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PARTIAL FLAG MANIFOLDS OVER A SEMIFIELD

G. LUSZTIG

Abstract. For any semifield K we define a K-form of a partial flag manifold
of a semisimple group of simply laced type over the complex numbers.

Introduction

0.1. Let G be the group of simply connected-type associated in [MT], [Ma], [Ti],
[PK], to a not necessarily positive definite symmetric Cartan matrix and to the field
C. We assume that a pinning of G is given. It consists of a “Borel subgroup” B+,
a “maximal torus” T ⊂ B+ and one parameter subgroups xi : C → G, yi : C →
G (i ∈ I) analogous to those in [Lus94]. We have xi(C) ⊂ B+. We fix a subset
J ⊂ I. Let ΠJ be the subgroup of G generated by B+ and by

⋃
i∈J yi(C). Let PJ

be the set of subgroups of G which are G-conjugate to ΠJ (a partial flag manifold).
As in [Lus94, 2.20] we consider the submonoid G≥0 of G generated by xi(a), yi(a)
with i ∈ I, a ∈ R≥0 and by the “vector part” T>0 of T . (T is a product of T>0

and a compact torus.) Let K be a semifield. Let G(K) be the monoid associated
to G,K by generators and relations in [L18, 3.1(i)-(viii)]. When K = R>0 this can
be identified with G≥0 by an argument given in [L19a].

The main result of this paper is a definition of an analogue PJ(K) of the partial
flag manifold PJ in the case where C is replaced by any semifield K. This is a set
PJ(K) with an action of the monoid G(K).

A part of our argument involves a construction of an analogue of the highest
weight integrable representations of G when G is replaced by the monoid G(K).
The possibility of such a construction comes from the positivity properties of the
canonical basis [Lus93]. A key role in our argument is played by a classical theorem
of Kostant which describes any flag manifold by a system of quadratic equations.

0.2. In this subsection we assume that our Cartan matrix is of finite-type. If K =
R>0, the set PJ (K) coincides with the subset PJ

≥0 of PJ defined in [Lus98]. If K

is the semifield Z and J = ∅, a definition of the flag manifold over Z was given in
[L19b]; we expect that it agrees with the definition in this paper, but we have not
proved that. In the case where G = SLn, a form over Z of a Grassmannian was
defined earlier in [SW].

1. The set PJ (K)

1.1. Let X = Hom(T,C∗). This is a free abelian group with basis {ωi; i ∈ I}
consisting of fundamental weights. Let X+ =

∑
i∈I Nωi ⊂ X be the set of dominant

weights. For λ ∈ X let supp(λ) be the set of all i ∈ I such that ωi appears with �= 0

Received by the editors February 21, 2020, and, in revised form, June 24, 2020.
2010 Mathematics Subject Classification. Primary 20G99.
The author was supported by NSF grant DMS-1855773.

c©2020 American Mathematical Society

397

https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/547


398 G. LUSZTIG

coefficient in λ. Let X+
J = {λ ∈ X+; supp(λ) = I − J}, X+

J̄
= {λ ∈ X+; supp(λ) ⊂

I − J}.
The irreducible highest weight integrable representations of G are indexed by

their highest weight, an element of X+. For λ ∈ X+ let λV be a C-vector space
which is an irreducible highest weight integrable representation of G indexed by λ.
Let λP be the set of lines in λV . Let λξ+ be a highest weight vector of λV . Let λβ
be the canonical basis of λV (see [Lus93, 11.10]) containing λξ+.

For a nonzero vector ξ in a vector space V we denote by [ξ] the line in V that
contains ξ. Note that ΠJ (see 0.1) is the stabilizer of [λξ] in G where λ ∈ X+

J .
For λ, λ′ in X+ we define a linear map

E : λV × λ′
V → λV ⊗ λ′

V

by (ξ, ξ′) �→ ξ ⊗ ξ′ and a linear map

Γ : λ+λ′
V → λV ⊗ λ′

V

which is compatible with the G-actions and takes λ+λ′
ξ+ to λξ+ ⊗ λ′

ξ+. Let λ,λ′
P

be the set of lines in λξ+ ⊗ λ′
ξ+. Now E induces a map Ē : λP × λ′

P → λ,λ′
P and

Γ induces a map Γ̄ : λ+λ′
P → λ,λ′

P .
Let C be the set of all collections {xλ ∈ λV ;λ ∈ X+

J̄
} such that for any λ, λ′

in X+
J̄

we have Γ(xλ+λ′) = E(xλ, xλ′). Let C∗ be the set of all (xλ) ∈ C such

that xλ �= 0 for any λ ∈ X+
J̄
. Let H be the group consisting of all collections

{zλ ∈ C∗;λ ∈ X+
J̄
} such that for any λ, λ′ in X+

J̄
we have zλ+λ′ = zλzλ′ . Now H

acts on C by (zλ), (xλ) �→ (zλxλ). This restricts to a free action of H on C∗. Let
′PJ be the set of orbits for this action. Note that G acts on C by g(xλ) = (g(xλ)).
This induces a G-action on C∗ and on ′PJ . We define a map θ : PJ → ′PJ by
gΠJg−1 �→ H-orbit of (g(λξ)) where g ∈ G. This is well defined since (λξ) ∈ C and
since for g ∈ ΠJ , (g(λξ)) is in the same H-orbit as (λξ). We show the following.

Lemma 1.2. θ : PJ → ′PJ is a bijection.

For λ ∈ X+
J̄

we denote by Π(λ) the stabilizer of [λξ] in G. Now θ is injective

since if λ ∈ X+
J , a subgroup Π ∈ PJ is uniquely determined by the Π-stable line

in λV . Now let (xλ) ∈ C∗. We show that the H-orbit of (xλ) is in θ(PJ). Let
λ ∈ X+

J̄
. We have Γ(x2λ) = E(xλ, xλ). Thus, Exλ,xλ

is contained in the irreducible

summand of λV ⊗ λV which is isomorphic to 2λV , hence by a theorem of Kostant
(see [Gar82] for the finite-type case and [PK] for the general case), we must have
[xλ] = gλ[

λξ] for some gλ ∈ G. Since (xλ) ∈ C∗, for λ, λ′ in X+
J̄

we have

Ē([gλ+λ′(λξ)], [gλ+λ′(λ
′
ξ)]) = Γ̄([gλ+λ′(λ+λ′

ξ)]) = Ē([gλ(
λξ)], [gλ′(λ

′
ξ)]).

Since Ē is injective, it follows that

[gλ+λ′(λξ)] = [gλ(
λξ)], [gλ+λ′(λ

′
ξ)] = [gλ′(λ

′
ξ)],

so that
(a) g−1

λ gλ+λ′ ∈ Π(λ).

Assuming that λ, λ′ ∈ X+
J , we see that g−1

λ gλ+λ′ ∈ ΠJ and similarly g−1
λ′ gλ+λ′ ∈

ΠJ , so that g−1
λ′ gλ ∈ ΠJ . Thus, there exists g ∈ G such that for any λ ∈ X+

J we

have gλ = gpλ with pλ ∈ ΠJ . Replacing gλ by gλp
−1
λ , we see that we can assume

that
(b) gλ = g for any λ ∈ X+

J .
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If λ ∈ X+
J̄
, λ′ ∈ X+

J , we have λ+ λ′ ∈ X+
J hence by (b), gλ+λ′ = g, so that (a)

implies g−1
λ g ∈ Π(λ) and [xλ] = [gλ(

λξ)] = [g(λξ)]. Thus for any λ ∈ X+
J̄

we have

xλ = zλg(
λξ) for some zλ ∈ C∗. Since (xλ) ∈ C∗ and (g(λξ)) ∈ C∗, we necessarily

have (zλ) ∈ H. Thus the H-orbit of (xλ) is in the image of θ. The lemma is
proved.

1.3. Let D be the category whose objects are pairs (V, β) where V is a C-vector
space and β is a basis of V ; a morphism from (V, β) to (V ′, β′) is a C-linear map
f : V → V ′ such that for any b ∈ β we have f(b) =

∑
b′∈β′ cb,b′b

′ where cb,b′ ∈ N

for all b, b′ and cb,b′ = 0 for all but finitely many b′.
Let K be a semifield. As in [L19b] we define K ! = K 	 {◦} where ◦ is a symbol.

We extend the sum and product on K to a sum and product on K ! by defining
◦+a = a, a+◦ = a, ◦×a = ◦, a×◦ = ◦ for a ∈ K and ◦+◦ = ◦, ◦×◦ = ◦. Thus K !

becomes a monoid under addition and a monoid under multiplication. Moreover,
the distributivity law holds in K !.

A K-semivector space is an abelian (additive) semigroup V with neutral element
◦ in which a map K ! × V → V , (k, v) �→ kv (“scalar multiplication”) is given
such that (kk′)v = k(k′(v)), (k + k′)v = kv + k′v for k, k′ in K !, v ∈ V and
k(v + v′) = kv + kv′ for k ∈ K !, v, v′ in V ; moreover, we assume that k◦ = ◦ for
k ∈ K !.

Let D(K) be the category whose objects are K-semivector spaces V ; a mor-
phism from V to V ′ is a map f : V → V ′ of semigroups preserving the neu-
tral elements and commuting with scalar multiplication. For any V ∈ D(K) let
End(V) = HomD(K)(V ,V); this is a monoid under composition of maps.

For (V, β) ∈ D let V (K) be the set of formal sums ξ =
∑

b∈β ξbb with ξb ∈ K !

for all b ∈ β and ξb = ◦ for all but finitely many b. We can define addition on V (K)
by (

∑
b∈β ξbb) + (

∑
b∈β ξ′bb) =

∑
b∈β(ξb + ξ′b)b. We can define scalar multiplication

by elements in K ! by k(
∑

b∈β ξb) =
∑

b∈β(kξb)b. Then V (K) becomes an object of

D(K). The neutral element for addition is ◦ =
∑

b∈β ◦b. Let f be a morphism from

(V, β) to (V ′, β′) in D. For b ∈ β we have f(b) =
∑

b′∈β′ cb,b′b
′ where cb,b′ ∈ N. We

define a map f(K) : V (K) → V ′(K) by f(K)(
∑

b∈β ξbb) =
∑

b′∈β′(
∑

b∈β cb,b′ξb)b
′.

Here for c ∈ N, k ∈ K ! we set ck = k + k + · · · + k (c terms) if c > 0 and ck = ◦
if c = 0. Note that f(K) is a morphism in D(K). We have thus defined a functor
(V, β) �→ V (K) from D to D(K).

Let λ ∈ X+. We have (λV, λβ) ∈ D hence λV (K) ∈ D(K) is defined. For i ∈
I,m ∈ Z, the linear maps e

(n)
i , f

(n)
i from λV to λV (as in [L19b, 1.4]) are morphisms

in D (we use the positivity property [Lus93, 22.1.7] of λβ; in [Lus93]this property is
stated assuming that the Cartan matrix is of simply laced-type, but the same proof

applies in our case). Hence they define morphisms e
(n)
i (K), f

(n)
i (K) from λV (K)

to λV (K). For i ∈ I, k ∈ K we define ik ∈ End(λV (K)), (−i)k ∈ End(λV (K)) by

ik(b) =
∑

n∈N

kne
(n)
i (K)b, (−i)k(b) =

∑

n∈N

knf
(n)
i (K)b

for any b ∈ λβ.
For any i ∈ I there is a well defined function li :

λβ → Z such that for b ∈ λβ,
t ∈ C∗ we have i(t)b = tli(b)b. (Here i is viewed as a simple coroot homomorphism
C → T .) For i ∈ I, k ∈ K we define ik ∈ End(λV (K)) by ik(b) = kli(b)b for
any b ∈ λβ. As in [L19b, 1.5], the elements ik, (−i)k, ik (with i ∈ I, k ∈ K) in
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End(λV (K)) satisfy the relations in [L19a, 2.10(i)-(vii)] defining the monoid G(K)
hence they define a monoid homomorphism G(K) → End(λV (K)). It follows that
G(K) acts on λV (K).

1.4. In the setup of 1.4 for λ, λ′ in X+ we can view λV ⊗ λ′
V with its basis S =

λβ ⊗ λ′
β as an object of D. Hence (λV ⊗ λ′

V )(K) ∈ D(K) is defined. We define

E(K) : λV (K)× λ′
V (K) → (λV ⊗ λ′

V )(K) by

(
∑

b∈λβ

ξbb), (
∑

b′∈λ′β

ξ′b′b
′) �→

∑

(b,b′)∈S
ξbξ

′
b′(b⊗ b′).

(This is not a morphism in D(K).) We define a map

End(λV (K))× End(λ
′
V (K)) → End((λV ⊗ λ′

V )(K))

by (τ, τ ′) �→ [b⊗ b′) �→ E(K)(τ (b), τ ′(b′))]. Composing this map with the map

G(K) → End(λV (K))× End(λ
′
V (K))

whose components are the maps

G(K) → End(λV (K)), G(K) → End(λ
′
V (K))

in 1.4 we obtain a map G(K) → End((λV ⊗ λ′
V )(K)) which is a monoid homo-

morphism. Thus G(K) acts on (λV ⊗ λ′
V )(K); it also acts on λV (K) × λ′

V (K)
(by 1.4) and the two actions are compatible with E(K).

Let Γ : λ+λ′
V → λV ⊗ λ′

V be as in 1.1. For b ∈ λ+λ′
β we have

Γ(b) =
∑

(b1,b′1)∈S
eb,b1,b′1b1 ⊗ b′1

where eb,b1,b′1 ∈ N. (This can be deduced from the positivity property [Lus93,
14.4.13(b)] of the homomorphism r in [Lus93, 1.2.12].) Thus Γ is a morphism in

D hence Γ(K) : λ+λ′
V (K) → (λV ⊗ λ′

V )(K) is a well defined morphism in D(K).
Note that Γ(K) is compatible with the action of G(K) on the two sides.

1.5. In the setup of 1.4 let C(K) be the set of all collections {xλ ∈ λV (K);λ ∈ X+
J̄
}

such that for any λ, λ′ in X+
J̄

we have Γ(K)(xλ+λ′) = E(K)(xλ, xλ′). Let C∗(K)

be the set of all (xλ) ∈ C(K) such that xλ �= ◦ for any λ ∈ X+
J̄
. Let H(K) be

the group (multiplication component by component) consisting of all collections
{zλ ∈ K;λ ∈ X+

J̄
} such that for any λ, λ′ in X+

J̄
we have zλ+λ′ = zλzλ′ . Now

H(K) acts on C(K) by (zλ), (xλ) �→ (zλxλ). This restricts to a free action of H(K)
on C∗(K). Let PJ (K) be the set of orbits for this action. Note that G(K) acts
on C(K) by acting component by component (see 1.4); we use that E(K),Γ(K)
are compatible with the G(K)-actions (see 1.5). This induces a G(K)-action on
PJ(K).

1.6. In this subsection we assume that K = R>0. If (xλ) ∈ C∗(K), we can view
(xλ) as an element of C∗ by viewing λV (K) as a subset of λV in an obvious way.
The inclusion C∗(K) ⊂ C∗ is compatible with the actions of H(K) and H (we have
H(K) ⊂ H) hence it induces an (injective) map PJ(K) → ′PJ . Composing this
with the inverse of the bijection PJ → ′PJ (see 1.3) we obtain an injective map
PJ(K) → PJ . We define PJ

≥0 to be the image of this map.
Assuming further that our Cartan matrix is of finite-type, we show that the last

definition of PJ
≥0 agrees with the definition in [Lus98]. Applying [Lus98, 3.4] to a
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λ ∈ X+
J with large enough coordinates we see that PJ

≥0 (in the new definition) is

contained in PJ
≥0 (in the definition of [Lus98]). The reverse inclusion follows from

[Lus98, 3.2].

1.7. Any homomorphism of semifields K → K ′ induces in an obvious way a map
PJ(K) → PJ (K ′).

1.8. We expect that when K ′ is the semifield {1} with one element, one can identify
P∅(K ′) with the set of pairs (a, a′) in the Weyl group W of G such that a ≤ a′ for
the standard partial order of W . If K is any semifield one can also expect that the
fibre of the map P∅(K) → P∅({1}) induced by the obvious map K → {1} (see 1.8)

at the element corresponding to (a, a′) is in bijection with K |a′|−|a| where a �→ |a|
is the length function on W .

2. The semiring M(K)

2.1. In this section we assume that our Cartan matrix is of finite-type. Let K be
a semifield. Let M(K) =

⊕
λ∈X+

J̄

λV (K) viewed as a monoid under addition and

with scalar multiplication by elements of K !.
We define a multiplication μ : M(K)×M(K) → M(K) which is “bilinear” with

respect to addition and scalar multiplication and satisfies μ(b1, b
′
1)=

∑
b∈λ+λ′βeb,b1,b′1b

where λ ∈ X+
J̄
, λ′ ∈ X+

J̄
, b1 ∈ λβ, b′1 ∈ λ′

β, and eb,b1,b′1 ∈ N (viewed as an element

of K !) is as in the definition of Γ(K) in 1.5, so that it comes from the homomor-
phism r in [Lus93, 1.2.12]. This can be viewed as a direct sum of “transposes” of
maps like Γ(K). From the properties of r we see that the multiplication μ is as-
sociative and commutative; it is clearly distributive with respect to addition. This
multiplication has a unit element, given by the unique element in βλ with λ = 0.
Note that M(K) is a semiring. Now M(K) can be viewed as a form over K of the
coordinate ring of G/U+ where U+ is the unipotent radical of B+. Let M ′(K) be
the set of maps M(K) → K ! which are compatible with addition, multiplication,
and with scalar multiplication by elements of K !, take the unit element of M(K)
to the unit element of K !, and take the element with all components equal to ◦ to
◦ ∈ K !. It is easy to show that M ′(K) is in canonical bijection with C(K).
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