PARTIAL FLAG MANIFOLDS OVER A SEMIFIELD

G. LUSZTIG

ABSTRACT. For any semifield K we define a K-form of a partial flag manifold of a semisimple group of simply laced type over the complex numbers.

INTRODUCTION

0.1. Let G be the group of simply connected-type associated in [MT], [Ma], [Ti], [PK], to a not necessarily positive definite symmetric Cartan matrix and to the field C. We assume that a pinning of G is given. It consists of a "Borel subgroup" B^+ , a "maximal torus" $T \subset B^+$ and one parameter subgroups $x_i : \mathbb{C} \to G, y_i : \mathbb{C} \to G$ $(i \in I)$ analogous to those in [Lus94]. We have $x_i(\mathbb{C}) \subset B^+$. We fix a subset $J \subset I$. Let Π^J be the subgroup of G generated by B^+ and by $\bigcup_{i \in J} y_i(\mathbb{C})$. Let \mathcal{P}^J be the set of subgroups of G which are G-conjugate to Π^J (a partial flag manifold). As in [Lus94, 2.20] we consider the submonoid $G_{\geq 0}$ of G generated by $x_i(a), y_i(a)$ with $i \in I, a \in \mathbb{R}_{\geq 0}$ and by the "vector part" $T_{>0}$ of T. (T is a product of $T_{>0}$ and a compact torus.) Let K be a semifield. Let $\mathfrak{G}(K)$ be the monoid associated to G, K by generators and relations in [L18, 3.1(i)-(viii)]. When $K = \mathbb{R}_{>0}$ this can be identified with $G_{>0}$ by an argument given in [L19a].

The main result of this paper is a definition of an analogue $\mathcal{P}^{J}(K)$ of the partial flag manifold \mathcal{P}^{J} in the case where **C** is replaced by any semifield K. This is a set $\mathcal{P}^{J}(K)$ with an action of the monoid $\mathfrak{G}(K)$.

A part of our argument involves a construction of an analogue of the highest weight integrable representations of G when G is replaced by the monoid $\mathfrak{G}(K)$. The possibility of such a construction comes from the positivity properties of the canonical basis [Lus93]. A key role in our argument is played by a classical theorem of Kostant which describes any flag manifold by a system of quadratic equations.

0.2. In this subsection we assume that our Cartan matrix is of finite-type. If $K = \mathbf{R}_{>0}$, the set $\mathcal{P}^J(K)$ coincides with the subset $\mathcal{P}^J_{\geq 0}$ of \mathcal{P}^J defined in [Lus98]. If K is the semifield \mathbf{Z} and $J = \emptyset$, a definition of the flag manifold over \mathbf{Z} was given in [L19b]; we expect that it agrees with the definition in this paper, but we have not proved that. In the case where $G = SL_n$, a form over \mathbf{Z} of a Grassmannian was defined earlier in [SW].

1. The set $\mathcal{P}^J(K)$

1.1. Let $\mathcal{X} = \text{Hom}(T, \mathbb{C}^*)$. This is a free abelian group with basis $\{\omega_i; i \in I\}$ consisting of fundamental weights. Let $\mathcal{X}^+ = \sum_{i \in I} \mathbf{N}\omega_i \subset \mathcal{X}$ be the set of dominant weights. For $\lambda \in \mathcal{X}$ let $\text{supp}(\lambda)$ be the set of all $i \in I$ such that ω_i appears with $\neq 0$

Received by the editors February 21, 2020, and, in revised form, June 24, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 20G99.

The author was supported by NSF grant DMS-1855773.

G. LUSZTIG

coefficient in λ . Let $\mathcal{X}_{J}^{+} = \{\lambda \in \mathcal{X}^{+}; \operatorname{supp}(\lambda) = I - J\}, \ \mathcal{X}_{\bar{J}}^{+} = \{\lambda \in \mathcal{X}^{+}; \operatorname{supp}(\lambda) \subset I - J\}.$

The irreducible highest weight integrable representations of G are indexed by their highest weight, an element of \mathcal{X}^+ . For $\lambda \in \mathcal{X}^+$ let ${}^{\lambda}V$ be a **C**-vector space which is an irreducible highest weight integrable representation of G indexed by λ . Let ${}^{\lambda}P$ be the set of lines in ${}^{\lambda}V$. Let ${}^{\lambda}\xi^+$ be a highest weight vector of ${}^{\lambda}V$. Let ${}^{\lambda}\beta$ be the canonical basis of ${}^{\lambda}V$ (see [Lus93, 11.10]) containing ${}^{\lambda}\xi^+$.

For a nonzero vector ξ in a vector space V we denote by $[\xi]$ the line in V that contains ξ . Note that Π^J (see 0.1) is the stabilizer of $[{}^{\lambda}\xi]$ in G where $\lambda \in \mathcal{X}_J^+$.

For λ, λ' in \mathcal{X}^+ we define a linear map

$$E:{}^{\lambda}V\times{}^{\lambda'}V\to{}^{\lambda}V\otimes{}^{\lambda'}V$$

by $(\xi, \xi') \mapsto \xi \otimes \xi'$ and a linear map

$$\Gamma: {}^{\lambda+\lambda'}V \to {}^{\lambda}V \otimes {}^{\lambda'}V$$

which is compatible with the *G*-actions and takes ${}^{\lambda+\lambda'}\xi^+$ to ${}^{\lambda}\xi^+ \otimes {}^{\lambda'}\xi^+$. Let ${}^{\lambda,\lambda'}P$ be the set of lines in ${}^{\lambda}\xi^+ \otimes {}^{\lambda'}\xi^+$. Now *E* induces a map $\overline{E} : {}^{\lambda}P \times {}^{\lambda'}P \to {}^{\lambda,\lambda'}P$ and Γ induces a map $\overline{\Gamma} : {}^{\lambda+\lambda'}P \to {}^{\lambda,\lambda'}P$.

Let \mathcal{C} be the set of all collections $\{x_{\lambda} \in {}^{\lambda}V; \lambda \in \mathcal{X}_{\overline{j}}^{+}\}$ such that for any λ, λ' in $\mathcal{X}_{\overline{j}}^{+}$ we have $\Gamma(x_{\lambda+\lambda'}) = E(x_{\lambda}, x_{\lambda'})$. Let \mathcal{C}^{*} be the set of all $(x_{\lambda}) \in \mathcal{C}$ such that $x_{\lambda} \neq 0$ for any $\lambda \in \mathcal{X}_{\overline{j}}^{+}$. Let H be the group consisting of all collections $\{z_{\lambda} \in \mathbf{C}^{*}; \lambda \in \mathcal{X}_{\overline{j}}^{+}\}$ such that for any λ, λ' in $\mathcal{X}_{\overline{j}}^{+}$ we have $z_{\lambda+\lambda'} = z_{\lambda}z_{\lambda'}$. Now H acts on \mathcal{C} by $(z_{\lambda}), (x_{\lambda}) \mapsto (z_{\lambda}x_{\lambda})$. This restricts to a free action of H on \mathcal{C}^{*} . Let \mathcal{P}^{J} be the set of orbits for this action. Note that G acts on \mathcal{C} by $g(x_{\lambda}) = (g(x_{\lambda}))$. This induces a G-action on \mathcal{C}^{*} and on \mathcal{P}^{J} . We define a map $\theta : \mathcal{P}^{J} \to \mathcal{P}^{J}$ by $g\Pi^{J}g^{-1} \mapsto H$ -orbit of $(g(^{\lambda}\xi))$ where $g \in G$. This is well defined since $(^{\lambda}\xi) \in \mathcal{C}$ and since for $g \in \Pi^{J}$, $(g(^{\lambda}\xi))$ is in the same H-orbit as $(^{\lambda}\xi)$. We show the following.

Lemma 1.2. $\theta : \mathcal{P}^J \to \mathcal{P}^J$ is a bijection.

For $\lambda \in \mathcal{X}_{\overline{J}}^+$ we denote by $\Pi(\lambda)$ the stabilizer of $[{}^{\lambda}\xi]$ in G. Now θ is injective since if $\lambda \in \mathcal{X}_{J}^+$, a subgroup $\Pi \in \mathcal{P}^J$ is uniquely determined by the Π -stable line in ${}^{\lambda}V$. Now let $(x_{\lambda}) \in \mathcal{C}^*$. We show that the H-orbit of (x_{λ}) is in $\theta(\mathcal{P}^J)$. Let $\lambda \in \mathcal{X}_{\overline{J}}^+$. We have $\Gamma(x_{2\lambda}) = E(x_{\lambda}, x_{\lambda})$. Thus, $E_{x_{\lambda}, x_{\lambda}}$ is contained in the irreducible summand of ${}^{\lambda}V \otimes {}^{\lambda}V$ which is isomorphic to ${}^{2\lambda}V$, hence by a theorem of Kostant (see [Gar82] for the finite-type case and [PK] for the general case), we must have $[x_{\lambda}] = g_{\lambda}[{}^{\lambda}\xi]$ for some $g_{\lambda} \in G$. Since $(x_{\lambda}) \in \mathcal{C}^*$, for λ, λ' in $\mathcal{X}_{\overline{I}}^+$ we have

$$\bar{E}([g_{\lambda+\lambda'}(^{\lambda}\xi)], [g_{\lambda+\lambda'}(^{\lambda'}\xi)]) = \bar{\Gamma}([g_{\lambda+\lambda'}(^{\lambda+\lambda'}\xi)]) = \bar{E}([g_{\lambda}(^{\lambda}\xi)], [g_{\lambda'}(^{\lambda'}\xi)]).$$

Since E is injective, it follows that

$$[g_{\lambda+\lambda'}(^{\lambda}\xi)] = [g_{\lambda}(^{\lambda}\xi)], [g_{\lambda+\lambda'}(^{\lambda'}\xi)] = [g_{\lambda'}(^{\lambda'}\xi)]$$

so that

(a) $g_{\lambda}^{-1}g_{\lambda+\lambda'} \in \Pi(\lambda)$.

Assuming that $\lambda, \lambda' \in \mathcal{X}_J^+$, we see that $g_{\lambda}^{-1}g_{\lambda+\lambda'} \in \Pi^J$ and similarly $g_{\lambda'}^{-1}g_{\lambda+\lambda'} \in \Pi^J$, so that $g_{\lambda'}^{-1}g_{\lambda} \in \Pi^J$. Thus, there exists $g \in G$ such that for any $\lambda \in \mathcal{X}_J^+$ we have $g_{\lambda} = gp_{\lambda}$ with $p_{\lambda} \in \Pi^J$. Replacing g_{λ} by $g_{\lambda}p_{\lambda}^{-1}$, we see that we can assume that

(b) $g_{\lambda} = g$ for any $\lambda \in \mathcal{X}_J^+$.

If $\lambda \in \mathcal{X}_{\bar{J}}^+$, $\lambda' \in \mathcal{X}_{J}^+$, we have $\lambda + \lambda' \in \mathcal{X}_{J}^+$ hence by (b), $g_{\lambda+\lambda'} = g$, so that (a) implies $g_{\lambda}^{-1}g \in \Pi(\lambda)$ and $[x_{\lambda}] = [g_{\lambda}(^{\lambda}\xi)] = [g(^{\lambda}\xi)]$. Thus for any $\lambda \in \mathcal{X}_{\bar{J}}^+$ we have $x_{\lambda} = z_{\lambda}g(^{\lambda}\xi)$ for some $z_{\lambda} \in \mathbf{C}^*$. Since $(x_{\lambda}) \in \mathcal{C}^*$ and $(g(^{\lambda}\xi)) \in \mathcal{C}^*$, we necessarily have $(z_{\lambda}) \in H$. Thus the *H*-orbit of (x_{λ}) is in the image of θ . The lemma is proved.

1.3. Let \mathcal{D} be the category whose objects are pairs (V,β) where V is a **C**-vector space and β is a basis of V; a morphism from (V,β) to (V',β') is a **C**-linear map $f: V \to V'$ such that for any $b \in \beta$ we have $f(b) = \sum_{b' \in \beta'} c_{b,b'}b'$ where $c_{b,b'} \in \mathbf{N}$ for all b, b' and $c_{b,b'} = 0$ for all but finitely many b'.

Let K be a semifield. As in [L19b] we define $K^! = K \sqcup \{\circ\}$ where \circ is a symbol. We extend the sum and product on K to a sum and product on $K^!$ by defining $\circ + a = a, a + \circ = a, \circ \times a = \circ, a \times \circ = \circ$ for $a \in K$ and $\circ + \circ = \circ, \circ \times \circ = \circ$. Thus $K^!$ becomes a monoid under addition and a monoid under multiplication. Moreover, the distributivity law holds in $K^!$.

A K-semivector space is an abelian (additive) semigroup \mathcal{V} with neutral element $\underline{\circ}$ in which a map $K^! \times \mathcal{V} \to \mathcal{V}$, $(k, v) \mapsto kv$ ("scalar multiplication") is given such that (kk')v = k(k'(v)), (k + k')v = kv + k'v for k, k' in $K^!$, $v \in \mathcal{V}$ and k(v + v') = kv + kv' for $k \in K^!$, v, v' in \mathcal{V} ; moreover, we assume that $k\underline{\circ} = \underline{\circ}$ for $k \in K^!$.

Let $\mathcal{D}(K)$ be the category whose objects are K-semivector spaces \mathcal{V} ; a morphism from \mathcal{V} to \mathcal{V}' is a map $f : \mathcal{V} \to \mathcal{V}'$ of semigroups preserving the neutral elements and commuting with scalar multiplication. For any $\mathcal{V} \in \mathcal{D}(K)$ let $\operatorname{End}(\mathcal{V}) = \operatorname{Hom}_{\mathcal{D}(K)}(\mathcal{V}, \mathcal{V})$; this is a monoid under composition of maps.

For $(V,\beta) \in \mathcal{D}$ let V(K) be the set of formal sums $\xi = \sum_{b \in \beta} \xi_b b$ with $\xi_b \in K^!$ for all $b \in \beta$ and $\xi_b = \circ$ for all but finitely many b. We can define addition on V(K)by $(\sum_{b \in \beta} \xi_b b) + (\sum_{b \in \beta} \xi'_b b) = \sum_{b \in \beta} (\xi_b + \xi'_b) b$. We can define scalar multiplication by elements in $K^!$ by $k(\sum_{b \in \beta} \xi_b) = \sum_{b \in \beta} (k\xi_b) b$. Then V(K) becomes an object of $\mathcal{D}(K)$. The neutral element for addition is $\underline{\circ} = \sum_{b \in \beta} \circ b$. Let f be a morphism from (V,β) to (V',β') in \mathcal{D} . For $b \in \beta$ we have $f(b) = \sum_{b' \in \beta'} c_{b,b'} b'$ where $c_{b,b'} \in \mathbf{N}$. We define a map $f(K) : V(K) \to V'(K)$ by $f(K)(\sum_{b \in \beta} \xi_b b) = \sum_{b' \in \beta'} (\sum_{b \in \beta} c_{b,b'} \xi_b) b'$. Here for $c \in \mathbf{N}, k \in K^!$ we set $ck = k + k + \cdots + k$ (c terms) if c > 0 and $ck = \circ$ if c = 0. Note that f(K) is a morphism in $\mathcal{D}(K)$. We have thus defined a functor $(V,\beta) \mapsto V(K)$ from \mathcal{D} to $\mathcal{D}(K)$.

Let $\lambda \in \mathcal{X}^+$. We have $({}^{\lambda}V, {}^{\lambda}\beta) \in \mathcal{D}$ hence ${}^{\lambda}V(K) \in \mathcal{D}(K)$ is defined. For $i \in I, m \in \mathbb{Z}$, the linear maps $e_i^{(n)}, f_i^{(n)}$ from ${}^{\lambda}V$ to ${}^{\lambda}V$ (as in [L19b, 1.4]) are morphisms in \mathcal{D} (we use the positivity property [Lus93, 22.1.7] of ${}^{\lambda}\beta$; in [Lus93]this property is stated assuming that the Cartan matrix is of simply laced-type, but the same proof applies in our case). Hence they define morphisms $e_i^{(n)}(K), f_i^{(n)}(K)$ from ${}^{\lambda}V(K)$ to ${}^{\lambda}V(K)$. For $i \in I, k \in K$ we define $i^k \in \operatorname{End}({}^{\lambda}V(K)), (-i)^k \in \operatorname{End}({}^{\lambda}V(K))$ by

$$i^{k}(b) = \sum_{n \in \mathbf{N}} k^{n} e_{i}^{(n)}(K)b, \quad (-i)^{k}(b) = \sum_{n \in \mathbf{N}} k^{n} f_{i}^{(n)}(K)b$$

for any $b \in {}^{\lambda}\beta$.

For any $i \in I$ there is a well defined function $l_i : {}^{\lambda}\beta \to \mathbf{Z}$ such that for $b \in {}^{\lambda}\beta$, $t \in \mathbf{C}^*$ we have $i(t)b = t^{l_i(b)}b$. (Here *i* is viewed as a simple coroot homomorphism $\mathbf{C} \to T$.) For $i \in I, k \in K$ we define $\underline{i}^k \in \operatorname{End}({}^{\lambda}V(K))$ by $\underline{i}^k(b) = k^{l_i(b)}b$ for any $b \in {}^{\lambda}\beta$. As in [L19b, 1.5], the elements $i^k, (-i)^k, \underline{i}^k$ (with $i \in I, k \in K$) in

End $({}^{\lambda}V(K))$ satisfy the relations in [L19a, 2.10(i)-(vii)] defining the monoid $\mathfrak{G}(K)$ hence they define a monoid homomorphism $\mathfrak{G}(K) \to \operatorname{End}({}^{\lambda}V(K))$. It follows that $\mathfrak{G}(K)$ acts on ${}^{\lambda}V(K)$.

1.4. In the setup of 1.4 for λ, λ' in \mathcal{X}^+ we can view ${}^{\lambda}V \otimes {}^{\lambda'}V$ with its basis $\mathcal{S} = {}^{\lambda}\beta \otimes {}^{\lambda'}\beta$ as an object of \mathcal{D} . Hence $({}^{\lambda}V \otimes {}^{\lambda'}V)(K) \in \mathcal{D}(K)$ is defined. We define $E(K) : {}^{\lambda}V(K) \times {}^{\lambda'}V(K) \to ({}^{\lambda}V \otimes {}^{\lambda'}V)(K)$ by

$$(\sum_{b\in^{\lambda_{\beta}}}\xi_{b}b),(\sum_{b'\in^{\lambda'_{\beta}}}\xi'_{b'}b')\mapsto\sum_{(b,b')\in\mathcal{S}}\xi_{b}\xi'_{b'}(b\otimes b').$$

(This is not a morphism in $\mathcal{D}(K)$.) We define a map

$$\operatorname{End}({}^{\lambda}V(K)) \times \operatorname{End}({}^{\lambda'}V(K)) \to \operatorname{End}(({}^{\lambda}V \otimes {}^{\lambda'}V)(K))$$

by $(\tau, \tau') \mapsto [b \otimes b') \mapsto E(K)(\tau(b), \tau'(b'))]$. Composing this map with the map

 $\mathfrak{G}(K) \to \operatorname{End}({}^{\lambda}V(K)) \times \operatorname{End}({}^{\lambda'}V(K))$

whose components are the maps

$$\mathfrak{G}(K) \to \operatorname{End}({}^{\lambda}V(K)), \quad \mathfrak{G}(K) \to \operatorname{End}({}^{\lambda'}V(K))$$

in 1.4 we obtain a map $\mathfrak{G}(K) \to \operatorname{End}(({}^{\lambda}V \otimes {}^{\lambda'}V)(K))$ which is a monoid homomorphism. Thus $\mathfrak{G}(K)$ acts on $({}^{\lambda}V \otimes {}^{\lambda'}V)(K)$; it also acts on ${}^{\lambda}V(K) \times {}^{\lambda'}V(K)$ (by 1.4) and the two actions are compatible with E(K).

Let $\Gamma : {}^{\lambda+\lambda'}V \to {}^{\lambda}V \otimes {}^{\lambda'}V$ be as in 1.1. For $b \in {}^{\lambda+\lambda'}\beta$ we have

$$\Gamma(b) = \sum_{(b_1,b_1') \in \mathcal{S}} e_{b,b_1,b_1'} b_1 \otimes b_1'$$

where $e_{b,b_1,b'_1} \in \mathbf{N}$. (This can be deduced from the positivity property [Lus93, 14.4.13(b)] of the homomorphism r in [Lus93, 1.2.12].) Thus Γ is a morphism in \mathcal{D} hence $\Gamma(K) : {}^{\lambda+\lambda'}V(K) \to ({}^{\lambda}V \otimes {}^{\lambda'}V)(K)$ is a well defined morphism in $\mathcal{D}(K)$. Note that $\Gamma(K)$ is compatible with the action of $\mathfrak{G}(K)$ on the two sides.

1.5. In the setup of 1.4 let $\mathcal{C}(K)$ be the set of all collections $\{x_{\lambda} \in {}^{\lambda}V(K); \lambda \in \mathcal{X}_{\overline{J}}^+\}$ such that for any λ, λ' in $\mathcal{X}_{\overline{J}}^+$ we have $\Gamma(K)(x_{\lambda+\lambda'}) = E(K)(x_{\lambda}, x_{\lambda'})$. Let $\mathcal{C}^*(K)$ be the set of all $(x_{\lambda}) \in \mathcal{C}(K)$ such that $x_{\lambda} \neq \underline{\circ}$ for any $\lambda \in \mathcal{X}_{\overline{J}}^+$. Let H(K) be the group (multiplication component by component) consisting of all collections $\{z_{\lambda} \in K; \lambda \in \mathcal{X}_{\overline{J}}^+\}$ such that for any λ, λ' in $\mathcal{X}_{\overline{J}}^+$ we have $z_{\lambda+\lambda'} = z_{\lambda}z_{\lambda'}$. Now H(K) acts on $\mathcal{C}(K)$ by $(z_{\lambda}), (x_{\lambda}) \mapsto (z_{\lambda}x_{\lambda})$. This restricts to a free action of H(K)on $\mathcal{C}^*(K)$. Let $\mathcal{P}^J(K)$ be the set of orbits for this action. Note that $\mathfrak{G}(K)$ acts on $\mathcal{C}(K)$ by acting component by component (see 1.4); we use that $E(K), \Gamma(K)$ are compatible with the $\mathfrak{G}(K)$ -actions (see 1.5). This induces a $\mathfrak{G}(K)$ -action on $\mathcal{P}^J(K)$.

1.6. In this subsection we assume that $K = \mathbf{R}_{>0}$. If $(x_{\lambda}) \in \mathcal{C}^*(K)$, we can view (x_{λ}) as an element of \mathcal{C}^* by viewing ${}^{\lambda}V(K)$ as a subset of ${}^{\lambda}V$ in an obvious way. The inclusion $\mathcal{C}^*(K) \subset \mathcal{C}^*$ is compatible with the actions of H(K) and H (we have $H(K) \subset H$) hence it induces an (injective) map $\mathcal{P}^J(K) \to {}^{\prime}\mathcal{P}^J$. Composing this with the inverse of the bijection $\mathcal{P}^J \to {}^{\prime}\mathcal{P}^J$ (see 1.3) we obtain an injective map $\mathcal{P}^J(K) \to \mathcal{P}^J$. We define $\mathcal{P}^{J}_{>0}$ to be the image of this map.

Assuming further that our Cartan matrix is of finite-type, we show that the last definition of $\mathcal{P}_{>0}^{J}$ agrees with the definition in [Lus98]. Applying [Lus98, 3.4] to a

 $\lambda \in \mathcal{X}_J^+$ with large enough coordinates we see that $\mathcal{P}_{\geq 0}^J$ (in the new definition) is contained in $\mathcal{P}_{\geq 0}^J$ (in the definition of [Lus98]). The reverse inclusion follows from [Lus98, 3.2].

1.7. Any homomorphism of semifields $K \to K'$ induces in an obvious way a map $\mathcal{P}^J(K) \to \mathcal{P}^J(K')$.

1.8. We expect that when K' is the semifield $\{1\}$ with one element, one can identify $\mathcal{P}^{\emptyset}(K')$ with the set of pairs (a, a') in the Weyl group W of G such that $a \leq a'$ for the standard partial order of W. If K is any semifield one can also expect that the fibre of the map $\mathcal{P}^{\emptyset}(K) \to \mathcal{P}^{\emptyset}(\{1\})$ induced by the obvious map $K \to \{1\}$ (see 1.8) at the element corresponding to (a, a') is in bijection with $K^{|a'|-|a|}$ where $a \mapsto |a|$ is the length function on W.

2. The semiring M(K)

2.1. In this section we assume that our Cartan matrix is of finite-type. Let K be a semifield. Let $M(K) = \bigoplus_{\lambda \in \mathcal{X}_J^+} {}^{\lambda}V(K)$ viewed as a monoid under addition and with scalar multiplication by elements of $K^!$.

We define a multiplication $\mu: M(K) \times M(K) \to M(K)$ which is "bilinear" with respect to addition and scalar multiplication and satisfies $\mu(b_1, b'_1) = \sum_{b \in \lambda + \lambda' \beta} e_{b,b_1,b'_1} b_{b}$ where $\lambda \in \mathcal{X}_{\overline{f}}^+, \lambda' \in \mathcal{X}_{\overline{f}}^+, b_1 \in {}^{\lambda}\beta, b'_1 \in {}^{\lambda'}\beta$, and $e_{b,b_1,b'_1} \in \mathbb{N}$ (viewed as an element of $K^!$) is as in the definition of $\Gamma(K)$ in 1.5, so that it comes from the homomorphism r in [Lus93, 1.2.12]. This can be viewed as a direct sum of "transposes" of maps like $\Gamma(K)$. From the properties of r we see that the multiplication μ is associative and commutative; it is clearly distributive with respect to addition. This multiplication has a unit element, given by the unique element in β^{λ} with $\lambda = 0$. Note that M(K) is a semiring. Now M(K) can be viewed as a form over K of the coordinate ring of G/U^+ where U^+ is the unipotent radical of B^+ . Let M'(K) be the set of maps $M(K) \to K^!$ which are compatible with addition, multiplication, and with scalar multiplication by elements of $K^!$, take the unit element of M(K)to the unit element of $K^!$, and take the element with all components equal to $\underline{\circ}$ to $\mathbf{\circ} \in K^!$. It is easy to show that M'(K) is in canonical bijection with $\mathcal{C}(K)$.

References

- [Gar82] Devra Garfinkle, A new construction of the Joseph ideal, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR2941017
- [Lus93] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR1227098
- [Lus94] G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568, DOI 10.1007/978-1-4612-0261-5_20. MR1327548
- [Lus98] G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78, DOI 10.1090/S1088-4165-98-00046-6. MR1606402
- [L19a] G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459, DOI 10.21915/bimas.2019402. MR4054343
- [L18] G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459, DOI 10.21915/bimas.2019402. MR4054343
- [L19b] G. Lusztig, The flag manifold over the semifield Z, arXiv:1912.13329.
- [Ma] Richard Marcuson, Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra 34 (1975), 84–96, DOI 10.1016/0021-8693(75)90195-7. MR399295

G. LUSZTIG

- [MT] R. V. Moody and K. L. Teo, *Tits' systems with crystallographic Weyl groups*, J. Algebra 21 (1972), 178–190, DOI 10.1016/0021-8693(72)90016-6. MR320165
- [PK] Dale H. Peterson and Victor G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1778–1782, DOI 10.1073/pnas.80.6.1778. MR699439
- [SW] David Speyer and Lauren Williams, The tropical totally positive Grassmannian, J. Algebraic Combin. 22 (2005), no. 2, 189–210, DOI 10.1007/s10801-005-2513-3. MR2164397
- [L19b] Mogens Esrom Larsen, Summa summarum, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2007. [Author name on title page: Morgens Esrom Larsen]. MR2346609
- [Ti] J. Tits, *Resumé de cours*, Annuaire Collège de France **81** (1980-81), 75-87.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139

Email address: gyuri@mit.edu

402