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THE GROTHENDIECK GROUP OF UNIPOTENT

REPRESENTATIONS: A NEW BASIS

G. LUSZTIG

Abstract. Let G(Fq) be the group of rational points of a simple algebraic
group defined and split over a finite field Fq . In this paper we define a new
basis for the Grothendieck group of unipotent representations of G(Fq).

Introduction

0.1. Let G be an adjoint simple algebraic group defined and split over a finite field
Fq, and let G(Fq) be the finite group of Fq-rational points of G. Let W be the
Weyl group of G. We fix a family c (in the sense of [L1]) in the set of irreducible
representations of W . (This is the same as fixing a two-sided cell of W .) To c
we associate a finite group Gc and an imbedding c ⊂ M(Gc) (with image M0(Gc))
as in [L1], [L3]. Here for any finite group Γ, M(Γ) consists of pairs (x, ρ), where
x ∈ Γ and ρ is an irreducible representation of the centralizer of x; these pairs are
taken up to Γ-conjugacy. Let C[M(Γ)] be the C-vector space with basis M(Γ),
and let AΓ : C[M(Γ)] → C[M(Γ)] be the “non-abelian Fourier transform” (as in
[L1]). An element f ∈ C[M(Γ)] is said to be ≥ 0 if f is a linear combinations of
basis elements (x, ρ) ∈ M(Γ) with all coefficients in R≥0. As in [L5] we say that
f ∈ C[M(Γ)] is bipositive if f ≥ 0 and AΓ(f) ≥ 0.

Taking Γ = Gc, we denote by C[M0(Gc)] the subspace of C[M(Gc)] spanned by

M0(Gc). In this paper we construct a new basis B̃c of C[M(Gc)]. Here are some of

the properties of B̃c:
(I) All elements of B̃c are bipositive.

(II) There is a unique bijection M(Gc)
∼−→ B̃c, (x, ρ) �→ ̂(x, ρ), such that any

(x, ρ) appears with non-zero coefficient in ̂(x, ρ) ; this coefficient is actually 1.
(III) Let ≤ be a transitive relation on M(Gc) generated by the relation for which

(x, ρ), (x′, ρ′) are related if (x, ρ) appears with non-zero coefficient in ̂(x′, ρ′). Then
≤ is a partial order on M(Gc) in which (1, 1) is the unique minimal element. In

particular, the basis B̃c is related to the basis M(Gc) of C[M(Gc)] by an upper
triangular matrix with 1 on the diagonal and with integer entries.

(IV) (1, 1) appears with coefficient 1 in any element of B̃c.

(V) The intersection B̃c ∩ C[M0(Gc)] is the basis Bc of C[M0(Gc)] defined in
[L5].

Note that (III) and (V) imply 0.5(i) of [L5] which was stated there without proof.
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0.2. Let H ⊂ H ′ be subgroups of Gc with H normal in H ′. In 3.1 we define a
linear map sH,H′ : C[M(H ′/H)] → C[M(Γ)] which commutes with the non-abelian
Fourier transform and takes bipositive elements to bipositive elements.

In the case where G is of exceptional type, our basis B̃c is obtained by apply-
ing sH,H′ to a very restricted set of bipositive elements (said to be primitive) of
C[M(H ′/H)], where H,H ′ are in the set of subgroups of Gc which are either {1} or
are associated in [L4] to the various left cells of W corresponding to c. This gener-
alizes the definition of Bc given in [L5] where the linear map sH,H′ was applied only
to (1, 1). In this case, our results can be interpreted as giving a new parametrization
of M(Gc) by triples (H,H ′,Ξ), where H,H ′ are as above and Ξ runs through the
primitive bipositive elements of C[M(H ′/H)]. (In each case H ′/H is a symmetric
group of small order.)

In the case where G is of classical type our basis B̃c will be defined using a
somewhat different approach. We will show elsewhere (based on results in [L5, §2])
that the approach described above for exceptional types works also for classical
types, leading to the same B̃c.

0.3. Let Irrc be the set of isomorphism classes of irreducible complex representations
of G(Fq) which are unipotent and are associated to c as in [L3]. Let Uc be the
(abelian) category of finite-dimensional complex representations of G(Fq) which
are direct sums of representations in Irrc, and let Kc be the Grothendieck group
of Uc. In [L3], a bijection M(Gc)

∼−→ Irrc is established. Via this bijection we can
identify C⊗Kc = C[M(Gc)] so that the basis Irrc of Kc becomes the basis M [Gc] of

C[M(Gc)]. Then the new basis B̃c of C[M(Gc)] becomes a new basis of C⊗Kc (it
is also a Z-basis of Kc). The elements in this new Z-basis of Kc represent objects
of Uc which are called the new (unipotent) representations of G(Fq). They are in
bijection with Irrc. Note that by taking the disjoint union over the various families
ofW we obtain a new basis for the Grothendieck group of unipotent representations
of G(Fq).

In type An we have |c| = 1 and we can take B̃c to consist of (1, 1); then the

desired properties of B̃c are trivial. The properties above of B̃c are verified in type
Bn, Cn, Dn in §1. Another approach in type Dn is sketched in §2. The exceptional
types are considered in §3.

0.4. Notation. For a, b in Z we set [a, b] = {z ∈ Z; a ≤ z ≤ b}. For a, b in Z we
write a =2 b instead of a = b mod 2 and a 
=2 b instead of a 
= b mod 2. For a
finite set Y let |Y | be the cardinal of Y .

1. The set SD

1.1. Let D ∈ N. A subset I of [1, D] is said to be an interval if I = [a, b] for some
a ≤ b in [1, D]. Let ID be the set of intervals of [1, D]. For I = [a, b], I ′ = [a′, b′] in
ID we write I ≺ I ′ whenever a′ < a ≤ b < b′. We say that I, I ′ are non-touching
(and we write I♠I ′) if a′ − b ≥ 2 or a− b′ ≥ 2. Let RD be the set whose elements
are the subsets of ID. Let ∅ ∈ RD be the empty subset of ID. For B ∈ RD and
h ∈ {0, 1} we set Bh = {I ∈ B; |I| =2 h}.

For B ∈ RD and [a, b] ∈ ID we define XB [a, b] =
⋃

I∈B1;I⊂[a,b] I.

Let I ∈ ID. A subset E of I is said to be discrete if i 
= j in E implies i−j 
= ±1.
Such E is said to be maximal if |E| = |I|/2 (with |I| even) or |E| = (|I| + 1)/2
(with |I| odd). A maximal discrete subset of I exists; it is unique if |I| is odd.
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When D ≥ 2 and i ∈ [1, D] we define an (injective) map ξi : ID−2 → ID by

ξi([a
′, b′]) = [a′ + 2, b′ + 2] if i ≤ a′, ξi([a

′, b′]) = [a′, b′] if i ≥ b′ + 2,

ξi([a
′, b′]) = [a′, b′ + 2] if a′ < i < b′ + 2.(a)

We define ti : RD−2 → RD by B′ �→ {ξi(I ′); I ′ ∈ B′} � {i}. We have |ti(B′)| =
|B′|+ 1.

1.2. We now assume that D is even. We say that B ∈ RD is primitive if it is of the
form

(a) B = {[1, D], [2, D − 1], . . . , [k,D + 1− k]} for some k ∈ N, k ≤ D/2.
For example, B = ∅ ∈ RD is primitive (with k = 0). We define a subset SD of

RD by induction on D as follows.
If D = 0, SD consists of a single element, namely ∅ ∈ RD. If D ≥ 2 we say that

B ∈ RD is in SD if either B is primitive, or
(b) there exist i ∈ [1, D] and B′ ∈ SD−2 such that B = ti(B

′).
(This generalizes the definition of the set SD in [L5, 1.2] which can be viewed as

a subset of SD.)
Let τD : [1, D] → [1, D] be the involution i �→ D+1− i. It induces an involution

I �→ τD(I) of ID. One can verify that I �→ τD(I) defines an involution SD → SD;
we denote it again by τD.

1.3. For D ≥ 0, let Sprim
D = {B ∈ SD;B primitive}.

Let B ∈ RD. We consider the following properties (P0), (P1), (P2) that B may
or may not have.

(P0) If I ∈ B, Ĩ ∈ B, then either I = Ĩ, or I♠Ĩ, or I ≺ Ĩ, or Ĩ ≺ I.
(P1) If [a, b] ∈ B1 and b − a ≥ 2, then XB [a + 1, b − 1] contains the unique

maximal discrete subset of [a+ 1, b− 1], that is, {a+ 1, a+ 3, a+ 5, . . . , b− 1}.
(P2) Let k = |B0| ∈ N. There exists a (necessarily unique) sequence of integers

0 = h0 < h1 < h2 < · · · < h2k < h2k+1 = D + 1 such that B0 consists of [h1, h2k],
[h2, h2k−1], . . . , [hk, hk+1]. We have hj =2 j for j ∈ [0, 2k + 1]. Assume now
that k ≥ 1 and that j ∈ [0, 2k]− {k} satisfies hj+1 ≥ hj + 3. If j ∈ [0, k − 1], then
XB[hj+1, hj+1−2] contains the unique maximal discrete subset of [hj+1, hj+1−2];
if j ∈ [k + 1, 2k], then XB[hj + 2, hj+1 − 1] contains the unique maximal discrete
subset of [hj + 2, hj+1 − 1].

Assume now that D ≥ 2, i ∈ [1, D], B′ ∈ RD−2, B = ti(B
′) ∈ RD. From the

definitions we see that the following holds.
(a) B′ satisfies (P0), (P1), (P2) if and only if B satisfies (P0), (P1), (P2).
Let S′

D be the set of all B ∈ RD which satisfy (P0), (P1), (P2). (This generalizes
the definition of the set S′

D in [L5, 1.3]. Properties like (P0), (P1) appeared in
[L5, 1.3].)

In the setup of (a) we have the following consequence of (a).
(b) We have B′ ∈ S′

D−2 if and only if B ∈ S′
D.

We show (extending [L5, 1.3(c)]):
(c) We have SD = S′

D. In particular any B ∈ SD satisfies (P0), (P1), (P2).
We argue by induction on D. If D = 0, S′

D consists of the empty set hence (c)
holds in this case. Assume now that D ≥ 2. Let B ∈ SD. We show that B ∈ S′

D.

If B ∈ Sprim
D , then B clearly is in S′

D. If B /∈ Sprim
D , then B = ti(B

′) for some
i, B′ ∈ SD−2 as in 1.2(b). By the induction hypothesis we have B′ ∈ S′

D−2. By (b)
we have B ∈ S′

D. We see that B ∈ SD =⇒ B ∈ S′
D. Conversely, let B ∈ S′

D.
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We show that B ∈ SD. If B ∈ Sprim
D this is obvious. Thus we can assume that

B /∈ Sprim
D . From (P2) we see that B1 
= ∅. Let [a, b] ∈ B1 be such that b − a

is minimum. If a < z < b, z =2 a + 1, then by (P1) we have z ∈ [a′, b′] with
[a′, b′] ∈ B1, b′−a′ < b−a, contradicting the minimality of b−a. We see that no z
as above exists. Thus, [a, b] = {i} for some i ∈ [1, D]. Using (P0) and {i} ∈ B, we
see that B does not contain any interval of the form [a, i] with a < i, or [i, b] with
i < b, or [a, i− 1] with a < i, or [i+ 1, b] with i < b; hence any interval of B other
than {i} is of the form ξi[a

′, b′], where [a′, b′] ∈ ID−2. Thus we have B = ti(B
′)

for some B′ ∈ RD−2. From (a) we deduce that B′ ∈ S′
D−2. Using the induction

hypothesis we deduce that B′ ∈ SD−2. By the definition of SD, we have B ∈ SD.
This completes the proof of (c).

We show:
(d) Let B ∈ SD. If I ∈ B1, J ∈ B0, then J 
⊂ I.
We argue by induction on |I|. Let I = [a, b], J = [a′, b′]. Assume that J ⊂ I.

By (P0) we have J ≺ I. Since b′ − a′ is odd, then either x = a′ or x = b′ satisfies
x =2 a+1. By (P1) we can find I ′ ∈ B1 such that I ′ ≺ I, x ∈ I ′. We have |I ′| < |I|.
By the induction hypothesis we have J 
⊂ I ′. We have I ′ ∩ J 
= ∅ and I ′ 
= J hence
I ′ ≺ J so that x /∈ I ′, a contradiction. This proves (d).

Let B ∈ SD, and let h0 < h1 < · · · < h2k+1 be attached to B as in (P2). We
show:

(e) If [a, b] ∈ B1, then for some j ∈ [0, 2k] we have hj < a ≤ b < hj+1.
We can find j ∈ [0, 2k] such that hj ≤ a ≤ hj+1. Assume first that j ∈ [0, k− 1].

Then [hj , h2k+1−j ] ∩ [a, b] 
= ∅ and [hj , h2k+1−j ] 
= [a, b] (one is in B0, the other in
B1). Using (P0), we deduce [hj , h2k+1−j ] ≺ [a, b] (which contradicts (d)) or [a, b] ≺
[hj , h2k+1−j ] so that hj < a. If b ≥ h2k−j , then [hj+1, h2k−j ] ⊂ [a, b] contradicting
(d). Thus we have b < h2k−j . If b ≥ hj+1, then [hj+1, h2k−j ]∩ [a, b] 
= ∅ (it contains
b) and [hj+1, h2k−j ] 
= [a, b]. Hence, by (P0), we have either [hj+1, h2k−j ] ≺ [a, b]
(which again contradicts (d)) or [a, b] ≺ [hj+1, h2k−j ] hence a > hj+1, contradicting
our assumption. We see that b < hj+1.

Assume next that j ∈ [k + 1, 2k]. Then [h2k−j , hj+1] ∩ [a, b] 
= ∅ (it contains
a) and [h2k−j , hj+1] 
= [a, b] (one is in B0, the other in B1). Using (P0), we
deduce [h2k−j , hj+1] ≺ [a, b] (which contradicts (d)) or [a, b] ≺ [h2k−j , hj+1], so
that b < hj+1. If a = hj , then [h2k+1−j , hj ] ∩ [a, b] 
= ∅ (it contains a) and
[h2k+1−j , hj ] 
= [a, b] 
= ∅. Using (P0) we deduce [h2k+1−j , hj ] ≺ [a, b] (which
contradicts (d)) or [a, b] ≺ [h2k+1−j , hj ] hence a < hj , a contradiction. We see that
a > hj .

Finally, we assume that j = k. Then [hk, hk+1]∩ [a, b] 
= ∅ and [hk, hk+1] 
= [a, b]
(one is in B0, the other in B1). Using (P0), we deduce [hk, hk+1] ≺ [a, b] (which
contradicts (d)) or [a, b] ≺ [hk, hk+1], so that hk < a and b < hk+1. This proves
(e).

The following result has already been proved as a part of the proof of (c).
(f) Assume that D ≥ 2, i ∈ [1, D]. Let B ∈ SD be such that {i} ∈ B. Then there

exists B′ ∈ SD−2 such that B = ti(B
′).

Let B ∈ SD, and let I = [a, b] ∈ B1. Let X (I) = {I ′ ∈ B1; I ′ ⊂ I}. We show:
(g) |X (I)| = (b− a+ 2)/2.
We argue by induction on |I|. If |I| = 1, then X (I) = {I} and the result is clear.

Assume now that |I| ≥ 3. By (P0), (P1) we can find a = z0 < z1 < · · · < zr = b
(r ≥ 0) such that z0, z1, . . . , zr are all congruent to a mod 2 and [z0+1, z1 − 1] ∈
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B1, [z1+1, z2−1] ∈ B1, . . . , [zr−1+1, zr−1] ∈ B1; moreover, any I ′ ∈ B1 such that
I ′ ≺ I is contained in exactly one of [z0+1, z1−1], [z1+1, z2−1], . . . , [zr−1+1, zr−1].
It follows that |X (I)| = 1 +

∑
j∈[0,r−1] |X ([zj + 1, zj+1 − 1])|. Using the induction

hypothesis we can rewrite the last equality as

|X (I)| = 1 +
∑

j∈[0,r−1]

((zj+1 − 1)− (zj + 1) + 2)/2 = 1 + (b− a)/2.

This proves (g).

1.4. For B ∈ SD, h ∈ {0, 1}, j ∈ [1, D] we set Bh
j = {I ∈ Bh; j ∈ I}. From the

definitions we deduce:
(a) Assume that D ≥ 2, i ∈ [1, D] and that B′ ∈ SD−2. Let B = ti(B

′) ∈ SD.
Then |B0| = |B′0|. Moreover, for h ∈ {0, 1} and r ∈ [1, D − 2] we have:

|B′
r
h| = |Bh

r | if r ≤ i− 2, |B′
r
h| = |Bh

r+2| if r ≥ i,

|Bh
i−1| = |Bh

i+1| = |B′
i−1

h|, |Bh
i | = |B′

i−1
h|+ h if 1 < i < D,

|Bh
i−1| = 0 if i = D, |Bh

i+1| = 0 if i = 1.
This extends [L5, 1.4(a)].

1.5. Let B ∈ SD − Sprim
S . As we noted in the proof of 1.3(c), in this case we must

have B1 
= ∅ and we have {j} ∈ B1 for some j ∈ [1, D]; we assume that j is as small
as possible (then it is uniquely determined). As in that proof we have B = tj(B

′),
where B′ ∈ SD−2. Let i be the smallest number in

⋃
I∈B1 I. We have i ≤ j. We

show:
(a) For any h ∈ [i, j], we have [h, h̃] ∈ B1 for a unique h̃ ∈ [h,D]; moreover we

have j ≤ h̃.
We argue by induction on D. When D ≤ 1 the result is obvious. We now assume

that D ≥ 2. Assume first that i = j. By (P0), {j} ∈ B1 implies that we cannot
have [j, b] ∈ B1 with j < b; thus (a) holds in this case. We can assume that i < j.

We have [i, b] ∈ B1 for some b > i, hence |B1| ≥ 2 so that |B′1| ≥ 1 and B′ /∈ Sprim
D−2 .

Then i′, j′ are defined in terms of B′ in the same way as i, j are defined in terms
of B. From (P1) we see that there exists j1 such that i < j1 < b and such that
{j1} ∈ B. By the minimality of j we must have j ≤ j1. Thus we have i < j < b.
We have [i, b] = ξj [i, b−2]], hence [i, b−2] ∈ B′1. This implies that i′ ≤ i. We have
[i′, c] ∈ B′1 for some c ∈ [i′, D − 2], c =2 i′; hence [i′, c′] ∈ B1 for some c′ ≥ i′ so
that i′ ≥ i. Thus we have i′ = i. By the induction hypothesis, the following holds:

(b) For any r ∈ [i, j′], we have [r, r1] ∈ B′1 for a unique r1; moreover j′ ≤ r1.
If j′ ≤ j− 2, then {j′} = ξj({j′}) ∈ B. Hence j′ ≥ j by the minimality of j; this

is a contradiction. Thus we have j′ ≥ j − 1.
Let r ∈ [i, j − 1]. Then we have also r ∈ [i, j′], hence r1 is defined as in (b). We

have [r, r1] ∈ B′1, hence [r, r1+2] ∈ B1 (we use that r < j ≤ j′+1 ≤ r1+1 < r1+2);
we have j < r1 + 2. Assume now that [r, r2] ∈ B1 with r ≤ r2. Then r < r2 (by
the minimality of j). If j = r2 or j = r2 +1, then applying (P0) to {j}, [r, r2] gives
a contradiction. Thus we must have either r < j < r2 or j > r2 + 1. If j > r2 + 1,
then [r, r2] ∈ B′1; hence by (b), r2 = r1, hence j > r1 + 1 contradicting j < r1 + 2.
Thus we have r < j < r2, so that [r, r2 − 2] ∈ B′1; hence by (b), r2 − 2 = r1. Thus
we have r < j < r2 so that [r, r2 − 2] ∈ B′1; hence by (b), r2 − 2 = r1.

Next we assume that r = j. In this case we have {r} ∈ B1. Moreover, if
[r, r′] ∈ B1 with r ≤ r′ ≤ D, then we cannot have r < r′ (if r < r′, then applying
(P0) to {r}, [r, r′] gives a contradiction). This proves (a).
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We show:
(c) Assume that j < D and that i ≤ h < j. Then h̃ in (a) satisfies h̃ > j.

Assume that h̃ = j, so that [h, j] ∈ B1. Since h < j, applying (P0) to {j}, [h, j]
gives a contradiction. This proves (c).

We show:
(d) Assume that j < D and that r ∈ [j + 1, D]. We have [j + 1, r] /∈ B1.
Assume that [j+1, r] ∈ B1. Applying (P0) to {j}, [j+1, r] gives a contradiction.

This proves (d).
We show:
(e) For h ∈ [i, j] we have |B1

h| = h− i+ 1. If j < D we have |B1
j+1| = j − i.

Let h ∈ [i, j]. Then for any h′ ∈ [i, h], B1
h contains [h′, h̃′] (since h ≤ h̃′); see (a).

Conversely, assume that [a, b] ∈ B1
h. We have a ≤ h. By the definition of i we have

i ≤ a. By the uniqueness statement in (a) we have b = ã so that [a, b] is one of the

h− i+1 intervals [h′, h̃′] above. This proves the first assertion of (e). Assume now

that j < D. If h′ ∈ [i, j], h′ < j, then [h′, h̃′] ∈ B1
j+1, by (c). Conversely, assume

that [a, b] ∈ B1
j+1. We have a ≤ j+1 and by (d) we have a 
= j+1 so that a ≤ j. If

a = j, then by the uniqueness in (a) we have b = j which contradicts j + 1 ∈ [a, b].

Thus we have a ≤ j − 1. We see that [a, b] is one of the j − i intervals [h′, h̃′] with
h′ ∈ [i, j], h′ < j. This proves (e).

We show:
(f) Let e = |B0

i |. For h ∈ [i, j] we have |B0
h| = e. If j < D we have |B0

j+1| = e.

Let I ∈ B0
i . Since I and [i, ĩ] are not disjoint and not equal, we must have

[i, ĩ] ≺ I or I ≺ [i, ĩ] (this last case cannot occur since i ∈ [i, ĩ]). Thus we have
[i, ĩ] ≺ I. We have [i, j] ⊂ [i, ĩ]; hence [i, j] ≺ I so that I ∈ B0

h for any h ∈ [i, j]. If
in addition j < D, then from [i, j] ≺ I we deduce [i, j + 1] ⊂ I so that I ∈ B0

j+1.

Conversely, assume that h ∈ [i, j] and I ′ ∈ B0
h. Since I ′ and [h, h̃] are not disjoint

and not equal, we must have [h, h̃] ≺ I ′ or I ′ ≺ [h, h̃] (this last case cannot occur

since h ∈ I ′). Thus we have [h, h̃] ≺ I ′. If i < h, it follows that h − 1 ∈ I ′ so

that [h− 1, ˜h− 1] ≺ I ′. Repeating this argument we see that [h′′, h̃′′] ≺ I ′ for any
h′′ ∈ [i, h], so that in particular we have i ∈ I ′ and I ′ ∈ B0

i . If in addition j < D

and I ′ ∈ B0
j+1, then I ′, [j, j̃] are not non-touching and are not equal hence we must

have [j, j̃] ≺ I ′ or I ′ ≺ [j, j̃] (this last case cannot occur since it contradicts 1.3(d)).
Thus we have [j, j̃] ≺ I ′ which by the earlier part of the proof implies I ′ ∈ B0

i . This
proves (f).

1.6. For any n ∈ N we define n ∈ {0, 1} by n =2 n. For B ∈ SD, j ∈ [1, D], we set
κ = |B0| and

fj(B) = |B1
j | − |B0

j | − κ ∈ Z,

εj(B) = fj(B)(fj(B) + 1)/2 ∈ F2.

This extends a definition in [L5, 1.6]. We have
εj(B) = 1 if fj(B) ∈ (4Z+ 1) ∪ (4Z+ 2), εj(B) = 0 if fj(B) ∈ (4Z+ 3) ∪ (4Z).

Assume now that B /∈ Sprim
D . Let i ≤ j in [1, D] be as in 1.5. Let e = |B0

i |+ κ.
From 1.5(e),(f) we deduce:

(a) We have

(fi(B), fi+1(B), . . . , fj(B)) = (1− e, 2− e, 3− e, . . . , j − i− e, j − i+ 1− e).

If j < D, we have fj+1(B) = j − i− e.
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From (a) we deduce:
(b)

(εi(B), εi+1(B), . . . , εj(B)) = ((1− e)(2− e)/2, (2− e)(3− e)/2,

(3− e)(4− e)/2, . . . , (j − i− e)(j − i− e+ 1)/2, (j − i− e+ 1)(j − i− e+ 2));

(c) if j < D, then εj+1(B) = (j − i− e)(j − i− e+ 1)/2).
This extends [L5, 1.6(b),(c)].
For future reference we note:
(d) If c ∈ Z, then c(c+ 1)/2 
=2 (c+ 2)(c+ 3)/2.
(e) If c ∈ 2Z, then c(c+ 1)/2 
=2 (c+ 1)(c+ 2)/2.

1.7. Let B ∈ SD, B̃ ∈ SD be such that B, B̃ are not primitive and εh(B) = εh(B̃)

for any h ∈ [1, D] and |B0| = |B̃0|. We show (extending [L5, 1.7(a)]):

(a) We can find z ∈ [1, D] such that {z} ∈ B, {z} ∈ B̃.
Let h0 < h1 < h2 < · · · < h2k < h2k+1 be the sequence attached to B in (P2);

let h̃0 < h̃1 < h̃2 < · · · < h̃2k̃ < h̃2k̃+1 be the analogous sequence attached to B̃.

Here k = k̃ = |B0| = |B̃0|. We shall need the following preparatory result.
(b) Assume that s ∈ [0, k − 1] is such that

(h0, h1, . . . , hs) = (h̃0, h̃1, . . . , h̃s) = (0, 1, . . . , s).

Then either hs+1 = h̃s+1 = s+ 1, or the conclusion of (a) holds.

Let i ≤ j be attached toB as in 1.5. Let ĩ ≤ j̃ be similarly attached to B̃. Assume
first that hs+1 > s+1, h̃s+1 = s+1. We have |B0

s+1| = s, |B̃0
s+1| = s+1, |B̃1

s+1| = 0
(we use 1.3(e)) and by (P2) we have |B1

s+1| ≥ 1. We see that i = s + 1 and from

1.5(e) we have |B1
s+1| = 1. Thus, fs+1(B) = 1−s−κ, fs+1(B̃) = −1−s−κ (where

κ = k), so that εs+1(B) = (1−s−κ)(2−s−κ)/2, εs+1(B̃) = (−1−s−κ)(−s−κ)/2.
It follows that (1 − s − κ)(2− s − κ)/2 =2 (−1 − s − κ)(−s− κ)/2, contradicting

1.6(d). Thus, if h̃s+1 = s + 1, then hs+1 = s + 1. Similarly, if hs+1 = s + 1, then

h̃s+1 = s + 1. Assume now that hs+1 > s + 1 and h̃s+1 > s + 1. By (P2) we have
i = ĩ = s+ 1. If j < j̃, then j < D and from 1.6(b),(c), we see that

εj+1(B) = (j−i−s−κ)(j−i−s−κ+1)/2, εj+1(B̃) = (j−i−s−κ+2)(j−i−s−κ+3)/2

so that

(j − i− s− κ)(j − i− s− κ+ 1)/2 =2 (j − i− s− κ+ 2)(j − i− s− κ+ 3)/2,

contradicting 1.6(d). Thus we have j ≥ j̃. Similarly, we have j̃ ≥ j. Hence j̃ = j, so
that (a) holds with z = j = j̃. The only remaining case is that where hs+1 = s+ 1

and h̃s+1 = s+ 1. This proves (b).
We shall need a second preparatory result.
(c) Assume that s ∈ [0, k − 1] is such that

(h2k−s+1, . . . , h2k, h2k+1) = (h̃2k−s+1, . . . , h̃2k, h̃2k+1) = (D − s+ 1, . . . , D,D + 1).

Then either h2k−s = h̃2k−s = D − s or the conclusion of (a) holds.

We note that the assumptions of (b) are satisfied when B, B̃ are replaced by

τD(B), τD(B̃) (see 1.2). Hence from (b) we deduce that either h2k−s = h̃2k−s =

D−s or there exists u ∈ [1, D] such that {u} ∈ τD(B), {u} ∈ τD(B̃) (which implies

that {τD(u)} ∈ B, {τD(u)} ∈ B̃. This proves (c).
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Next we note that the assumption of (b) (and that of (c)) is satisfied when s = 0.
Hence from (b),(c) we obtain by induction on s the following result.

(d) We have either

(h0, h1, . . . , hk, hk+1, . . . , h2k+1) = (h̃0, h̃1, . . . , h̃k, h̃k+1, . . . , h̃2k+1)

= (0, 1, . . . , k,D − k + 1, . . . , D,D + 1)

or the conclusion of (a) holds.

Thus, to prove (a) we can assume that B, B̃ are as in the first alternative of (d).
We have k < i ≤ j < D − k + 1, k < ĩ ≤ j̃ < D − k + 1 (we use 1.3(e) and (P1)).
Assume first that j < j̃ (so that j < D) and i < ĩ.

From 1.6 for B we have εi(B) = (1 − k − k)(2 − k − k)/2. From i < ĩ we have

εi(B̃) = (−k−k)(1−k−k)/2. Thus (1−k−k)(2−k−k)/2 =2 (−k−k)(1−k−k)/2.
This contradicts 1.6(e) since k + k is even. Thus we must have i ≥ ĩ. Next

we asssume that j < j̃ (so that j < D) and ĩ < i. From 1.6 for B̃ we have

ε̃i(B̃) = (1−k−k)(2−k−k)/2. From ĩ < i we have ε̃i(B) = (−k−k)(−k−k+1)/2.
(1 − k − k)(2 − k − k)/2 =2 (−k − k)(1 − k − k)/2. This contradicts 1.6(e) since
k + k is even. Thus, when j < j̃ we must have i = ĩ. From 1.6(c) for B we have

ej+1(B) = (j − i − k − k)(j − i − k − k + 1)/2 and from 1.6(b) for B̃ we have

ej+1(B̃) = (j − i− k − k + 2)(j − i− k − k + 3)/2. It follows that

(j − i− k − k)(j − i− k − k + 1)/2 =2 (j − i− k − k + 2)(j − i− k − k + 3)/2,

contradicting 1.6(d). We see that j < j̃ leads to a contradiction. Similarly, j̃ < j
leads to a contradiction. Thus we must have j = j̃, so that (a) holds with z = j = j̃.
This completes the proof of (a).

1.8. Let B ∈ SD, B̃ ∈ SD.
(a) Assume that B̃ ∈ Sprim

D , that εh(B) = εh(B̃) for any h ∈ [1, D], and that

|B0| = |B̃0|. Then B̃ = B.

The proof is similar to that of 1.7(a). Assume that B /∈ Sprim
D . Let i ≤ j

be attached to B as in 1.5. Let h0 < h1 < h2 < · · · < h2k < h2k+1 be the

sequence attached to B in (P2); let h̃0 < h̃1 < h̃2 < · · · < h̃2k̃ < h̃2k̃+1 (that is,
0 < 1 < · · · < k < D + 1 − k < · · · < D < D + 1) be the analogous sequence

attached to B̃. We have k = k̃ = |B0| = |B̃0|.
We show the following variant of 1.7(b).
(b) Assume that s ∈ [0, k − 1] is such that (h0, h1, . . . , hs) = (0, 1, . . . , s). Then

hs+1 = s+ 1.

Assume first that hs+1 > s+ 1. We have |B0
s+1| = s, |B̃0

s+1| = s+ 1, |B̃1
s+1| = 0

(we use 1.3(e)) and by (P2) we have |B1
s+1| ≥ 1. We see that i = s + 1 and from

1.5(e) we have |B1
s+1| = 1. Thus, fs+1(B) = 1 − s − k, fs+1(B̃) = −1 − s − k, so

that

εs+1(B) = (1− s− k)(2− s− k)/2, εs+1(B̃) = (−1− s− k)(−s− k)/2.

It follows that (1 − s − k)(2 − s − k)/2 =2 (−1 − s − k)(−s − k)/2, contradicting
1.6(d). Thus, we must have hs+1 = s+ 1. This proves (b).

Next we show the following variant of 1.7(c).
(c) Assume that s ∈ [0, k − 1] is such that (h2k−s+1, . . . , h2k, h2k+1) = (D − s+

1, . . . , D,D + 1). Then h2k−s = D − s.
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We note that the assumptions of (b) are satisfied when B, B̃ are replaced by

τD(B), τD(B̃). Hence from (b) we deduce that h2k−s = D − s. This proves (c).
Now we note that the assumption of (b) (and that of (c)) is satisfied when s = 0.

Hence from (b),(c) we obtain by induction on s the following result.
(d) We have

(h0, h1, . . . , hk, hk+1, . . . , h2k+1) = (h̃0, h̃1, . . . , h̃k, h̃k+1, . . . , h̃2k+1)

= (0, 1, . . . , k,D − k + 1, . . . , D,D + 1).

Using (d) and 1.6 we see that ei(B) = (1− k− k)(2− k− k)/2. On the other hand

we have ei(B̃) = (−k − k)(−k − k + 1)/2. We get (1 − k − k)(2 − k − k)/2 =2

(−k − k)(−k − k + 1)/2, contradicting 1.6(e) since k + k is even. Thus B /∈ Sprim
D

leads to a contradiction. Thus both B, B̃ are primitive. Since B, B̃ are primitive
and |B0| = |B̃0|, we see that B = B̃. This proves (a).

1.9. We no longer assume that D is even. Let V be the F2-vector space with basis
{ei; i ∈ [1, D]}. For any subset I of [1, D] let eI =

∑
i∈I ei ∈ V . We define a

symplectic form (, ) : V × V → F2 by (ei, ej) = 1 if i − j = ±1, (ei, ej) = 0 if
i − j 
= ±1. This symplectic form is non-degenerate if D is even while if D is odd
it has a one-dimensional radical spanned by e1 + e3 + e5 + · · ·+ eD.

For any subset Z of V we set Z⊥ = {x ∈ V ; (x, z) = 0 ∀z ∈ Z}.
When D ≥ 2 we denote by V ′ the F2-vector space with basis {e′i; i ∈ [1, D− 2]}.

For any I ′ ⊂ [1, D − 2] let e′I′ =
∑

i∈I′ e′i ∈ V ′. We define a symplectic form
(, )′ : V ′ × V ′ → F2 by (e′i, e

′
j) = 1 if i− j = ±1, (e′i, e

′
j) = 0 if i− j 
= ±1.

When D ≥ 2, for any i ∈ [1, D] there is a unique linear map Ti : V
′ → V such

that the sequence Ti(e
′
1), Ti(e

′
2), . . . , Ti(e

′
D−2) is:

e1, e2, . . . , ei−2, ei−1 + ei + ei+1, ei+2, ei+3, . . . , eD (if 1 < i < D),
e3, e4, . . . , eD (if i = 1),
e1, e2, . . . , eD−2 (if i = D).
Note that Ti is injective and (x, y)′ = (Ti(x), Ti(y)) for any x, y in V ′. For any

I ′ ∈ ID−2 we have Ti(e
′
I′) = eξi(I′). Let Vi be the image of Ti : V

′ → V . From the
definitions we deduce:

(a) e⊥i = Vi ⊕ F2ei.
In the remainder of this section we assume that D is even.
If D ≥ 2, for j ∈ [1, D − 2] let f ′

j : SD−2 → Z, ε′j : SD−2 → F2 be the analogues
of fi : SD → Z, εi : SD → F2 when D is replaced by D − 2.

For B ∈ SD, we define ε(B) ∈ V by ε(B) =
∑

i∈[1,D] εi(B)ei. If D ≥ 2, for

B′ ∈ SD−2 we define ε′(B′) ∈ V ′ by ε′(B′) =
∑

j∈[1,D−2] ε
′
j(B

′)e′j . We show

(extending [L5, 1.9(b)]):
(b) Assume that D ≥ 2, i ∈ [1, D]. Let B′ ∈ SD−2, B = ti(B

′) ∈ SD. Then
ε(B) = Ti(ε

′(B′)) + cei for some c ∈ F2.
An equivalent statement is: for any j ∈ [1, D] − {i} we have εj(B) = ε′j′(B

′) if

j′ ∈ [1, D − 2] is such that j ∈ ξi({j′}); and εj(B) = 0 if no such j′ exists. It is
enough to show:

f ′
h(B

′) = fh(B) if 1 ≤ h ≤ i− 2,
f ′
h−2(B

′) = fh(B) if i+ 2 ≤ h ≤ D,
fi−1(B) = fi+1(B) = f ′

i−1(B
′) if 1 < i < D,

fi−1(B) ∈ {0,−1} (hence εi−1(B) = 0) if i = D,
fi+1(B) ∈ {0,−1} (hence εi+1(B) = 0) if i = 1.
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This follows from 1.4(a).
For B ∈ SD let 〈B〉 be the subspace of V generated by {eI ; I ∈ B}. For

B′ ∈ SD−2 let 〈B′〉 be the subspace of V ′ generated by {e′I′ ; I ′ ∈ B′}. We show
(extending [L5, 1.9(c)]):

(c) Let B ∈ SD. We have ε(B) ∈ 〈B〉. If D ≥ 2, i ∈ [1, D], B′ ∈ SD−2, B =
ti(B

′) ∈ SD, then 〈B〉 = Ti(〈B′〉)⊕ F2ei.
To prove the first assertion of (c) we argue by induction on D. For d = 0 there

is nothing to prove. Assume that d ≥ 1. Let i, B′ be as in (b). By the induction
hypothesis we have ε′(B′) ∈ 〈B′〉 ⊂ V ′. Using (b) we see that it is enough to
show that Ti(〈B′〉) ⊂ 〈B〉. (Since {i} ∈ B, we have ei ∈ 〈B〉.) Using the equality
Ti(e

′
I′) = eξi(I′) for any I ′ ∈ B′ it remains to note that ξi(I

′) ∈ B for I ′ ∈ B′. This
proves the first assertion of (c). The same proof shows the second assertion of (c).

For s ∈ [0, D/2] we set t = s/2 if s is even and t = (s + 1)/2 if s is odd; we
denote by V (s) the set of vectors x ∈ V such that x = e[a1,b1]+e[a2,b2]+ · · ·+e[at,bt]

with [ar, br] ∈ ID with any two of them non-touching and with a1 =2 a2 =2

· · · =2 at =2 s, b1 =2 b2 =2 · · · =2 bt =2 s + 1. For such x we set n(x) =
a1 + b1 + a2 + b2 + · · ·+ at + bt ∈ N.

Assume for example that

B = {[1, D], [2, D − 1], . . . , [D/2, (D/2) + 1]}.

We have |B0
i | = i for i ∈ [1, D/2], |B0

i | = D − i+ 1 for i ∈ [(D/2) + 1, D], |B1
i | = 0

for all i. It follows that

(d) ε(B) = e[2,3] + e[6,7] + e[10,11] + · · ·+ e[D−2,D−1] ∈ V (D/2) if D/2 is even,

(e) ε(B) = e[1,2] + e[5,6] + e[9,10] + · · ·+ e[D−1,D] ∈ V (D/2) if D/2 is odd.

More generally, assume that

(f) B = {[1, D], [2, D − 1], . . . , [s,D + 1− s]}, where s ∈ [0, D/2].

We have |B0
i | = i for i ∈ [1, s], |B0

i | = D − i+ 1 for i ∈ [D − s+ 1, D], |B1
i | = 0 for

all i. It follows that:
if s = 0, then ε(B) = 0;
if s = 1, then ε(B) = e[1,D];
if s = 2, then ε(B) = e[2,D−1];
if s = 3, then ε(B) = e[1,2] + e[D−1,D];
if s = 4, then ε(B) = e[2,3] + e[D−2,D−1];
if s = 5, then ε(B) = e[1,2] + e[5,D−4] + e[D−1,D];
if s = 6, then ε(B) = e[2,3] + e[6,D−5] + e[D−2,D−1], etc.
Thus,
(g) ε(B) ∈ V (s).
Let B ∈ SD. Using (P0) we deduce:
(h) 〈B〉 is an isotropic subspace of V .
We show (extending [L5, 2.1(b)]):
(i) {eI ; I ∈ B} is an F2-basis of 〈B〉.
We can assume that D ≥ 2. Assume that

∑
I∈B cIeI = 0 with cI ∈ F2 not

all zero. We can find I1 = [a, b] ∈ B with cI1 
= 0 and |I1| maximal. If a ∈ I ′

with I ′ ∈ B, I ′ 
= I1, cI′ 
= 0, then by (P0) we have I1 ≺ I ′ (contradicting the
maximality of |I1|) or I ′ ≺ I1 (contradicting a ∈ I ′). Thus no I ′ as above exists.



188 G. LUSZTIG

Thus when
∑

I∈B cIeI is written in the basis {ej ; j ∈ [1, 2d]}, the coefficient of ea
is cI1 and hence cI1 = 0, contradicting cI1 
= 0. Thus (i) holds for B.

1.10. Let B ∈ SD, B̃ ∈ SD. We show:
(a) If ε(B) = ε(B̃) and |B0| = |B̃0|, then B = B̃.
We argue by induction on D. If D = 0, there is nothing to prove. Assume

that D ≥ 2. If B̃ ∈ Sprim
D , then (a) follows from 1.8(a). Similarly, (a) holds if

B ∈ Sprim
D . Thus, we can assume that B and B̃ are not primitive. By 1.7(a) we

can find i ∈ [1, D] such that {i} ∈ B1, {i} ∈ B̃1. By 1.3(f) we then have B = ti(B
′),

B̃ = ti(B̃
′) with B′ ∈ SD−2, B̃

′ ∈ SD−2. Using our assumption and 1.9(b) we see

that Ti(ε
′(B′)) = Ti(ε

′(B̃′)) + cei for some c ∈ F2. Using 1.9(a) we see that c = 0

so that Ti(ε
′(B′)) = Ti(ε

′(B̃′)). Since Ti is injective, we deduce ε
′(B′) = ε′(B̃′). We

have also |B′0| = |B̃′0|. By the induction hypothesis we have B′ = B̃′ and hence

B = B̃. This proves (a).

1.11. Any x ∈ V can be written uniquely in the form

x = e[a1,b1] + e[a2,b2] + · · ·+ e[ar,br ],

where [ar, br] ∈ ID are such that any two of them are non-touching and r ≥ 0,
1 ≤ a1 ≤ b1 < a1 ≤ b2 < · · · < ar ≤ br ≤ D. Following [L2, 3.3] and [L5, 1.11(a)]
we set

(a) u(v) = |{s ∈ [1, r]; as =2 0, bs =2 1}| − |{s ∈ [1, r]; as =2 1, bs =2 0}| ∈ Z.

This defines a function u : V → Z. When D ≥ 2 we denote by u′ : V ′ → Z the
analogous function with D replaced by D− 2. The following result appears also in
[L5, 1.11(b)].

(b) Assume that D ≥ 2, i ∈ [1, D]. Let v′ ∈ V ′, and let v = Ti(v
′) + cei ∈ V ,

where c ∈ F2. We have u(v) = u′(v′).
We write v′ = e′[a′

1,b
′
1]
+ e′[a′

2,b
′
2]
+ · · ·+ e′[a′

r,b
′
r ]
, where r ≥ 0, [a′s, b

′
s] ∈ ID−2 for all

s and any two of [a′s, b
′
s] are non-touching. For each s, we have Ti(e

′
[a′

s,b
′
s]
) = e[as,bs],

where [as, bs] = ξi[a
′
s, b

′
s] so that as =2 a′s, bs =2 b′s and the various [as, bs] which

appear are still non-touching with each other. Hence u(Ti(v
′)) = u′(v′). We have

v = Ti(v
′) or v = Ti(v

′) + ei. If v = Ti(v
′), we have u(v) = u′(v′), as desired.

Assume now that v = Ti(v
′) + ei. From the definition of ξi we see that either

(i) [i, i] is non-touching with any [as, bs], or
(ii) [i, i] is not non-touching with some [a, b] = [as, bs] which is uniquely deter-

mined and we have a < i < b.
If (i) holds, then ei does not contribute to u(v) and u(v) = u(Ti(v

′)) = u′(v′).
We now assume that (ii) holds. Then e[a,b] + ei = e[a,i−1] + e[i+1,b]. We consider
six cases.

(1) a is even b is odd, i is even; then |[i+1, b]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is 1 + 0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 1.

(2) a is even, b is odd, i is odd; then |[a, i− 1]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is 0 + 1; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 1.

(3) a is odd, b is even, i is even; then |[i + 1, b]| is odd so that the contribution
of e[a,i−1]+ e[i+1,b] to u(v) is 0− 1; this equals the contribution of e[a,b] to u(Ti(v

′))
which is −1.
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(4) a is odd, b is even, i is odd; then |[a, i− 1]| is odd so that the contribution of
e[a,i−1] + e[i+1,b] to u(v) is −1 + 0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is −1.

(5) a =2 b =2 i+1; then |[a, i−1]| is odd, |[i+1, b]| is odd so that the contribution
of e[a,i−1]+ e[i+1,b] to u(v) is 0+0; this equals the contribution of e[a,b] to u(Ti(v

′))
which is 0.

(6) a =2 b =2 i; then the contribution of e[a,i−1] + e[i+1,b] to u(v) is 1 − 1 or
−1 + 1; this equals the contribution of e[a,b] to u(Ti(v

′)) which is 0.
This proves (b).
Let s ∈ [0, D/2], and let x ∈ V (s); see 1.9. From the definition, the following

holds:
(c) If s is even, then u(x) = s/2; if s is odd, then u(x) = −(s+ 1)/2.
We now define ũ : V → N by ũ(x) = 2u(x) if u(x) ≥ 0, ũ(x) = −2u(x) − 1 if

u(x) < 0. From (c) we deduce:
(d) If s ∈ [0, D/2] and x ∈ V (s), then ũ(x) = s.

1.12. As in [L5, 1.12], we view V as the set of vertices of a graph in which x, x′ in V
are joined whenever there exists i ∈ [1, D] such that x+x′ = ei, (x, ei) = (x′, ei) = 0.
(We then write x � x′.) We show:

(a) Let s ∈ [0, D/2], and let x, x′ be in V (s); see 1.9. Then x, x′ are in the same
connected component of the graph V .

As in 1.9 we set t = s/2 if s is even and t = (s+1)/2 if s is odd. There is a unique
element xs ∈ V (s) such that n(xs) ≤ n(y) for any y ∈ V (s) (see 1.9 for the definition
of n(y)). This element is of the form xs = e[a0

1,b
0
1]
+ e[a0

2,b
0
2]
+ · · · + e[a0

t ,b
0
t ]
, where

a01, b
0
1, a

0
2, b

0
2, a

0
3, b

0
3, . . . is 2, 3, 6, 7, 10, 11, . . . if s is even and is 1, 2, 5, 6, 9, 10, . . . if

s is odd. Let Γ be the connected component of the graph V that contains xs. Let
x = e[a1,b1] + e[a2,b2] + · · · + e[at,bt] ∈ V (s) be as in the definition of V (s); see 1.9.
We show that x ∈ Γ by induction on n(x). If n(x) = n(xs), then x = xs and there
is nothing to prove. Assume now that n(x) > n(xs). Then one of (i), (ii) below
holds:

(i) for some z ≥ 1 we have aj = a0j , bj = b0j for j ∈ [1, z − 1], az > a0z;

(ii) for some z ≥ 1 we have aj = a0j , bj = b0j for j ∈ [1, z − 1], az = a0z, bz > b0z.
In case (i) we have az − 2 ∈ [1, 2d], (eaz−2, x) = 0 hence x + eaz−2 � x. We

have (eaz−1, x + eaz−2) = 0 hence x′ := x + eaz−2 + eaz−1 � x + eaz−2. We have
n(x′) = n(x)− 2. By the induction hypothesis we have x′ ∈ Γ hence x ∈ Γ.

In case (ii) we have (ebz−1, x) = 0 hence x+ebz−1�x. We have (ebz , x+ebz−1) = 0
hence x′ := x+ ebz−1+ ebz �x+ ebz−1. We have n(x′) = n(x)−2. By the induction
hypothesis we have x′ ∈ Γ hence x ∈ Γ. This proves (a).

1.13. For x ∈ V we show:
(a) There exist s ∈ [0, D/2] and x̃ ∈ V (s) (see 1.9) such that x, x̃ are in the same

component of the graph V .
We argue by induction on D. If D = 0 there is nothing to prove. Assume now

that D ≥ 1. Assume first that x is the element described in 1.9(d) or (e). Then
x ∈ V (D/2) so that there is nothing to prove. Next we assume that x is not the
element described in 1.9(d) or (e). Then (x, ei) = 0 for some i ∈ [1, D]. By 1.9(a)
we have x = Ti(x

′) + cei for some x′ ∈ V ′ and some c ∈ F2. We first show the
following result which appears also in [L5, 1.12(a)].
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(b) If y, y′ in V ′ are joined in the graph V ′ (analogue of the graph V ), then
Ti(y), Ti(y

′) are in the same connected component of the graph V .
We can find j ∈ [1, D − 2] such that (y, e′j)

′ = (y′, e′j)
′ = 0, y + y′ = e′j . Hence

(ỹ, Ti(e
′
j)) = (ỹ′, Ti(e

′
j)) = 0, ỹ + ỹ′ = Ti(e

′
j), where ỹ = Ti(y), ỹ

′ = Ti(y
′). If

Ti(e
′
j) = eh for some h ∈ [1, D], then ỹ, ỹ′ are joined in V , as required. If this

condition is not satisfied, then 1 < i < D, j = i− 1 and Ti(e
′
j) = ej + ej+1 + ej+2.

We have (ỹ, ej + ej+1 + ej+2) = 0, ỹ + ỹ′ = ej + ej+1 + ej+2. Since ỹ ∈ Vi we have
(ỹ, ei) = 0 hence (ỹ, ej+1) = 0 so that (ỹ, ej) = (ỹ, ej+2). We are in one of the two
cases below.

(1) We have (ỹ, ej) = (ỹ, ej+2) = 0.
(2) We have (ỹ, ej) = (ỹ, ej+2) = 1.
In case (1) we consider the four-term sequence ỹ, ỹ + ej , ỹ + ej + ej+2, ỹ + ej +

ej+1+ej+2 = ỹ′; any two consecutive terms of this sequence are joined in the graph
V . In case (2) we consider the four-term sequence ỹ, ỹ + ej+1, ỹ + ej + ej+1, ỹ +
ej + ej+1 + ej+2 = ỹ′; any two consecutive terms of this sequence are joined in the
graph V . We see that in both cases ỹ, ỹ′ are in the same connected component of
V and (b) is proved.

We now continue the proof of (a). By the induction hypothesis there exists
s ∈ [0, (D/2) − 1] and x′′ ∈ V ′(s) such that x′, x′′ are in the same connected
component of V ′. Here V ′(s) is defined like V (s) (replacing V by V ′). By (b),
Ti(x

′), Ti(x
′′) are in the same connected component of V . From the definitions we

see that Ti(V
′(s)) ⊂ V (s). Thus Ti(x

′′) ∈ V (s). Clearly x, Ti(x
′) are joined in the

graph V . Hence x, Ti(x
′′) are joined in the graph V . We see that (a) holds.

1.14. The following result follows by repeated application of 1.11(b).
(a) If x, x′ in V are in the same connected component of the graph V , then

u(x) = u(x′).
We can assume that x, x′ are joined in the graph V . Then for some i ∈ [1, D] we

have x = Ti(y) + cei, x
′ = Ti(y) + c′ei, where y ∈ V ′, c ∈ F2, c

′ ∈ F2. By 1.11(b)
we have u(x) = u′(y), u(x′) = u′(y), hence u(x) = u(x′). This proves (a).

We now show the converse.
(b) If x, x′ in V satisfy u(x) = u(x′), then x, x′ are in the same connected

component of the graph V .
By 1.13(a) we can find s, s′ in [0, D/2] and x1 ∈ V (s), x′

1 ∈ V (s′) such that x, x1

are in the same connected component of the graph V and x′, x′
1 are in the same

connected component of the graph V . Thus, it is enough to prove that x1, x
′
1 are in

the same connected component of the graph V . By (a), we have u(x1) = u(x′
1) hence

ũ(x1) = ũ(x′
1). From 1.11(d) we have ũ(x1) = s, ũ(x′

1) = s′. Using ũ(x1) = ũ(x′
1)

we deduce that s = s′. Since x1 ∈ V (s), x′
1 ∈ V (s), they are in the same connected

component of the graph V , by 1.12(a). This proves (b).
We show:
(c) Let B ∈ SD. Let k = |B0|, k′ = ũ(ε(B)) ∈ Z. Then k′ = k.
We argue by induction on D. If D = 0 there is nothing to prove. Assume now

thatD ≥ 2. If B ∈ Sprim
D , then ε(B) ∈ V (k) (see 1.9(g)), and the result follows from

1.11(d). We now assume that B /∈ Sprim
D . We can find i ∈ [1, D] and B′ ∈ SD−2

such that B = ti(B
′). By 1.9(b) we have ε(B) = Ti(ε

′(B′)) + cei, where c ∈ F2.
Using 1.11(b) we deduce u(ε(B)) = u′(ε′(B′)). Hence ũ(ε(B)) = ũ′(ε′(BB′)), where
ũ′ : V ′ → Z is defined in terms of u′ in the same way as ũ is defined in terms of u.
By the induction hypothesis we have ũ′(ε′(B′)) = k. This proves (c).
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(d) The map ε : SD → V (see 1.19) is injective.

Assume that B, B̃ in SD are such that ε(B) = ε(B̃). Let k = |B0|, k̃ = |B̃0|.
Let k′ = ũ(ε(B)) = ũ(ε(B̃)). By (c) we have k′ = k, k′ = k̃. It follows that k = k̃.

Using now 1.10(a), we see that B = B̃. This proves (d).

1.15. Let s ∈ [0, D/2], and let B ∈ SD be as in 1.9(f), so that ε(B) ∈ V (s). We
show:

(a) For any x ∈ 〈B〉 we have ũ(x) ≤ s; moreover, we have ũ(x) = s for a unique
x ∈ 〈B〉.

We argue by induction on D. If D = 0 the result is obvious. We now assume
that D ≥ 2. Assume first that s = D/2. If x1 = ε(B), then x1 ∈ 〈B〉 (see 1.9(c)),
and ũ(x1) = D/2 (see 1.14(c)). Conversely, assume that x′ ∈ V , ũ(x′) = D/2.
Using 1.14(b), we see that x′, x1 are in the same connected component of V . From
1.9(d),(e), we see that (x1, ei) = 1 for any i ∈ [1, D]. Thus, x1 is a connected
component of V by itself, so that x′ = x1. Hence in this case (a) holds. Next we
assume that s < D/2. Then B′ = {[1, D− 2], [2, D− 3], . . . , [s,D− 1− s]} ∈ SD−2

satisfies ε′(B′) = s (by 1.9(f)). We have B = {ξi(I ′); I ′ ∈ B′}. Let i = s + 1. Let

B̃ = ti(B
′) = B � {i}. Using the induction hypothesis for B′ and 1.11(b) we see

that for any

x ∈ Ti(〈B′〉)⊕ F2ei = 〈B〉 ⊕ F2ei = 〈B̃〉
(see 1.9(c)) we have ũ(x) ≤ s; moreover, we have ũ(x) = s for exactly two values

of x ∈ 〈B̃〉 (whose sum is ei). One of these values is in 〈B〉 and the other is not in
〈B〉. This proves (a).

1.16. Let F be the C-vector space consisting of functions V → C. For x ∈ V
let ψx ∈ F be the characteristic function of x. For B ∈ SD let ΨB ∈ F be
the characteristic function of 〈B〉. Let F̃ be the C-subspace of F generated by
{ΨB;B ∈ SD}. When D ≥ 2 we define ψ′

x′ for x′ ∈ V ′ and Ψ′
B′ for B′ ∈ SD−2,

F ′, F̃ ′, in terms of SD−2 in the same way as ψx,ΨB, F, F̃ were defined in terms
of SD. For any i ∈ [1, D] we define a linear map θi : F

′ → F by f ′ �→ f , where
f(Ti(x

′) + cei) = f ′(x′) for x′ ∈ V ′, c ∈ F2, f(x) = 0 for x ∈ V − e⊥i . We have
θi(ψ

′
x′) = ψTi(x′) + ψTi(x′)+ei for any x′ ∈ V ′,

θi(Ψ
′
B′) = Ψti(B′) for any B′ ∈ SD−2.

We show:
(a) For any x ∈ V , we have ψx ∈ F̃ .
We argue by induction on D. If D = 0 the result is obvious. We now assume

that D ≥ 2. We first show:
(b) If x, x̃ in V are joined in the graph V and if (a) holds for x, then (a) holds

for x̃.
We can find j ∈ [1, D] such that x+x̃ = ej , (x, ej) = 0. We have x = Tj(x

′)+cej ,
x̃ = Tj(x

′) + c′ej , where x′ ∈ V ′ and c ∈ F2, c
′ ∈ F2, c+ c′ = 1. By the induction

hypothesis we have ψ′
x′ =

∑
B′∈SD−2

aB′Ψ′
B′ , where aB′ ∈ C. Applying θj we

obtain

ψx + ψx̃ =
∑

B′∈SD−2

aB′Ψtj(B′).

We see that ψx + ψx̃ ∈ F̃ . Since ψx ∈ F̃ , by assumption, we see that ψx̃ ∈ F̃ . This
proves (b).
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For any s ∈ [0, D/2] we show:

(c) If x ∈ V is such that ũ(x) = s, then ψx ∈ F̃ .
We argue by induction on s. Let x̃ = ε(B), where B is as in 1.9(f) so that

x̃ ∈ V (s) (see 1.9(g)) and ũ(x̃) = s (see 1.11(d)). Using 1.14(b) we see that x, x̃
are in the same connected component of the graph V and using (b) we see that it

is enough to show that ψx̃ ∈ F̃ . Let x0 be the unique element of 〈B〉 such that
ũ(x0) = s (see 1.15(a)). By the uniqueness of x0 we must have x0 = x̃. From 1.15

we see that for x1 ∈ 〈B〉 − {x̃} we have ũ(x1) < s; for such x1 we have ψx1
∈ F̃

by the induction hypothesis. We have ΨB = ψx̃ +
∑

x1∈〈B〉−{x̃} ψx1
= ψx̃ mod F̃ .

Since ΨB ∈ F̃ , we see that ψx̃ ∈ F̃ . This proves (c) hence also (a).

Since F̃ ⊂ F , we see that (a) implies:

(d) F = F̃ .
This extends [L5, 1.15(c)]. We have the following result which extends [L5, 1.16].

Theorem 1.17. (a){ΨB;B ∈ SD} is a C-basis of F .
(b)ε : SD → V is a bijection.

From the definition of F̃ we have dim F̃ ≤ |SD|. By 1.14(d) we have |SD| ≤ |V | =
dimF . Since F = F̃ (see 1.16(d)), it follows that dim F̃ = |SD| = |V | = dimF .

Using again the definition of F̃ and the equality F = F̃ we see that (a) holds. Since
the map in (b) is injective (see 1.14(d)) and |SD| = |V | we see that it is a bijection
so that (b) holds.

Let F(V ) be the set of (isotropic) subspaces of V of the form 〈B〉 for some
B ∈ SD. By definition, the map SD → F(V ), B �→ 〈B〉 is surjective. In fact,

(c) this map is a bijection.

Indeed, if B, B̃ in SD satisfy 〈B〉 = 〈B̃〉, then the functions ΨB,ΨB̃ in F coincide
and (d) follows from (a).

Note that F(V ) admits an inductive definition similar to that of SD. If D = 0,
F(V ) consists of the subspace {0}. If D ≥ 2, a subspace E of V is in F(V ) if and

ony if it is either of the form 〈B〉 for some B ∈ Sprim
D or if there exists i ∈ [1, D]

and E′ ∈ F(V ′) such that E = Ti(E
′)⊕ F2ei.

1.18. Assume that D ≥ 2. Let B ∈ SD, and let i ∈ [1, D] be such that {i} ∈ B.
Let Zi be the set of all [a, b] ∈ B1 such that a < i < b. If I ∈ Zi, I

′ = [a′, b′] ∈ Zi,
then I ∩ I ′ 
= ∅ and hence we have either I ⊂ I ′ or I ′ ⊂ I. It follows that if
Zi 
= ∅, then Zi contains a unique interval [a, b] such that b− a is minimum; we set
Zmin
i = {[a, b]}. We show:
(a) If Zi 
= ∅ and Zmin

i = {[a, b]}, then a =2 b =2 i+ 1.
If this is not so, then a =2 b =2 i. By (P1) there exists [a1, b1] ∈ B1 such that

a < a1 ≤ i − 1 ≤ b1 < b. If b1 = i − 1, then applying (P0) to [a1, b1], {i} gives a
contradiction. Thus b1 ≥ i and i ∈ [a1, b1]. By the minimality of b − a, we have
[a1, b1] = {i}. This contradicts i− 1 ∈ [a1, b1] and proves (a).

Let h0 < h1 < · · · < h2k+1 be the sequence attached to B in (P2). We show:
(b) Assume that hs < i < hs+1. If s ∈ [0, k − 1] and i =2 s, then Zi 
= ∅. If

s ∈ [k + 1, 2k] and i =2 s+ 1, then Zi 
= ∅.
We prove the first assertion of (b). We have hs < i−1 < hs+1 (since hs 
=2 i−1).

By (P2) we can find [a, b] ∈ B1 such that hs < a ≤ i − 1 ≤ b < hs+1. If b = i− 1,
then applying (P0) to [a, b], {i} gives a contradiction. Thus, b ≥ i and i ∈ [a, b].
Since a < i we have {i} ≺ [a, b] so that [a, b] ∈ Zi. This proves the first assertion of
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(b). The second assertion of (b) can be deduced from the first assertion using the
involution τD : SD → SD in 1.2.

We show:
(c) If hs < i < hs+1, s ∈ [0, k − 1], i =2 s+ 1, then either Zi = ∅ or Zi 
= ∅ and

Zi − Zmin
i 
= ∅.

Assume that Zi 
= ∅. Let [a, b] ∈ Zmin
i , so that a < i < b. Using 1.3(e) we see

that hs < a < b < hs+1. By (a) we have a =2 hs. Since hs < a, we must have
hs < a − 1 < hs+1. By (P2) we can find [a′, b′] ∈ B1 such that hs < a′ ≤ a − 1 ≤
b′ < hs+1. If b′ = a − 1, then applying (P0) to [a, b], [a′, b′] gives a contradiction.
Thus, b′ ≥ a, so that [a′, b′] ∩ [a, b] 
= ∅. This implies that either [a′, b′] ⊂ [a, b] or
[a, b] ≺ [a′, b′]. The first alternative does not hold since a− 1 ∈ [a′, b′], a− 1 /∈ [a, b].
Thus we have [a, b] ≺ [a′, b′] so that [a′, b′] ∈ Zi − Zmin

i . This proves (c).
We define a collection C of subsets of ID as follows:
(i) If hk < i < hk+1 and Zi = ∅, then C = B − {i}.
(ii) If hk < i < hk+1 and Zi 
= ∅, then C = (B−{[a, b], {i}})�{[a, i−1], [i+1, b]},

where Zmin
i = {[a, b]}.

(iii) If hs < i < hs+1, s ∈ [0, k − 1], i =2 s, so that Zi 
= ∅ (see (b)), then
C = (B − {[a, b], {i}}) � {[a, i− 1], [i+ 1, b]}, where Zmin

i = {[a, b]}.
(iv) If hs < i < hs+1, s ∈ [0, k − 1], i =2 s + 1 and Zi 
= ∅, then C = (B −

{[a, b], {i}}) � {[a, i− 1], [i+ 1, b]}, where Zmin
i = {[a, b]}.

(v) If hs < i < hs+1, s ∈ [k + 1, 2k], i =2 s + 1 so that Zi 
= ∅ (see (b)), then
C = (B − {[a, b], {i}}) � {[a, i− 1], [i+ 1, b]}, where Zmin

i = {[a, b]}.
(vi) If hs < i < hs+1, s ∈ [k + 1, 2k], i =2 s and Zi 
= ∅, then C = (B −

{[a, b], {i}}) � {[a, i− 1], [i+ 1, b]}, where Zmin
i = {[a, b]}.

(vii) If hs < i < hs+1, s ∈ [0, k − 1], i =2 s + 1 and Zi = ∅, then C =
(B − {[hs+1, h2k−s], {i}}) � {[i, h2k−s], [i+ 1, hs+1 − 1]}.

(viii) If hs < i < hs+1, s ∈ [k + 1, 2k], i =2 s and Zi = ∅, then C = (B −
{[h2k−s+1, hs], {i}}) � {[h2k−s, i], [hs + 1, i− 1]}.

For h ∈ {0, 1} let Ch be the set of all [a′, b′] ∈ C such that b − a =2 h + 1. We
show:

(d) C satisfies properties (P0), (P1), (P2).
We refer to properties (P0), (P1), (P2) for C as (P ′

0), (P
′
1), (P

′
2). The verification

of (P ′
0) is immediate. We check (P ′

2). The sequence h′
0 < h′

1 < · · · < h′
2k+1 in (P ′

2)
is:

h0 < h1 < · · · < h2k+1 (of (P2) for B) in cases (i)–(vi) (in these cases we use
that a =2 i+ 1, b =2 i+ 1; see (a));

h0 < h1 < · · · < hs < i < hs+2 < · · · < h2k+1 in case (vii);
h0 < h1 < · · · < hs−1 < i < hs+1 < · · · < h2k+1 in case (viii).
We check (P ′

1). In case (i), (P ′
1) is immediate. In cases (ii)–(vi) let c be such

that a < c < i − 1 or i + 1 < c < b, c =2 a + 1. By (P1) for B we can find
[a1, b1] ∈ B1 such that a < a1 ≤ c ≤ b1 < b. If c < i− 1, b1 ≥ i, then [a1, b1] ∈ Zi,
contradicting Zi = ∅; if i + 1 < c, a1 ≤ i, then [a1, b1] ∈ Zi, contradicting Zi = ∅.
Thus, we have a < a1 ≤ c ≤ b1 ≤ i − 1 or i + 1 ≤ a1 ≤ c ≤ b1 < b. If b1 = i − 1
or a1 = i + 1, then applying (P0) for B to [a1, b1], {i} gives a contradiction; thus
we have a < a1 ≤ c ≤ b1 < i − 1 or i + 1 < a1 ≤ c ≤ b1 < b. Moreover, since
[a1, b1] ∈ B1 we have [a1, b1] ∈ C1 so that (P ′

1) holds. In case (vii) let c be such
that i + 1 < c < hs+1 − 1, c =2 i. By (P2) for B we can find [a, b] ∈ B1 such
that hs < a ≤ c ≤ b < hs+1. We have b ≤ hs+1 − 1. If a ≤ i, then [a, b] ∈ Zi,
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contradicting Zi = ∅. Thus, a > i, so that i + 1 ≤ a ≤ c ≤ b ≤ hs+1 − 1. If
b = hs+1 − 1, then applying (P0) for B to [a, b], [hs+1, h2k−s] gives a contradiction.
Thus, b < hs+1 − 1. If a = i + 1, then applying (P0) for B to [a, b], {i} gives a
contradiction. Thus i+1 < a. Moreover, since [a, b] ∈ B1 we have [a, b] ∈ C1 so that
(P ′

1) holds. In case (viii), (P ′
1) is proved by an argument similar (and symmetric

under τD) to that in case (vii).
We check (P ′

2) with j ∈ [0, k − 1]. In case (i), (P ′
2) is immediate. Let c be

such that h′
j < c < h′

j+1, c =2 j + 1. In cases (ii)–(vi), by (P2) for B we can

find [a′, b′] ∈ B1 such that hj < a′ ≤ c ≤ b′ < hj+1. If we are in case (ii),(v) or
(vi), or (iii),(iv) with s 
= j, we have [a′, b′] ∈ C1 and (P ′

2) holds. Assume that
we are in case (iii) or (iv) with s = j. Let [a, b] ∈ B1 be the unique interval in
Zmin
i . If [a′, b′] 
= [a, b], then [a′, b′] ∈ C1 and (P ′

2) holds. Thus we can assume that
[a′, b′] = [a, b] so that a ≤ c ≤ b. If i /∈ [a′, b′], then [a′, b′] ∈ C1 and (P ′

2) holds.
Thus we can assume that i ∈ [a, b] = [a′, b′]. In case (iii) (with s = j) we have c 
= i
(since c =2 j + 1, i =2 s, s =2 j) hence c < i or c > i. Thus we have c ∈ [a, i − 1]
or c ∈ [i + 1, b] and [a, i − 1] ∈ C1, [i + 1, b] ∈ C1 and (P ′

2) holds. In case (iv)
with s = j, by (c) we can find [a′′, b′′] ∈ Zi such that [a, b] ≺ [a′′, b′′]. We have
[a′′, b′′] ∈ C1 and hj < a′′ ≤ c ≤ b′′ < hj+1. Thus, (P

′
2) holds. Assume now that we

are in case (vii). If j 
= s+ 1, then by (P2) for B we can find [a, b] ∈ B1 such that
hj < a ≤ c ≤ b < hj+1. If in addition we have j 
= s, then h′

j < a ≤ c ≤ b < h′
j+1,

[a, b] ∈ C1 and (P ′
2) holds. If j = s, we have c < i hence a < i. We show that

hs < a ≤ c ≤ b < i (in particular, [a, b] ∈ C1). Now hs < a holds since hs = h′
j .

To prove that b < i, we assume that i ≤ b so that i ∈ [a, b]. Since Zi = ∅ we
deduce that a = b = i hence c = i. This contradicts c < h′

s+1 = i and proves
(P ′

2) in this case. If j = s + 1, then taking [a, b] = [i + 1, hs+1 − 1] ∈ C1, we have
h′
s+1 < i+ 1 ≤ c ≤ hs+1 − 1 < h′

s+2 so that (P ′
2) holds.

Assume now that we are in case (viii). By (P2) for B we can find [a, b] ∈ B1

such that hj < a ≤ c ≤ b < hj+1 hence h′
j < a ≤ c ≤ b < h′

j+1. We have [a, b] ∈ C1

so that (P ′
2) holds.

The proof of (P ′
2) with j ∈ [k+1, 2k] is similar (and symmetric under τD) to the

proof of (P ′
2) with j ∈ [0, k − 1]. This completes the proof of (d).

From (d) and 1.3(c) we deduce:
(e) We have C ∈ SD.
From the definitions we deduce:
(f) For j ∈ [1, D] − {i} we have fj(C) = fj(B). In case (i) we have fi(C) =

fi(B)− 1. In cases (ii)–(viii) we have fi(C) = fi(B)− 2.
From (f) we deduce:
(g) For j ∈ [1, D]− {i} we have εj(C) = εj(B). We have εi(C) = εi(B) + 1.
(For the second assertion of (g) in cases (ii)–(viii) we use 1.6(d); in case (i) we

have fi(C) = −k − k, fi(B) = −k − k + 1 and k + k ∈ 2Z, so that the second
assertion of (g) holds by 1.6(e).)

We show:
(h) We have ε(C) = ε(B) + ei, ε(B) ∈ e⊥i . In other words, ε(C), ε(B) are joined

in the graph V .
The first assertion of (h) is a restatement of (g). For the second assertion we note

that by 1.3(f) we have B = ti(B
′) for some B′ ∈ SD−2, so that 〈B〉 ⊂ Vi ⊕ F2ei

and it remains to use 1.9(a) and 1.9(c).
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(i) We shall also use the notation C = B[i] when C is obtained from B, i as
above.

1.19. We view SD as the set of vertices of a graph in which B1, B2 in SD are joined
whenever ε(B1) � ε(B2); see 1.12. (We then write B1 � B2.) Thus the bijection

ε : SD
∼−→ V is a graph isomorphism. We show:

(a) Let B1, B2 in SD be such that B1�B2. Define i ∈ [1, D] by ei = ε(B1)+ε(B2).
Then {i} belongs to exactly one of B1, B2, say B1, and we have B2 = B1[i]; see
1.18(i). Moreover, we have B1 = ti(B

′) for a well-defined B′ ∈ SD−2 and ε(B1) =
Ti(ε

′(B′)) mod F2ei, ε(B2) = Ti(ε
′(B′)) mod F2ei.

We have ε(B1) = Ti(x
′) + c1ei, ε(B2) = Ti(x

′) + c2e2 for a well-defined x′ ∈ V ′,
c1 ∈ F2, c2 ∈ F2 such that c1+c2 = 1. Define B′ ∈ SD−2 by ε′(B′) = x′. By 1.9(b)
we have ε(ti(B

′)) = Ti(x
′) + cei with c ∈ F2. Since c1 + c2 = 1 we have c = c1

or c = c2. Assume for example that c = c1. Then ε(ti(B
′)) = ε(B1). Since ε is a

bijection we deduce that B1 = ti(B
′), so that {i} ∈ B1. Let C1 = B1[i] ∈ SD; see

1.18(i). By 1.18(h) we have ε(C1) = ε(B1) + ei so that ε(C1) = Ti(x
′) + c1ei + ei =

Ti(x
′) + c2e2 = ε(B2). Since ε is a bijection we deduce that C1 = B2. Note that

{i} /∈ C1 so that {i} /∈ B2. This proves (a).

1.20. For B, B̃ in SD we say that B ≤ B̃ if either
(i) |B0| < |B̃0| or
(ii) |B0| = |B̃0| and for any i ∈ [1, D] we have fi(B) ≤ fi(B̃)|.
We show:
(a) This is a partial order on SD.

It is enough to prove that for B, B̃ in SD such that B ≤ B̃ and B̃ ≤ B we have
B = B′. We have |B0| ≤ |B̃0| ≤ |B0| hence |B0| = |B̃0| and fi(B) = fi(B̃) for all

i hence εi(B) = εi(B̃) and ε(B) = ε(B̃). Since ε is a bijection (1.17(b)), we deduce
that B = B′. This proves (a).

For x, x̃ in V we say that x ≤ x̃ if ε−1(x) ≤ ε−1(x̃), where ε−1 : V → SD is the
bijection inverse to ε : SD → V . This is a partial order on V . We shall write x < x̃
whenever x ≤ x̃ and x 
= x̃. Using the definitions and 1.4(a) we deduce:

(b) Assume that D ≥ 2, i ∈ [1, D], B′ ∈ SD−2, B̃
′ ∈ SD−2. If B′ ≤ B̃′, then

ti(B) ≤ ti(B̃). Hence if x′ ∈ V ′, x̃′ ∈ V ′, x′ ≤ x̃′, then ti(ε
′−1(x′)) ≤ ti(ε

′−1(x̃′)).
Clearly, for any x ∈ V we have 0 ≤ x. We denote by ν(x) the largest number

r ≥ 0 such that there exists a sequence 0 = x0 < x1 < · · · < xr = x in V . We have
ν(0) = 0 and ν(x) > 0 if x 
= 0.

We show:
(c) Assume that B ∈ Sprim

D . Recall that z := ε(B) ∈ 〈B〉 (see 1.9(c)). If y ∈ 〈B〉
and y 
= z, then y < z.

We set k = |B0| ∈ [0, D/2]. By 1.9(g) we have z ∈ V (k) and by 1.15(a) we have
ũ(x0) = k for a unique x0 ∈ 〈B〉, ũ(x) < k for any x ∈ 〈B〉 such that x 
= x0.
By 1.14(c) we have ũ(z) = |B0| = k so that x0 = z. Thus for y as in (c) we have
y 
= x0 so that ũ(y) < k, that is, ũ(ε(B′)) < k, where B′ = ε−1(y). By 1.14(c) this
implies |B′0| < k, that is, |B′0| < |B0| so that B′ < B and y < z. This proves (c).

Let x ∈ V . By 1.16(d) we have ψx =
∑

x̃∈V cx,x̃Ψε−1(x̃), where cx,x̃ ∈ C.
Moreover, by 1.17, the coefficients cx,x̃ are uniquely determined. We state:

Theorem 1.21. If x ∈ V, x̃ ∈ V , cx,x̃ 
= 0, then x̃ ≤ x. Moreover, cx,x = 1.
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We argue by induction on D; for fixed D we argue by (a second) induction on
ν(x). If D = 0 the result is obvious. Now assume that D ≥ 2. Assume first

that ε−1(x) ∈ Sprim
D . Since x ∈ 〈ε−1(x)〉, we have Ψε−1(x) = ψx +

∑
x1∈Z ψx1

,

where Z = 〈ε−1(x)〉 − {x}. By 1.20(c), for any x1 ∈ Z we have x1 < x so that
ν(x1) < ν(x). By the (second) induction hypothesis, for any x1 ∈ Z, ψx1

is a linear
combination of elements Ψε−1(x2) with x2 ∈ V , x2 ≤ x1 (hence x2 < x). It follows
that the statement of the theorem holds for our x.

Next we assume that B = ε−1(x) /∈ Sprim
D . We can find i ∈ [1, D] such that

{i} ∈ ε−1(x). We have ε−1(x) = ti(B
′), where B′ ∈ SD−2. Let x′ = ε′(B′) ∈ V ′.

We have ti(ε
′−1(x′)) = B. From the first induction hypothesis we have

(a) ψ′
x′ =

∑
x̃′∈V ′;x̃′≤x′

c′x′,x̃′Ψ′
ε′−1(x̃′),

where c′x′,x̃′ ∈ C and c′x′,x′ = 1. Let C = B[i]; see 1.18(i). We have |C0| = |B0|
and from 1.18(f) we see that C < B hence y < x, where y = ε(C) ∈ V . Applying
to (a) θi (as in the proof of 1.16(b)) we obtain

ψx + ψy =
∑

x̃′∈V ′;x̃′≤x′

c′x′,x̃′Ψti(ε′−1(x̃′))

(we have used 1.19(a)). By 1.20(b) the inequality x̃′ ≤ x′ implies ti(ε
′−1(x̃′)) ≤

ti(ε
′−1(x′)) = B; moreover if x̃′ 
= x′, then ti(ε

′−1(x̃′)) 
= ti(ε
′−1(x′)) = B. We see

that ψx + ψy is a linear combination of terms Ψε−1(z) with z ∈ V , z ≤ x, and the
coefficient of Ψε−1(x) is 1.

Since y < x we have ν(y) < ν(x). By the (second) induction hypothesis ψy is a
linear combination of terms Ψε−1(z) with z ∈ V , z ≤ y hence z < x. We see that
ψx is a linear combination of terms Ψε−1(z) with z ∈ V , z ≤ x and the coefficient
of Ψε−1(x) is 1. This proves the theorem.

1.22. For x ∈ V we have Ψε−1(x) =
∑

x̃∈V dx,x̃ψx̃, where dx,x̃ = 1 if x̃ ∈ 〈ε−1(x)〉
and dx,x̃ = 0 if x̃ /∈ 〈ε−1(x)〉. Recall that dx,x = 1. We show:

(a) If dx,x̃ 
= 0, then x̃ ≤ x.
From the definitions for x, x′ in V we have

∑
x̃∈V cx,x̃dx̃,x′ = δx,x′ (Kronecker

δ). Using 1.21 we deduce dx,x′ +
∑

x̃∈SD;x̃<x cx,x̃dx̃,x′ = δx,x′ . From this the desired

result follows by induction on ν(x).
We show:
(b) There is a unique bijection e : V

∼−→ F(V ) (see 1.17) such that x ∈ e(x) for
any x ∈ V .

The map e : x �→ 〈ε−1(x)〉, V → F(V ) is a well-defined bijection; see 1.17(b),(c).
For x ∈ V we have x ∈ e(x) by 1.9(c). This proves the existence of e. We prove
uniqueness. Let e′ : V → F(V ) be a bijection such that x ∈ e′(x) for any x ∈ V .

We define a bijection σ : V
∼−→ V by σ = e′−1e. Then for any X ∈ F(V ) we have

σ(e−1(X)) = e′−1(X). Setting x = e−1(X) we have σ(x) = e′−1(X) ∈ X = e(x).
Thus σ(x) ∈ e(x) for any x ∈ V . From (a) we have x′ ≤ x for any x′ ∈ e(x). Hence
σ(x) ≤ x for any x ∈ V . In a finite partially ordered set Z any bijection a : Z → Z
such that a(z) ≤ z for all z must be the identity map. It follows that σ = 1 so that
e = e′. This proves (b).

1.23. In 1.24–1.26 we describe the bijection in 1.17(c) assuming that D is 2, 4 or
6. In each case we give a table in which there is one row for each B ∈ SD; the row
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corresponding to B is of the form < B >: (. . . ), where B is represented by the list
of intervals of B (we write an interval such as [4, 6] as 456) and (. . . ) is a list of the
vectors in 〈B〉 (we write 1235 instead of e1+ e2+ e3+ e5, etc). In each list (. . . ) we
single out the vector ε(B) in 1.17(b) by putting it in a box. Any non-boxed entry
in (. . . ) appears as a boxed entry in some previous row. These tables extend the
tables in [L5, 1.17].

1.24. The table for D = 2.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 )

< 12 >: (0, 12 ).

1.25. The table for D = 4.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 )

< 3 >: (0, 3 )

< 4 >: (0, 4 )

< 1, 3 >: (0, 1, 3, 13 )

< 1, 4 >: (0, 1, 4, 14 )

< 2, 4 >: (0, 2, 4, 24 )

< 2, 123 >: (0, 2, 13, 123 )

< 3, 234 >: (0, 3, 24, 234 )

< 1234 >: (0, 1234 )

< 3, 1234 >: (0, 3, 1234, 124 )

< 2, 1234 >: (0, 2, 1234, 134 )

< 4, 12 >: (0, 4, 124, 12 )

< 1, 34 >: (0, 1, 134, 34 )

< 1234, 23 >: (0, 1234, 14, 23 ).

1.26. The table for D = 6.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 )

< 3 >: (0, 3 )

< 4 >: (0, 4 )

< 5 >: (0, 5 )

< 6 >: (0, 6 )

< 1, 4 >: (0, 1, 4, 14 )

< 1, 6 >: (0, 1, 6, 16 )

< 2, 4 >: (0, 2, 4, 24 )

< 2, 5 >: (0, 2, 5, 25 )

< 2, 6 >: (0, 2, 6, 26 )
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< 3, 6 >: (0, 3, 6, 36 )

< 4, 6 >: (0, 4, 6, 46 )

< 1, 3 >: (0, 1, 3, 13 )

< 1, 5 >: (0, 1, 5, 15 )

< 3, 5 >: (0, 3, 5, 35 )

< 2, 123 >: (0, 2, 13, 123 )

< 3, 234 >: (0, 3, 24, 234 )

< 4, 345 >: (0, 4, 35, 345 )

< 5, 456 >: (0, 5, 46, 456 )

< 1, 3, 5 >: (0, 1, 3, 5, 13, 15, 35, 135 )

< 1, 3, 6 >: (0, 1, 3, 6, 13, 16, 36, 136 )

< 1, 4, 345 >: (0, 1, 4, 345, 14, 35, 135, 1345 )

< 1, 4, 6 >: (0, 1, 4, 6, 14, 16, 46, 146 )

< 2, 4, 6 >: (0, 2, 4, 6, 24, 26, 46, 246 )

< 1, 5, 456 >: (0, 1, 5, 456, 15, 46, 146, 1456 )

< 2, 5, 456 >: (0, 2, 5, 456, 25, 46, 246, 2456 )

< 2, 5, 123 >: (0, 2, 5, 123, 25, 13, 135, 1235 )

< 2, 6, 123 >: (0, 2, 6, 123, 26, 13, 136, 1236 )

< 2, 4, 12345 >: (0, 2, 4, 24, 1345, 1235, 135, 12345 )

< 3, 234, 12345 >: (0, 3, 234, 12345, 24, 15, 135, 1245 )

< 3, 6, 234 >: (0, 3, 6, 234, 24, 36, 246, 2346 )

< 3, 5, 23456 >: (0, 3, 5, 2456, 35, 2346, 246, 23456 )

< 4, 345, 23456 >: (0, 4, 345, 23456, 35, 26, 246, 2356 ).

< 123456 >: (0, 123456 )

< 5, 123456 >: (0, 5, 123456, 12346 )

< 4, 123456 >: (0, 4, 123456, 12356 )

< 3, 123456 >: (0, 3, 123456, 12456 )

< 2, 123456 >: (0, 2, 123456, 13456 )

< 6, 1234 >: (0, 6, 12346, 1234 )

< 1, 3456 >: (0, 1, 13456, 3456 )

< 2, 5, 123456 >: (0, 2, 5, 25, 123456, 13456, 12346, 1346 )

< 3, 5, 123456 >: (0, 3, 5, 35, 123456, 12456, 12346, 1246 )

< 2, 4, 123456 >: (0, 2, 4, 24, 123456, 13456, 12356, 1356 )

< 3, 6, 1234 >: (0, 3, 6, 36, 1234, 12346, 1246, 124 )

< 1, 4, 3456 >: (0, 1, 4, 14, 3456, 13456, 1356, 356 )

< 2, 6, 1234 >: (0, 2, 6, 26, 1234, 12346, 1346, 134 )

< 1, 5, 3456 >: (0, 1, 5, 14, 3456, 13456, 1346, 346 )

< 3, 234, 123456 >: (0, 3, 234, 24, 123456, 12456, 1356, 156 )

< 4, 345, 123456 >: (0, 4, 345, 35, 123456, 12356, 1246, 126 )

< 4, 6, 12 >: (0, 4, 6, 46, 124, 126, 1246, 12 )

< 1, 3, 56 >: (0, 1, 3, 13, 156, 356, 1356, 56 )
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< 1, 6, 34 >: (0, 1, 6, 16, 134, 346, 1346, 34 )

< 5, 12, 456 >: (0, 5, 12, 456, 12456, 46, 1246, 125 )

< 2, 56, 123 >: (0, 2, 56, 123, 12356, 13, 1356, 256 )

< 123456, 2345 >: (0, 123456, 16, 2345 )

< 123456, 3, 2345 >: (0, 123456, 3, 2345, 12456, 16, 136, 245 )

< 123456, 4, 2345 >: (0, 123456, 4, 2345, 12356, 16, 146, 235 )

< 123456, 2, 45 >: (0, 2, 123456, 13456, 1236, 245, 136, 45 )

< 123456, 5, 23 >: (0, 5, 123456, 12346, 1456, 235, 146, 23 )

< 3456, 1, 45 >: (0, 1, 45, 3456, 13456, 36, 136, 145 )

< 1234, 6, 23 >: (0, 6, 23, 1234, 12346, 14, 146, 236 )

< 123456, 2345, 34 >: (0, 123456, 2345, 34, 16, 25, 1346, 1256 ).

1.27. For m ∈ N such that m ≤ D/2 let Sm
D = {B ∈ SD; |B0| = m}. One can

show:
(a) |Sm

D | =
(

D+1
(D/2)−m

)
.

Indeed Sm
D can be identified with a fiber of the map ũ : V → N in 1.11 and

that fiber is in bijection with a set of symbols with fixed defect as in [L2]. These
symbols can be counted and we find (a).

If B ∈ SD, then B1 ∈ S0
D. This is seen by induction on D. Alternatively, B1

satisfies (P0), (P1), (P2) hence is in SD, by 1.3(c). Thus B �→ B1 is a well-defined
(surjective) map SD → S0

D. One can show:

(b) This map induces a bijection {B ∈ SD; |B| = D/2} ∼−→ S0
D.

1.28. We now assume that G in 0.1 is of type Bn or Cn, n ≥ 2, or Dn, n ≥ 4.
We define the set B̃c in 0.1. If |c| = 1, B̃c consists of (1, 1). Assume now that
|c| ≥ 2. We associate to c a number D ∈ 2N, and an F2-vector space V with basis
{ei; i ∈ [1, D]} as in 1.9 so that Irrc is identified with M(Gc) = V as in [L3]. Then

C[M(Gc)] becomes the vector space of functions V → C. The elements of B̃c are
the characteristic functions of the subsets 〈B〉 of V for various B ∈ SD. This has
the properties (I)–(V) in 0.1. (The bipositivity property (I) in 0.1 follows from the
fact that 〈B〉 is an isotropic subspace of V for any B ∈ SD.)

2. The case where D is odd

2.1. In this section we will sketch without proof a variant of the definitions and
results in §1 in which D ∈ N is taken to be odd.

We say that B ∈ RD is primitive if either B = ∅ or B is of the form
(a) B = {[1, D − 1], [2, D − 2], [k,D − k]} for some odd k ∈ N such that k ≤

(D − 1)/2.
We define a subset SD of RD by induction on D as follows. If D = 1, SD consists

of a single element, namely ∅ ∈ RD. If D ≥ 3 we say that B ∈ RD is in SD if either
B is primitive, or

(b) |B0| 
= 0 and there exist i ∈ [1, D] and B′ ∈ SD−2 such that B = ti(B
′), or

(c) |B0| = 0 and there exist i ∈ [1, D − 1] and B′ ∈ SD−2 such that B = ti(B
′).

Here ti is as in 1.1.
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2.2. We shall use the notation of 1.9 (with D odd). Let V = V/F2ζ, where ζ =
e1+ e3+ e5+ · · ·+ eD. Now (, ) : V ×V → F2 induces a non-degenerate symplectic
form V × V → F2. Let π : V → V be the obvious map. Now V with its basis
{π(ei); i ∈ [0, D−1]} is like V in 1.9 (of even dimension). Hence F(V ) is defined and

we have canonical bijections α : SD−1
∼−→ F(V ) (as in 1.17(c)) and e : V

∼−→ F(V )
(as in 1.22(b)).

For B ∈ SD let 〈B〉 be the subspace of V generated by {eI ; I ∈ B}; this is in
fact a basis of 〈B〉 and {π(eI); I ∈ B} is a basis of π(〈B〉). Let F(V ) be the set of
(isotropic) subspaces of V of the form π(〈B〉) for some B ∈ SD. Now F(V ) does
not in general coincide with F(V ).

One can show that the map α : SD → F(V ), B �→ π(〈B〉) is a bijection and

that there is a unique bijection e : V
∼−→ F(V ) such that for any x ∈ V we have

x ∈ e(x). Consider the matrix indexed by V ×V whose entry at (x, x′) ∈ V ×V is 1
if x′ ∈ e(x) and is 0 if x′ /∈ e(x). One can show that this matrix is upper triangular
with 1 on the diagonal for a suitable partial order on V .

2.3. For m ∈ N such that m ≤ (D − 1)/2 let Sm
D = {B ∈ SD; |B0| = m}. For

m > 0, even, we have Sm
D = ∅. One can show that the bijection α−1ee−1α :

SD−1
∼−→ SD (see 2.2) restricts to the identity map S0

D → S0
D−1 and to a bijection

Sm
D−1 ∪ Sm+1

D−1
∼−→ Sm

D for m odd.

2.4. In 2.5–2.7 we describe the bijection SD
∼−→ F(V ), B �→ π(〈B〉) in 2.2 assuming

that D is 3, 5 or 7. In each case we give a table in which there is one row for
each B ∈ SD; the row corresponding to B is of the form < B >: (. . . ), where B
is represented by the list of intervals of B. We use conventions similar to those
in 1.23, except that now (. . . ) is a list of vectors in V (we write 1235 instead of
π(e1)+π(e2)+π(e3)+π(e5), etc.). In each list (. . . ) we single out (by putting it in
a box) the vector x ∈ V such that e(x) = π(〈B〉) with e as in 2.2. Any non-boxed
entry in (. . . ) appears as a boxed entry in some previous row.

2.5. The table for D = 3.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 ).

< 12 >: (0, 12 ).

2.6. The table for D = 5.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 )

< 3 >: (0, 3 )

< 4 >: (0, 4 )

< 1, 3 >: (0, 1, 3, 13 )

< 1, 4 >: (0, 1, 4, 14 )

< 2, 4 >: (0, 2, 4, 24 )

< 2, 123 >: (0, 2, 13, 123 )

< 3, 234 >: (0, 3, 24, 234 )



THE GROTHENDIECK GROUP OF UNIPOTENT REPRESENTATIONS 201

< 1234 >: (0, 1234 )

< 3, 1234 >: (0, 3, 1234, 124 )

< 2, 1234 >: (0, 2, 1234, 134 )

< 4, 12 >: (0, 4, 124, 12 )

< 1, 34 >: (0, 1, 134, 34 )

< 5, 12 >: (0, 12, 13, 23 ).

2.7. The table for D = 7.
∅ : ( 0 )

< 1 >: (0, 1 )

< 2 >: (0, 2 )

< 3 >: (0, 3 )

< 4 >: (0, 4 )

< 5 >: (0, 5 )

< 6 >: (0, 6 )

< 1, 4 >: (0, 1, 4, 14 )

< 1, 6 >: (0, 1, 6, 16 )

< 2, 4 >: (0, 2, 4, 24 )

< 2, 5 >: (0, 2, 5, 25 )

< 2, 6 >: (0, 2, 6, 26 )

< 3, 6 >: (0, 3, 6, 36 )

< 4, 6 >: (0, 4, 6, 46 )

< 1, 3 >: (0, 1, 3, 13 )

< 1, 5 >: (0, 1, 5, 15 )

< 3, 5 >: (0, 3, 5, 35 )

< 2, 123 >: (0, 2, 13, 123 )

< 3, 234 >: (0, 3, 24, 234 )

< 4, 345 >: (0, 4, 35, 345 )

< 5, 456 >: (0, 5, 46, 456 )

< 1, 3, 5 >: (0, 1, 3, 5, 13, 15, 35, 135 )

< 1, 3, 6 >: (0, 1, 3, 6, 13, 16, 36, 136 )

< 1, 4, 345 >: (0, 1, 4, 345, 14, 35, 135, 1345 )

< 1, 4, 6 >: (0, 1, 4, 6, 14, 16, 46, 146 )

< 2, 4, 6 >: (0, 2, 4, 6, 24, 26, 46, 246 )

< 1, 5, 456 >: (0, 1, 5, 456, 15, 46, 146, 1456 )

< 2, 5, 456 >: (0, 2, 5, 456, 25, 46, 246, 2456 )

< 2, 5, 123 >: (0, 2, 5, 123, 25, 13, 135, 1235 )

< 2, 6, 123 >: (0, 2, 6, 123, 26, 13, 136, 1236 )

< 2, 4, 12345 >: (0, 2, 4, 24, 1345, 1235, 135, 12345 )

< 3, 234, 12345 >: (0, 3, 234, 12345, 24, 15, 135, 1245 )

< 3, 6, 234 >: (0, 3, 6, 234, 24, 36, 246, 2346 )

< 3, 5, 23456 >: (0, 3, 5, 2456, 35, 2346, 246, 23456 )
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< 4, 345, 23456 >: (0, 4, 345, 23456, 35, 26, 246, 2356 )

< 123456 >: (0, 123456 )

< 5, 123456 >: (0, 5, 123456, 12346 )

< 4, 123456 >: (0, 4, 123456, 12356 )

< 3, 123456 >: (0, 3, 123456, 12456 )

< 2, 123456 >: (0, 2, 123456, 13456 )

< 6, 1234 >: (0, 6, 12346, 1234 )

< 1, 3456 >: (0, 1, 13456, 3456 )

< 2, 5, 123456 >: (0, 2, 5, 25, 123456, 13456, 12346, 1346 )

< 3, 5, 123456 >: (0, 3, 5, 35, 123456, 12456, 12346, 1246 )

< 2, 4, 123456 >: (0, 2, 4, 24, 123456, 13456, 12356, 1356 )

< 3, 6, 1234 >: (0, 3, 6, 36, 1234, 12346, 1246, 124 )

< 1, 4, 3456 >: (0, 1, 4, 14, 3456, 13456, 1356, 356 )

< 2, 6, 1234 >: (0, 2, 6, 26, 1234, 12346, 1346, 134 )

< 1, 5, 3456 >: (0, 1, 5, 14, 3456, 13456, 1346, 346 )

< 3, 234, 123456 >: (0, 3, 234, 24, 123456, 12456, 1356, 156 )

< 4, 345, 123456 >: (0, 4, 345, 35, 123456, 12356, 1246, 126 )

< 4, 6, 12 >: (0, 4, 6, 46, 124, 126, 1246, 12 )

< 1, 3, 56 >: (0, 1, 3, 13, 156, 356, 1356, 56 )

< 1, 6, 34 >: (0, 1, 6, 16, 134, 346, 1346, 34 )

< 5, 12, 456 >: (0, 5, 12, 456, 12456, 46, 1246, 125 )

< 2, 56, 123 >: (0, 2, 56, 123, 12356, 13, 1356, 256 )

< 7, 1234 >: (0, 135, 1234, 245 )

< 3, 7, 1234 >: (0, 3, 15, 1234, 135, 124, 245, 2345 )

< 4, 7, 12 >: (0, 4, 135, 12, 124, 1345, 2345, 235 )

< 2, 7, 1234 >: (0, 2, 135, 1234, 1235, 134, 245, 45 )

< 5, 7, 12 >: (0, 5, 13, 12, 135, 125, 235, 23 )

< 1, 7, 34 >: (0, 1, 34, 135, 134, 35, 45, 145 )

< 6, 12, 567 >: (0, 6, 12, 136, 13, 126, 23, 236 )

< 123456, 2345, 34 >: (0, 123456, 2345, 34, 16, 25, 1346, 1256 ).

3. Exceptional groups

3.1. Let Γ be a finite group. Let x ∈ Γ, and let ρ be a not necessarily irreducible
representation over C of the centralizer ZΓ(x) of x in Γ. We define (x, ρ) ∈ M(Γ)
to be

∑
σ(σ : ρ)(x, σ), where σ runs over the irreducible representations of ZΓ(x)

up to isomorphism and : denotes multiplicity. Let H be a subgroup of Γ. Following
[L3, p. 312] we define a linear map iH,Γ : C[M(H)] → C[M(Γ)] by

(a) (x, σ) �→ (x, Ind
ZΓ(x)
ZH(x)(σ)).

As stated in loc. cit. we have
(b) iH,Γ(AH(f)) = AΓ(iH,Γ(f)) for any f ∈ C[M(H)].
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If f ∈ C[M(H)] is ≥ 0, then clearly iH,Γ(f) is ≥ 0. Using this and (b) we see
that

(c) If f ∈ C[M(H)] is bipositive, then iH,Γ(f) ∈ C[M(Γ)] is bipositive.
Assume now that H is a normal subgroup of Γ and let π : Γ → Γ/H be the

canonical map. Following loc.cit. we define a linear map πH,Γ : C[M(Γ/H)] →
C[M(Γ)] by

(d) (x, σ) �→
∑

y∈π−1(x)

∑
τ∈Irr(ZΓ(y))

|ZΓ(y)||ZΓ/H(x)|−1|Γ|−1|Γ/H|(τ : σ)(y, τ ),

where τ runs over the irreducible representations of ZΓ(y) up to isomorphism and
τ : σ denotes the multiplicity of τ in σ viewed as a representation of ZΓ(y) via the
obvious homomorphism ZΓ(y) → ZΓ/H(x). As stated in loc.cit. we have

(e) πH,Γ(AΓ/H(f)) = AΓ(πH,Γ(f)) for any f ∈ C[M(Γ/H)].
If f ∈ C[M(Γ/H)] is ≥ 0, then clearly πH,Γ(f) is ≥ 0. Using this and (e) we see

that
(f) If f ∈ C[M(Γ/H)] is bipositive, then πH,Γ(f) ∈ C[M(Γ)] is bipositive.
Now let H ⊂ H ′ be two subgroups of Γ such that H is normal in H ′. We define a

linear map sH,H′ : C[M(H ′/H)] → C[M(Γ)] by f �→ iH′,Γ(πH,H′(f)). From (c),(f)
we deduce:

(g) If f ∈ C[M(H ′/H)] is bipositive, then sH,H′(f) ∈ C[M(Γ)] is bipositive.
Note that sH,H′(1, 1) is the same as SH,H′ defined in [L5]; in this special case

(g) can be also deduced from [L5, 0.7].

3.2. For N ≥ 1 let SN be the group of all permutations of [1, N ]. We shall use
the notation of [L3, 4.3] for the elements of M(SN ) with N = 2, 3, 4 or 5 (but we
replace Q̄l by C). We now give some examples of bipositive elements. Note that
(1, 1) ∈ M(Γ) is bipositive for any finite group Γ. Indeed, we have

AΓ(1, 1) =
∑

(x,σ)∈M(Γ)

dimσ|ZΓ(z)|−1(x, σ).

Let
Λ−1 = (g2, ε) + (1, 1) ∈ M(S2),
Λ′
θj = (g3, θ

j) + (g2, 1) + (1, 1) ∈ M(S3)(j = 1, 2),

Λθj = (g3, θ
j) + (g2, ε) + (1, 1) ∈ M(S3)(j = 1, 2),

Λik = (g4, i
k) + (g4,−1) + (g3, 1) + (1, λ2) + (1, 1) ∈ M(S4)(k = 1,−1),

Λζj = (g5, ζ
j)+ (1, λ4)+2(1, λ2)+ (1, ν)+ (1, ν′)+ (1, 1) ∈ M(S5)(j = 1, 2, 3, 4).

Λ′
ζl,ζ2l = (g5, ζ

l) + (g5, ζ
2l) + (g′2, 1) + (g′2, ε

′)

+ (g′2, ε
′′) + (g′2, ε) + (1, λ2) + (1, ν) + (1, 1) ∈ M(S5), l = 1, 2, 3, 4.

Here θ = exp(2πi/3), ζ = exp(2πi/5).
One can verify by computation that each of the elements above (except for Λζj )

is fixed by the non-abelian Fourier transform hence is bipositive. In 3.3 we will
show that Λζj is also bipositive. We say that

(1, 1) is the primitive element of M(S1);
Λ−1, (1, 1) are the primitive elements of M(S2);
Λ′
θj , (1, 1) are the primitive elements of M(S3) (when G is not simply laced);

Λθj , (1, 1) are the primitive elements of M(S3) (when G is simply laced);
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Λik , (1, 1) are the primitive elements of M(S4);
Λζ ,Λ

′
ζ,ζ2 ,Λ′

ζ2,ζ4 ,Λ′
ζ3,ζ , (1, 1) are the primitive elements of M(S5).

It follows that the following elements are bipositive:
Λ−1,−1 = Λ−1 � Λ−1 ∈ M(S2)⊗M(S2) = M(S2 × S2);
Λ−1,1 = Λ−1 � (1, 1) ∈ M(S2)⊗M(S2) = M(S2 × S2);
Λ1,−1 = (1, 1)� Λ−1 ∈ M(S3)⊗M(S2) = M(S3 × S2);
Λθj ,−1 = Λθj � Λ−1 ∈ M(S3)⊗M(S2) = M(S3 × S2)(j = 1, 2);
Λθj ,1 = Λθj � (1, 1) ∈ M(S3)⊗M(S2) = M(S3 × S2)(j = 1, 2).
Note that both Λ−1,−1,Λθj ,−1 are fixed by the non-abelian Fourier transform.

We say that
Λ−1,−1,Λ−1,1, (1, 1) are the primitive elements of M(S2 × S2);
Λθj ,−1,Λθj ,1,Λ1,−1, (1, 1) are the primitive elements of M(S3 × S2).

3.3. Let H be a dihedral group of order 10. We denote by g5 an element of order
5 of H and by g2 an element of order 2 such that g2g5g

−1
2 = g−1

5 . Now H has
four conjugacy classes; they have representatives 1, g2, g5, g

2
5 with centralizers of

order 10, 2, 5, 5. The irreducible representations of H are 1, r, r′, ε, where r, r′ are
2-dimensional and ε is the sign. We can assume that tr(g5, r) = tr(g5, r

′) = ζ+ζ−1,
tr(g25 , r) = tr(g25 , r

′) = ζ2 + ζ−2, tr(g2, r) = tr(g2, r
′) = 0, tr(g5, ε) = tr(g25 , ε) = 1,

tr(g2, ε) = −1. The elements of M(H) are (1, 1), (1, r), (1, r′), (1, ε), (g2, 1), (g2, ε),
(gk5 , ζ

l) with k = 1, 2, l = 0, 1, . . . , 4. Here ζl is the character of the cyclic group
generated by g5 which takes the value ζl at g5. For C ∈ Z we set [C] = ζC + ζ−C .
Note that [C] depends only on the residue class of C modulo 5. We write A instead
of AH . We have

A(1, 1) = (1/10)(1, 1) + (1/5)(1, r) + (1/5)(1, r′) + (1/10)(1, ε) + (1/2)(g2, 1)

+ (1/2)(g2, ε) +
∑

k′∈{1,2},l′∈{0,4}
(1/5)(gk

′
, ζl

′
),

A(1, ε) = (1/10)(1, 1) + (1/5)(1, r) + (1/5)(1, r′) + (1/10)(1, ε)− (1/2)(g2, 1)

− (1/2)(g2, ε) +
∑

k′∈{1,2},l′∈{0,4}
(1/5)(gk

′
, ζl

′
),

A(g2, 1) = (1/2)(1, 1)− (1/2)(1, ε) + (1/2)(g2, 1)− (1/2)(g2, ε),

A(gk5 , ζ
l) = (1/5)(1, 1) + (1/5)[k](1, r) + (1/5)[2k](1, r′) + (1/5)(1, ε)

+
∑

k′∈{1,2},l′∈{0,4}
(1/5)[kl′ − k′l](gk

′
, ζl

′
).

Assume that k = 1 and l ∈ [1, 4]. Using [1] + [2] = −1, [2] + [4] = −1, we have

A(g5, ζ
l) +A(g25 , ζ

2l) = (2/5)(1, 1)− (1/5)(1, r)− (1/5)(1, r′) + (2/5)(1, ε)

+
∑

k′∈{1,2},l′∈{0,4}
(1/5)([l′ − k′l] + [2l′ − 2k′l])(gk

′
, ζl

′
).

Let N1 = l′ − k′l, N2 = 2N1. If N1 = 0 mod 5 we have [N1] + [N2] = [0] + [0] = 4.
Assume now that N1 
= 0 mod 5. If N1 + N2 = 0 mod 5, then 3N1 = 0 mod 5
so that N1 = 0 mod 5, contradicting our assumption. Thus N1, N2 are 
= 0 in Z/5
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and their sum is 
= 0 in Z/5. This implies that [N1] + [N2] = [1] + [2] = −1. We
see that

A(g5, ζ
l) +A(g25, ζ

2l) = (2/5)(1, 1)− (1/5)(1, r)− (1/5)(1, r′) + (2/5)(1, ε)

+ (4/5)(g5, ζ
l) + (4/5)(g25 , ζ

2l) +
∑

k′∈{1,2},l′∈{0,4};l′−k′l �=0 mod 5

(−1/5)(gk
′
, ζl

′
).

Hence

A(g5, ζ
l) +A(g25 , ζ

2l) +A(g2, 1) +A(1, 1)

= (2/5)(1, 1)− (1/5)(1, r)− (1/5)(1, r′) + (2/5)(1, ε)

+ (4/5)(g5, ζ
l) + (4/5)(g25 , ζ

2l) +
∑

k′∈{1,2},l′∈{0,4};l′−k′l �=0 mod 5

(−1/5)(gk
′
, ζl

′
)

+ (1/2)(1, 1)− (1/2)(1, ε) + (1/2)(g2, 1)− (1/2)(g2, ε)

+ (1/10)(1, 1) + (1/5)(1, r) + (1/5)(1, r′)

+ (1/10)(1, ε) + (1/2)(g2, 1) + (1/2)(g2, ε)

+
∑

k′∈{1,2},l′∈{0,4}
(1/5)(gk

′
, ζl

′
) = (g5, ζ

l) + (g25 , ζ
2l) + (g2, 1) + (1, 1),

that is,

(g5, ζ
l) + (g25 , ζ

2l) + (g2, 1) + (1, 1) is fixed by A.

Next we show that the coefficient of any basis element (x, σ) in

A(gk5 , ζ
l) +A(1, ε) +A(1, 1) = (1/5)(1, 1) + (1/5)[k](1, r) + (1/5)[2k](1, r′)

+ (1/5)(1, ε) +
∑

k′∈{1,2},l′∈{0,4}
(1/5)[kl′ − k′l](gk

′
, ζl

′
)

+ (1/10)(1, 1) + (1/5)(1, r) + (1/5)(1, r′)

+ (1/10)(1, ε) + (1/2)(g2, 1) + (1/2)(g2, ε)

+
∑

k′∈{1,2},l′∈{0,4}
(1/5)(gk

′
, ζl

′
) + (1/10)(1, 1) + (1/5)(1, r) + (1/5)(1, r′)

+ (1/10)(1, ε)− (1/2)(g2, 1)− (1/2)(g2, ε) +
∑

k′∈{1,2},l′∈{0,4}
(1/5)(gk

′
, ζl

′
)

is ≥ 0. It is enough to show that if k′ ∈ {1, 2}, l′ ∈ {0, 4}, then [kl′−k′l]+2 ≥ 0 and
that [k] + 2 ≥ 0, [2k] + 2 ≥ 0. More generally, for any C ∈ Z we have [C] + 2 ≥ 0.

We can regard H as a subgroup of S5 so that g5 ∈ H becomes a 5-cycle g5 ∈ S5.
Then s1,H : M(H) → M(S5) is defined and for l ∈ [1, 4] we have

(a) s1,H((g5, ζ
l) + (g25 , ζ

2l) + (g2, 1) + (1, 1)) = Λ′
ζl,ζ2l ∈ M(S5),

(b) s1,H((g5, ζ
l) + (1, ε) + (1, 1)) = Λζl ∈ M(S5).

It follows that the elements (a),(b) are bipositive. (The element (a) is fixed by
AS5

.)
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3.4. In the remainder of this section we assume that G in 0.1 is of exceptional type.
We are in one of the following cases:

(i) |c| = 1, Gc = S1.
(ii) |c| = 2 (with W of type E7 or E8), Gc = S2.
(iii) |c| = 3, Gc = S2.
(iv) |c| = 4 (with W of type G2), Gc = S3.
(v) |c| = 5 (with W of type E6, E7, or E8), Gc = S3.
(vi) |c| = 11 (with W of type F4), Gc = S4.
(vii) |c| = 17 (with W of type E8), Gc = S5.

3.5. In the case 3.4(i) we define B̃c as the set consisting of (1, 1) ∈ M(S1).

In the cases 3.4(ii),3.4(iii) we define B̃c as the subset of C[M(S2)] consisting of
̂(1, 1) = s1,S2

(1, 1) = (1, 1),
̂(g2, 1) = sS2,S2

(1, 1) = (g2, 1) + (1, 1),
̂(1, ε) = s1,1(1, 1) = (1, ε) + (1, 1),
̂(g2, ε) = s1,S2

(Λ−1) = Λ−1 = (g2, ε) + (1, 1).

3.6. In cases 3.4(iv),(v) we define B̃c as the subset of C[M(S3)] consisting of
̂(1, 1) = s1,S3

(1, 1) = (1, 1),
̂(1, r) = s1,H21

(1, 1) = (1, r) + (1, 1),
̂(g2, 1) = sH21,H21

(1, 1) = (g2, 1) + (1, r) + (1, 1),
̂(g3, 1) = sS3,S3

(1, 1) = (g3, 1) + (g2, 1) + (1, 1),
̂(1, ε) = s1,1(1, 1) = (1, ε) + 2(1, r) + (1, 1),
̂(g2, ε) = s1,H21

Λ−1 = (g2, ε) + (1, r) + (1, 1),
and of
̂(g3, θj) = s1,S3

Λ′
θj = (g3, θ

j) + (g2, 1) + (1, 1) (j = 1, 2) (in case 3.4(iv)),

̂(g3, θj) = s1,S3
Λθj = (g3, θ

j) + (g2, ε) + (1, 1) (j = 1, 2) (in case 3.4(v)).
Here the index H,H ′ in sH,H′ is a pair of subgroups of S3 as in [L5, 3.10].

3.7. In the case 3.4(vi) we define B̃c as the subset of C[M(S4)] consisting of
̂(1, 1) = s1,S4

(1, 1),
̂(1, λ1) = s1,H31

(1, 1),
̂(1, σ) = s1,H22

(1, 1),
̂(1, λ2) = s1,H211

(1, 1),
̂(g2, 1) = sH̃211,H22

(1, 1),

̂(g′2, 1) = sH̃22,H̃
(1, 1),

̂(g2, ε′′) = sH211,H221
(1, 1),

̂(g3, 1) = sH31,H31
(1, 1),

̂(g4, 1) = sS4,S4
(1, 1),

̂(g′2, ε
′′) = sH22,H22

(1, 1),
̂(g′2, ε

′) = sH̃,H̃(1, 1),

̂(g2, ε′) = s1,H22
Λ−1,1 = (g2, ε

′) + (1, σ) + (1, λ1) + (1, 1),
̂(g′2, r) = sH̃211,H22

Λ−1 = (g2, ε
′) + (g′2, r) + (g2, 1) + (1, λ1) + (1, σ) + (1, 1),
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̂(g4,−1) = sH22,H̃
Λ−1 = (g4,−1) + (g′2, r) + (g′2, 1) + (g2, 1) + (1, σ) + (1, 1)

̂(1, λ3) = s1,1(1, 1) = (1, λ3) + 3(1, λ2) + 3(1, λ1) + 2(1, σ) + (1, 1),
̂(g2, ε) = s1,H211

Λ−1 = (g2, ε) + (g2, ε
′) + 2(1, λ1) + (1, λ2) + (1, σ) + (1, 1),

̂(g′2, ε) = s1,H22
Λ−1,−1 = (g′2, ε)+(g′2, 1)+(g2, ε

′)+(g2, ε
′′)+(1, λ1)+(1, σ)+(1, 1),

̂(g3, θj) = s1,H31
Λ′
θj = (g3, θ

j) + (g2, 1) + (g2, ε
′) + (1, λ1) + (1, 1)(j = 1, 2),

̂(g4, ik) = s1,S4
Λik = (g4, i) + (g4,−1) + (g3, 1) + (1, λ2) + (1, 1), (k = 1,−1).

Here the index H,H ′ in sH,H′ is a pair of subgroups of S4 as in [L5, 3.10] except
that s1,1 does not appear there. In each case H/H ′ is a product of symmetric
groups.

Consider the matrix (from [L5]):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0
1 2 1 1 1 0 1 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0
1 0 0 0 1 1 0 1 1 0 0
1 1 1 0 2 1 0 0 0 1 0
1 0 1 0 1 2 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with rows indexed from left to right and columns indexed from top to bottom by
the elements of M0(S4) in the order

(1, 1), (1, λ1), (1, σ), (1, λ2), (g2, 1), (g
′
2, 1), (g2, ε

′′), (g3, 1), (g4, 1), (g
′
2, ε

′′), (g′2, ε
′).

For (x, σ) ∈ M0(S4), the coefficient of (x′, σ′) ∈ M0(S4) in ̂(x, σ) ∈ C[M(S4)] is the
entry of the matrix above in row (x, σ) and column (x′, σ′); the coefficient of any
(x′, σ′) ∈ M(S4)−M0(S4) is 0.

3.8. In the case 3.4(vii) we define B̃c as the subset of C[M(S5)] consisting of
̂(1, 1) = s1,S5

(1, 1),
̂(1, λ1) = s1,H41

(1, 1),
̂(1, ν) = s1,H32

(1, 1),
̂(1, λ2) = s1,H311

(1, 1),
̂(1, ν′) = s1,H221

(1, 1),
̂(1, λ3) = s1,H2111

(1, 1),
̂(g2, 1) = sH̃2111,H32

(1, 1),

̂(g2, r) = sH̃2111,H221
(1, 1),

̂(g3, 1) = sH̃311,H32
(1, 1),

̂(g′2, 1) = sH̃221,H̃
(1, 1),

̂(g′2, ε
′′) = sH221,H221

(1, 1),
̂(g6, 1) = sH32,H32

(1, 1),
̂(g2, ε) = sH2111,H2111

(1, 1),
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̂(g3, ε) = sH311,H311
(1, 1),

̂(g4, 1) = sH41,H41
(1, 1),

̂(g5, 1) = sS5,S5
(1, 1),

̂(g′2, ε
′) = sH̃,H̃(1, 1),

̂(g2,−1) = s1,H32
Λ1,−1 = (g2,−1) + (1, λ1) + (1, ν) + (1, 1),

̂(g2,−r) = s1,H221
Λ−1,1 = (g2,−r)+(g2,−1)+(1, λ2)+(1, ν′)+2(1, ν)+2(1, λ1)+

(1, 1),
̂(g′2, r) = sH̃2111,H221

Λ−1 = (g′2, r)+(g2,−r)+(g2,−1)+(g2, 1)+(g2, r)+(1, λ2)+

(1, ν′) + 2(1, ν) + 2(1, λ1) + (1, 1),
̂(g4,−1) = sH̃221,H̃

Λ−1 = (g4,−1) + (g′2, r) + (g′2, 1) + (g2, r) + (g2, 1) + (1, λ1) +

(1, ν) + (1, ν′) + (1, 1),

̂(g6,−1) = sH̃311,H32
Λ−1

= (g6,−1) + (g′2, r) + (g2,−1) + (g3, 1) + (g2, 1) + (g2, r) + (1, λ1) + (1, ν) + (1, 1),

̂(g3, θj) = s1,H32
Λ1,θj = (g3, θ

j) + (g2, r) + (g2, ε) + (1, λ1) + (1, ν) + (1, 1)(j = 1, 2),

̂(g6, θj) = sH̃2111,H32
Λθj = (g6, θ

j)

+ (g3, θ) + (g′2, r) + (g2, r) + (g2, ε) + (g2, 1) + (1, λ1) + (1, ν) + (1, 1)(j = 1, 2),

̂(1, λ4) = s1,1(1, 1) = 4(1, λ1)+6(1, λ2)+4(1, λ3)+(1, λ4)+5(1, ν)+5(1, ν′)+(1, 1),
̂(g2,−ε) = s1,H2111

Λ−1 = (g2,−ε) + 2(g2,−r) + (g2,−1) + 3(1, λ1) + 3(1, λ2) +
(1, λ3) + 3(1, ν) + 2(1, ν′) + (1, 1),

̂(g3, εθj) = s1,H311
Λθj = (g3, εθ

j) + (g3, θ)+ (g2, 1)+ 2(g2, r)+ (g2, ε) + 2(1, λ1)+
(1, λ2) + (1, ν) + (1, 1)(j = 1, 2),

̂(g′2, ε) = s1,H221
Λ−1,−1 = (g′2, ε)+(g′2, 1)+2(g2,−1)+2(g2,−r)+(1, λ2)+(1, ν′)+

2(1, ν) + 2(1, λ1) + (1, 1),
̂(g6,−θj) = s1,H32

Λθj ,−1 = (g6,−θj)+(g3, θ)+(g′2, r)+(g2, 1)+(g2, r)+(g2,−1)+
(1, λ1) + (1, ν) + (1, 1)(j = 1, 2),

̂(g4, ik) = s1,H41
Λik = (g4, i

k) + (g4,−1) + (g3, 1) + (g3, ε) + (1, λ2) + (1, λ3) +
(1, λ1) + (1, ν) + (1, 1)(k = 1,−1),

̂(g5, ζ) = Λζ ,
̂(g5, ζ2) = Λ′

ζ,ζ2 ,

̂(g5, ζ3) = Λ′
ζ3,ζ ,

̂(g5, ζ4) = Λ′
ζ2,ζ4 .

Here the index H,H ′ in sH,H′ is a pair of subgroups of S5 as in [L5, 3.10] except
that s1,1 does not appear there. In each case H/H ′ is a product of symmetric
groups.
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Consider the matrix (from [L5]):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 3 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 2 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0
1 2 2 1 1 0 2 2 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 2 1 1 1 1 1 0 0 0 0 0
1 3 3 3 2 1 1 2 0 0 0 0 1 0 0 0 0
1 2 1 1 0 0 1 2 1 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0
1 1 1 0 1 0 1 1 0 2 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with rows indexed from left to right and columns indexed from top to bottom by
the elements of M0(S5) in the order

(1, 1), (1, λ1), (1, ν), (1, λ2), (1, ν′), (1, λ3), (g2, 1), (g2, r), (g3, 1), (g
′
2, 1), (g

′
2, ε

′′),

(g6, 1), (g2, ε), (g3, ε), (g4, 1), (g5, 1), (g
′
2, ε

′).

For (x, σ) ∈ M0(S5), the coefficient of (x′, σ′) ∈ M0(S5) in ̂(x, σ) ∈ C[M(S5)] is
the entry of the matrix above in the row (x, σ) and column (x′, σ′); the coefficient
of any (x′, σ′) ∈ M(S5)−M0(S5) is 0.

3.9. The basis B̃c defined above satisfies properties (I)–(V) in 0.1. (For (I) we use
3.1(g) and the results in 3.2.) It also satisfies the property stated in 0.2 (with the
notion of primitive elements as in 3.2).
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