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SPINORIALITY OF ORTHOGONAL REPRESENTATIONS

OF REDUCTIVE GROUPS

ROHIT JOSHI AND STEVEN SPALLONE

Abstract. Let G be a connected reductive group over a field F of charac-
teristic 0, and ϕ : G → SO(V ) an orthogonal representation over F . We give
criteria to determine when ϕ lifts to the double cover Spin(V ).
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1. Introduction

LetG be a connected reductive group over a field F of characteristic 0. Let (ϕ, V )
be a representation of G, which in this paper always means a finite-dimensional
F -representation of G. Suppose that V is orthogonal, i.e., carries a symmetric
nondegenerate bilinear form preserved by ϕ. Thus ϕ is a morphism from G to
SO(V ). Write ρ : Spin(V ) → SO(V ) for the usual isogeny ([SV00]). Following
[Bou05], we say that ϕ is spinorial when it lifts to Spin(V ), i.e., provided there
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exists a morphism ϕ̂ : G → Spin(V ) so that ϕ = ρ ◦ ϕ̂. We call ϕ aspinorial
otherwise.

By an argument in Section 14, we may assume that F is algebraically closed,
which we do for the rest of this introduction. Let T be a maximal torus of G.
Write π1(G) for the fundamental group of G (the cocharacter group of T modulo
the subgroup Q(T ) generated by coroots), and TV for a maximal torus of SO(V )
containing ϕ(T ). Then ϕ induces a homomorphism ϕ∗ : π1(G) → π1(SO(V )) ∼=
Z/2Z, and ϕ is spinorial iff ϕ∗ is trivial. If we take a set of cocharacters ν =
{ν1, . . . , νr} whose images generate π1(G), then ϕ is spinorial iff each cocharacter
ϕ∗νi of TV lifts to Spin(V ). (See Section 3.)

Write g for the Lie algebra of G, and X∗(T ) for the character group of T .
Suppose (ϕ, V ) is an orthogonal representation of G. Write C for the Casimir
element associated to the Killing form. Given a cocharacter ν of T , put

|ν|2 =
∑
α∈R

〈α, ν〉2 ∈ 2Z.

We introduce the integer

p(ν) =
1

2
gcd

(
|ν1|2, . . . , |νr|2

)
.

Theorem 1. Suppose that g is simple and let ϕ be an orthogonal representation of
G. Then ϕ is spinorial iff the integer

(1) p(ν) · tr(C, V )

dim g

is even.

Alternatively, this can be reformulated in terms of the Dynkin index “dyn(ϕ)”
of ϕ and the dual Coxeter number ȟ of g. (We recall these integers in Section 7.)

Corollary 1. Suppose g is simple and let ϕ be an orthogonal representation of G.
Then ϕ is spinorial iff the integer

p(ν) · dyn(ϕ)
2ȟ

is even.

If λ ∈ X∗(T ) is dominant, write ϕλ for the irreducible representation with highest
weight λ. As λ varies, we may regard (1) as an integer-valued polynomial in λ. We
show that the “spinorial weights” form a periodic subset of the highest weight
lattice. To be more precise, let X+

orth ⊂ X∗(T ) be the set of highest weights of
irreducible orthogonal representations.

Theorem 2. There is a k ∈ N so that for all λ0, λ ∈ X+
orth, the representation ϕλ0

is spinorial iff ϕλ0+2kλ is spinorial.

For any representation ϕ, one can form an orthogonal representation S(ϕ) =
ϕ⊕ϕ∨. When G is semisimple, S(ϕ) is always spinorial. For the reductive case we
have the following theorem.

Theorem 3. S(ϕλ) is spinorial iff the integers

〈λ, νz〉 · dimVλ

are even for all ν ∈ ν.
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In this formula, νz is the z-component of ν corresponding to the decomposition
g = g′ ⊕ z, where z is the center of g and g′ is the derived algebra of g.

This paper is organized as follows. Section 2 establishes general notation and
Section 2.4 sets up preliminaries for the spin groups. In Section 3 we give a criterion
for spinoriality in terms of the weights of ϕ. This approach is along the lines of
[PR95] and [Bou05].

We advance the theory in Section 4 by employing an algebraic trick involving
palindromic Laurent polynomials; this gives a lifting condition in terms of the
integers

qϕ(ν) =
1

2
· d2

dt2
Θϕ(ν(t))|t=1

for ν ∈ ν. Here Θϕ denotes the character of ϕ.
In Section 5 we compute qϕ(ν) for ϕ irreducible, essentially by taking two deriva-

tives of Weyl’s Character Formula. As a corollary we show that every nonabelian
reductive group has a nontrivial spinorial irreducible representation. Section 6
works out the case of reducible orthogonal representations, in particular we prove
Theorems 1 and 3. In Section 7 we explain the connection with the Dynkin index.
Spinoriality for tensor products is understood in Section 8.

The next four sections apply our theory to groups G with g simple. Our goal
is to answer the question: For which such G is every orthogonal representation
spinorial? Section 9 covers quotients of SLn, Section 10 covers type Cn, Section 11
covers type Dn, and Section 12 presents the final answer to the question.

In Section 13 we prove Theorem 2, the periodicity of the spinorial weights. Fi-
nally, in Section 14 we reduce to the case of F algebraically closed.

2. Preliminaries

2.1. Notation. Throughout this paper G is a connected reductive algebraic group
over F with Lie algebra g. Until the final section, F is algebraically closed. Write g′

for the derived algebra of g. We write T for a maximal torus of G, with Lie algebra
t and Weyl group W . Put t′ = t ∩ g′. Let sgn : W → {±1} be the usual sign
character of W . As in [Spr98], let (X∗, R,X∗, R

∨) be the root datum associated to
G.

The groups X∗ = X∗(T ) = Hom(T,Gm) and X∗ = X∗(T ) = Hom(Gm, T )
are the character and cocharacter lattices of T . One has injections X∗ ↪→ t∗ and
X∗ ↪→ t given by differentiation for the former, and ν �→ dν(1) for the latter. We
will often identify X∗, R,X∗, and R∨ with their images under these injections. Let
Q(T ) ⊆ X∗(T ) be the group generated by the coroots of T in G. Write R+ for a
set of positive roots of T in G, and δ ∈ t∗ for the half-sum of these positive roots.
Let w0 ∈ W denote the longest Weyl group element.

For λ, λ′ ∈ X∗(T ), we write λ′ ≺ λ when λ− λ′ is a nonnegative combination of
positive roots.

In this paper all representations V of G are finite-dimensional F -representations,
equivalently morphisms ϕ : G → GL(V ) of algebraic groups. For μ ∈ X∗(T ), write
V μ for the μ-eigenspace of V , and put mϕ(μ) = dimV μ, the multiplicity of μ as a
weight of V .

If H is an algebraic group, write H◦ for the connected component of the identity.
We frequently write diag(t1, t2, . . . , tn) for the n×n matrix with the given elements
as entries.
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2.2. Pairings. Write 〈, 〉T : X∗(T )×X∗(T ) → Z for the pairing

〈μ, ν〉T = n ⇔ μ(ν(t)) = tn

for t ∈ F×, and 〈, 〉t : t∗ × t for the natural pairing. Note that for μ ∈ X∗(T ) and
ν ∈ X∗(T ), we have

〈dμ, dν(1)〉t = 〈μ, ν〉T .

So we may drop the subscripts and simply write “〈μ, ν〉”.
Write (, ) for the Killing form of g restricted to t; it may be computed by

(x, y) =
∑
α∈R

α(x)α(y),

for x, y ∈ t. Also set |x|2 = (x, x). In particular, for ν ∈ X∗(T ) we have |ν|2 =∑
α∈R〈α, ν〉2. The Killing form restricted further to t′ induces an isomorphism

σ : (t′)∗ ∼= t′. We use the same notation “(, )” to denote the inverse form on (t′)∗

defined for μ1, μ2 ∈ t′ by

(μ1, μ2) = (σ(μ1), σ(μ2)).

In [Bou02] this form on (t′)∗ is called the “canonical bilinear form” ΦR. Write
|y|2 = (y, y) for y ∈ (t′)∗.

Let π1(G) = X∗(T )/Q(T ). As in the introduction, fix a set ν = {ν1, . . . , νr} of
cocharacters whose images generate π1(G), and put

p(ν) =
1

2
gcd

(
|ν1|2, . . . , |νr|2

)
.

Often ν will be a singleton {ν0}, in which case we may simply write

p(ν0) = p({ν0}) =
1

2
|ν0|2.

2.3. Orthogonal representations. Let X∗(T )+ be the set of dominant charac-
ters, i.e., the λ ∈ X∗(T ) so that 〈λ, α∨〉 ≥ 0 for all α ∈ R+.

Put

Xsd = {λ ∈ X∗(T ) | w0λ = −λ}

and

Xorth = {λ ∈ Xsd | 〈λ, 2δ∨〉 is even},

and use the superscript “+” to denote the dominant members of these sets. Ac-
cording to [Bou05], X+

sd is the set of highest weights of irreducible self-dual repre-

sentations, and X+
orth is the set of highest weights of irreducible orthogonal repre-

sentations.
For λ ∈ X∗(T )+, the quantity

|λ+ δ|2 − |δ|2 = (λ, λ+ 2δ)

is equal to χλ(C), the value of the central character of the irreducible representation
ϕλ at the Casimir element C. (See [Jr.08].)
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2.4. Tori of spin groups. In this section we recall material about the tori of spin
groups. Our reference is Section 6.3 of [GW09].

For the even-dimensional case, let V be a vector space with basis (e1, . . . , en,
e−n, . . . , e−1). For the odd-dimensional case, use the basis (e1, . . . , en, e0,
e−n, . . . , e−1). In either case, give V the symmetric bilinear form (, ) so that
(ei, e−i) = 1 and (ei, ej) = 0 for j �= −i.

Let C(V ) be the corresponding Clifford algebra, i.e., the quotient of the tensor
algebra of V by the relation

v ⊗ w + w ⊗ v = (v, w).

Let Pin(V ) denote the subgroup of the invertible elements of C(V ), generated by
the unit vectors in V . The morphism ρ : Pin(V ) → O(V ) taking each unit vector
to the corresponding reflection of V is a double cover. Then Spin(V ) = Pin(V )◦ is
the inverse image of SO(V ) under ρ.

For 1 ≤ j ≤ n, let cj(t) = teje−j + t−1e−jej ∈ Spin(V ). This gives a morphism
cj : Gm → Spin(V ). Define c : Gn

m → Spin(V ) by

c(t1, . . . , tn) = c1(t1) · · · cn(tn).
The kernel of c is

{(t1, . . . , tn) | ti = ±1, t1 · · · tn = 1},
and the image of c is a maximal torus T̃V of Spin(V ). The image of T̃V under ρ is
the subgroup of diagonal matrices in SO(V ), relative to the basis of V mentioned

above. More precisely, the restriction of ρ to T̃V may be described by

ρ(c(t1, . . . , tn)) =

{
diag(t21, . . . , t

2
n, t

−2
n , . . . , t−2

1 ),

diag(t21, . . . , t
2
n, 1, t

−2
n , . . . , t−2

1 ),

depending on whether dimV = 2n or 2n+ 1.
The kernel of ρ is generated by z = c(−1, 1, . . . , 1) = −1 ∈ C(V ). Pick

√
−1 ∈ F ,

and put c+ = c(
√
−1,

√
−1, . . . ,

√
−1). Then (c+)2 = zn.

We now describe the center Z of Spin(V ).

(1) When dimV = 2n+ 1, Z is generated by z.
(2) When dimV = 2n, with n odd, Z is cyclic of order 4, generated by c+.
(3) When dimV = 2n, with n even, Z is a Klein 4-group generated by z and

c+.

Define ϑi ∈ X∗(TV ) by

ϑi : diag(t1, . . . , tn, . . .) �→ ti.

We identify X∗(TV ) with Zn through the bijection
∑

i aiϑi ↔ (a1, . . . , an), and
X∗(TV ) with Zn by ν ↔ (b1, . . . , bn) when ν(t) = diag(tb1 , . . . , tbn , . . .).

Let Σ be a set of weights formed by taking one representative from each pair
{ϑi,−ϑi}. Then Σ is a Z-basis of X∗(TV ). Of course, one choice is Σ∗ =
{ϑ1, . . . , ϑn}. Put ωΣ =

∑
ω∈Σ ω.

Lemma 1. Let d be a positive even integer, and ζd ∈ F× a primitive dth root of
unity. Let ν ∈ X∗(TV ).

(1) ν lifts to a cocharacter ν̃ ∈ X∗(T̃V ) ⇔ 〈ωΣ, ν〉 is even.
(2) ν(ζd) = 1 ⇔ d | 〈ϑi, ν〉 for all i.
(3) Assume the conditions in (1) and (2) above. Then ν̃(ζd) = 1 ⇔ 2d | 〈ωΣ, ν〉.
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Proof. For the first statement, note that the image of X∗(T̃V ) in X∗(TV ) is exactly
Q(TV ). One checks that 〈ωΣ, ν〉 is even iff ν ∈ Q(TV ).

For the second statement, just use that

(2) ν(t) = diag(tb1 , . . . , tbn , . . .),

with bi = 〈ϑi, ν〉.
Now consider the third statement for Σ = Σ∗. By hypothesis each bi in (2) is

even, and 〈ωΣ∗ , ν〉 = b1 + · · ·+ bn is even. Then

ν̃(t) = c(tb1/2, . . . , tbn/2),

so

ν̃(ζd) = c

(
ζ

b1
2

d , . . . , ζ
bn
2

d

)
.

Since each bi is even, each ζ
bi
2

d = ±1. Therefore ν̃(ζd) = 1, i.e.,

ζ
b1+···+bn

2

d = 1,

equivalently 2d divides 〈ωΣ∗ , ν〉, as claimed. Finally, by hypothesis d divides each
〈ϑi, ν〉, so that 〈ωΣ∗ , ν〉 ≡ 〈ωΣ, ν〉 mod 2d. �

3. Lifting cocharacters

We reformulate the lifting problem for an orthogonal representation in terms
of its weights. Throughout this section G is a connected reductive group over an
algebraically closed field F , and T is a maximal torus of G.

Recall [Spa66] that for nice topological spaces such as manifolds, if ρ : Ỹ → Y

is a covering map, then a continuous function ϕ : X → Y lifts to ϕ̂ : X → Ỹ
iff ϕ∗(π1(X)) ≤ ρ∗(π1(Ỹ )) (with compatibly chosen basepoints on X,Y, Ỹ ). The
purpose of the next proposition is to extend this to the setting of algebraic groups.

Lemma 2. Let G,H be connected reductive groups, with maximal tori T ≤ G and
TH ≤ H. Let ϕ : G → H be a morphism with ϕ(T ) ≤ TH . The induced map
ϕ∗ : X∗(T ) → X∗(TH) takes Q(T ) to Q(TH).

Proof. Suppose first thatG,H are semisimple. Write ρG : Gsc → G for the universal
cover, with maximal torus Tsc above T . Similarly we have ρH : Hsc → H, with
maximal torus TH,sc. Put Φ = ϕ ◦ ρG : G → H.

Let G̃ = (Gsc×H Hsc)
◦, with projection maps pr1 : G̃ → Gsc and pr2 : G̃ → Hsc.

It is easy to see that pr1 is a central isogeny; since Gsc is simply connected, it is
an isomorphism by 2.15 of [Spr79]. If we put ϕ̃ = pr2 ◦(pr1)−1, then the following
diagram commutes:

(3) Gsc
ϕ̃ ��

ρG

��

Hsc

ρH

��
G ϕ

�� H
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Note that ϕ restricts to a map from Tsc to TH,sc. Applying the covariant functor
T �→ X∗(T ) gives the commutative square:

X∗(Tsc)
ϕ̃∗ ��

��

X∗(TH,sc)

��
X∗(T )

ϕ∗ �� X∗(TH)

We have X∗(Tsc) = Q(T ) and similarly for TH,sc by simple connectedness. The
downward maps, being isogenies, take coroots to coroots and we deduce that ϕ∗
takes Q(T ) to Q(TH). This conclusion also holds for G and H connected reductive,
for one applies the previous argument to the derived groups Gder and Hder, recalling
that the coroots of G lie in X∗(Tder). �

Proposition 1. Let ρ : H̃ → H be a central isogeny of connected reductive groups
over F , and ϕ : G → H a morphism. Pick a maximal torus TH ≤ H containing
ϕ(T ), and write ϕ∗ : X∗(T ) → X∗(TH) for the induced map. Let T̃H = ρ−1(TH) ≤
H̃, and write ρ∗ : X∗(T̃H) → X∗(TH) for the induced map. Then there exists a

morphism ϕ̂ : G → H̃ such that ρ ◦ ϕ̂ = ϕ, iff imϕ∗ ⊆ im ρ∗. Moreover when this
morphism exists, it is unique.

Proof. Let G̃ = (G ×H H̃)◦, with projection maps ρG : G̃ → G and ϕ̃ : G̃ → H̃.
We have the diagram:

(4) G̃
ϕ̃ ��

ρG

��

H̃

ρ

��
G

ϕ
��

ϕ̂

���
�

�
�

H

Put T̃H = ρ−1(TH) and T̃ = ρ−1
G (T ). Let us see the equivalence of the following

statements:

(1) ϕ lifts to ϕ̂ : G → H̃ .
(2) ϕ̃ factors through ρG.
(3) ker ρG ≤ ker ϕ̃.
(4) ker ρG ≤ ker ϕ̃|T̃ .
(5) ϕ̃|T̃ factors through T .

(6) ϕ|T lifts to T̃H .
(7) ϕ∗ lifts in the diagram:

X∗(T̃H)

ρ∗

��
X∗(T )

ϕ∗ ��

���
�

�
�

�
X∗(TH)

(8) imϕ∗ ≤ im ρ∗.

For (1) ⇒ (2), suppose ϕ lifts to ϕ̂. Then

ρ(ϕ̃(x)−1 · ϕ̂(ρG(x))) = 1 ∈ H,
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so the algebraic map m : G̃ → H̃ defined by

m(x) = ϕ̃(x)
−1 · ϕ̂(ρG(x)),

takes values in ker ρ. Since ker ρ is discrete, and G̃ is connected, it must be that m
is constant. Thus m(x) = 1 ∈ H̃ for all x, i.e., ϕ̃ = ϕ̂ ◦ ρG.

For (2) ⇒ (1), suppose ϕ̃ = ϕ̂ ◦ ρG for some morphism ϕ̂. From the identity
ϕ ◦ ρG = ρ ◦ ϕ̃ and the fact that ρG is surjective we deduce that ϕ = ρ ◦ ϕ̂.

(2) ⇒ (3) is immediate.

The implication (3) ⇒ (2) follows from the universal property of G̃/ ker ρG. (See
Section 5.5, page 92 of [Spr98].)

Since ker ρG ≤ Z(G̃) ≤ T̃ , we have (3) ⇔ (4).
The argument for (4) ⇔ (5) is similar to the argument for (2) ⇔ (3), and (5) ⇔

(6) is similar to (1) ⇔ (2).
To see (6) ⇔ (7), note that the functors T �→ X∗(T ) and L �→ L⊗Z F× give an

equivalence of categories between F -tori and free abelian groups of finite rank.
The equivalence (7) ⇔ (8) is elementary. Thus (1)–(8) are equivalent.
Finally, suppose that ϕ̂1 and ϕ̂2 are lifts of ϕ. Then g �→ ϕ̂1(g)ϕ̂2(g)

−1 is an
algebraic map G → ker ρ taking 1 to 1. Since G is connected it must be that
ϕ̂1 = ϕ̂2. �
Remark 1. This proof did not use the property that F has characteristic zero. In
the case of positive characteristic, it is sufficient for F to be separably closed, and
then ϕ̂ is defined over F . Suppose F is an arbitrary field, and the maps ρ and ϕ are
defined over F . By uniqueness, ϕ̂, when it exists, is fixed by the absolute Galois
group of F and hence defined over F .

By Lemma 2, ϕ∗ descends to

ϕ∗ : π1(G) → π1(H).

Again, since ρ is an isogeny, we have ρ∗(Q(T̃H)) = Q(TH). Therefore a lift ϕ̂ in the
diagram (4) exists iff ϕ∗ lifts in the diagram:

π1(H̃)

ρ∗

��
π1(G)

ϕ∗ ��

���
�

�
�

�
π1(H)

Recall we have fixed a set ν of cocharacters which generates π1(G).

Corollary 2. A lift ϕ̂ as in the above proposition exists iff ϕ∗(ν) ∈ im ρ∗ for each
ν ∈ ν.

Definition 1. Let (ϕ, V ) be a representation of G. For ν ∈ X∗(T ), put

Lϕ(ν) =
∑

{μ∈X∗(T )|〈μ,ν〉>0}
mϕ(μ)〈μ, ν〉 ∈ Z.

Proposition 2. Let ϕ : G → SO(V ) be an orthogonal representation. For ν ∈
X∗(T ), the cocharacter ϕ∗(ν) ∈ im ρ∗ iff Lϕ(ν) is even. Thus ϕ is spinorial iff the
integers Lϕ(ν) are even for all ν ∈ ν.

(Compare Exercise 7 in Section 8, Chapter IX of [Bou05] and Lemma 3 in
[PR95].)
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Proof. We may assume that ϕ(T ) ≤ TV . By Corollary 2, ϕ is spinorial iff ϕ∗(ν) ∈
im ρ∗ for all ν ∈ ν. By Lemma 1(1), we must check whether the integer 〈ωΣ, ϕ∗(ν)〉
is even for a suitable Σ.

Write PV = {±ϑi | 1 ≤ i ≤ n}, the weights of V as a TV -module. Let

P 1
V = {ω ∈ PV | 〈ϕ∗ω, ν〉 ≥ 0}.

We may choose Σ ⊆ P 1
V so that Σ contains one representative from each pair

{ϑi,−ϑi} as in Section 2.4.
Then

〈ωΣ, ϕ∗ν〉 =
∑
ω∈Σ

〈ϕ∗ω, ν〉

=
∑

{μ|〈μ,ν〉>0}
〈μ, ν〉 · dimV μ

= Lϕ(ν).

Thus ϕ lifts iff Lϕ(ν) is even for all ν ∈ ν. �

Since ϕ(Q(T )) ⊆ Q(TV ) we note the following corollary.

Corollary 3. If ν ∈ Q(T ), then Lϕ(ν) is even.

For two representations ϕ1, ϕ2, we have

(5) Lϕ1⊕ϕ2
(ν) = Lϕ1

(ν) + Lϕ2
(ν),

since mϕ1⊕ϕ2
(μ) = mϕ1

(μ) +mϕ2
(μ).

Corollary 4. The adjoint representation of G on g is spinorial iff δ ∈ X∗(T ).

Proof. If ϕ is the adjoint representation, then

Lϕ(ν) =
∑

{α∈R|〈α,ν〉>0}
〈α, ν〉

≡
∑

α∈R+

〈α, ν〉 mod 2

= 2〈δ, ν〉.

The corollary follows since the pairing X∗(T )×X∗(T ) → Z is perfect. �

Remark 2. This is well known; for G a compact connected Lie group, see Section
5.56 of [Ada69].

Example 1. Let G = PGL2, with diagonal maximal torus T . Then π1(G) is
generated by ν0(t) = diag(t, 1) mod center. Let α be the positive root defined by
α(diag(a, b)) = ab−1, and let ϕj be the representation of PGL2 with highest weight
jα. Then

Lϕj
(ν0) = 〈α, ν0〉+ · · ·+ 〈jα, ν0〉

= 1 + · · ·+ j.

Therefore ϕj is spinorial iff j ≡ 0, 3 mod 4.
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4. Palindromy

This section is the cornerstone of our paper. The difficulty with determining the
parity of Lϕ(ν) is in somehow getting ahold of “half” of the weights of V , one for
each positive/negative pair. This amounts to knowledge of the polynomial part of a
certain palindromic Laurent polynomial, and this we accomplish with a derivative
trick.

Definition 2. For (ϕ, V ) a representation of G and ν ∈ X∗(T ), consider the
function Q(ϕ,ν) : F

× → F defined by

Q(ϕ,ν)(t) = Θϕ(ν(t))

= tr(ϕ(ν(t))).

If ϕ is understood we may simply write “Qν(t)”. For γ ∈ T , we have

Θϕ(γ) =
∑

μ∈X∗

mϕ(μ)μ(γ),

so in particular

(6) Qν(t) =
∑
μ∈X∗

mϕ(μ)t
〈μ,ν〉 ∈ Z[t, t−1].

We note:

• Qν(1) = dimV ,
• Q′

ν(1) =
∑

μ mϕ(μ)〈μ, ν〉,
• Q′′

ν(1) =
∑

μ

(
mϕ(μ)〈μ, ν〉2 −mϕ(μ)〈μ, ν〉

)
.

Definition 3. For (ϕ, V ) a representation of G and ν ∈ X∗(T ), we set

qϕ(ν) =
1

2
Q′′

ν(1).

When ϕ is self-dual, mϕ(−μ) = mϕ(μ) for all μ ∈ X∗, so in this case:

• Qν(t) = Qν(t
−1), i.e., Qν is “palindromic”,

• Q′
ν(1) = 0,

• Q′′
ν(1) =

∑
μ mϕ(μ)〈μ, ν〉2 ∈ 2Z.

In particular, qϕ(ν) is an integer for all ν ∈ X∗.

Lemma 3. For ϕ self-dual and ν1, ν2 ∈ X∗, we have

qϕ(ν1 + ν2) ≡ qϕ(ν1) + qϕ(ν2) mod 2.

Proof. Breaking the sum over μ into a sum over nonzero pairs {μ,−μ} gives

qϕ =
1

2

∑
μ∈X∗

mϕ(μ)〈μ, ν〉2

=
∑

{μ,−μ}
mϕ(μ)〈μ, ν〉2 ∈ Z.

Therefore

qϕ(ν1 + ν2) =
∑

{μ,−μ}
mϕ(μ)

(
〈μ, ν1〉2 + 2〈μ, ν1〉〈μ, ν2〉+ 〈μ, ν2〉2

)
≡ qϕ(ν1) + qϕ(ν2) mod 2.

�
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Thus when ϕ is self-dual, the function qϕ : X∗ → Z induces a group homomor-
phism qϕ : X∗ → Z/2Z. Our goal in this section is to show that

qϕ(ν) = Lϕ(ν) mod 2

when ϕ is orthogonal.
Since Qν is palindromic, it may be expressed in the form

Qν(t) = Hν(t) +Hν(t
−1)

for a unique polynomial Hν ∈ Z[t] + 1
2Z. Thus Hν has integer coefficients, except

its constant term may be half-integral. More precisely,

Hν(t) =
∑

〈μ,ν〉>0

mϕ(μ)t
〈μ,ν〉 +

1

2

∑
〈μ,ν〉=0

mϕ(μ).

What we want, at least mod 2, is the integer

H ′
ν(1) =

∑
〈μ,ν〉>0

mϕ(μ)〈μ, ν〉 = Lϕ(ν).

By calculus we compute

Q′′
ν(1) = 2(H ′

ν(1) +H ′′
ν (1)).

But H ′′
ν (1) is even! This gives the following crucial result.

Proposition 3. If ϕ is self-dual, then

(7) Lϕ(ν) ≡ qϕ(ν) mod 2.

Corollary 5. Let ϕ be an orthogonal representation of G. Then ϕ is spinorial iff
qϕ(ν) is even for every ν ∈ ν.

Proof. This follows from Corollary 2, Proposition 2, and the above equation. �

5. Irreducible representations

In this section we compute qϕ(ν) when ϕ is irreducible (not necessarily self-
dual). Our method follows the proof of Weyl’s Character Formula in [GW09]. For
λ ∈ X∗(T )+, write (ϕλ, Vλ) for the irreducible representation of G with highest
weight λ. For simplicity, we use the notation qλ, mλ(μ), etc. for qϕλ

, mϕλ
(μ), etc.

5.1. Two derivatives of Weyl’s Character Formula. For ν ∈ t, put

dν =
∏

α∈R+

〈α, ν〉,

and for μ ∈ t∗, put

dμ =
∏

α∈R+

〈μ, α∨〉.

Definition 4. Put

treg = {ν ∈ t | dν �= 0}.

Extend the function qλ : X∗ → Z to the polynomial function qλ : t → F defined
by the formula

qλ(ν) =
1

2

∑
μ∈X∗

〈μ, ν〉2mλ(μ).
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We let Z[t∗] denote the usual algebra of the monoid t∗ with basis eμ for μ ∈ t∗.
It contains the elements

J(eμ) =
∑
w∈W

sgn(w)ewμ and ch(Vλ) =
∑

μ∈X∗

mλ(μ)e
μ.

Recall the Weyl Character Formula (Prop. 5.10 in [Jan03]):

ch(Vλ)J(e
δ) = J(eλ+δ).

Write ε : Z[t∗] → Z for the Z-linear map so that ε(eμ) = 1 for all μ ∈ t∗ (i.e., the
augmentation); it is a ring homomorphism. Given ν ∈ t, write ∂

∂ν : Z[t∗] → Z[t∗]

for the Z-linear map so that ∂
∂ν (e

μ) = 〈μ, ν〉eμ; it is a Z-derivation. Note that
ε (ch(Vλ)) = dimVλ, and

(8)

(
ε ◦ ∂2

∂ν2

)
ch(Vλ) = Q′′

ν (1).

Proposition 4. For ν ∈ treg, we have

qλ(ν) =

∑
w∈W sgn(w)〈w(λ+ δ), ν〉N+2

(N + 2)!dν
− 1

48
dimVλ|ν|2,

where N = |R+|.

Proof. We apply ε ◦ ∂N+2

∂νN+2 to both sides of J(eλ+δ) = ch(Vλ)J(e
δ). On the left we

have

(9)

(
ε ◦ ∂N+2

∂νN+2

)
J(eλ+δ) =

∑
w∈W

sgn(w)〈w(λ+ δ), ν〉N+2.

The right-hand side requires more preparation. For α ∈ R+, let rα = eα/2 − e−α/2.
Then:

• ε(rα) = 0,
• ε ◦ ∂

∂ν (rα) = 〈α, ν〉,
• ∂2

∂ν2 rα = 1
4 〈α, ν〉2rα,

• J(eδ) =
∏

α∈R+ rα.

The last equality is a familiar identity from [Bou02]. We may now apply the
following lemma.

Lemma 4. Let R be a commutative ring, D : R → R a derivation, and ε : R → R′

a ring homomorphism. Suppose that r1, . . . , rN ∈ ker ε. Then:

(1) ε(Dn(r1 · · · rN )) = 0 for 0 ≤ n < N .

(2) ε(DN (r1 · · · rN )) = N !
∏N

i=1 ε(D(ri)).
(3) If also D2(ri) ∈ ker ε for all i, then ε(DN+1(r1 · · · rN )) = 0.
(4) Suppose further that there are ci ∈ R so that D2(ri) = ciri. Then:

ε(DN+2(r1 · · · rN )) =
(N + 2)!

6

(∏
i

ε(D(ri))

)(∑
i

ci

)
.

Proof. This follows from the Leibniz rule for derivations:

Dn(r1 · · · rk) =
∑

i1+···+ik=n

(
n

i1, . . . , ik

)
Di1(r1) · · ·Dik(rk).

�
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Thus in our case,

(1) (ε ◦ ∂n

∂νn )J(e
δ) = 0 for 0 ≤ n < N ,

(2) (ε ◦ ∂N

∂νN )J(eδ) = N !dν ,

(3) (ε ◦ ∂N+1

∂νN+1 )J(e
δ) = 0,

(4) (ε ◦ ∂N+2

∂νN+2 )J(e
δ) = (N+2)!

24 dν
∑

α>0〈α, ν〉2.
Now we are ready to consider(

ε ◦ ∂N+2

∂νN+2

)
(ch(Vλ)J(e

δ)).

Applying the Leibniz rule to the above gives(
N + 2

2

)
Q′′

ν(1)N !dν + dimVλ
(N + 2)!

24
dν

∑
α>0

〈α, ν〉2.

Equating this with (9) yields the identity

(10)
∑
w∈W

sgn(w)〈w(λ+ δ), ν〉N+2 = (N + 2)!dν

(
qλ(ν) +

dimVλ

24

∑
α>0

〈α, ν〉2
)
,

whence the proposition. �
5.2. Anti-W -invariant polynomials. The expression∑

w∈W

sgn(w)〈w(λ+ δ), ν〉N+2

in our formula demands simplification. This can be done by applying the theory of
anti-W -invariant polynomials.

Let f : t → F be a polynomial function. We say that f is anti-W -invariant,
provided for all w ∈ W and ν ∈ t we have

f(w(ν)) = sgn(w)f(ν).

The polynomial ν �→ dν is a homogeneous anti-W -invariant polynomial of degree N .
According to [Bou02], page 118, if f is a homogeneous anti-W -invariant polynomial
of degree d, then there exists a homogeneous W -invariant polynomial p : t → F so
that f(ν) = p(ν)dν . Necessarily d = deg f ≥ N and p has degree d−N . Similarly,
if g : t∗ → F is a homogeneous anti-W -invariant polynomial, then g(μ) = p(μ)dμ
for a W -invariant polynomial p on t∗.

In this section we will make use of the famous Weyl dimension formula, which
we recall is dimVλ = dλ+δ/dδ.

Definition 5. Let k be a nonnegative integer. Put

Fk(μ, ν) =
∑
w∈W

sgn(w)〈w(μ), ν〉k

for μ ∈ t∗ and ν ∈ t.

Proposition 5. Let g be simple. Then

Fk(μ, ν) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 ≤ k < N or k = N + 1,

N ! · dμdν
dδ

if k = N,

(N + 2)!

48|δ|2 · dμdν
dδ

|μ|2|ν|2 if k = N + 2.
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Proof. Each Fk may be viewed as a polynomial in two ways: as a function of μ
and as a function of ν. It is either identically 0, or homogeneous of degree k. Both
the functions μ �→ Fk(μ, ν) and ν �→ Fk(μ, ν) are anti-W -invariant. Therefore
Fk(μ, ν) either vanishes, or is the product of dμdν and a homogeneous W -invariant
polynomial of degree k − N in both ν and μ. By degree considerations, Fk must
vanish for 0 ≤ k < N .

Case k = N . Here FN (μ, ν) = cdμdν for some constant c ∈ F , independent of μ

and ν. To determine c, we apply ε ◦ ∂N

∂νN to both sides of J(eλ+δ) = ch(Vλ)J(e
δ).

On the left we have

(11)

(
ε ◦ ∂N

∂νN

)
J(eλ+δ) = FN (λ+ δ, ν).

On the right we proceed as in the proof of Proposition 4 to obtain N ! · dimVλ · dν .
Therefore

c · dλ+δdν = N ! · dimVλ · dν ,
so that c = N !

dδ
.

Case k = N + 1. Since g is simple, both t and t∗ are irreducible representations of
W . If dim t > 1, there is no 1-dimensional invariant subspace. When dim t = 1,
W acts by a nontrivial reflection. Therefore there is no W -invariant vector, i.e., no
W -invariant polynomial of degree 1. Thus in all cases FN+1 vanishes.

Case k = N + 2. Let us write FN+2(μ, ν) = Qμ(ν)dν with Qμ a W -invariant
quadratic form on t. The corresponding bilinear form on t is W -invariant; as t is
an irreducible W -representation, this bilinear form must be a scalar multiple of the
Killing form. Thus we may write

(12) FN+2(μ, ν) = cRdμdν |μ|2|ν|2;
it remains to determine cR.

Let σ be as in Section 2.2. Employing [Bou05], Ch. VIII, Section 9, Exercise 7,
we obtain the value at ν = σ(δ) ∈ t:

Q′′
σ(δ)(1) =

∑
μ

〈μ, σ(δ)〉2mλ(μ)

=
dimVλ

24
· (λ, λ+ 2δ).

Substituting this into (10) gives

FN+2(λ+ δ, σ(δ)) =
1

2
dσ(δ)(N + 2)!

(
Q′′

σ(δ)(1) +
dimVλ

24
|δ|2

)
= dσ(δ)(N + 2)!

dimVλ

48
|λ+ δ|2.

On the other hand, from (12) we have

FN+2(λ+ δ, σ(δ)) = cRdλ+δdσ(δ)|λ+ δ|2|δ|2

= cR dimVλdδdσ(δ)|λ+ δ|2|δ|2.
We deduce that

cR =
(N + 2)!

48dδ|δ|2
.

The proposition follows from this. �
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For the general case, say that g = g1 ⊕ · · · ⊕ g� ⊕ z with each gi simple, and z

abelian. A Cartan subalgebra t ⊂ g is the direct sum of the center z and Cartan
subalgebras ti ⊂ gi, and the Weyl group W = W (g, t) is the direct product of the
Weyl groups W i = W i(gi, ti). Any μ ∈ t∗ is equal to μz +

∑
i μ

i with μi ∈ (ti)∗

and μz ∈ z∗; similarly for ν ∈ t. Let Ni (resp., N) be the number of positive roots
in gi (resp., g).

Proposition 6. Let μ ∈ t∗ and ν ∈ t, with notation as above. Then

Fk(μ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ k < N,

N ! · dμdν
dδ

if k = N,

(N + 1)! · dμdν
dδ

〈μz, νz〉 if k = N + 1,

(N + 2)!

48
· dμdν

dδ

∑
i

|μi|2|νi|2
|δi|2

+
(N + 2)!

2
· dμdν

dδ
〈μz, νz〉2 if k = N + 2.

Proof. If z = 0, we have

Fk(μ, ν) =
∑
w∈W

sgn(w)〈w(μ1 + · · ·+ μ�), ν1 + · · ·+ ν�〉k

=
∑

w=(w1,...,w�)∈W

sgn(w)

(
�∑

i=1

〈wi(μ
i), νi〉

)k

=
∑
w

sgn(w)
∑

k1+···+k�=k

(
k

k1, . . . , k�

)∏
i

〈wi(μ
i), νi〉ki

=
∑

k1+···+k�=k

(
k

k1, . . . , k�

)∏
i

∑
wi∈W i

sgn(wi)〈wi(μ
i), νi〉ki

=
∑

k1+···+k�=k

(
k

k1, . . . , k�

)∏
i

Fki
(μi, νi).

The product
∏

i Fki
(μi, νi) vanishes unless ki ≥ Ni for all i. So Fk(μ, ν) vanishes

for k < N .
Now put k = N + 2. Since k1 + · · ·+ k� = N + 2, we see by Proposition 5 that

this product is only nonzero when some ki = Ni + 2 and the other ki equal Ni.
Therefore

FN+2(μ, ν)

=

�∑
i=1

(
N + 2

N1, . . . , Ni + 2, . . . , N�

)
FN1

(μ1, ν1) · · ·FNi+2(μ
i, νi) · · ·FN�

(μ�, ν�)

=
(N + 2)!

48
· dμdν

dδ

�∑
i=1

|μi|2|νi|2
|δi|2

.

If z �= 0, there is an extra term (N+2)!
2 · dμdν

dδ
〈μz, νz〉2. The other cases are similar. �
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5.3. Main theorem for ϕ irreducible.

Proposition 7. Let g be simple and ϕ = ϕλ irreducible. Then for all ν ∈ t, we
have

qλ(ν) =
dimVλ · χλ(C)

dim g
· |ν|

2

2
.

Proof. Let ν ∈ treg. By Proposition 4,

qλ(ν) =
FN+2(λ+ δ, ν)

(N + 2)!dν
− 1

48
dimVλ|ν|2

=
1

48|δ|2 · dλ+δ

dδ
|λ+ δ|2|ν|2 − 1

48
dimVλ|ν|2

=
1

48|δ|2 dimVλ|ν|2
(
|λ+ δ|2 − |δ|2

)
.

Recall that χλ(C) = |λ+ δ|2−|δ|2. Moreover, by [Bou05], Exercise 7, page 256, we
have |δ|2 = dim g/24. These substitutions give the proposition for the case ν ∈ treg;
by continuity it holds for ν ∈ t. �
Example 2. Revisiting PGL2 from Example 1, one computes |ν0|2 = 2, dimVjα =
2j + 1, and χjα = 1

2 (j
2 + j), so

qjα(ν0) =
j(j + 1)(2j + 1)

6
.

So as before ϕjα is spinorial iff j ≡ 0, 3 mod 4.

The case of G reductive is similar:

Proposition 8. With notation as before, and ϕλ irreducible, we have

qλ(ν) =
1

2
dimVλ ·

∑
i

|νi|2χλi(Ci)

dim gi
.

Proof. For z = 0, we have

qλ(ν) =
FN+2(λ+ δ, ν)

(N + 2)!dν
− 1

48
dimVλ|ν|2

=
1

48
· dimVλ

�∑
i=1

|λi + δi|2|νi|2
|δi|2 − 1

48
dimVλ

∑
i

|νi|2

=
1

48
dimVλ

l∑
i=1

|νi|2
(
|λi + δi|2 − |δi|2

|δi|2

)
.

The substitution |δi|2 = dim gi/24 gives the proposition in the semisimple case.
If z �= 0, one must add 1

2 〈λ, νz〉2 · dimVλ. However for ϕλ irreducible orthogonal,
necessarily λ annihilates the center. �

Corollary 6. An irreducible orthogonal representation ϕλ of G is spinorial iff

1

2
dimVλ

∑
i

|νi|2χλi(Ci)

dim gi

is even for all cocharacters ν ∈ ν.

Proof. This follows from Proposition 8 and Corollary 5. �
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Example 3. For G = SO4, the Lie algebra g is not simple. Here, X∗(T ) = Xsd =
Xorth, where T is the diagonal torus of G.

We may identify Spin4 → SO4 with the cover SL2 × SL2 → SO4 as in Exercise
7.16 of [FH91]. In particular, we may identify g with the Lie algebra of sl2 × sl2,
and t with pairs of diagonal matrices in sl2 × sl2. The irreducible representations
of SL2 × SL2 are the external tensor products Va,b = Syma V0 � Symb V0, where
V0 is the standard 2-dimensional representation of SL2. Here a, b are nonnegative
integers; the representation Va,b descends to a representation ϕa,b of G when a ≡ b
mod 2.

Let νs = diag(s,−s); then νs,t = (νs, νt) ∈ t corresponds to a cocharacter of T
iff either s, t ∈ Z, or 2s and 2t are both odd integers. Proposition 8 gives

qϕa,b
(νs,t) =

1

2
(a+ 1)(b+ 1)

(
4s2 · 1

4a(a+ 2)

3
+

4t2 · 1
4b(b+ 2)

3

)
= s2(b+ 1)

(
a+ 2

3

)
+ t2(a+ 1)

(
b+ 2

3

)
.

Since π1(G) is generated by ν 1
2 ,

1
2
, we deduce that Va,b is spinorial iff

(b+ 1)

(
a+ 2

3

)
+ (a+ 1)

(
b+ 2

3

)
,

which is always a multiple of 4, is divisible by 8.

By the following, spinoriality for irreducible orthogonal representations of con-
nected reductive groups reduces to the semisimple case.

Proposition 9. Let G be a connected reductive group and ϕ : G → SO(V ) an
irreducible orthogonal representation. Then ϕ factors through the quotient p : G →
G/Z(G)◦, so that ϕ = ϕ′ ◦ p with ϕ′ : G/Z(G)◦ → SO(V ). Moreover ϕ is spinorial
iff ϕ′ is spinorial.

Proof. By Schur’s Lemma, ϕ(Z(G)) is a subgroup of the scalars in SO(V ), namely
{± idV }. Therefore ϕ(Z(G)◦) is trivial. This gives the first part, and the second
part is similar. �
5.4. Existence of spinorial representations. We continue with G connected
reductive. Let a be a positive multiple of 4 and λ = aδ. Consider the irreducible
representation (ϕλ, Vλ). It is easy to see that Vλ is orthogonal, and dimVλ =
(a+ 1)N . Therefore for ν ∈ X∗(T ), we have by Corollary 6:

qλ(ν) =
1

2
(a+ 1)N

∑
i

|νi|2(λi, λi + 2δi)

dim gi

=
1

24
(a+ 1)Na(a+ 2)

|ν|2
2

,

since (δi, δi) =
dim gi

24 for each i.
Therefore ϕλ is spinorial iff the quantity

p(ν)

24
(a+ 1)N · a(a+ 2)

is even. From this we deduce:

(1) The representation Vλ is spinorial when a ≡ 0 mod 8.
(2) If p(ν) is even, then Vλ is spinorial.
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In particular, we have the following corollary.

Corollary 7. A nonabelian connected reductive group has a nontrivial irreducible
spinorial representation.

Proof. By the above, one may take λ = 8δ. �

6. Reducible representations

In this section we treat the case of ϕ orthogonal, but not necessarily irreducible.

6.1. Spinoriality of ϕ⊕ϕ∨. For a representation (ϕ, V ) of a connected reductive
group G, consider the orthogonal representation (S(ϕ), V ⊕V ∨) defined as follows.
We give V ⊕ V ∨ the quadratic form

Q((v, v∗)) = 〈v∗, v〉,
and write S(ϕ) for the representation of G on V ⊕ V ∨ given by

g(v, v∗) = (ϕ(g)v, ϕ∨(g)v∗).

For ν ∈ X∗(T ), μ ∈ X∗(T ), and t ∈ F , ν(t) acts on V μ by the scalar t〈μ,ν〉.
Therefore we have

(13) detϕ(ν(t)) = tsϕ(ν),

where

sϕ(ν) =
∑

μ∈X∗(T )

mϕ(μ)〈μ, ν〉.

Proposition 10. LS(ϕ)(ν) ≡ sϕ(ν) mod 2. Therefore S(ϕ) is spinorial iff sϕ(ν)
is even for all ν ∈ ν. If G is semisimple, then S(ϕ) is spinorial.

Proof. Since mϕ∨(μ) = mϕ(−μ), we have

LS(ϕ)(ν) =
∑

{μ|〈μ,ν〉>0}
(mϕ(μ) +mϕ(−μ))〈μ, ν〉

≡
∑

{μ|〈μ,ν〉>0}
(mϕ(μ)−mϕ(−μ))〈μ, ν〉 mod 2

= sϕ(ν).

When G is semisimple, the image of ϕ lies in SL(V ), and so sϕ(ν) = 0. Therefore
LS(ϕ)(ν) is even and so S(ϕ) is spinorial in this case. �

Now, assume ϕ = ϕλ is irreducible. Let ν = νz + ν′ correspond to the decom-
position t = z⊕ t′.

Theorem 4. S(ϕλ) is spinorial iff the integers

〈λ, νz〉 · dimVλ

are even for all ν ∈ ν.

Proof. Differentiating both sides of (13) at t = 1 gives

sϕ(ν) = tr dϕ(dν(1)),

where tr : tV → F is the trace.
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Write zV for the center of the Lie algebra of GL(V ), and t′V for the Lie algebra
of the maximal torus in SL(V ). We have a direct sum decomposition tV = t′V ⊕ zV ,
and similarly for t. Let prV : tV → zV and pr : t → z be the projections.

Note that the diagram

F
dν �� t

dϕ ��

pr

��

tV
tr ��

prV

��

F

z
dϕ �� zV

tr

����������

is commutative. Moreover tr(dϕ(z)) = dλ(z) · dimVλ for z ∈ z, by Schur’s Lemma.
It follows that

sϕ(ν) = dλ(νz) · dimVλ,

so the theorem follows from the previous proposition. �

Example 4. Let G = GL2. We may parametrize X∗(T )+ with integers (m,n)
with 0 ≤ n ≤ m via:

λm,n

(
t1

t2

)
= tm1 tn2 .

Let ν0(t) = ( t 0
0 1 ), so that (ν0)

z = 1
2 (1, 1). Then dimVλm,n

= m−n+1 and 〈λ, νz0 〉 =
1
2 (m+ n), so sλm,n

(ν0) =
1
2 (m+ n)(m− n+ 1). From Theorem 4, we deduce that

the representation S(ϕλm,n
) of GL2 is spinorial iff the integer 1

2 (m+n)(m− n+1)
is even.

6.2. General lifting condition. We begin this section by gathering our results
to give a general lifting condition for reducible orthogonal representations.

Recall we have g = g1 ⊕ · · · ⊕ g� ⊕ z with each gi simple and z abelian. Thus our
ν ∈ t decomposes into νz +

∑
i ν

i with νi ∈ ti and νz ∈ z.

Proposition 11. If ϕ is an orthogonal representation of G, then ϕ is a direct sum
of representations of the following type:

• Irreducible orthogonal representations.
• The representations S(σ), with σ irreducible.

Proof. This follows from Lemma C in Section 3.11 of [Sam90]. �

Theorem 5. Let ϕ = S(σ) ⊕
⊕

j ϕj, with each ϕj irreducible orthogonal with

highest weight λj, and σ =
⊕

k σk, with each σk irreducible with highest weight γk.
Then ϕ is spinorial iff for all ν ∈ ν, the integer

qϕ(ν) =
∑
k

〈γk, νz〉 · dimVγk
+

∑
i

|νi|2
2

∑
j

dimVλj
· χλi

j
(Ci)

dim gi

is even.

Proof. We have

Lϕ(ν) =
∑
k

LS(σk)(ν) +
∑
j

Lϕj
(ν)

≡
∑
k

sσk
(ν) +

∑
j

qϕj
(ν) mod 2.
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The first equality is by (5), and the congruence is by Proposition 10 and Proposition
3. The conclusion then follows from Theorem 4 and Corollary 6. �

Note that when G is semisimple, the sum over k vanishes.

6.3. Case of g simple. The situation is much nicer when g is simple; let us deduce
Theorem 1 as a Corollary of Theorem 5.

Proof of Theorem 1. By Theorem 5, we have

qϕ(ν) =
|ν|2
2

∑
j

dimVλj
· χλj

(C)

dim g

=
|ν|2
2

tr(C, V )

dim g
.

This must be even for all ν ∈ ν; equivalently

p(ν) · tr(C, V )

dim g

must be even. �

Corollary 8. Let g be simple, and let ϕ = ϕ1 ⊕ ϕ2 with ϕ1, ϕ2 orthogonal. Then
ϕ is spinorial iff either both ϕ1, ϕ2 are spinorial, or both ϕ1, ϕ2 are aspinorial.

The following corollary will be useful when varying the isogeny class of G.

Corollary 9. Let ρ : G̃ → G be a cover, with simple Lie algebra, and let ν̃, ν be two
sets of cocharacters, with ν̃ generating π1(G̃) and ν generating π1(G). Suppose that
ord2(p(ν̃)) = ord2(p(ν)). Then an orthogonal representation ϕ of G is spinorial iff
ϕ = ϕ ◦ ρ is spinorial.

Proof. This follows since then

ord2(qϕ) = ord2(p(ν)τ (ϕ))

= ord2(p(ν̃)τ (ϕ))

= ord2(qϕ).

�

6.4. A counterexample. The simplicity hypothesis for Corollary 8 is necessary,
for example let G1 and G2 be connected semisimple groups, with orthogonal rep-
resentations (ϕ1, V1) and (ϕ2, V2), respectively. Let G = G1 × G2, and write
Φi : G1 × G2 → SO(Vi) for the inflations of ϕ1, ϕ2 to G via the two projections.
Put Φ = Φ1 ⊕ Φ2. For ν1, ν2 cocharacters of tori of G1, G2, put ν = ν1 × ν2. It is
easy to see that

LΦ(ν) = Lϕ1
(ν1) + Lϕ2

(ν2).

Therefore in this situation,

Φ is spinorial ⇔ ϕ1 and ϕ2 are spinorial

⇔ Φ1 and Φ2 are spinorial.

For example, if G = SO(3)× SO(3), and ϕ1, ϕ2 are aspinorial (e.g., the defining
representation of SO(3)), then each of Φ1,Φ2, and Φ1 ⊕ Φ2 is aspinorial.
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7. Dynkin index

Let g be a simple Lie algebra with a long root α. The quantity

ȟ =
1

|α|2

is called the dual Coxeter number of G. (See Section 2 of [Kos76].)
Following [Dyn52], we define a bilinear form on t by

(x, y)d = 2ȟ · (x, y)
for x, y ∈ g. In other words, we renormalize the Killing form so that (α, α)d = 2.

Definition 6. Let φ : g1 → g2 be a homomorphism of simple Lie algebras. Then
there exists an integer dyn(φ), called the Dynkin index of φ, so that for x, y ∈ g,
we have

(φ(x), φ(y))d = dyn(φ) · (x, y)d.

If φ �= 0, then dyn(φ) �= 0. Also, if f ′ : g2 → g3 is another homomorphism
of simple Lie algebras, then dyn(f ′ ◦ f) = dyn(f ′) dyn(f). We refer the reader to
[Dyn00], page 195, Theorem 2.2, and (2.4).

We assume for the rest of this section that soV is simple, equivalently dimV �=
1, 2, 4. Note that there are no nontrivial irreducible orthogonal representations of
g with those degrees. The following is an easy calculation.

Lemma 5. If ιV : soV ↪→ slV is the standard inclusion, then dyn(ιV ) = 2.

Now let ϕ : g → slV be a nontrivial orthogonal Lie algebra representation. Then
we may write ϕ = ιV ◦ ϕ′, where ϕ′ : g → soV . We define dyno(ϕ) = dyn(ϕ′) ∈ N;
thus dyn(ϕ) = 2 dyno(ϕ).

Theorem 6. For ϕ : g → slV a representation, we have

dyn(ϕ) = 2ȟ
tr(C;V )

dim g
.

Proof. This is a reformulation of Theorem 2.5 of [Dyn00], page 197. �
Corollary 10. Let G have simple Lie algebra g, and let ϕ be an orthogonal repre-
sentation of G. For a cocharacter ν we have

qϕ(ν) =
|ν|2
2

· dyn
o(ϕ)

ȟ
.

Therefore ϕ is spinorial iff

p(ν) · dyn
o(ϕ)

ȟ
is even.

This formula is convenient because for simple g, the dual Coxeter numbers are
tabulated in Section 6 of [Kac90], and Dynkin indices for fundamental representa-
tions are found in Table 5 of [Dyn52]. In the forthcoming examples, we will use
these tables without further comment.

8. Tensor products

In this section, we explain how the spinoriality of a tensor product of two or-
thogonal representations is related to the spinoriality of the factors.
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8.1. Internal products. Let G be a connected reductive group and (ϕ1, V1),
(ϕ2, V2) orthogonal representations of G. Write (ϕ, V ) = (ϕ1 ⊗ ϕ2, V1 ⊗ V2) for
the (internal) tensor product representation of G.

Proposition 12. For ν ∈ X∗(T ), we have

(14) qϕ(ν) = dimV1 · qϕ2
(ν) + dimV2 · qϕ1

(ν).

Proof. For t ∈ F×, we have

Θϕ(ν(t)) = Θϕ1
(ν(t))Θϕ2

(ν(t)).

Therefore

Q′′
(ϕ,ν) = Q(ϕ1,ν)Q

′′
(ϕ2,ν)

+ 2Q′
(ϕ1,ν)

Q′
(ϕ2,ν)

+Q′′
(ϕ1,ν)

Q(ϕ2,ν),

and so
Q′′

(ϕ,ν)(1) = dimV1 ·Q′′
(ϕ2,ν)

(1) + dimV2 ·Q′′
(ϕ1,ν)

(1).

The proposition follows. �
Corollary 11. If ϕ1, ϕ2 are spinorial, then so is ϕ1 ⊗ ϕ2.

8.2. External tensor products. Next, let (ϕ1, V1), (ϕ2, V2) be orthogonal rep-
resentations of connected reductive groups G1, G2, respectively. Write (ϕ, V ) =
(ϕ1 � ϕ2, V1 ⊗ V2) for the external tensor product representation of G = G1 ×G2.
If T1, T2 are maximal tori for G1, G2, then T = T1 × T2 is a maximal torus of G.

As in the previous proposition, we have:

Proposition 13. For ν = (ν1, ν2) ∈ X∗(T ) = X∗(T1)⊕X∗(T2), we have

qϕ(ν) = dimV1 · qϕ2
(ν2) + dimV2 · qϕ1

(ν1).

8.3. Positive orthogonal spanning sets. In the examples to come, it will be
convenient to have a set of orthogonal dominant weights of G which play the role
of fundamental weights, but in X+

orth.

Definition 7. Let So be a set of dominant orthogonal weights. We say that So is a
positive orthogonal spanning set (POSS) for G, provided every dominant orthogonal
weight can be written as a nonnegative integral combination of So.

The strategy will be to deduce the spinoriality of an arbitrary ϕλ from the
spinoriality of the representations ϕλ0

with λ0 ∈ S0.

Lemma 6. Let G be semisimple and μ0, ν0 dominant weights. Put λ0 = μ0 + ν0.
Suppose that Φ = ϕμ0

⊗ ϕν0
is spinorial, and that one of the following conditions

holds:

(1) ϕλ is spinorial for any dominant orthogonal λ �= λ0 with λ ≺ λ0.
(2) ϕλ is spinorial for any dominant orthogonal λ with |λ| < |λ0|.

Then ϕλ0
is spinorial.

Proof. By Proposition 11, Φ decomposes into a sum of irreducible orthogonal rep-
resentations ϕλ possibly together with an S(σ) summand.

Let us see that each ϕλ is spinorial, for λ �= λ0. If the first condition holds, this
is clear by ([Bou05], page 132, Proposition 9 i).

Suppose the second condition holds. Each weight λ of Φ decomposes into λ =
μ1 + ν1, with μ1 a weight of ϕμ0

and ν1 a weight of ϕν0
. Therefore μ0 − μ1 and

ν0 − ν1 are positive. Moreover ϕλ0
itself occurs with multiplicity one.
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The inner product of a dominant weight with a positive one is nonnegative, thus

|λ|2 ≤ (λ, μ0 + ν0)

≤ |μ0|2 + |ν0|2 + (μ0, ν1) + (μ1, ν0)

≤ |λ0|2.
Moreover by [Bou05], page 129, Proposition 5(iii), equality holds iff μ0 = μ1 and

ν0 = ν1, i.e., iff λ = λ0. Thus by the second condition, each orthogonal weight λ of
Φ, except a priori λ0, has ϕλ spinorial. Recall that S(σ) is spinorial by Proposition
10. So by Corollary 8, it must be that ϕλ0

is spinorial. �

Proposition 14. Let g be simple and suppose So is a POSS for G. If ϕλ is
spinorial for each λ ∈ So, then all orthogonal representations of G are spinorial.

Proof. By Proposition 10 and Corollary 8 we reduce to the case of irreducible
orthogonal ϕλ0

. We prove the proposition by induction on |λ0|.
If λ0 ∈ So, then ϕλ0

is spinorial. Otherwise λ0 = μ0 + ν0 with ν0 ∈ So and μ0

dominant orthogonal. Since

|λ0|2 = |μ0|2 + 2(μ0, ν0) + |ν0|2 > |μ0|2,
we can say that ϕμ0

is spinorial. Put Φ = ϕμ0
⊗ ϕν0

.
By Corollary 11, Φ is a spinorial orthogonal representation of G. Therefore ϕλ0

is spinorial, by Lemma 6. �

9. Type An−1

For the next few sections, we will pursue the question: For which groups G,
with g simple, is every orthogonal representation spinorial? This section treats the
quotients of SLn.

9.1. Preliminaries for type An−1. Let n be an even positive integer. The center
of SLn is cyclic of order n, and can be identified with the group μn of nth roots
of unity in F×. Let T1 be the diagonal torus of SLn. Let ϑi ∈ X∗(T1) be the
character of T1 given by taking the ith diagonal entry. The roots of T1 are of the
form ϑi − ϑj for i �= j.

Let d be a divisor of n, and μd the subgroup of μn of order d. In this section
we consider the spinoriality of orthogonal representations of Gd = SLn /μd. The
maximal torus Td < Gd is the image of T1 under this quotient.

Recall that generallyX∗(Td) injects into t by ν �→ dν(1). When Tn is the diagonal
torus of PGLn, the injectionX∗(Tn) ↪→ t can be identified with the natural injection

Zn

Z(1, 1, . . . , 1)
↪→ Fn

F (1, 1, . . . , 1)
.

In these terms, each coroot lattice Q(Td) = X∗(T1) is given by{
(x1, . . . , xn) ∈

Zn

Z(1, 1, . . . , 1)
|

n∑
i=1

xi ≡ 0 mod n

}
,

and the subgroup X∗(Td) ≤ X∗(Tn) is equal to{
(x1, . . . , xn) ∈

Zn

Z(1, 1, . . . , 1)
|

n∑
i=1

xi ≡ 0 mod
n

d

}
.
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Let νd ∈ X∗(Td) be the cocharacter parametrized by (nd , 0, . . . , 0) in these terms.
Then νd generates π1(Gd), which is therefore cyclic of order d. Of course, when d
is odd, every orthogonal representation of Gd is spinorial. Let us henceforth take d
even. We compute

p(νd) =
(n
d

)2

(n− 1).

Thus by Theorem 1 we deduce the following proposition.

Proposition 15. Let ϕλ be an irreducible orthogonal representation of Gd. Then
ϕλ is spinorial iff (n

d

)2

dimVλ · χλ(C)

is even.

(We regard a rational number as even if, when written in lowest terms, its
numerator is even.)

Example 5. Let ϕλ be an irreducible orthogonal representation of GLn. By Propo-
sition 9, it descends to an orthogonal representation ϕλ of Gn = PGLn, and ϕλ is
spinorial iff ϕλ is. By the above, we deduce that ϕλ is spinorial iff dimVλ · χλ(C)
is even.

Proposition 15 does not by itself answer the question at the beginning of this
section, and the groups Gd are somewhat awkward to compute with directly. So
instead we ask, which morphisms from SLn to Spin(V ) descend to Gd?

9.2. Descent method. Consider the following approach to determining the spino-
riality of an orthogonal ϕ : G/C → SO(V ), where G is a simply connected and C is
central. Write ϕ̂ : G → Spin(V ) for the lift of ϕ. Then ϕ is spinorial iff C ≤ ker ϕ̂.
In this subsection we pursue this method for certain C; this approach will tremen-
dously simplify the theory for the groups G/C = Gd of type An−1.

Resetting notation, let ϕ̂ : G → Spin(V ) be a morphism, with G connected
semisimple. Put ϕ = ρ ◦ ϕ̂ : G → SO(V ), and suppose that ϕ is irreducible.
Let C ≤ Z(G), and suppose that C ≤ kerϕ. Then ϕ descends to an orthogonal
representation ϕ of G/C, which is spinorial iff C ≤ ker ϕ̂.

Let d be a positive even integer, and ζd ∈ F× a primitive dth root of unity. If
ν ∈ X∗(T ) with ν(ζd) ∈ C, then for all weights μ of ϕ, we have d|〈μ, ν〉.

Proposition 16. Let ν : Gm → T be a cocharacter, so that C is generated by
ν(ζd). The following are equivalent:

(1) ϕ is spinorial.
(2) ϕ̂(ν(ζd)) = 1.
(3) 2d divides Lϕ(ν).

Proof. Choose Σ as in the proof of Proposition 2. Note that ϕ̂∗ν ∈ X∗(T̃V ) is a lift
of ϕ∗ν ∈ X∗(TV ). By Lemma 1, we have ϕ̂(ν(ζd)) = 1 iff

2d | 〈ωΣ, ϕ∗ν〉,

which, as in the proof of Proposition 2, is equal to Lϕ(ν). �
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9.3. Application to SLn. We return to G = SLn, with n even. For 1 ≤ i ≤ n,
put �i = ϑ1 + · · ·+ ϑi. Let ν0 ∈ X∗(T ) be the cocharacter defined by

ν0(t) = diag(t, t, . . . , t, t1−n).

Let d be an even divisor of n. Then ν0(ζd) generates μd < G, so by Proposition
16, the representation (ϕλ, V ) of Gd is spinorial iff 2d divides Lϕ(ν0).

Proposition 17. The adjoint representation of Gd is spinorial iff n
d is even.

Proof. For ϕ = ad, we have

Lad(ν0) =
∑

α∈R:〈α,ν0〉>0

〈α, ν0〉

=

n−1∑
i=1

〈ϑi − ϑn, ν0〉

= n(n− 1).

This is divisible by 2d iff n
d is even. �

9.4. Case where n/d is even. For all q ∈ Q(T ), the quantity 〈q, ν0〉 is divisible
by n. Since all weights of Vλ are congruent mod Q(T ), we deduce that

(15) Lϕλ
(ν0) ≡ 〈λ, ν0〉 ·

⎛⎝ ∑
μ:〈μ,ν0〉>0

mμ

⎞⎠ mod n.

Proposition 18. Suppose that 2d divides n, and an irreducible orthogonal repre-
sentation ϕλ of SLn descends to the orthogonal representation ϕλ of Gd.

(1) If Vλ is odd-dimensional, then ϕλ is spinorial.
(2) If Vλ is even-dimensional, then ϕλ is spinorial iff the product 1

2 dimVλ ·
〈λ, ν0〉 is divisible by 2d.

Proof. If ϕλ is orthogonal with odd degree, then the trivial weight must occur in
Vλ, which implies that λ ∈ Q(T ). From (15), we see that Lϕ(ν0) is divisible by n,
and the first statement follows.

Now suppose ϕλ has even degree. If 〈λ, ν0〉 is divisible by n, then ϕλ is spinorial
and the second statement is clear. If 〈λ, ν0〉 is not divisible by n, then for all μ
occurring in Vλ, it must be that 〈μ, ν0〉 �= 0. It follows that∑

μ:〈μ,ν0〉>0

mμ =
1

2
dimVλ,

and the second statement follows from (15). �

Let �o
i = �i +�n−i for 1 ≤ i < n

2 and

So =
{
�o

i | 1 ≤ i <
n

2

}
∪
{
�n/2

}
.

It is easy to see that So is a POSS for Gd. Note that 〈�o
i , ν0〉 = n for 1 ≤ i < n

2 ,
and 〈�n/2, ν0〉 = n/2.

Proposition 19. Suppose 2d divides n. For each 1 ≤ i < n
2 , the representation

V
o
i
of Gd is spinorial.

Proof. This follows from Proposition 18. �
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The representation Vλ for λ = �n/2 is the exterior power
∧n/2

V0, where V0 is
the standard representation of SLn.

Proposition 20. Let λ = �n/2. Then ϕλ is aspinorial iff n is a power of 2 and
d = n/2.

Proof. From elementary number theory we know that dimVλ =
(

n
n/2

)
is even, and

divisible by 4 iff n is not a power of 2. We have

(16)
1

2
dimVλ · 〈λ, ν0〉 =

n

4

(
n

n/2

)
.

This is divisible by d, since the binomial coefficient is always even, and d divides
n
2 . Thus (16) is divisible by 2d unless both n

2d is odd, and n is a power of 2. In this
case it must be that n is a power of 2 and n = 2d. �

Theorem 7. Suppose that n/d is even. Unless n = 2k+1 for some k ≥ 1 and
d = 2k, every orthogonal representation of Gd = SLn /μd is spinorial.

Proof. By Proposition 14, it is enough to check that ϕλ is spinorial for each λ ∈ So.
But we have done this. �

Example 6. Although the adjoint representation of G2 = SL4 /{±1} is spinorial,

the representation V
2
=

∧2
F 4 of G2 is aspinorial.

Remark 3. What makes the “descent method” work in the case of Gd with n/d even
is the fortunate fact that 〈q, ν0〉 is divisible by n for q ∈ Q(T ). In other contexts,
it is unclear how to compute Lϕ(ν) mod 2d.

9.5. Summary for the groups Gd. Let n be a positive integer, d a divisor of n,
and Gd = SLn /μd.

From the above we have:

• If d is odd, then every orthogonal representation of Gd is spinorial.
• If n is even and n/d is odd, then the adjoint representation of Gd is aspino-
rial.

• If n is a power of 2 and d = n/2, then
∧d

V0 is an aspinorial representation
of Gd.

• If n/d is even, then every orthogonal representation of Gd is spinorial, unless
n is a power of 2 and d = n/2.

In particular, every orthogonal representation of Gd is spinorial iff n is odd, or
n/d is even with (n, d) �= (2k+1, 2k).

10. Type Cn

Let J be the 2n × 2n matrix
(

0 I
−I 0

)
, where I is the n × n identity matrix. We

let

Gsc = Sp2n = {g ∈ GL2n | gtJg = J}.
Write Tsc for the diagonal torus in Gsc. A typical element is

diag(t1, . . . , tn, t
−1
1 , . . . , t−1

n ).

We identify X∗(Tsc) with Zn by (b1, . . . , bn) �→ ν, where

ν(t) = diag(tb1 , . . . , tbn , . . .).
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X∗(T 2n)

X∗(T
+
2n) X∗(T2n) X∗(T

−
2n)

X∗(T̃2n)

Figure 1. Cocharacter lattice for D2n

Put G = Sp2n /{±1}, and let T be the image of Tsc under the quotient. Then
X∗(Tsc) has index 2 in X∗(T ); more precisely we may write

X∗(T ) = X∗(Tsc) + Z · ν0,
where ν0 = 1

2 (1, 1, . . . , 1). In particular, π1(G) is cyclic of order 2, generated by ν0.

Remark 4. One way to understand ν0 is through the isomorphism Sp2n /{±1} ∼=
GSp2n /Z, where GSp2n is the general symplectic group defined with J , and Z is
its center. The cocharacter

t �→ diag(t, t, . . . , t︸ ︷︷ ︸
n times

, 1, 1, . . . , 1),

of the diagonal torus of GSp2n, when projected to T , is ν0.

We have p(ν0) =
1
2n(n + 1). Every representation ϕ of G is orthogonal. Since

ȟ = n+ 1, we have by Corollary 10:

qϕ(ν0) =
1
2n(n+ 1)

ȟ
dyno(ϕ)

=
1

2
n · dyno(ϕ).

(17)

Proposition 21. Every representation of Sp2n /{±1} is spinorial iff 4|n.

Proof. If n ≡ 0 mod 4, then every representation is spinorial by (17). If n ≡ 1, 2
mod 4, then the adjoint representation is aspinorial, and if n ≡ 3 mod 4, then the
second fundamental representation is aspinorial. �

11. Type Dn

The simply connected group of type Dn is Gsc = Spin2n. The center Z of Gsc

has order 4; in the notation of Section 2.4, it is generated by c+ when n is odd, and
generated by c+ and z when n is even.

Thus the groups of type Dn for n odd are Gsc and its quotients SO2n and PSO2n.
When n is odd, the adjoint representation of PSO2n is aspinorial, which ends our
investigation in this case. Henceforth in this section, we will assume that n is even,
and to ensure g is simple we take n > 2. (See Example 3 for SO4.)

For n even, there are two more groups of type D2n: the quotient G+
2n of Gsc by

〈c+〉, and the quotient G−
2n of Gsc by 〈−c+〉. Write T2n = TV , where V = F 2n,

write T̃2n < Gsc for its preimage, and write T±
2n and T 2n for the corresponding tori

of G±
2n and PSO2n. The lattice of cocharacters corresponding to these quotients is

depicted in Figure 1.
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Recall that we identified X∗(T2n) with Zn in Section 2.4. Let

Q = X∗(T̃2n) =
{
(b1, . . . , bn) ∈ Zn |

∑
bi is even

}
.

Then

X∗(T
±
2n) = Q+ Z · 1

2
(1, 1, . . . ,±1)

and

X∗(T 2n) = Zn + Z · 1
2
(1, 1, . . . , 1).

All representations of groups of type Dn are orthogonal. The standard representa-
tion V0 of SO2n is evidently aspinorial. Thus, for the rest of this section we focus
on the groups PSO2n and G±

2n with n even.
Tables 1 and 2 record the quantities p(ν), dimVλ, and χλ(C) that we need for

our formulas. Here �k = (1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0) and �− = (1, 1, . . . , 1,−1). (We

parametrize X∗, X
∗ by Zn as in Section 2.4.)

Table 1. Computing p(ν)

G ν p(ν)

SO2n (1, 0, . . . , 0) 2n− 2
PSO2n n ≡ 0 mod 4 (1, 0, . . . , 0), 1

2 (1, . . . , 1) 2n− 2
PSO2n n ≡ 2 mod 4 (1, 0, . . . , 0), 1

2 (1, . . . , 1) n− 1

G±
2n

1
2 (1, . . . ,±1)

(
n

2

)

Table 2. dimVλ and χλ(C) for type Dn, n even

λ dimVλ χλ(C)

�k

(
2n

k

)
k(2n− k)

4n− 4

1
2�− 2n−1 n(2n− 1)

16(n− 1)

1
2�n 2n−1 n(2n− 1)

16(n− 1)

�−
(2n− 1)!

2n
n2

4n− 4

Remark 5. Let n be odd. One has similarly p(ν0) = n− 2 for SOn, with

ν0(t) = diag(t, 1, . . . , 1, t−1).

11.1. The case of PSO2n. If n ≡ 2 mod 4, then the representation ϕ of PSO2n

on
∧2

V0 is aspinorial by Corollary 10: here dyno(ϕ) = 2n− 2 and ȟ = 2n− 2, so

p(ν) · dyn
o(ϕ)

ȟ
= n− 1.



SPINORIALITY 463

Let us assume for the rest of this section that n is a multiple of 4; we will prove
every orthogonal representation is spinorial in this case. We first consider ϕλ, with
λ in the set

S0 = {�k, �− | k even, 1 ≤ k ≤ n}.
Proposition 22. Each representation ϕλ of SO2n with λ ∈ S0 is spinorial.

Proof. Tables 1 and 2 give

q
k
=

1

2

(
2n
k

)(
2n
2

) · k(2n− k)

=

(
2n− 2

k − 1

)
.

(18)

Since k is even, this is necessarily even, and we deduce that each ϕ
k
is spinorial.

Similarly

(19) q
− =
(2n− 2)!n

2n+1
;

it is easy to see this is even for all n divisible by 4, thus ϕ
− is spinorial. �
These representations descend to PSO2n, which are also spinorial by Corollary

9. Moreover, formulas (18) and (19) remain the same when computed for PSO2n

(since the p(ν) are the same).
Let S1 be the set

S0 ∪ {�k +�� | k ≡ � mod 2, 1 ≤ k, � ≤ n} ∪ {�k +�− | k even} ∪ {2�−}.
Note that S1 has the following property. If λ ∈ S1 and λ′ is a dominant weight

with λ′ ≺ λ, then λ′ ∈ S1.

Proposition 23. Each ϕλ with λ ∈ S1 is spinorial.

Proof. Suppose, by way of contradiction, that there are aspinorial λ ∈ S1. Let
λ ∈ S1 be a ≺-minimal with ϕλ aspinorial. We show below that for each of the
three possibilities of λ ∈ S1, the representation ϕλ is spinorial, a contradiction.

If λ ∈ S0 it is spinorial by Proposition 22. Otherwise λ = λ1+λ2 with λ1, λ2 ∈ S0,
or λ = �k +�� with k, � odd.

In the first case, let Φ = ϕλ1
⊗ϕλ2

, which is spinorial by Proposition 22. By the
property of S1 mentioned above, we may apply Lemma 6(1) to deduce that ϕλ is
spinorial.

In the second case we have λ = �k +�� with k, � odd. Consider the representa-
tion Φ = ϕ
k

⊗ ϕ
�
of SO2n. Applying equation (14) to the representations ϕ
k

and ϕ
�
of SO2n gives

qΦ =

(
2n

�

)(
2n− 2

k − 1

)
+

(
2n

k

)(
2n− 2

�− 1

)
.

Since this is even, Φ is a spinorial representation of SO2n. By Corollary 9 it descends
to a spinorial representation Φ of PSO2n.

Again, we may apply Lemma 6(1) to deduce that ϕλ is spinorial. Thus in all
cases we have a contradiction. �
Theorem 8. When n is divisible by 4, every representation of PSO2n is spinorial.

Proof. It is elementary to see that S1 is a POSS. Thus the theorem follows by
Propositions 14 and 23. �
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11.2. The groups G±
2n. Here ȟ = 2n− 2 and p(ν0) =

(
n
2

)
, so by Corollary 10:

qϕ(ν0) =

(
n

2

)
· dyn

o(ϕ)

ȟ

=
n

4
· dyno(ϕ).

(20)

If n ≡ 2 mod 4, then the representation ϕ of G±
2n on

∧2
V0 is aspinorial, since

again dyno(ϕ) = 2n − 2. The half-spin representation (ϕ 1
2
4

, V 1
2
4

) of G+
8 , and

the half-spin representation (ϕ 1
2
− , V 1

2
−) of G−
8 are also aspinorial, since here

dyno(ϕ) = 1.

Theorem 9. Suppose n > 4 and a multiple of 4. Then every orthogonal represen-
tation of G+

2n and G−
2n is spinorial.

Proof. If n is a multiple of 8, then the conclusion follows from (20).
If n ≡ 4 mod 8, then ord2(p(ν)) = 1 = ord2(p(ν

′)). Therefore we may apply
Corollary 9 to see that a representation of G±

2n which descends to PSO2n is spinorial
iff it was originally spinorial. Thus by Theorem 8, all such representations of G±

2n

are spinorial.
However there are representations of G±

2n which don’t descend, so we must en-
large our POSS. Let S+ = S1∪{ 1

2�n} and S− = S1∪{ 1
2�−}. Then S± is a POSS

for G±. By (20), we have

q 1
2
n

= q 1
2
− = n2n−6,

which is certainly even. Thus for each λ ∈ S±, the representation Vλ of G±
2n is

spinorial. The conclusion then follows by Proposition 14. �

11.3. Summary for groups of type Dn. Let n > 2 be a positive integer. From
the above we know:

• The standard representation of SO2n is aspinorial.
• If n is a multiple of 4, then every representation of PSO2n is spinorial.
• If n is odd, then the adjoint representation of PSO2n is aspinorial.

• If n ≡ 2 mod 4, then the representations of PSO2n and G±
2n on

∧2
V0 are

aspinorial.
• The half-spin representation ϕ 1

2
4
of G+

8 and the half-spin representation

ϕ 1
2
− of G−

8 are aspinorial.

• For n > 4 a multiple of 4, all representations of G+
2n and G−

2n are spinorial.

12. Summary for simple g

Here is a list of all G with simple g, with the property that all orthogonal
representations of G are spinorial:

• All G whose fundamental group has odd order.
• All SLn /μd, when n/d is even, except when n is a power of 2 and d = n/2.
• Sp2n /±1, when n is a multiple of 4.
• The groups PSOn, when n is a multiple of 8.
• The groups G±

2n, when n > 4 is a multiple of 4.
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For the reader’s convenience, we recall the G whose fundamental groups have
odd order:

• Simply connected G.
• SLn /μd with d odd.
• The adjoint group of type E6.

Aspinorial representations for most groups not on this list have already been
mentioned. To finish, we remark that the standard representation of an odd or-
thogonal group is aspinorial, and the adjoint representation of the adjoint group of
type E7 is aspinorial.

13. Periodicity

For the irreducible orthogonal representations ϕλ, our lifting criterion amounts
to determining the parity of one or more qλ(ν), each an integer-valued polynomial
function of λ. As we explain in this section, this entails a certain periodicity of the
spinorial highest weights in the character lattice.

13.1. Polynomials with integer values. Let V be a finite-dimensional rational
vector space, V ∗ its dual, L a lattice in V , and L∨ the dual lattice in V ∗. Recall
that L∨ is the Z-module of Q-linear maps f : V → Q so that f(L) ⊆ Z. Denote by(
L∨

Z

)
the Z-algebra of polynomial functions on V which take integer values on L.

Given f ∈ L∨, and n ∈ N, define
(
f
n

)
∈

(
L∨

Z

)
by the prescription(

f

n

)
: x �→

(
f(x)

n

)
=

f(x)(f(x)− 1) · · · (f(x)− n+ 1)

n!

for x ∈ L.

Proposition 24. The Z-algebra
(
L∨

Z

)
is generated by the

(
f
n

)
for f ∈ L∨ and n ∈ N.

If {f1, . . . , fr} is a Z-basis of L∨, then the products(
f1
n1

)
· · ·

(
fr
nr

)
,

where n1, . . . , nr ∈ N, form a basis of the Z-module
(
L∨

Z

)
.

Proof. See Proposition 2 in [Bou05], Chapter 8, Section 12, no. 4. �

Given a basis of V , we can form the set C of its nonnegative linear combinations.
Call C a “full polyhedral cone” if it arises in this way, and write L+ = L ∩ C.

Proposition 25. Suppose f is a polynomial map from V to Q that takes integer

values on L+. Then f ∈
(
L∨

Z

)
.

Proof. We omit the elementary proof (see [Jos18]) of the following lemma.

Lemma 7. Suppose that V is a finite-dimensional rational vector space, that C is
a full polyhedral cone in V , and that L ⊂ V is a lattice. Let p ∈ L. Then:

(1) C ∩ (p+ C) is a translation of C.
(2) The intersection L ∩ C ∩ (p+ C) is nonempty.
(3) Suppose p′ is in the above intersection, and write v = p′−p. Then p+nv ∈

L ∩ C ∩ (p+ C) for all positive integers n.
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Continuing with the proof of the proposition, let � ∈ L; we must show that
f(�) ∈ Z. By the lemma there is a v ∈ L so that �+nv ∈ L+ for all positive integers
n. For x ∈ Z, put g(x) = f(� + xv). Then g ∈ Q[x], and by hypothesis it takes
integer values on positive integers. It is elementary to see that such a polynomial
takes integer values at all integers, and in particular g(0) = f(�) ∈ Z. �

Lemma 8. Fix an integer n ≥ 1 and put k = [log2 n] + 1. Then
(
a+2k

n

)
≡

(
a
n

)
mod 2 for every integer a ≥ 1.

Proof. This follows from the Lucas congruence (see, e.g., [Sta12]). �

Proposition 26. Let f ∈
(
L∨

Z

)
. Then there is a k ∈ N so that for all x, y ∈ L we

have

f(x+ 2ky) ≡ f(x) mod 2.

Proof. By Proposition 24, there are f1, . . . , fr ∈ L∨, integers n1, . . . , nr, and a
polynomial g ∈ Z[x1, . . . , xr] so that

f = g

((
f1
n1

)
, . . . ,

(
fr
nr

))
.

Let ki = [log2 ni] + 1; by Lemma 8 we have(
fi
ni

)
(x+ 2kiy) ≡

(
fi
ni

)
(x) mod 2

for all x, y ∈ L. If we put k = max(k1, . . . , kr) we obtain the proposition. �

13.2. Example: Parity of dimensions. To illustrate the above, let G be con-
nected reductive with notation as before. Take L = X∗(T ) ⊂ V = X∗(T )⊗Q ↪→ t∗.
Define f : t∗ → F by

f(λ) =
dλ+δ

dδ
= dimVλ.

From Propositions 25 and 26 we deduce the following corollary.

Corollary 12. With notation as above:

(1) f(λ) ∈ Z for all λ ∈ X∗(T ); equivalently f ∈
(
X∗(T )

Z

)
.

(2) There is a k ∈ N so that f(λ0+2kλ) ≡ f(λ0) mod 2 for all λ0, λ ∈ X∗(T ).

13.3. Proof of Theorem 2. We continue with G connected reductive.
If g is simple put

ην(λ) = p(ν) · dimVλ · χλ(C)

dim g
.

Then:

(1) ην is a polynomial in λ,

(2) ην(λ) ∈ Z for λ ∈ X+
sd, and

(3) ϕλ is spinorial iff ην(λ) is even.

If g is not necessarily simple, we may instead put

ην(λ) = 1 +
∏
ν∈ν

(qλ(ν)− 1),

and the same three properties hold. From Propositions 25 and 26 we deduce the
following corollary.
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Corollary 13. With notation as above:

(1) ην(λ) ∈ Z for all λ ∈ Xorth; equivalently ην ∈
(
X∨

orth
Z

)
.

(2) There is a k ∈ N so that ην(λ0+2kλ) ≡ ην(λ0) mod 2 for all λ0, λ ∈ Xorth.

Theorem 2 in the introduction follows from this. If we put L+ = 2kX+
orth, then

the theorem says that the set of spinorial highest weights is stable under addition
from L+. Since the index [Xorth : 2kXorth] is finite, the determination of the full
set of spinorial weights amounts to a finite computation.

The problem of finding the exact largest lattice L ⊆ Xorth so that the spinorial-
ities of ϕλ0

and ϕλ0+� agree for all λ ∈ X+
orth and � ∈ L+ seems interesting, as does

the problem of determining the proportion of spinorial irreducible representations.
We do not settle these questions here, but see the next section for PGL2 and SO4,
and [Jos18] for more examples.

13.4. Examples. Let us examine G = PGL2 more closely. We have X∗(T ) =
Xsd = Xorth. For integers j ≥ 0 define λj ∈ X∗(T ) by

λj

((
a

b

))
= (ab−1)j .

Then dimVλj
= 2j + 1 and χλj

(C) = 1
2 (j

2 + j), so ϕλj
is spinorial iff

j(j + 1)(2j + 1)

2
is even. Equivalently, j ≡ 0, 3 mod 4. We may therefore take k = 2 in Theorem 2.

As a second example, recall the representations Va,b of SO4 from Example 3. If
we put

F (a, b) =
1

4

(
(b+ 1)

(
a+ 2

3

)
+ (a+ 1)

(
b+ 2

3

))
,

then Va,b is spinorial iff F (a, b) is even. It is elementary to see that F (a+8i, b+8j) ≡
F (a, b) mod 2 for integers i, j. In particular we may take k = 3 in Theorem 2.

14. Reduction to algebraically closed fields

For this section, G is a connected reductive group defined over a field F of
characteristic 0, not necessarily algebraically closed. Let V be a quadratic vector
space over F , and ϕ : G → SO(V ) a morphism defined over F . The isogeny
ρ : Spin(V ) → SO(V ) is also defined over F . By extending scalars to the algebraic
closure F of F , we may use the rest of this paper to determine whether there exists
a lift ϕ̂ : G → Spin(V ) of ϕ defined over F .

Lemma 9. If ϕ̂ : G → Spin(V ) is a lift defined over F , then it arises from a lift
defined over F .

Proof. The Galois group acts by Zariski-continuous automorphisms on the F -points
of G and Spin(V ). We must show that for every σ ∈ Gal(F ) and x ∈ G(F ), we
have σϕ̂(x) = ϕ̂(σx). Since ρ and ϕ are defined over F , the identity ρ(ϕ̂(x)) = ϕ(x)
implies that

ρ(ϕ̂(x)−1 · σ−1

ϕ̂(σx)) = 1.

Thus the argument of ρ above gives a Zariski-continuous map G(F ) → ker ρ. Since

G is connected and ker ρ is discrete, it must be that ϕ̂(x) = σ−1

ϕ̂(σx), and the
lemma follows. �
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Therefore: the F -representation ϕ is spinorial iff its extension to F -points is
spinorial.
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