ρ. �
We call γ ∈ h∗ ⊗C S row-sum-distinct if the restrictions w · (γ + ρP )|c are

distinct for w ∈ PS(π, p). Note that this is stronger than having stabilizer WP , as
the case of N = 4, π = (2, 2), p = b, and γ = (4, 3, 2, 1) shows: the permutations
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(2, 4, 1, 3) and (2, 4, 3, 1) are both parabolic-singular, but w · (γ+ρP ) have the same
restriction to c = {diag(a, a, b, b) : a, b ∈ C}. For a fixed P , this is an open condition
determined by finitely many hyperplanes.

In particular, the weight γ + ι for γ ∈ h∗ is always row-sum-distinct, since if
w · (γ + ι + ρP )|c = w′ · (γ + ι + ρP )|c for w �= w′ ∈ PS(π, p), then we must have
w · (γ + ρP )|c = w′ · (γ + ρP )|c and thus w · ι|c = w′ · ι|c. In this case, w and w′ are
in the same double coset and thus must be equal (since each double coset contains
at most one parabolic-singular permutation).

This actually shows something stronger: the difference w · (γ + ι + ρP )|c − w′ ·
(γ + ι+ ρP )|c is never an integral weight (since its values are never scalars).

Recall that we have fixed a character γ : p → C and the corresponding set of
parameters R as defined in Section 3.3.2. For a given w ∈ PS(π, p), we consider
the weight w · (γ + ρP ). We let

(3.16) Tw ∈ Row
˜R(π)

be the row-symmetrized tableau of shape π which has w · (γ+ρP ) as a row reading

(this corresponds to a filling in the alphabet R̃). We let Lw be the simple module

attached to this tableau by Brundan and Kleshchev (cf. Section 3.2.2). We let T̃w

and L̃w, ∇̃w be corresponding objects for γ + ι, base changed to K.

Lemma 3.25. We have an isomorphism L̃w
∼= WΓ(∇̃w).

Proof. By row-sum-distinctness, each of the simple modules has distinct highest
weights for c, as do WΓ(∇̃w). In fact, since the weights of different WΓ(∇̃w)’s are
never congruent modulo integral weights, there are no c-equivariant maps between
them, and thus no W (π, p)-equivariant ones. Thus, WΓ(∇̃w) will be simple and

isomorphic to whichever of the modules L̃w′ has the same highest weight for c. By
construction, this is L̃w. �

Theorem 3.26. The highest weights of modules in category O over W (π, p)R are
given by the tableaux Tw for w ∈ PS(π, p).

Proof. First we check this for γ+ ι after base change to K. In this case, the simple
modules are given by L̃w. By Lemma 3.23, the simples at γ have highest weights
obtained by specialization; that is, they are Lw. �

Lemma 3.27. The action of W (π, p)R on WΓ(∇w) is faithful.

Proof. The module∇w is a naive pushforward from the open subset ww0Uw0P/P ⊂
X, so we can show faithfulness on this open subset. On this open subset, ∇w is the
pushforward of the Whittaker functions on an affine subspace, which is faithful. �

A standard argument shows that a faithful module of finite length over a domain
must have a faithful composition factor. Equivalently, we have that Jp is the
intersection of the annihilators of W (π)

˜R acting on the composition factors of
WΓ(∇w). Thus, we have:

Theorem 3.28. The algebra W (π, p)R acts faithfully on at least one Lw for w ∈
PS(π, p); that is,

W (π, p)R ∼= W (π)
˜R

/ ⋂
w∈PS(π,p)

Ann(Lw).
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4. The quantized Mirković-Vybornov isomorphism

Throughout this section we let g = sln.

4.1. The main theorem. Recall our notation from 1.2: λ ≥ μ are dominant
coweights of g, and τ ≥ π are partitions of N . Let p ⊂ glN be the parabolic
subalgebra corresponding to τ .

Recall from (2.2) that for Λ ∈ Grλμ, we have Λ ⊂ Λ0 with Λ0/Λ ∼= CN via the
basis Eπ. Furthermore the operator on Λ0/Λ induced by multiplication by t is

nilpotent of type ≤ τ . Therefore we have a map Grλμ → Oτ ⊂ glN .

Theorem 4.1 ([MV07b]). The map sending Λ ∈ Grλμ to the action of t on Λ0/Λ ∼=
CN defines an isomorphism of varieties

Grλμ
∼−→ Tπ ∩Oτ

for a suitable transverse slice Tπ to Oπ ⊂ Oτ . Moreover, the following diagram
commutes:

GrN�1
μ

∼ �� Tπ ∩ NglN

Grλμ

��

��

∼ �� Tπ ∩Oτ

��

��

where the vertical arrows are the inclusions of closed subvarieties.

We review this theorem in more detail in Section 5.3 below.

Remark 4.2. In this paper, we use a formulation of the above result due to Cautis-
Kamnitzer [CK08, Section 3.3]. It is somewhat simpler than the original construc-
tion of Mirković-Vybornov. It is possible to modify the results of this paper to
precisely match the original Mirković-Vybornov isomorphism; however, this comes
at the cost of less pleasant maps of algebras and associated combinatorics.

We note that although in general Tπ differs from the better-known Slodowy
slice, these are isomorphic as Poisson varieties (cf. Section 5.1). Therefore the

above theorem implies that Sπ ∩Oτ
∼= Grλμ, where Sπ is the Slodowy slice.

Now, on the one hand Grλμ is quantized by Y λ
μ (R) for any set of parameters R.

On the other hand, Sπ ∩Oτ is quantized by W (π, p)R. Our main result shows that
we can lift the isomorphism of Mirković and Vybornov to the level of quantizations.

Theorem 4.3.

(a) There is an isomorphism of filtered algebras

Φ : Y N�1
μ

∼−→ W (π)

compatible with specialization of parameters on both sides. It identifies the
Gelfand-Tsetlin subalgebras ΓN�1

μ
∼−→ Γ(π).
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(b) Φ induces a bijection between highest weight modules over Y N�1
μ and W (π),

such that

B(R̃) RowR(π)

B(R) Row
˜R(π)◦

∼

⊆ ⊆

∼

when R̃ and R are related as in (2.15). (Here Row
˜R(π)◦ is a set of row

symmetrized π–tableaux parametrizing highest weights for W (π, p)R; see
Section 4.3.2.)

(c) Φ induces an isomorphism of filtered algebras

Y λ
μ

∼−→ W (π, p).

It is compatible with specializations of parameters on both sides, yielding
isomorphisms Y λ

μ (R)
∼−→ W (π, p)R for any set of parameters R via the

commutative diagram

Y N�1
μ (R̃) W (π)

˜R

Y λ
μ (R) W (π, p)R

∼

∼

These isomorphisms identify the Gelfand-Tsetlin subalgebras Γλ
μ

∼−→ Γ(π, p)

and Γλ
μ(R)

∼−→ Γ(π, p)R.
(d) The classical limit agrees with the MV isomorphism.

We will split the proof of this theorem into parts, which occupy the remainder of
the paper. In Sections 4.2, 4.3, and 5, we will prove parts (a), (b), and (d) of this
theorem, respectively. Part (c) follows from parts (a), (b) by a simple argument,
as we will show presently.

This linkage uses the quotient maps

(4.1) Y N�1
μ → Y λ

μ , W (π) → W (π, p).

introduced in Sections 2.6 and 3.3.3, respectively. Note that these maps are not
surjective; instead it is better to work with the surjective maps

(4.2) Y N�1
μ (γ̃) → Y λ

μ (γ), A(π, b) → A(π, p).

The subalgebras Y λ
μ ⊂ Y λ

μ (γ) generate Y λ
μ (γ) over its center, and similarly for

W (π, b) ⊂ A(π, b).
From part (a), we can construct an SN -equivariant isomorphism Y N�1

μ (γ̃) ∼=
A(π, b) by base change. If we show that we have an induced isomorphism Y λ

μ (γ) ∼=
A(π, p), this will necessarily be equivariant for the actions of Θ on Y λ

μ (γ) by permut-
ing formal roots as in Remark 2.3 and on A(π, p) by the action discussed in Section
3.3.1. We thus obtain the desired map in Theorem 4.3(c) by taking invariants of
these Θ-actions.
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Proof of Theorem 4.3(c) (assuming parts (a) and (b)). In order to complete the
proof, we need only show that the kernels in (4.1) match under Φ after base change
at these maximal ideals. By Theorem 3.28, the kernel of the latter map is the inter-
section of the annihilators of the simple modules over Y λ

μ (γ). By Theorem 4.3(b)

and Corollary 2.16, we thus obtain an induced surjective map Y λ
μ (γ) → A(π, p).

Recall that by Corollary 2.8, Y λ
μ (γ) is a free module of infinite rank over its

center. Thus, if this map is not injective, it will fail to be injective after quotient
by any maximal ideal of the center. Similarly, since each piece of the filtration of
Y λ
μ (γ) and A(π, p) is finite dimensional, if the map Φ is not an isomorphism of

filtered algebras, it will fail to be an isomorphism after specialization at a maximal
ideal in the center. Thus, we can consider the quotient Y λ

μ (R) with R giving a
maximal ideal of the center and the corresponding quotient of W (π, p)R.

When we take associated graded of both sides, we obtain the functions on Grλ̄μ
(Theorem 2.5) and Sπ ∩ Oτ , respectively. Both are irreducible varieties of the
same dimension; thus a surjective ring map from one to the other must be an
isomorphism. Since Γ(π, p) is the image of Γ(π) by Definition 3.19 and Γλ

μ the

image of ΓN�1
μ by Theorem 2.13, the compatibility of Gelfand-Tsetlin subalgebras

follows from the same statement for the case λ = N�1. �

We next note an immediate corollary about the original Mirković-Vybornov iso-
morphism:

Corollary 4.4. Grλμ and Tπ ∩ Oτ are isomorphic as Poisson varieties. This iso-

morphism intertwines the C×–action by loop rotation on Grλμ with the square root

of the Kazhdan action on Tπ ∩Oτ (see Remark 3.6).

Remark 4.5. In the classical limit, the Gelfand-Tsetlin subalgebras Γλ
μ(R) ⊂ Y λ

μ (R)
and Γ(π, p)R ⊂ W (π, p)R become Poisson commutative subalgebras of the coordi-

nate rings of Grλμ and Tπ ∩Oτ , respectively. In other words, they define integrable
systems. It follows that the Mirković-Vybornov isomorphism also intertwines these
integrable systems.

We note a second immediate corollary, which establishes a generalization of
[FMO10, Conjecture 2] for all parabolic W-algebras. By combining part (c) of
the main theorem with Corollary 2.8, we deduce:

Corollary 4.6. W (π, p) is free as a left (or right) module over its Gelfand-Tsetlin
subalgebra Γ(π, p).

4.2. Proof of Theorem 4.3(a): The case of λ = N�1. In this section, we will
consider the case where λ = N�1 and μ is a dominant weight such that μ ≤ λ.
From this data, we have a partition π � N as in Section 1.2. We’ll describe an
isomorphism Φ : Y N�1

μ
∼−→ W (π).

To state the theorem precisely, first we need to define a map

(4.3) φ : Yμ → SYn(σ)
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by

Hi(u) 
→
(u+ i−1

2 )μi

uμi

Di+1(−u− i−1
2 )

Di(−u− i−1
2 )

,

Ei(u) 
→ Ei(−u− i−1
2 ),

Fμ,i(u) 
→ (−1)μiFμ,i(−u− i−1
2 )

for i ∈ I. Here Fμ,i(u) =
∑

r>0 F
(μi+r)
i u−r on each side.

Proposition 4.7. The map φ is an isomorphism of filtered algebras.

For the proof, we will make use of the following lemma regarding “non-standard”
embeddings of the shifted Yangian Yμ ↪→ Y :

Lemma 4.8. Fix a monic polynomial

Pi(u) = uμi + P
(1)
i uμi−1 + · · ·+ P

(μi)
i ∈ C[u]

for each i = 1, . . . , n− 1. There is a corresponding embedding Yμ ↪→ Y , defined on
the generators by

E
(r)
i 
→ E

(r)
i ,

H
(r)
i 
→ H

(r)
i + P

(1)
i H

(r−1)
i + · · ·+ P

(μi)
i H

(r−μi)
i ,

F
(s)
i 
→ F

(r)
i + P

(1)
i F

(s−1)
i + · · ·+ P

(μi)
i F

(s−μi)
i

for all r > 0 and s > μi, and where we interpret H
(0)
i = 1 and H

(r)
i = 0 for r < 0.

Proof. Assuming that this map defines a homomorphism, it is easy to see that it
is an embedding: its associated graded agrees with that of the defining embedding
Yμ ⊂ Y .

To prove that it is a homomorphism, one can verify the relations directly; we give
a different argument. By [KTWWY19a, Lemma 3.7], Yμ is a left coideal of Y with
respect to its defining embedding Yμ ⊂ Y (see Definition 2.1). By [KTWWY19a,
Proposition 3.8], there is a 1-dimensional module C1Q for Yμ determined by the
polynomials Pi(u). We can then consider

Yμ
Δ−→ Y ⊗ Yμ −→ Y ⊗ End(C1Q) ∼= Y.

The composition is precisely the claimed homomorphism. �

Proof of Proposition 4.7. When μ = 0 the fact that this map defines an isomor-
phism Y

∼→ SYn follows from [BK05, Remark 5.12] after a minor modification:
here we are following Drinfeld’s conventions as opposed to the “opposite” presen-
tation of [BK05].

When μ �= 0, consider the composition

Yμ ↪→ Y
∼−→ SYn,

where the second arrow is the above μ = 0 isomorphism, while the first arrow is the
embedding from the previous lemma for the polynomials Pi(u) = (u+ i−1

2 )μi . This
map Yμ ↪→ SYn agrees with φ on the generators of Yμ, and its image is precisely
SYn(σ). �
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Recall the algebra Yμ[R
(j)] from (2.3); note that as λ = N�1 we only adjoin

variables R(j) := R
(j)
n−1 for j = 1, . . . , N . We extend φ to an isomorphism φ :

Yμ[R
(j)] → SYn(σ) ⊗ C[Z(1), . . . , Z(N)], where the Z(j) are formal variables. On

the central generators φ is defined by the equation

(4.4) (−1)NR(−u+ n
2 ) 
→ uN + Z(1)uN−1 + · · ·+ Z(N) =: ZN (u).

We now consider the following diagram:

Yn(σ)

ψ

��
κ

��

Yμ[R
(j)]

φ ��

τ

��

SYn(σ)⊗ C[Z(1), . . . , Z(N)]

ξ

��
Y N�1
μ

Φ ���������� W (π)

Here τ : Yμ[R
(j)] → Y N�1

μ is the defining quotient map, while κ : Yn(σ) → W (π) is
Brundan and Kleshchev’s surjection from Theorem 3.5. The map ψ is the identity
on SYn(σ) and on the center is defined by the equation

(4.5) ZN (u) = up1(u− 1)p2 · · · (u− n+ 1)pnψ
(
Qn(u)

)
.

The map ξ is equal to κ on SYn(σ) and on the center is defined by the equation

ξ(ZN (u)) = up1(u− 1)p2 · · · (u− n+ 1)pnκ
(
Qn(u)

)
.

Note that by [BK08, Lemma 3.7] the right-hand side of the above equation is a poly-
nomial in u of degree N , and hence ξ is a well-defined surjection. By construction
we have that κ = ξ ◦ ψ.

We will now show that Φ exists by proving the equality φ(Iλμ ) = ker(ξ). Notice
that Φ is then an isomorphism. It also induces an isomorphism between the central
quotients Y N�1

μ (R) ∼= W (π)R because of (4.4) and the above discussion.

Our first order of business is to determine the image of A
(�)
i under φ. From the

identity Di(u) =
Qi(u+i−1)

Qi−1(u+i−1) of (3.5) we obtain that

Di+1(−u− i−1
2 )

Di(−u− i−1
2 )

=
Qi−1(−u+ i−1

2 )

Qi(−u+ i−1
2 )

Qi+1(−u+ i+1
2 )

Qi(−u+ i+1
2 )

and hence the image

(4.6) φ
(
Hi(u)

)
=

(u+ i−1
2 )μi

uμi

ψ(Qi−1(−u+ i−1
2 ))

ψ(Qi(−u+ i−1
2 ))

ψ(Qi+1(−u+ i+1
2 ))

ψ(Qi(−u+ i+1
2 ))

.

The next result is analogous to Corollary 2.18:

Lemma 4.9. There exist unique series si(u) ∈ C[Z(1), . . . , Z(N)][[u−1]] with con-
stant term 1 such that

φ(Ai(u)) = si(u)ψ
(
Qi(−u+ i−1

2 )
)

for i = 1, . . . , n− 1. These satisfy the equations

(4.7) φ
(
ri(u)

)si−1(u− 1
2 )si+1(u− 1

2 )

si(u)si(u− 1)
=

(u+ i−1
2 )μi

uμi
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for i = 1, . . . , n− 2 and

(4.8) φ
(
rn−1(u)

) sn−2(u− 1
2 )

sn−1(u)sn−1(u− 1)
=

(u+ n−2
2 )μn−1

uμn−1
ψ
(
Qn(−u+ n

2 )
)
.

Moreover, these equations determine the si(u) uniquely.

Proof. For each i, we have two factorizations for φ
(
Hi(u)

)
: one in terms of φ

(
ri(u)

)
and the φ

(
Aj(u)

)
by (2.4), and one in terms of the ψ

(
Qj(−u)

)
by (4.6) (with

appropriate shifts in u in both cases). The claim now follows by applying the
uniqueness of such factorizations [GKLO05, Lemma 2.1]. �

Note that this result implies the desired match of Gelfand-Tsetlin subalgebras.

Lemma 4.10. For i = 1, . . . , n− 1,

(4.9) si(u) =
(u− i−1

2 )p1(u− i−3
2 )p2 · · · (u+ i−1

2 )pi

umi
.

Proof. Denote the right-hand side of (4.9) by xi(u). By the previous lemma, it
suffices to show that the xi(u) satisfy the equations (4.7), (4.8).

For the case of equation (4.8), the left-hand side is

φ
(
rn−1(u)

)
·

xn−2(u− 1
2 )

xn−1(u)xn−1(u− 1)

= u−Nφ(R(u))
(1− 1

2u
−1)mn−2

(1− u−1)mn−1
· umn−1(u− 1)mn−1

(u− 1
2 )

mn−2(u+ n−2
2 )pn−1

∏n−1
j=1 (u− n

2 + j − 1)pj

after cancelling common factors between xn−2(u − 1
2 ) and xn−1(u). This reduces

to
φ(R(u))

upn−pn−1

1

(u+ n−2
2 )pn−1

∏n−1
j=1 (u− n

2 + j − 1)pj

.

Now consider the right-hand side of (4.8). Applying (4.5) and (4.4), we get

(u+ n−2
2 )μn−1

uμn−1
φ
(
Qn(−u+ n

2 )
)

=
(u+ n−2

2 )pn−pn−1

upn−pn−1

ZN (−u+ n
2 )

(−u+ n
2 )

p1(−u+ n−2
2 )p2 · · · (−u− n−2

2 )pn

=
(u+ n−2

2 )pn−pn−1

upn−pn−1

(−1)Nφ
(
R(u)

)
(−1)N (u− n

2 )
p1(u− n−2

2 )p2 · · · (u+ n−2
2 )pn

and we see that the right and left sides agree.
Verifying that the xi(u) satisfy equation (4.7) for 1 ≤ i < n− 1 is analogous and

is left as an exercise for the reader. �

Lemma 4.11. φ(Iλμ ) ⊂ ker(ξ).

Proof. Combining the two lemmas,

φ
(
Ai(u)

)
=

(u− i−1
2 )p1(u− i−3

2 )p2 · · · (u+ i−1
2 )pi

umi
ψ
(
Qi(−u+ i−1

2 )
)
.
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We will now apply the definition (3.4) of Qi(u). By Theorem 3.5 in [BK08] we have

that κ
(
T

(r)
�k

)
= 0 for r > p�. Therefore for any 
 = 1, . . . , n,

(u− i−1
2 + 
− 1)p�

up�
κ
(
T�k(−u+ i−1

2 − 
+ 1)
)

is a polynomial in u−1 of degree p�. Observe by (3.4) that

ξ ◦ ψ
(
Qi(−u+ i−1

2 )
)

=
∑

w∈Sn−i

(−1)wκ
(
Ti,w(i)(−u+ i−1

2 − i+ 1)
)
· · ·κ

(
T1,w(1)(−u+ i−1

2 )
)
.

Since p1 + · · · + pn−i = mi, it follows that ξ ◦ φ
(
Ai(u)

)
is a polynomial in u−1 of

degree mi. This proves the claim. �

Lemma 4.12. φ(Iλμ ) ⊃ ker(ξ).

Proof. By Lemmas 4.9 and 4.10, we have

φ(A1(u)) = s1(u)ψ
(
Q1(−u)

)
= ψ

(
Q1(−u)

)
.

Noting that D1(u) = Q1(u), it follows that ψ
(
D

(r)
1

)
= (−1)rφ

(
A

(r)
1

)
.

By [BK08, Section 3.4] ker(κ) = 〈D(r)
1 : r > p1〉, so

ker(ξ) = ψ(ker(κ)) = 〈ψ
(
D

(r)
1

)
: r > p1〉.

Since p1 = m1, the elements φ
(
A

(r)
1

)
∈ φ

(
Iλμ
)
for r > p1. So ker(ξ) ⊂ φ(Iλμ ). �

This completes the proof of Theorem 4.3(a).

4.3. Proof of Theorem 4.3(b): The product monomial crystal and row

tableaux. Let R be a set of parameters of weight λ and define R̃ to be the cor-
responding set of parameters of weight N�1, as in Theorem 2.13. We let γ be a
WP -invariant weight such that the values of the weight on blocks of size i are given
by the elements of Ri with multiplicity; while this is not unique, its orbit under the

Weyl group is. Note that the elements of R̃ are just the entries of γ + ρP .
Note that the isomorphism Φ preserves the notion of highest weight vector and

highest weight module: it sends E’s to E’s and H’s to D’s. In this section we

describe how the highest weights of Y λ
μ (R) and Y N�1

μ (R̃) (as described in Section
2.5) match up respectively with the highest weights of W (π)

˜R and W (π, p)R (as
described in [BK08] and Section 3.2). That is, we will describe the commutative
diagram

(4.10)

B(R̃) RowR(π)

B(R) Row
˜R(π)◦

∼

⊆ ⊆

∼

as prescribed by Theorem 4.3(b). Both vertical maps are natural inclusions of
subsets, and the horizontal maps are bijections induced by Φ.
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4.3.1. A bijection for λ = N�1. Consider the isomorphism Φ : Y N�1
μ → W (π)

from Section 4.2. By equation (4.4), it follows that Φ descends to an isomorphism

Y N�1
μ (R̃) ∼= W (π)

˜R.

On the one hand, the set of highest weights B(R̃)μ of Y N�1
μ (R̃) is in bijection with

the set

(4.11) HN�1
μ (R̃) =

{
(Si)i∈I :

|Si| = mi and

S1 + n ⊂ S2 + (n− 1) ⊂ · · · ⊂ Sn−1 + 1 ⊂ R̃

}
.

As in (2.13), the highest weight corresponding to (Si) ∈ HN�1
μ (R̃) is given by

Ai(u) 
→
∏
s∈Si

(1− 1

2
su−1) = u−mi

∏
s∈Si

(u− 1

2
s).

On the other hand, recall from Section 3.2.2 that the set of highest weights for

W (π)
˜R is Row

˜R(π), the set of row symmetrized π–tableaux T on the alphabet R̃,
and that T ∈ Row

˜R(π) encodes a highest weight according to

(u− i+ 1)piDi(u− i+ 1) 
→
∏
a∈Ti

(u+
1

2
a− n

2
).

Proposition 4.13. Let R̃ be a multiset of size N . The isomorphism Φ : Y N�1
μ (R̃)

→ W (π)
˜R induces a bijection

Row
˜R(π) → B(R̃)μ

given by T 
→ S = (Si), where

Si =
(
T1 ∪ · · · ∪ Ti

)
− (n− i+ 1),

and Ti denotes the i-th row of T .

Equivalently, the i-th row is obtained from

Ti =
(
Si + (n− i+ 1)

)
\
(
Si−1 + (n− i+ 2)

)
,

that is, the difference between parts of the “flag” of multisets (4.11).

Proof. We begin with the equation

(u−i+1)piDi(u−i+1) = (u−i+1)pi
Qi(u)

Qi−1(u)
=

(u− i−1
2 )miΦ

(
Ai(−u+ i−1

2 )
)

(u− i−1
2 )mi−1Φ

(
Ai−1(−u+ i−2

2 )
) .

The first equality is equation (3.5), while the second equality follows from Lemmas
4.9, 4.10 after cancelling common factors.

For a highest weight S = (Si) for Y
N�1
μ (R̃), the right-hand side maps to∏

s∈Si
(u+ s−i+1

2 )∏
s∈Si−1

(u+ s−i+2
2 )

.

To find the corresponding tableaux T ∈ Row
˜R(π), we must write the above as∏

a∈Ti

(u+
a

2
− n

2
),

which leads to Ti =
(
Si + (n − i + 1)

)
\
(
Si−1 + (n − i + 2)

)
. This proves the

proposition. �
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4.3.2. A bijection for general λ. Next we’ll prove that the bijection of Proposition
4.13 induces a bijection between the highest weights of Y λ

μ (R) and the highest
weights of W (π, p)R. We’ll do this by first identifying the tableaux in Row

˜R(π)
which descend to highest weights of W (π, p)R; we term these “overshadowing
tableaux”. Once this is done, we need only check that these satisfy the same

conditions as the subcrystal B(R) ⊂ B(R̃) (cf. Lemma 2.14). Let Row
˜R(π)◦ de-

note the set of highest weights of W (π, p)R. By Theorem 3.28 there is an inclusion

Row
˜R(π)◦ ⊂ Row

˜R(π). Now suppose c ∈ Ri. Then in R̃ the element c has n − i
“descendants”, namely, the elements

{c+ n− i− 1, c+ n− i− 3, . . . , c− n+ i+ 1}.

We’ll call this set the c-block in R̃.
Given a row tableau T ∈ Row

˜R(π), we can divide the boxes of the tableau into

c-blocks. Note that this decomposition will not be unique if R̃ contains any element
with multiplicity greater than 1. We say that the tableau T is overshadowing if
this division into c-blocks can be chosen so that for every c ∈ R the elements of the
c-block occur in strictly decreasing order down the tableau.

Put another way, given T ∈ Row
˜R(π), an R-coloring of T is a coloring of the

contents of T using |R| colors, such that for every c ∈ R the elements colored c
form a c-block, and they are in strictly decreasing order down the rows. Clearly T
is overshadowing if and only if there exists an R-coloring of T .

Lemma 4.14. Row
˜R(π)◦ is precisely the subset of overshadowing row tableaux in

Row
˜R(π).

Proof. By Theorem 4.13, the set Row
˜R(π)◦ is the set of tableaux where the row

reading word is of the form w · (γ + ρp), for w ∈ PS(π, p), and γ is a Wp-invariant
weight where each element ofRi appears n−i times. Thus, the coordinates of γ+ρp
are the concatenations of the c-blocks for the different c ∈ Ri for all i, ordered by
the value of c. The longest left coset property says that every pair of elements of
the same c-block must be reversed in order. That is, they must be in decreasing
order in rows (that is, they must satisfy the overshadowing condition) or in the
same row. On the other hand, if they are in the same row, the shortest right coset
condition assures that they must have remained in the same order, contradicting
the longest left coset property. Thus, this tableau must be overshadowing.

Conversely, if a tableau is overshadowing, then the division into c-blocks fixes a
unique parabolic-singular permutation which sends γ + ρp to a row reading of this
tableau which matches the c-blocks of the tableaux c-blocks of γ+ρp while ordering
each row by the order on c-blocks in γ + ρp. This makes the shortest right coset
property clear, and the longest left coset property follows because overshadowing
shows that every c-block is completely reversed. �

Let B(λ) be the crystal associated to an irreducible representation of g of highest

weight λ. By [KTWWY19a, Proposition 2.9], the crystal B(R̃) is isomorphic to

B(t1�1)⊗ · · · ⊗ B(tq�1), where R̃ = {ct11 , . . . , c
tq
q }.

Now, we shall describe the inclusion B(R) ⊂ B(R̃). First, consider the case when
λ is fundamental. The elements of B(yi,c) are in bijection with partitions fitting
inside an i×n− i box, that is, with no more than i parts and ξp ≤ n− i (cf. Section
2.5.3). We identify a partition with its diagram {(a, b) ∈ Z>0 × Z>0 | 1 ≤ a ≤ ξb},
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and to the partition ξ we associate the monomial

yξ,c = yi,c ·
∏

(a,b)∈ξ

z−1
i−a+b,c−a−b.

Thus, we wish to factor these into terms corresponding to B(y1,c+j) for j = −i +
1, . . . , i− 1. This is easily done using the formula

yi,c = y1,−i+1y1,−i+3 · · · y1,i−1

i−1∏
k=1

k−1∏
j=0

z−1
i−k,2j−k.

Thus, we have that

yξ,c =

i∏
p=1

y1,c+i−2p+1

ξp+i−p∏
q=1

z−1
q,c−q+i−2p =

i∏
p=1

y(ξp+i−p),c+i+1−2p,

where we consider (ξp+ i−p) as a partition with one row. This gives us an element
in B(y1,c+i+1−2p), resulting in the inclusion

B(yi,c) ⊂
∏

j=−i+1,...,i−1

B(y1,c+j).

For general λ we take the product over all such inclusions. More precisely, for
p ∈ B(R) we write p =

∏
i∈I,c∈Ri

yξn−i,c,c. Then by the above argument we can

view yξi,c,c ∈
∏

j=−n+i+1,...,n−i−1 B(y1,c+j), and hence

p ∈
∏

i∈I,c∈Ri

∏
j=−n+i+1,...,n−i−1

B(y1,c+j) = B(R̃).

This procedure has a nice description in terms of diagrams. Consider a monomial
p ∈ B(R). Recall that p can be represented diagrammatically as in Section 2.5.3,
where here we assume that R is an integral set of parameters. To define the image

of p in B(R̃), the idea is to “project” the circled vertices onto the line corresponding
to the n− 1 node of the Dynkin diagram and fill the squares along this projection
with 1’s.

For instance, if we work in type A6, with R3 = {4}, all other Ri empty, and
we attach the partition (2, 1) to this vertex, then we have the picture on the left.
After projecting we obtain the picture on the right:

1

1

1

1 2 3 4 5 6

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

1

1 2 3 4 5 6

1

2

3

4

5

6

7

In general, the inclusion B(R) → B(R̃) is defined by applying this projection to
every vertex. For instance, consider the monomial data p0 ∈ B(R) on the left below,
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where R3 = R5 = {4} and all other Ri are empty. The corresponding monomial

data in B(R̃) is on the right:

1

1

2

1

1

1

1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

1

1

2

1

2

1

1

2

2

1

1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

Finally we are ready to prove:

Proposition 4.15. Under the bijection of Proposition 4.13, Row
˜R(π)◦ is identified

with B(R).

This completes the proof of part (b) of Theorem 4.3.

Proof. By the above discussion, we view B(R) ⊂ B(R̃). Let S = (Si) ∈ B(R), and
suppose it corresponds to T ∈ Row

˜R(π) under the bijection of Proposition 4.13.

Denoting the rows of T by Ti, we have that Tn = R̃ \ (Sn−1 + 1), T1 = S1 + n, and
for i = 1, . . . , n− 2,

Ti = (Si + (n− i)) \ (Si−1 + (n− i+ 1)).

We’ll show that T ∈ Row
˜R(π)◦; i.e., T has an R-coloring. We’ll first show that it

suffices to prove this in the case when p consists of only one vertex (i.e., |R| = 1).
Without loss of generality assume that R is integral. Now color each partition in
p. For instance we could have the example on the left below. When we view p as

a monomial datum in B(N�1, R̃) we remember the color of the partitions. In the
example we obtain the diagram on the right.

1

1

1,1

1

1

1

1 2 3 4 5 6

0

1

2

3

4
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6

7

8

1

1

1,1

1

1,1

1

1

1,1

1,1

1
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Now, when we apply the bijection, we naturally obtain a row tableau whose entries
are colored (we don’t know a priori that this is an R-colored tableau - this is what
we want to show). Indeed when we look at (Si + (n − i)) \ (Si−1 + (n − i + 1)),
we preserve the color of the elements that haven’t been cancelled (for c ∈ Si, the
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element c+n−i ∈ Si+(n−i) is understood to have the same color as c). Moreover,

the last row is given by R̃ \ (Sn−1+1), and the elements of R̃ are colored the same
color as the node which “overshadowed” them. This is much easier with an example:
the bijection applied to the above monomial data results in the following colored
row tableau (which happens to contain two empty rows):

7

5 5
3
3
1

Note that the red content is precisely the block corresponding to 4 ∈ S5, and the
blue content is the block corresponding to 4 ∈ S3. Moreover if p consisted of, say,
just the red partition, then the resulting row tableau is the red part of the above
tableau. This shows that it suffices to consider the case where |R| = 1 and show
that the resulting row tableau is overshadowing.

To this end, suppose Rn−i = {k} (so the other multisets Rj are empty) and
in the monomial data p the partition λ = (λ1 ≥ · · · ≥ λi ≥ 0) corresponds to k.
Then for j = 1, . . . , i, T has content k + i − 2j + 1 going down the rows, which is
manifestly overshadowing. This proves that T ∈ Row

˜R(π)◦ for any p ∈ B(R).
To prove that the bijection B(R) → Row

˜R(π)◦ is surjective, given T ∈Row
˜R(π)◦,

choose an R-coloring of T . This partitions the contents of T into c-blocks, and for
each such block we can reverse the process above to construct a monomial datum.

If we do this for all blocks at once we obtain a datum in B(R) ⊂ B(R̃). �

Remark 4.16. Under this bijection, we obtain a crystal structure on overshadowing
tableaux. One can easily work out that this coincides with the one induced by
Brundan and Kleshchev’s crystal structure on row tableaux in [BK08, Section 4.3].

5. Proof of Theorem 4.3(d): The classical limit

In this section, we will study the classical limit of our isomorphism

Φ : Y λ
μ (R)

∼−→ W (π, p)R.

Our goal is to establish part (d) of Theorem 4.3 and show that this classical limit
agrees with the Mirković-Vybornov isomorphism.

Remark 5.1. We may immediately save ourselves some work with an observation: it
suffices to prove the case of λ = N�1, as in general both isomorphisms are defined
by restricting this case to closed subvarieties.

5.1. More about slices to nilpotent orbits. In this subsection we let G be a
reductive algebraic group over C, with Lie algebra g. We will fix throughout a non-
zero nilpotent element e ∈ g and an sl2–triple {e, h, f}. In this section, we slightly
generalize some of the results on Slodowy slices from [GG02], showing in particular
that the classical Slodowy slice and the transverse slice considered in [MV07a] are
Poisson isomorphic. Since these results may be of independent interest, we provide
brief proofs.

Definition 5.2. Let C ⊂ g be an adh-invariant subspace such that g = [g, e]⊕ C.
Then the affine space M = e+ C is called an MV slice.
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The most natural choice of such a slice is the Slodowy slice, where C = gf (cf.
Section 3.1). There are many others however.

Remark 5.3. An MV slice M = e + C is a transverse slice to the nilpotent orbit
Oe at the point e.

From now on, we assume that M is an MV slice. Note that the eigenvalues
of adh acting on C are necessarily non-positive. From our sl2–triple we get a

homomorphism SL2 → G, and we will denote by γ(t) the image of

(
t 0
0 t−1

)
in G.

We consider the C×–action (the Kazhdan action) on g defined by

ρ(t) · x = t2
(
Adγ(t−1)

)
(x).

Note that ρ preserves M and contracts it to the unique fixed point e.
Consider the decomposition g =

⊕
i∈Z

gi into adh weight spaces. As in Sec-
tion 3.1 there is a non-degenerate skew-symmetric form 〈x, y〉 = (e, [x, y]) on g−1.
Choose a Lagrangian subspace l ⊂ g−1 with respect to 〈·, ·〉.

Define the nilpotent Lie subalgebra m = l ⊕
⊕

i≤−2 gi and the corresponding

unipotent subgroup M ⊂ G. Note that m⊥ = [e, l] ⊕
⊕

i≤0 gi is the orthogonal
complement of m with respect to the Killing form. The following result is a gener-
alization of Lemma 2.1 in [GG02].

Lemma 5.4. The adjoint action map α : M ×M → e + m⊥ is a C×-equivariant
isomorphism of affine varieties. Here C× acts on e+m⊥ by ρ and on M ×M by

t · (g, x) =
(
γ(t−1)gγ(t), ρ(t) · x

)
.

Proof. Since M is an MV slice we have C ⊂
⊕

i≤0 g(i) ⊂ m⊥, so indeed the image

of the adjoint map M ×M → g is contained in e+m⊥.
Next, since g = [g, e]⊕C it follows that [m, e]∩C = 0. We also have dimKer(adf)

= dimC, since both spaces are complementary to [g, e] in g. Since ade : m → [e,m]
is an isomorphism,

dimm
⊥ = dimm+ dim g(0) + dim g(−1) = dim[m, e] + dimKer(adf)

= dim[m, e] + dimC.

So m⊥ = [m, e]⊕ C. The remainder of the proof proceeds as in [GG02]. �

Following Section 3.2 in [GG02]: e is a regular value for the moment map μ :
g∗ → m∗, μ−1(e) = e+m⊥ (under g∗ ∼= g), and it follows from Lemma 5.4 that we
have a Hamiltonian reduction of the Poisson structure on g∗ to M. It is induced
from the isomorphisms

M ∼= μ−1(e)/M, C[M] ∼=
(
C[g]/I(μ−1(e))

)M
.

Theorem 5.5. There is a C×–equivariant isomorphism of affine Poisson varieties
between any two MV slices.

Proof. With l and m fixed as above, for MV slices M1,M2 we have C×–equivariant
isomorphisms

M ×M1
∼= e+m

⊥ ∼= M ×M2

by Lemma 5.4. The Poisson structures on M1,M2 are both induced by Hamilton-
ian reduction, giving us the desired Poisson isomorphism. �
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Remark 5.6. As in [GG02, Section 3.1], any MV slice M also inherits an induced
Poisson structure as a subvariety of g (with its Kostant-Kirillov-Souriau Poisson
structure under g ∼= g∗) by applying [Vai94, Proposition 3.10]. This Poisson struc-
ture agrees with that given above via Hamiltonian reduction; cf. [GG02, Section
3.2].

5.2. More about affine Grassmannian slices. Let us briefly recall some aspects

of the “loop group” description of the slices Grλμ in the affine Grassmannian of
G = SLn to supplement the lattice description given in Section 2.1.

Remark 5.7. In Section 2.1 we defined the slices in the affine Grassmannian of
PGLn. Here use G = SLn; this doesn’t make a difference. In fact, we can use any
group whose Lie algebra is sln [KWWY14, Section 2G].

Grλμ is a transverse slice to Grμ ⊂ Grλ, defined as the intersection

(5.1) Grλμ = Grμ ∩ Grλ,

where Grμ=G1[t
−1]tw0μ is an orbit for the opposite groupG1[t

−1]=Ker(G[t−1]
t�→∞→

G). Every point in Grμ has a unique representative of the form gtw0μ, where
g = (aij) ∈ G1[t

−1] satisfies

(5.2) aij = δij + a
(1)
ij t−1 + a

(2)
ij t−2 + · · ·+ ∈ δij + tpi−pj−1C[t−1].

(Recall that we are denoting w0μ = (p1, . . . , pn).) In this way, Grλμ may be consid-

ered as a closed subscheme of G1[t
−1].

Remark 5.8. It is sometimes convenient to work with the group G1[[t
−1]]. One

advantage is that elements of this group admit Gauss decompositions,

G1[[t
−1]] = U−

1 [[t−1]]T1[[t
−1]]U+

1 [[t−1]],

where U±, T ⊂ G are the subgroups of upper/lower triangular and diagonal matri-

ces. The varieties Grλμ may also be considered as closed subschemes of G1[[t
−1]].

In particular, we may describe GrN�1
μ as the variety of matrices g = (aij) of the

form (5.2) (with det g = 1), with the additional constraint that a
(r)
ij = 0 for r > pj .

Then explicitly g corresponds to the lattice

(5.3) Λ = spanO

⎧⎨⎩tpjej +
∑
i,r

a
(r)
ij tpj−rei : 1 ≤ j ≤ n

⎫⎬⎭ ,

allowing us to compare with our previous description (2.1) of GrN�1
μ .

Using the above identification of Grλμ ⊂ G1[[t
−1]], we now recall how the classical

limit of Y λ
μ (R) is identified with functions on Grλμ (as was promised in Section 2.3).

Following Theorems 3.9, 3.12, and Proposition 4.3 in [KWWY14],

A
(r)
i 
→ [t−r]Δ{1,...,i},{1,...,i},

E
(r)
i 
→ [t−r]

Δ{1,...,i−1,i+1},{1,...,i}
Δ{1,...,i},{1,...,i}

,

F
(s)
i 
→ [t−s]

Δ{1,...,i},{1,...,i−1,i+1}
Δ{1,...,i},{1,...,i}

.
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Here, for I, J ⊂ {1, . . . , n} we denote by ΔI,J the minor with rows I and columns J ,
thought of as a map G1[[t

−1]] → C[[t−1]]. Meanwhile, [t−r] extracts the coefficient

of t−r. Restricting these functions to the closed subscheme Grλμ ⊂ G1[[t
−1]] gives

the desired isomorphism.
The following result is clear from the structure of the GKLO representation

[KWWY14, Theorem 4.5]. It also follows from similar results for Zastava spaces

[FM99], since GrN�1
μ and ZN�1−μ are birational.

Proposition 5.9. The functions A
(r)
i , E

(r)
i for i ∈ I, 1 ≤ r ≤ mi, are birational

coordinates on Grλμ.

5.3. The MV isomorphism. As per usual, now fix λ ≥ μ dominant coweights
and associated partitions τ ≥ π of N .

Let eπ ∈ glN be the nilpotent element with lower triangular Jordan type π =
(p1 ≤ · · · ≤ pn) � N . We will consider the transpose MV slice
(5.4)

Tπ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X = (Xij) ∈ glN :

(a) Xij has size pi × pj ,
(b) Xii has 1’s below diagonal entries in final

column,
(c) Xij for i �= j has entries in final column,

but not below row pj .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Recall the description of Grλμ from Section 2.1. With this description and the

definition of Tπ in mind, we can now give a slightly more precise formulation of the
MV isomorphism Theorem 4.1:

For any Λ ∈ Grλμ, identify Λ0/Λ ∼= CN via the basis Eπ; in particular we may
identify multiplication by t on Λ0/Λ with an element X ∈ glN . The map taking

Λ to X ∈ glN defines an isomorphism Grλμ
∼−→ Tπ ∩ Oτ . It is compatible with the

inclusions of closed subvarieties Grλμ ⊂ GrN�1
μ and Tπ ∩Oτ ⊂ Tπ ∩NglN

.
Following [CK18, Section 3.3], it is straightforward to write the above isomor-

phism explicitly in coordinates. On the affine Grassmannian side, we identify Λ

with g ∈ G1[[t
−1]] as in the previous section and use the coefficients a

(r)
ij of the

matix entries of g as coordinates. On the nilpotent cone side, the image is a block
matrix X = (Xij). Then under the above isomorphism, the block Xij has interest-
ing entries only in its final column:

Xij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 · · · 0 −a
(pj)
ij

δij 0 · · · 0
. . .

...
...

0 δij
. . .

. . . 0 −a
(1)
ij

0 0
. . .

. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
...

. . .
. . . 0 δij 0 0

0 · · · 0 0 0 δij 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5.4. Completing the proof of Theorem 4.3. To finish the proof of the theorem,
we will now compare the classical limit of our isomorphism Φ : Y N�1

μ (R)
∼−→
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W (π)R with the Mirković-Vybornov isomorphism. We interpret the classical limit
of Φ as an isomorphism of coordinate rings

(5.5) Φ : C[GrN�1
μ ]

∼−→ C[Tπ ∩ NglN
].

In the notation of the previous section, suppose that g ∈ GrN�1
μ ⊂ G1[[t

−1]] maps
to X ∈ Tπ ∩ NglN

under the Mirković-Vybornov isomorphism (both being closed
points). To complete the proof of the theorem, it is sufficient to prove that

(5.6) f(g) = Φ(f)(X) ∀f ∈ C[GrN�1
μ ].

Remark 5.10. Both sides are irreducible algebraic varieties, so in fact it is sufficient
to prove that this equation holds for f ranging over the birational coordinates
described in Proposition 5.9.

The isomorphism grY N�1
μ (R) ∼= C[GrN�1

μ ] was described explicitly in Section
5.2. We now recall Brundan and Kleshchev’s identification of the classical limit
of W (π) with functions on Tπ, following [BK08, Sections 3.3–3.4]. More precisely,
they give an explicit isomorphism

W (π)
∼−→ U(p)m ⊂ U(glN ).

In the classical limit, we identify S(glN ) ∼= C[glN ] via the trace pairing and S(p)m ∼=
C[eπ+m⊥]M (see [BK06, Section 8] for details). Since Tπ is an MV slice, by Lemma
5.4, there is an isomorphism

C[e+m⊥]M
∼→ C[Tπ]

by restriction. In other words, the isomorphism grW (π) ∼= C[Tπ] comes by the
composition

(5.7) grW (π) ↪→ C[glN ] � C[Tπ],
where the first arrow is Brundan-Kleshchev’s embedding and the second is restric-
tion.

Brundan-Kleshchev’s embedding is defined via explicit elements T
(r)
ij;0 ∈ U(glN ),

defined in [BK06, Section 9] (see also [BK08, Section 3.3]). Forming the n × n–
matrix T (u) = (Tij(u)) whose entries are formal series of functions Tij(u) = δij +∑

r>0 T
(r)
ij;0u

−r, we take its formal Gauss decomposition

T (u) = F (u)D(u)E(u)

where D(u) is diagonal and E(u) (resp., F (u)) is upper (resp., lower) unitriangular.

Denote the diagonal entries of D(u) by Di(u) = 1 +
∑

r>0 D
(r)
i u−r and the super-

diagonal entries of E(u) by Ei(u) =
∑

r>0E
(r)
i u−r. Then the elements D

(r)
i , E

(r)
i ∈

U(glN ) are the images of the same-named elements of W (π) (and similarly for the

F
(s)
i ).

By abuse of notation, let us denote by T
(r)
ij;0, D

(r)
i , etc., the corresponding ele-

ments of the associated graded algebras.

Lemma 5.11. Suppose GrN�1
μ � g 
→ X ∈ Tπ ∩NglN

are closed points correspond-
ing under the Mirković-Vybornov isomorphism. Then

T
(r)
i,j;0(X) = (−1)ra

(r)
ji .
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Proof. Recall our conventions on the pyramid π from Section 3.1.1. By definition,

T
(r)
ij;0 =

r∑
s=1

(−1)r−s
∑

k1,...,ks

�1,...,�s

ek1,�1 · · · eks,�s ,

where the sum is over sequences with 1 ≤ kt, 
t ≤ N , satisfying conditions (a), (b),
(c), (e), and (f) from [BK08, Section 3.3]. In the classical limit, this is a function
on glN via the trace pairing. When restricted to Tπ, conditions (a), (b), (e), and
(f) imply that the value at X has the form

r∑
s=1

(−1)r−s
∑

x2,...,xs
r1+···+rs=r

(−1)sa
(r1)
jx2

a(r2)x2x3
· · · a(rs)xsi

,

where the sum is over all sequences where 1 ≤ xt ≤ n. However, condition (c)
implies that only the term with s = 1 contributes. This proves the claim. �

Now, from (4.3) and Lemma 4.9 it follows that the classical limit of Φ : Y N�1
μ (R)

∼→ W (π)R sends

A
(r)
i 
→ (−1)rQ

(r)
i , E

(r)
i 
→ (−1)rE

(r)
i ,

where Qi(u) = D1(u) · · ·Di(u). Therefore, by Remark 5.10 the following result
completes the proof of the main theorem:

Proposition 5.12. With notation as in the previous lemma, suppose that g 
→ X.
Then for i = 1, . . . , n− 1 we have equality of evaluations

A
(r)
i (g) = (−1)rQ

(r)
i (X),

E
(r)
i (g) = (−1)rE

(r)
i (X)

for the functions A
(r)
i , E

(r)
i ∈ C[GrN�1

μ ] and D
(r)
i , E

(r)
i ∈ C[Tπ ∩NglN

], respectively.

Proof. If we take the Gauss decomposition of T (u) and then evaluate the result at
the point X, we will get the same result as first evaluating T (u) at X and then
taking Gauss decomposition.

By the previous lemma, if we evaluate T (u) at X we get the matrix g(−u)T

(i.e., the transpose of g = g(t) ∈ G1[[t
−1]] evaluated at t = −u). Using the relation

between the minors of a matrix and its transpose, we observe that

E
(r)
i (g) = [t−r]

Δ{1,...,i−1,i+1},{1,...,i}
Δ{1,...,i},{1,...,i}

(
g(t)

)
= [t−r]

Δ{1,...,i},{1,...,i−1,i+1}
Δ{1,...,i},{1,...,i}

(
g(t)T

)
= (−1)r[u−r]

Δ{1,...,i},{1,...,i−1,i+1}
Δ{1,...,i},{1,...,i}

(
g(−u)T

)
.

The latter precisely extracts the superdiagonal entries of the “E” part of the Gauss

decomposition of g(−u)T . Hence E
(r)
i (g) = (−1)rE

(r)
i (X), as claimed. A similar

calculation applies to A
(r)
i . �
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