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Z/m-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, IV

GEORGE LUSZTIG AND ZHIWEI YUN

Abstract. Let G be a reductive group over C. Assume that the Lie algebra
g of G has a given grading (gj) indexed by a cyclic group Z/m such that g0

contains a Cartan subalgebra of g. The subgroup G0 of G corresponding to g0

acts on the variety of nilpotent elements in g1 with finitely many orbits. We
are interested in computing the local intersection cohomology of closures of
these orbits with coefficients in irreducible G0-equivariant local systems in the
case of the principal block. We show that these can be computed by a purely
combinatorial algorithm.
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Introduction

0.1. Let G be a connected reductive group over an algebraically closed field k of
characteristic p ≥ 0 and let g be the Lie algebra of G. (In the case where p > 0 we
shall assume that p is a large prime number so that we can operate with Lie algebras
as if we were in characteristic 0.) Let gnil be the variety of nilpotent elements of g.
We consider the adjoint action of G on gnil; let G\gnil be the set of orbits.

The classification of G-orbits on gnil was completed in the 1959 paper of Kostant
[K]. Here is some history of this classification. We can assume that G is adjoint
simple. In the case where G is of type An, the classification was done by Weier-
strass (1868) and Jordan (1870). In the case where G is of type B,C, or D the
classification was done by J. Williamson (1937). Let J be the set of Lie algebra
homomorphisms sl2 → g. Now G acts naturally on J ; let G\J be the set of G-orbits
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on J . In 1942, Morozov [M] showed that the map J → gnil given by φ �→ φ ( 0 1
0 0 ) is

surjective, hence it induces a surjective map θ : G\J → G\gnil. (A gap in Moro-
zov’s proof was filled by Jacobson [J] in 1951.) In 1944, Malcev [Ma] showed that
G\J is finite; using this and [M], [J], it follows that G\gnil is finite. In 1952, Dynkin
[D] gave a classification of the G-orbits on J . Finally, in 1959, Kostant [K] showed
that θ : G\J → G\gnil is injective (hence bijective). This implies a classification
of G-orbits on gnil (it is the same as the classification of G-orbits on J which was
known from [D]).

0.2. Let T be a maximal torus of G; let t be the Lie algebra of T . Throughout this
paper we assume that m ∈ Z>0 ∪ {∞} is given. If m < ∞ we assume that we are
given a Z/m-grading g =

⊕
j∈Z/m gj of g (see 3.2) such that t ⊂ g0. If m = ∞

we assume that we are given a Z-grading g =
⊕

N∈Z gN of g (see B.2) such that
t ⊂ g0. Let G0 be a closed connected subgroup of G whose Lie algebra is g0. Let
gnil1 = g1 ∩ gnil, a closed subvariety of g1 stable under the adjoint G0-action. (If
m = ∞ we have gnil1 = g1.) The (adjoint) G0-action on gnil1 has only finitely many
orbits. (For m = 2 this is a result of Kostant and Rallis[KR]; this was extended
to the case m < ∞ by Vinberg [V].) Let G0\gnil1 be the set of G0-orbits in gnil1 .
Let I = I(g1) be the (finite) set of pairs (O, E) where O ∈ G0\gnil1 and E is an
irreducible G0-equivariant local system on O (up to isomorphism). For (O, E) ∈ I
we denote by E� the intersection cohomology complex of the closure Ō of O with
coefficients in E , extended by 0 on gnil1 − Ō. For (O, E), (Õ, Ẽ) in I we define
PÕ,Ẽ;O,E ∈ N[v−1] by

PÕ,Ẽ;O,E =
∑
a∈N

Pa;Õ,Ẽ;O,Ev
−a,

where Pa;Õ,Ẽ;O,E ∈ N is the number of times Ẽ appears in a decomposition of the

ath cohomology sheaf of E� restricted to Õ as a direct sum of irreducible local
systems and v is an indeterminate. The study of the polynomials PÕ,Ẽ;O,E is of
considerable interest. In the case where m = 1 they appear in the representation
theory of finite reductive groups as certain character values at unipotent elements;
an algorithm for computing them was given in [L6], generalizing earlier work of
the first author [L2], Shoji [Sh2], and Beynon-Spaltenstein [BS]. In the case where
m = ∞ they appear in multiplicity formulas for standard modules of affine Hecke
algebras with possibly unequal parameters; an algorithm for computing them was
given in [L8], [L9]. In the case where m < ∞ they seem to play a role in the
character formulas for double affine Hecke algebras [Va], [LY3]; an algorithm for
computing them (except for an indexing issue) was given in [LY1], [LY2]. (In these
references G is assumed to be semisimple, simply connected, but for the purposes
of this paper these assumptions are not essential.)

In this paper we focus for simplicity on a certain subset I0 = I0(g1) (see 3.3)
which we call the principal block. In the case where m = 1 so that g is ungraded
and G0 = G, g1 = g, I0 is the set of all (O, E) which appear in the Springer
correspondence [Sp]; see §5. We shall consider the square matrix M indexed by

I0 × I0 whose ((Õ, Ẽ), (O, E)) entry is the polynomial

(−v)dimO−dim ÕPÕ,Ẽ;O,E ∈ Z[v].

We have the following result (in the case m = ∞ this is contained in [L9]).
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Theorem 0.3. One can define in a purely combinatorial way a finite set B and
a matrix M′ of polynomials in Z[v] indexed by B ×B so that the following holds.

There is an explicit bijection h : B
∼−→ I0 under which M′ becomes M.

0.4. Here “purely combinatorial” means that the definition is purely in terms of the
root system R of G with respect to T with its Z/m-grading (or Z-grading) induced
from that of G; the group G itself is not used in the definition of B and M′. This is
reminiscent of the main result of [KL2], where the polynomials describing the local
intersection cohomology of a Schubert variety are identified with the polynomials
of [KL1] which are defined purely in terms of the root system (or more precisely
the Weyl group). The analogy goes further: in both cases “semilinear algebra” (in
the form of a bar operator f �→ b(f), that is, the Q-algebra involution of Q(v)
such that b(vn) = v−n for n ∈ Z) plays a key role. In our case the set B appears
as a canonical basis of a Q(v)-vector space V attached to the root system with its
grading. Following an idea from [L9] we see that V has also another basis Z (which
we call the PBW basis, in analogy with the theory of canonical bases arising from
quantum groups [L7]) and which is in natural bijection with B. Note that both B
and Z are defined purely combinatorially, but the proof that these are well defined
is not purely combinatorial, it relies on the geometry of G. (In this respect our
results are less satisfactory than those in [KL1], [KL2].) The matrix M′ appears as
the transition matrix between the bases B and Z.

Let χ′ : I0 → G0\gnil1 be the map (O, E) �→ O. We have the following result.

Theorem 0.5. One can define in a purely combinatorial way a finite set Θ and a
surjective map χ : B → Θ so that the following holds. There is an explicit bijection
h′ : Θ

∼−→ G0\gnil1 such that χ′h = h′χ : B → G0\gnil1 .

In fact Θ appears as a certain finite set of facets (which we call rigid) of an affine
hyperplane arrangement associated to R (with its grading) modulo the action of
a certain subgroup of the Weyl group. In the case where m = 1, this hyperplane
arrangement is the standard one associated to the affine Weyl group coming from
R. If m = ∞ the hyperplanes in the arrangement all pass through 0.

We now state two results about the fibres of the map χ : B → Θ.

Theorem 0.6. For any ω ∈ Θ one can define in a purely combinatorial way a
certain set Ŵ [ω] of irreducible representations of a certain Weyl group (depending

on ω) and a canonical bijection χ−1(ω) ↔ Ŵ [ω].

Theorem 0.7. Assume that m = 1. Let Ŵ be the set of isomorphism classes of
irreducible representations (over Q) of the Weyl group of our root system. One

can define in a purely combinatorial way a partition Ŵ =
⊔

ω∈Θ Ŵω and, for any

ω ∈ Θ, a canonical bijection χ−1(ω) ↔ Ŵω.

This is essentially the same as the Springer correspondence [Sp] except that,
unlike our bijection, the Springer correspondence is not purely combinatorial; its
definition is based on geometry. Note also that Ŵ [ω] in Theorem 0.5 (with m = 1)

is not necessarily the same as Ŵω in Theorem 0.6, although the two are in canonical
bijection; see 8.7.

We expect that results similar to those of these papers hold with similar proofs
for the nonprincipal blocks.
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0.8. The proof of each of the Theorems 0.3, 0.5, 0.6, and 0.7 relies in part on
the semilinear algebra computations in the Z-graded case given in [L9]. But this
goes also in the opposite direction: the proof of Theorem 0.5 for m = ∞ requires
arguments in the case m = 1.

0.9. The paper has two appendices. In Appendix A we give a definition of B and
Z when m < ∞ which does not rely on the results in [L9]; the definition of B is a
simplification of one in [LY2]. This gives another proof of Theorem 0.3 which is not
relying on [L9] (it still relies on [L8]). But this approach is not capable of proving
0.4, and Theorems 0.5, 0.6.

In Appendix B we reformulate the results in [L9] in a form that can be used in
this paper.

0.10. Notation. If A is a subset of a vector space V we denote by 〈A〉 the subspace
of V generated by A.

Let A = Z[v, v−1].
If V, V ′ are Q(v)-vector spaces, a Q-linear map β : V → V ′ is said to be semi-

linear if β(fx) = b(f)β(x) for any x ∈ V, f ∈ Q(v).
If x ∈ Q− {0} we set sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0.
For any linear algebraic group G let LG be the Lie algebra of G.
All algebraic varieties are assumed to be over k. For an algebraic variety X

we denote by D(X) the bounded derived category of Q̄l-sheaves on X; here l is a
fixed prime number invertible in k. For K ∈ D(X) let pHjK be the jth perverse
cohomology sheaf of K and let HjK be the jth cohomology sheaf of K.

If F : X → X is a map of sets, we write XF = {x ∈ X;F (x) = x}.
If m ∈ Z>0 we denote by N̄ the image of N ∈ Z in Z/m; for j ∈ Z/m let

j̃ = {N ∈ Z; N̄ = j} ⊂ Z.

1. Z/m-graded root systems

1.1. In this section we state our main results purely combinatorially in terms of
Z/m-graded root systems (with m < ∞). Let

(a) (Y,X, (, ),̌ R ↔ R)
be a root system. (We often write R instead of (a).) Thus, Y,X areQ-vector spaces
of finite dimension, (, ) : Y ×X → Q is a perfect pairing, and Ř ⊂ Y, R ⊂ X. Let
W be the Weyl group of R viewed as a subgroup of GL(Y) and as a subgroup of
GL(X).

We viewY and its subsets with the topology induced from the standard topology
of R⊗Q Y.

1.2. In this section, until the end of 1.12, we assume that m < ∞. A Z/m-grading
for R is a collection (Rj)j∈Z/m where Rj are subsets of R such that R =

⊔
j∈Z/m Rj

and such that for α ∈ Rj , α
′ ∈ Rj′ we have α + α′ ∈ R =⇒ α + α′ ∈ Rj+j′ and

α+α′ = 0 =⇒ j+j′ = 0. We assume that a Z/m-grading for R is fixed. Let Ř0 be
the image of R0 under Ř ↔ R; then (Y,X, (, ),̌ R0 ↔ R0) is a root system. Its Weyl
group W0 is the subgroup of W generated by the reflections with respect to roots
in R0. The obvious W0-action on R leaves stable each of the subsets Rj , j ∈ Z/m.

Let eW0
=

∑
w∈W0

v2|w| where w → |w| is the length function on W0 for a
Coxeter group structure on W0 determined by any choice of simple roots for R0.
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Let S be the collection of affine hyperplanes

{{y ∈ Y; (y, α) = N};N ∈ Z, α ∈ RN̄}.
Let

Y′ = Y −
⋃
H∈S

H = Y −
⋃

j∈Z/m,α∈Rj

{y ∈ Y; (y, α) ∈ j̃}.

The facets determined by S are called m-facets. They can be described as follows.
For y1, y2 in Y we write y1 ∼m y2 if for any j ∈ Z/m, any α ∈ Rj , and any N ∈ j̃

we have (y1, α) ≥ N ⇔ (y2, α) ≥ N . If y1 ∼m y2 and j ∈ Z/m, α ∈ Rj , N ∈ j̃, then
(y1, α) > N ⇔ (y2, α) > N . (Indeed, assume that (y1, α) > N, (y2, α) �> N . We
must have (y2, α) = N . We have −α ∈ R−j , (y2,−α) = −N hence (y1,−α) ≥ −N
and (y1, α) ≤ N , contradicting (y1, α) > N .) We deduce that, if y1 ∼m y2 and

j ∈ Z/m, α ∈ Rj , N ∈ j̃, then (y1, α) = N ⇔ (y2, α) = N . Now ∼m is an
equivalence relation; the equivalence classes are the m-facets.

An m-facet is said to be an m-alcove if it is contained in Y′. Let Y′ be the set
of m-alcoves.

For y, y′ in Y′ we define

τ (y, y′) = τ (y′, y)

= 	{α ∈ R1; ((y, α)− 1)((y′, α)− 1) < 0} − 	{α ∈ R0; (y, α)(y
′, α) < 0} ∈ Z,

(y : y′) = eW0

∑
w∈W0

vτ(y,w(y′)) ∈ A.

Let V′ = V′
R be the Q(v)-vector space with basis {Iγ ; γ ∈ Y′}.1 We define a Q(v)-

bilinear form (:) : V′ ×V′ → Q(v) by (Iγ : Iγ′) = (y : y′) where γ ∈ Y′, γ′ ∈ Y′,
y ∈ γ, y′ ∈ γ′; this is independent of the choice of y, y′. This form is symmetric
since τ (y, w(y′)) = τ (y′, w−1(y)) for w ∈ W0, y ∈ Y′, y′ ∈ Y′. Let R = {ξ ∈
V′; (ξ : V′) = 0}, V = VR = V′/R; now (:) induces a nondegenerate symmetric
bilinear form V ×V → Q(v) denoted again by (:).

For γ ∈ Y′, the image in V of Iγ ∈ V′ is denoted again by Iγ . One can show
(see 8.1):

(a) There is a unique semilinear map β : V → V such that β(Iγ) = Iγ for any
γ ∈ Y′.

1.3. For any m-facet ρ and any N ∈ Z we set R(ρ)N = {α ∈ RN̄ ; (y, α) = N}
where y ∈ ρ; this is independent of the choice of y. We set

R(ρ) =
⊔
N∈Z

R(ρ)N =
⋃

j∈Z/m

{α ∈ Rj ; (y, α) ∈ j̃}

where y ∈ ρ. Let Ř(ρ) be the image of R(ρ) under Ř ↔ R. Then (Y,X, (, ),̌ R(ρ) ↔
R(ρ)) is a root system with a Z-grading (in the sense of B.2) R(ρ)∗ = (R(ρ)N )N∈Z.
As in B.2, there is a unique element yR(ρ)∗ ∈ 〈̌R(ρ)〉 ⊂ Y such that for any N ∈ Z,
α ∈ RN (ρ), we have (yR(ρ)∗ , α) = N . We say that ρ is rigid if yR(ρ)∗ ∈ ρ and if
R(ρ)∗ is rigid in the sense of B.7. Let Y• be the set of rigid m-facets. Now the
obvious W0-action on the set of m-facets preserves the set Y•. Let Y• be the set

of W0-orbits on Y•.

1In §3, the elements Iγ are interpreted as spiral inductions.
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1.4. We now return to a general m-facet ρ. Let

Y′(ρ) = {y′ ∈ Y; (y′, α) �= 0 ∀α ∈ R(ρ)}.

OnY′(ρ) we have an equivalence relation where y1, y2 are equivalent if (y1, α)(y2, α)
> 0 for any α ∈ R(ρ); let Y′(ρ) be the set of equivalence classes, that is, the set of

∞-alcoves of (Y,X, (, ),̌ R(ρ) ↔ R(ρ)) (as in B.1). We define a map fρ : Y′(ρ) → Y′

as follows. Let y ∈ ρ and let r ∈ Z>0 be such that (y, α) ∈ (1/r)Z for any α ∈ R.
Let γ ∈ Y′(ρ) and let y1 ∈ γ. We can assume that −1 < (y1, α) < 1 for any α ∈ R.
We show:

(a) y + r−1y1 ∈ Y′.

Assume that j ∈ Z/m, α ∈ Rj and (y+ r−1y1, α) ∈ j̃. Since (y, α) ∈ (1/r)Z, we
have (r−1y1, α) = (y + r−1y1, α) − (y, α) ∈ (1/r)Z. Combining this with −1/r <

(r−1y1, α) < 1/r, we see that (r−1y1, α) = 0 hence (y1, α) = 0 and (y, α) ∈ j̃. But

(y1, α) = 0 implies α /∈ R(ρ) hence (y, α) /∈ j̃. This is a contradiction; (a) is proved.
Now let y′ ∈ ρ and let r′ ∈ Z>0 be such that (y′, α) ∈ (1/r′)Z for any α ∈ R; let

y′1 ∈ γ be such that −1 < (y′1, α) < 1 for any α ∈ R. By (a) we have y′+(r′)−1y1 ∈
Y′. We show:

(b) y + r−1y1 ∼m y′ + (r′)−1y′1.
Assume that for some N ∈ Z and some α ∈ RN̄ ,

(y + r−1y1, α)−N, (y′ + (r′)−1y′1, α)−N

have different signs. If α ∈ R(ρ), then (y, α) = M , (y′, α) = M ′ for some M ∈
N +mZ, M ′ ∈ N +mZ; since y ∼m y′, we have M = M ′, so that

M −N + (r−1y1, α),M −N + ((r′)−1y′1, α)

have different signs; since

−1/r < (r−1y1, α) < 1/r,−1/r′ < ((r′)−1y′1, α) < 1/r′,

it follows that M = N and that (r−1y1, α), ((r
′)−1y′1, α) have different signs and

(y1, α), (y
′
1, α) have different signs, contradicting that y1 ∈ γ, y′1 ∈ γ.

If α /∈ R(ρ), then (y, α) ∈ (1/r)Z, (y, α) /∈ N + mZ hence |(y, α) − N | ≥
1/r; since −1/r < (r−1y1, α) < 1/r, we see that (y, α) − N has the same sign as
(y+r−1y1, α)−N . Similarly (y′, α)−N has the same sign as (y′+(r′)−1y′1, α)−N .
Thus, (y, α) − N , (y′, α) − N have different signs. This contradicts the fact that
y ∼m y′ and proves (b).

We see that γ �→ y + r−1y1 induces a well defined map

fρ : Y′(ρ) → Y′.

1.5. Let ρ be an m-facet. Let V′
R(ρ),VR(ρ), (:) be the analogues of V

′,V, (:) in B.3

when R∗ is replaced by the Z-graded root system R(ρ)∗. We define a Q(v)-linear
map V′

R(ρ) → V′ by sending the basis element indexed by γ ∈ Y′(ρ) to Ifρ(γ). One

can show (see 8.3):
(a) this maps the radical of (:) on V′

R(ρ) into the radical of (:) on V′ hence it

induces a linear map VR(ρ) → V denoted again by fρ.
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1.6. We now assume that ρ is a rigid m-facet. Let 1Z(ρ)R(ρ) be the PBW basis of
VR(ρ) defined as in B.6 in terms of R(ρ)∗ with δ = 1. Let

[0]ρ = {y ∈ Y; (y, α) = 0 ∀α ∈ R(ρ)}.

Then the subset 1Z(ρ)
[0]ρ
R(ρ) of 1Z(ρ)R(ρ) defined as in B.6 is nonempty. Let Zρ =

Zρ
R = fρ(

1Z(ρ)
[0]ρ
R(ρ)) ⊂ V; it depends only on the W0-orbit (ρ) of ρ; we shall write

Z(ρ) = Z
(ρ)
R instead of Zρ

R. One can show (see 8.3):

(a) fρ is a bijection 1Z(ρ)
[0]ρ
R(ρ)

∼−→ Z
(ρ)
R .

(b) The union Z = ZR :=
⋃

ω∈Y• Zω
R is disjoint.

(c) ZR is a basis of the vector space V (called a PBW basis). Let L be the
Z[v]-submodule of V generated by ZR.

(d) For each ξ ∈ ZR there is a unique element ξ ∈ L such that ξ − ξ ∈ vL and
β(ξ) = ξ.

(e) The map ξ �→ ξ is a bijection of ZR onto a Z[v]-basis B = BR of L which
is also a Q(v)-basis of V called the canonical basis of V. Under this bijection,
the subset Zω

R of ZR (where ω ∈ Y•) corresponds to a subset Bω of B; we have

B =
⊔

ω∈Y• Bω.

Let ω ∈ Y•. We set

d(ω) = 	{α ∈ R0; (y
′, α) < 0}+ 	{α ∈ R1; (y

′, α) ≥ 1}
where ρ ∈ ω and y′ ∈ ρ. One can show (see 8.3):

(f) For any ξ ∈ Zω
R, ξ − ξ is a linear combination with coefficients in vZ[v] of

elements ξ′ ∈ Zω′
where ω′ ∈ Y• satisfies d(ω′) < d(ω).

(g) Let ξ ∈ Zω, ξ′ ∈ Zω′
with ω, ω′ in Y•. If ξ = ξ′, then (ξ : ξ′) ∈ 1 + vZ[v]. If

ξ �= ξ′, then (ξ : ξ′) ∈ vZ[v]. Moreover, if ω �= ω′, then (ξ : ξ′) = 0.
(h) For η ∈ B we have (η : η) ∈ 1+vZ[v]. For η �= η′ inB we have (η : η′) ∈ vZ[v].

1.7. Until the end of 1.12 we assume that m = 1. In this case we have Z/m = {0}
and R = R0, W = W0. We now have

Y′ = Y −
⋃
α∈R

{y ∈ Y; (y, α) ∈ Z}.

For y1, y2 in Y we have y1 ∼1 y2 if for any α ∈ R and any N ∈ Z we have
(y1, α) ≥ N ⇔ (y2, α) ≥ N . For y, y′ in Y′ we have

τ (y, y′) = τ (y′, y)

= 	{α ∈ R; ((y, α)− 1)((y′, α)− 1) < 0} − 	{α ∈ R; (y, α)(y′, α) < 0} ∈ Z,

(y : y′) = eW
∑
w∈W

vτ(y,w(y′)) ∈ A.

For any 1-facet ρ and any N ∈ Z we have R(ρ)N = {a ∈ R; (y, α) = N} where
y ∈ ρ. We have

R(ρ) =
⊔
N∈Z

RN (ρ) = {α ∈ R; (y, α) ∈ Z}

where y ∈ ρ. In this case, for ω ∈ Y• we have

d(ω) = 	{α ∈ R; (y, α) < 0}+ 	{α ∈ R; (y, α) ≥ 1}
where ρ ∈ ω and y ∈ ρ.
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1.8. Examples. Recall that m = 1.
Assume first that Y = X = Q, (, ) is given by the product in Q, R = {−1, 1},

Ř = {−2, 2}. The 1-alcoves are the subsets {x ∈ Q;n < x < n + 1} for various
n ∈ Z. Let c = {x ∈ Q;x < −1} ∪ {x ∈ Q;x > 1}, c0 = {x ∈ Q;−1 < x < 1}. For
two 1-alcoves γ, γ′ we have in V:

(Iγ : Iγ′) = (1 + v2)(1 + v−2) if γ ⊂ c0, γ′ ⊂ c0,
(Iγ : Iγ′) = (1 + v2)(v−1 + v) if γ ⊂ c0, γ′ ⊂ c,
(Iγ : Iγ′) = 2(1 + v2) if γ ⊂ c, γ′ ⊂ c.
The canonical basis of V is {A,B−A} where A = 1

v+v−1 Iγ with γ ⊂ c0, B = Iγ
with γ ⊂ c. We have (A : A) = 1, (B − A : B − A) = 1, (A : B − A) = v2. The
PBW basis is {A,−v2A+ (B −A)}.

Next we assume that Y has basis α̌1 ,̌ α2, X has basis α1, α2, (, ) is given by
(̌αi, αi) = 2 for i = 1, 2, (̌αi, αj) = −1 if i �= j; Ř consists of ±̌α1, ±̌α2,±(̌α1 + α̌2);
R consists of ±α1,±α2,±(α1 + α2). Let γ0, γ1, γ2 be the 1-alcoves containing
(̌α1 + α̌2)/3, 2(̌α1 + α̌2)/3, 4(̌α1 + α̌2)/3, respectively. Then {Iγk

; k = 0, 1, 2}
is a Q(v)-basis of V. We have (Iγ0

: Iγ0
) = v−6e2W , (Iγ0

: Iγ1
) = v−5e2W , (Iγ0

:
Iγ2

) = v−3e2W , (Iγ1
: Iγ1

) = (v−4 + 2v−2 + 3)eW , (Iγ1
: Iγ2

) = (v−2 + 4 + v2)eW ,
(Iγ2

: Iγ2
) = 6eW . The canonical basis {b0, b1, b2} of V satisfies I0 = (eW v−3)b0,

I1 = b1 + (v−1 + v)2b0, I2 = b2 + 2b1 + b0. The PBW basis z0, z1, z2 of V satisfies
b0 = z0, b1 = z1 + (v4 + v2)z0, b2 = z2 + v2z1 + v6z0.

1.9. Recall that m = 1. Let ρ be an ∞-facet (as in B.1). Let R′ = {α ∈ R; (y′, α) =
0} where y′ ∈ ρ. Let Ř′ be the image of R′ under Ř ↔ R. Then (Y,X, (, ),̌ R′ ↔ R′)
is a root system. Let W ′ be the Weyl group of R′, viewed as a subgroup of W . Let
e be a subset of W such that W = W ′e, 	e = 	W/	W ′. For ε ∈ e we set

(a) f ′
ε = −

∑
α∈R;(y′,α) �=0,(ε(y′),α)<0 or (ε(y′),α)>1

sgn(y′, α).

For any 1-alcove γ relative to R and any ε ∈ e, ε(γ) is contained in a unique 1-alcove

ε̃(γ) relative to R′. We define VR′ in terms of R′ in the same way as V was defined
in terms of R.

For any 1-alcove γ′ relative to R′ we define Iγ′ ∈ VR′ in the same way as Iγ ∈ V
was defined in terms of R. One can show (see 8.3):

(b) There is a uniqueQ(v)-linear map Resρ : V → VR′ such that for any 1-alcove
γ relative to R we have

Resρ(Iγ) =
∑
ε∈e

vf
′
εI

˜ε(γ)
.

1.10. We preserve the setup of 1.9. Let ZR′ (resp., BR′) be the PBW basis (resp.,
canonical basis) of VR′ (with m = 1). Let LR′ be the Z[v]-submodule of VR′

spanned by ZR′ . One can show (see 8.3):
(a) Let ξ ∈ Z. We have Resρ(ξ) =

∑
ξ′∈ZR′ cξ′,ξξ

′ mod vLR′ where cξ′,ξ ∈ Z.

From (a) and 1.6(d),(e) we deduce:
(b) Let η ∈ B. We have Resρ(η) =

∑
η′∈BR′ cη′,ηη

′ mod vLR′ where cη′,η ∈ Z.

1.11. Recall that m = 1. Note that for ω ∈ Y• we have d(ω) ≤ 	(R). One can

show (see 8.3):
(a) There is a unique ω0 ∈ Y• such that d(ω0) = 	(R); moreover, Bω0 consists

of a single element η0.
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1.12. Recall that m = 1. Let Ŵ be the set of isomorphism classes of irreducible
representations of W (over Q).

For any E ∈ Ŵ we denote by bE the smallest integer n such that E appears in
the nth symmetric power of the reflection representation of W . One can show (see
8.3):

(a) There is a unique bijection B
∼−→ Ŵ , η �→ Eη such that (i), (ii), (iii) below

hold.
(i) If R = ∅, then B

∼−→ Ŵ is the unique bijection between two sets with one
element.

(ii) If ρ,R′,W ′ are as in 1.9 and R′ �= R, then for any η ∈ B, η′ ∈ BR′ , the integer
cη′,η in 1.10(b) is equal to the multiplicity of Eη′ in Eη|W ′ . (Here we assume that

the bijection BR′
∼−→ Ŵ ′, η′ �→ Eη′ is already established for R′ instead of R when

R′ �= R.)
(iii) For any η ∈ B we have (η : η0) = cv2b mod v2b+2Z[v2] where b = bEη

and
c ∈ Z>0.

For any ω ∈ Y• we denote by Ŵω the subset of Ŵ corresponding under (a) to
the subset Bω of B. From (a) we deduce:

(b) We have Ŵ =
⊔

ω∈Y• Ŵω and for any ω ∈ Y•, η �→ Eη in (a) restricts to a

bijection Bω ∼−→ Ŵω.

1.13. We now drop the assumption that m < ∞; in the case where m = ∞ we shall
use notation and results in Appendix B but we will omit the symbol δ which we
assume to be 1. Let ω ∈ Y•. Let ρ be an m-facet in ω. Then the (rigid) Z-graded

root system R(ρ)∗ and the element yR(ρ)∗ ∈ Y are defined.
Let W (ρ) be the Weyl group of R(ρ); we have W (ρ) ⊂ W . Let W (ρ)0 be the

subgroup of W (ρ) generated by reflections with respect to roots in R(ρ)0; this is
equal to the stabilizer of ρ in W0.

We now disregard for a moment the Z-grading of R(ρ) and view R(ρ) with the
obvious 1-grading; then the 1-facets relative to R(ρ) are defined and we denote by
ρ̃ the 1-facet relative to R(ρ) that contains yR(ρ)∗ . Note that ρ̃ is 1-rigid. Let (ρ̃)
be the W (ρ)0-orbit of ρ̃.

We set Ŵ [ω] = Ŵ (ρ)
(ρ̃)

. This is well defined (independent of the choice of ρ).
We now consider the bijections

Bω ↔ Zω
R

f−1
ρ−−→ 1Z(ρ)

[0]ρ
R(ρ)

fρ̃−→ Z
(ρ̃)
R(ρ) ↔ B

(ρ̃)
R(ρ) ↔ Ŵ (ρ)

(ρ̃)

where:
the first bijection is as in 1.6(e) (for ρ, m < ∞) or as in B.6(c) (for ρ, m = ∞);
the second bijection is as in 1.6(a) (for ρ, m < ∞) or as in B.6(c) (for ρ, m = ∞);
the third bijection is as in 1.6(a) (for ρ̃, m = 1);
the fourth bijection is as in 1.6(e) (for ρ̃, m = 1);
the fifth bijection is as in 1.12(b) with R replaced by R(ρ).

The composition of these bijections is a bijection Bω ↔ Ŵ (ρ)
(ρ̃)

. This can be
viewed as a canonical bijection

(a) Bω ↔ Ŵ [ω].
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Taking disjoint union over all ω we obtain a bijection

(b) B ↔
⊔

ω∈Y•

Ŵ [ω].

2. Weyl group representations

2.1. Let W be a Weyl group (not necessarily the one in 1.1); we denote by S a set

of simple reflections for W . Let Ŵ be the set of isomorphism classes of irreducible
representations (over Q) of W . For any E ∈ Ŵ let bE be as in 1.12. For any J ⊂ S
let WJ be the subgroup of W generated by J .

Proposition 2.2. Let E,E′ in Ŵ be such that (i), (ii) below hold.
(i) bE = bE′ ;
(ii) for any J � S, the restrictions E|WJ

, E′|WJ
are isomorphic.

Then E = E′.

Assume first that W = W 1 × W 2, S = S1 � S2 where (W 1, S1), (W 2, S2) are
Weyl groups such that S1 �= ∅, S2 �= ∅ and that the result is known when (W,S)
is replaced by (W 1, S1) or by (W 2, S2). We can write E = E1 � E2, E′ = E′1 �
E′2 with E1, E′1 in Ŵ 1 and E2, E′2 in Ŵ 2. Taking in (ii) J = S1 we see that

(E1)⊕ dimE2 ∼= (E′1)⊕ dimE′2
as W 1-modules, hence E1 ∼= E′1 as W 1-modules.

Similarly, E2 ∼= E′2 as W 2-modules. It follows that E = E′. Thus we are reduced
to the case where W is an irreducible Weyl group, hence |S| ≥ 1, which we assume
in the remainder of the proof.

For any n ∈ N let Pn be the set of sequences [λ1 ≥ λ2 ≥ . . . ] of integers ≥ 0 with
λk = 0 for large k and with

∑
k λk = n. Let (Pn) be the group of formal Z-linear

combinations of elements in Pn; let νn : (Pn) → Z be the function given by the sum
of coefficients of an element in (Pn). When n ≥ 1 we define fn : Pn → (Pn−1) by

[λ1 ≥ λ2 ≥ . . . ] �→
∑

i≥1;λi>λi+1

[λ1 ≥ λ2 ≥ · · · ≥ λi−1 ≥ λi − 1 ≥ λi+1 ≥ . . . ].

For n = 0 we define (P−1) = 0 and f0 to be the 0-map. For n ≥ 1 let BPn =⊔
n′,n′′∈N;n′+n′′=n Pn′ × Pn′′ . Let (BPn) be the group of formal Z-linear combina-

tions of elements in BPn; we identify (BPn) =
⊕

n′,n′′∈N;n′+n′′=n(Pn′)⊗ (Pn′′) in

an obvious way. When n ≥ 2 we define fn : BPn → (BPn−1) by

(λ′, λ′′) �→ fn′(λ′)⊗ λ′′ + λ′ ⊗ fn′′(λ′′)

where (λ′, λ′′) ∈ Pn′ × Pn′′ .
Let σ : BPn → BPn be the involution (λ′, λ′′) �→ (λ′′, λ′). This induces an

involution of (BPn) denoted again by σ.

If W is of type A1, then Ŵ consists of two objects, one with b = 0 and one with
b = 1; hence in this case the desired statement follows from the assumption (i).

Next we assume that W is of type An−1 with n ≥ 3. We show that in this
case the desired statement follows from assumption (ii) where J is such that WJ

has type An−2. We identify Ŵ with Pn in the standard way; in particular, E,E′

correspond to [λ1 ≥ λ2 ≥ . . . ], [λ′
1 ≥ λ′

2 ≥ . . . ] in Pn and from (ii) with J as above
we have fn([λ1 ≥ λ2 ≥ . . . ]) = fn([λ

′
1 ≥ λ′

2 ≥ . . . ]) in (Pn−1). It is enough to show
that [λ1 ≥ λ2 ≥ . . . ] can be recovered from fn([λ1 ≥ λ2 ≥ . . . ]). Let

c = νn−1(fn([λ1 ≥ λ2 ≥ . . . ])).
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Now fn([λ1 ≥ λ2 ≥ . . . ]) is a sum of terms [μ1 ≥ μ2 ≥ . . . ] where for any i, μi is
either λi or λi − 1. If c ≥ 2, then λi is the maximum of all μi for the various terms
as above. If c = 1, then

[λ1 ≥ λ2 ≥ . . . ] = [a, a, . . . , a, 0, . . . ]

for some a > 0 and

[μ1 ≥ μ2 ≥ . . . ] = [a, a, . . . , a, a− 1, 0, . . . ]

(a sequence with k ≥ 1 nonzero terms); if this sequence contains some entry ≥ 2,
then λi = μi for i �= k and λi = μi + 1 for i = k; if this sequence contains only
entries 1 and 0, then k ≥ 2 (since n ≥ 3) and λi = μi for i �= k+ 1 and λi = μi + 1
for i = k+ 1. This proves our claim and completes the proof of the proposition for
type A.

Now we assume that W is of type B2. In this case the desired statement follows
easily from assumption (ii) (we must use both J with 	(J) = 1).

Next we assume thatW is of type Bn or Cn with n ≥ 3. We show that in this case
the desired statement follows from assumption (ii) where J is such thatWJ has type

Bn−1 or Cn−1. The proof borrows some arguments of Shoji [Sh1]. We identify Ŵ
with BPn in the standard way; in particular, E corresponds to (λ′, λ′′) ∈ Pn′ ×Pn′′

and E′ corresponds to (μ′, μ′′) ∈ Pk′ ×Pk′′ where n′+n′′ = k′+k′′ = n. Then from
(ii) with J as above we have (as in [Sh1]) fn(λ

′, λ′′) = fn(μ
′, μ′′). If n′, n′′ are both

�= 0, it follows immediately that n′ = k′, n′′ = k′′, and λ′ = μ′, λ′′ = μ′′. If n′ = 0,
then we have k′ = 0, n′′ = k′′ = n, and fn(λ

′′) = fn(μ
′′); using the argument in

the proof for type A we deduce that λ′′ = μ′′ hence (λ′, λ′′) = (μ′, μ′′). Similarly,
if n′′ = 0 we have (λ′, λ′′) = (μ′, μ′′). This completes the proof of the proposition
for type B,C.

Next we assume that W is of type Dn with n ≥ 4. We can regard W as a
subgroup of index 2 in a Weyl group W of type Bn with set S of simple reflections.
More precisely, we can find s �= s′ in S such that ss′ has order 4,

S = {s1 ∈ S; s1 �= s′} � {s′ss′}.
Let J ⊂ S be such that the subgroup W J generated by J is a Weyl group of type

Bn−1. Let J ⊂ S be such that s ∈ J , s′ss′ ∈ J and WJ has type Dn−1. Note that
WJ has index 2 in W J .

Let E1 ∈ Ŵ , E′
1 ∈ Ŵ be such that E (resp., E′) is contained in the restriction

of E1 (resp., E′
1) to W . Then E1 (resp., E′

1) corresponds as above to an element
(λ′, λ′′) (resp., (μ′, μ′′)) of BPn. We have λ′ ∈ Pn′ , λ′′ ∈ Pn′′ , μ′ ∈ Pk′ , μ′′ ∈ Pk′′

where n′ + n′′ = k′ + k′′ = n. Let E2 ∈ Ŵ , E′
2 ∈ Ŵ be such that E2 (resp., E′

2)
corresponds as above to (λ′′, λ′) (resp., (μ′′, μ′)).

Assume first that λ′ �= λ′′, μ′ �= μ′′. Then E = E1|W , E′ = E′
1|W . We have

ind
WJ

WJ
(E|WJ

) = (E1 ⊕ E2)|WJ
, ind

WJ

WJ
(E′|WJ

) = (E′
1 ⊕ E′

2)|WJ
.

Since E|WJ
∼= E′|WJ

, we have

(E1 ⊕ E2)|WJ

∼= (E′
1 ⊕ E′

2)|WJ
,

hence
fn(λ

′, λ′′) + fn(λ
′′, λ′) = fn(μ

′, μ′′) + fn(μ
′′, μ′).

If n′, n′′ are both �= 0, it follows immediately that either n′ = k′, n′′ = k′′, λ′ = μ′,
λ′′ = μ′′ or n′ = k′′, n′′ = k′, λ′ = μ′′, λ′′ = μ′; in both cases we have E = E′.
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If n′ = 0, then we have either k′ = 0, n′′ = k′′ = n, fn(λ
′′) = fn(μ

′′) (hence
λ′′ = μ′′) or k′′ = 0, k′ = n′ = n, fn(μ

′) = fn(λ
′) (hence μ′ = λ′); thus we have

E = E′. Similarly, if n′′ = 0 we have E = E′.
Next we assume that λ �= λ̃, λ′ = λ̃′ hence E′

1 = E′
2. In this case we have

ind
W
W (E′) = E′

1. We have

ind
WJ

WJ
(E|WJ

) = (E1 ⊕ E2)|WJ
, ind

WJ

WJ
(E′|WJ

) = E′
1|WJ

.

Since E|WJ
∼= E′|WJ

, we have

(E1 ⊕ E2)|WJ

∼= E′
1|WJ

,

hence

fn(λ, λ̃) + fn(λ̃, λ) = fn(λ
′, λ′).

This is impossible. Similarly if λ = λ̃, λ′ �= λ̃′ we have a contradiction.
We now assume that λ = λ̃, λ′ = λ̃′ hence E1 = E2, E

′
1 = E′

2. We have

ind
WJ

WJ
(E|WJ

) = E1|WJ
, ind

WJ

WJ
(E′|WJ

) = E′
1|WJ

.

Since E|WJ
∼= E′|WJ

, we have E1|WJ

∼= E′
1|WJ

, hence

fn(λ, λ) = fn(λ
′, λ′).

It follows that n′ = n′′ = k′ = k′′ = n/2, λ = λ′. Hence E1 = E′
1. Now E1|W splits

as a direct sum of two nonisomorphic irreducible W -modules E , E ′; E is isomorphic
to E or to E ′; similarly E′ is isomorphic to E or to E ′. Assume that E �= E′; then
{E,E′} = {E , E ′}. Let J1 = S−{s}; then WJ1

has type An−1. We can find J2 ⊂ J1
such that E|WJ2

contains the sign representation of WJ2
but E ′|WJ2

does not contain

the sign representation of WJ2
. (This can be deduced from [L3, (4.6.2)].) If E �= E′,

then it follows that E|WJ2
�∼= E ′|WJ2

hence E|WJ2
�∼= E′|WJ2

; this contradicts the

assumption (ii). We see that E = E′. This completes the proof of the proposition
for type D.

We now assume that W is of type G2. Note that dimE = dimE′. A one
dimensional representation of W is determined by its restrictions to the two WJ

with 	(J) = 1. Thus if E,E′ are one dimensional, then E = E′ follows from the
assumption (ii). If E,E′ are two dimensional and nonisomorphic, then their b-
function is 1 for one of them and 2 for the other, contradicting the assumption (i).
This completes the proof of the proposition for type G2.

In the remaining cases we shall use the induction/restriction tables of Alvis [A].
Assume that W is of type F4. From the tables in [A] we see that E is determined

by its restriction to WJ of type C3 or B3. Hence using assumption (ii) we must
have E = E′. This completes the proof of the proposition for type F4.

We now assume that W is of type E6. From the tables in [A] we see that E is
determined by its restriction to WJ of type A5. Hence using assumption (ii) we
must have E = E′. This completes the proof of the proposition for type E6.

We now assume that W is of type E7. From the tables in [A] we see that E is
determined by its restriction to WJ of type E6 except when dimE = 512. Hence
using the assumption (ii) we must have E = E′ provided that E,E′ have dimension
�= 512. Assume now that E,E′ have dimension 512 and are nonisomorphic. Then
their b-function is 11 for one of them and 12 for the other, contradicting assumption
(i). This completes the proof of the proposition for type E7.
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We now assume that W is of type E8. From the tables in [A] we see that E is
determined by its restriction to WJ of type E7. Hence using assumption (ii) we
must have E = E′. This completes the proof of the proposition for type E8. The
proposition is proved.

3. Cyclically graded Lie algebras

3.1. In the rest of this paper we assume that k is an algebraic closure of the finite
prime field Fp with p elements where p is a large prime number. For any q, a power
of p, we denote by Fq the subfield of k with 	(Fq) = q.

If X is an algebraic variety and K ∈ D(X), n ∈ Z we write (as in [L9, 3.1])
K[[n/2]] instead of K[n]⊗ Q̄l(n/2).

Let Y = Hom(k∗, T ), X = Hom(T,k∗) viewed as abelian groups with operation
written as addition; let (, ) : Y ×X → Z be the obvious pairing. This extends to
a perfect bilinear pairing (, ) : Y × X → Q where Y = Q ⊗ Y , X = Q ⊗ X are
viewed as Q-vector spaces. Let R ⊂ X (resp., Ř ⊂ Y ) be the set of roots (resp.,
coroots) of G with respect to T and let Ř ↔ R be the standard bijection. Then

(Y,X, (, ),̌ R ↔ R) is a root system as in 1.1(a). Let R̃ = R ∪ {0}. For any α ∈ X
we set gα = {x ∈ g; Ad(t)x = α(t)x ∀t ∈ T}; we have g0 = t, dim gα = 1 if α ∈ R,

gα = 0 if α /∈ R̃, g =
⊕

α∈R̃ gα.
Let NGT be the normalizer of T in G. Let W = NGT/T be the Weyl group; it

can be identified with W in 1.1. For any w ∈ W we denote by ẇ a representative
of w in NGT .

3.2. We assume that
(i) if m = ∞, we are given a Z-grading R∗ = (RN )N∈Z of R as in B.2;
(ii) if m < ∞, we are given a Z/m-grading (Rj)j∈Z/m of R as in 1.2.

If m = ∞ we set R̃0 = R0 ∪ {0} and R̃N = RN if N �= 0. For N ∈ Z we set
gN =

⊕
α∈R̃N

gα. Then g =
⊕

N∈Z gN is a Z-grading of g. If m < ∞, we set

R̃0 = R0 ∪ {0}, R̃j = Rj if j ∈ Z/m − {0}. For j ∈ Z/m we set gj =
⊕

α∈R̃j
gα.

Then g =
⊕

j∈Z/m gj is a Z/m-grading of g.

Form ≤ ∞ we have g0 = LG0 where G0 is a closed connected reductive subgroup
of G. If m = ∞ we have Ad(g)gN = gN for g ∈ G0, N ∈ Z. If m < ∞ we have
Ad(g)gj = gj for g ∈ G0, j ∈ Z/m.

The m-facets and m-alcoves in Y are defined as in B.1 (when m = ∞) and 1.2
(when m < ∞).

3.3. We assume that we are given q0 ∈ {p, p2, . . . } and a rational Fq0-structure on
G with Frobenius map F0 : G → G such that T is defined and split over Fq0 and
F0(ẇ) = ẇ for any w ∈ W ; then G0, g

nil
1 inherit Fq0-structures with Frobenius

map F0. We shall assume, as we may, that each G0-orbit O in gnil1 is F0-stable and
for each (O, E) ∈ I (see 0.2), we are given an isomorphism F ∗

0 E ∼= E which makes
E pure of weight 0. Various other varieties associated to G will be considered with
the induced Fq0-structure.

Let ρ be an m-facet in Y. If m = ∞, for N ∈ Z we set pρN =
⊕

α∈R̃N ;(y,α)≥0 g
α

where y ∈ ρ, so that
⊕

N p
ρ
N is a parabolic subalgebra of g, and p

ρ
0 = LP ρ where
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P ρ is a parabolic subgroup of G0 containing T ; for N ∈ Z we set

u
ρ
N =

⊕
α∈R̃N ;(y,α)>0

g
α.

We have p
ρ
1 ⊂ gnil1 .

If m < ∞, for N ∈ Z we set p
ρ
N =

⊕
α∈R̃N̄ ;(y,α)≥N gα where y ∈ ρ, so that

(pρN )N∈Z is a spiral (see [LY1, 2.5]), and p
ρ
0 = LP ρ where P ρ is a parabolic subgroup

of G0 containing T ; for N ∈ Z we set

u
ρ
N =

⊕
α∈R̃N̄ ;(y,α)>N

gα, l
ρ
N =

⊕
α∈R̃N̄ ;(y,α)=N

gα

so that p
ρ
N = u

ρ
N

⊕
l
ρ
N for all N and lρ :=

⊕
N l

ρ
N = LLρ, lρ0 = LLρ

0 where Lρ, Lρ
0

are connected reductive subgroups of G containing T . For N ∈ Z let πρ
N : pρN → l

ρ
N

be the linear map which is 1 on l
ρ
N and is 0 on u

ρ
N . We have p

ρ
1 ⊂ gnil1 .

For m ≤ ∞ we have Ad(g)pρ1 = p
ρ
1 for any g ∈ P ρ. We have a diagram

(a) l
ρ
1

c←− E′ b−→ E′′ a−→ gnil1 ,

where

E′ = {(g, z) ∈ G0 × g1; Ad(g−1)z ∈ p
ρ
1},

E′′ = {(gP ρ, z) ∈ G0/P
ρ × g1; Ad(g−1)z ∈ p

ρ
1},

c(g, z) = πρ
1(Ad(g−1)z), b(g, z) = (gP ρ, z), a(gP ρ, z) = z.

We now assume that ρ is an m-alcove. Then P ρ is a Borel subgroup of G0 and
E′′ is smooth, connected of dimension

dimG0 − dim p
ρ
0 + dim p

ρ
1 = dim u

ρ
0 + dim u

ρ
1.

We set

Kρ = a!Q̄l ∈ D(gnil1 ), K̃ρ = Kρ[[(dim u
ρ
0 + dim u

ρ
1)/2]] ∈ D(gnil1 ).

Since a is proper, the decomposition theorem [BBD] shows that K̃ρ is a direct sum
of shifts of simple perverse sheaves of the form E�[[dimO/2]] for various (O, E) ∈ I.
Let I0 = I0(g1) be the set of all (O, E) ∈ I such that some shift of E� is a direct

summand of K̃ρ for some m-alcove ρ.
For (O, E) ∈ I0, (Õ, Ẽ) ∈ I0 we write (Õ, Ẽ) < (O, E) if dim Õ < dimO; we

write (Õ, Ẽ) ≤ (O, E) if either (Õ, Ẽ) < (O, E) or (Õ, Ẽ) = (O, E). Note that ≤ is a
partial order on I0.

Let D0 = D0(g
nil
1 ) be the subcategory of D(gnil1 ) consisting of complexes M such

that for any j, any composition factor of pHj(M) is isomorphic to E�[[dimO/2]]
for some (O, E) ∈ I0. Let K0 = K0(g1) be the free A-module with basis

{tO, E ; (O, E) ∈ I0}.
If M ∈ D0 has a given mixed structure relative to the Fq0-structure of gnil1 , we set

gr(M)

=
∑

(O,E)∈I0,j∈Z,h∈Z

(−1)j(mult. of E�[[dimO/2]] in pHj(M)h)v
−htO, E ∈ K0.

Here the subscript h denotes the subquotient of pure weight h of a mixed perverse
sheaf.
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If γ is an m-alcove, then (by Deligne’s theorem) K̃γ is a pure complex of weight
0 (with the mixed structure induced by the obvious mixed structure on Q̄l which
is pure of weight 0). We set

Iγ = gr(K̃γ)

=
∑

(O,E)∈I0,j∈Z

(mult. of E�[[dimO/2]] in pHj(K̃γ))v−jtO, E ∈ K0.

3.4. For (O, E), (Õ, Ẽ) in I we define PÕ,Ẽ;O,E ∈ N[v−1] as in 0.2. From [LY2,

13.7(c)] we have

(a) (O, E) ∈ I0, PÕ,Ẽ;O,E �= 0 =⇒ (Õ, Ẽ) ∈ I0, (Õ, Ẽ) ≤ (O, E).

For (O, E) ∈ I0 we denote by E the extension of E to gnil1 by 0 on gnil1 − O. We
show:

(b) If (O, E) ∈ I0, then E ∈ D0.
We argue by induction on dimO. If dimO = 0, we have E = E� and the result

follows. Assume now that dimO > 0. We have a distinguished triangle (E , E�,M)
where M ∈ D(gnil1 ) is such that for any j ∈ Z, the support of Hj(M) is contained in
Ō −O. Moreover, from (a) it follows that for any G0-orbit O′ in Ō −O, Hj(M)|O′

is a local system with all composition factors of the form E ′ with (O′, E ′) ∈ I0.
Using the induction hypothesis, we see that Hj(M) ∈ D0. Since this holds for any
j, it follows that M ∈ D0. Using now the distinguished triangle above we deduce
that E ∈ D0. This proves (b).

We show:
(c) If M ∈ D0, then for any j ∈ Z and any G0-orbit O in gnil1 , any composition

factor of Hj(M)|O is of the form E with (O, E) ∈ I0.
We can assume that M = E ′� where (O′, E ′) ∈ I0. In this case the result follows

from (a).

3.5. For any (Õ, Ẽ) ∈ I0 we define an element sÕ,Ẽ ∈ K0 by the equations

(a) (−v)− dimOtO, E =
∑

(Õ,Ẽ)∈I0;(Õ,Ẽ)≤(O,E)

PÕ,Ẽ;O,EsÕ,Ẽ

for any (O, E) ∈ I0. (The definition is by induction on dim Õ using the fact that

PÕ,Ẽ;O,E = 1 if (Õ, Ẽ) = (O, E).) Note that

(b) {sO,E ; (O, E) ∈ I0} is an A-basis of K0.

If M ∈ D0 has a given mixed structure relative to the Fq0-structure of gnil1 , we set

gr′(M)

=
∑

(Õ,Ẽ)∈I0,j∈Z,h∈Z

(−1)j(mult. of Ẽ in the local system (Hj(M)|Õ)h)v−hsÕ,Ẽ ∈K0.

Here the subscript h denotes the subquotient of pure weight h of a mixed local
system on Õ. Note that gr′(M [[r/2]]) = (−v)rgr′(M) for r ∈ Z. We show:

(c) For M as above we have gr(M) = gr′(M).
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We can assume that M = E� with (O, E) ∈ I0 and M is viewed as a mixed
complex of pure weight 0. Using the purity result [LY2, 12.2], we see that

gr′(M) =
∑

(Õ,Ẽ)∈I0;(Õ,Ẽ)≤(O,E)

PÕ,Ẽ;O,EsÕ,Ẽ

that is, gr′(M) = (−v)− dimOtO, E = gr(M). This proves (c).

3.6. For any (O, E) ∈ I0 we set

s̃O,E = (−v)dimOsO,E .

Let i : O → gnil1 be the inclusion. Now i!E [[dimO/2]] is naturally a mixed
complex (since E is pure of weight 0) and from the definition we have s̃O,E =
gr′(i!E [[dimO/2]]). Hence

s̃O,E = gr(i!E [[dimO/2]]).

Note that

(a) {s̃O,E ; (O, E) ∈ I0} is an A-basis of K0.

From 3.5(a) we have

(b) tO, E =
∑

(Õ,Ẽ)∈I0;(Õ,Ẽ)≤(O,E)

(−v)dimO−dim ÕPÕ,Ẽ;O,E s̃Õ,Ẽ ,

where

(−v)dimO−dim ÕPÕ,Ẽ;O,E = 1 if (Õ, Ẽ) = (O, E),

(−v)dimO−dim ÕPÕ,Ẽ;O,E ∈ vZ[v] if (Õ, Ẽ) < (O, E)
(we use the definition of an intersection cohomology complex).

3.7. The following result can be deduced from [L8, 17.3] (for m = ∞) and from
[LY1, 8.4(a)] (for m < ∞):

(a) The elements Iγ , where γ ∈ Y′, generate the Q(v)-vector space Q(v)⊗AK0.

3.8. We define a semilinear involution¯: Q(v)⊗A K0 → Q(v)⊗A K0 by

(a) tO, E = tO, E
for all (O, E) ∈ I0. This involution preserves the A-submodule K0. We show:

(b) If γ ∈ Y′, then Iγ = Iγ .

An equivalent statement is as follows: for any j ∈ Z we have pHj(K̃γ) ∼=
pH−j(K̃γ). This follows from Deligne’s relative hard Lefschetz theorem; see [BBD,
5.4.10].

3.9. Let O be a G0-orbit in gnil1 . By a graded analogue of a theorem of Morozov-
Jacobson-Kostant (see [L8] for m = ∞ and [LY1, 2.3] for m < ∞), we can find
elements e, h, f in g such that h ∈ t, e ∈ O (hence e ∈ g1), f ∈ g−1, [e, f ] = h;
moreover, the W0-orbit of h is uniquely determined. Now h is the differential of an
element y ∈ Y . We can view y as an element of Y. Let CO be the W0-orbit of y
in Y. This is an invariant of O and O can be reconstructed from CO. If m < ∞
let ρy be the m-facet in Y that contains y/2. If m = ∞ let ρy be the ∞-facet (see
B.1) in Y that contains −yR∗ + y/2 (with yR∗ as in B.2).
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4. Parabolic restriction

4.1. In this section we assume that m = 1. Let ρ be an ∞-facet in Y (as in B.1).
We set

p =
⊕

α∈R̃;(y′,α)≥0

g
α, u =

⊕
α∈R;(y′,α)>0

g
α, l =

⊕
α∈R̃;(y′,α)=0

g
α

where y′ ∈ ρ. Then p = LP, u = LU, l = LL where P is a parabolic subgroup of
G containing T , U is the unipotent radical of P , and L is the Levi subgroup of P
that contains T . Let R′ = {a ∈ R; gα ⊂ l}. Let pnil = gnil ∩ p, lnil = gnil ∩ l.
Let π : P → L, πnil : pnil → lnil, be the obvious maps. We define a functor
Resρ : D(gnil) → D(lnil) by Resρ(M) = πnil

! (M |pnil).

Let γ ∈ Y′. We have

p
γ
1 =

⊕
α∈R̃;(y,α)≥1

g
α, p

γ
0 =

⊕
α∈R̃;(y,α)≥0

g
α = LB,

where B := P γ is a Borel subgroup of G containing T and y ∈ γ. As in 3.3,

E′′ := {(gB, z) ∈ G/B × g; Ad(g−1)z ∈ p
γ
1}

a−→ gnil1 ,

where a(gB, z) �→ z is a well defined proper morphism and we have Kγ = a!Q̄l ∈
D(gnil),

K̃γ = Kγ [[(dim u
γ
0 + dim u

γ
1)/2]] ∈ D(gnil).

Then Resρ(K
γ) = a′!(Q̄l) where

{(gB, z) ∈ G/B × p; Ad(g−1)z ∈ p
γ
1}

a′
−→ lnil

is given by a′(gB, z) = πnil(z).
Let W ′ = NLT/T ⊂ W . Let e be a subset of W such that W = W ′e, 	e =

	W/	W ′. We have G =
⊔

ε∈e
P ε̇B. Let ε ∈ e. Let

S′
ε := {(gB, z) ∈ (P ε̇B)/B × p; Ad(g−1)z ∈ p

γ
1}

a′
ε−→ lnil,

be the restriction of a′; we set K ′
ε = a′ε!Q̄l ∈ D(lnil). Let

S′′
ε = {(h(P ∩Ad(ε̇)B), z) ∈ P/(P ∩Ad(ε̇)B)× p; Ad(h−1)z ∈ q} a′′

ε−−→ lnil,

where q = Ad(ε̇)(pγ1) = pε(γ) and a′′ε (h(P ∩ Ad(ε̇)B), z) = πnil(z). We have an

isomorphism S′′
ε

∼−→ S′
ε, (h(P ∩ Ad(ε̇)B), z) �→ (hε̇B, z). Under this isomorphism,

a′′ε corresponds to a′ε; hence K ′
ε = a′′ε!Q̄l. Let

′Sε = {(h(L ∩ Ad(ε̇)B), z) ∈ P/(L ∩Ad(ε̇)B)× p; Ad(h−1)z ∈ q}
′aε−−→ l

nil,

where ′aε(h(L ∩ Ad(ε̇)B), z) = πnil(z). The map ′Sε → S′′
ε , (h(L ∩ Ad(ε̇)B), z) �→

(h(P ∩ Ad(ε̇)B), z) is an affine space bundle with fibres of dimension

dim(U ∩ Ad(ε̇)B) = dim(u ∩ p
ε(γ)
0 ). (Note that ε(γ) ∈ Y′ hence p

ε(γ)
0 is defined.)

We deduce:

(a) ′Kε = K ′
ε[[− dim(u ∩ p

ε(γ)
0 )]],

where ′Kε =
′aε!Q̄l.

Now ε(γ) is contained in a unique 1-alcove ε̃(γ) of Y defined in terms of R′

instead of R; this 1-alcove defines a spiral p
˜ε(γ) of l and complexes K

˜ε(γ),

K̃
˜ε(γ) = K

˜ε(γ)[[(dim u
˜ε(γ)
0 + dim u

˜ε(γ)
1 )/2]]
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on lnil in the same way as γ defined the spiral pγ of g and complexes Kγ , K̃γ on
gnil. We have

p
˜ε(γ)
1 =

⊕
α∈R′;(ε(y),α)≥1

g
α = p

ε(γ)
1 ∩ l,

p
˜ε(γ)
0 =

⊕
α∈R′∪{0};(ε(y),α)≥0

gα = LBε = p
ε(γ)
0 ∩ l = l ∩ Ad(ε)LB,

where Bε = L ∩ Ad(ε)B is a Borel subgroup of L containing T and K
˜ε(γ) = aε!Q̄l

where

Sε := {(uBε, z) ∈ L/Bε × l; Ad(u−1)z ∈ p
˜ε(γ)
1 } aε−→ l

nil

is given by aε(uBε, z) = z. Since Ad(u−1)z ∈ l and p
˜ε(γ)
1 = p

ε(γ)
1 ∩ l, we have

Sε := {(uBε, z) ∈ L/Bε × l; Ad(u−1)z ∈ q}.

We define c : ′Sε → Sε by (hBε, z) �→ (π(h)Bε, π
nil(z)). We show:

(b) c is an affine space bundle with fibres of dimension dim u+ dim(u ∩ p
ε(γ)
1 ).

For (dBε, z) ∈ Sε, the fibre c−1(dBε, z) is the set of all (hBε, z̃) ∈ P/Bε × p such
that the image of hBε under P/Bε → L/Bε is dBε, π

nil(z̃) = z and Ad(h−1)z̃ ∈ q.
We have P/Bε = L/Bε×U and p = l⊕u. Hence c−1(dBε, z) can be identified with

(c) {(u, z1) ∈ U × u; Ad(u−1)Ad(d−1)(z + z1) ∈ q}.

It suffices to show that (c) is an affine space of dimension dim u+ dim(u ∩ q). We
set Ad(d−1)z = d′ ∈ l ∩ q, Ad(u−1)Ad(d−1)z1 = z2 ∈ u; then (c) becomes

{(u, z2) ∈ U × u; Ad(u−1)d′ + z2 ∈ q}.

Using the root decomposition g =
⊕

α∈R̃ gα we see that p∩q = (l∩q)⊕(u∩q); since

Ad(u−1)d′ + z2 ∈ p ∩ q, we have Ad(u−1)d′ + z2 = ν + μ where ν ∈ l ∩ q, μ ∈ u ∩ q

are uniquely determined. Setting z3 = μ− z2 we see that (c) becomes

{(u, z3, ν, μ) ∈ U × u× (l ∩ q)× (u ∩ q); Ad(u−1)d′ = ν + z3}.

We have Ad(u−1)d′−d′ ∈ u (since d′ ∈ l∩p). Hence ν = d′ and z3 = Ad(u−1)d′−d′.
Thus (c) can be identified with {(u, μ) ∈ U × (u ∩ q)}. This proves (b).

Since ′aε = aεc, from (b) we deduce that

′Kε = K
˜ε(γ)[[− dim u− dim(u ∩ p

ε(γ)
1 )]].

Combining this with (a) we deduce

K ′
ε = K

˜ε(γ)[[fε]]

where

fε = − dim u− dim(u ∩ p
ε(γ)
1 ) + dim(u ∩ p

ε(γ)
0 )

= −	{α ∈ R; (y′, α) > 0} − 	{α ∈ R; (y′, α) > 0, (ε(y), α) ≥ 1}
+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) ≥ 0},

where y′ ∈ ρ, y ∈ γ.
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4.2. For any ε, we can view K
˜ε(γ) (hence also K

˜ε(γ)[[fε]]) as a pure complex of
weight 0, by Deligne’s theorem applied to the proper map aε. Using an argument
in the proof of [L5, 3.7] for the partition G =

⊔
ε∈e

(P ε̇B), we deduce that Resρ(K
γ)

is pure of weight 0, that

Resρ(K
γ) ∼=

⊕
ε∈e

K
˜ε(γ)[[fε]] in D(lnil),

that Resρ(K̃
γ) is pure of weight 0, and that

(a) Resρ(K̃
γ) ∼=

⊕
ε∈e

K̃
˜ε(γ)[[f ′

ε/2]] in D(lnil),

where

f ′
ε = 2fε + dim u

γ
0 + dim u

γ
1 − dim u

˜ε(γ)
0 − dim u

˜ε(γ)
1 .

We show:

f ′
ε = −	(α ∈ R; (y′, α) > 0, (ε(y), α) > 1) + 	(α ∈ R; (y′, α) < 0, (ε(y), α) > 1)

− 	(α ∈ R; (y′, α) > 0, (ε(y), α) < 0) + 	(α ∈ R; (y′, α) < 0, (ε(y), α) < 0)

= −
∑

α∈R;(y′,α) �=0,(ε(y),α)<0 or (ε(y),α)>1

sgn(y′, α).(b)

We have

f ′
ε = −2	{α ∈ R; (y′, α) > 0} − 2	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}
+ 2	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}+ 	{α ∈ R; (y, α) > 1}
+ 	{α ∈ R; (y, α) > 0} − 	{α ∈ R; (y′, α) = 0, (ε(y), α) > 1}
− 	{α ∈ R; (y′, α) = 0, (ε(y), α) > 0}.

Here we substitute

	{α ∈ R; (y, α) > 1}+ 	{α ∈ R; (y, α) > 0}
= 	{α ∈ R; (y′, α) ≤ 0, (ε(y), α) > 1}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}
+ 	{α ∈ R; (y′, α) ≤ 0, (ε(y), α) > 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}.

We obtain

f ′
ε = −2	{α ∈ R; (y′, α) > 0} − 2	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}
+ 	{α ∈ R; (y′, α) ≤ 0, (ε(y), α) > 1}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}
− 	{α ∈ R; (y′, α) = 0, (ε(y), α) > 1}+ 2	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}
+ 	{α ∈ R; (y′, α) ≤ 0, (ε(y), α) > 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}
− 	{α ∈ R; (y′, α) = 0, (ε(y), α) > 0},

f ′
ε = −2	{α ∈ R; (y′, α) > 0} − 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}
+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 1}+ 2	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}
+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}
= −	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 1}
− 2	{α ∈ R; (y′, α) > 0, (ε(y), α) < 0}
+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0},
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f ′
ε = −	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 1}
− 2	{α ∈ R; (y′, α) > 0, (ε(y), α) < 0}
+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) < 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}
= −	{α ∈ R; (y′, α) > 0, (ε(y), α) > 1}+ 	{α ∈ R; (y′, α) < 0, (ε(y), α) > 1}
− 	{α ∈ R; (y′, α) > 0, (ε(y), α) < 0}+ 	{α ∈ R; (y′, α) > 0, (ε(y), α) > 0}

and (b) follows.
We define I0(l1) in the same way as I0(g1) but in terms of L instead of G. (We

have l1 = l.) We show:
(c) If (O, E) ∈ I0, then ResρE� is a direct sum of shifts of complexes of the form

E ′� for various (O′, E ′) ∈ I0(l1).
We can find γ ∈ Y′ and d ∈ Z such that E� is a direct summand of K̃γ [[d]] so

that ResρE� is a direct summand of ResρK̃
ρ[[d]]. Using (a) we deduce that ResρE�

is a direct sum of shifts of simple perverse sheaves which appear in K̃
˜ε(γ) for some

ε ∈ e. This proves (c).

4.3. We define D0(l
nil
1 ), K0(l1) in terms of L, I0(l1) in the same way as D0, K0

were defined in terms of G, I0(g1). From 4.2(c) we see that Resρ restricts to a
functor D0 → D0(l

nil
1 ) denoted again by Resρ. There is a well defined A-linear

map grResρ : K0 → K0(l1) such that the following holds: if (O, E) ∈ I0 and
E�[[dimO/2]] is viewed as a pure complex of weight 0, then (grResρ)(tO, E) =
gr(ResρE�[[dimO/2]]) where ResρE�[[dimO/2]] is viewed as a mixed complex with
the mixed structure induced from that of E�.

From the results in 4.2 we see that for any γ ∈ Y′ we have

(a) (grResρ)(Iγ) =
∑
ε∈e

vf
′
εI

˜ε(γ)
.

4.4. Let (O, E) ∈ I0, (O′, E ′) ∈ I0(l1). Let d = dimO, d′ = dimO′. We view
E as a pure local system of weight 0 on O. From [BBD, 5.1.14] we deduce that
(Resρ(E))|O′ is mixed of weight ≤ 0; hence for any i ∈ Z, Hi(Resρ(E))|O′ is mixed
of weight ≤ i. By [L4, 1.2], we have dim(O ∩ (πnil)−1(O′)) ≤ (d − d′)/2 hence

Hi(Resρ(E))|O′ = 0 if i > d − d′ and Hd−d′
(Resρ(E))|O′ is pure of weight d − d′.

We denote by mE′,E the multiplicity of E ′ in the local system Hd−d′
(Resρ(E))|O′ .

Let j : O′ → lnil be the inclusion.
Let Q ∈ A be the coefficient of sO′,E′ in

gr′(Resρ(E)) = gr(Resρ(E)) = (grResρ)(sO,E) ∈ K0(l1)

with gr, gr′ defined in terms of l instead of g. We have

Q = coeff. of sO′,E′ in gr′(j!j
∗Resρ(E [[d]]))

= (mult. of E ′ in j∗(Hd−d′
Resρ(E))v−(d−d′) + c,

where

c =
∑

i<d−d′,h≤i

(−1)i(mult. of E ′ in j∗(HiResρ(E))h)v−h ∈
∑

h<d−d′

Zv−h.

(We use that d, d′ are even.) Thus, Q = mE′,Ev
−d+d′

mod
∑

h<d−d′ Zv−h and

(a) Qvd−d′
= mE′,E mod vZ[v].
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4.5. Let Q′′ ∈ A be the coefficient of s̃O′,E′ in (grResρ)(s̃O,E) ∈ K0(l1) in the basis

3.6(a) for l instead of g. We have Q′′ = vd−d′
Q with notation of 4.4. Hence from

4.4(a) we deduce

(a) Q′′ = mE′,E mod vZ[v].

5. The set I ′
0

5.1. In this section we assume that m < ∞. For any Borel subalgebra b of g

containing t we denote by u the nilradical of b and we consider the proper morphism

{(gB0, z) ∈ G0/B0 × g1; Ad(g−1)z ∈ u1} a−→ gnil1 ,

where B0 is the Borel subgroup of G0 such that LB0 = b ∩ g0, u1 = u ∩ g1, and
a(gB0, z) = z. Let K ′b = a!Q̄l. Let I ′

0 be the set of all (O, E) ∈ I such that E
is a direct summand of Hi(K ′b)|O for some i ∈ Z and some b as above. (In the
case where m = 1 this condition on (O, E) appears in Springer’s work [Sp].) In this
section we prove the following result.

Proposition 5.2. We have I0 = I ′
0.

5.3. Let (O, E) ∈ I ′
0. Then E is a direct summand of Hi(K ′b)|O for some i ∈ Z

where b is as in 5.1. Let u be the nilradical of b. We can find y ∈ Y such that

b =
⊕

α∈R̃;(y,α)≥0

gα, u =
⊕

α∈R̃;(y,α)>0

gα, u ∩ g1 =
⊕

α∈R1;(y,α)>0

gα.

Since (y, α) ∈ Z for any α, we must have u ∩ g1 =
⊕

α∈R1;(y,α)≥1 g
α. Let γ be the

m-facet containing y; it is an m-alcove. We have

p
γ
1 =

⊕
α∈R1;(y,α)≥1

gα = u ∩ g1.

From the definitions we see that Kγ = K ′b. Hence E is a direct summand of
Hi(Kγ)|O for some i ∈ Z. Using this and [LY2, 13.7(a)], we deduce that some shift

of E� is a direct summand of Kγ′
for some m-alcove γ′ hence (O, E) ∈ I0. Thus,

(a) I ′
0 ⊂ I0.

5.4. Let O be a G0-orbit in gnil1 . Let y ∈ CO and let ρ = ρy (see 3.9). Let
L = Lρ, L0 = Lρ

0; see 3.3. We note the following results.
(i) Let O′ be the open L0-orbit in l

ρ
1. Then O′ ⊂ O. There is a unique open

P ρ-orbit O′′ in p
ρ
1. We have O′ ⊂ O′′ hence O′′ ⊂ O.

(See [LY1, 2.9(b),(e)].)
(ii) The map E �→ E|O′ is a one-to-one correspondence between the set of ir-

reducible G0-equivariant local systems on O (up to isomorphism) and the set of
irreducible L0-equivariant local systems on O′ (up to isomorphism).

(See [LY1, 2.9(c).]
(iii) If g ∈ G0, x ∈ O′ and Ad(g−1)(x) ∈ p

ρ
1, then g ∈ P ρ.

(See [LY1, 2.9(d).]
From [LY1, 7.1(e)] we see that the bijection in (ii) restricts to a bijection

(a) {E ; (O, E) ∈ I0} ∼−→ {E ′; (O′, E ′) ∈ I0(lρ1)}.
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5.5. We preserve the setup of 5.4. Let x ∈ O′. Let E be such that (O, E) ∈ I0
and let E ′ = E|O′ . Let E be the irreducible representation of ZG0

(x)/ZG0
(x)0

corresponding to E . Let E′ be the irreducible representation of ZL0
(x)/ZL0

(x)0

corresponding to E ′. By [LY1, 2.9(c)] we can identify

ZG0
(x)/ZG0

(x)0 = ZL0
(x)/ZL0

(x)0

and then E becomes E′. By 5.4(a) we have (O′, E ′) ∈ I0(lρ1). It follows that there
exists a Borel subalgebra b′ of lρ that contains t such that E = E′ appears in the
natural representation of ZL0

(x)/ZL0
(x)0 in

⊕
i H

i
c(X ′, Q̄l) where

X ′ = {gB′
0 ∈ L0/B

′
0; Ad(g−1)x ∈ b

′};
here B′

0 is the Borel subgroup of L0 such that LB′
0 = b′ ∩ l

ρ
0. Using [L8, 21.1] we

see that Hi
c(X ′, Q̄l) = 0 for i odd hence

(a) E = E′ appears in the virtual representation of ZL0
(x)/ZL0

(x)0 in∑
i

(−1)iHi
c(X ′, Q̄l).

Let b be a Borel subalgebra of G such that b′ ⊂ b. Let B0 be the Borel subgroup
of G0 such that LB0 = b∩ g0. We define e : L0/B

′
0 → G0/B0 by gB′

0 �→ gB0. This
is well defined since L0 ⊂ G0 hence B′

0 ⊂ B0; moreover, e is an imbedding since
B0 ∩ L0 = B′

0. For t ∈ k∗ we have y(t) ∈ T ; we define a k∗-action on G0/B0 by
t : gB0 �→ y(t)gB0. The fixed point set of this action is

(G0/B0)
k∗

= {gB0 ∈ G0/B0; Ad(g−1)h ∈ b}.
Note that the image of e is contained in (G0/B0)

k∗
. (We use that h is contained in

the centre of lρ0 hence Ad(g−1)h = h for g ∈ L0.) Thus e restricts to an imbedding

e′ : L0/B
′
0 → (G0/B0)

k∗
. This identifies L0/B

′
0 with a connected component of

(G0/B0)
k∗
. (We use that L0 is the centralizer of h in G0.) Now e′ restricts to an

imbedding X ′ → X where

X = {gB0 ∈ (G0/B0)
k∗
; Ad(g−1)x ∈ b}.

(Note that X is well defined since Ad(y(t)−1)x = t−2x for t ∈ k∗.) This imbedding
identifies X ′ with e′(L0/B

′
0) ∩ X , intersection in (G0/B0)

k∗
. (We use that g ∈

L0,Ad(g−1)x ∈ b =⇒ Ad(g−1)x ∈ b′ which follows from lρ ∩ b = b′.) Now X ′ =
e′(L0/B

′
0) ∩ X is the intersection of X with a connected component of (G0/B0)

k∗

hence X ′ is a union of connected components of X . Using this and (a) we deduce
that

(b) E = E′ appears in the virtual representation of ZL0
(x)/ZL0

(x)0 in∑
i

(−1)iHi
c(X , Q̄l).

Let X̃ = {gB0 ∈ G0/B0; Ad(g−1)x ∈ b}. Now X is the fixed point set of the

k∗-action on X̃ (the restriction of the k∗-action on G0/B0). Using (b) and the fact
that the (equivariant) Euler characteristic is preserved by passage to the fixed point
set of a k∗-action we deduce that E = E′ appears in the virtual ZG0

(x)/ZG0
(x)0 =

ZL0
(x)/ZL0

(x)0-module
∑

i(−1)iHi
c(X̃ , Q̄l). Hence, for some i, E = E′ appears

in the ZG0
(x)/ZG0

(x)0 = ZL0
(x)/ZL0

(x)0-module Hi
c(X̃ , Q̄l). In other words, we

have (O, E) ∈ I ′
0. Thus we have proved:

(c) I0 ⊂ I ′
0.
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5.6. Proposition 5.2 follows from 5.3(a) and 5.5(c).

6. Inner product

6.1. In this section we assume that m < ∞. Let γ, γ′ be two m-alcoves in Y. Let
q = qs0 where s ≥ 1 and let F = F s

0 : G → G, F = F s
0 : g → g. We fix a square root√

q0 of q0 in Q̄l. Let
√
q = (

√
q0)

s.
We associate p

γ
N , uγN (N ∈ Z) and B = P γ to γ as in 3.3; we associate in a

similar way p
γ′

N , uγ
′

N (N ∈ Z) and B′ = P γ′
to γ′. We define functions

χγ : (gnil1 )F → Q̄l, χγ′ : (gnil1 )F → Q̄l

by

χγ(x) = 	{gBF ∈ GF
0 /B

F ; Ad(g−1)x ∈ p
γ
1},

χγ′(x) = 	{gB′F ∈ GF
0 /B

F ; Ad(g−1)x ∈ p
γ′

1 }.
Let U (resp., U ′) be the unipotent radical of B (resp., B′). LetW0 = NG0

T/T ⊂ W ;
this is the same as W0 in 1.2. Let y ∈ γ, y′ ∈ γ′. We show:∑

x∈(gnil
1 )F

χγ(x)χγ′(x)

= 	(GF
0 /T

F )
∑

w∈W0

q�(α∈R1,(y,α)≥1,(w(y′),α)≥1)−�(α∈R0,(y,α)≥0,(w(y′),α)≥0).(a)

Let A be the left hand side of (a). We set

q0 = p
γ
0 , q1 = p

γ
1 , q

′
0 = p

γ′

0 , q′1 = p
γ′

1 .

We have

A

= 	{(gBF , g′B′F , x) ∈ GF
0 /B

F ×GF
0 /B

′F × gF1 ; Ad(g−1)x ∈ q1,Ad(g′−1)x ∈ q′1}
= a−1	{(g, g′, x) ∈ GF

0 ×GF
0 × g

F
1 ; Ad(g−1)x ∈ q1,Ad(g′−1)x ∈ q

′
1},

where a = 	(BF )	(B′F ). Setting x1 = Ad(g−1)x, h = g′−1g, we have

A = a−1	{(g, h, x1) ∈ GF
0 ×GF

0 × q
F
1 ; Ad(h)x1 ∈ q

′
1}.

We have GF
0 =

⊔
w∈W0

B′F ẇBF . Hence

A = 	(GF
0 )a

−1

×
∑

w∈W0

	{(b, b′, x1) ∈ BF ×B′F × qF1 ; Ad(b′ẇb)x1 ∈ q′1}	(BF ∩ ẇ−1B′F ẇ)−1.

Setting Ad(b)x1 = x2, we see that

A

=
	(GF )

a

∑
w∈W0

	{(b, b′, x2) ∈ BF ×B′F × qF1 ; Ad(ẇ)x2 ∈ q′1}	(ẇ−1B′F ẇ ∩BF )−1,

A = 	(GF
0 /T

F )
∑

w∈W0

	{qF1 ∩ Ad(ẇ−1)q′1
F }	(UF ∩ ẇ−1U ′F ẇ)−1

and (a) follows (after changing w to w−1).
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6.2. In the setup of 6.1 we set for x ∈ (gnil1 )F :

χ̃γ(x) = (
√
q)− dim u

γ
0−dim u

γ
1χγ(x),

χ̃γ′(x) = (
√
q)− dim u

γ′
0 −dim u

γ′
1 χγ′(x).

We show:

(a)
∑

x∈(gnil
1 )F

χ̃γ(x)χ̃γ′(x) = 	(GF
0 /T

F )(
√
q)−2�(R0)

∑
w∈W0

(
√
q)−τ(y,w(y′)),

where τ (, ) is as in 1.2.
Using 6.1(a), we see that it is enough to show that for any w ∈ W0 we have

2	{α ∈ R1, (y, α) ≥ 1, (w(y′), α) ≥ 1} − 2	{α ∈ R0, (y, α) ≥ 0, (w(y′), α) ≥ 0}
− 	{α ∈ R0, (y, α) ≥ 0} − 	{α ∈ R1, (y, α) ≥ 1} − 	{α ∈ R0, (y

′, α) ≥ 0}
− 	{α ∈ R1, (y

′, α) ≥ 1}+ 2	(R0) = −	{α ∈ R1; ((y, α)− 1)((w(y′), α)− 1) < 0}
+ 	{α ∈ R0; (y, α)(w(y

′), α) < 0}.
Using the equalities

	{α ∈ R1, (y
′, α) ≥ 1} = 	{α ∈ R1, (w(y

′), α) ≥ 1},

	(R0)− 	{α ∈ R0, (y
′, α) ≥ 0} = 	{α ∈ R0, (y

′, α) < 0}
= 	{α ∈ R0, (y

′, α) > 0} = 	{α ∈ R0, (w(y
′), α) > 0},

	(R0)− 	{α ∈ R0, (y, α) ≥ 0} = 	{α ∈ R0, (y, α) < 0} = 	{α ∈ R0, (y, α) > 0},
and setting w(y′) = y′′, we see that it is enough to show:

2	{α ∈ R1, (y, α) ≥ 1, (y′′, α) ≥ 1} − 2	{α ∈ R0, (y, α) ≥ 0, (y′′, α) ≥ 0}
+ 	{α ∈ R0, (y, α) ≥ 0} − 	{α ∈ R1, (y, α) ≥ 1}
+ 	{α ∈ R0, (y

′′, α) ≥ 0} − 	{α ∈ R1, (y
′′, α) ≥ 1}

= −	{α ∈ R1; ((y, α)− 1)((y′′, α)− 1) < 0}+ 	{α ∈ R0; (y, α)(y
′′, α) < 0}.

It is enough to show that for N ∈ {0, 1} we have

2	{α ∈ RN̄ , (y, α) ≥ N, (y′′, α) ≥ N} − 	{α ∈ RN̄ , (y, α) ≥ N}
− 	{α ∈ RN̄ , (y′′, α) ≥ N} = −	{α ∈ RN̄ ; ((y, α)−N)((y′′, α)−N) < 0}.

This is immediate since (y, α) �= N, (y′, α) �= N for any α ∈ RN̄ .

6.3. For any mixed complex M over a point we define

gr(M) =
∑

j∈Z,h∈Z

(−1)j dim(Hj(M))hv
−h ∈ A.

Here the subscript h denotes the subquotient of pure weight h of a mixed Q̄l-vector
space. Let

i : gnil1 → g
nil
1 × g

nil
1

be the diagonal and let r : gnil1 → point be the obvious map. We define anA-bilinear
pairing (:) : K0 ×K0 → A by the requirement that if (O, E) ∈ I0, (O′, E ′) ∈ I0 and

M = E�[[dimO]],M ′ = E ′�[[dimO′]]
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are regarded as pure complexes of weight 0 so that r!i
∗(M�M ′) is a mixed complex

over the point, then

(tO, E : tO′, E ′) = gr(r!i
∗(M �M ′)).

From 6.2(a) we deduce by an argument entirely similar to that in the proof of
[L9, 3.11(b)] that

(a) (Iγ : Iγ′) = eW0

∑
w∈W0

vτ(y,w(y′)),

with eW0
as in 1.2. Alternatively, one can prove (a) using arguments in the proof

of [LY1, 6.4].

6.4. Let (O, E) ∈ I0, (O′, E ′) ∈ I0. We regard E , E ′ as mixed complexes such that
E|O and E ′|O′ are pure of weight 0; then E ⊗ E ′ is a mixed complex and from the
definitions we have

(sO,E : sO′,E′) = gr(r!(E ⊗ E ′)).

Hence if O �= O′ we have

(a) (sO,E : sO′,E′) = 0,

while if O = O′ we have

(b) (sO,E : sO,E′) =
∑

j∈Z,h∈Z

(−1)j dim((Hj
c (O, E ⊗ E ′))h)v

−h ∈ Z[v−1].

Here the subscript h denotes the subquotient of pure weight h of a mixed Q̄l-vector
space. Let d = dimO and let E∗ be the local system dual to E . Let δE∗,E′ be 1 if
E ′ = E∗ and 0 if E ′ �= E∗. We have

(Hj
c (O, E ⊗ E ′))h �= 0 =⇒ h ≤ j ≤ 2d;

moreover,

(H2d
c (O, E ⊗ E ′))h �= 0 =⇒ h = 2d, δE∗,E′ = 1 = dimH2d

c (O, E ⊗ E ′).

It follows that

(c) (sO,E : sO,E′) = δE∗,E′v−2d mod v−2d+1Z[v],

so that

(s̃O,E : s̃O,E′) = δE∗,E′ mod vZ[v].

From (a), (c) we see that the square matrix (sO,E : sO′,E′) has nonzero determinant
hence is invertible over Q(v). We deduce that

(d) the Q(v)-bilinear form (:) : (Q(v)⊗A K0)× (Q(v)⊗A K0) → Q(v) deduced
from (:) : K0 ×K0 → A by extension of scalars is nonsingular.

6.5. Let i1 = (O, E) ∈ I0, i2 = (O′, E ′) ∈ I0. From 3.5(a) we deduce

(a) (−v)− dimO−dimO′
(ti1 : ti2) =

∑
i′1∈I0;i′2∈I0;i′1≤i1,i′2≤i2

Pi′1,i1
Pi′2,i2

(si′1 : si′2).
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6.6. In the remainder of this section we assume that m = 1. For i, i′ in I0 let
Ωi,i′ ∈ Q[q] be as in [L6, p. 145] and let Λi,i′ ∈ Q[q], Πi,i′ ∈ Q[q] be as in
[L6, p. 146]. (Here q is an indeterminate.) We shall regard Ωi,i′ ,Λi,i′ ,Πi,i′ as
elements of Q(v) via q = v−2.

If v is specialized to −√
q−1 where q = qs0, s ≥ 1, then q becomes qs, Λi,i′

becomes an integer λi,i′ (depending on s) as in the proof in [L6, p. 146]. From
the definition, that integer is equal to the specialization of (si′1 : si′2) ∈ Z[v−1] at

v =
√
q−1 (we use Grothendieck’s trace formula to evaluate 6.4(b) and we use that

the relevant eigenvalues of Frobenius are integer powers of q). It follows that

(a) (si : s
′
i) = Λi,i′ .

Moreover, from the definitions we have

(b) Pi,i′ = Πi,i′ ,

where Pi,i′ is as in 3.4.
Now let i1 = (O, E) ∈ I0, i2 = (O′, E ′) ∈ I0. Using (a), (b), from 6.5(a) we

deduce:

(c) v− dimO−dimO′
(ti1 : ti2) =

∑
i′1∈I0;i′2∈I0;i′1≤i1,i′2≤i2

Πi′1,i1
Πi′2,i2

Λi′1,i
′
2
= Ωi1,i2 ,

where the last equality follows from equation (b) in [L6, p. 146]; we have used that
dimO, dimO′ are even.

6.7. Let Ŵ be as in 1.12. Let i �→ Ei, I ′
0

∼−→ Ŵ be the Springer correspondence
(we use the normalization in [L4]). Using the equality I ′

0 = I0 in 5.2 we can view

this as a bijection I0 ∼−→ Ŵ . Let E0 ∈ Ŵ be the reflection representation and let ν
be the dimension of the flag manifold of G. Let eW = eW0

∈ A be as in 1.2. From
the definition in [L6, 24.7], for i, i′ in I0 we have

Ωi,i′ = 	(W )−1
∑
w∈W

tr(w,Ei)tr(w,Ei′)

(v−2 − 1)dimE0 det(v−2 − w,E0)
−1b(eW )v− dimO−dimO′+2ν .(a)

Combining this with 6.6(c) we obtain

(b) (ti : ti′) = 	(W )−1
∑
w∈W

tr(w,Ei ⊗ Ei′)(1− v2)dimE0 det(1− v2w,E0)
−1eW .

Let i0 ∈ I0 be the element such that Ei0 is the unit representation of W . It is
known that i0 = (O′, Q̄l) where O′ is the regular nilpotent orbit. Hence for i′ = i0,
(b) becomes

(c) (ti : ti0) = 	(W )−1
∑
w∈W

tr(w,Ei)(1− v2)dimE0 det(1− v2w,E0)
−1eW .

The right hand side of (c) is the fake degree FD(Ei) of Ei (see [L1, 3.17]). Thus
we have

(d) (ti : ti0) = FD(Ei).

We have

(e) FD(Ei) = cv2b mod v2b+2Z[v2],
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where b = bEi
∈ N is as in 1.12 and c ∈ Z>0 is well defined. From (d) we deduce

(f) (ti : ti0) = cv2b mod v2b+2Z[v2],

where b = bEi
and c ∈ Z>0.

6.8. We show:
(a) There exists a unique bijection I0 ∼−→ Ŵ , i �→ E′

i, such that (i), (ii), (iii)
below hold.

(i) If R = ∅, then I0 ∼−→ Ŵ is the unique bijection between two sets with one
element.

(ii) Let ρ, p, l, P, L,W ′, R′ be as in 4.1 with R′ �= R, and let i = (O, E) ∈ I0,
i′ = (O′, E ′) ∈ I0(l1). Let Q′′ ∈ A be as in 4.5. Let m̃i,i′ ∈ N be the multiplicity
of E′

i′ in E′
i|W ′ . Then Q′′ = m̃i′,i mod vZ[v]. (Here we assume that the bijection

I0(l1) ∼−→ Ŵ ′, i′ �→ E′
i′ is already established for R′ instead of R when R′ �= R.)

(iii) For any i ∈ I0 we have (ti : ti0) = cv2b mod v2b+2Z[v2] where b = bE′
i
and

c ∈ Z>0.
If we take E′

i = Ei (see 6.7), then (i) is obvious, (ii) follows from 4.5(a) together
with [L4, 8.3(b)], and (iii) follows from 6.7(f). Thus, a bijection as in (a) exists.
The uniqueness of a bijection as in (a) follows from 2.2. Thus, (a) holds.

7. Induction

7.1. In this section we assume that m < ∞. Let ρ be an m-facet. Let

p
ρ
N , uρN , lρN , lρ, Lρ, Lρ

0, P
ρ, E′, E′′, a, b, c

be as in 3.3. Let R(ρ) be the set of roots of Lρ with respect to T . This is the same
as R(ρ) in 1.3. It has a Z-grading as in B.4 and the corresponding Z-grading of lρ

is given by
⊕

N l
ρ
N .

For any ∞-alcove γ of Y with respect to R(ρ) we can consider the parabolic
subalgebra

⊕
N∈Z p

γ
N of lρ defined as in 3.3 with g replaced by lρ. (We have pγN ⊂ l

ρ
N

for any N .) There is a well defined m-alcove γ̃ of Y such that pγ̃N = p
γ
N ⊕ u

ρ
N for

any N . This follows from the analysis in [LY1, 2.8] which shows also that γ̃ = fρ(γ)

with fρ as in 1.4. Now the complex K̃γ on l
ρ
1 (analogous to K̃ρ in 3.3) is defined in

terms of the Z-grading of lρ. Similarly, the group K0(l
ρ
1) is defined in terms of this

Z-grading and its elements Iγ = gr(K̃γ) ∈ K0(l
ρ
1) are defined for any γ as above.

Moreover, K0(l
ρ
1) has an A-basis

{tO′, E ′; (O′, E ′) ∈ I0(lρ1)}
and an A-basis

{s̃O′,E′ ; (O′, E ′) ∈ I0(lρ1)}
defined as in 3.3, 3.5 (with g replaced by l with its Z-grading). Here I0(lρ1) is the
set of pairs consisting of an Lρ

0-orbit O′ on l
ρ
1 and an irreducible Lρ

0-equivariant
local system E ′ on O′ (up to isomorphism), defined like I0 (in the Z-graded case)
but with G replaced by Lρ.

Let A be a direct sum of shifts of Lρ
0-equivariant simple perverse sheaves on l

ρ
1. In

the diagram 3.3(a), c is smooth with connected fibres of dimension dimG0+dim u
ρ
1, b

is a principal P ρ-bundle. Hence there is a well defined (up to isomorphism) complex
A′′ on E′′ which is a direct sum of shifts of simple perverse sheaves such that

c∗A[[(dimG0 + dim u
ρ
1)/2]]

∼= b∗A′′[[dimP ρ/2]].
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We set Ã = a!A
′′. Since a is proper, Ã is a direct sum of shifts of (necessarily

G0-equivariant) simple perverse sheaves on gnil1 . By [LY1, 4.2], if γ is an ∞-facet
of Y with respect to R(ρ) and γ̃ is the m-facet in Y defined by γ̃ = fρ(γ) (see

1.4), then applying the previous construction to A = K̃γ gives us A′′ = K̃ γ̃ . As in
[L9, 3.5], it follows that there is a well defined A-linear map iρ : K0(l

ρ
1) → K0 such

that the following holds: if (O′,L′) ∈ I0(lρ1) and A = L′�[[dimO′/2]], viewed as a

pure complex of weight 0, then Ã is canonically defined and iρ(tO′, E ′) = gr(Ã)

where Ã is viewed as a pure complex of weight 0 with mixed structure induced by
that of A. Moreover, if γ, γ̃ = fρ(γ) are as above, we have

(a) iρ(Iγ) = Iγ̃ .

7.2. In this subsection we fix a G0-orbit O in gnil1 . Let y ∈ CO, ρ,O′,O′′ be as in
5.4. Let

E′′
1 = {(gP ρ, z) ∈ G0/P

ρ × g1; Ad(g−1)z ∈ O′′},
an open subvariety of E′′ in 3.3(a). We show:

(a) The map E′′
1 → O, (gP ρ, z) �→ z is a well defined isomorphism.

This map is well defined since, by 5.4(i), if (gP ρ, z) ∈ E′′
1 , then z ∈ O. We shall

only prove that our map is bijective. Let z ∈ O. Since O′′ ⊂ O (by 5.4(i)) and the
G0-action on O is transitive, we have Ad(g)−1z ∈ O′′ for some g ∈ G0; this proves
surjectivity of our map. Assume now that (gP ρ, z) ∈ E′′

1 , (g
′P ρ, z) ∈ E′′

1 . Setting
g′ = gg1 with g1 ∈ G0 and z′ = Ad(g−1)z, we have z′ ∈ O′′, Ad(g−1

1 )z′ ∈ O′′. From
5.4(i) we have z′ = Ad(g2)x where g2 ∈ P ρ, x ∈ O′. We have Ad(g−1

1 g2)x ∈ O′′;
hence using 5.4(iii) we have g−1

2 g1 ∈ P ρ, that is, g1 ∈ P ρ. Thus, gP ρ = g′P ρ. This
proves that our map is injective hence bijective.

Let E be such that (O, E) ∈ I0 and let E ′ = E|O′ so that (O′, E ′) ∈ I0(lρ1); see
5.4(a). Then the element s̃O,E ∈ K0 is well defined and the analogously defined
element s̃O′,E′ ∈ K0(l

ρ
1) is well defined. We have

(b) iρ(s̃O′,E′) = s̃O,E .

The proof is entirely similar to that of [L9, 3.15(d)] (a Z-graded analogue of (b)),
using (a) instead of [L9, 3.15(c)].

8. Proofs

8.1. In this section we finish the proofs of the theorems stated in the introduction.
We can identify Q(v)⊗A K0 with V (in B.3, if m = ∞ or in 1.2 if m < ∞) in such
a way that for any m-alcove γ, the element Iγ of Q(v) ⊗A K0 corresponds to the
element Iγ of V (if m = ∞, see B.3) or to the element Iγ of V (if m < ∞, see
1.2). (If m = ∞, this follows from the results in [L9]. If m < ∞, this follows from
3.7(a), 6.3(a), 6.4(d).) Then (:) on Q(v)⊗AK0 corresponds to (:) on V. Moreover,
¯: Q(v)⊗AK0 → Q(v)⊗AK0 in 3.8 corresponds to β : V → V (as in B.3 if m = ∞
or as in 1.2(a) if m < ∞). This verifies the assertion in 1.2(a).

8.2. Now assume that m = ∞. The statements in this subsection are proved in
[L9]. Under the identification in 8.1, the basis {s̃O,E ; (O, E) ∈ I0} of Q(v)⊗AK0 in
3.6 corresponds to the basis 1ZR (see B.6) of V and the basis {tO, E ; (O, E) ∈ I0}
of Q(v)⊗A K0 in 3.3 corresponds to the basis B (see B.6) of V.
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From the results in [L9] we see that the following holds:
(a) Let O be the open G0-orbit in g1 and let y ∈ CO; see 3.9. Then R∗ is rigid

(see B.3) if and only if y/2 = yR∗ (with yR∗ as in B.2).
(Note that the condition that y/2 = yR∗ is independent of the choice of y in CO

since yR∗ is fixed by W0.)
It follows that, by associating to R∗ the G-orbit of e in (a), we get a well defined

bijection between the set of rigid Z-gradings of R (up to W -action) and the set of
even nilpotent G-orbits in g.

Assume now that R∗ is rigid. Let O′ be the G-orbit in g corresponding to
R∗. Let O be the open G0-orbit in g1, so that O ⊂ O′. Then the subset

{s̃O,E ; E such that (O, E) ∈ I0} of Q(v) ⊗A K0 corresponds to the subset 1Z
[0]
R

(see B.6) of V.
We show:
(b) An ∞-facet ρ is 1-rigid if and only if for some G0-orbit O on g1 we have

ρ = ρy where y ∈ CO. Moreover, O �→ ρy is a bijection between the set of G0-orbits
on g1 and the set of W0-orbits of 1-rigid ∞-facets in Y.

Assume that ρ is a 1-rigid ∞-facet (see B.7). Then yR(ρ)∗ − yR∗ ∈ ρ and
R(ρ)∗ is rigid (here R(ρ)∗ is as in B.4). Let g(ρ) =

⊕
α∈R(ρ)∪{0} g

α, g(ρ)0 =⊕
α∈R(ρ)0∪{0} g

α, g(ρ)N =
⊕

α∈R(ρ)N
gα if N ∈ Z − {0}. Let G(ρ)0 be the closed

connected subgroup of G such that LG(ρ)0 = g(ρ)0. Then G(ρ)0 acts on g(ρ)1
by Ad. Let O0 be the open orbit for this action and let y ∈ CO0

(defined as in
3.9 in terms of g(ρ) instead of g). Let O be the G0-orbit on g1 that contains O0.
Note that we have also y ∈ CO (defined as in 3.9 in terms of g). By (a) we have
yR(ρ)∗ = y/2. Since yR(ρ)∗ − yR∗ ∈ ρ it follows that y/2 − yR∗ ∈ ρ hence ρ = ρy
(see 3.9).

Conversely, assume that O is a G0-orbit on g1. We associate e, h, f, y, ρy to O
as in 3.9. Let ρ = ρy. Let R(ρ)∗ be as in B.4. Since y/2 − yR∗ ∈ ρ, for N ∈ Z we
have R(ρ)N = {α ∈ RN ; (y/2− yR∗ , α) = 0} = {α ∈ RN ; (y/2, α) = N}. We define
g(ρ), g(ρ)N , G(ρ)0 as above. We have g(ρ)N = {x ∈ gN ; [h/2, x] = Nx}. Hence
e ∈ g(ρ)1, f ∈ g(ρ)−1. It follows that e is in the open G(ρ)0-orbit on g(ρ)1 and the
element y associated as in 3.9 to this open orbit is the same as y above. From the
definitions we have y/2 = yR(ρ)∗ . Using (a) we deduce that R(ρ)∗ is rigid. We have
yR(ρ)∗ − yR∗ = y/2− yR∗ ∈ ρ. We see that ρ is 1-rigid. Now (b) follows.

8.3. We now assume that m < ∞. Now 1.5(a) follows from 7.1(a); 1.6(a) follows
from 7.2(b). We show:

(a) An m-facet ρ is rigid if and only if for some G0-orbit O on gnil1 we have
ρ = ρy where y ∈ CO. Moreover O �→ ρy is a bijection between the set of G0-orbits
on gnil1 and the set of W0-orbits of rigid m-facets in Y.

The proof is almost a repetition of that of 8.2(b). Assume that ρ is a rigid
m-facet. Then yR(ρ)∗ ∈ ρ and R(ρ)∗ is rigid in the sense of B.7. Let g(ρ) =⊕

α∈R(ρ)∪{0} g
α, g(ρ)0 =

⊕
α∈R(ρ)0∪{0} g

α, g(ρ)N =
⊕

α∈R(ρ)N
gα if N ∈ Z − {0}.

Let G(ρ)0 be the closed connected subgroup of G such that LG(ρ)0 = g(ρ)0. Then
G(ρ)0 acts on g(ρ)1 by Ad. Let O0 be the open orbit for this action and let y ∈ CO0

(defined as in 3.9 in terms of g(ρ) instead of g). Let O be the G0-orbit on gnil1 that
contains O0. Note that we have also y ∈ CO (defined as in 3.9 in terms of g). By
8.2(a) we have yR(ρ)∗ = y/2. Since yR(ρ)∗ ∈ ρ it follows that y/2 ∈ ρ hence ρ = ρy
(see 3.9).
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Conversely, assume that O is a G0-orbit on gnil1 . We associate e, h, f, y, ρy to O
as in 3.9. Let ρ = ρy. Let R(ρ)∗ be as in 1.3. Since y/2 ∈ ρ, for N ∈ Z we have
R(ρ)N = {a ∈ RN̄ ; (y/2, α) = N}. We define g(ρ), g(ρ)N , G(ρ)0 as above. We have
g(ρ)N = {x ∈ gN̄ ; [h/2, x] = Nx}. Hence e ∈ g(ρ)1, f ∈ g(ρ)−1. It follows that e is
in the open G(ρ)0-orbit on g(ρ)1 and the element y associated as in 3.9 to this open
orbit is the same as y above. From the definitions we have y/2 = yR(ρ)∗ . Using
8.2(a) we deduce that R(ρ)∗ is rigid. We have yR(ρ)∗ = y/2 ∈ ρ. We see that ρ is
rigid. Now (a) follows.

Let O be a G0-orbit in gnil1 . Let ω be the W0-orbit on the set of rigid m-facets
associated to O in (a); then the subset 1Zω

R of V is defined (see 1.6). Using 7.2(b)
we deduce:

(b) Under the identification V = Q(v)⊗A K0,
1Zω = 1Zω

R becomes the subset

{s̃O,E ; E such that (O, E) ∈ I0}
of Q(v)⊗A K0.

Now 1.6(b) follows immediately from (b) and 1.6(c) follows from (a) and 3.6(a).
We show that 1.6(d) holds for any ξ ∈ Z. Now ξ is of the form s̃O,E for some
(O, E) ∈ I0. Then ξ in 1.6(d) exists: we can take ξ = tO, E (we use 3.6(b) and
3.8(b)). The uniqueness in 1.6(d) is immediate. Now 1.6(e) follows.

Let O, ω be as above. We show:
(c) d(ω) in 1.6 is equal to dimO.
By 7.2(a) it is enough to show that d(ω) is equal to dimE′′

1 (in 7.2 with ρ ∈ ω),
that is, to

dim(G0)− dim p
ρ
0 + dim p

ρ
1.

This is clear.
Using (c), we see that 1.6(f) holds. Now the proof of 1.6(g) (in the geometric

version) is entirely similar to the proof of the corresponding statement in the Z-
graded case; see [L9, 3.14(c), 3.17]. Also, 1.6(h) follows immediately from 1.6(g).

We now assume that m = 1. In this case 1.9(b) follows from 4.3(a) and 1.10(a)
follows from 4.5(a). Using (b) we see that 1.11(a) follows from the following state-
ment: if (O, E) ∈ I0 and dimO = 	(R), then O is the regular nilpotent orbit and
E = Q̄l; this is immediate. The statement 1.12(a) follows from 6.8(b).

8.4. In the remainder of this section when m = ∞ we write Bω, Z,Y• instead of
1Bω, 1ZR,

1Y• (see B.6); note that Bω, Z,Y• are also defined when m < ∞.

We prove Theorem 0.3. For η ∈ B we denote by η! the image of η under the
canonical bijection B ↔ Z (see 1.6 for m < ∞, B.6 for m = ∞). For η, η′ in B we
define M′

η,η′ ∈ Z[v] by

η′ =
∑
η∈B

M′
η,η′η!.

Let B ↔ I0 be the bijection such that η ∈ B is mapped to (O, E) if η corresponds
to tO, E under the identification V = Q(v) ⊗A K0. By 3.6(b), this bijection has
the property stated in the theorem.

8.5. We prove Theorem 0.5. Let Θ = Y•. We define χ : B → Θ by η �→ ω where
η ∈ Bω (see 1.6 when m < ∞ and B.6 when m = ∞).

We define h′ : Θ
∼−→ G0\gnil1 as in 8.3(a) if m < ∞ and as in 8.2(b) if m = ∞.

With these definitions, the theorem holds.
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8.6. We prove Theorem 0.5. The set Ŵ [ω] and the bijection χ−1(ω) ↔ Ŵ [ω] are
defined in 1.13. This proves the theorem.

8.7. The proof of Theorem 0.6 is contained in 1.12 (see 1.12(b)).
In the case where ω ∈ Θ corresponds to a nilpotent orbit in g which is not

even, the set Ŵ [ω] in Theorem 0.5 (with m = 1) consists of certain irreducible

representations of a proper subgroup of W , hence it is not the same as Ŵω in
Theorem 0.6 which consists of certain irreducible representations of W itself.

Appendix A. An alternative definition of the PBW basis

A.1. In this appendix we assume that we are in the setup of 1.2; in particular we
have m < ∞. Let

◦→ Y = Y −
⋃

α∈R1

{y ∈ Y; (y, α) = 1},

Y′′ = Y −
⋃

N∈Z−{0},α∈RN̄

{y ∈ Y; (y, α) = N}.

We have Y′ ⊂ Y′′ ⊂ ◦→ Y.
For y, y′ ∈ ◦→ Y we say that y ∼ y′ if for any α ∈ R1 we have

((y, α)− 1)((y′, α)− 1) > 0.

This is an equivalence relation on
◦→ Y. Let

◦→ Y be the set of equivalence
classes (a finite set). The following holds:

(a) Let c1 ∈ ◦→ Y, c2 ∈ ◦→ Y and let y1 ∈ c1 ∩Y′, y′1 ∈ c1 ∩Y′, y2 ∈ c2 ∩Y′,
y′2 ∈ c2 ∩Y′. Then (y1 : y2) = (y′1 : y′2).

This can be deduced from the arguments in the proof of [LY2, 10.7(a)]; it can

be also proved directly from the definitions. It follows that for any c ∈ ◦→ Y there
is a well defined element Tc ∈ V such that Tc = Iγ for any γ ∈ Y′ such that γ ⊂ c.

We note that the definition of V′ in [LY2, §10] is different from the one in this

paper (it is defined as a vector space with basis indexed by
◦→ Y); however, the

vector space V in [LY2, §10] is the same as the one we use in this paper. The inner
product on V used in [LY2] is of the form x, x′ �→ s(x : β(x′)) where (:) is as in
this paper and s ∈ Q(v) satisfies s ∈ 1 + vZ[v].

A.2. Note that if w ∈ W0 and c ∈ ◦→ Y, then w(c) ∈ ◦→ Y. Thus W0 acts

naturally on
◦→ Y. For c ∈ ◦→ Y we denote by R0,c the set of roots in R0 such that

the corresponding reflection keeps c stable. Let Ř0,c be the image of R0,c under
Ř ↔ R. Then (Y,X, (, ),̌ R0,c ↔ R0,c) is a root system. Let W0,c be the Weyl
group of this root system viewed as a subgroup of W0. Note that any w ∈ W0,c

keeps c stable. Let eW0,c
=

∑
w∈W0,c

v2|w| where w → |w| is the length function

on W0,c for a Coxeter group structure on W0,c determined by any choice of simple

roots for R0,c. Let VA be the A-submodule of V generated by {e−1
W0,c

Tc; c ∈ ◦→ Y}.
We have the following result:

(a) VA is equal to the A-submodule of V generated by the canonical basis.

Let c ∈ ◦→ Y. For any y ∈ Y′′ ∩ c let W0,y be the subgroup of W0 generated by
reflections in the roots in R0 which are zero on y. We define ey ∈ Z[v2] in the same
way as eW0,c

above but replacing W0,c by W0,y. Let

Y0 = {x ∈ Y;w(x) = x ∀w ∈ W0,c}.
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From the definition of
◦→ Y we see that c has the following “convexity” property:

if y1, y2, . . . , yk are elements of c, then (y1 + y2 + · · · + yk)/k ∈ c. Hence if y′ ∈ c,
then

∑
w∈W0,c

w(y′)/	(W0,c) ∈ c. We see that Y0 ∩ c �= ∅. Note that c is open in Y

and Y0 ∩ c is open in Y0. Also the affine hyperplanes in Y −Y′′ do not contain 0
hence their intersection with Y0 (which does contain 0) is a union of a discrete set
of affine hyperplanes in Y0. Hence Y′′ ∩Y0 is dense in Y0. Since Y0 ∩ c is open
and nonempty in Y0 it follows that Y′′ ∩Y0 ∩ c �= ∅. Let yc ∈ Y′′ ∩Y0 ∩ c. Then
yc is fixed by the reflection with respect to any root in R0,c hence any such root is
zero at yc so that W0,yc

= W0,c and
(b) eW0,c = eyc

.
From [LY2, §11] we see that the A-submodule of V generated by

{e−1
y Tc; c ∈ ◦→ Y, y ∈ Y′′ ∩ c}

is equal to the A-submodule of V generated by the canonical basis of V. Hence

to prove (a) it is enough to show that for any c ∈ ◦→ Y, the A-submodule Mc of
Q(v) generated by {e−1

y ; y ∈ Y′′ ∩ c} is equal to e−1
W0,c

A. For y ∈ Y′′ ∩ c we have

W0,y ⊂ W0,c. It follows that eW0,c
/ey ∈ Z[v2] so that Mc ⊂ e−1

W0,c
A. From (b) we

see that e−1
W0,c

A ⊂ Mc hence Mc = e−1
W0,c

A. This completes the proof of (a).

A.3. Let B̃′ be the set of all η ∈ VA such that (η : η) ∈ 1+vZ[v]. As in [LY2, 11.11]
we see that the following holds:

(a) B̃′ is a signed basis of the A-module VA (that is, the union of a basis with
(−1) times that basis; it is also a signed basis of the Q(v)-vector space V. There is

a unique A-basis B̃ of VA such that for any c ∈ ◦→ Y, the element e−1
W0,c

Tc ∈ VA

is a N-linear combination of elements in B̃.
Under the identification V = Q(v) ⊗A K0 (in 8.1), VA corresponds to K0 and B̃
corresponds to {tO, E ; (O, E) ∈ I0}. It follows that

(b) B̃ is the same as B in 1.6(e).

A.4. For any m-facet ρ we set

dρ = 	(α ∈ R0; (y, α) < 0) + 	(α ∈ R1; (y, α) ≥ 1)

where y ∈ ρ. Let [ρ] be the set of all γ′ ∈ Y′ such that ρ is contained in the closure
of γ′. For any γ′ ∈ Y′ we write Iγ′ =

∑
η∈B̃ Nη,γ′η ∈ V where Nη,γ′ ∈ Z[v, v−1].

For η ∈ B̃ let D(η) ∈ N be the minimum of all integers dρ where ρ runs through

the m-facets such that Nη,γ′ �= 0 for some γ′ ∈ [ρ]. For any n ∈ N let B̃n =

{η ∈ B̃;D(η) = n}, B̃≤n = {η ∈ B̃;D(η) ≤ n}. Let Vn (resp., V≤n) be the

Q(v)-subspace of V spanned by B̃n (resp., B̃≤n). When n = −1 we set V≤n = 0.
We have the following result.

(a) Let n ∈ N. There is a unique subspace V!
n of V≤n such that V≤n =

V≤n−1 ⊕ V!
n and (V≤n−1 : V!

n) = 0. Hence for any η ∈ B̃n there is a unique
element η! ∈ V!

n such that η − η! ∈ V≤n−1.

A.5. The proof of A.4(a) is based on geometry. Let η ∈ B̃ and let tO, E be the
corresponding basis element of K0. Let ρ be an m-facet such that Nη,γ′ �= 0 for
some γ′ ∈ [ρ]. Then γ′ = γ̃ = fρ(γ) (notation of 1.4, 7.1) for some ∞-facet γ of Y

with respect to R(ρ). Now some shift of E� is a direct summand of the complex K̃ γ̃

which (as in 7.1) is obtained from K̃γ on l
ρ
1 by the induction procedure in [LY1, §4]
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or 7.1. The support of K̃ γ̃ has dimension ≤ dimE′′ where E′′ is as in 3.3. Hence
dimO ≤ dimE′′ = dim p

ρ
1 + dimG0 − dimP ρ = dρ (notation of 3.3). Now let

y ∈ CO, ρ = ρy be as in 5.4. Then by the results in 5.4, we have Nη,γ′ �= 0 for some
γ′ ∈ [ρ]. Moreover, by 8.3(b) we have dρ = dimO. We see that dimO = D(η).
Hence under the identification V = Q(v)⊗AK0 (in 8.1), for n ∈ N, Vn becomes the
subspace of Q(v) ⊗A K0 spanned by {tO′, E ′; (O′, E ′) ∈ I0, dimO′ = n} and V≤n

becomes the subspace of Q(v) ⊗A K0 spanned by {tO′, E ′; (O′, E ′) ∈ I0, dimO′ ≤
n}. In terms of the basis B and its partition

⊔
ω∈Y• Bω in 1.6(e) we have that

Vn is the subspace of V spanned by
⊔

ω;d(ω)=nB
ω and V≤n is the subspace of V

spanned by
⊔

ω;d(ω)≤nB
ω. (We use 8.3(c).) From 1.6(f), (g) we see that V!

n is the

subspace of V≤n spanned by
⊔

ω;d(ω)=n Z
ω
R and that if η ∈ Bω with d(ω) = n, then

η! is the unique element of Zω
R such that η− η! ∈ V≤n−1. This completes the proof

of A.4(a).

A.6. Let Z̃ be the subset of V consisting of the elements η! for various n ∈ N and
various η ∈ B̃n. Then Z̃ is an A-basis of VA and an Q(v)-basis of V. It is in fact
equal to the basis ZR in 1.6. The present definition does not rely on the results in
§1, although the proof of its correctness does.

Appendix B. Z-graded root systems by G. Lusztig

B.1. In this appendix we reformulate the results in [L9] in a form which can be
used in this paper.

Let (Y,X, (, ),̌ R ↔ R) be as in 1.1. Let S be the collection of linear hyperplanes

{{y ∈ Y; (y, α) = 0};α ∈ R}.
Now S determines a set of facets called ∞-facets as follows. For y1, y2 in Y we
write y1 ∼ y2 if for any α ∈ R we have (y1, α) ≥ 0 ⇔ (y2, α) ≥ 0. If y1 ∼ y2, then
for any α ∈ R we have (y1, α) > 0 ⇔ (y2, α) > 0. (Indeed, assume that (y1, α) > 0
and (y2, α) �> 0. We have (y2, α) = 0 = (y2,−α) = 0 hence (y1,−α) ≥ 0 and
(y1, α) ≤ 0, contradicting (y1, α) > 0.) We deduce that if y1 ∼ y2, then for any
α ∈ R we have (y1, α) = 0 ⇔ (y2, α) = 0. Now ∼ is an equivalence relation; the
equivalence classes are the ∞-facets. For example,

[0] := {y′ ∈ Y; (y′, α) = 0 ∀α ∈ R}
is an ∞-facet of R and

Y′ = Y −
⋃
α∈R

{y ∈ Y; (y, α) = 0}

is a union of ∞-facets called ∞-alcoves. Let Y be the set of ∞-facets. Let Y′ be
the set of ∞-alcoves. The W -action on Y induces a W -action on Y preserving Y′.

For any ρ ∈ Y let R(ρ) = {α ∈ R; (y, α) = 0} where y ∈ ρ; this is indepen-
dent of the choice of y. Let Ř(ρ) be the image of R(ρ) under Ř ↔ R. Then
(Y,X, (, ),̌ R(ρ) ↔ R(ρ)) is a root system.

B.2. A Z-grading of R is a collection R∗ = (RN )N∈Z where RN are subsets of
R such that R =

⊔
N∈Z RN and such that for some y ∈ Y we have RN = {α ∈

R; (y, α) = N} for all N ∈ Z; we can assume that y ∈ 〈̌R〉; then y is uniquely
determined and is denoted by yR∗ .
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B.3. We now fix a Z-grading R∗ of R. We also fix δ ∈ {1,−1}.
Let W0 be the subgroup of W generated by the reflections with respect to roots

in R0. The obvious W0-action on R leaves stable each of the subsets RN , N ∈ Z.
Let eW0

=
∑

w∈W0
v2|w| where w → |w| is the length function on W0 for a Coxeter

group structure on W0 determined by any choice of simple roots for R0. We have
b(eW0

) = v−�(R0)eW0
.

For y, y′ in Y′ we define

τ (y, y′) = τ (y′, y) = 	{α ∈ Rδ; (y, α)(y
′, α) < 0} − 	{α ∈ R0; (y, α)(y

′, α) < 0} ∈ Z.

This is independent of δ (we use that α �→ −α is a bijection Rδ ↔ R−δ); this
justifies our notation. For y, y′ in Y′ we define

(y : y′) = eW0

∑
w∈W0

vτ(w(y),y′) ∈ A.

Let V′ = V′
R be the Q(v)-vector space with basis {Iγ ; γ ∈ Y′}. We define a

bilinear form (:) : V′ ×V′ → Q(v) by (Iγ : I ′γ) = (y : y′) where y ∈ γ, y′ ∈ γ′; this
is independent of the choice of y, y′. This form is symmetric since τ (y, w(y′)) =
τ (y′, w−1(y)) for w ∈ W0. Let R = {x ∈ V′; (x : V′) = 0}, V = VR = V′/R.
Then (:) induces a symmetric nondegenerate bilinear form on V denoted again by
(:). For γ ∈ Y′, the image in V of Iγ ∈ V′ is denoted again by Iγ .

Define a semilinear involution β : V′ → V′ by β(Iγ) = Iγ for all γ ∈ Y′. Define
a Q(v)-linear involution σ : V′ → V′ by σ(Iγ) = I−γ for all γ ∈ Y′. We show:

(a) For ξ, ξ′ in V′ we have b((β(ξ) : β(ξ′))) = v−�(Rδ)(ξ : σ(ξ′)).
We can assume that ξ = Iγ , ξ

′ = Iγ′ with γ, γ′ in Y′. We must show:

v−�(R0)eW0

∑
w∈W0

v−τ(γ,w(γ′)) = v−�(Rδ)eW0

∑
w∈W0

vτ(γ,−w(γ′)).

Let w ∈ W0 and let y ∈ γ, y′ ∈ w(γ′). It is enough to show:

	(R0)− 	(Rδ) + 	(α ∈ Rδ; (y, α)(y
′, α) < 0)− 	(α ∈ R0; (y, α)(y

′, α) < 0)

+ 	(α ∈ Rδ; (y, α)(y
′, α) > 0)− 	(α ∈ R0; (y, α)(y

′, α) > 0) = 0;

this is clear. This proves (a).
From (a) we see that β(R) ⊂ R hence β induces a semilinear involution V → V

denoted again by β.

B.4. Let ρ ∈ Y. Then R(ρ) has a Z-grading R(ρ)∗ where R(ρ)N = R(ρ) ∩ RN

for all N . Hence yR(ρ)∗ ∈ 〈̌R(ρ)〉 ⊂ Y is defined. We denote by Y′
ρ, Y

′
ρ, [0]ρ the

analogues of Y′, Y′, [0] when R is replaced by R(ρ).
We define a map fρ : Y′

ρ → Y′ as follows. Let γ ∈ Y′
ρ and let y1 ∈ γ, y ∈ ρ. We

have (y1, α) �= 0 for any α ∈ R(ρ). We can assume that (y, α) ∈ Z,−1 < (y1, α) < 1
for any α ∈ R. We show:

(a) y + y1 ∈ Y′.
If α ∈ R(ρ), then (y, α) = 0 and (y1, α) �= 0 hence (y + y1, α) �= 0. If α /∈ R(ρ),
then (y, α) ∈ Z−{0} and −1 < (y1, α) < 1 so that (y+y1, α) �= 0. This proves (a).

Now let y′1 ∈ γ, y′ ∈ ρ be such that (y′, α) ∈ Z,−1 < (y′1, α) < 1 for any α ∈ R.
By (a) we have y′ + y′1 ∈ Y′. We show:

(b) y + y1 ∼ y′ + y′1.
Assume that for some α ∈ R, (y+y1, α), (y

′+y′1, α) have different signs. If α ∈ R(ρ),
then (y, α) = (y′, α) = 0, so that (y1, α), (y

′
1, α) have different signs; this contradicts
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y1 ∈ γ, y′1 ∈ γ. If α /∈ R(ρ), then |(y, α)| ≥ 1; since −1 < (y1, α) < 1, we see that
(y, α) has the same sign as (y + y1, α). Similarly (y′, α) has the same sign as
(y′ + y′1, α). Thus (y, α), (y′, α) have different signs. This contradicts y ∼ y′ and
proves (b).

We see that γ �→ y + y1 is a well-defined map fρ : Y′
ρ → Y′.

B.5. Let V′
R(ρ),VR(ρ), (:)ρ be the analogues of V′,V, (:) where R∗ is replaced by

R(ρ)∗. We define a linear map 2 V′
R(ρ) → V′ by sending the basis element indexed

by γ ∈ Y′
ρ to Ifρ(γ). By an argument using geometry in [L9] (see also 8.2) one can

show
(a) this maps the radical of (:)ρ on V′

R(ρ) into the radical of (:) on V′ hence it

induces a linear map VR(ρ) → V denoted again by fρ.

B.6. Using induction on 	(R) we define a subset δY• of Y and for each ρ ∈ δY•

we define a nonempty subset δZρ
R of V. Assume first that R = ∅. Then V′ = V is

one dimensional with basis {I[0]}. We define δY• = {[0]}, δZ
[0]
R = {I[0]}. Next we

assume that R �= ∅. Let ρ ∈ Y. Assume first that ρ �= [0]. We have 	(R(ρ)) < 	(R).
We say that ρ ∈ δY• if (yR(ρ)∗ − yR∗)δ ∈ ρ and [0]ρ ∈ δY•

ρ (which is already

defined); we set δZρ
R = fρ(

δZ
[0]ρ
R(ρ)). It remains to decide whether [0] is in δY• or

not and, if it is, to define δZ
[0]
R . Let δZ ′ =

⋃
ρ∈δY•;ρ �=[0]

δZρ
R ⊂ V. Let L be the

Z[v]-submodule of V generated by 1Z ′ ∪ −1Z ′, let π : L → L/vL be the obvious
map, and let 1ζ ′ = π(1Z ′),−1ζ ′ = π(−1Z ′), ζ = 1ζ ′ ∪ −1ζ ′. By an argument using
geometry in [L9] (see also 8.2) one can show:

(a) ζ is a Z-basis of L/vL. For any b ∈ ζ there is a unique element b̃ ∈ L such

that π(b̃) = b and β(b̃) = b̃. Moreover, {b̃; b ∈ ζ} is a Z[v]-basis B of L and a
Q(v)-basis of V.

If ζ = δζ ′, then we declare [0] /∈ δY•. If ζ �= δζ ′, then we declare [0] ∈ δY•. By
an argument using geometry in [L9] (see also 8.2) one can show:

(b) Assume that ζ �= δζ ′; let δL′ be the Q(v)-vector subspace of V spanned by
δZ ′. Then for any b ∈ ζ− δζ ′ there is a unique element b̂ ∈ V such that b̃− b̂ ∈ δL′,
(b̂ : δL′) = 0. The map b �→ b̂ is a bijection of ζ − δζ ′ onto a subset of L denoted
by δZ [0].
This completes the inductive definition of δY• and of the subsets δZρ

R (for ρ ∈ δY•).
Note that if ρ = [0] is in δY•, then it is again true that (yR(ρ)∗ − yR∗)δ ∈ ρ.

Indeed, in this case we have R(ρ) = R so that (yR(ρ)∗ − yR∗)δ = 0.

Now the W0-action on Y restricts to a W0-action on δY•. Let δY• be the set

of orbits of this last action.3 Note that if ρ, ρ′ in δY• are in the same W0-orbit,

then δZρ
R = δZρ′

R . Hence for any ω ∈ δY• we can define δZω
R = δZρ

R where ρ is any

∞-facet in ω. Let δZR =
⋃

ω∈δY•
δZω

R. By an argument using geometry in [L9] one

can show:
(c) We have δZR =

⊔
ω∈δY•

δZω
R. If ω ∈ δY•, ρ ∈ ω, then fρ : δZ

[0]ρ
R(ρ) → δZω

R

is a bijection independent of the choice of ρ. Moreover, δZR is a Z[v]-basis of L
and a Q(v)-basis of V which we call a PBW basis. The map ξ �→ π(ξ) defines a

bijection δZR
∼−→ ζ. Hence there is a unique bijection δZR

∼−→ B, ξ �→ ξ defined by

2This corresponds to Z-graded parabolic induction.
3This is a combinatorial version of the set of G0-orbits on g1; see 8.2.
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the requirement that π(ξ) = π(ξ) for any ξ ∈ δZR. For ω ∈ δY• let δBω be the

subset of B corresponding to δZR under this bijection. We have B =
⊔

ω∈δY•
δBω.

Thus V has two PBW bases: 1ZR and −1ZR and one basis B which we call
canonical basis.

B.7. We say that R∗ in B.3 is rigid if 1Z
[0]
R �= ∅ or equivalently if −1Z

[0]
R �= ∅. (The

equivalence follows by an argument using geometry in [L9].)
Let ρ ∈ Y. We say that ρ is δ-rigid if ρ ∈ δY•.
Errata to [LY1].
page 277, line 3 of Contents. Replace Z/ �→ by Z/m.
page 280, line 5. Replace “...for large m, a Z/m-grading is the same as a Z-

grading, so that in this case ...results of [L4].” by: “...a Z-grading can be viewed
as a Z/m-grading for large m. (The converse does not hold.)”

page 287. Title of Section 2. Replace Z/ �→ by Z/m.
page 303, line 3 of 5.1. Replace p′′ by p′′∗ .
page 304, line 7. Replace ġδ = ...′′ by ġδ = {(gP0, z) ∈ G0/P0 × gd; Ad(g−1)z ∈

π−1(l0η)}.
page 305, lines 11-15. Replace k,k′gN̄ by k′,k′′gN̄ .
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