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DEGENERATE PRINCIPAL SERIES FOR CLASSICAL

AND ODD GSPIN GROUPS IN THE GENERAL CASE

YEANSU KIM, BAIYING LIU, AND IVAN MATIĆ

Abstract. Let Gn denote either the group SO(2n + 1, F ), Sp(2n, F ), or
GSpin(2n + 1, F ) over a non-archimedean local field of characteristic differ-
ent from two. We determine all composition factors of degenerate principal
series of Gn, using methods based on the Aubert involution and known results
on irreducible subquotients of the generalized principal series of a particular
type.

1. Introduction

Let F be a non-archimedean local field of characteristic different from two. Let
Gn denote a symplectic, odd special orthogonal, or odd general spin group of split
rank n defined over F , and Gn = Gn(F ). The aim of this paper is to obtain a
uniform description of reducibility and composition factors of degenerate principle
series of Gn. This greatly generalizes and simplifies previous works of Jantzen
[8], Kudla-Rallis [16], Gustafson [7], and others. We note that the degenerate
principle series, besides being interesting by themselves, play an important role in
the theory of automorphic forms, especially the extension of the Siegel-Weil formula,
constructions of residual spectrum [12,13], and in the local theta-correspondence.

Let σ denote an irreducible unitary cuspidal representation of some Gn. Also, let
ρ0 denote an irreducible unitary self-contragredient (resp., essentially self-contra-
gredient, i.e., ρ̃ ∼= ρ ⊗ ωσ) cuspidal representation of GL(nρ0

, F ), and let ρ de-
note an irreducible unitary self-contragredient (resp., essentially self-contragredient)
cuspidal representation of GL(nρ, F ) when Gn is a classical group (resp., Gn =
GSpin(2n + 1, F )). Then there exist unique non-negative half-integers α, β such
that ναρ � σ, νβρ0 � σ are reducible (for more details regarding the notation we
refer the reader to Section 2). For x ≥ α > 0 such that x − α ∈ Z, the induced
representation ν−xρ× ν−x+1ρ× · · · × ν−αρ� σ contains a unique irreducible sub-
representation, which we denote by ζ(ρ, x;σ). A degenerate principal series is an
induced representation of the form

(1) ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ),
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for a, b such that b − a ∈ Z, where ζ([ν−bρ0, ν
−aρ0]) is a Zelevinsky segment rep-

resentation, i.e., the unique irreducible subrepresentation of ν−bρ0 × ν−b+1ρ0 ×
· · · × ν−aρ0. It has been explained in detail in [8, Section 2] that this definition
generalizes the classical notion of the degenerate principal series, studied in [7] and
[16]. We note that the composition series of the degenerate principal series (1) have
been determined in [8] for α ∈ {0, 1

2 , 1}, using Tadić’s Jacquet modules method
[27, 28], and here we treat the general case. Since the case α = 0 is also handled
in [5], and the results extend to the GSpin case in the same way, we consider the
case α > 0. Our results show that the degenerate principal series are multiplicity
one representations of length up to four, and also provide a deeper insight into the
structure of the irreducible subquotients.

Our approach to the determination of reducibility and composition factors of
induced representations of the form (1) is completely different from one used in [8],
and is based on the methods of the Aubert involution. The Aubert dual of the
degenerate principal series is a special type of the generalized principal series, and
the composition factors of such representations have been determined in [26] and
[19, Proposition 3.2]. To determine the Aubert duals of composition factors in ques-
tion, we use a further adjustment of the methods initiated in [20–22]. Eventually,
it turns out that needed Aubert duals of tempered representations mostly follow
directly from [20, 22]. On the other hand, to determine the Aubert duals of the
involved non-tempered representations we use an inductive approach based on the
detailed investigation of embeddings and Jacquet modules of such representations,
using a case-by-case consideration. Let us also note that an algorithm for explicit
determination of the Aubert duals for classical groups in the half-integral case has
been recently provided in [11].

Let us now describe the contents of the paper in more detail. In the following
section we present some preliminaries, while the first special case β = 0 is treated
in the third section. The case β > 0 is studied in Sections 4 – 6, where in the fourth
section we handle the case a ≥ 1, in the fifth section the case a ≤ 0, and in the sixth
section we deal with the case a = 1

2 . To work effectively, from Lemma 2.5 to the
end of Section 6, we mainly focus on the cases Gn = Sp(2n, F ) and SO(2n+ 1, F )
(see Remark 2.4). In the final section we provide necessary adjustments in the odd
GSpin case.

2. Preliminaries

Throughout the paper, F will denote a non-archimedean local field of character-
istic different from two.

For a connected reductive p-adic group G defined over field F , let Σ denote
the set of roots of G with respect to fixed minimal parabolic subgroup and let Δ
stand for the corresponding subset of simple roots. For θ ⊆ Δ, we let Pθ denote
the standard parabolic subgroup of G corresponding to θ and let Mθ denote a
corresponding standard Levi subgroup. Let W denote the Weyl group of G.

For a parabolic subgroup P of G with the Levi subgroup M , and a representation
σ of M , we denote by iM (σ) a normalized parabolically induced representation of
G induced from σ. Also, let rM (σ) stand for the normalized Jacquet module of
an admissible finite length representation σ of G, with respect to the standard
parabolic subgroup having the Levi subgroup equal to M .
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We take a moment to recall the definition of the Aubert involution and some of
its basic properties [3, 4].

Theorem 2.1. Define the operator on the Grothendieck group of admissible repre-
sentations of finite length of G by

DG =
∑
θ⊆Δ

(−1)|θ|iMθ
◦ rMθ

.

Operator DG has the following properties:

(i) DG is an involution.
(ii) DG takes irreducible representations to irreducible ones, up to ±.
(iii) If σ is an irreducible cuspidal representation, then DG(σ) = (−1)|Δ|σ.
(iv) For a standard Levi subgroup M = Mθ, we have

rM ◦DG = Ad(w) ◦Dw−1(M) ◦ rw−1(M),

where w is the longest element of the set {w ∈ W : w−1(θ) > 0}.
(v) For a standard Levi subgroup M = Mθ, we have DG ◦ iM = iM ◦DM .

We look at the usual towers of symplectic or orthogonal groups Gn = G(Vn),
that are groups of isometries of F -spaces (Vn, ( , )), n ≥ 0, where the form ( , ) is
non-degenerate and it is skew-symmetric if the tower is symplectic and symmetric
otherwise. In the final section, we also consider the odd general spin groups Gn =
GSpin(2n + 1, F ) (see Section 7 for the definition). The set of standard parabolic
subgroups of the group Gn will be fixed in the usual way.

Then the Levi subgroups of standard parabolic subgroups have the form M ∼=
GL(n1, F )×· · ·×GL(nk, F )×Gm, where GL(ni, F ) denotes a general linear group
of rank ni over F . For simplicity of exposition, if δi, i = 1, 2, . . . , k denotes a
representation of GL(ni, F ), and if τ stands for a representation of Gm, we let
δ1× δ2×· · ·× δk � τ stand for the induced representation iM (δ1⊗ δ2⊗· · ·⊗ δk ⊗ τ )
of Gn, where M is the standard Levi subgroup isomorphic to GL(n1, F ) × · · · ×
GL(nk, F )×Gm. Here n = n1 + n2 + · · ·+ nk +m.

Similarly, by δ1×δ2×· · ·×δk we denote the induced representation iM ′(δ1⊗δ2⊗
· · · ⊗ δk) of the group GL(n′, F ), where the Levi subgroup M ′ equals GL(n1, F )×
GL(n2, F )× · · · ×GL(nk, F ) and n′ = n1 + n2 + · · ·+ nk.

Let Irr(GL(n, F )) denote the set of all irreducible admissible representations of
GL(n, F ), and let Irr(Gn) denote the set of all irreducible admissible representa-
tions of Gn. Let R(GL(n, F )) stand for the Grothendieck group of admissible rep-
resentations of finite length of GL(n, F ) and define R(GL) =

⊕
n≥0 R(GL(n, F )).

Similarly, let R(Gn) stand for the Grothendieck group of admissible representations
of finite length of Gn and define R(G) =

⊕
n≥0 R(Gn).

If σ is an irreducible representation of Gn, we denote by σ̂ the representation
±DGn

(σ), taking the sign + or − such that σ̂ is a positive element in R(Gn). We
call σ̂ the Aubert dual of σ.

Using Jacquet modules for the maximal standard parabolic subgroups of
GL(n, F ), one can define m∗(π) =

∑n
k=0(r(k)(π)) ∈ R(GL) ⊗ R(GL), for an irre-

ducible representation π of GL(n, F ), and then extend m∗ linearly to R(GL). Here
r(k)(π) denotes the normalized Jacquet module of π with respect to the standard
parabolic subgroup having the Levi subgroup equal to GL(k, F )×GL(n−k, F ), and
we identify r(k)(π) with its semisimplification in R(GL(k, F ))⊗R(GL(n− k, F )).
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Let ν denote the composition of the determinant mapping with the normalized
absolute value on F . Let ρ ∈ Irr(GL(k, F )) denote a cuspidal representation. By
a segment of cuspidal representations we mean a set of the form {ρ, νρ, . . . , νmρ},
which we denote by [ρ, νmρ].

By the results of [30], each irreducible essentially square-integrable representa-
tion δ ∈ Irr(GL(n, F )) is attached to a segment, and we set δ = δ([νaρ, νbρ]),
which is the unique irreducible subrepresentation of νbρ× νb−1ρ× · · · × νaρ, where
a, b ∈ R are such that b − a is a non-negative integer and ρ is an irreducible
unitary cuspidal representation of some GL(k, F ). The induced representation
νbρ×νb−1ρ×· · ·×νaρ also contains a unique irreducible quotient, which we denote
by ζ([νaρ, νbρ]). Furthermore, ζ([νaρ, νbρ]) is the unique irreducible subrepresen-
tation of νaρ× νa+1ρ× · · · × νbρ, and in R(GL) we have

νaρ× νa+1ρ = δ([νaρ, νa+1ρ]) + ζ([νaρ, νa+1ρ])

and

νaρ× νa+1ρ× νa+1ρ = δ([νaρ, νa+1ρ])× νa+1ρ+ ζ([νaρ, νa+1ρ])× νa+1ρ,

both representations δ([νaρ, νa+1ρ])× νa+1ρ and ζ([νaρ, νa+1ρ])× νa+1ρ being ir-
reducible.

Let us briefly recall the Langlands classification for classical groups. We favor
the subrepresentation version of this classification over the quotient one since it is
more appropriate for our Jacquet module considerations.

For every irreducible essentially square-integrable representation δ ∈ R(GL),
there is a unique e(δ)∈R such that ν−e(δ)δ is unitarizable. Note that e(δ([νaρ, νbρ]))
= (a+ b)/2. Every non-tempered irreducible representation π of Gn can be written
as the unique irreducible (Langlands) subrepresentation of an induced representa-
tion of the form δ1× δ2×· · ·× δk � τ , where τ is a unitary tempered representation
of some Gt, and δ1, δ2, . . . , δk ∈ R(GL) are irreducible essentially square-integrable
representations such that e(δ1) ≤ e(δ2) ≤ · · · ≤ e(δk) < 0. In this case, we write
π = L(δ1, δ2, . . . , δk; τ ). For a given π, the representations δ1, δ2, . . . , δk are unique
up to a permutation among those δi having the same exponents.

Let τ ∈ R(G) denote an irreducible tempered representation. If δ1, δ2, . . . , δk ∈
R(GL) are irreducible essentially square-integrable representations such that e(δi) <
0 for i = 1, 2, . . . , k, and δi × δj ∼= δj × δi for i < j such that e(δi) > e(δj), then the
induced representation δ1 × δ2 × · · · × δk � τ contains a unique irreducible subrep-
resentation, which will also be denoted by L(δ1, δ2, . . . , δk; τ ), for simplicity of the
notation.

For a representation σ ∈ R(Gn) and 1 ≤ k ≤ n, we denote by r(k)(σ) the nor-
malized Jacquet module of σ with respect to the parabolic subgroup P(k) having
the Levi subgroup equal to GL(k, F )×Gn−k. We identify r(k)(σ) with its semisim-
plification in R(GL(k, F ))⊗R(Gn−k) and consider

μ∗(σ) = 1⊗ σ +
n∑

k=1

r(k)(σ) ∈ R(GL)⊗R(G).

We pause to state a result, derived in [27] ([14] for odd GSpin groups), which
presents a crucial structural formula for our calculations of Jacquet modules of
classical groups.
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Lemma 2.2. Let ρ ∈ Irr(GL(n, F )) denote a cuspidal representation and let
k, l ∈ R such that k + l is a non-negative integer. Let σ ∈ R(G) denote an ad-
missible representation of finite length, and write μ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. If σ is a

representation of the odd GSpin group, let ωσ denote the central character of σ,
otherwise let ωσ be trivial. Then the following holds:

μ∗(δ([ν−kρ, νlρ])� σ) =

l∑
i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃⊗ (ωσ ◦ det), νkρ̃⊗ (ωσ ◦ det)])

× δ([νj+1ρ, νlρ])× τ ⊗ δ([νi+1ρ, νjρ])� σ′.

We omit δ([νxρ, νyρ]) if x > y.

An irreducible representation σ ∈ R(G) is called strongly positive if for every
embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk � σcusp,

where ρi ∈ R(GL(nρi
, F )), i = 1, 2, . . . , k, are unitary cuspidal representations and

σcusp ∈ R(G) is an irreducible unitary cuspidal representation, we have si > 0 for
each i.

Let us briefly recall an inductive description of non-cuspidal strongly positive
discrete series, which has been obtained in [14, 17, 25].

Proposition 2.3. Suppose that σsp ∈ R(G) is an irreducible strongly positive repre-
sentation and let ρ ∈ R(GL) denote an irreducible unitary cuspidal representation
such that some twist of ρ appears in the cuspidal support of σsp. We denote by
σcusp the partial cuspidal support of σsp. Then there exist unique a, b ∈ R such that
a > 0, b > 0, b− a ∈ Z≥0, and a unique irreducible strongly positive representation
σ′
sp without νaρ in the cuspidal support, with the property that σsp is the unique

irreducible subrepresentation of δ([νaρ, νbρ]) � σ′
sp. Furthermore, there is a non-

negative integer l such that a + l = s for s > 0 such that νsρ � σcusp reduces. If
l = 0, there are no twists of ρ appearing in the cuspidal support of σ′

sp and if l > 0
there exist unique b′ > b and a unique strongly positive discrete series σ′′

sp, which

contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ′
sp can be written

as the unique irreducible subrepresentation of δ([νa+1ρ, νb
′
ρ])� σ′′

sp.

Throughout the paper, we fix an irreducible unitary cuspidal representation σ ∈
R(G). Also, we fix an irreducible unitary cuspidal representation ρ0 ∈ R(GL)
and an irreducible (essentially) self-contragredient unitary cuspidal representation
ρ ∈ R(GL), such that ναρ� σ reduces for some α > 0. We note that 2α ∈ Z, due
to results of [1], [24, Théorème 3.1.1], and [6, Theorem 7.8], and that νsρ � σ is
irreducible for s 
∈ {α,−α}.

Let x stand for a half-integer such that x ≥ α and x−α ∈ Z. Then the induced
representation

ν−xρ× ν−x+1ρ× · · · × ν−αρ� σ

has a unique irreducible subrepresentation, which we denote by ζ(ρ, x;σ). Using [20,
Theorem 3.5], we deduce that the Aubert dual of ζ(ρ, x;σ) is the unique irreducible
subrepresentation of νxρ× νx−1ρ× · · ·× ναρ�σ. We note that this representation
is strongly positive, and will be denoted by δ(ρ, x;σ).
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Let a, b denote real numbers such that b−a ∈ Z. We are interested in determining
the composition factors of the degenerate principal series

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ).

Since in R(G) we have

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ) = ζ([νaρ̃0, ν

bρ̃0])� ζ(ρ, x;σ)

if Gn = Sp(2n, F ), SO(2n+ 1, F ),

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ) = ζ([νaρ̃0 ⊗ ωσ, ν

bρ̃0 ⊗ ωσ])� ζ(ρ, x;σ)

if Gn = GSpin(2n+ 1, F ),

we can assume that −a ≤ b.
By properties of the Aubert involution, the Aubert dual of the degenerate prin-

cipal series ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ) is the generalized principal series

δ([νaρ̃0, ν
bρ̃0])� δ(ρ, x;σ) if Gn = Sp(2n, F ), SO(2n+ 1, F ),

δ([νaρ̃0 ⊗ ωσ, ν
bρ̃0 ⊗ ωσ])� δ(ρ, x;σ) if Gn = GSpin(2n+ 1, F ),

(2)

whose composition factors are completely described in [26] (this has been already
noted in [9, Corollary 4.3]). We note that the results of [26] extend to theGSpin case
by the last section of the paper. It follows from [26, Section 2] (or [14, Proposition
2.5] for GSpin groups) that the induced representation (2) is irreducible unless ρ0
is (essentially) self-contragredient. Thus, in what follows we can assume that ρ0
is (essentially) self-contragredient, and let us denote by β the unique non-negative
real number such that νβρ0 � σ reduces. Again, it follows from [26, Section 2] that
the induced representation (2) is irreducible if a − β 
∈ Z (the argument is similar
for GSpin). So, we can also assume that a− β ∈ Z.

Remark 2.4. (1) To work effectively, from now on until Section 6, Gn will only
denote Sp(2n, F ) and SO(2n + 1, F ). In Section 7, we will consider the
case of Gn = GSpin(2n+ 1, F ).

(2) All the lemmas and propositions in the rest of this section are also valid for
the odd GSpin case (with the same statements, after replacing “self-contra-
gredient” by “essentially self-contragredient”, and adding the unitarity con-
dition for the cuspidal representation σ); see Section 7 for more detailed
comments.

We will use the following result [10, Lemma 5.5] several times.

Lemma 2.5. Suppose that π ∈ R(Gn) is an irreducible representation, λ an irre-
ducible representation of the Levi subgroup M of Gn, and π is a subrepresentation
of IndGn

M (λ). If L > M , then there is an irreducible subquotient ρ of IndLM (λ) such

that π is a subrepresentation of IndGn

L (ρ).

The following result is a direct consequence of [20, Lemma 2.2].

Lemma 2.6. Suppose that the Jacquet module of π with respect to the appropri-
ate parabolic subgroup contains an irreducible cuspidal representation of the form
νa1ρ1 ⊗ νa2ρ2 ⊗ · · · ⊗ νakρk ⊗ σ, where ρ1, . . . , ρk ∈ R(GL) are self-contragredient
representations. Then π̂ is a subrepresentation of ν−a1ρ1×ν−a2ρ2×· · ·×ν−akρk�σ.

We will now present a sequence of lemmas which enable us to use an inductive
procedure when determining the Aubert duals.
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For a non-negative integer m, real number t, and an irreducible cuspidal rep-
resentation ρ1 ∈ R(GL), we denote by (νtρ1)

m the induced representation νtρ1 ×
· · · × νtρ1, where νtρ1 appears m times. Note that the induced representation
ζ([νcρ1, ν

dρ1])× (νtρ1)
m is irreducible for t ∈ {c, c+ 1, . . . , d} [30].

Lemma 2.7. Let c and d denote positive real numbers such that d − c is a non-
negative integer. Let ρ1 ∈ R(GL) denote an irreducible cuspidal self-contragredient
representation. Suppose that π is a subrepresentation of an induced representa-
tion of the form ζ([νcρ1, ν

dρ1]) × (νtρ1)
m � π1, where t ∈ {c, c + 1, . . . , d}, π1

is irreducible, and μ∗(π1) does not contain an irreducible constituent of the form
νiρ1⊗π2 for i ∈ {c, c+1, . . . , d}, with π2 ∈ R(G). Then π̂ is the unique irreducible
subrepresentation of δ([ν−dρ1, ν

−cρ1])× (ν−tρ1)
m � π̂1.

Proof. We prove the lemma only in the case m = 0. The case m > 0 can be handled
in the same way. From properties of the Aubert involution we conclude that π̂ is
contained in δ([ν−dρ1, ν

−cρ1])� π̂1.
From embeddings

π ↪→ ζ([νcρ1, ν
dρ1])� π1 ↪→ νcρ1 × · · · × νdρ1 � π1

and Frobenius reciprocity, it follows that the Jacquet module of π with respect to
the appropriate parabolic subgroup contains νcρ1 ⊗ · · · ⊗ νdρ1 ⊗ π1.

Using transitivity of Jacquet modules and Lemma 2.6, we obtain that the Jacquet
module of π̂ with respect to the appropriate parabolic subgroup contains an irre-
ducible constituent of the form ν−cρ1 ⊗ · · · ⊗ ν−dρ1 ⊗ π′.

Since μ∗(π1) does not contain an irreducible constituent of the form νiρ1 ⊗ π2

for i ∈ {c, c + 1, . . . , d}, it follows from Lemma 2.6 that μ∗(π̂1) does not contain
an irreducible constituent of the form ν−iρ1 ⊗ π2 for i ∈ {c, c + 1, . . . , d}, with
π2 ∈ R(G). Now it follows directly from the structural formula that ν−cρ1 ⊗ · · · ⊗
ν−dρ1⊗ π̂1 is the unique irreducible constituent of the form ν−cρ1⊗· · ·⊗ν−dρ1⊗π′

appearing in the Jacquet module of δ([ν−dρ1, ν
−cρ1]) � π̂1 with respect to the

appropriate parabolic subgroup, and it appears there with multiplicity one. It
follows that δ([ν−dρ1, ν

−cρ1])� π̂1 contains a unique irreducible subrepresentation.
On the other hand, by Frobenius reciprocity every irreducible subrepresentation

of δ([ν−dρ1, ν
−cρ1])� π̂1 contains ν−cρ1 ⊗ · · · ⊗ ν−dρ1 ⊗ π̂1 in the Jacquet module

with respect to the appropriate parabolic subgroup. Thus, π̂ has to be the unique
irreducible subrepresentation of δ([ν−dρ1, ν

−cρ1])� π̂1. This ends the proof. �

Lemma 2.8. Let c and d denote positive real numbers such that d − c is a non-
negative integer. Let ρ1 ∈ R(GL) denote an irreducible cuspidal self-contragredient
representation. Suppose that π is a subrepresentation of an induced representation
of the form ζ([νcρ1, ν

dρ1]) × (νdρ1)
m � π1, where π1 is an irreducible representa-

tion such that the Jacquet module of π1 with respect to the appropriate parabolic
subgroup does not contain an irreducible constituent of the form νd−kρ1 ⊗ · · · ⊗
νd−1ρ1 ⊗ νdρ1 ⊗ π′ for a nonnegative integer k < d, with π′ ∈ R(G). Then π̂ is the
unique irreducible subrepresentation of δ([ν−dρ1, ν

−cρ1])× (ν−dρ1)
m � π̂1.

Lemma 2.9. Suppose that ρ0 
∼= ρ and let π denote an irreducible subquotient
of δ([νaρ0, ν

bρ0]) � δ(ρ, x;σ). Then there is an irreducible representation π1 ∈
R(G) such that π is a subrepresentation of δ([ναρ, νxρ]) � π1 and π̂ is the unique
irreducible subrepresentation of ν−xρ× ν−x+1ρ× · · · × ν−αρ� π̂1. Furthermore, if
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π̂1
∼= L(δ1, δ2, . . . , δk; τtemp), where e(δi) ≤ e(δj) for i ≤ j, then

π̂ ∼= L(ν−xρ, ν−x+1ρ, . . . , ν−αρ, δ1, δ2, . . . , δk; τtemp).

Proof. By the results of [26], there is an irreducible tempered representation τ ∈
R(G) such that either π ∼= τ or π ∼= L(δ([νcρ0, ν

−aρ0]); τ ) for some c ≥ −b such
that c− a < 0. Also, it is easy to see that there is an irreducible representation τ1
such that τ is a subrepresentation of δ([ναρ, νxρ])� τ1, and there are no twists of ρ
appearing in the cuspidal support of τ1. If π ∼= τ , we can take π1

∼= τ1. Otherwise,
since ρ0 
∼= ρ we have

π ↪→ δ([νcρ0, ν
−aρ0])� τ ↪→ δ([νcρ0, ν

−aρ0])× δ([ναρ, νxρ])� τ1
∼= δ([ναρ, νxρ])× δ([νcρ0, ν

−aρ0])� τ1,

and by [25, Lemma 3.2] there is an irreducible representation π1 such that π is a
subrepresentation of δ([ναρ, νxρ]) � π1. Since there are no twists of ρ appearing
in the cuspidal support of π1, it can be seen in the same way as in the proof of
Lemma 2.7 that π̂ is the unique irreducible subrepresentation of ν−xρ× ν−x+1ρ×
· · · × ν−αρ� π̂1.

If we write π̂1
∼= L(δ1, δ2, . . . , δk; τtemp), then δi ∼= δ([νxiρ0, ν

yiρ0]) for i =
1, 2, . . . , k, and we have νzρ × δi ∼= δi × νzρ for all i = 1, 2, . . . , k and z ∈ R.
This ends the proof. �

The following result provides embeddings needed for an inductive determination
of the Aubert duals.

Proposition 2.10. Let ρ1 ∈ R(GL) denote an irreducible self-contragredient cus-
pidal representation, and let σsp ∈ R(G) denote a strongly positive discrete series.
Let k, l denote half-integers such that k − l is a positive integer and k + l > 0.

(1) If νkρ1 � σsp is irreducible and k ≥ −l + 2, then L(δ([ν−kρ1, ν
−lρ1]);σsp)

is a subrepresentation of νkρ1 � L(δ([ν−k+1ρ1, ν
−lρ1]);σsp).

(2) If μ∗(σsp) does not contain an irreducible constituent of the form ν−lρ1⊗π,
with π ∈ R(G), then L(δ([ν−kρ1, ν

−lρ1]);σsp) is a subrepresentation of
ν−lρ1 � L(δ([ν−kρ1, ν

−l−1ρ1]);σsp).
(3) Suppose that σsp is a subrepresentation of νtρ1 � σ′

sp for some t 
= k, t 
=
−l+1 and a strongly positive representation σ′

sp. Then L(δ([ν−kρ1, ν
−lρ1]);

σsp) is a subrepresentation of νtρ1 � L(δ([ν−kρ1, ν
−lρ1]);σ

′
sp).

Proof. We only prove the first part of the proposition, other parts can be proved in
the same way but more easily. We have the following embeddings and isomorphisms:

L(δ([ν−kρ1, ν
−lρ1]);σsp) ↪→ δ([ν−kρ1, ν

−lρ1])� σsp

↪→ δ([ν−k+1ρ1, ν
−lρ1])× ν−kρ1 � σsp

∼= δ([ν−k+1ρ1, ν
−lρ1])× νkρ1 � σsp

∼= νkρ1 × δ([ν−k+1ρ1, ν
−lρ1])� σsp.

By Lemma 2.5, there is an irreducible subquotient π of δ([ν−k+1ρ1, ν
−lρ1]) � σsp

such that L(δ([ν−kρ1, ν
−lρ1]);σsp) is a subrepresentation of νkρ1 � π. Frobenius

reciprocity implies that μ∗(νkρ1 � π) contains δ([ν−kρ1, ν
−lρ1])⊗ σsp.

Using the structural formula and a description of the Jacquet modules of strongly
positive representations, provided in [18, Theorem 4.6] and [23, Section 7], we
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deduce that μ∗(δ([ν−k+1ρ1, ν
−lρ1]) � σsp) does not contain an irreducible con-

stituent of the form δ([ν−kρ1, ν
−lρ1])⊗ π1, with π1 ∈ R(G). Thus, μ∗(π) contains

δ([ν−k+1ρ1, ν
−lρ1])⊗σsp and it is a direct consequence of the Langlands classifica-

tion that π ∼= L(δ([ν−k+1ρ1, ν
−lρ1]);σsp). �

Note that both description of subquotients of δ([νaρ0, ν
bρ0])�δ(ρ, x;σ) and their

Aubert duals depend on the reduciblity point β of ρ0 and σ [22,26]. The description
of the Aubert duals happens to be slightly different in the case β = 0. Accordingly
we also consider two cases: Section 3 is the case β = 0 (Section 5 of [22]) and
Sections 4, 5, 6 is the case β > 0 (Section 4 of [22]).

3. Case β = 0

In this section we consider the β = 0 case. Note that this implies a ∈ Z.
The following irreducibility result is a direct consequence of [26, Proposition 3.1].

Proposition 3.1. Degenerate principal series ζ([ν−bρ0, ν
−aρ0]) � ζ(ρ, x;σ) is ir-

reducible if and only if a ≥ 1.

We consider the remaining cases in the following proposition.

Proposition 3.2. Suppose that a ≤ 0, and write ρ0 � σ = τ1 + τ−1, as a sum of
mutually non-isomorphic irreducible tempered representations. If −a < b, then in
R(G) we have:

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ1)

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ−1)

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−2ρ0, δ([ν

a−1ρ0, ν
aρ0]), . . . , δ([ν

−1ρ0, ρ0];σ)).

If −a = b, then in R(G) we have:

ζ([νaρ0, ν
−aρ0])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−αρ, νaρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ1)

+L(ν−xρ, . . . , ν−αρ, νaρ0, ν
aρ0, . . . , ν

−1ρ0, ν
−1ρ0, τ−1).

Proof. We will only comment on the case −a < b, since the case −a = b can be
handled in the same way as in the proof of [22, Theorem 5.1]. By [26, Theorem 2.1]
and classification of discrete series [15, 25], in R(G) we have

δ([νaρ0, ν
bρ0])� δ(ρ, x;σ) = σ1 + σ−1 + L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)),

where σi is a discrete series subrepresentation of δ([νaρ0, ν
bρ0]) � δ(ρ, x;σ) such

that
μ∗(σi) ≥ δ([νρ0, ν

−aρ0])× δ([νρ0, ν
bρ0])× δ([ναρ, νxρ])⊗ τi

and
μ∗(σi) 
≥ δ([νρ0, ν

−aρ0])× δ([νρ0, ν
bρ0])× δ([ναρ, νxρ])⊗ τ−i

for i ∈ {1,−1}.
Since σi is a subrepresentation of δ([νaρ0, ν

bρ0])� δ(ρ, x;σ), for i ∈ {1,−1}, we
have

σi ↪→ δ([νaρ0, ν
bρ0])� δ(ρ, x;σ) ↪→ δ([νaρ0, ν

bρ0])× δ([ναρ, νxρ])� σ

∼= δ([ναρ, νxρ])× δ([νaρ0, ν
bρ0])� σ.
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By Lemma 2.5, there is an irreducible subquotient πi of δ([νaρ0, ν
bρ0]) � σ such

that σi is a subrepresentation of δ([ναρ, νxρ])� πi.
Using [26, Theorem 2.1] and classification of discrete series one more time, we

obtain that in R(G) we have

δ([νaρ0, ν
bρ0])� σ = σ′

1 + σ′
−1 + L(δ([ν−bρ0, ν

−aρ0]);σ),

where σ′
i is a discrete series subrepresentation of δ([νaρ0, ν

bρ0])� σ such that

μ∗(σ′
i) ≥ δ([νρ0, ν

−aρ0])× δ([νρ0, ν
bρ0])⊗ τi

and μ∗(σ′
i) 
≥ δ([νρ0, ν

−aρ0]) × δ([νρ0, ν
bρ0]) ⊗ τ−i, for i ∈ {1,−1}. Also, note

that μ∗(L(δ([ν−bρ0, ν
−aρ0]);σ)) does not contain δ([νaρ0, ν

bρ0]) ⊗ σ, since both
μ∗(σ′

1) and μ∗(σ′
−1) contain δ([νaρ0, ν

bρ0])⊗σ, and μ∗(δ([νaρ0, ν
bρ0])�σ) contains

δ([νaρ0, ν
bρ0])⊗ σ with multiplicity two.

Thus, πi
∼= σ′

i. Now Lemma 2.9 and [22, Theorem 5.1] imply that

σ̂i
∼= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν

a−1ρ0, ν
aρ0, ν

aρ0, . . . , ν
−1ρ0, ν

−1ρ0, τ−i).

In the same way we obtain that L(δ([ν−bρ0, ν
−aρ0]); δ(ρ, x;σ)) is a subrepresen-

tation of δ([ναρ, νxρ]) � L(δ([ν−bρ0, ν
−aρ0]);σ). By Lemma 2.9, it remains to

determine the Aubert dual of L(δ([ν−bρ0, ν
−aρ0]);σ). Since b > 0, if b ≥ −a + 2,

then using the first part of Proposition 2.10 we get that L(δ([ν−bρ0, ν
−aρ0]);σ)

is a subrepresentation of νbρ0 � L(δ([ν−b+1ρ0, ν
−aρ0]);σ). Also, it follows from

the structural formula that μ∗(L(δ([ν−b+1ρ0, ν
−aρ0]);σ)) does not contain an ir-

reducible constituent of the form νbρ0 ⊗ π′. Using Lemma 2.7 and repeating this
procedure, we deduce that the Aubert dual of L(δ([ν−bρ0, ν

−aρ0]);σ) is an irre-
ducible subrepresentation of

ν−bρ0 × · · · × νa−2ρ0 � ̂L(δ([νa−1ρ0, ν−aρ0]);σ).

The representation L(δ([νa−1ρ0, ν
−aρ0]);σ) is the unique irreducible quotient of the

induced representation δ([νaρ0, ν
−a+1ρ0]) � σ. By [26, Theorem 2.1], we see that

δ([νaρ0, ν
−a+1ρ0]) � σ contains two irreducible subrepresentations and Frobenius

reciprocity implies that each of them contains an irreducible constituent of the
form ν−a+1ρ0 ⊗ π in the Jacquet module with respect to the appropriate parabolic
subgroup.

If ν−a+1ρ0⊗π is an irreducible constituent of μ∗(δ([νaρ0, ν
−a+1ρ0])�σ), it follows

from the structural formula that π is an irreducible subquotient of δ([νaρ0, ν
−aρ0])�

σ, which is a length two representation. Thus, there are only two irreducible con-
stituents of the form ν−a+1ρ0 ⊗ π appearing in μ∗(δ([νaρ0, ν

−a+1ρ0]) � σ), and
μ∗(L(δ([νa−1ρ0, ν

−aρ0]);σ)) does not contain any of them.
From the second part of Proposition 2.10 it follows that L(δ([νa−1ρ0, ν

−aρ0]);σ)
is a subrepresentation of ν−aρ0 � L(δ([νa−1ρ0, ν

−a−1ρ0]);σ).
Since a− 1 ≤ −1, using the first part of Proposition 2.10 we also obtain

L(δ([νa−1ρ0, ν
−a−1ρ0]);σ) ↪→ ν−a+1ρ0 � L(δ([νaρ0, ν

−a−1ρ0]);σ).

Consequently, L(δ([νa−1ρ0, ν
−aρ0]);σ) is a subrepresentation of

ν−aρ0 × ν−a+1ρ0 � L(δ([νaρ0, ν
−a−1ρ0]);σ),

and there is an irreducible subquotient π2 of

ν−aρ0 × ν−a+1ρ0
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such that L(δ([νa−1ρ0, ν
−aρ0]);σ) is a subrepresentation of

π2 � L(δ([νaρ0, ν
−a−1ρ0]);σ).

Since μ∗(L(δ([νa−1ρ0, ν
−aρ0]);σ)) does not contain an irreducible constituent of

the form ν−a−1ρ0 ⊗ π′, it follows that π2 
∼= δ([ν−aρ0, ν
−a+1ρ0]), so we have that

π2
∼= ζ([ν−aρ0, ν

−a+1ρ0]). It can also be seen, following the same arguments as
for L(δ([νa−1ρ0, ν

−aρ0]);σ), that μ
∗(L(δ([νaρ0, ν

−a−1ρ0]);σ)) does not contain an
irreducible constituent of the form νiρ0⊗π′, for i ∈ {−a+1,−a}. Now Lemma 2.7

implies that ̂L(δ([νa−1ρ0, ν−aρ0]);σ) is the unique irreducible subrepresentation of

δ([νa−1ρ0, ν
aρ0])� ̂L(δ([νaρ0, ν−a−1ρ0]);σ),

and a repeated application of this procedure ends the proof. �

4. Case a ≥ 1

From now on, we assume that β > 0. In this section we consider the case
a ≥ 1. Let us first consider the more complicated case ρ0 ∼= ρ. Directly from
[26, Proposition 3.1] we obtain the following reducibility criterion.

Proposition 4.1. Degenerate principal series ζ([ν−bρ, ν−aρ]) � ζ(ρ, x;σ) reduces
if and only if one of the following holds:

• a ≤ α− 1 ≤ b < x,
• a ≤ x+ 1 and x < b.

Proposition 4.2. If a ≤ α− 1 ≤ b < x, then in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x; σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ; σ)

+L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . . , ν−aρ; σ).

Proof. In R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))

+L(δ([ν−α+2ρ, ν−aρ]);σsp),

where σsp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ])� δ(ρ, x;σ).
We note that σsp is a strongly positive discrete series.

Let us first determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)). The third
part of Proposition 2.10 implies that

L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρ� L(δ([ν−bρ, ν−aρ]); δ(ρ, x− 1;σ)).

Using the structural formula and a description of the Jacquet modules of strongly
positive representations, we deduce that μ∗(δ([ν−bρ, ν−aρ])�δ(ρ, x−1;σ)) does not
contain an irreducible constituent of the form νxρ⊗ π2. Repeating this procedure
and using Lemma 2.7, we obtain that the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))
is an irreducible subrepresentation of

ν−xρ× ν−x+1ρ× · · · × ν−b−1ρ� ̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)).
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Since νbρ� δ(ρ, b;σ) is irreducible, by [26, Proposition 3.1], we have

L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) ↪→ δ([ν−b+1ρ, ν−aρ])× ν−bρ� δ(ρ, b;σ)

∼= δ([ν−b+1ρ, ν−aρ])× νbρ� δ(ρ, b;σ)

↪→ δ([ν−b+1ρ, ν−aρ])× νbρ× νbρ� δ(ρ, b− 1;σ)

∼= νbρ× νbρ× δ([ν−b+1ρ, ν−aρ])� δ(ρ, b− 1;σ).

Note that δ([ν−b+1ρ, ν−aρ]) � δ(ρ, b − 1;σ) is irreducible, thus isomorphic to
L(δ([ν−b+1ρ, ν−aρ]); δ(ρ, b − 1;σ)) and that μ∗(δ([ν−b+1ρ, ν−aρ]) � δ(ρ, b − 1;σ))
does not contain an irreducible constituent of the form νbρ⊗ π. A repeated appli-
cation of Lemma 2.7 and the previous procedure implies that the Aubert dual of
L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) is an irreducible subrepresentation of

ν−bρ× ν−bρ× · · · × ν−αρ× ν−αρ� ̂L(δ([ν−α+1ρ, ν−aρ]);σ).

Since the induced representation δ([ν−α+1ρ, ν−aρ])�σ is also irreducible, its Jacquet
module with respect to the appropriate parabolic subgroup contains να−1ρ⊗ · · · ⊗
νaρ⊗ σ. Now Lemma 2.6 implies that the Aubert dual of L(δ([ν−α+1ρ, ν−aρ]);σ)
is the unique irreducible subrepresentation of ν−α+1ρ×· · ·× ν−aρ�σ. Altogether,
the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is isomorphic to

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ;σ).

It remains to determine the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σsp).
If x > b + 1, it follows from [18, Section 3] that σsp is a subrepresentation of

νxρ�σ′
sp, where σ

′
sp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ])�

δ(ρ, x− 1;σ). The third part of Proposition 2.10 implies L(δ([ν−α+2ρ, ν−aρ]);σsp)
is a subrepresentation of νxρ � L(δ([ν−α+2ρ, ν−aρ]);σ′

sp). Using Lemma 2.7 and

continuing in the same way, we deduce the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σsp)
is a subrepresentation of

ν−xρ× · · · × ν−b−2ρ�
̂

L(δ([ν−α+2ρ, ν−aρ]);σ
(1)
sp ),

where σ
(1)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ])

� δ(ρ, b + 1;σ). From embeddings of strongly positive representations ([18, Sec-
tion 3]), using Proposition 2.10(3) twice, we get

L(δ([ν−α+2ρ, ν−aρ]);σ(1)
sp ) ↪→ νbρ× νb+1ρ� L(δ([ν−α+2ρ, ν−aρ]);σ(2)

sp ),

where σ
(2)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νb−1ρ])�δ(ρ, b;σ).

Now [18, Theorem 3.4] implies

L(δ([ν−α+2ρ, ν−aρ]);σ(1)
sp ) ↪→ ζ([νbρ, νb+1ρ])� L(δ([ν−α+2ρ, ν−aρ]);σ(2)

sp ).

Using a repeated application of Lemma 2.7 and continuing in the same way, we

obtain that the Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σ
(1)
sp ) is a subrepresentation of

δ([ν−b−1ρ, ν−bρ])× · · · × δ([ν−αρ, ν−α+1ρ])� ̂L(δ([ν−α+2ρ, ν−aρ]);σ),

and it can be seen in the same way as in the case of L(δ([ν−α+1ρ, ν−aρ]);σ) that the
Aubert dual of L(δ([ν−α+2ρ, ν−aρ]);σ) is the unique irreducible subrepresentation
of ν−α+2ρ× · · · × ν−aρ� σ. This ends the proof. �
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Proposition 4.3. Suppose that a ≤ x + 1 and x < b. If a > α, then in R(G) we
have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x; σ)

= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−aρ, ν−aρ, ν−a+1ρ, . . . , ν−αρ; σ)

+L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−aρ, ν−a+1ρ]), ν−a+2ρ, . . . , ν−αρ;σ).

If a ≤ α, then in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−aρ;σ)

+L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]);σsp),

where σsp is the unique irreducible subrepresentation of νaρ× · · · × ναρ� σ.

Proof. Under the assumptions of the proposition, in R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ))

+L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)).

Let us first determine the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)). Using the
third part of Proposition 2.10 and Lemma 2.7, we obtain that it is an irreducible
subrepresentation of

ν−bρ× · · · × ν−x−1ρ� ̂L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

Note that the induced representation νxρ � δ(ρ, x;σ) is irreducible. Using the
second part of Proposition 2.10 we deduce that L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) is a
subrepresentation of νxρ�L(δ([ν−x+1ρ, ν−aρ]); δ(ρ, x;σ)), and then the third part
of the same proposition gives an embedding

L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρ× νxρ� L(δ([ν−x+1ρ, ν−aρ]); δ(ρ, x− 1;σ)).

We can continue in the same way to obtain the Aubert dual of L(δ([ν−xρ, ν−aρ]);
δ(ρ, x;σ)) using Lemma 2.7.

If a = α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) is an
irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−aρ× ν−aρ� σ.

If a > α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) is an
irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−aρ× ν−aρ� ̂δ(ρ, a− 1;σ),

and it follows from [20, Theorem 3.5] that ̂δ(ρ, a− 1;σ) ∼= L(ν−a+1ρ, . . . , ν−αρ;σ).
Finally, if a < α, it follows that the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) is
an irreducible subrepresentation of

ν−xρ× ν−xρ× · · · × ν−αρ× ν−αρ� ̂L(δ([ν−α+1ρ, ν−aρ]);σ),

and the Aubert dual of L(δ([ν−α+1ρ, ν−aρ]);σ) is the unique irreducible subrepre-
sentation of ν−α+1ρ× · · · × ν−aρ� σ, as before.
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Let us now determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)). First,
using Lemma 2.7, together with the first part of Proposition 2.10, we obtain that
it is an irreducible subrepresentation of

ν−bρ× · · · × ν−x−2ρ� ̂L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

Note that, by [26, Proposition 3.1], in R(G) we have

δ([νaρ, νx+1ρ])� δ(ρ, x;σ)) = L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))

+L(δ([ν−xρ, ν−aρ]); δ(ρ, x+ 1;σ)).

Since δ([νaρ, νxρ])� δ(ρ, x;σ) is irreducible, the structural formula directly implies
that νx+1ρ ⊗ δ([νaρ, νxρ]) � δ(ρ, x;σ) is the unique irreducible constituent of the
form νx+1ρ ⊗ π appearing in μ∗(δ([νaρ, νx+1ρ]) � δ(ρ, x;σ)), which appears there
with multiplicity one, and it obviously appears in μ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x +
1;σ))). Thus, μ∗(L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))) does not contain an irreducible
constituent of the form νx+1ρ⊗ π.

Now, using the third part of Proposition 2.10, and then the first part of the same
proposition, we obtain an embedding

L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ))

↪→ ζ([νxρ, νx+1ρ])� L(δ([ν−xρ, ν−aρ]); δ(ρ, x− 1;σ)).

Also, in the same way as before we conclude that μ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x −
1;σ))) does not contain an irreducible constituent of the form νiρ ⊗ π for i ∈
{x, x+1}. Using Lemma 2.7 and repeating this procedure, we obtain an embedding
of the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

If a = α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) is an
irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−a−1ρ, ν−aρ])� ̂L(ν−αρ;σ),

and it follows from [20, Theorem 3.5] that the Aubert dual of L(ν−αρ;σ) is isomor-
phic to δ(ρ, α;σ). Note that for a = α we have σsp

∼= δ(ρ, α;σ).
If a > α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) is an

irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−a−1ρ, ν−aρ])� ̂δ(ρ, a− 2;σ),

and it follows from [20, Theorem 3.5] that the Aubert dual of δ(ρ, a − 2;σ) is the
unique irreducible subrepresentation of ν−a+2ρ× · · · × ν−αρ� σ.

If a < α, it follows that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) is an
irreducible subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−α−1ρ, ν−αρ])� ̂L(δ([ν−αρ, ν−aρ]);σ),

and it follows from [20, Theorem 3.5] that the Aubert dual of L(δ([ν−αρ, ν−aρ]);σ)
is the unique irreducible subrepresentation of νaρ×· · ·× ναρ�σ, which is strongly
positive. This proves the proposition. �

Let us now consider the case ρ0 
∼= ρ. The following proposition can be proved in
the same way as Proposition 4.3, using Lemma 2.9, details being left to the reader.
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Proposition 4.4. Degenerate principal series ζ([ν−bρ0, ν
−aρ0])�ζ(ρ, x;σ) is irre-

ducible if and only if either a > β or b < β. If ζ([ν−bρ0, ν
−aρ0])�ζ(ρ, x;σ) reduces,

in R(G) we have

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x;σ)

= L(ν−bρ0, . . . , ν
−aρ0, ν

−xρ, . . . , ν−αρ;σ)

+L(ν−bρ0, . . . , ν
−β−1ρ0, ν

−xρ, . . . , ν−αρ;σsp),

where σsp is the unique irreducible subrepresentation of νaρ0 × · · · × νβρ0 � σ.

5. Case a ≤ 0

In this section we analyze the case when a ≤ 0. To make the notation uniform,
we let τ (1) = ρ0 � σ if a ∈ Z and τ (1) = σ if a 
∈ Z. Also, if a 
∈ Z, let τ (2)

denote the unique irreducible (strongly positive) subrepresentation of ν
1
2 ρ0×ν

3
2 ρ0×

· · · × νβρ0 � σ. If a ∈ Z, let τ ′ denote the unique irreducible (strongly positive)
subrepresentation of νρ0×· · ·×νβρ0�σ and let τ (2) denote an irreducible (tempered)
subrepresentation of ρ0� τ ′ which does not contain an irreducible representation of
the form νρ0 ⊗ π in the Jacquet module with respect to the appropriate parabolic
subgroup. We note that such a subrepresentation of ρ0 � τ ′ is unique by [29,
Section 4].

For an irreducible self-contragredient cuspidal representation ρ1 ∈ R(GL) and

an irreducible cuspidal representation σ1 ∈ R(G) such that ν
1
2 ρ1�σ1 reduces, we de-

note by τ (ρ1, σ1) the unique irreducible tempered subrepresentation of

δ([ν−
1
2 ρ1, ν

1
2 ρ1])� σ1 which is not a subrepresentation of ν

1
2 ρ1 × ν

1
2 ρ1 � σ1, Also,

for a real number y let �y� stand for the smallest integer which is not smaller than
y.

We will again first consider the more complicated case ρ0 ∼= ρ. Let us first
assume that −a = b.

Proposition 5.1. Degenerate principal series ζ([ν−aρ, νaρ]) � ζ(ρ, x;σ) is irre-
ducible if and only if either −a ≤ α − 2 or −a = x. If α − 2 < −a < x, in R(G)
we have

ζ([ν−aρ, νaρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . ,

ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)) + π,

where

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ,

ν−α+2ρ, ν−α+2ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

if α ≥ 3
2 ,

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−2ρ, ν−1ρ]), ν−1ρ, δ([ν−1ρ, ρ]);σ)

if α = 1,

π ∼= L(ν−xρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−
5
2 ρ, ν−

3
2 ρ]), ν−

3
2 ρ,

δ([ν−
3
2 ρ, ν−

1
2 ρ]); τ (ρ, σ))

if α = 1
2 .
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If −a > x, in R(G) we have

ζ([ν−aρ, νaρ])� ζ(ρ, x;σ)

= L(νaρ, νaρ, . . . , ν−x−1ρ, ν−x−1ρ, ν−xρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

+L(νaρ, νaρ, . . . , ν−x−2ρ, ν−x−2ρ, ν−x−1ρ, δ([ν−x−1ρ, ν−xρ]), . . . ,

ν−α−1ρ, δ([ν−α−1ρ, ν−αρ]), ν−αρ, . . . , ν�α�−α−1ρ; τ (2)).

Proof. Reducibility of δ([ν−aρ, νaρ]) � δ(ρ, x;σ) is an integral part of the classifi-
cation of discrete series. If such an induced representation reduces, it is a direct
sum of two mutually non-isomorphic irreducible tempered representations, whose
Aubert duals can be easily obtained from [22, Theorem 4.11, Theorem 4.16, Theo-
rem 4.21]. �

Now we deal with the case −a < b. The reducibility criterion follows from
[26, Theorem 4.1(i)].

Proposition 5.2. Degenerate principal series ζ([ν−bρ, ν−aρ]) � ζ(ρ, x;σ) is irre-
ducible if and only if one of the following holds:

• b < α− 1,
• −a < α− 1 and b = x.

Other possibilities will be studied using a case-by-case consideration.

Proposition 5.3. Suppose that α− 1 ≤ −a < b < x. Let

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ,

ν−α+2ρ, ν−α+2ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

if α ≥ 3
2 ,

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−2ρ, ν−1ρ]), ν−1ρ, δ([ν−1ρ, ρ]);σ)

if α = 1, and

π1
∼= L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([νa−2ρ, νa−1ρ]),

δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−
5
2 ρ, ν−

3
2 ρ]), ν−

3
2 ρ, δ([ν−

3
2 ρ, ν−

1
2 ρ]); τ (ρ, σ)),

if α = 1
2 .

Also, let

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−αρ, δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ, ν−α+2ρ, ν−α+2ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

if α ≥ 3
2 ,

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−1ρ, δ([ν−1ρ, ρ]), σ),
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if α = 1, and

π2
∼= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−
3
2 ρ, δ([ν−

3
2 ρ, ν−

1
2 ρ]); τ (ρ, σ))

if α = 1
2 .

Then in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)) + π1 + π2.

Proof. By [26, Theorem 2.1], in R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1 + σ2,

where σ1, σ2 are mutually non-isomorphic discrete series representations. Aubert
duals of σ1 and σ2 have been obtained in [22, Theorems 4.11, 4.16]. It remains to de-
termine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)). Using Proposition 2.10(3)
and Lemma 2.7, we deduce that the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is
an irreducible subrepresentation of

ν−xρ× · · · × ν−b−1ρ� ̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)).

If b > −a+ 1, we have the following embeddings and isomorphisms:

L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) ↪→ δ([ν−b+1ρ, ν−aρ])× ν−bρ� δ(ρ, b;σ)

∼= δ([ν−b+1ρ, ν−aρ])× νbρ� δ(ρ, b;σ)

∼= νbρ× δ([ν−b+1ρ, ν−aρ])� δ(ρ, b;σ)

↪→ νbρ× δ([ν−b+1ρ, ν−aρ])× νbρ� δ(ρ, b− 1;σ)

∼= νbρ× νbρ× δ([ν−b+1ρ, ν−aρ])� δ(ρ, b− 1;σ).

Thus, there is an irreducible subquotient π of δ([ν−b+1ρ, ν−aρ]) � δ(ρ, b − 1;σ)
such that L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) is a subrepresentation of νbρ × νbρ � π.
Since μ∗(L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ))) ≥ δ([ν−bρ, ν−aρ])⊗ δ(ρ, b;σ), it follows that
π ∼= L(δ([ν−b+1ρ, ν−aρ]); δ(ρ, b−1;σ)). Obviously, μ∗(L(δ([ν−b+1ρ, ν−aρ]); δ(ρ, b−
1;σ))) does not contain an irreducible constituent of the form νbρ⊗ π1. Repeated
application of this procedure and Lemma 2.7 lead us to an embedding

̂L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ))

↪→ ν−bρ× ν−bρ× · · · × νa−2ρ× νa−2ρ� ̂L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)).

Thus, it remains to determine ̂L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)). Proposition
2.10(2) implies that L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a + 1;σ)) is a subrepresentation of
ν−aρ�L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a+1;σ)), and in the same way as before we get

L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ))

↪→ ν−aρ× ν−a+1ρ× ν−a+1ρ� L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ)).
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By [26, Theorem 4.1], in R(G) we have

δ([νaρ, ν−a+1ρ])� δ(ρ,−a+ 1;σ)

= L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)) + τtemp,

where τtemp is the unique common irreducible subrepresentation of

δ([νa−1ρ, ν−a+1ρ])� δ(ρ,−a;σ)

and

δ([νaρ, ν−a+1ρ])� δ(ρ,−a+ 1;σ).

From the structural formula we obtain that

ν−a+1ρ× ν−a+1ρ⊗ δ([νaρ, ν−aρ])� δ(ρ,−a;σ)

is the unique irreducible constituent of μ∗(δ([νaρ, ν−a+1ρ])� δ(ρ,−a+1;σ)) of the
form ν−a+1ρ × ν−a+1ρ ⊗ π′, which appears there with multiplicity one, and by
Frobenius reciprocity it is contained in μ∗(τtemp). Thus,

μ∗(L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ)))

does not contain an irreducible constituent of the form ν−a+1ρ×ν−a+1ρ⊗π′, which
yields

L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+ 1;σ))

↪→ ζ([ν−aρ, ν−a+1ρ])× ν−a+1ρ� L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ)).

Also, μ∗(L(δ([νaρ, ν−a−1ρ]); δ(ρ,−a;σ))) does not contain an irreducible constituent
of the form ν−a+1ρ ⊗ π′

1, so using Lemma 2.8 and a repeated application of this
procedure, we get that the Aubert dual of L(δ([νa−1ρ, ν−aρ]); δ(ρ,−a+1;σ)) is an
irreducible subrepresentation of

νa−1ρ× δ([νa−1ρ, νaρ])× · · · × ν−α−1ρ× δ([ν−α−1ρ, ν−αρ])

� ̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ)).

If α = 1
2 , by [22, Lemma 4.10] we have ̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ)) ∼= τ (ρ, σ). If

α > 1
2 , in the same way as before we get

̂L(δ([ν−αρ, να−1ρ]); δ(ρ, α;σ))

↪→ ν−αρ× δ([ν−αρ, ν−α+1ρ])� ̂L(δ([ν−α+1ρ, να−2ρ]);σ).

For α = 1, we have L(δ([ν−α+1ρ, να−2ρ]);σ) ∼= σ, and for α ≥ 3
2 we have

̂L(δ([ν−α+1ρ, να−2ρ]);σ)

↪→ ν−α+1ρ× ν−α+2ρ× ν−α+2ρ× · · · × ν�α�−α−1ρ× ν�α�−α−1ρ� τ (1).

This ends the proof. �
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Proposition 5.4. If −a > x, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−x−1ρ, ν−x−1ρ, ν−xρ, ν−xρ, ν−xρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

+L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−x−2ρ, ν−x−2ρ, ν−x−1ρ, δ([ν−x−1ρ, ν−xρ]), . . . ,

ν−α−1ρ, δ([ν−α−1ρ, ν−αρ]), ν−αρ, . . . , ν�α�−α−1ρ; τ (2))

+L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , δ([ν−x−2ρ, ν−x−1ρ]),

δ([ν−x−1ρ, ν−xρ]), ν−xρ, . . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ, ν−α+1ρ, . . . , ν�α�−α−1ρ; τ (2)).

Proof. Again, by [26, Theorem 2.1], in R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1 + σ2,

where σ1, σ2 are mutually non-isomorphic discrete series representations. It is
enough to determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)), which can
be determined in a similar way as in the proof of the previous proposition, details
being left to the reader. �

Proposition 5.5. Suppose that α− 1 ≤ −a < x ≤ b. Let

π1
∼= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]),

. . . , ν−
3
2 ρ, δ([ν−

3
2 ρ, ν−

1
2 ρ]); τ (ρ, σ))

if α = 1
2 ,

π1
∼= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]),

. . . , ν−1ρ, δ([ν−1ρ, ρ]);σ)

if α = 1, and

π1
∼=L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−2ρ, νa−2ρ, νa−1ρ, δ([νa−1ρ, νaρ]), . . . ,

ν−αρ, δ([ν−αρ, ν−α+1ρ]), ν−α+1ρ, ν−α+2ρ, ν−α+2ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

if α ≥ 3
2 .

Let

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−
3
2 ρ, ν

1
2 ρ]);σ)

if α = 1
2 ,

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−2ρ, ρ]); δ(ρ, 1;σ))

if α = 1, and

π2
∼= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−3ρ, νa−2ρ]),

δ([νa−2ρ, νaρ]), . . . , δ([ν−α−1ρ, ν−α+1ρ]), ν−α+2ρ, . . . , ν�α�−α−1ρ; τ (2))

if α ≥ 3
2 .



422 YEANSU KIM, BAIYING LIU, AND IVAN MATIĆ

If x < b, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . ,

ν−αρ, ν−αρ, ν−αρ, ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

+L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([νa−2ρ, νa−1ρ]), δ([νa−1ρ, νaρ]), νaρ,

. . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ, ν−α+1ρ, . . . , ν�α�−α−1ρ; τ (2))

+π1 + π2.

If x = b, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, ν−bρ, . . . , νa−1ρ, νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)) + π1.

Proof. Let us first consider the case x < b By [19, Proposition 3.2], in R(G) we
have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + σ1

+L(δ([ν−bρ, νxρ]); δ(ρ,−a;σ)) + L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)),

where σ1 is the unique common discrete series subrepresentation of both δ([νxρ, νbρ])
� δ(ρ, a;σ) and δ([νaρ, νxρ])� δ(ρ, b;σ).

The Aubert duals of σ1 and of L(δ([ν−bρ, νxρ]); δ(ρ,−a;σ)) can be obtained
from Proposition 5.4, interchanging the roles of a and x. Also, the Aubert dual of
L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)) can be obtained from Proposition 5.3, interchanging
the roles of b and x.

It remains to determine the Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)). First, in

the same way as in the previously considered cases we obtain that L(δ([ν−bρ, ν̂−aρ]);
δ(ρ, x;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−2ρ� ̂L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)).

Also, if x > −a+ 1, we have

L(δ([ν−x−1ρ, ν−aρ]); δ(ρ, x;σ)) ↪→ νxρ× νx+1ρ� L(δ([ν−xρ, ν−aρ]); δ(ρ, x− 1;σ)),

and there is an irreducible subquotient π1 of νxρ × νx+1ρ such that L(δ([ν−x−1ρ,
ν−aρ]); δ(ρ, x;σ)) is a subrepresentation of π1 � L(δ([ν−xρ, ν−aρ]); δ(ρ, x− 1;σ)).

The induced representation δ([νaρ, νx+1ρ]) � δ(ρ, x;σ) is a length four repre-
sentation, again by [19, Proposition 3.2]. If νx+1ρ ⊗ π is an irreducible con-
stituent of μ∗(δ([νaρ, νx+1ρ]) � δ(ρ, x;σ)), using the structural formula we eas-
ily obtain that π is an irreducible subquotient of δ([νaρ, νxρ]) � δ(ρ, x;σ). From
[26, Theorem 4.1] we conclude that μ∗(δ([νaρ, νx+1ρ]) � δ(ρ, x;σ)) contains two
irreducible constituents of the form νx+1ρ ⊗ π, which have to be contained in
μ∗(L(δ([ν−xρ, ν−aρ]); δ(ρ, x + 1;σ))) and in μ∗(σ2), where σ2 is a discrete series
subrepresentation of δ([νaρ, νx+1ρ]) � δ(ρ, x;σ). Thus, μ∗(L(δ([ν−x−1ρ, ν−aρ]);
δ(ρ, x;σ))) does not contain irreducible constituents of the form νx+1ρ ⊗ π, so π1
∼= ζ([νxρ, νx+1ρ]).
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This can be used to conclude that the Aubert dual of L(δ([ν−x−1ρ, ν−aρ]);
δ(ρ, x;σ)) is a subrepresentation of

δ([ν−x−1ρ, ν−xρ])× · · · × δ([νa−3ρ, νa−2ρ])� ̂L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+ 1;σ)).

Using Proposition 2.10(2), (3), and (1), respectively, we get

L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+ 1;σ))

↪→ ν−aρ× ν−a+1ρ× ν−a+2ρ� L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)).

We have already seen that μ∗(L(δ([νa−2ρ, ν−aρ]); δ(ρ,−a+1;σ))) does not contain
an irreducible constituent of the form ν−a+2ρ⊗ π. If ν−a+1ρ⊗ π is an irreducible
constituent of μ∗(δ([νaρ, ν−a+2ρ])�δ(ρ,−a+1;σ)), then π is an irreducible subquo-
tient of δ([νaρ, ν−a+2ρ])� δ(ρ,−a;σ), which is a length two representation. Thus,
the Frobenius reciprocity can be used to deduce that μ∗(L(δ([νa−2ρ, ν−a+1ρ]);
δ(ρ,−a;σ))) and μ∗(σ3), where σ3 is a discrete series subrepresentation of
δ([νa−2ρ, ν−aρ]) � δ(ρ,−a + 1;σ), contain all irreducible constituents of the form
ν−a+1ρ⊗π appearing in μ∗(δ([νaρ, ν−a+2ρ])�δ(ρ,−a+1;σ)). So, L(δ([νa−2ρ, ν−aρ]);
δ(ρ,−a+ 1;σ)) is a subrepresentation of

ζ([ν−aρ, ν−a+2ρ])� L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)).

In the same way it can be seen that μ∗(L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ))) does
not contain irreducible constituents of the form νyρ ⊗ π for π ∈ {−a,−a + 1}.
Using Lemma 2.7 and continuing in the same way, we get that the Aubert dual of
L(δ([νa−1ρ, ν−a−1ρ]); δ(ρ,−a;σ)) is a subrepresentation of

δ([νa−2ρ, νaρ])× · · · × δ([ν−α−2ρ, ν−αρ])� ̂L(δ([ν−α−1ρ, να−1ρ]); δ(ρ, α;σ)).

Let us first consider the case α = 1
2 . Then it can be seen, using the inter-

twining operators method, that L(δ([ν−
3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ)) is a subrepresenta-

tion of ν−
1
2 ρ × ν

1
2 ρ × ν

3
2 ρ � σ. Thus, there is an irreducible subquotient π1 of

ν−
1
2 ρ × ν

1
2 ρ × ν

3
2 ρ such that L(δ([ν−

3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ)) is a subrepresentation

of π1 � σ.
By [26, Theorem 5.1(ii)], in R(G) we have

δ([ν
1
2 ρ, ν

3
2 ρ])� δ(ρ,

1

2
;σ) = L(δ([ν−

3
2 ρ, ν−

1
2 ρ]); δ(ρ,

1

2
;σ)) + σ4

+L(δ([ν−
3
2 ρ, ν

1
2 ρ]);σ) + L(ν−

1
2 ρ; δ(ρ,

3

2
;σ)),

where σ4 is the unique discrete series subrepresentation of δ([ν
1
2 ρ, ν

3
2 ρ])�δ(ρ, 1

2 ;σ).

Since both induced representations δ([ν
1
2 ρ, ν

3
2 ρ]) � σ and ν

1
2 ρ � δ(ρ, 12 ;σ) are

of length two (by [26, Theorem 5.1]), it follows from the structural formula that

μ∗(δ([ν
1
2 ρ, ν

3
2 ρ]) � δ(ρ, 1

2 ;σ)) contains exactly two irreducible constituents of the

form ν
3
2 ρ ⊗ π and exactly two irreducible constituents of the form ν

1
2 ρ ⊗ π. Now

Frobenius reciprocity and transitivity of the Jacquet modules imply that all irre-

ducible constituents of the form ν
3
2 ρ ⊗ π are contained in μ∗(σ4) and in

μ∗(L(ν−
1
2 ρ; δ(ρ, 32 ;σ))), while all irreducible constituents of the form ν

1
2 ρ ⊗ π are

contained in μ∗(σ4) and in μ∗((L(δ([ν−
3
2 ρ, ν

1
2 ρ]);σ)).

Consequently, μ∗(L(δ([ν−
3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ))) does not contain irreducible

constituents of the form νyρ⊗ π for y ∈ { 1
2 ,

3
2}.
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Thus, it follows that π1
∼= ζ([ν−

1
2 ρ, ν

3
2 ρ]), so L(δ([ν−

3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ)) is a

subrepresentation of ζ([ν−
1
2 ρ, ν

3
2 ρ])�σ. Now Lemma 2.7 can be used to obtain the

Aubert dual of L(δ([ν−
3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ)) is isomorphic to L(δ([ν−

3
2 ρ, ν

1
2 ρ]);σ).

If α>1
2 , in the same way as before we deduce that the Aubert dual of L(δ([ν−α−1ρ,

να−1ρ]); δ(ρ, α;σ)) is a subrepresentation of

δ([ν−α−1ρ, ν−α+1ρ])� ̂L(δ([ν−αρ, να−2ρ]);σ).

If α = 1, from [20, Theorem 3.5] we deduce that ̂L(δ([ν−αρ, να−2ρ]);σ) ∼=
δ(ρ, 1;σ). If α ≥ 3

2 , from [22, Lemma 4.10] we get that ̂L(δ([ν−αρ, να−2ρ]);σ)

is the unique irreducible subrepresentation of ν−α+2ρ× · · · × ν�α�−α−1ρ� τ (2).
If x = b, in R(G) we have

δ([νaρ, νbρ])� δ(ρ, b;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) + τ,

where τ is the unique common irreducible tempered subrepresentation of
δ([νaρ, νbρ])� δ(ρ, b;σ) and δ([ν−bρ, νbρ])� δ(ρ, a;σ). The Aubert dual of the rep-
resentation L(δ([ν−bρ, ν−aρ]); δ(ρ, b;σ)) has been determined in the proof of Propo-
sition 5.3, while the Aubert dual of τ can be obtained from [22, Theorem 4.16]. �

Proposition 5.6. If −a < α− 2 and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , νa−1ρ,

νaρ, νaρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

+L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . .

νa−1ρ, νaρ, νaρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)).

If −a = α− 2 and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, ν−α+2ρ, ν−α+2ρ,

. . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1))

+L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]),

ν−α+2ρ, ν−α+2ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)).

Proof. We discuss only the case −a = α − 2, since the case −a < α − 2 can be
handled in the same way, but more easily. Let us denote by σsp a strongly positive
discrete series subrepresentation of δ([να−1ρ, νbρ]) � δ(ρ, x;σ) ([17, Section 4] or
Proposition 2.3). Note that we have α ≥ 5

2 .
By [26, Theorem 4.1], in R(G) we have

δ([ν−α+2ρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, να−2ρ]); δ(ρ, x;σ)) + τ,

where τ is the unique common irreducible (tempered) subrepresentation of induced
representations δ([ν−α+2ρ, νbρ])� δ(ρ, x;σ) and δ([ν−α+2ρ, να−2ρ])� σsp.
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Using the same reasoning as in the previously considered cases, we deduce that
the Aubert dual of L(δ([ν−bρ, να−2ρ]); δ(ρ, x;σ)) is isomorphic to

L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, ν−α+2ρ, ν−α+2ρ,

. . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)).

Let us determine the Aubert dual of τ . If x > b+ 1, it follows from the classifi-

cation provided in [17, Section 4] that σsp is a subrepresentation νxρ� σ
(1)
sp , where

σ
(1)
sp is the unique irreducible subrepresentation of δ([να−1ρ, νbρ]) � δ(ρ, x − 1;σ).

Then τ is a subrepresentation of νxρ�τ1, where τ1 is a common irreducible subrep-

resentation of both δ([ν−α+2ρ, νbρ])� δ(ρ, x− 1;σ) and δ([ν−α+2ρ, να−2ρ])� σ
(1)
sp .

Continuing in this way we obtain that the Aubert dual of τ is a subrepresentation
of

ν−xρ× · · · × ν−b−2ρ� τ̂2,

where τ2 is the unique common irreducible subrepresentation of δ([ν−α+2ρ, νbρ])

� δ(ρ, b+ 1;σ) and δ([ν−α+2ρ, να−2ρ])� σ
(2)
sp , where σ

(2)
sp is the unique irreducible

subrepresentation of δ([να−1ρ, νbρ])� δ(ρ, b + 1;σ). Since σ
(2)
sp is a subrepresenta-

tion of ζ([νb−1ρ, νbρ])�σ
(3)
sp , where σ

(3)
sp is the unique irreducible subrepresentation

of δ([να−1ρ, νb−1ρ]) � δ(ρ, b;σ), and μ∗(σ
(3)
sp ) does not contain an irreducible con-

stituent of the form νbρ⊗π by [18, Theorem 4.6], we can continue in the same way
to obtain that τ̂2 is an irreducible subrepresentation of

δ([ν−b−1ρ, ν−bρ])× · · · × δ([ν−α−1ρ, ν−αρ])� τ̂3,

where τ3 is the unique common irreducible subrepresentation of δ([ν−α+2ρ, να−1ρ])

� δ(ρ, α;σ) and δ([ν−α+2ρ, να−2ρ]) � σ
(4)
sp , where σ

(4)
sp is the unique irreducible

subrepresentation of να−1ρ� δ(ρ, α;σ).
It follows at once that τ3 is a subrepresentation of the induced representation

να−1ρ× ναρ� δ([ν−α+2ρ, να−2ρ])� σ. Since δ([ν−α+2ρ, να−2ρ])� σ is irreducible

and μ∗(σ
(4)
sp ) does not contain an irreducible constituent of the form ναρ⊗π, it fol-

lows that τ3 is a subrepresentation of ζ([να−1ρ, ναρ]) × δ([ν−α+2ρ, να−2ρ]) � σ.
Now the rest of the proof follows in the same way as in the previously con-
sidered cases. We note that the Aubert dual of τ3 can also be obtained using
[22, Lemma 4.13, Lemma 4.15]. �

Proposition 5.7. If −a < α− 1 and x < b, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]),

νaρ, . . . , ν�α�−α−1ρ; τ (2))

+L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , νa−1ρ,

νaρ, νaρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)).
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If −a = x, in R(G) we have

ζ([ν−bρ, ν−aρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), νaρ, . . . , δ([ν−α−1ρ, ν−αρ]), ν−αρ

ν−α+1ρ, . . . , ν�α�−α−1ρ; τ (2))

+L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, νaρ, . . . , ν−αρ, ν−αρ, ν−αρ,

ν−α+1ρ, ν−α+1ρ, . . . , ν�α�−α−1ρ, ν�α�−α−1ρ; τ (1)).

Proof. If −a < α− 1 and x < b, in R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ)

= L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) + L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)).

In the same way as in the previously considered cases, we deduce that the Aubert
dual of L(δ([ν−bρ, ν−aρ]); δ(ρ, x;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−2ρ× δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−α−1ρ, ν−αρ])

� ̂L(δ([ν−αρ, ν−aρ]);σ),

and it has been already proved that the Aubert dual of L(δ([ν−αρ, ν−aρ]);σ) is
isomorphic to L(νaρ, . . . , ν�α�−α−1ρ; τ (2)).

Next, the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, b;σ)) is an irreducible subrep-
resentation of

ν−bρ× · · · × ν−x−1ρ� ̂L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

Since the induced representation δ([νaρ, νxρ])�δ(ρ, x;σ) is irreducible, the Jacquet
module of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)) with respect to the appropriate parabolic
subgroup contains

νxρ⊗ νxρ⊗ · · · ⊗ ναρ⊗ ναρ⊗ να−1ρ⊗ · · · ⊗ ν−a+1ρ

⊗ν−aρ⊗ ν−aρ⊗ · · · ⊗ να−�α�+1ρ⊗ να−�α�+1ρ⊗ τ ′,

where τ ′ ∼= σ if a 
∈ Z and τ ′ ∼= ρ⊗ σ otherwise. Now, using Lemma 2.6 we obtain
the Aubert dual of L(δ([ν−xρ, ν−aρ]); δ(ρ, x;σ)).

If −a = x, in R(G) we have

δ([νaρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−aρ]); δ(ρ,−a;σ)) + τ,

where τ is the unique irreducible (tempered) common subrepresentation of

δ([νaρ, νbρ])� δ(ρ,−a;σ)

and δ([νaρ, ν−aρ]) � δ(ρ, b;σ). The Aubert dual of L(δ([ν−bρ, ν−aρ]); δ(ρ,−a;σ))
can be obtained in the same way as before.

In a standard way we obtain that the Aubert dual of τ is a subrepresentation of

ν−bρ× · · · × νa−1ρ� τ̂ ′,

where τ ′ ∼= δ([νaρ, ν−aρ])� δ(ρ,−a;σ), and now τ̂ ′ can be directly obtained using
Lemma 2.6. This ends the proof. �
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Now we turn our attention to the case ρ0 
∼= ρ. We assume that β 
= 0, since the
case β = 0 has been treated in the third section. We omit the proofs, since all the
results can be obtained in the same way as in the ρ0 ∼= ρ case, enhanced by Lemma
2.9.

Proposition 5.8. Suppose that ρ0 
∼= ρ. Then ζ([ν−bρ0, ν
−aρ0]) � ζ(ρ, x;σ) is

irreducible if and only if b < β. If b ≥ β and −a = b, in R(G) we have

ζ([ν−bρ0, ν
bρ0])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−αρ, ν−bρ0, ν
−bρ0, . . . , ν

�β�−β−1ρ0, ν
�β�−β−1ρ0; τ

(1))

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, ν
−bρ0, . . . , ν

−βρ0, ν
−βρ0, ν

−β+1ρ0, . . . , ν
�β�−β−1ρ0; τ

(2)).

If β ≤ −a < b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x; σ)

= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

�β�−β−1ρ0, ν
�β�−β−1ρ0; τ

(1))

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

−βρ0, ν
−βρ0,

ν−β+1ρ0, . . . , ν
�β�−β−1ρ0; τ

(2))

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−2ρ0, δ([ν

a−1ρ0, ν
aρ0]), . . . , δ([ν

−β−1ρ0, ν
−βρ0]),

ν−β+1ρ0, . . . , ν
�β�−β−1ρ0; τ

(2)).

If −a < β = b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x; σ)

= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

�β�−β−1ρ0, ν
�β�−β−1ρ0; τ

(1))

+L(ν−xρ, . . . , ν−αρ, νaρ0, . . . , ν
�β�−β−1ρ0; τ

(2)).

If −a < β < b, in R(G) we have

ζ([ν−bρ0, ν
−aρ0])� ζ(ρ, x; σ)

= L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
a−1ρ0, ν

aρ0, ν
aρ0, . . . , ν

�β�−β−1ρ0, ν
�β�−β−1ρ0; τ

(1))

+L(ν−xρ, . . . , ν−αρ, ν−bρ0, . . . , ν
−β−1ρ0, ν

aρ0, . . . , ν
�β�−β−1ρ0; τ

(2)).

6. Case a = 1
2

This section is devoted to the case a = 1
2 . Again, we first consider the more

complicated case ρ0 ∼= ρ, and let τ (ρ1, σ1) be as in the previous section.
Irreducibility criterion is a direct consequence of [26, Theorem 5.1].

Proposition 6.1. Degenerate principal series ζ([ν−bρ, ν−
1
2 ρ]) � ζ(ρ, x;σ) is irre-

ducible if and only if one of the following holds:

• α > 1
2 and b = x,

• b < α− 1.

The composition factors in other cases are given in the following sequence of
propositions.

Proposition 6.2. If α > 1
2 and x < b, in R(G) we have

ζ([ν−bρ, ν−
1
2 ρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−α−1ρ, ν−αρ]); τ (2))

+L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν−
1
2 ρ;σ).
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Proof. By [26, Theorem 5.1], in R(G) we have:

δ([ν
1
2 ρ, νbρ])� δ(ρ, x;σ)

= L(δ([ν−bρ, ν−
1
2 ρ]); δ(ρ, x;σ)) + L(δ([ν−xρ, ν−

1
2 ρ]); δ(ρ, b;σ)).

First, in a standard way, using the intertwining operators methods, Proposition

2.10(1), and Lemma 2.7, we get that the Aubert dual of L(δ([ν−bρ, ν−
1
2 ρ]); δ(ρ, x;σ))

is a subrepresentation of

ν−bρ× · · · × ν−x−2ρ× δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−α−1ρ, ν−αρ])

�
̂L(δ([ν−αρ, ν−

1
2 ρ]);σ),

and by [20, Theorem 3.5] the Aubert dual of L(δ([ν−αρ, ν−
1
2 ρ]);σ) is isomorphic

to τ (2).
Using Proposition 2.10(3) and Lemma 2.7, we deduce that the Aubert dual of

L(δ([ν−xρ, ν−
1
2 ρ]); δ(ρ, b;σ)) is a subrepresentation of

ν−bρ× · · · × ν−x−1ρ� ̂L(δ([ν−xρ, ν−
1
2 ρ]); δ(ρ, x;σ)).

Now by irreducibility of δ([ν
1
2 ρ, νxρ]) � δ(ρ, x;σ), the rest of the proof follows in

the same way as in the proof of Proposition 5.7. �

The following result can be obtained following the same lines as in the proofs of
Propositions 6.2 and 4.2.

Proposition 6.3. If α > 1
2 and α− 1 ≤ b < x, in R(G) we have

ζ([ν−bρ, ν− 1
2 ρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−αρ, ν−αρ, ν−α+1ρ, . . . , ν− 1
2 ρ;σ)

+L(ν−xρ, . . . , ν−b−2ρ, δ([ν−b−1ρ, ν−bρ]), . . . , δ([ν−αρ, ν−α+1ρ]), ν−α+2ρ, . . . , ν− 1
2 ρ;σ).

Proposition 6.4. If α = 1
2 and x < b, in R(G) we have

ζ([ν−bρ, ν−
1
2 ρ])� ζ(ρ, x;σ)

= L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−
1
2 ρ, ν−

1
2 ρ;σ)

+L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−
5
2 ρ, ν−

3
2 ρ]), δ([ν−

3
2 ρ, ν

1
2 ρ]);σ)

+L(ν−bρ, . . . , ν−x−2ρ, δ([ν−x−1ρ, ν−xρ]), . . . , δ([ν−
3
2 ρ, ν−

1
2 ρ]); δ(ρ,

1

2
;σ))

+L(ν−bρ, . . . , ν−x−1ρ, ν−xρ, ν−xρ, . . . , ν−
3
2 ρ, ν−

3
2 ρ; τ (ρ;σ)).

Proof. By [26, Theorem 5.1], in R(G) we have:

δ([ν
1
2 ρ, νbρ])� δ(ρ, x;σ) = L(δ([ν−bρ, ν−

1
2 ρ]); δ(ρ, x;σ)) + σds

+L(δ([ν−xρ, ν−
1
2 ρ]); δ(ρ, b;σ)) + L(δ([ν−bρ, νxρ]);σ),

where σds is the unique common irreducible (discrete series) subrepresentation of

both δ([ν
1
2 ρ, νbρ]) � δ(ρ, x;σ) and δ([ν−xρ, νbρ]) � σ. Note that σ̂ds has been de-

termined in [22, Theorem 5.2.(i)].
Let us determine the Aubert duals of representations L(δ([ν−bρ, νxρ]);σ) and

L(δ([ν−bρ, ν−
1
2 ρ]); δ(ρ, x;σ)). The Aubert dual of L(δ([ν−xρ, ν−

1
2 ρ]); δ(ρ, b;σ)) can
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be obtained in a similar way, but more easily. Using the same arguments as before,
we obtain the following embeddings:

̂L(δ([ν−bρ, νxρ]);σ) ↪→ ν−bρ× · · · × ν−x−2ρ� ̂L(δ([ν−x−1ρ, νxρ]);σ),

̂L(δ([ν−bρ, ν−
1
2 ρ]); δ(ρ, x;σ))

↪→ ν−bρ× · · · × ν−x−2ρ� ̂L(δ([ν−x−1ρ, ν−
1
2 ρ]); δ(ρ, x;σ)).

Since δ([ν
1
2 ρ, νxρ])� δ(ρ, x;σ) is a length two representation by [26, Theorem 5.1],

it follows at once from the structural formula that μ∗(δ([ν
1
2 ρ, νx+1ρ]) � δ(ρ, x;σ))

contains exactly two irreducible constituents of the form νx+1ρ ⊗ π, which have
to be contained in μ∗(L(δ([ν−xρ, ν−

1
2 ρ]); δ(ρ, x+ 1;σ))) and in μ∗(σ′

ds), where σ′
ds

is the unique discrete series subquotient of δ([ν
1
2 ρ, νx+1ρ]) � δ(ρ, x;σ). Thus, nei-

ther μ∗(L(δ([ν−x−1ρ, νxρ]);σ)), nor μ∗(L(δ([ν−x−1ρ, ν−
1
2 ρ]); δ(ρ, x;σ))) contains

an irreducible constituent of the form νx+1ρ⊗ π. This leads to an embedding

L(δ([ν−x−1ρ, νxρ]);σ) ↪→ ζ([νxρ, νx+1ρ])� L(δ([ν−xρ, νx−1ρ]);σ)

and, if x ≥ 3
2 , to an embedding

L(δ([ν−x−1ρ, ν−
1
2 ρ]); δ(ρ, x;σ))

↪→ ζ([νxρ, νx+1ρ])� L(δ([ν−xρ, ν−
1
2 ρ]); δ(ρ, x− 1;σ)).

Using Lemma 2.8 and repeating the same arguments, we obtain

̂L(δ([ν−x−1ρ, νxρ]);σ)

↪→ δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−
3
2 ρ, ν−

1
2 ρ])� ̂L(ν−

1
2 ρ;σ),

and

̂L(δ([ν−x−1ρ, ν−
1
2 ρ]); δ(ρ, x;σ))

↪→ δ([ν−x−1ρ, ν−xρ])× · · · × δ([ν−
5
2 ρ, ν−

3
2 ρ])�

̂
L(δ([ν−

3
2 ρ, ν−

1
2 ρ]); δ(ρ,

1

2
;σ)).

We have already seen that ̂L(ν−
1
2 ρ;σ) ∼= δ(ρ, 12 ;σ) and that the Aubert dual of

L(δ([ν−
3
2 ρ, ν−

1
2 ρ]); δ(ρ, 12 ;σ)) is isomorphic to L(δ([ν−

3
2 ρ, ν

1
2 ρ]);σ). This ends the

proof. �

The remaining cases are covered in the following propositions, a detailed verifi-
cation being left to the reader.

Proposition 6.5. If α = 1
2 and b ≤ x, in R(G) we have

ζ([ν−bρ, ν−
1
2 ρ])� ζ(ρ, x;σ)

= L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−
3
2 ρ, ν−

3
2 ρ; τ (ρ;σ))

+L(ν−xρ, . . . , ν−b−1ρ, ν−bρ, ν−bρ, . . . , ν−
1
2 ρ, ν−

1
2 ρ;σ).

Proposition 6.6. Suppose that ρ0 
∼= ρ. Then the degenerate principal series
ζ([ν−bρ0, ν

− 1
2 ρ0]) � ζ(ρ, x;σ) is irreducible if and only if b < β. If b ≥ β, in
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R(G) we have

ζ([ν−bρ0, ν
− 1

2 ρ0])� ζ(ρ, x;σ) = L(ν−xρ, . . . , ν−αρ, ν−bρ, . . . , ν−
1
2 ρ;σ)

+L(ν−xρ, . . . , ν−αρ, ν−bρ, . . . , ν−β−1ρ; τ (2)).

7. The odd GSpin case

In this section we consider the odd GSpin case.

Remark 7.1. All the propositions in Sections 3 – 6 are valid for the odd GSpin
case with exactly the same statements. More precisely, all the arguments used in
[20,22,26] (except [26, Theorem 2.1]), as well as those used in the previous sections,
can be directly carried out to the odd GSpin case, since they completely rely on
properties of the Aubert involution which hold for general reductive groups, the
structural formula and classifications of discrete series provided for the odd GSpin
groups in [14, 15] (see also Lemma 2.2 for the structure formula for odd GSpin
groups). In the following, we will comment on the generalizations of the results in
[26] to odd GSpin groups and give the proof for the odd GSpin case of [26, Theorem
2.1].

Let us first recall the definition of odd GSpin groups. Let νm be the m × m
matrix with ones on the second diagonal and zeros elsewhere. Let

J2m =

(
0 νm

−νm 0

)
.

Then the similitude symplectic groups are defined as follows:

GSp(2n, F ) = {g ∈ GL(2n, F ) : tgJ2ng = λ(g)J2n for some λ(g) ∈ F ∗}.

Let T = {t = diag(t1, . . . , tn, at
−1
n , . . . , at−1

1 ) : ti, a ∈ F ∗}; then T is a maximal
torus for GSp(2n, F ). For t = diag(t1, . . . , tn, at

−1
n , . . . , at−1

1 ) ∈ T , let e0(t) = a,
and let ei(t) = ti for i = 1, . . . , n. LetX = Hom(T, F ∗) be the character lattice of T .
ThenX = Ze0⊕Ze1⊕· · ·⊕Zen. LetX

∨ = Hom(F ∗, T ) be the cocharacter lattice of
X, and let {e∗0, e∗1, . . . , e∗n} be the basis of X∨ dual to the basis {e0, e1, . . . , en} of X.
ThenX∨ = Ze∗0⊕Ze∗1⊕· · ·⊕Ze∗n. Let Δ = {ei−ei+1, i = 1, . . . , n−1, 2en−e0},Δ∨ =
{e∗i −e∗i+1, i = 1, . . . , n−1, e∗n}. Then the root datum of GSp(2n) is (X,Δ, X∨,Δ∨).

Definition 7.2. GSpin(2n+ 1, F ) is F -points of the unique split F -group having
root datum (X∨,Δ∨, X,Δ) which is dual to that of GSp(2n, F ).

Remark 7.3. Let Spin(2n + 1, F ) be the double covering of special orthogonal
group SO(2n+ 1, F ). Then by [2, Proposition 2.2], the derived group of the split
GSpin(2n+ 1, F ) is Spin(2n+ 1, F ) and GSpin(2n+ 1, F ) is isomorphic to

(GL(1, F )× Spin(2n+ 1, F ))/{(1, 1), (−1, c)},
where c = (2en − e0)(−1).

We now briefly summarize the main results in [26]. LetHn be either a symplectic
group or a special odd orthogonal group defined over a non-archimedean local field
F of characteristic different from two, having split rank n. In [26], Muić studies the
reducibility of δ � σ, where σ is a strongly positive representation in Hn(F ) and
δ := δ([ν−l1ρ, νl2ρ]) is an irreducible essentially square integrable representation
of GLm(F ) (Here, ρ is an irreducible unitary cuspidal representation of GL(F )
and l1, l2 ∈ R is such that l1 + l2 ∈ Z≥0.) Muić, in [26], further describes the
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composition series of δ�σ if it is reducible. Chapters 3, 4, and 5 in [26] describe the
cases l1 ≤ −1, l1 ≥ 0, and l1 = −1/2 (Proposition 3.1, Theorem 4.1, and Theorem
5.1), respectively. The main ingredients for the proofs of those propositions and
theorems are Tadić’s structure formula for Hn [27] (he mainly uses the information
from the GL cuspidal part in the Jacquet modules of the representations) and the
classification of discrete series of Hn [25]. All those ingredients are now available
for odd GSpin groups (Lemma 2.2 and [15]). However, we note that the proof
of [26, Theorem 2.1] cannot be applied to the GSpin groups. We will reprove
this theorem below (Theorem 7.5), in the case which we use when determining
the composition factors of the degenerate principal series. Then, for odd GSpin
groups, all the results in Chapters 3, 4, and 5 in [26], together with the correction
of [26, Theorem 4.1.(iv), Lemma 4.9] obtained in [19, Proposition 3.2], follow in the
same way as in those two papers. Therefore, our results on the composition factors
of the degenerate principal series also hold in the odd GSpin case.

Remark 7.4. To prove [26, Theorem 2.1], two lemmas ([26, Lemma 2.1, 2.2]: de-
scription of non-tempered subquotients and tempered but non-square integrable
subquotients of generalized principal series) are needed. The main ingredients in
the proofs of those lemmas are again Tadić’s structure formula (especially the in-
formation about GL cuspidal support), Casselman’s square-integrability criterion,
and classification of discrete series representations, which all can be applied directly
to GSpin(2n+ 1, F ), so we skip the proofs of those lemmas for GSpin(2n+ 1, F ).

Recall that α (resp., β) is the reducibility point of ρ (resp., ρ0) and σ, i.e., νsρ�σ
(resp., νsρ0 � σ) is irreducible if and only if s 
∈ {α,−α} (resp., s 
∈ {β,−β}).

Theorem 7.5. Suppose that σ is an irreducible unitary cuspidal representation of
GSpin(2n+ 1, F ), and that one of the following holds:

(1) ρ0 
∼= ρ, β ≤ −a < b, and b− β ∈ Z,
(2) ρ0 ∼= ρ, b > −a > x, and b− α ∈ Z,
(3) ρ0 ∼= ρ, α− 1 ≤ −a < b < x, −a ≥ 0, and b− α ∈ Z.

Then in an appropriate Grothendieck group we have

δ([νaρ0, ν
bρ0])� δ(ρ, x;σ) = L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)) + σ
(1)
ds + σ

(2)
ds ,

where σ
(1)
ds and σ

(2)
ds are mutually non-isomorphic discrete series subrepresentations

of δ([νaρ0, ν
bρ0])� δ(ρ, x;σ).

Proof. We prove only the part (3), other parts can be proved in the same way, but
more easily. It can be seen in the same way as in the proof of [26, Theorem 2.1]
that L(δ([ν−bρ0, ν

−aρ0]); δ(ρ, x;σ)) is the unique non-tempered irreducible subquo-

tient of δ([νaρ0, ν
bρ0]) � δ(ρ, x;σ). Also, representations σ

(1)
ds and σ

(2)
ds have been

constructed in [15, Theorem 3.14]. Let us prove that there are no other irreducible
tempered subquotients of δ([νaρ0, ν

bρ0])� δ(ρ, x;σ).
Let π denote an irreducible tempered subquotient of δ([νaρ0, ν

bρ0])� δ(ρ, x;σ).
From the cuspidal support considerations one can conclude that π has to be square-
integrable and non-strongly positive. Thus, by the classification given in [15], if
α ≥ 2, π can be written as a subrepresentation of one of the following induced
representations:

δ([νaρ, νbρ])� δ(ρ, x;σ), δ([ν−bρ, νxρ])� δ(ρ,−a;σ), δ([ν−α+2ρ, ν−aρ])� σsp,
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where σsp stands for the unique irreducible subrepresentation of δ([να−1ρ, νbρ])
�δ(ρ, x;σ). Thus, μ∗(π) contains one of the following irreducible constituents:

δ([νaρ, νbρ])⊗ δ(ρ, x;σ), δ([ν−bρ, νxρ])⊗ δ(ρ,−a;σ), δ([ν−α+2ρ, ν−aρ])⊗ σsp.

If α < 2, π can be written as a subrepresentation of one of the following induced
representations:

δ([νaρ, νbρ])� δ(ρ, x;σ), δ([ν−bρ, νxρ])� δ(ρ,−a;σ),

and μ∗(π) contains one of the following irreducible constituents:

δ([νaρ, νbρ])⊗ δ(ρ, x;σ), δ([ν−bρ, νxρ])⊗ δ(ρ,−a;σ).

By [15, Theorem 3.14], only irreducible subrepresentations of δ([νaρ, νbρ])

� δ(ρ, x;σ) are σ
(1)
ds and σ

(2)
ds . Also, it is easy to see, using the odd GSpin version

of the structural formula given in [14], together with the classification of strongly
positive discrete series, that δ([ν−bρ, νxρ]) ⊗ δ(ρ,−a;σ) appears with multiplicity
one in μ∗(δ([νaρ, νbρ])� δ(ρ, x;σ)), and that δ([ν−α+2ρ, ν−aρ])⊗ σsp also appears
with multiplicity one in μ∗(δ([νaρ, νbρ])� δ(ρ, x;σ)) if α ≥ 2.

Let τi, for i ∈ {1, 2}, denote an irreducible tempered subrepresentation of

δ([νaρ, ν−aρ]) � δ(ρ, x;σ) such that σ
(i)
ds is the unique irreducible subrepresenta-

tion of δ([ν−a+1ρ, νbρ]) � τi. By [29, Section 4], there is a unique j ∈ {1, 2} such
that τj is a subrepresentation of δ([ν−a+1ρ, νxρ])× δ([νaρ, ν−aρ])� δ(ρ,−a;σ). It

follows from the proof of [15, Theorem 3.15] that σ
(j)
ds is a subrepresentation of

δ([ν−bρ, νxρ])� δ(ρ,−a;σ), so μ∗(σ
(j)
ds ) contains δ([ν

−bρ, νxρ])⊗ δ(ρ,−a;σ).
Similarly, if α ≥ 2, then there is a unique k ∈ {1, 2} such that τk is a subrepre-

sentation of δ([να−1ρ, ν−aρ]) × δ([να−1ρ, ν−aρ]) × δ([ν−α+2ρ, να−2ρ]) � δ(ρ, x;σ).

It follows from the proof of [15, Theorem 3.15] that σ
(k)
ds is a subrepresentation

of δ([ν−α+2ρ, ν−aρ]) � σsp. Frobenius reciprocity implies that μ∗(σ
(k)
ds ) contains

δ([ν−α+2ρ, ν−aρ])⊗ σsp.
From the multiplicities of δ([νaρ, νbρ]) ⊗ δ(ρ, x;σ), δ([ν−bρ, νxρ]) ⊗ δ(ρ,−a;σ),

and δ([ν−α+2ρ, ν−aρ])⊗ σsp in μ∗(δ([νaρ, νbρ])� δ(ρ, x;σ)), we conclude that π is

isomorphic either to σ
(1)
ds or to σ

(2)
ds , and the theorem is proved. �
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[6] Wee Teck Gan and Luis Lomeĺı, Globalization of supercuspidal representations over func-
tion fields and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2813–2858, DOI
10.4171/JEMS/825. MR3861809

[7] Robert Gustafson, The degenerate principal series for Sp(2n), Mem. Amer. Math. Soc. 33
(1981), no. 248, vi+81, DOI 10.1090/memo/0248. MR631958

[8] Chris Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups, Mem.
Amer. Math. Soc. 124 (1996), no. 590, viii+100, DOI 10.1090/memo/0590. MR1346929

[9] Chris Jantzen, Reducibility of certain representations for symplectic and odd-orthogonal
groups, Compositio Math. 104 (1996), no. 1, 55–63. MR1420710

[10] Chris Jantzen, On supports of induced representations for symplectic and odd-orthogonal
groups, Amer. J. Math. 119 (1997), no. 6, 1213–1262. MR1481814

[11] Chris Jantzen, Duality for classical p-adic groups: the half-integral case, Represent. Theory
22 (2018), 160–201, DOI 10.1090/ert/519. MR3868005

[12] Chris Jantzen and Henry H. Kim, Parametrization of the image of normalized intertwin-
ing operators, Pacific J. Math. 199 (2001), no. 2, 367–415, DOI 10.2140/pjm.2001.199.367.
MR1847139

[13] Henry H. Kim, Residual spectrum of split classical groups; contribution from Borel subgroups,
Pacific J. Math. 199 (2001), no. 2, 417–445, DOI 10.2140/pjm.2001.199.417. MR1847140

[14] Yeansu Kim, Strongly positive representations of GSpin2n+1 and the Jacquet module method,
Math. Z. 279 (2015), no. 1-2, 271–296, DOI 10.1007/s00209-014-1367-6. With an appendix
by Ivan Matić. MR3299853
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[29] Marko Tadić, On tempered and square integrable representations of classical p-adic groups,
Sci. China Math. 56 (2013), no. 11, 2273–2313, DOI 10.1007/s11425-013-4667-0. MR3123571

[30] A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible rep-
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