FOURIER TRANSFORM AS A TRIANGULAR MATRIX

G. LUSZTIG

Abstract

Let V be a finite dimensional vector space over the field with two elements with a given nondegenerate symplectic form. Let [V] be the vector space of complex valued functions on V, and let $[V]_{\mathbf{Z}}$ be the subgroup of $[V]$ consisting of integer valued functions. We show that there exists a Z \mathbf{Z}-basis of $[V]_{\mathbf{Z}}$ consisting of characteristic functions of certain isotropic subspaces of V and such that the matrix of the Fourier transform from $[V]$ to $[V]$ with respect to this basis is triangular. We show that this is a special case of a result which holds for any two-sided cell in a Weyl group.

Introduction

0.1. Let V be a vector space of finite even dimension $D=2 d \geq 0$ over the field \mathbf{F}_{2} with 2 elements with a fixed nondegenerate symplectic form (,) : $V \times V \rightarrow \mathbf{F}_{2}$. Let [V] be the \mathbf{C}-vector space of functions $V \rightarrow \mathbf{C}$ and let $[V]_{\mathbf{Z}}$ be the subgroup of $[V]$ consisting of the functions $V \rightarrow \mathbf{Z}$. For $f \in[V]$ the Fourier transform $\Phi(f) \in[V]$ is defined by $\Phi(f)(x)=2^{-d} \sum_{y \in V}(-1)^{(x, y)} f(y)$. Now $\Phi:[V] \rightarrow[V]$ is a linear involution whose trace is $2^{-d} \sum_{x \in V} 1=2^{d}$. Hence Φ has $2^{D-1}+2^{d-1}$ eigenvalues equal to 1 and $2^{D-1}-2^{d-1}$ eigenvalues equal to -1 . Here is one of our main results.
Theorem 0.2. There exists a \mathbf{Z}-basis β of $[V]_{\mathbf{Z}}$ consisting of characteristic functions of certain explicit isotropic subspaces of V such that the matrix of $\Phi:[V] \rightarrow$ $[V]$ with respect to β is upper triangular (with diagonal entries ± 1) for a suitable order on β.

Assume for example that $D=2$. For $x \in V$ let $f_{x} \in[V]$ be the function whose value at $y \in V$ is 1 if $y=x$ and 0 if $y \neq x$. Let β be the \mathbf{Z}-basis of $V_{\mathbf{Z}}$ consisting of $f_{0}^{\prime}=f_{0}$ and of $f_{x}^{\prime}=f_{0}+f_{x}$ for $x \in V-\{0\}$. We have $\Phi\left(f_{0}^{\prime}\right)=$ $-f_{0}^{\prime}+(1 / 2) \sum_{x \in V-\{0\}} f_{x}^{\prime}$ and $\Phi\left(f_{x}^{\prime}\right)=f_{x}^{\prime}$ for $x \in V-\{0\}$. Thus, the matrix of $\Phi:[V] \rightarrow[V]$ with respect to β is upper triangular (with diagonal entries $-1,1,1,1)$.

The proof of the theorem is given in $\S 1$; we take β to be the new basis $\mathcal{F}(V)$ of [V] defined in Lus20]. In $\S 2$ we compute explicitly the signs ± 1 appearing in the theorem for this β. In $\S 3$ we give some tables for $\beta=\mathcal{F}(V)$. In $\S 4$ we show that $\mathcal{F}(V)$ has a certain dihedral symmetry which was not apparent in Lus20. In $\S 5$ we show that the theorem is a special case of a result which applies to any two-sided cell in an irreducible Weyl group.
0.3. Notation. For a, b in \mathbf{Z} we set $[a, b]=\{z \in \mathbf{Z} ; a \leq z \leq b\}$. For a finite set Y let $|Y|$ be the cardinal of Y.

[^0]
1. Proof of Theorem 0.2

1.1. When $D \geq 2$ we fix a subset $\left\{e_{i} ; i \in[1, D+1]\right\} \subset V$ such that for $i \neq j$ in $[1, D+1]$ we have $\left(e_{i}, e_{j}\right)=1$ if $i-j= \pm 1 \bmod D+1,\left(e_{i}, e_{j}\right)=0$ if $i-j \neq$ $\pm 1 \bmod D+1$. (Such a subset exists and is unique up to the action of some isometry of (,).) We say that this subset is a circular basis of V. We must have $e_{1}+e_{2}+\cdots+e_{D+1}=0$ and any D elements of $\left\{e_{i} ; i \in[1, D+1]\right\}$ form a basis of V. For any $I \subset[1, D+1]$ let $e_{I}=\sum_{i \in I} e_{i} \in V$. When $D \geq 2$ (resp. $D \geq 4$) we denote by V^{\prime} (resp. $V^{\prime \prime}$) an \mathbf{F}_{2}-vector space with a nondegenerate symplectic form (,). When $D \geq 4$ (resp. $D \geq 6$) we assume that V^{\prime} (resp. $V^{\prime \prime}$) has a given circular basis $\left\{e_{i}^{\prime} ; i \in[1, D-1]\right\}$ (resp. $\left\{e_{i}^{\prime \prime} ; i \in[1, D-3]\right\}$).

When $D \geq 2$, for any $i \in[1, D+1]$ there is a unique linear map $\tau_{i}: V^{\prime} \rightarrow V$ such that $\tau_{i}=0$ for $D=2$, while for $D \geq 4$, the sequence $\tau_{i}\left(e_{1}^{\prime}\right), \tau_{i}\left(e_{2}^{\prime}\right), \ldots, \tau_{i}\left(e_{D-1}^{\prime}\right)$ is:
$e_{1}, e_{2}, \ldots, e_{i-2}, e_{i-1}+e_{i}+e_{i+1}, e_{i+2}, e_{i+3}, \ldots, e_{D}, e_{D+1}($ if $1<i \leq D)$,
$e_{3}, e_{4}, \ldots, e_{D}, e_{D+1}+e_{1}+e_{2}$ if $i=1$,
$e_{2}, e_{3}, \ldots, e_{D-1}, e_{D}+e_{D+1}+e_{1}$ if $i=D+1$.
This map is injective and compatible with (,). Similarly, when $D \geq 4$, for any $i \in[1, D-1]$ there is a unique linear map $\tau_{i}^{\prime}: V^{\prime \prime} \rightarrow V^{\prime}$ such that $\tau_{i}^{\prime}=0$ for $D=4$, while for $D \geq 6$, the sequence $\tau_{i}^{\prime}\left(e_{1}^{\prime \prime}\right), \tau_{i}^{\prime}\left(e_{2}^{\prime \prime}\right), \ldots, \tau_{i}^{\prime}\left(e_{D-3}^{\prime \prime}\right)$ is:
$e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{i-2}^{\prime}, e_{i-1}^{\prime}+e_{i}^{\prime}+e_{i+1}^{\prime}, e_{i+2}^{\prime}, e_{i+3}^{\prime}, \ldots, e_{D-2}^{\prime}, e_{D-1}^{\prime}($ if $1<i \leq D-2)$,
$e_{3}^{\prime}, e_{4}^{\prime}, \ldots, e_{D-2}^{\prime}, e_{D-1}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}$ if $i=1$,
$e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{D-3}^{\prime}, e_{D-2}^{\prime}+e_{D-1}^{\prime}+e_{1}^{\prime}$ if $i=D-1$.
This map is injective and compatible with (,). Note that
(a) if $D \geq 2$, then $\tau_{i}\left(V^{\prime}\right)$ is a complement of the line $\mathbf{F}_{2} e_{i}$ in $\left\{x \in V ;\left(x, e_{i}\right)=0\right\}$.

Assuming that $D \geq 4$ and $i \in[1, D-2]$, we show:
(b) $\tau_{D+1} \tau_{i}^{\prime}=\tau_{j} \tau_{D-1}^{\prime}$ where $j=i+1$ if $1<i \leq D-2$ and $j=i$ if $i=1$.

If $D=4$ the result is trivial. Assume now that $D \geq 6$. Assume first that $1<i \leq D-2$. Both sequences

$$
\begin{gathered}
\left(\tau_{D+1} \tau_{i}^{\prime}\left(e_{1}^{\prime \prime}\right), \tau_{D+1} \tau_{i}^{\prime}\left(e_{2}^{\prime \prime}\right), \ldots, \tau_{D+1} \tau_{i}^{\prime}\left(e_{D-3}^{\prime \prime}\right)\right) \\
\left(\tau_{i+1} \tau_{D-1}^{\prime}\left(e_{1}^{\prime \prime}\right), \tau_{i+1} \tau_{D-1}^{\prime}\left(e_{2}^{\prime \prime}\right), \ldots, \tau_{i+1} \tau_{D-1}^{\prime}\left(e_{D-3}^{\prime \prime}\right)\right)
\end{gathered}
$$

are equal to

$$
\left(e_{2}, e_{3}, \ldots, e_{i-1}, e_{i}+e_{i+1}+e_{i+2}, e_{i+3}, e_{i+4}, \ldots, e_{D-1}, e_{D}+e_{D+1}+e_{1}\right)
$$

if $1<i<D-2$ and to

$$
\left(e_{2}, e_{3}, \ldots, e_{D-3}, e_{D-2}+e_{D-1}+e_{D}+e_{D+1}+e_{1}\right)
$$

if $i=D-2$. Next we assume that $i=1$. Both sequences

$$
\begin{aligned}
& \left(\tau_{D+1} \tau_{i}^{\prime}\left(e_{1}^{\prime \prime}\right), \tau_{D+1} \tau_{i}^{\prime}\left(e_{2}^{\prime \prime}\right), \ldots, \tau_{D+1} \tau_{i}^{\prime}\left(e_{D-3}^{\prime \prime}\right)\right) \\
& \left(\tau_{i} \tau_{D-1}^{\prime}\left(e_{1}^{\prime \prime}\right), \tau_{i} \tau_{D-1}^{\prime}\left(e_{2}^{\prime \prime}\right), \ldots, \tau_{i} \tau_{D-1}^{\prime}\left(e_{D-3}^{\prime \prime}\right)\right)
\end{aligned}
$$

are equal to

$$
\left(e_{4}, e_{5}, \ldots, e_{D-2}, e_{D}+e_{D+1}+e_{1}+e_{2}+e_{3}\right) .
$$

This proves (b).
In the setup of (b) we show that for a subspace $E^{\prime \prime} \subset V^{\prime \prime}$ we have

$$
\begin{equation*}
\tau_{D+1}\left(\tau_{i}^{\prime}\left(E^{\prime \prime}\right) \oplus \mathbf{F}_{2} e_{i}^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1}=\tau_{j}\left(\tau_{D-1}^{\prime}\left(E^{\prime \prime}\right) \oplus \mathbf{F}_{2} e_{D-1}^{\prime}\right) \oplus \mathbf{F}_{2} e_{j} \tag{c}
\end{equation*}
$$

Using (b) it is enough to show that

$$
\mathbf{F}_{2} \tau_{D+1}\left(e_{i}^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1}=\mathbf{F}_{2} \tau_{j}\left(e_{D-1}^{\prime}\right) \oplus \mathbf{F}_{2} e_{j}
$$

or that

$$
\mathbf{F}_{2} e_{i+1} \oplus \mathbf{F}_{2} e_{D+1}=\mathbf{F}_{2} e_{D+1} \oplus \mathbf{F}_{2} e_{i+1}
$$

if $i>1$ and

$$
\mathbf{F}_{2} e_{2} \oplus \mathbf{F}_{2} e_{D+1}=\mathbf{F}_{2}\left(e_{D+1}+e_{1}+e_{2}\right)+\mathbf{F}_{2} e_{1}
$$

if $i=1$. This is clear.
1.2. If $D \geq 2$, for any $k \in[0, d]$ let E_{k} be the subspace of V with basis $\left\{e_{[1, D]}, e_{[2, D-1]}, \ldots, e_{[k, D+1-k]}\right\}$.
When $D=0$ we set $E_{0}=0 \subset V$. If $D \geq 4$ and $k \in[0, d-1]$ let E_{k}^{\prime} be the subspace of V^{\prime} with basis

$$
\left\{e_{[1, D-2]}^{\prime}, e_{[2, D-3]}^{\prime}, \ldots, e_{[k, D-1-k]}^{\prime}\right\}
$$

where for any $I^{\prime} \subset[1, D-1]$ we set $e_{I^{\prime}}^{\prime}=\sum_{i \in I^{\prime}} e_{i}^{\prime} \in V^{\prime}$. When $D=2$ we set $E^{\prime}=0 \subset V^{\prime}$.

Following Lus20, we define a collection $\mathcal{F}(V)$ of subspaces of V by induction on D. If $D=0, \mathcal{F}(V)$ consists of the subspace $\{0\}$. If $D \geq 2$, a subspace E of V is in $\mathcal{F}(V)$ if either
(i) there exists $i \in[1, D]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$, or
(ii) there exists $k \in[0, d]$ such that $E=E_{k}$.

We now define a collection $\mathcal{F}^{\prime}(V)$ of subspaces of V by induction on D. If $D=0$, $\mathcal{F}^{\prime}(V)$ consists of the subspace $\{0\}$. If $D \geq 2$, a subspace E of V is in $\mathcal{F}^{\prime}(V)$ if either $E=0$ or if
(iii) there exists $i \in[1, D+1]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$.

Lemma 1.3. We have $\mathcal{F}(V)=\mathcal{F}^{\prime}(V)$.
We argue by induction on D. If $D=0$ the result is obvious. Assume that $D \geq 2$. We show that
(a) $\mathcal{F}^{\prime}(V) \subset \mathcal{F}(V)$.

Let $E \in \mathcal{F}^{\prime}(V)$. If $E=0$ then clearly $E \in \mathcal{F}(V)$. Thus we can assume that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$ for some $i \in[1, D+1]$ and some $E^{\prime} \in \mathcal{F}^{\prime}(V)$. By the induction hypothesis we have $E^{\prime} \in \mathcal{F}(V)$. If $i \in[1, D]$ then by definition we have $E \in \mathcal{F}(V)$. Thus we can assume that $i=D+1$. If $E^{\prime}=0$ then $E=\mathbf{F}_{2} e_{D+1}=\mathbf{F}_{2} e_{[1, D]}=$ $E_{1} \in \mathcal{F}(V)$. Thus we can assume that $E^{\prime} \neq 0$ so that $D \geq 4$. Since $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ we have $E^{\prime}=\tau_{h}^{\prime}\left(E^{\prime \prime}\right) \oplus \mathbf{F}_{2} e_{h}^{\prime}$ for some $h \in[1, D-2]$ and some $E^{\prime \prime} \in \mathcal{F}\left(V^{\prime \prime}\right)$. Thus we have

$$
E=\tau_{D+1}\left(\tau_{h}^{\prime}\left(E^{\prime \prime}\right) \oplus \mathbf{F}_{2} e_{h}^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1}=\tau_{h^{\prime}}\left(E_{1}\right) \oplus \mathbf{F}_{2} e_{h^{\prime}}
$$

where $E_{1}=\tau_{D-1}^{\prime}\left(E^{\prime \prime}\right) \oplus \mathbf{F}_{2} e_{D-1}$ (we have used 1.1(c)); here $h^{\prime}=h+1$ if $h>1$ and $h^{\prime}=h$ if $h=1$. By the definition of $\mathcal{F}^{\prime}\left(V^{\prime}\right)$ we have $E_{1} \in \mathcal{F}^{\prime}\left(V^{\prime}\right)$ hence $E_{1} \in \mathcal{F}\left(V^{\prime}\right)$, by the induction hypothesis. It follows that $\tau_{h^{\prime}}\left(E_{1}\right) \oplus \mathbf{F}_{2} e_{h^{\prime}} \in \mathcal{F}(V)$, so that $E \in \mathcal{F}(V)$. This proves (a).

We show that
(b) $\mathcal{F}(V) \subset \mathcal{F}^{\prime}(V)$.

Let $E \in \mathcal{F}(V)$. Assume first that $E=E_{k}$ for some $k \in[1, d]$. From the definition we have $E_{k}=\tau_{D+1}\left(E_{k-1}^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1}$. We have $E_{k-1}^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ hence by the induction hypothesis we have $E_{k-1}^{\prime} \in \mathcal{F}^{\prime}\left(V^{\prime}\right)$ and using the definition we have $E_{k} \in \mathcal{F}^{\prime}(V)$. If $E=E_{0}$ then $E=0$ so that again $E \in \mathcal{F}(V)$. Next we assume that E is not of the form E_{k} with $k \in[0, d]$. We can find $i \in[1, D]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. By the induction hypothesis we have $E^{\prime} \in \mathcal{F}^{\prime}\left(V^{\prime}\right)$. From the definition we have $E \in \mathcal{F}^{\prime}(V)$. This proves (b).
1.4. For any subset $X \subset V$ let $\psi_{X} \in[V]$ be the function such that $\psi_{X}(x)=1$ if $x \in X, \psi_{X}(x)=0$ if $x \in V-X$. According to Lus20,
(a) $\left\{\psi_{E} ; E \in \mathcal{F}(V)\right\}$ is a \mathbf{Z}-basis of $[V]_{\mathbf{Z}}$.

Using Lemma 1.3, we deduce:
(b) $\left\{\psi_{E} ; E \in \mathcal{F}^{\prime}(V)\right\}$ is a \mathbf{Z}-basis of $[V]_{\mathbf{Z}}$.

We will no longer distinguish between $\mathcal{F}(V)$ and $\mathcal{F}^{\prime}(V)$.
1.5. Assume that $D \geq 2$. Let $\left[V^{\prime}\right], \Phi^{\prime}:\left[V^{\prime}\right] \rightarrow\left[V^{\prime}\right]$ be the analogues of $[V], \Phi:$ $[V] \rightarrow[V]$ when V is replaced by V^{\prime}. For $X^{\prime} \subset V^{\prime}$ let $\psi_{X^{\prime}}^{\prime} \in\left[V^{\prime}\right]$ be the function such that $\psi_{X^{\prime}}^{\prime}(y)=1$ if $y \in X^{\prime}, \psi_{X^{\prime}}^{\prime}(x)=0$ if $y \in V^{\prime}-X^{\prime}$.

For $i \in[1, D+1]$ there is a unique linear map $z_{i}:\left[V^{\prime}\right] \rightarrow[V]$ such that $z_{i}\left(\psi_{y}^{\prime}\right)=$ $\psi_{\tau_{i}(y)}+\psi_{\tau_{i}(y)+e_{i}}$ for all $y \in V^{\prime}$. If E^{\prime} is a subspace of V^{\prime} we have $z_{i}\left(\psi_{E^{\prime}}^{\prime}\right)=$ $\psi_{\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}}$. We show:
(a) For $f \in\left[V^{\prime}\right]$ we have $\Phi\left(z_{i}(f)\right)=z_{i}\left(\Phi^{\prime}(f)\right)$.

We can assume that $f=\psi_{y}^{\prime}$ with $y \in V^{\prime}$. We have

$$
\begin{gathered}
z_{i}\left(\Phi^{\prime}(f)\right)=2^{-d+1} \sum_{y_{1} \in V^{\prime}}(-1)^{\left(y, y_{1}\right)} z_{i}\left(\psi_{y_{1}}^{\prime}\right) \\
=2^{-d+1} \sum_{y_{1} \in V^{\prime}}(-1)^{\left(y, y_{1}\right)}\left(\psi_{\tau_{i}\left(y_{1}\right)}+\psi_{\tau_{i}\left(y_{1}\right)+e_{i}}\right), \\
\Phi\left(z_{i}(f)\right)=\Phi\left(\psi_{\tau_{i}(y)}+\psi_{\tau_{i}(y)+e_{i}}\right)=2^{-d} \sum_{x \in V}\left((-1)^{\left(\tau_{i}(y), x\right)}+(-1)^{\left(\tau_{i}(y)+e_{i}, x\right)}\right) \psi_{x} \\
=2^{-d+1} \sum_{x \in V ;\left(e_{i}, x\right)=0}(-1)^{\left(\tau_{i}(y), x\right)} \psi_{x} .
\end{gathered}
$$

In the last sum x can be written uniquely as $x=\tau_{i}\left(y_{1}\right)+c e_{i}$ with $y_{1} \in V^{\prime}, c \in \mathbf{F}_{2}$. Thus

$$
\Phi\left(z_{i}(f)\right)=2^{-d+1} \sum_{y_{1} \in V^{\prime}, c \in \mathbf{F}_{2}}(-1)^{\left(\tau_{i}(y), \tau_{i}\left(y_{1}\right)+c e_{1}\right)} \psi_{\tau_{i}\left(y_{1}\right)+c e_{i}}
$$

which is equal to $z_{i}\left(\Phi^{\prime}(f)\right)$. This proves (a).
For $E \in \mathcal{F}(V)$ we write
(b) $\Phi\left(\psi_{E}\right)=\sum_{E_{1} \in \mathcal{F}(V)} c_{E, E_{1}} \psi_{E_{1}}$
with $c_{E, E_{1}} \in \mathbf{C}$ are uniquely determined. (We use 1.4(b).)
Lemma 1.6. Let $E \in \mathcal{F}(V), E_{1} \in \mathcal{F}(V)$ be such that $c_{E, E_{1}} \neq 0$. Then either $E_{1}=E$ or $\left|E_{1}\right|>|E|$.

We argue by induction on D. If $D=0$ the result is obvious. Assume now that $D \geq 2$. If $E=0$, the result is obvious since for any $E_{1} \in \mathcal{F}(V)$ we have either $E_{1}=$ E or $\left|E_{1}\right|>|E|$. Assume now that $E \neq 0$. We can find $i \in[1, D+1]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. Recall from 1.5 that $z_{i}\left(\psi_{E^{\prime}}^{\prime}\right)=\psi_{\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}}=\psi_{E}$. By the induction hypothesis we have

$$
\Phi^{\prime}\left(\psi_{E^{\prime}}^{\prime}\right)=c_{E^{\prime}, E^{\prime}}^{\prime} \psi_{E^{\prime}}^{\prime}+\sum_{E_{1}^{\prime} \in \mathcal{F}\left(V^{\prime}\right) ;\left|E_{1}^{\prime}\right|>\left|E^{\prime}\right|} c_{E^{\prime}, E_{1}^{\prime}}^{\prime} \psi_{E_{1}^{\prime}}^{\prime}
$$

with $c_{E^{\prime}, E^{\prime}}^{\prime} \in \mathbf{C}, c_{E^{\prime}, E_{1}^{\prime}}^{\prime} \in \mathbf{C}$. Applying z_{i} and using 1.5(a) we deduce

$$
\begin{aligned}
& \Phi\left(z_{i}\left(\psi_{E^{\prime}}^{\prime}\right)\right)=c_{E^{\prime}, E^{\prime}} z_{i}\left(\psi_{E^{\prime}}^{\prime}\right)+\sum_{E_{1}^{\prime} \in \mathcal{F}\left(V^{\prime}\right) ;\left|E_{1}^{\prime}\right|>\left|E^{\prime}\right|} c_{E^{\prime}, E_{1}^{\prime}}^{\prime} z_{i}\left(\psi_{E_{1}^{\prime}}^{\prime}\right) \\
& =c_{E^{\prime}, E^{\prime}} \psi_{E} \sum_{E_{1}^{\prime} \in \mathcal{F}\left(V^{\prime}\right) ;\left|E_{1}^{\prime}\right|>\left|E^{\prime}\right|}^{\prime} c_{E^{\prime}, E_{1}^{\prime}}^{\prime} \psi_{\tau_{i}\left(E_{1}^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}}
\end{aligned}
$$

and the result follows in this case since for E_{1}^{\prime} in the last sum we have

$$
\left|\tau_{i}\left(E_{1}^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}\right|=\left|E_{1}^{\prime}\right|+1>\left|E^{\prime}\right|+1=|E| .
$$

This completes the proof of the lemma.
1.7. We prove Theorem 0.2 . By results of Lus20, the basis $1.4(\mathrm{~b})$ of $[V]$ is a \mathbf{Z} basis of $[V]_{\mathbf{z}}$. By 1.6 , the matrix of Φ with respect to the basis $1.4(\mathrm{~b})$ is upper triangular for a suitable order on the basis. The diagonal entries of this matrix are necessarily ± 1 since $\Phi^{2}=1$. This completes the proof.

2. Sign computation

2.1. Let $E \in \mathcal{F}(V)$. According to Lus20 there is a unique basis b_{E} of E which consists of vectors of the form e_{I} with I of the form $[a, b]$ with $a \leq b$ in $[1, D]$. Let n_{E} be the number of vectors $e_{I} \in b_{E}$ such that $|I|$ is even.

For k, k^{\prime} in $[0, d]$ let $\mathcal{F}_{k}(V)$ (resp. $\mathcal{F}^{k^{\prime}}(V)$) be the set of all $E \in \mathcal{F}(V)$ such that $\operatorname{dim}(E)=k$ (resp. $n_{E}=k^{\prime}$); let $\mathcal{F}_{k}^{k^{\prime}}(V)=\mathcal{F}_{k}(V) \cap \mathcal{F}^{k^{\prime}}(V)$.

If $E \in \mathcal{F}(V)$ we denote by $E^{!}$the subspace of E spanned by the vectors $e_{I} \in b_{E}$ such that $|I|$ is odd; we have $E^{!} \in \mathcal{F}^{0}(V)$. We have the following result.
(a) Let $\mathfrak{E} \in \mathcal{F}_{d-k}^{0}(V)$ where $k \in[0, d]$ and let $\mathcal{M}(\mathfrak{E})=\left\{E \in \mathcal{F}(V) ; E^{!}=\mathfrak{E}\right\}$. Then $\mathcal{M}(\mathfrak{E})$ consists of $k+1$ subspaces $\mathfrak{E}=\mathfrak{E}(0) \subset \mathfrak{E}(1) \subset \ldots \subset \mathfrak{E}(k)$; we have $\mathfrak{E}(t) \in \mathcal{F}_{d-k+t}^{t}(V)$ for $t \in[0, k]$. We argue by induction on D. If $D=0$ the result is obvious. Assume now that $D \geq 2$. If $\mathfrak{E}=0$ then $k=d$ and $\mathcal{M}(\mathfrak{E})=$ $\left\{E_{0}, E_{1}, \ldots, E_{d}\right\}$ (see 1.2) and the result is obvious. Assume now that $\mathfrak{E} \neq 0$. We can find $i \in[1, D]$ and $\mathfrak{E}^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $\mathfrak{E}=\tau_{i}\left(\mathfrak{E}^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. We have $\mathfrak{E}^{\prime} \in \mathcal{F}_{d-1-k}^{0}$ so that by the induction hypothesis $\mathcal{M}\left(\mathfrak{E}^{\prime}\right)$ consists of $k+1$ subspaces $\mathfrak{E}^{\prime}=\mathfrak{E}^{\prime}(0) \subset \mathfrak{E}^{\prime}(1) \subset \ldots \subset \mathfrak{E}^{\prime}(k)$ and we have $\mathfrak{E}^{\prime}(t) \in \mathcal{F}_{d-1-k+t}^{t}\left(V^{\prime}\right)$ for $t \in[0, k]$. For $t \in[0, k]$ we set $\mathfrak{E}(t)=\tau_{i}\left(\mathfrak{E}^{\prime}(t)\right) \oplus \mathbf{F}_{2} e_{i}$; we have $\mathfrak{E}=\mathfrak{E}(0) \subset \mathfrak{E}(1) \subset \ldots \subset \mathfrak{E}(k)$ and $\mathfrak{E}(t) \in \mathcal{F}_{d-k+t}^{t}\left(V^{\prime}\right), \mathfrak{E}(t)^{!}=\mathfrak{E}$. Thus $\{\mathfrak{E}(0), \mathfrak{E}(1), \ldots, \mathfrak{E}(k)\} \subset \mathcal{M}(\mathfrak{E})$. Now let $E \in \mathcal{M}(\mathfrak{E})$. Since $e_{i} \in \mathfrak{E}$ we have $e_{i} \in E$ and, using Lus20, 1.3(f)], we see that there exists $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. From the definitions we have $E^{\prime} \in \mathcal{M}\left(\mathfrak{E}^{\prime}\right)$ so that $E^{\prime}=\mathfrak{E}^{\prime}(t)$ for some $t \in[0, k]$ and $E=\mathfrak{E}(t)$ for some $t \in[0, k]$. This proves (a).

From (a) we see that there is a unique involution $\kappa: \mathcal{F}(V) \rightarrow \mathcal{F}(V)$ such that for any $\mathfrak{E} \in \mathcal{F}_{d-k}^{0}(V)$ we have $\kappa(\mathfrak{E}(t))=\mathfrak{E}(k-t)$ for $t \in[0, k]$. This involution restricts to a bijection

$$
\begin{equation*}
\mathcal{F}^{t}(V) \xrightarrow{\sim} \mathcal{F}_{d-t}(V) \tag{b}
\end{equation*}
$$

for any $t \in[0, d]$.
The following equality follows from Lus20, 1.27(a)]:
(c) $\left|\mathcal{F}^{k}(V)\right|=\binom{D+1}{d-k}$ for $k \in[0, d]$.

Using (b),(c) we deduce
(d) $\left|\mathcal{F}_{k}(V)\right|=\binom{D+1}{k}$ for $k \in[0, d]$.
2.2. For any integer N we set $\delta(N)=(-1)^{N(N+1) / 2}$. We have the following identity: (a) $\sum_{k \in[0, d]} \delta(d-k)\binom{D+1}{k}=2^{d}$.

We prove (a) by induction on D. If $D=0$ the result is obvious. Assume now that $D \geq 2$. We must show that

$$
\binom{2 d+1}{d}-\binom{2 d+1}{d-1}-\binom{2 d+1}{d-2}+\binom{2 d+1}{d-3}+\binom{2 d+1}{d-4}-\binom{2 d+1}{d-5}-\cdots=2^{d}
$$

or that

$$
\begin{aligned}
& \left(\binom{2 d}{d}+\binom{2 d}{d-1}\right)-\left(\binom{2 d}{d-1}+\binom{2 d}{d-2}\right)-\left(\binom{2 d}{d-2}+\binom{2 d}{d-3}\right) \\
& +\left(\binom{2 d}{d-3}+\binom{2 d}{d-4}\right)+\left(\binom{2 d}{d-4}+\binom{2 d}{d-5}\right)-\left(\binom{2 d}{d-5}+\binom{2 d}{d-6}\right)-\ldots \\
& =2^{d}
\end{aligned}
$$

or that

$$
\binom{2 d}{d}-2\binom{2 d}{d-2}+2\binom{2 d}{d-4}-2\binom{2 d}{d-6}+\cdots=2^{d}
$$

or that

$$
\begin{aligned}
& \left(\binom{2 d-1}{d}+\binom{2 d-1}{d-1}-2\left(\binom{2 d-1}{d-2}+\binom{2 d-1}{d-3}\right)\right. \\
& +2\left(\binom{2 d-1}{d-4}+\binom{2 d-1}{d-5}\right)-\cdots=2^{d}
\end{aligned}
$$

or that

$$
2\binom{2 d-1}{d-1}-2\binom{2 d-1}{d-2}-2\binom{2 d-1}{d-3}+2\binom{2 d-1}{d-4}+2\binom{2 d-1}{d-5}-\cdots=2^{d}
$$

But this is known from the induction hypothesis. This proves (a).
2.3. The following result describes the diagonal entries of the upper triangular matrix in 1.7.
Proposition 2.4. Let $E \in \mathcal{F}(V)$ and let $c_{E, E}$ be as in 1.5(b). We have $c_{E, E}=$ $\delta(d-\operatorname{dim} E)$.

We argue by induction on D. If $D=0$ the result is obvious. Assume now that $D \geq 2$. Assume first that $E \neq 0$. We can find $i \in[1, D+1]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. By the proof of 1.6 we have $c_{E, E}=c_{E^{\prime}, E^{\prime}}^{\prime}$ (notation of 1.6). The proposition applies to $c_{E^{\prime}, E^{\prime}}^{\prime}$ by the induction hypothesis. The desired result for E follows since $d-\operatorname{dim} E=d-1-\operatorname{dim} E^{\prime}$. We now assume that $E=0$. The trace of Φ is equal to $\sum_{E_{1} \in \mathcal{F}(V)} c_{E_{1}, E_{1}}$ and on the other hand is equal to 2^{d} (see 0.1). Thus we have $\sum_{E_{1} \in \mathcal{F}(V)} c_{E_{1}, E_{1}}=2^{d}$. In the last sum all terms with $E_{1} \neq 0$ are already known. Hence the term with $E_{1}=0$ is determined by the last equality. Thus to prove the proposition it is enough to verify the identity

$$
\sum_{E_{1} \in \mathcal{F}(V)} \delta\left(d-\operatorname{dim} E_{1}\right)=2^{d}
$$

or equivalently

$$
\sum_{k \in[0, d]}\left|\mathcal{F}_{k}(V)\right| \delta(d-k)=2^{d} .
$$

This follows from 2.1(d), 2.2(a). This completes the proof.

3. Tables

3.1. In this section we assume that $D \geq 2$. Let $E \in \mathcal{F}(V)$. Recall that the basis b_{E} consists of certain vectors e_{I} where I is of the form $[a, b]$ with $a \leq b$ in $[1, D]$. We have $e_{I}=e_{I^{\prime}}$ where $I^{\prime} \subset[1, D+1]$ is defined by $I^{\prime}=I$ if $|I|$ is odd and $I^{\prime}=[1, D+1]-I$ if I is even. Note that $\left|I^{\prime}\right|$ is always odd. Now E is completely described by the list of all subsets I^{\prime} defined as above. In the following three sections we describe each $E \in \mathcal{F}(V)$ as a list of such I^{\prime} assuming that D is 2,4 or 6. (This list is more symmetric than the corresponding list of the I which is given in Lus20.) In each of these tables each horizontal line represents the various $\mathfrak{E}(0), \mathfrak{E}(1), \ldots, \mathfrak{E}(k)$ with a fixed $\mathfrak{E} \in \mathcal{F}^{0}(V)$ as in 2.1. For example the second line $<1\rangle,<1,512>$ in 3.3 represents two subspaces in $\mathcal{F}(V)$; one spanned by e_{1} and the other spanned by e_{1} and $e_{5}+e_{1}+e_{2}$.
3.2. The table for $D=2$.
$\emptyset,<3>$
$<1>$
$<2>$.
3.3. The table for $D=4$.
$\emptyset,<5>,<5,451>$
$<1>,<1,512>$
$<2\rangle,\langle 2,5\rangle$
$\langle 3\rangle,\langle 3,5\rangle$
$<4>,<4,345>$
$<1,3>$
$<1,4>$
$<2,4>$
$<2,123>$
$<3,234>$.
3.4. The table for $D=6$.
$\emptyset,<7>,<7,671>,<7,671,56712>$
$<1\rangle,<1,712\rangle,<1,712,67123>$
$\langle 2\rangle,\langle 2,7\rangle,<2,7,67123\rangle$
$\langle 3\rangle,\langle 3,7\rangle,\langle 3,7,671\rangle$
$\langle 4\rangle,\langle 4,7\rangle,\langle 4,7,671\rangle$
$\langle 5\rangle,\langle 5,7\rangle,\langle 5,7,45671\rangle$
$\langle 6\rangle,\langle 6,567\rangle,<6,567,45671\rangle$
$<1,3\rangle,<1,3,71234\rangle$
$<1,4>,<1,4,712>$
$<1,5>,<1,5,712>$
$\langle 1,6\rangle,\langle 1,6,56712\rangle$
$\langle 2,4\rangle,\langle 2,4,7\rangle$
$<2,5\rangle,\langle 2,5,7\rangle$
$<2,6>,<2,6,567>$
$\langle 3,5\rangle,\langle 3,5,7\rangle$
$<3,6>,<3,6,567>$
$\langle 4,6\rangle,\langle 4,6,34567\rangle$
$<2,123>,<2,123,71234>$

$$
\begin{aligned}
& <3,234>,<3,7,234> \\
& <4,345>,<4,7,345> \\
& <5,456>,<5,456,34567> \\
& <1,3,5> \\
& <1,3,6> \\
& <1,4,6> \\
& <2,4,6> \\
& <1,4,345> \\
& <1,5,456> \\
& <2,5,123> \\
& <2,5,456> \\
& <2,6,123> \\
& <3,6,234> \\
& <2,4,12345> \\
& <3,5,23456> \\
& <3,234,12345> \\
& <4,345,23456>
\end{aligned}
$$

4. Dihedral symmetry

4.1. There is a unique linear map $R: V \rightarrow V$ such that if $D=0$ we have $R=0$ while if $D \geq 2, R\left(e_{1}\right), R\left(e_{2}\right), \ldots, R\left(e_{D+1}\right)$ is $e_{2}, e_{3}, \ldots, e_{D+1}, e_{1}$. If $D \geq 2$, there is a unique linear map $R^{\prime}: V^{\prime} \rightarrow V^{\prime}$ such that if $D=2$ we have $R^{\prime}=0$ while if $D \geq 4, R^{\prime}\left(e_{1}^{\prime}\right), R^{\prime}\left(e_{2}^{\prime}\right), \ldots, R^{\prime}\left(e_{D-1}^{\prime}\right)$ is $e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{D-1}^{\prime}, e_{1}^{\prime}$. From the definitions we see that if $D \geq 2, i \in[1, D+1]$ we have
(a) $R \tau_{i}=\tau_{i+1} R^{\prime}: V^{\prime} \rightarrow V$ if $i \in[1, D], R \tau_{i}=\tau_{1}: V^{\prime} \rightarrow V$ if $i=D+1$.
4.2. Let $E \in \mathcal{F}(V)$. We show:
(a) $R(E) \in \mathcal{F}(V)$.

We argue by induction on D. If $D=0$ the result is obvious. Assume that $D \geq 2$. If $E=0$ we have $R(E)=0$ and the result is clear. Assume now that $E \neq 0$. We can find $i \in[1, D+1]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. Applying R we deduce $R(E)=R \tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i+1}$ if $i \in[1, D], R(E)=R \tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{1}$ if $i=D+1$. Using 4.1(a) we deduce $R(E)=\tau_{i+1} R^{\prime}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i+1}$ if $i \in[1, D]$, $R(E)=\tau_{1}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{1}$ if $i=D+1$. By the induction hypothesis we have $R^{\prime}\left(E^{\prime}\right) \in$ $\mathcal{F}\left(V^{\prime}\right)$. It follows that $R(E) \in \mathcal{F}(V)$, as required.
4.3. There is a unique linear map $S: V \rightarrow V$ such that if $D=0$ we have $S=0$, while if $D \geq 2$ we have $S\left(e_{i}\right)=e_{D+1-i}$ if $i \in[1, D], S\left(e_{D+1}\right)=e_{D+1}$. If $D \geq 2$, there is a unique linear map $S^{\prime}: V^{\prime} \rightarrow V^{\prime}$ such that if $D=2$ we have $S^{\prime}=0$ while if $D \geq 4$ we have $S^{\prime}\left(e_{i}\right)=e_{D-1-i}$ if $i \in[1, D-2], S^{\prime}\left(e_{D-1}\right)=e_{D-1}$. From the definitions we see that if $D \geq 2, i \in[1, D+1]$ we have
(a) $S \tau_{i}=\tau_{D+1-i} S^{\prime}: V^{\prime} \rightarrow V$ if $i \in[1, D], S \tau_{i}=\tau_{i} S^{\prime}: V^{\prime} \rightarrow V$ if $i=D+1$.
4.4. Let $E \in \mathcal{F}(V)$. We show:
(a) $S(E) \in \mathcal{F}(V)$.

We argue by induction on D. If $D=0$ the result is obvious. Assume that $D \geq 2$. If $E=0$ we have $S(E)=0$ and the result is clear. Assume now that $E \neq 0$. We can find $i \in[1, D+1]$ and $E^{\prime} \in \mathcal{F}\left(V^{\prime}\right)$ such that $E=\tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$. Applying S we deduce $S(E)=S \tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1-i}$ if $i \in[1, D], S(E)=S \tau_{i}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$ if $i=D+1$. Using 4.3(a) we deduce $S(E)=\tau_{D+1-i} S^{\prime}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{D+1-i}$ if $i \in[1, D]$,
$S(E)=\tau_{i} S^{\prime}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} e_{i}$ if $i=D+1$. By the induction hypothesis we have $S^{\prime}\left(E^{\prime}\right) \in$ $\mathcal{F}\left(V^{\prime}\right)$. It follows that $S(E) \in \mathcal{F}(V)$, as required.
4.5. Assume that $D \geq 2$. Let $S p(V)$ be the group of automorphisms of $V,($,$) . Let$ Δ be the subgroup of $S p(V)$ generated by R, S (a dihedral group of order $2(D+1)$). From 4.2(a), 4.4(a) we see that the Δ-action on V induces a Δ-action on $[V]$ which keeps stable the basis $\mathcal{F}(V)$.
4.6. We now restate the definition of $\mathcal{F}(V)$ in 3.2 in more invariant terms. (In this definition the dihedral symmetry in 4.5 is obvious.)

When $D \geq 2$, we consider a connected graph with $D+1$ vertices and $D+1$ edges such that any vertex touches exactly two edges (this is a graph of affine type A_{D}). Let Γ be the set of vertices and let Λ be the set of edges. We assume that we are given an imbedding $\Gamma \subset V$ such that for $\gamma_{1} \neq \gamma_{2}$ in Γ we have $\left(\gamma_{1}, \gamma_{2}\right)=1$ if γ_{1}, γ_{2} are joined by an edge and $\left(\gamma_{1}, \gamma_{2}\right)=0$ if γ_{1}, γ_{2} are not joined by an edge. We then say that (Γ, Λ) is an un-numbered circular basis (or u.c.b.) of V. Note that a u.c.b. exists; in particular the circular basis $\left\{e_{i} ; i \in[1, D+1]\right\}$ in 1.1 can be viewed as a u.c.b. in which $\Gamma=\left\{e_{i} ; i \in[1, D+1]\right\}$ and e_{i}, e_{j} are joined whenever $i-j= \pm 1$ $\bmod D+1$.

When $D \geq 4$ we assume that V^{\prime} in 1.1 has a given u.c.b. with set of vertices Γ^{\prime} and set of edges Λ^{\prime}. When $D \geq 4$ for any $\gamma^{\prime} \in \Gamma^{\prime}, \gamma \in \Gamma$ there is a unique linear map $\tilde{\tau}=\tilde{\tau}_{\gamma^{\prime}, \gamma}: V^{\prime} \rightarrow V$ compatible with the symplectic forms and such that, setting $[\gamma]=\{\gamma\} \sqcup\left\{\gamma_{1} \in \Gamma ;\left(\gamma_{1}, \gamma\right)=1\right\} \subset \Gamma$, we have $\tilde{\tau}\left(\gamma^{\prime}\right)=\sum_{\tilde{\gamma} \in[\gamma]} \tilde{\gamma}$ and $\tilde{\tau}$ restricts to a bijection $\Gamma^{\prime}-\left\{\gamma^{\prime}\right\} \xrightarrow{\sim} \Gamma-[\gamma]$. This map is injective.

We now define a collection $\mathcal{F}^{\prime \prime}(V)$ of subspaces of V by induction on D. If $D=0$, $\mathcal{F}^{\prime \prime}(V)$ consists of the subspace $\{0\}$. If $D=2, \mathcal{F}^{\prime \prime}(V)$ consists of the subspaces of V of dimension 0 or 1. If $D \geq 4$, a subspace E of V is in $\mathcal{F}^{\prime \prime}(V)$ if either $E=0$ or if there exists $\gamma^{\prime} \in \Gamma^{\prime}, \gamma \in \Gamma$ and $E^{\prime} \in \mathcal{F}^{\prime \prime}\left(V^{\prime}\right)$ such that $E=\tilde{\tau}_{\gamma^{\prime}, \gamma}\left(E^{\prime}\right) \oplus \mathbf{F}_{2} \gamma$. We show:
(a) If $D \geq 2$ and the u.c.b. of V is numbered as in 1.1 so that $\mathcal{F}(V)$ is defined, we have $\mathcal{F}^{\prime \prime}(V)=\mathcal{F}(V)$.

We argue by induction on D. If $D=2$ the result is obvious. Assume now that $D \geq 4$. We can assume that the u.c.b. of V^{\prime} is numbered as in 1.1. For $i \in[1, D+1]$ we have
$\tau_{i}=\tilde{\tau}_{i-1, i}$ if $2 \leq i \leq D$,
$\tau_{i}=\tilde{\tau}_{D-1,1}$ if $i=1$,
$\tau_{i}=\tilde{\tau}_{D-1, D+1}$ if $i=D+1$.
Using this and the induction hypothesis we see that $\mathcal{F}(V) \subset \mathcal{F}^{\prime \prime}(V)$. If $i \in$ $[1, D-1]$ and $j \in[1, D+1]$ then for some $s \geq 0, \tilde{\tau}_{i, j}$ is of the form $R^{s} \tau_{i, j^{\prime}}$ where $\tilde{\tau}_{i, j^{\prime}}$ is as in one of the three equalities above and R is as in 4.1. Using this, together with 4.2 (a) and the induction hypothesis we see that $\mathcal{F}^{\prime \prime}(V) \subset \mathcal{F}(V)$. This proves (a).

5. Cells in Weyl groups

5.1. For any finite group Γ, let $M(\Gamma)$ be the set consisting of pairs (x, ρ) where $x \in \Gamma$ and ρ is an irreducible representation over \mathbf{C} of the centralizer of x; these pairs are taken up to Γ-conjugacy; let $\mathbf{C}[M(\Gamma)]$ be the \mathbf{C}-vector space with basis $M(\Gamma)$ and let $A_{\Gamma}: \mathbf{C}[M(\Gamma)] \rightarrow \mathbf{C}[M(\Gamma)]$ be the "non-abelian Fourier transform"
(as in [Lus79]). Let $\mathbf{Z}[M(\Gamma)]$ be the free abelian subgroup of $\mathbf{C}[M(\Gamma)]$ with basis $M(\Gamma)$.
5.2. In this section we fix an irreducible Weyl group W and a family c of irreducible representations of W (in the sense of Lus79]). This is the same as fixing a twosided cell of W. To c we associate a finite group \mathcal{G}_{c} as in Lus79, Lus84]. Let $\widetilde{\mathbf{B}}_{c}$ be the "new basis" of $\mathbf{C}\left[M\left(\mathcal{G}_{c}\right)\right]$ defined in Lus20. (It is actually a Z-basis of $\mathbf{Z}\left[M\left(\mathcal{G}_{c}\right)\right]$.) This basis is in canonical bijection with $M\left(\mathcal{G}_{c}\right)$, see Lus20. Let $\widehat{(x, \rho)}$ be the element of $\widetilde{\mathbf{B}}_{c}$ corresponding to $(x, \rho) \in M\left(\mathcal{G}_{c}\right)$. We write F for the non-abelian Fourier transform $A_{\mathcal{G}_{c}}$. We have the following result.

Theorem 5.3. The matrix of the non-abelian Fourier transform $F: \mathbf{C}\left[M\left(\mathcal{G}_{c}\right)\right] \rightarrow$ $\mathbf{C}\left[\widetilde{\mathbf{B}}_{c}\left(\mathcal{G}_{c}\right)\right]$ with respect to the new basis $\widetilde{\mathbf{B}}_{c}$ is upper triangular for a suitable order on $\widetilde{\mathbf{B}}_{c}$.

From the theorem we see that there is a well defined function $\widetilde{\mathbf{B}}_{c} \rightarrow\{1,-1\}$ (called the sign function) whose value at $\widehat{(x, \rho)} \in \widetilde{\mathbf{B}}_{c}$ is the diagonal entry of the matrix of F at the place indexed by $\widehat{(x, \rho)}$. (We use that $F^{2}=1$.)

In the case where W is of classical type, the theorem follows from Theorem 0.2 and its proof. In the remainder of this section we assume that W is of exceptional type. In this case, \mathcal{G}_{c} is a symmetric group S_{n} in n letters where $n \in[1,5]$. If n is 1 or 2 the result is immediate. The case where $n \in[3,5]$ is considered in 5.4-5.6. We shall use the notation of Lus84 for the elements of $M\left(\mathcal{G}_{c}\right)$. Let θ, i, ζ be a fixed primitive root of 1 (in \mathbf{C}) of order $3,4,5$ respectively.
5.4. In this subsection we assume that $\mathcal{G}_{c}=S_{3}$. We partition the new basis $\widetilde{\mathbf{B}}_{c}$ in three pieces (1)-(3) as follows:

$$
\begin{equation*}
\widehat{(1,1)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{(1, r)} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{(1, \epsilon)}, \widehat{\left(g_{2}, 1\right)}, \widehat{\left(g_{2}, \epsilon\right)}, \widehat{\left(g_{3}, 1\right)}, \widehat{\left(g_{3}, \theta\right)}, \widehat{\left(g_{3}, \theta^{2}\right)} . \tag{3}
\end{equation*}
$$

Then
(a) F applied to an element in the n-th piece is \pm that element plus a \mathbf{Q}-linear combination of elements in m-th pieces with $m>n$.

We have

$$
\begin{aligned}
& F(\widehat{(1, r)}) \\
& =F((1,1)+(1, r))=(1,1) / 2+(1, r)+(1, \epsilon) / 2+\left(g_{2}, 1\right) / 2+\left(g_{2}, \epsilon\right) / 2 \\
& =\left(\left(g_{2}, \epsilon\right) / 2+(1, r) / 2+(1,1) / 2\right)+((1, \epsilon) / 2+(1, r)+(1,1) / 2)+\left(\left(g_{2}, 1\right) / 2\right. \\
& +(1, r) / 2+(1,1) / 2)-((1, r)+(1,1)) \\
& =\widehat{\left(g_{2}, \epsilon\right)} / 2+\widehat{(1, \epsilon)} / 2+\widehat{\left(g_{2}, 1\right)} / 2-\widehat{(1, r)} .
\end{aligned}
$$

The formula for $F(\widehat{(1,1)})$ is as follows. If W is of type G_{2} then

$$
\begin{aligned}
& F(\widehat{(1,1)})=F(1,1) \\
& =(1,1) / 6+(1, r) / 3+(1, \epsilon) / 6+\left(g_{2}, 1\right) / 2+\left(g_{2}, \epsilon\right) / 2+\left(g_{3}, 1\right) / 3 \\
& +\left(g_{3}, \theta\right) / 3+\left(g_{3}, \theta^{2}\right) / 3 \\
& =\left(\left(g_{3}, \theta\right) / 3+\left(g_{2}, 1\right) / 3+(1,1) / 3\right)+\left(\left(g_{3}, \theta^{2}\right) / 3+\left(g_{2}, 1\right) / 3+(1,1) / 3\right) \\
& +\left(\left(g_{3}, 1\right) / 3+\left(g_{2}, 1\right) / 3+(1,1) / 3\right)+\left(\left(g_{2}, \epsilon\right) / 2+(1, r) / 2+(1,1) / 2\right)+((1, \epsilon) / 6 \\
& +(1, r) / 3+(1,1) / 6)-\left(\left(g_{2}, 1\right) / 2+(1, r) / 2+(1,1) / 2\right)-(1,1) \\
& \left.=\widehat{\left(g_{3}, \theta\right)} / 3+\widehat{\left(g_{3}, \theta^{2}\right)}\right) 3+\widehat{\left(g_{3}, 1\right)} / 3+\widehat{\left(g_{2}, \epsilon\right)} / 2+\widehat{(1, \epsilon)} / 6-\widehat{\left(g_{2}, 1\right)} / 2-\widehat{(1,1)} .
\end{aligned}
$$

If W is of type E_{6}, E_{7} or E_{8} then

$$
\begin{aligned}
& F(\widehat{(1,1)})=F(1,1) \\
& =(1,1) / 6+(1, r) / 3+(1, \epsilon) / 6+\left(g_{2}, 1\right) / 2+\left(g_{2}, \epsilon\right) / 2+\left(g_{3}, 1\right) / 3 \\
& +\left(g_{3}, \theta\right) / 3+\left(g_{3}, \theta^{2}\right) / 3 \\
& =\left(\left(g_{3}, \theta\right) / 3+\left(g_{2}, \epsilon\right) / 3+(1,1) / 3\right)+\left(\left(g_{3}, \theta^{2}\right) / 3+\left(g_{2}, \epsilon\right) / 3+(1,1) / 3\right) \\
& +\left(\left(g_{3}, 1\right) / 3+\left(g_{2}, 1\right) / 3+(1,1) / 3\right)-\left(\left(g_{2}, \epsilon\right) / 6+(1, r) / 6+(1,1) / 6\right)+((1, \epsilon) / 6 \\
& +(1, r) / 3+(1,1) / 6)+\left(\left(g_{2}, 1\right) / 6+(1, r) / 6+(1,1) / 6\right)-(1,1) \\
& \left.=\widehat{\left(g_{3}, \theta\right)} / 3+\widehat{\left(g_{3}, \theta^{2}\right)}\right) 3+\widehat{\left(g_{3}, 1\right)} / 3-\widehat{\left(g_{2}, \epsilon\right)} / 6+\widehat{(1, \epsilon)} / 6+\widehat{\left(g_{2}, 1\right)} / 6-\widehat{(1,1)} .
\end{aligned}
$$

We see that the matrix of F in the new basis is upper triangular. This proves 5.3 in our case.
(b) The sign function on $\widetilde{\mathbf{B}}_{c}$ is constant on each piece; its value on the piece (1),(2),(3) is $-1,-1,1$ respectively.
5.5. In this subsection we assume that $\mathcal{G}_{c}=S_{4}$ so that W is of type F_{4}. We partition the new basis $\widetilde{\mathbf{B}}_{c}$ in five pieces (1)-(5) as follows:

$$
\begin{align*}
& \widehat{\left(1, \lambda^{2}\right)}, \widehat{\left(g_{2}, 1\right)}, \widehat{\left(g_{2}^{\prime}, 1\right)}, \widehat{\left(g_{2}, \epsilon^{\prime \prime}\right)}, \widehat{\left(g_{2}, \epsilon^{\prime}\right)} \tag{4}\\
& \widehat{\left(g_{3}, 1\right)}, \widehat{\left(g_{4}, 1\right)}\left(\widehat{g_{2}^{\prime}, \epsilon^{\prime \prime}}\right),\left(\widehat{\left.g_{2}^{\prime}, \epsilon^{\prime}\right)}, \widehat{\left(g_{2}^{\prime}, r\right)},\left(\widehat{\left(g_{4},-1\right)}\right), \widehat{\left(1, \lambda^{3}\right)}, \widehat{\left(g_{2}, \epsilon\right)}, \widehat{\left(g_{2}^{\prime}, \epsilon\right)}\right. \text {, } \\
& \widehat{\left(g_{3}, \theta\right)},\left(\widehat{g_{3}, \theta^{2}}\right), \widehat{\left(g_{4}, i\right)},\left(\widehat{\left.g_{4},-i\right)}\right. \text {. }
\end{align*}
$$

Then
(a) F applied to an element in the n-th piece is \pm that element plus a \mathbf{Q}-linear combination of elements in m-th pieces with $m>n$.

We see that the matrix of F in the new basis is upper triangular. This proves 5.3 in our case.
(b) The sign function on $\widetilde{\mathbf{B}}_{c}$ is constant on each piece; its value on the piece (1),(2),(3),(4),(5) is $1,-1,1,-1,1$ respectively.
5.6. In this subsection we assume that $\mathcal{G}_{c}=S_{5}$ so that W is of type E_{8}. We partition the new basis $\widetilde{\mathbf{B}}_{c}$ in eight pieces (1)-(8) as follows:

$$
\begin{align*}
& \widehat{\left(g_{5}, \zeta\right)} \tag{1}\\
& \widehat{(1,1)} \\
& \widehat{\left(1, \lambda^{1}\right)} \\
& \widehat{(1, \nu)} \\
& \widehat{\left(1, \nu^{\prime}\right)} \\
& \widehat{\left(1, \lambda^{2}\right)}, \widehat{\left(g_{2}, 1\right)},\left(\widehat{g_{2},-1}\right) \\
& \widehat{\left(1, \lambda^{3}\right)}, \widehat{\left(g_{2}, r\right)}, \widehat{\left(g_{3}, 1\right)}, \widehat{\left(g_{2}^{\prime}, 1\right)},\left(\widehat{\left(g_{2},-r\right)}, \widehat{\left(g_{2}^{\prime}, r\right)}, \widehat{\left(g_{3}, \theta\right)},\left(\widehat{\left.g_{3}, \theta^{2}\right)}\right.\right. \\
& \widehat{\left(g_{2}^{\prime}, \epsilon^{\prime \prime}\right)}, \widehat{\left(g_{6}, 1\right)}, \widehat{\left(g_{2}, \epsilon\right)}, \widehat{\left(g_{3}, \epsilon\right)}, \widehat{\left(g_{4}, 1\right)}, \widehat{\left(g_{5}, 1\right)}, \widehat{\left(g_{2}^{\prime}, \epsilon^{\prime}\right)},\left(\widehat{\left(g_{4},-1\right)}\right), \\
& \left(\widehat{g_{6},-1}\right), \widehat{\left(g_{6}, \theta\right)},\left(\widehat{g_{6}, \theta^{2}}\right), \widehat{\left(1, \lambda^{4}\right)},\left(\widehat{\left.g_{2},-\epsilon\right)},\left(\widehat{\left.g_{3}, \epsilon \theta\right)}\right),\left(\widehat{g_{3}, \epsilon \theta^{2}}\right), \widehat{\left(g_{2}^{\prime}, \epsilon\right)}\right. \text {, } \\
& \left(\widehat{g_{6},-\theta}\right),\left(\widehat{g_{6},-\theta^{2}}\right), \widehat{\left.g_{4}, i\right)},\left(\widehat{g_{4},-i}\right),\left(\widehat{g_{5}, \zeta^{2}}\right),\left(\widehat{g_{5}, \zeta^{3}}\right),\left(\widehat{g_{5}, \zeta^{4}}\right) . \tag{8}
\end{align*}
$$

Then
(a) F applied to an element in the n-th piece is \pm that element plus a \mathbf{R}-linear combination of elements in m-th pieces with $m>n$.
(If $n \geq 2$ we can replace \mathbf{R} by \mathbf{Q} in (a). If $n=1$ the coefficients in the linear combination can involve the golden ratio.) We see that the matrix of F in the new basis is upper triangular. This proves 5.3 in our case.
(b) The sign function on $\widetilde{\mathbf{B}}_{c}$ is constant on each piece; its value on the piece (1), (2), (3), (4), (5), (6), (7), (8) is $-1,-1,1,1,1,-1,-1,1$ respectively.

We now give some indication of how (a) can be verified. Let \mathcal{H} be the hyperplane in $\mathbf{C}\left[M\left(S_{5}\right)\right]$ consisting of all sums $\sum_{(x, \rho) \in M\left(S_{5}\right)} a_{x, \rho}(x, \rho)$ where $a_{x, \rho} \in \mathbf{C}$ satisfy the equation

$$
a_{g_{5}, \zeta}+a_{g_{5}, \zeta^{4}}=a_{g_{5}, \zeta^{2}}+a_{g_{5}, \zeta^{3}}
$$

One can check that $F(\mathcal{H})=\mathcal{H}$. Moreover one can check that $\widehat{(x, \rho)} \in \mathcal{H}$ for any (x, ρ) in $M\left(S_{5}\right)$ other than $\widehat{\left(g_{5}, \zeta\right)}$. It follows that to verify (a) we can assume that $n \geq 2$. In that case the proof of (a) is similar to that of 1.6 ; the role of z_{i} in 1.6 is now played by the maps $\mathbf{s}_{H, H^{\prime}}$ in Lus20, 3.1]; the commutation of z_{i} with Fourier transform (see 1.5(a)) is replaced by the commutation of $\mathbf{s}_{H, H^{\prime}}$ with the nonabelian Fourier transform (see Lus20, 3.1(b),(e)]). A similar argument (except for the reduction to the case $n \geq 2$ which is not needed in this case) applies to the proof of $5.5(\mathrm{a})$. The proof of (b) is similar to that of 2.4 ; we use an induction hypothesis where S_{5} is replaced by $S_{4}, S_{3} \times S_{2}, S_{3}, S_{2} \times S_{2}$ or S_{2}. Using the known equality $\operatorname{tr}\left(F, \mathbf{C}\left[M_{5}\right]\right)=13$, we see that the values of the sign function on the elements not covered by the induction hypothesis (that is those in the pieces (1),(2)) have sum equal to -2 . It follows that both these values are -1 . A similar argument applies to the proof of 5.5 (b) (in this case the only element not covered by the induction hypothesis is that in piece (1)).

References

[Lus79] George Lusztig, Unipotent representations of a finite Chevalley group of type E_{8}, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 119, 315-338, DOI 10.1093/qmath/30.3.315. MR545068
[Lus84] George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
[Lus20] G. Lusztig, The Grothendieck group of unipotent representations: a new basis, Represent. Theory 24 (2020), 178-209, DOI 10.1090/ert/542. MR4103274

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MASSAChusetts 02139

Email address: gyuri@mit.edu

[^0]: Received by the editors February 15, 2020, and, in revised form, February 22, 2020.
 2010 Mathematics Subject Classification. Primary 20G99.
 This work was supported by NSF grant DMS-1855773.

