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SPEH REPRESENTATIONS ARE RELATIVELY DISCRETE

JERROD MANFORD SMITH

Abstract. Let F be a p-adic field of characteristic zero and odd residual
characteristic. Let Sp2n(F ) denote the symplectic group defined over F , where
n ≥ 2. We prove that the Speh representations U(δ, 2), where δ is a discrete
series representation of GLn(F ), lie in the discrete spectrum of the p-adic
symmetric space Sp2n(F )\GL2n(F ).
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1. Introduction

Let F be a nonarchimedean local field of characteristic zero and odd residual
characteristic p. Let G = GL2n(F ) be an even rank general linear group and let
H = Sp2n(F ) be the symplectic group. This paper is concerned with the harmonic
analysis on the p-adic symmetric spaceX = H\G. We prove that the Speh represen-
tations U(δ, 2) appear in the discrete spectrum of X, as predicted by the conjectures
of Sakellaridis and Venkatesh [SV17]. Our main result, Theorem 6.1, is an unpub-
lished result of H. Jacquet. We frame this result within the construction of (rela-
tive) discrete series representations for symmetric quotients of general linear groups
carried out in [Smi18b,Smi18a]. The present work relies on the substantial contri-
butions of Heumos and Rallis [HR90], and Offen and Sayag [OS07,OS08a,OS08b]
in the study of symplectic periods for the general linear group.

All representations are assumed to be on complex vector spaces. In general, a
smooth representation (π, V ) of G is relevant to the harmonic analysis on X = H\G
if and only if there exists a nonzero H-invariant linear form on the space V . If
there exists a nonzero element λ of HomH(π, 1), then (π, V ) is H-distinguished.
Let (π, V ) be an irreducible admissible representation of GL2n(F ). Heumos and
Rallis proved that the dimension of the space of Sp2n(F )-invariant linear forms on
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V is at most one [HR90, Theorem 2.4.2]. In addition, Heumos and Rallis showed
that any irreducible admissible representation of GL2n(F ) cannot be both generic
and Sp2n(F )-distinguished. Recall that representation of GLn(F ) is generic if it
admits a Whittaker model (see [Rod73] for more information on Whittaker models).

To see that an H-distinguished smooth representation (π, V ) of G occurs in the
space C∞(X) of smooth (locally constant) functions on X = H\G one considers its
relative matrix coefficients. Let λ ∈ HomH(π, 1) be nonzero. For any v ∈ V , define
a function ϕλ,v by declaring that ϕλ,v(Hg) = 〈λ, π(g)v〉. The functions ϕλ,v are
smooth, since π is smooth, and well-defined because λ is H-invariant. Moreover,
the map that sends v ∈ V to the λ-relative matrix coefficient ϕλ,v intertwines (π, V )
and the right regular representation of G on C∞(X). It is a fundamental problem
to determine which irreducible representations of G occur in the space L2(X) of
square integrable functions on X. The discrete spectrum L2

disc(X) of X is the direct
sum of all irreducible G-subrepresentations of the space L2(X) of square integrable
functions on X. We prove, in Theorem 6.1, that the Speh representations U(δ, 2)
appear in L2

disc(Sp2n(F )\GL2n(F )). On the other hand, we do not prove that such
representations are the only discrete series; we face the same obstacles discussed in
[Smi18b, Remark 6.6].

Sakellaridis and Venkatesh have developed a framework ecnompassing the study
of harmonic analysis on p-adic symmetric spaces and its deep connections with
periods of automorphic forms and Langlands functoriality [SV17]. In addition to
providing explicit Plancherel formulas, Sakellaridis and Venkatesh have made pre-
cise conjectures describing the Arthur parameters of representations in the discrete
series of symmetric spaces (and, more generally, spherical varieties) [SV17, Conjec-
tures 1.3.1 and 16.2.2]. In fact, their conjectures predict that the discrete series of
Sp2n(F )\GL2n(F ) consists precisely of the Speh representations.

We conclude the introduction with a summary of the contents of the paper. In
Section 2 we establish notation regarding p-adic symmetric spaces and represen-
tations; in addition, we review the Relative Casselman Criterion established by
Kato and Takano [KT10]. We review the construction of the Speh representation
in Section 3. In Section 4, we review the conjectures of Sakellaridis and Venkatesh
and we demonstrate that their work predicts that the Speh representations U(δ, 2)
should appear in the discrete spectrum of Sp2n(F )\GL2n(F ) (see Proposition 4.5).
We determine the fine structure of the symmetric space Sp2n(F )\GL2n(F ) in
Section 5; in particular, we realize the group Sp2n(F ) as the fixed points of an
involution θ on GL2n(F ), and determine the restricted root system and maxi-
mal θ-split parabolic subgroups of GL2n(F ) relative to θ. In Section 6 we prove
our main result, Theorem 6.1, by applying the Relative Casselman Criterion (see
Theorem 2.7).

In Section 5.2, we make an effort to set the present work within the program
started in [Smi18b,Smi18a], where relative discrete series representations have been
systematically constructed via parabolic induction from distinguished discrete series
representations of θ-elliptic Levi subgroups. In fact, we realize the Speh represen-
tations as quotients of representations induced from distinguished discrete series of
certain maximal θ-elliptic Levi subgroups. The present setting is complicated by
the fact that representations induced from discrete series are generic and therefore
not distinguished by the symplectic group. In particular, although we expect that
the construction of relative discrete series carried out in [Smi18b, Smi18a] should
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generalize, some care must be taken to handle the “disjointness-of-models” phe-
nomena as in the case of the Whittaker and symplectic models [HR90, Theorem
3.2.2], and Klyachko models [OS08b].

2. Notation and terminology

Let F be a nonarchimedean local field of characteristic zero and odd residual
characteristic p. Let OF be the ring of integers of F . Fix a uniformizer � of F . Let
q be the cardinality of the residue field kF of F . Let | · |F denote the normalized
absolute value on F such that |�|F = q−1. We reserve the notation | · | for the
usual absolute value on C.

2.1. Reductive groups and p-adic symmetric spaces. Let G be a connected
reductive group defined over F . Let θ be an F -involution of G. Let H = Gθ be
the subgroup of θ-fixed points in G. Write G = G(F ) for the group of F -points of
G, similarly H = H(F ). The quotient H\G is a p-adic symmetric space. We will
routinely abuse notation and identify an algebraic F -variety X with its F -points
X = X(F ). When the distinction is to be made, we will use boldface to denote the
algebraic variety and regular typeface for the set of F -points.

For an F -torus A ⊂ G, let A1 be the subgroup A(OF ) of OF -points of A =
A(F ). We use ZG to denote the centre ofG and AG to denote the F -split component
of the centre of G. Let X∗(G) denote the group of F -rational characters of the
algebraic group G. If Y is a subset of a group G, then let NG(Y ) denote the
normalizer of Y in G and let CG(Y ) denote the centralizer of Y in G.

2.1.1. Tori and root systems relative to involutions. An element g ∈ G is θ-split if
θ(g) = g−1. An F -torus S contained in G is (θ, F )-split if S is F -split and every
element of S is θ-split.

Let S0 be a maximal (θ, F )-split torus of G. Let A0 be a θ-stable maximal F -
split torus of G that contains S0 [HW93, Lemma 4.5(iii)]. Let Φ0 = Φ(G,A0) be
the root system of G with respect to A0. Let W0 = W (G,A0) = NG(A0)/CG(A0)
be the Weyl group of G with respect to A0.

The torus A0 is θ-stable, so there is an action of θ on the F -rational characters
X∗(A0); moreover, Φ0 is a θ-stable subset of X∗(A0). Recall that a base of Φ0

determines a choice of positive roots Φ+
0 .

Definition 2.1. A base Δ0 of Φ0 is called a θ-base if for every positive root α ∈ Φ+
0

such that θ(α) �= α we have that θ(α) ∈ Φ−
0 = −Φ+

0 .

Let Δ0 be a θ-base of Φ0. Let r : X∗(A0) → X∗(S0) be the surjective map
defined by restriction of (F -rational) characters. Define Φ0 = r(Φ0) \ {0} and
Δ0 = r(Δ0) \ {0}. The set Φ0 coincides with Φ0(G,S0) and is referred to as the
restricted root system of H\G [HW93, Proposition 5.9]. The set Δ0 is a base of
the root system Φ0. Note that Φ0 is not necessarily reduced. Let Φθ

0 and Δθ
0 be

the subsets of θ-fixed roots in Φ0, respectively Δ0. Observe that Φ0 = r(Φ0 \ Φθ
0)

and Δ0 = r(Δ0 \Δθ
0).

Let Θ be a subset of Δ0. Set [Θ] = r−1(Θ) ∪Δθ
0. Subsets of Δ0 of the form [Θ]

are called θ-split. Maximal θ-split subsets of Δ0 are of the form [Δ0 \ {ᾱ}], where
ᾱ ∈ Δ0.
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2.1.2. Parabolic subgroups relative to involutions. Let P be an F -parabolic sub-
group of G. We refer to an F -parabolic subgroup of G simply as a parabolic
subgroup. Let N be the unipotent radical of P. The reductive quotient M ∼= P/N
is called a Levi factor of P. We denote by δP the modular character of P = P(F )
given by δP (p) = | detAdn(p)|F , where n is the Lie algebra of N.

Let M be a Levi subgroup of G. Let AM denote the F -split component of the
centre of M . The (θ, F )-split component of M , denoted by SM , is the largest
(θ, F )-split torus of M that is contained in AM . More precisely,

SM =
(
{a ∈ AM : θ(a) = a−1}

)◦
,

where (·)◦ denotes the Zariski-connected component of the identity.

Definition 2.2. A parabolic subgroup P of G is θ-split if θ(P ) is opposite to P ,
in which case M = P ∩ θ(P ) is a θ-stable Levi subgroup of P .

If Θ ⊂ Δ0 is θ-split, then the Δ0-standard parabolic subgroup PΘ is θ-split. Let
ΦΘ be the subsystem of Φ0 generated by Θ. The standard parabolic subgroup PΘ

has unipotent radical NΘ generated by the root subgroups Nα, where α ∈ Φ+
0 \Φ+

Θ.
The standard Levi subgroup of PΘ is MΘ, which is the centralizer in G of the F -
split torus AΘ =

(⋂
α∈Θ kerα

)◦
. Any Δ0-standard θ-split parabolic subgroup of G

arises from a θ-split subset of Δ0 [KT08, Lemma 2.5(1)].
Let Θ ⊂ Δ0 be θ-split. The (θ, F )-split component of MΘ is equal to

SΘ =

⎛⎝ ⋂
ᾱ∈r(Θ)

ker(ᾱ : S0 → F×)

⎞⎠◦

.

For any 0 < ε ≤ 1, define

S−
Θ (ε) = {s ∈ SΘ : |α(s)|F ≤ ε, for all α ∈ Δ0 \Θ}.(2.1)

We write S−
Θ for S−

Θ (1) and refer to S−
Θ as the dominant part of SΘ.

By [HH98, Theorem 2.9], the θ-split subset Δθ
0 determines the standard minimal

θ-split parabolic subgroup P0 = PΔθ
0
. Let N0 be the unipotent radical of P0. The

standard Levi subgroup M0 of P0 is the centralizer in G of the maximal (θ, F )-split
torus S0.

Lemma 2.3 ([KT08, Lemma 2.5]). Let S0 ⊂ A0, Δ0, and P0 = M0N0 be as above.

(1) Any θ-split parabolic subgroup P of G is conjugate to a Δ0-standard θ-split
parabolic subgroup by an element g ∈ (HM0)(F ).

(2) If the group of F -points of the product (HM0)(F ) is equal to HM0, then
any θ-split parabolic subgroup of G is H-conjugate to a Δ0-standard θ-split
parabolic subgroup.

Let P = MN be a θ-split parabolic subgroup. Pick g ∈ (HM0)(F ) such that
P = gPΘg

−1 for some θ-split subset Θ ⊂ Δ0. Since g ∈ (HM0)(F ) we have that
g−1θ(g) ∈ M0(F ), and we have SM = gSΘg

−1. For a given ε > 0, one may extend
the definition of S−

Θ in (2.1) to the torus SM . Set S−
M (ε) = gS−

Θ (ε)g−1 and define

S−
M = S−

M (1). Write S1
M to denote the group of OF -points SM (OF ).
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2.2. Distinguished representations and relative matrix coefficients. A rep-
resentation (π, V ) of G is smooth if for every v ∈ V the stabilizer of v in G is an
open subgroup. A smooth representation (π, V ) of G is admissible if, for every
compact open subgroup K of G, the subspace V K of K-invariant vectors is finite
dimensional. All of the representations that we consider are smooth and admissi-
ble. A quasi-character of G is a one-dimensional representation. Let (π, V ) be a
smooth representation of G. If ω is a quasi-character of ZG, then (π, V ) is called
an ω-representation if π has central character ω.

Let P be a parabolic subgroup of G with Levi subgroup M and unipotent radical
N . Given a smooth representation (ρ, Vρ) of M we may inflate ρ to a representation
of P , also denoted ρ, by declaring thatN acts trivially. We define the representation

ιGP ρ of G to be the (normalized) parabolically induced representation IndGP (δ
1/2
P ⊗ρ).

We will also use the Bernstein–Zelevinsky [BZ77,Zel80] notation π1 × . . . × πk for

the (normalized) parabolically induced representation ι
GLm(F )
P(m1,...,mk)

(π1 ⊗ . . .⊗ πk) of

GLm(F ) obtained from the standard (block-upper triangular) parabolic subgroup

P(m1,...,mk) and representations πj of GLmj
(F ), where

∑k
j=1 mj = m.

Let (π, V ) be a smooth representation of G. Let (πN , VN ) denote the normalized
Jacquet module of π along P . Precisely, VN is the quotient of V by the P -stable
subspace V (N) = span{π(n)v − v : n ∈ N, v ∈ V }, and the action of P on VN is

normalized by δ
−1/2
P . The unipotent radical N of P acts trivially on (πN , VN ), and

we will regard (πN , VN ) as a representation of the Levi factor M ∼= P/N of P .
We also let π denote its restriction to H. Let χ be a quasi-character of H.

Definition 2.4. The representation π is (H,χ)-distinguished if the space
HomH(π, χ) is nonzero. If π is (H, 1)-distinguished, where 1 is the trivial char-
acter of H, then we will simply call π H-distinguished.

Let (π, V ) be a smooth H-distinguished ω-representation of G. Note that ω
must be trivial on ZG ∩ H. Let λ ∈ HomH(π, 1) be a nonzero H-invariant linear
functional on V . Let v ∈ V be a nonzero vector. Define the λ-relative matrix
coefficient associated to v to be the complex valued function ϕλ,v : G → C given by
ϕλ,v(g) = 〈λ, π(g)v〉. When λ is understood, we drop it from the terminology and
refer to the relative matrix coefficients of π. Since (π, V ) is assumed to be smooth,
for all v ∈ V , the function ϕλ,v lies in the space C∞(G) of smooth (that is, locally
constant) C-valued functions on G. Moreover, since π is an ω-representation, the
functions ϕλ,v lie in the subspace C∞

ω (G) consisting of smooth functions f : G → C

such that f(zg) = ω(z)f(g), for all z ∈ ZG and g ∈ G. Observe that, since λ is
H-invariant, for all g ∈ G, z ∈ ZG, and h ∈ H we have

ϕλ,v(hzg) = 〈λ, π(hzg)v〉
= ω(z)〈λ, π(g)v〉
= ω(z)ϕλ,v(g).

For any v ∈ V , the λ-relative matrix coefficient ϕλ,v descends to well a defined
function on H\G and satisfies ϕλ,v(Hzg) = ω(z)ϕλ,v(Hg), for z ∈ ZG and Hg ∈
H\G. Further assume that the central character ω of (π, V ) is unitary. In this case,
the function ZGH · g 
→ |ϕλ,v(g)| is well defined on ZGH\G. The centre ZG of G
is unimodular since it is abelian. The fixed point subgroup H is also reductive and
thus unimodular. By [Rob83, Proposition 12.8], there exists a G-invariant measure
on the quotient ZGH\G.
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Definition 2.5. Let ω be a unitary character of ZG. Let (π, V ) be an H-distin-
guished ω-representation of G. Then (π, V ) is said to be

(1) (H,λ)-relatively square integrable if and only if all of the λ-relative matrix
coefficients are square integrable modulo ZGH.

(2) H-relatively square integrable if and only if π is (H,λ)-relatively square
integrable for every λ ∈ HomH(π, 1).

2.3. Exponents and the relative Casselman criterion. Let (π, V ) be a finitely
generated admissible representation of G. Let ExpZG

(π) be the (finite) set of quasi-
characters of ZG that occur as the central characters of the irreducible subquotients
of π. We refer to the characters that appear in ExpZG

(π) as the exponents of π. By

[Cas95, Proposition 2.1.9], the quasi-character χ : ZG → C× occurs in ExpZG
(π)

if and only if the generalized χ-eigenspace for the action of ZG on V is nonzero.
Let Z be a closed subgroup of ZG. The exponents ExpZ(π) with respect to the
action of Z on V are defined analogously. If Z1 ⊃ Z2 are two closed subsets of ZG,
then the map ExpZ1

(π) → ExpZ2
(π) defined by restriction of quasi-characters is

surjective (see, for instance, [Smi18b, Lemma 4.15]).
Let P = MN be a parabolic subgroup of G with unipotent radical N and Levi

factor M . The normalized Jacquet module (πN , VN ) of (π, V ) along P is also
finitely generated and admissible [Cas95, Theorem 3.3.1]. The set ExpAM

(πN ) of
exponents of πN , with respect to the action of the F -split component AM of M , is
referred to as the set of exponents of π along P .

Lemma 2.6 ([Smi18b, Lemma 4.16]). Let P = MN be a parabolic subgroup of G,
let (ρ,W ) be a finitely generated admissible representation of M , and let π = ιGP ρ.
The exponents ExpAG

(π) of π are the restrictions to AG of the exponents ExpAM
(ρ)

of ρ.

Let (π, V ) be a finitely generated admissible H-distinguished representation of
G. Let λ ∈ HomH(π, 1) be a nonzero H-invariant linear form on (π, V ). In [KT10],
Kato and Takano defined

ExpZ(π, λ) = {χ ∈ ExpZ(π) : λ|Vχ
�= 0},

for any closed subgroup Z of ZG, where

Vχ =
∞⋃

n=1

{v ∈ V : (π(z)− χ(z))nv = 0, ∀z ∈ Z}

is the generalized χ-eigenspace for the Z action on V . The elements of ExpAG
(π, λ)

are referred to as the exponents of π relative to λ. Let P be a θ-split parabolic sub-
group of G with unipotent radical N and θ-stable Levi subgroup M = P ∩θ(P ). Us-
ing Casselman’s Canonical Lifting [Cas95, Proposition 4.1.4], Kato–Takano [KT08]
and Lagier [Lag08] defined an Mθ-invariant linear functional λN ∈ HomMθ(πN , 1),
canonically associated to λ, on the Jacquet module πN of π along P . We refer
the reader to [KT08, Proposition 5.6] for details of the construction and additional
properties of the map λ 
→ λN . We may now state the Relative Casselman Criterion
[KT10, Theorem 4.7].

Theorem 2.7 (Relative Casselman Criterion). Let ω be a unitary character of
ZG. Let (π, V ) be a finitely generated admissible H-distinguished ω-representation
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of G. Fix a nonzero element λ in HomH(π, V ). The representation (π, V ) is (H,λ)-
relatively square integrable if and only if the condition

|χ(s)| < 1, ∀χ ∈ ExpSM
(πN , λN ), ∀s ∈ S−

M \ SGS
1
M(2.2)

is satisfied for every proper θ-split parabolic subgroup P = MN of G.

2.4. Conventions regarding Sp2n(F )\GL2n(F ). From now on, unless otherwise
specified, we let G = GL2n(F ) and let H = Sp2n(F ), where n ≥ 2. We will realize
the symplectic group H explicitly as the subgroup of G fixed pointwise by the
involution θ given by

θ(g) = ε−1
2n

tg−1ε2n,

where tg denotes the transpose of g ∈ G,

ε2n =

(
0 Jn

−Jn 0

)
∈ GL2n(F ) and Jn =

⎛⎜⎝ 1

. .
.

1

⎞⎟⎠ ∈ GLn(F ).

Note that ε2n is a nonsingular skew-symmetric element of G; moreover, ε−1
2n = tε2n.

With this choice of involution, the subgroup of upper triangular matrices in H is a
Borel subgroup (over F ). Let A0 be the maximal diagonal F -split torus of G.

There is a right G-action on the set of involutions of G given by

g · θ(x) = g−1θ(gxg−1)g,(2.3)

for any x, g ∈ G. Any involution of the form g · θ is said to be G-equivalent to θ. If
x ∈ G is skew-symmetric, then we obtain a realization of the symplectic group as
the fixed points of the involution θx defined by

θx(g) = x−1tg−1x.

Moreover, the G-action on involutions is compatible with the right G-action on
the set of skew-symmetric matrices given by x · g = tgxg, for any g ∈ G and any
skew-symmetric matrix x ∈ G. Indeed, if x, g ∈ G and x is skew-symmetric, then
g · θx = θx·g.

We will write diag(a1, . . . , am) to denote the diagonal m×m matrix with entries
a1, . . . , am on the main diagonal. Given a partition (m1, . . . ,mk) of a positive inte-
ger m, write P(m1,...,mk) for the standard block-upper triangular parabolic subgroup
of GLm(F ) with Levi factor M(m1,...,mk) and unipotent radical N(m1,...,mk). Write
ν for the unramified character | det(·)|F of GLm(F ), where m is understood from
context.

3. Speh representations

Recall that a representation π of GLm(F ) is said to be generic if it admits a
Whittaker model, that is, if there exists a nonzero intertwining operator in the

space HomNm
(π, Ind

GLm(F )
Nm

Ψm), where Nm is the subgroup of GLm(F ) consisting
of upper triangular unipotent matrices and Ψm is a non-degenerate character of
Nm.

Let δ be an irreducible square integrable representation ofGLn(F ). The parabol-
ically induced representation ν1/2δ×ν−1/2δ has length two and admits a unique irre-
ducible generic subrepresentation Z(δ, 2) and a unique irreducible quotient U(δ, 2)
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[BZ77, Zel80]. In particular, we have the following short exact sequence of G-
representations

0 → Z(δ, 2) → ν1/2δ × ν−1/2δ → U(δ, 2) → 0.(3.1)

The representations U(δ, 2) are the Speh representations.
Heumos and Rallis proved that the Speh representations U(δ, 2) are H-distin-

guished by constructing a nonzero H-invariant linear functional on the full induced
representation ν1/2δ × ν−1/2δ and then appealing to [HR90, Theorem 3.2.2] to
show that the generic subrepresentation Z(δ, 2) cannot be H-distinguished. One
can then use the exact sequence (3.1) to conclude that the invariant functional
on ν1/2δ × ν−1/2δ descends to a well-defined nonzero H-invariant linear functional
on U(δ, 2). Note that the invariant form on ν1/2δ × ν−1/2δ may be realized via
[Off17, Proposition 7.1], (cf. [Smi20, Lemma 1.3.4]).

Next, let us recall descriptions of the generalized Steinberg representations and
generalized Speh representations of general linear groups. Let ρ be an irreducible
unitary supercuspidal representation of GLr(F ), r ≥ 1. Let k ≥ 2 be an integer.
By [Zel80, Theorem 9.3], the induced representation

ν
k−1
2 ρ× . . .× ν

1−k
2 ρ

of GLkr(F ) admits a unique irreducible subrepresentation Z(ρ, k); moreover,
Z(ρ, k) is square integrable. Often in the literature, Z(ρ, k) is denoted by St(ρ, k)
and these are the generalized Steinberg representations of GLkr(F ). Let δ be a
discrete series representation of GLd(F ), d ≥ 2. Let m ≥ 2 be an integer. By
[Zel80, Theorem 6.1(a)], the induced representation

ν
m−1

2 δ × . . .× ν
1−m

2 δ

admits a unique irreducible (unitary) quotient U(δ,m).

Remark 3.1. The Speh representations, and generalized Speh representations, fea-
ture prominently in the classification of the unitary dual of general linear groups
carried out by Tadić [Tad85,Tad86].

Remark 3.2. The method used by Heumos and Rallis to demonstrate the Sp2n(F )-
distinction of the Speh representations U(δ, 2) does not immediately extend to the
generalized Speh representations U(δ,m), m > 2. However, Offen and Sayag [OS07]
study the distinction of the generalized Speh representations by utilizing work of
Jacquet and Rallis [JR96] and Bernstein’s meromorphic continuation. The method
of Offen and Sayag, used to prove the “hereditary property of symplectic periods,”
is a special case of the method of Blanc and Delorme [BD08]. We refer the reader
to [OS07] for more details.

4. X-distinguished Arthur parameters

In the following discussion, G can be taken to be an arbitrary connected reductive
group that is split over F . We return to G = GL2n(F ) in Section 4.1.

Let WF be the Weil group of F and let LF = WF ×SL(2,C) be the Weil–Deligne
group of F . Since G is split over F , WF acts trivially on the complex dual group
G∨, and the L-group of G can be identified with the dual group LG = G∨. Recall
that an Arthur parameter, or an A-parameter, for G is a continuous homomorphism
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ψ : LF × SL(2,C) → G∨ such that

• the restriction ψ|WF
of ψ to the Weil group WF is bounded,

• the image of ψ|WF
consists of semisimple elements of G∨,

• and the restriction of ψ to each of the two SL(2,C) factors is algebraic.

A Langlands parameter, or an L-parameter, for G is a continuous homomorphism
φ : LF → G∨ such that

• the image of φ|WF
consists of semisimple elements of G∨,

• and the restriction of φ to SL(2,C) is algebraic.

Inspired by work of Gaitsgory and Nadler, Sakellaridis and Venkatesh have as-
sociated to any G-spherical F -variety X a complex dual group G∨

X , see [SV17, Sec-
tions 2–3] (provided that the assumption of [SV17, Proposition 2.2.2] on the spher-
ical roots is satisfied). In addition, they described a distinguished morphism � :
G∨

X ×SL(2,C) → G∨ satisfying certain properties and unique up to conjugation by
a canonical maximal torus in G∨ [SV17, Section 3.2]. Existence of distinguished
morphisms has been proven in full generality by Knop and Schalke [KS17].

Definition 4.1. An A-parameter ψ : LF × SL(2,C) → G∨ is X-distinguished
if it factors through the distinguished morphism � : G∨

X × SL(2,C) → G∨, that
is, if and only if there exists a tempered (that is, bounded on WF ) L-parameter
φX : LF → G∨

X such that ψ = � ◦ (φX × Id), where Id : SL(2,C) → SL(2,C) is the
identity.

Definition 4.2. An X-distinguished A-parameter is X-elliptic if it factors through
� via an elliptic L-parameter φX : LF → G∨

X , that is, the image of φX is not
contained in any proper Levi subgroup of G∨

X .

We recall the following conjecture [SV17, Conjecture 1.3.1].

Conjecture 4.3 (Sakellaridis–Venkatesh). The support of the Plancherel measure
for L2(X), as a representation of G, is contained in the union of Arthur packets
attached to X-distinguished A-parameters.

In fact, Sakellaridis and Venkatesh give much more refined conjectures that pre-
dict a direct integral decomposition of L2(X) over X-distinguished A-parameters
[SV17, Conjecture 16.2.2]. In addition, the refined conjectures make the following
prediction about the X-distinguished A-parameters of the relative discrete series
representations.

Conjecture 4.4 (Sakellaridis–Venkatesh). A relative discrete series representation
π in L2(X) is contained in an Arthur packet corresponding to an X-distinguished
X-elliptic A-parameter.

Of course, in the setting we are concerned with, the situation is greatly simplified
by the fact that Arthur packets (and L-packets) for the general linear group are
singleton sets.

4.1. Distinguished A-parameters for Sp2n\GL2n. Let X be the symmetric
variety Sp2n\GL2n. The dual group ofG = GL2n(F ) isG∨ = GL(2n,C). The dual
group G∨

X of X is the rank-n complex general linear group, that is, G∨
X = GL(n,C)

(see Lemma 5.6).
Let π be an irreducible unitary Sp2n(F )-distinguished representation of G. Let

ψπ : LF × SL(2,C) → GL(2n,C) be the A-parameter of π. We refer the reader to



534 J. M. SMITH

[Art13,Xu17] for the description of the A-parameters of the representations in the
unitary dual of G, including the generalized Steinberg and Speh representations.
The distinguished morphism � : GL(n,C) × SL(2,C) → GL(2n,C) is given by
the tensor product of the standard n-dimensional representation of GL(n,C) with
the standard 2-dimensional representation S(2) of SL(2,C) [SV17, Example 1.3.2].
Thus, if φ : LF → GL(n,C) is an L-parameter, then � ◦ (φ × Id) = φ ⊗ S(2). By
Conjecture 4.4, we expect π to be relatively square integrable if its A-parameter
ψπ has the following two properties:

P1: The A-parameter ψπ is X-distinguished, that is, ψπ factors through the
distinguished morphism �; in particular, ψπ = φπ,X ⊗ S(2), where φπ,X :
LF → GL(n,C) is a tempered L-parameter.

P2: The L-parameter φπ,X : LF → GL(n,C) is elliptic, that is, the image of
φπ,X is not contained in any proper parabolic subgroup of GL(n,C).

Recall that, under the Local Langlands Correspondence, a tempered elliptic param-
eter φ : LF → GL(n,C) corresponds to a discrete series representation of GLn(F ).

Proposition 4.5. Let π be an irreducible unitary Sp2n(F )-distinguished represen-
tation of GL2n(F ). Let ψπ : LF × SL(2,C) → GL(2n,C) be the A-parameter of
π. The A-parameter ψπ is X-distinguished and X-elliptic if and only if π is iso-
morphic to a Speh representation U(δ, 2) for some discrete series representation δ
of GLn(F ).

Proof. Let π be an irreducible unitary Sp2n(F )-distinguished representation of
GL2n(F ). Following the notation of [OS07], let π(σ, α) = νασ × ν−ασ, where
α ∈ R so that |α| < 1/2, and σ is a smooth representation of GLd(F ), for some
d ≥ 1. Offen and Sayag [OS07,OS08b] have shown that π must be equivalent to a
representation of the form(

l×
i=1

U(Z(ρi, ki), 2mi)

)
×
(

t×
i=l+1

π(U(Z(ρi, ki), 2mi), αi)

)
,

where 2n =
∑l

i=1 2kirimi+
∑t

i=l+1 4kirimi, the representations ρi of GLri(F ) are
irreducible, unitary and supercuspidal, and αi ∈ R with |αi| < 1/2.

Let φρi
: WF → GL(ri,C) be the L-parameter of the supercuspidal repre-

sentation ρi. Write S(d) ∼= Symd−1(C2) for the unique (up to isomorphism) d-
dimensional irreducible representation of SL(2,C). Let | · |WF

: WF → R>0 de-
note the absolute value on the Weil group given by | · |WF

= |Art−1
F (·)|F , where

ArtF : F× → Wab
F is the Artin map and | · |F is the (normalized) absolute value

on F . Up to equivalence, the A-parameter ψπ of π is equal to

l⊕
i=1

ψU(Z(ρi,ki),2mi) ⊕
t⊕

i=l+1

(
| · |αi

WF
ψU(Z(ρi,ki),2mi) ⊕ | · |−αi

WF
ψU(Z(ρi,ki),2mi)

)
,

(4.1)

where

ψU(Z(ρi,ki),2mi) = φZ(ρi,ki) ⊗ S(2mi) : LF × SL(2,C) → GL(2kirimi,C)(4.2)

is the A-parameter of the generalized Speh representation U(Z(ρi, ki), 2mi), and

φZ(ρi,ki) = φρi
⊗ S(ki) : LF → GL(kiri,C)

is the L-parameter of the generalized Steinberg representation Z(ρi, ki).
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The A-parameter ψπ is X-distinguished (P1) if and only if ψπ = φπ,X ⊗ S(2),
for some tempered L-parameter φπ,X : LF → GL(n,C). In light of (4.1) and (4.2),
we first notice that ψπ factors through the distinguished morphism � if and only if
mi = 1, for all 1 ≤ i ≤ t. In this case,

π ∼=
(

l×
i=1

U(Z(ρi, ki), 2)

)
×
(

t×
i=l+1

π(U(Z(ρi, ki), 2), αi)

)
,

and

ψπ =
l⊕

i=1

ψU(Z(ρi,ki),2) ⊕
t⊕

i=l+1

(
| · |αi

WF
ψU(Z(ρi,ki),2) ⊕ | · |−αi

WF
ψU(Z(ρi,ki),2)

)
=

(
l⊕

i=1

φZ(ρi,ki) ⊕
t⊕

i=l+1

| · |αi

WF
φZ(ρi,ki) ⊕ | · |−αi

WF
φZ(ρi,ki)

)
⊗ S(2)

= φπ,X ⊗ S(2),
where φπ,X : LF → GL(n,C) is the L-parameter

l⊕
i=1

φZ(ρi,ki) ⊕
t⊕

i=l+1

| · |αi

WF
φZ(ρi,ki) ⊕ | · |−αi

WF
φZ(ρi,ki).

Moreover, the L-parameter φπ,X is tempered if and only if φπ,X restricted to WF

has bounded image, that is, if and only if l = t (or, equivalently, αi = 0 for all
l + 1 ≤ i ≤ t). In particular, the representations π(U(Z(ρi, ki), 2), αi) cannot
appear in the inducing data of π. Thus, ψπ is X-distinguished (P1) if and only if
ψπ = φπ,X ⊗ S(2), where

φπ,X =
l⊕

i=1

φZ(ρi,ki).(4.3)

The L-parameter φπ,X is X-elliptic (P2) if and only if there is precisely one direct
summand in (4.3) (that is, l = 1) and φπ,X = φZ(ρ,k) corresponds to the discrete
series representation δ = Z(ρ, k) of GLn(F ). In particular, ψπ is X-distinguished
(P1) and X-elliptic (P2) if and only if ψπ = φZ(ρ,k) ⊗ S(2), in which case, by the
Local Langlands Correspondence, π ∼= U(δ, 2) is a Speh representation. �

In summary, Proposition 4.5 allows us to interpret Conjecture 4.4 as predicting
that only the Speh representations U(δ, 2), where δ = Z(ρ, k) is a discrete series rep-
resentation ofGLn(F ), appear in the discrete spectrum ofX = Sp2n(F )\GL2n(F ).
The goal of the rest of this paper is to prove that the representations U(δ, 2) do
indeed appear in L2

disc(X).

Remark 4.6. We do not show that generalized Speh representations U(δ, 2m), m ≥
2, are not relatively square integrable despite the fact that Conjecture 4.4 predicts
that these representations do not appear in L2

disc(X). See [Smi18b, Remark 6.6] for
a discussion of the difficulties therein.

5. Tori and parabolic subgroups: Structure of Sp2n(F )\GL2n(F )

In this section, we identify the θ-split parabolic subgroups required for our appli-
cation of the Relative Casselman Criterion. First we introduce a second involution
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that is G-equivalent to θ (cf. Section 2.4). Let w+ ∈ G be the permutation matrix
associated to the permutation{

2i− 1 
→ i 1 ≤ i ≤ n

2i 
→ 2n+ 1− i 1 ≤ i ≤ n

of {1, . . . , 2n}. We have chosen w+ such that

ε2n · w+ = tw+ε2nw+ = w−1
+ ε2nw+ =

⎛⎜⎜⎜⎜⎜⎝
0 1
−1 0

. . .

0 1
−1 0

⎞⎟⎟⎟⎟⎟⎠ .

Let x2n denote the nonsingular skew-symmetric matrix ε2n ·w+ and let θx2n
be the

associated involution of G. As above, we have that θx2n
= θε2n·w+

= w+ · θ, and
θx2n

is G-equivalent to θ.

Lemma 5.1. Let A0 be the maximal diagonal F -split torus of G. The torus A0 is
θ-stable and contains the maximal (θ, F )-split torus S0, where

S0 = {diag(a1, . . . , an, an, . . . , a1) : ai ∈ F×, 1 ≤ i ≤ n}.

Proof. Let a = diag(a1, . . . , a2n) ∈ A0. First note that

θ(a) = diag(a−1
2n , . . . , a

−1
1 ).

In particular, a is θ-split if and only if a2n+1−i = ai for all 1 ≤ i ≤ n. The torus
S0 is the (θ, F )-split component of A0. Thus, it is sufficient to show that S0 is
a maximal (θ, F )-split torus in G. To do so, we will prove that the block-upper
triangular parabolic P(2) corresponding to the partition (2) = (2, . . . , 2) of 2n is
a minimal θx2n

-split parabolic, and then use the G-equivalence of θx2n
and θ to

conclude that P0 = w+P(2)w
−1
+ is a minimal θ-split parabolic subgroup of G. The

desired result then follows from [HW93, Proposition 4.7(iv)].
To see that P(2) is θx2n

-split, first note that x2n ∈ M(2); therefore, the block-
diagonal Levi M(2) is θx2n

-stable. The unipotent radical N(2) of P(2) is mapped
to the opposite unipotent radical Nop

(2) (with respect to M(2)) by taking conjugate-

transpose, and bothN(2) andNop
(2) are normalized byM(2). It follows that θx2n

(P(2))

= M(2)N
op
(2) = P op

(2) and P(2) is θx2n
-split. It only remains to show that P(2) is a

minimal θx2n
-split parabolic subgroup. Suppose that P = MN � P(2) is a θx2n

-
split parabolic subgroup of G that is properly contained in P(2). The parabolic
subgroup P ∩ M(2) of M(2) is θx2n

-split in M(2). Notice that the GL-blocks of
M(2) are not interchanged by θx2n

. In fact, θx2n
restricted to M(2) is equal to the

product θx2
× . . .× θx2

. It follows that P ∩M(2) is a product of θx2-split parabolic
subgroups in GL2(F ). Notice that the F -split component of the centre of M(2) is
(θx2n

, F )-split. By [HW93, Proposition 4.7(iv)], no proper parabolic subgroup of
GL2(F ) can be θx2-split, and it follows that M(2) has no proper θx2n

-split parabolic
subgroups. In particular, P(2) is a minimal θx2n

-split parabolic subgroup of G. �

The torus S0,x2n
= {diag(a1, a1, . . . , an, an) : ai ∈ F×} is a maximal (θx2n

, F )-
split torus ofG, it is the (θx2n

, F )-split component of P(2) and the F -split component
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of M(2). The torus S0 is the w+-conjugate of S0,x2n
. We also note explicitly that

P0 = w+P(2)w
−1
+ is θ-split:

θ(P0) = θ(w+P(2)w
−1
+ )

= w+w
−1
+ θ(w+P(2)w

−1
+ )w+w

−1
+

= w+θx2n
(P(2))w

−1
+

= w+(P
op
(2))w

−1
+

= P op
0 ,

where the opposite is taken with respect to the θ-stable Levi factorM0=w+M(2)w
−1
+ .

Let N0 = w+N(2)w
−1
+ denote the unipotent radical of P0. We emphasize that

P0 = M0N0 is a minimal θ-split parabolic subgroup of G.

5.1. The restricted root system and θ-split parabolic subgroups.

Definition 5.2. Let Δ be a base of a root system Φ. The Δ-positive (respectively,
Δ-negative) roots in Φ consist of the collection of positive (respectively, negative)
roots in Φ with respect to Δ; in particular, the set of Δ-positive roots is equal to
Φ ∩ span

Z≥0
Δ.

Let Φ0 = Φ(G,A0) be the root system of G with respect to A0. Since A0 is
θ-stable, the involution θ acts on X∗(A0) and Φ0 is θ-stable under this action. Let
Δ = {εi − εi+1 : 1 ≤ i ≤ 2n− 1} be the standard base for Φ0, where εi denotes the
i-th F -rational coordinate character of A0. Define Δ0 = w+Δ to be the Weyl group
translate of Δ by the permutation matrix w+ ∈ W0, where W0

∼= NG(A0)/A0 is
the Weyl group of G (with respect to A0). We identify W0 with the subgroup of G
consisting of all permutation matrices.

Lemma 5.3. The set Φθ
0 of θ-fixed roots in Φ0 is equal to the set

Φθ
0 = {εi − ε2n+1−i : 1 ≤ i ≤ 2n},

corresponding to the root spaces on the main anti-diagonal in gl2n.

Proof. For any 1 ≤ i �= j ≤ 2n, we have that θ(εi − εj) = ε2n+1−j − ε2n+1−i. Note
that 2n + 1 − (2n + 1 − i) = i; therefore, the root εi − εj is θ-fixed if and only if
j = 2n+ 1− i. �

Lemma 5.4. The set of simple roots Δ0 = w+Δ is a θ-base of Φ0.

Proof. The set Φ+
0 of Δ0-positive roots is equal to w+Φ

+
Δ, where Φ

+
Δ is the set of Δ-

positive roots. Moreover, the set of Δ0-negative roots in Φ0 is Φ
−
0 = −Φ+

0 = w+Φ
−
Δ.

Let α = εi − εj ∈ Φ+
Δ, that is, 1 ≤ i < j ≤ 2n and w+α ∈ Φ+

0 . Suppose that w+α
is not θ-fixed. Note that w+εi = εw+(i) and thus

θ(w+(εi − εj)) = ε2n+1−w+(j) − ε2n+1−w+(i).

We consider the image of w+α under θ in the following four cases.

Case (i): i, j both odd. We can write i = 2k− 1 and j = 2l− 1 with 1 ≤ k < l ≤ n.
It follows that

θ(w+α) = ε2n+1−l − ε2n+1−k = w+(ε2l − ε2k);

moreover, since 2l > 2k, we have that w+(ε2l − ε2k) ∈ Φ−
0 .
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Case (ii): i odd, j even. Let i = 2k − 1 and j = 2l with 1 ≤ k ≤ l ≤ n. As above,

θ(w+α) = εl − ε2n+1−k = w+(ε2l−1 − ε2k).

Observe that k �= l, since otherwise w+α = θ(w+α) ∈ Φθ
0 and we have assumed

that w+α is not θ-fixed. Since l > k, we have 2l − 1 > 2k and w+(ε2l − ε2k) ∈ Φ−
0 .

Case (iii): i even, j odd. Let i = 2k and j = 2l− 1 where 1 ≤ k < l ≤ n. It follows
that

θ(w+α) = ε2n+1−l − ε2n+1−(2n+1−k) = w+(ε2l − ε2k−1);

moreover, since l > k, we have 2l > 2k − 1 and w+(ε2l − ε2k−1) ∈ Φ−
0 .

Case (iv): i, j both even. Let i = 2k and j = 2l for 1 ≤ k < l ≤ n. We have

θ(w+(ε2k − ε2l)) = ε2n+1−(2n+1−l) − ε2n+1−(2n+1−k) = w+(ε2l−l − ε2k−1);

moreover, since l > k, we have that 2l − 1 > 2k − 1 and w+(ε2l−1 − ε2k−1) ∈ Φ−
0 .

It follows that if β ∈ Φ+
0 is not θ-fixed, then θ(β) ∈ Φ−

0 ; therefore, Δ0 is a θ-base
of Φ0. �
Observation 5.5. From the proof of Lemma 5.4, we see that the set of θ-fixed
Δ0-positive roots are the translates of {ε1 − ε2, ε3 − ε4, . . . , ε2n−1 − ε2n} by w+.
The subset {ε1 − ε2, ε3 − ε4, . . . , ε2n−1 − ε2n} of Δ consists of θx2n

-fixed roots and
determines the (minimal θx2n

-split) parabolic subgroup P(2).

To aid in our understanding of the structure of Δ0, we partition the roots in the
standard base Δ into the disjoint subsets

Δodd = {ε2i−1 − ε2i : 1 ≤ i ≤ n}
and

Δeven = {ε2j − ε2j+1 : 1 ≤ j ≤ n− 1}.
Notice that the set of θ-fixed simple roots in Δ0 is equal to Δθ

0 = w+Δodd. More-
over, Δ0 is the disjoint union Δ0 = Δθ

0 � w+Δeven. Explicitly,

Δθ
0 = w+Δodd = {εi − ε2n+1−i : 1 ≤ i ≤ n}

and

w+Δeven = {ε2n+1−j − εj+1 : 1 ≤ j ≤ n− 1}.
Let r : X∗(A0) → X∗(S0) be the surjective homomorphism defined by restricting

F -rational characters of A0 to S0. The θ-fixed simple roots are trivial on S0. It
follows that

Δ0 = r(Δ0 \Δθ
0) = r(w+Δeven) = {ε̄i − ε̄i+1 : 1 ≤ i ≤ n− 1},

where ε̄i is the i-th F -rational coordinate character of S0 given by

ε̄i(diag(a1, . . . , an, an, . . . , a1)) = ai,

for 1 ≤ i ≤ n. In addition, the full set of restricted roots is

Φ0 = r(Φ0) \ {0} = r(Φ0 \ Φθ
0) = {ε̄i − ε̄j : 1 ≤ i �= j ≤ n}.

We have established the following.

Lemma 5.6. The restricted root system associated to Sp2n(F )\GL2n(F ) is of type
An−1 and the dual group G∨

X of X = Sp2n(F )\GL2n(F ) is GL(n,C).
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Proper (Δ0-)standard θ-split parabolic subgroups of G are parametrized by
proper θ-split subsets of Δ0, where a subset Θ of Δ0 is θ-split if it is of the form

Θ = [Θ] := r−1(Θ) ∪Δθ
0,

and Θ is a subset of Δ0. The subset Δθ
0 of θ-fixed simple roots determines the

minimal standard θ-split parabolic P0 = M0N0 of G, with Levi factorM0 = CG(S0)
and unipotent radical N0. By [KT08, Lemma 2.5], any θ-split parabolic subgroup
of G is (HM0)(F )-conjugate to a standard θ-split parabolic. In the current setting,
the Galois cohomology of M0∩H over F is trivial and it follows that (HM0)(F ) =
HM0; moreover, any θ-split parabolic subgroup isH-conjugate to a standard θ-split
parabolic subgroup. For completeness, we give a proof.

Lemma 5.7. The first Galois cohomology of M0 ∩ H over F is trivial and
(HM0)(F ) = HM0.

Proof. First, one may readily verify that

M0 ∩H = w+

(
M(2) ∩Gθx2n

)
w−1

+
∼=

n∏
1

SL2.

By Hilbert’s Theorem 90, it follows that

H1(M0 ∩H, F ) ∼=
n⊕
1

H1(SL2, F ) = 0.

Let F̄ denote the algebraic closure of F . By considering the long exact sequence in
Galois cohomology obtained from the short exact sequence

1 → M0(F̄ ) ∩H(F̄ ) → H(F̄ )×M0(F̄ ) → H(F̄ )M0(F̄ ) → 1

of pointed sets, it follows that (HM0)(F ) = HM0, as claimed. �

Proposition 5.8. Let P be a θ-split parabolic subgroup of G. There exists a θ-split
subset Θ of Δ0 and an element h ∈ H such that P = hPΘh

−1. Moreover, P has
unipotent radical N = hNΘh

−1 and θ-stable Levi factor M = hMΘh
−1.

Proof. Apply Lemma 5.7 and [KT08, Lemma 2.5]. �

With the last result in hand, we explicitly determine the maximal proper stan-
dard θ-split parabolic subgroups of G which correspond to the maximal proper θ-
split subsets of Δ0. A maximal proper θ-split subset of Δ0 has the form [Δ0\{ᾱ}] =
r−1(Δ0 \ {ᾱ})∪Δθ

0, where ᾱ ∈ Δ0. Observe that for each ᾱ ∈ Δ0 there is a unique
α ∈ w+Δeven such that r(α) = ᾱ. Precisely, the pre-image of ε̄i − ε̄i+1 under the
restriction map r : X∗(A0) → X∗(S0) is r

−1(ε̄i − ε̄i+1) = w+(ε2i − ε2i+1), for each
1 ≤ i ≤ n − 1. It follows that for each 1 ≤ k ≤ n − 1 we have a maximal θ-split
subset of Δ0 given by

Θk = r−1(Δ0 \ {ε̄k − ε̄k+1}) ∪Δθ
0(5.1)

= w+(Δ \ {ε2k − ε2k+1})
= Δ0 \ {ε2n+1−k − εk+1}.

To each Θk, 1 ≤ k ≤ n−1, we associate the maximal Δ0-standard θ-split parabolic
subgroup

PΘk
= w+P(2k,2n−2k)w

−1
+ ,



540 J. M. SMITH

with θ-stable Levi factor MΘk
= w+M(2k,2n−2k)w

−1
+ and unipotent radical NΘk

=

w+N(2k,2n−2k)w
−1
+ . Notice that PΘk

does indeed contain the minimal standard θ-

split parabolic subgroup P0 = w+P(2)w
−1
+ , corresponding to Δθ

0 (or the partition
(2) = (2, . . . , 2) of 2n). Moreover, by Lemma 5.1, the (θ, F )-split component SΘk

of PΘk
is equal to its F -split component AΘk

.

Note. It may be helpful to observe that the maximal θx2n
-split subsets of Δ are

thus given by Δ \ {ε2k − ε2k+1}, where 1 ≤ k ≤ n− 1. It follows that the standard
block-upper-triangular parabolic subgroups P(2k,2n−2k), with even sized blocks, are
the maximal Δ-standard θx2n

-split parabolic subgroups.

5.2. Inducing from distinguished representations of θ-elliptic Levi sub-
groups. We recall the following definition.

Definition 5.9. A θ-stable Levi subgroup of G is θ-elliptic if L is not contained in
any proper θ-split parabolic subgroup of G.

In order to place the Speh representations within the context of the relative
discrete series constructed in [Smi18b,Smi18a], we show that U(δ, 2) can be realized
as the quotient of a representation induced from a distinguished representation of
a θ-elliptic Levi subgroup.

Lemma 5.10. The block-upper triangular parabolic subgroup P(n,n), corresponding

to Ωell = Δ \ {εn − εn−1} ⊂ Δ, is θ-stable and the Δ-standard block-diagonal Levi
subgroup M(n,n) is θ-elliptic.

Proof. First, it is clear that P(n,n) and M(n,n) are θ-stable subgroups of G. It is
readily verified that the (θ, F )-split component of M(n,n) is equal to the (θ, F )-split
component SG of G; moreover, SG = AG, that is, the (θ, F )-split component of G
is equal to the F -split component of G. By [Smi18b, Lemma 3.8], the θ-stable Levi
subgroup M(n,n) is θ-elliptic. �

In what follows, we let Q = P(n,n) = PΩell , L = M(n,n) = MΩell , and U =

N(n,n) = NΩell . Define Ω = w+Ω
ell ⊂ Δ0. We then have that Q = w−1

+ PΩw+ or,

equivalently, that PΩ = w+Qw−1
+ .

Definition 5.11. An ordered partition (m1, . . . ,mk) of an integer m ≥ 2 is bal-
anced if (m1, . . . ,mk) is equal to the opposite partition (m1, . . . ,mk)

op = (mk, . . . ,
m1).

Lemma 5.12. Let P be a block-upper triangular (Δ-standard) parabolic subgroup
of G. The subgroup P is θ-stable if and only if P corresponds to a balanced partition
of 2n. In addition, the only θ-stable Δ-standard maximal parabolic that admits a
θ-elliptic Levi subgroup is P(n,n).

Proof. The proof is the same as that of [Smi18a, Lemma 4.15]. �

Recall that a parabolic subgroup P is A0-semi-standard if P contains the maxi-
mal F -split torus A0. In particular, the Δ- and Δ0-standard parabolic subgroups
are A0-semi-standard. The next result is the analogue of [Smi18a, Lemma 4.21];
the proof is the same.

Lemma 5.13. Let P be any θ-stable parabolic subgroup of G. The subgroup P is
H-conjugate to a θ-stable A0-semi-standard parabolic subgroup.
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Lemma 5.14. The θ-stable Levi subgroup L = M(n,n) is the only proper θ-elliptic
A0-semi-standard Levi subgroup of G up to conjugacy by Weyl group elements w ∈
W0 = W (G,A0) = NG(A0)/A0 such that w−1ε2nw ∈ NG(L) \ L.

Proof. See the proof of [Smi18a, Lemma 4.20(2)]. �

Lemma 5.15. The group Lθ of θ-fixed points in L = M(n,n) is isomorphic to
GLn(F ) embedded in L as follows:

Lθ =

{(
g 0
0 J−1

n
tg−1Jn

)
: g ∈ GLn(F )

}
.

Proof. We omit the straightforward calculation. �

Proposition 5.16. Let τ1 ⊗ τ2 be an irreducible admissible representation of L =
M(n,n). Then τ1 ⊗ τ2 is Lθ-distinguished if and only if τ2 ∼= τ1.

Proof. First, one can show that τ1 ⊗ τ2 is Lθ-distinguished if and only if τ2 ∼=
τ̃1 ◦ θJn

, where θJn
is the involution on GLn(F ) given by θJn

(g) = J−1
n

tg−1Jn, for
g ∈ GLn(F ). Now, the lemma is a simple consequence of [GK75, Theorem 2] which
implies that τ̃1 ∼= τ1 ◦ t(·)−1 and the fact that J−1

n = Jn = tJn (see [Smi18a, Lemma
5.3] for additional details). �

Let τ be an irreducible admissible representation of GLn(F ). The representation
τ ⊗ τ of L is Lθ-distinguished by Proposition 5.16. Moreover, the Lθ-invariant
linear form on τ ⊗ τ can be realized via the standard pairing between τ and its
contragredient τ̃ . Indeed, this follows from [GK75, Theorem 2] and the fact that
τ̃ ∼= τ ◦ θJn

. Let λτ ∈ HomLθ(τ ⊗ τ, 1) be the (nonzero) invariant form that arises
via the pairing on τ ⊗ τ̃ . Let l = diag(x, θJn

(x)) ∈ Lθ and consider the value of

δQθδ
−1/2
Q on l. It is straightforward to check that(

δQθ δ
−1/2
Q

∣∣∣
Lθ

)
(l) = | det(x)|n+1| det(x)|−n = | det(x)| = ν(x),

that is, δQθδ
−1/2
Q agrees with the character ν on GLn(F ) ∼= Lθ. Since the contragre-

dient of ν is ν−1, it follows that λτ ∈ HomLθ (ν1/2τ ⊗ ν−1/2τ, ν) ∼=
HomLθ (δ

1/2
Q τ ⊗ τ, δQθ). By [Off17, Proposition 7.1], λτ maps to a nonzero H-

invariant linear form λ ∈ HomH(ν1/2τ × ν−1/2τ, 1), and the parabolically induced
representation ν1/2τ × ν−1/2τ = ιGQ

(
ν1/2τ ⊗ ν−1/2τ

)
is H-distinguished. We now

state a result of Heumos and Rallis [HR90, Theorem 11.1] (cf. Section 3). We give
a sketch of the proof (still appealing to the main results of [HR90]).

Proposition 5.17 (Heumos–Rallis). Let δ be an irreducible square integrable rep-
resentation of GLn(F ). The parabolically induced representation ν1/2δ× ν−1/2δ =
ιGQ

(
ν1/2δ ⊗ ν−1/2δ

)
is H-distinguished. Moreover, the unique irreducible quotient

U(δ, 2) of ν1/2δ × ν−1/2δ is H-distinguished.

Proof. As above, ν1/2δ×ν−1/2δ is H-distinguished by Proposition 5.16 and [Off17,
Proposition 7.1]. The parabolically induced representation ν1/2δ×ν−1/2δ has length
two [BZ77,Zel80]. Let Z(δ, 2) be the unique irreducible subrepresentation and let
U(δ, 2) be the unique irreducible quotient of ν1/2δ×ν−1/2δ. The subrepresentation
Z(δ, 2) is tempered and thus generic [Zel80, Theorem 9.3]. Therefore, by [HR90,
Theorem 3.2.2], Z(δ, 2) cannot be H-distinguished. It follows that any nonzero
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H-invariant linear form on ν1/2δ × ν−1/2δ descends to a well-defined nonzero H-
invariant linear functional on the quotient U(δ, 2). �
Remark 5.18. By the multiplicity-one result [HR90, Theorem 2.4.2], theH-invariant
linear form on ν1/2τ × ν−1/2τ constructed via [Off17, Proposition 7.1] is a scalar
multiple of the invariant form produced by Heumos and Rallis in [HR90, §11.3.1.2]
(cf. [Smi20, Lemma 1.3.4]).

6. Application of the relative Casselman criterion

We now come to the main result of the paper.

Theorem 6.1. Let δ be a discrete series representation of GLn(F ). The Speh
representation U(δ, 2) of GL2n(F ) is Sp2n(F )-relatively square integrable.

Proof. Let λ ∈ HomH(U(δ, 2), 1) be nonzero. Let π = ν1/2δ × ν−1/2δ. Recall from
Section 3 that U(δ, 2) is the unique irreducible quotient of π. By Proposition 5.8 and
[Smi18b, Proposition 4.22], it is enough to consider exponents along maximal stan-
dard θ-split parabolic subgroups ofG when applying Theorem 2.7 ([KT10, Theorem
4.7]). Let P = MN be a maximal Δ0-standard θ-split parabolic subgroup of G with
unipotent radical N and θ-stable Levi factor M = P ∩ θ(P ). By [Smi18b, Propo-
sition 4.23], only exponents corresponding to irreducible Mθ-distinguished sub-
quotients of the Jacquet module U(δ, 2)N may appear in ExpSM

(U(δ, 2)N , λN ).
By Proposition 6.2, the irreducible unitary subquotients of πN , and also U(δ, 2)N ,
are not Mθ-distinguished. By Proposition 6.5, all exponents that appear in
ExpSM

(U(δ, 2)N , λN ) satisfy (2.2). By Theorem 2.7, U(δ, 2) is (H,λ)-relatively
square integrable. Multiplicity-one holds by [HR90, Theorem 2.4.2], thus dimHomH

(U(δ, 2), 1) = 1 and U(δ, 2) is H-relatively square integrable. �
The remainder of the paper is dedicated to proving Proposition 6.2 and Proposi-

tion 6.5.
Let δ be an irreducible admissible square integrable (discrete series) representa-

tion of GLn(F ). Let π = ν1/2δ × ν−1/2δ. The sequence

0 → Z(δ, 2) → π → U(δ, 2) → 0

of G-modules is exact, where Z(δ, 2) is the unique irreducible generic subrepresen-
tation of π (see Section 3). We keep the notation of Section 5 and let Q = P(n,n),
L = M(n,n), and U = N(n,n). Let P = MN be a maximal Δ0-standard θ-
split parabolic subgroup of G, with unipotent radical N and θ-stable Levi factor
M = P ∩ θ(P ). The Jacquet restriction functor (along P ) is exact; therefore, we
have an exact sequence of M -modules

0 → Z(δ, 2)N → πN → U(δ, 2)N → 0.(6.1)

Our goal is to understand the irreducible subquotients, and the exponents, of
U(δ, 2)N by applying the Geometric Lemma [BZ77, Lemma 2.12] to πN . If χ ∈
ExpAM

(U(δ, 2)N), then χ is the central quasi-character of an irreducible subquo-
tient of U(δ, 2)N and thus of πN , that is, χ appears in ExpAM

(πN ). Recall that

we can realize Q = w−1
+ PΩw+, where Ω = Δ0 \ {w+(εn − εn+1)}, and P = PΘ, for

some 1 ≤ k ≤ n − 1, where Θ = Θk is described in (5.1). In particular, Ω and Θ
are subsets of the θ-base Δ0. Let

[WΘ\W0/WΩ] = {w ∈ W0 : wΩ ⊂ Φ+
0 , w

−1Θ ⊂ Φ−1
0 },
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where Φ+
0 is the set of Δ0-positive roots. By [Cas95, Propositions 1.3.1 and 1.3.3],

the set [WΘ\W0/WΩ] · w+ is a system of representatives for P\G/Q. By the Geo-
metric Lemma [BZ77, Lemma 2.12], there exists a filtration of the space of πN such
that the associated graded object gr(πN ) is isomorphic to⊕

y∈[WΘ\W0/WΩ]·w+

ιMM∩yQ

(
y(ν1/2δ ⊗ ν−1/2δ)N∩yL

)
.(6.2)

Write F
y
N (δ, 2) to denote the representation ιMM∩yQ

(
y(ν1/2δ ⊗ ν−1/2δ)N∩yL

)
. Thus

gr(πN ) ∼=
⊕

w∈[WΘ\W0/WΩ]

F
ww+

N (δ, 2).

The exponents of π along P are the central characters of the irreducible subquotients
of πN ; moreover, the exponents of U(δ, 2) along P are a subset of the exponents
of π along P . Recall that, by Lemma 5.1, the (θ, F )-split component SM of M is
equal to its F -split component AM ; precisely,

AM = w+{diag(a, . . . , a︸ ︷︷ ︸
2k

, b, . . . , b︸ ︷︷ ︸
2n−2k

) : a, b ∈ F×}w−1
+

= {diag(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
2n−2k

, a, . . . , a︸ ︷︷ ︸
k

) : a, b ∈ F×}.

By [Cas95, Proposition 1.3.3], with our choice [WΘ\W0/WΩ] ·w+ of representatives
for P\G/Q, if y = ww+ where w ∈ [WΘ\W0/WΩ], then M ∩ yQ is a parabolic
subgroup of M with Levi factor M ∩ yL and unipotent radical M ∩ yU . Similarly,
P ∩ yL is a parabolic subgroup of L with Levi subgroup M ∩ yL and unipotent
radical N ∩ yL. Explicitly, since P = PΘ and Q = w−1

+ PΩw+, we see that

M ∩ yL = MΘ ∩ wMΩw
−1 = MΘ ∩MwΩ = MΘ∩wΩ,

N ∩ yL = NΘ ∩ wMΩw
−1 = NΘ ∩MwΩ,

and

M ∩ yU = MΘ ∩ wNΩw
−1 = MΘ ∩NwΩ.

Let w ∈ [WΘ\W0/WΩ]. To achieve our goal, there are two cases that we need
to consider.

Case 1: PΘ ∩ wMΩ = wMΩ.
Case 2: PΘ ∩ wMΩ � wMΩ is a proper parabolic subgroup of wMΩ.

In Case 1, we show that the associated irreducible subquotients of πN are not Mθ-
distinguished. In Case 2, we show that the corresponding exponents of πN satisfy
condition (2.2). The exact sequence (6.1) allows us to conclude that the same holds
for U(δ, 2)N .

6.1. Case 1: no distinction. Assume that w ∈ [WΘ\W0/WΩ] is such that PΘ ∩
wMΩ = wMΩ. Then NΘ ∩ wMΩ = {e} and MΘ ∩ wMΩ = wMΩ = MwΩ. In
particular, wMΩ ⊂ MΘ, and since wMΩ is maximal it follows that wMΩ = MΘ

∼=
GLn(F ) ×GLn(F ). That is, MΘ and MΩ are associate standard Levi subgroups
isomorphic to GLn(F ) × GLn(F ). It follows that n must be even, k = n/2,
and Θ = Θn/2 = w+(Δ \ {εn − εn+1}) = Ω. That is, MΘ = MΩ and w lies in
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[WΩ\W0/WΩ] ∩W (Ω,Ω), where W (Θ,Ω) = {w ∈ W0 : wΩ = Θ}. Set y = ww+.
Then MΩ ∩ yQ = MwΩ = MΩ and PΩ ∩ yL = MwΩ = MΩ. In this setting,

F
y
Ω(δ, 2) = ιMΩ

MΩ
(y(ν1/2δ ⊗ ν−1/2δ){e}) =

y(ν1/2δ ⊗ ν−1/2δ),

since NΩ ∩ wMΩ = NΩ ∩MΩ = {e}.
Proposition 6.2. Let w ∈ [WΩ\W0/WΩ] ∩ W (Ω,Ω) and set y = ww+. Let τ
be an irreducible admissible generic representation of GLn(F ). The representa-
tion y(ν1/2τ ⊗ ν−1/2τ ) of MΩ is not Mθ

Ω-distinguished, that is,

HomMθ
Ω
(y(ν1/2τ ⊗ ν−1/2τ ), 1) = 0.

Proof. First, recall that n is even, and observe that Mθ
Ω

∼= Spn(F ) × Spn(F ).

Indeed, MΩ = w+M(n,n)w
−1
+ and m = w+mw−1

+ ∈ MΩ is θ-fixed if and only if
m ∈ M(n,n) is fixed by w+ · θ = θx2n

. Recall (see Section 5) that

x2n = ε2n · w+ =

⎛⎜⎜⎜⎜⎜⎝
0 1
−1 0

. . .

0 1
−1 0

⎞⎟⎟⎟⎟⎟⎠ ∈ M(n,n)

and θx2n
(g) = x−1

2n
tg−1x2n. One may readily verify that the image of m =

diag(m1,m2) ∈ M(n,n) under θx2n
is given by

θx2n
(m) = diag(x−1

n
tm−1

1 xn, x
−1
n

tm−1
2 xn) = diag(θxn

(m1), θxn
(m2)).

It follows that m is θx2n
-fixed if and only if mi = θxn

(mi), for each i = 1, 2.
Moreover,

Mθ
Ω = w+

(
M

θx2n

(n,n)

)
w−1

+

= w+

(
GLn(F )θxn ×GLn(F )θxn

)
w−1

+

∼= (Spn(F )× Spn(F )) ,

since xn ∈ GLn(F ) is nonsingular and skew symmetric, and GLθxn
n

∼= Spn.
Next, we note that [WΩ\W0/WΩ]∩W (Ω,Ω) consists of two elements: the identity

e and w+w(n,n)w
−1
+ , where

w(n,n) =

(
0 In
In 0

)
.

First, realize [WΩ\W0/WΩ] = w+[WΩell\W0/WΩell ]w−1
+ , and W (Ω,Ω) =

w+W (Ωell,Ωell)w−1
+ , where Ωell = Δ \ {εn − εn+1} = w−1

+ Ω. If w ∈ W0, then
we identify w with a permutation of {1, . . . , 2n} and note that w(εi) = εw(i). The

set of Δ-positive roots in Φ0 is Φ+
Δ = {εi − εj : 1 ≤ i < j ≤ 2n}. Thus, by defi-

nition, w ∈ W0 lies in the set [WΩell\W0/WΩell ] if and only if w(i) < w(i + 1) and
w−1(i) < w−1(i+1), for all 1 ≤ i ≤ n− 1 and n+1 ≤ i ≤ 2n− 1 (with i �= n since
εn − εn+1 /∈ Ωell). It is not difficult to verify that [WΩell\W0/WΩell ] consists of the
n+ 1 permutation matrices of the form⎛⎜⎜⎝

Ij 0 0 0
0 0 In−j 0
0 In−j 0 0
0 0 0 Ij

⎞⎟⎟⎠ ,(6.3)
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where 0 ≤ j ≤ n. Notice that j = 0 corresponds to w(n,n) and j = n corresponds to

the identity matrix e = I2n. On the other hand, the elements of the setW (Ωell,Ωell)
satisfy wΩell = Ωell and thus normalize the block-diagonal Levi subgroup M(n,n) =
MΩell . One may quickly check that, of the elements of the form in (6.3), only
the identity e and w(n,n) normalize M(n,n). It follows that [WΩell\W0/WΩell ] ∩
W (Ωell,Ωell) consists of precisely e and w(n,n), proving the claim.

We now turn to studying the Mθ
Ω-distinction of F

y
Ω(τ, 2) = y(ν1/2τ ⊗ ν−1/2τ ),

where y = ww+. There are two sub-cases to consider, either w = e or w =
w+w(n,n)w

−1
+ . If w = e, then y = w+ ∈ [WΩ\W0/WΩ] ∩ W (Ω,Ω). As above,

F
y
Ω(τ, 2) =

w+(ν1/2τ ⊗ν−1/2τ ). If w = w(n,n), then y = ww+ = w+w(n,n)w
−1
+ w+ =

w+w(n,n). It follows that F
y
Ω(τ, 2) = w+w(n,n)(ν1/2τ ⊗ ν−1/2τ ). Conjugation by

w(n,n) interchanges the two GL-blocks of MΩ = M(n,n); therefore, twisting a rep-
resentation π1 ⊗ π2 of MΩ by w(n,n) interchanges the two representations, that is,
w(n,n)(π1⊗π2) ∼= π2⊗π1. Therefore,

w+w(n,n)(ν1/2τ⊗ν−1/2τ ) = w+(ν−1/2τ⊗ν1/2τ ).
We have seen above that Mθ

Ω
∼= (Spn(F )× Spn(F )). In both cases (w = e, w =

w(n,n)), it follows that F
y
Ω(τ, 2) is M

θ
Ω-distinguished if and only if ν1/2τ and ν−1/2τ

are Spn(F )-distinguished. By assumption, τ is an irreducible generic representa-
tion; therefore, by [HR90, Theorem 3.2.2], HomSpn(F )(τ, 1) = {0}. It follows, since
ν is trivial on (maximal) unipotent subgroups of GLn(F ), that νsτ is generic and
HomSpn(F )(ν

sτ, 1) = {0}, for every s ∈ C. Moreover, if w is equal to either e or

w(n,n), then HomMθ
Ω
(Fy

Ω(τ, 2), 1) = 0, as claimed. �

6.2. Case 2: ‘good’ exponents. Assume that w ∈ [WΘ\W0/WΩ] is such that
PΘ∩wMΩ is a proper parabolic subgroup of wMΩ. First, we show that MΘ∩wPΩ is
also a proper parabolic subgroup of MΘ. We argue by contradiction, and suppose
that MΘ ∩ wPΩ = MΘ. By [Cas95, Proposition 1.3.3], MΘ ∩ wNΩ = {e} and
MΘ ∩ wMΩ = MΘ. In particular, MΘ ⊂ wMΩ = MwΩ. However, both MΩ and
MΘ are maximal Levi subgroups of G, and it follows that MΘ = wMΩ. This, in
turn, implies that PΘ∩wMΩ = MΘ = wMΩ, which contradicts our assumption that
PΘ ∩wMΩ is a proper parabolic subgroup of wMΩ. We conclude that MΘ ∩wPΩ is
a proper parabolic subgroup of MΘ.

It follows from this last observation that if y = ww+, then the representation
F

y
N (δ, 2) = ιMM∩yQ

(
y(ν1/2δ ⊗ ν−1/2δ)N∩yL

)
is induced from y(ν1/2δ⊗ ν−1/2δ)N∩yL

along the proper parabolic M ∩ yQ = MΘ ∩ wPΩ of M = MΘ; moreover, the
Jacquet module y(ν1/2δ⊗ν−1/2δ)N∩yL is taken along the proper parabolic P ∩yL =
PΘ ∩ wMΩ of yL = wMΩ. That is, both the Jacquet restriction and parabolic
induction steps appearing in F

y
N (δ, 2) are along proper parabolic subgroups. To be

completely explicit, we note that

F
ww+

N (δ, 2) = ιMΘ

MΘ∩wPΩ

(
ww+(ν1/2δ ⊗ ν−1/2δ)NΘ∩wMΩ

)
.

In this subsection, we will use the shorthand notation [τ ] = ν1/2τ⊗ν−1/2τ , where τ
is an irreducible admissible representation of GLn(F ). Our goal is to compute the
exponents of π = ν1/2δ×ν−1/2δ along P = PΘ; therefore, we need to understand the
central characters of the irreducible subquotients of the Fww+(δ, 2). By [Smi18b,
Lemma 4.16], the quasi-characters appearing in ExpAΘ

(Fww+(δ, 2)) are the restric-
tions to AΘ of the quasi-characters appearing in ExpAΘ∩wΩ

(ww+ [δ]NΘ∩wMΩ
), where
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the F -split component of MΘ ∩ wMΩ = MΘ∩wΩ is AΘ∩wΩ. Thus, our problem
reduces to understanding the exponents of ww+ [δ] along PΘ ∩ wMΩ.

Since L = M(n,n)
∼= GLn(F )×GLn(F ), we have that PΘ∩wMΩ

∼= P1×P2, where
P1 and P2 are parabolic subgroups of GLn(F ), at least one of which is proper. We
can realize w = w+w

′w−1
+ ∈ [WΘ\W0/WΩ], where w′ ∈ [W(2k,2n−2k)\W0/W(n,n)].

Then, with w = w+w
′w−1

+ ,(
ww+[δ]

)
NΘ∩wMΩ

=
(
w+w′

[δ]
)
w+N(2k,2n−2k)w

−1
+ ∩w+w′M(n,n)w′−1w−1

+

=
(
w+w′

[δ]
)
w+(N(2k,2n−2k)∩w′M(n,n)w′−1)w−1

+

= w+

(
w′
[δ]N(2k,2n−2k)∩w′M(n,n)w′−1

)
= w+w′

(
[δ]w′−1N(2k,2n−2k)w′∩M(n,n)

)
= w+w′

([δ]N1×N2
) ,

where we identify PΘ ∩ wMΩ
∼= P1 × P2 with a parabolic subgroup of M(n,n)

∼=
GLn(F )×GLn(F ) via

P1 × P2 = w′−1N(2k,2n−2k)w
′ ∩M(n,n)

= w′−1
(
N(2k,2n−2k) ∩ w′M(n,n)w

′−1
)
w′

= w′−1w−1
+

(
w+N(2k,2n−2k)w

−1
+ ∩ w+w

′M(n,n)w
′−1w−1

+

)
w+w

′

= w′−1w−1
+

(
w+N(2k,2n−2k)w

−1
+ ∩ w+w

′w−1
+ w+M(n,n)w

−1
+ w+w

′−1w−1
+

)
w+w

′

= w′−1w−1
+

(
w+N(2k,2n−2k)w

−1
+ ∩ ww+M(n,n)w

−1
+ w−1

)
w+w

′

= w′−1w−1
+

(
NΘ ∩ wMΩw

−1
)
w+w

′

= w−1
+ w−1

(
NΘ ∩ wMΩw

−1
)
w+w,

using that ww+ = w+w
′w−1

+ w+ = w+w
′. It follows that(

ww+[δ]
)
NΘ∩wMΩ

= w+w′
([δ]N1×N2

)

= w+w′
(
(ν1/2δ ⊗ ν−1/2δ)N1×N2

)
= w+w′

(
ν1/2δN1

⊗ ν−1/2δN2

)
= ww+

(
ν1/2δN1

⊗ ν−1/2δN2

)
,

where in the final equality we have again used that ww+ = w+w
′. In the above

calculation of (ww+[δ])NΘ∩wMΩ
, we also implicitly used the following basic fact.

Lemma 6.3. Let (π, V ) be a smooth representation of G = GLm(F ). Let P = MN
be a (proper) parabolic subgroup of G with Levi factor M and unipotent radical N .
Let s ∈ C. Then the Jacquet module (νs ⊗ π)N is equivalent to the twisted Jacquet
module νs|M ⊗ πN .

Proof. The lemma follows immediately from the fact that ν is trivial on the unipo-
tent group N . Indeed, the space of both representations π and νs ⊗ π = νsπ
is V . The space of the Jacquet module of π, respectively νsπ, is the quotient
of V by the subspace V (N) = span{v − π(n)v : v ∈ V, n ∈ N}, respectively
span{v− νs(n)π(n)v : v ∈ V, n ∈ N}. Since νs(n) = 1 for every n ∈ N , we see that
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the space of both πN and (νsπ)N is VN = V/V (N). Finally, observe that for any
m ∈ M and v + V (N) ∈ VN we have

(νsπ)N (m)(v + V (N)) = δ
−1/2
P (m)νs(m)π(m)v + V (N)

= νs(m)
(
δ
−1/2
P (m)π(m)v + V (N)

)
= νs(m)πN(m)(v + V (N));

therefore (νsπ)N = νs|M ⊗ πN , as claimed. �

In order to understand the exponents of (ww+[δ])NΘ∩wMΩ
, we require the follow-

ing proposition.

Proposition 6.4. Let G and G′ be two connected reductive groups over F . Let
(π, V ), respectively (σ,W ), be a finitely generated admissible representation of G,
respectively G′. The set of exponents of the (external) tensor product π⊗σ consists
of all pairwise products χ ⊗ χ′, where χ ∈ ExpZG

(π) and χ′ ∈ ExpZG′ (σ) are

exponents of π and σ respectively. That is,

ExpZG×ZG′ (π ⊗ σ) = {χ⊗ χ′ : χ ∈ ExpZG
(π), χ′ ∈ ExpZG′ (σ)}(6.4)

∼= ExpZG
(π)× ExpZG′ (σ).

Proof. The exponents ExpZG×ZG′ (π⊗σ) of π⊗σ are precisely the central characters

of the irreducible subquotients of π ⊗ σ (cf. [Cas95, Proposition 2.1.9], [Smi18b,
Lemma 4.14]). To prove the proposition, it is sufficient to show that the irreducible
subquotients of π ⊗ σ are of the form V j ⊗W k, where V j , respectively W k, is an
irreducible subquotient of (π, V ), respectively (σ,W ). Indeed, if V j (resp. W k) is
irreducible, then it admits a central character χj (resp. χk); moreover, V j⊗W k has
central character χj ⊗ χk : ZG × ZG′ → C×. We omit the proof of the elementary
fact regarding the subquotients of the external tensor product (π⊗ σ, V ⊗W ). �

Note. To clarify the following calculations we introduce some additional notation
for certain subsets of Δ. For and 1 ≤ j ≤ 2n− 1, let Ξj = Δ \ {εj − εj+1}. We will
be particularly interested in Ξ2k and Ξn = Ωell since Θ = w+Ξ2k and Ω = w+Ξn.

Recall that the (θ, F )-split component SΘ of MΘ is equal to the F -split com-
ponent AΘ. In particular, the (θ, F )-split component of G is SG = AG. We now
consider the exponents of (ww+[δ])NΘ∩wMΩ

= ww+
(
ν1/2δN1

⊗ ν−1/2δN2

)
restricted

to S−
Θ \ S1

ΘSG = A−
Θ \ A1

ΘAG. Let s ∈ SΘ = AΘ. Since AΘ = w+A(2k,2n−2k)w
−1
+ ,

we can write s = w+aw
−1
+ , where a = diag(a1I2k, a2I2n−2k) lies in A−

(2k,2n−2k) \
A1

(2k,2n−2k)AG. In particular, A(2k,2n−2k) = AΞ2k
and a has the property that

|ε2k−ε2k+1(a)| = |a1a−1
2 | < 1. By Proposition 6.4 and Lemma 6.3, the exponents of

(ww+[δ])NΘ∩wMΩ
= ww+

(
ν1/2δN1

⊗ ν−1/2δN2

)
are all of the form

ww+
(
ν1/2χ1 ⊗ ν−1/2χ2

)
, where χ1 ∈ ExpA1

(δN1
), and χ2 ∈ ExpA2

(δN2
). Here we

write Ai for the F -split component of Mi ⊂ Pi ⊂ GLn(F ), i = 1, 2. In particular,

ww+

(
ν1/2χ1 ⊗ ν−1/2χ2

)
(s) = ww+

(
ν1/2χ1 ⊗ ν−1/2χ2

)
(w+aw

−1
+ )

=
(
ν1/2χ1 ⊗ ν−1/2χ2

)
(w−1

+ w−1w+aw
−1
+ ww+)

=
(
ν1/2χ1 ⊗ ν−1/2χ2

)
(w′−1

aw′),
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where w′ = w−1
+ ww+ ∈ [W(2k,2n−2k)\W0/W(n,n)] and

w′−1
aw′ ∈ w′−1

A−
(2k,2n−2k)w

′ \ w′−1
A1

(2k,2n−2k)w
′AG

⊂ A−
w′−1M(2k,2n−2k)w′∩M(n,n)

\A1
w′−1M(2k,2n−2k)w′∩M(n,n)

A(n,n)

= A−
(w′−1Ξ2k)∩Ξn

\A1
(w′−1Ξ2k)∩Ξn

A(n,n)

= A−
M1×M2

\A1
M1×M2

A(n,n)

= A−
1 ×A−

2 \ (A1
1 × A1

2)A(n,n),

where the containment in the second line follows as in the proof of [Smi18b, Lemma
8.4]. By assumption, δ is a discrete series representation of GLn(F ); therefore, the
exponents χ1 and χ2 of δ satisfy Casselman’s Criterion ([Cas95, Theorem 6.5.1])
and

|χ1 ⊗ χ2(w
′−1

aw′)| < 1.

To ensure that the exponents ww+
(
ν1/2χ1 ⊗ ν−1/2χ2

)
of (ww+[δ])NΘ∩wMΩ

=
ww+

(
ν1/2δN1

⊗ ν−1/2δN2

)
satisfy the Relative Casselman’s Criterion ([KT10, The-

orem 4.7]), we need to ensure that

|ν1/2 ⊗ ν−1/2(w′−1
aw′)| ≤ 1.(6.5)

We can realize the restriction of the unramified character ν1/2 ⊗ ν−1/2 to the max-
imal (diagonal) F -split torus A0 as the composition of | · |1/2F with the sum over all
roots in Δ with positive integral coefficients, that is,

(ν1/2 ⊗ ν−1/2)|A0
= | · |1/2F ◦

(∑
α∈Δ

cα · α
)
,(6.6)

where cεi−εi+1
= i, for 1 ≤ i ≤ n, and cεn+j−εn+j+1

= n − j, for 1 ≤ j ≤ n − 1.

To compute (ν1/2 ⊗ ν−1/2)(w′−1aw′) it is helpful to partition Δ as the disjoint

union of (w′−1
Ξ2k) ∩ Ξn and Δ \ ((w′−1

Ξ2k) ∩ Ξn). Indeed, since Aw′−1Ξ2k
⊂

A(w′−1Ξ2k)∩Ξn
, it follows that α(w′−1aw′) = 1, for all α ∈ (w′−1

Ξ2k) ∩ Ξn. On the

other hand, since w′−1aw′ ∈ A−
(w′−1Ξ2k)∩Ξn

we have that |β(w′−1aw′)|F ≤ 1, for all

β ∈ Δ \ ((w′−1
Ξ2k) ∩ Ξn). From (6.6), it follows that

(ν1/2 ⊗ ν−1/2)(w′−1aw′) =
∏
α∈Δ

|α(w′−1aw′)|cα/2
F

=

⎛⎝ ∏
α∈(w′−1Ξ2k)∩Ξn

|α(w′−1aw′)|cα/2
F

⎞⎠⎛⎝ ∏
β∈Δ\((w′−1Ξ2k)∩Ξn)

|β(w′−1aw′)|cβ/2F

⎞⎠
=

∏
β∈Δ\((w′−1Ξ2k)∩Ξn)

|β(w′−1aw′)|cβ/2F

≤ 1,

which establishes the truth of (6.5). Moreover, we now have that∣∣∣ww+

(
ν1/2χ1 ⊗ ν−1/2χ2

)
(s)

∣∣∣ = (
ν1/2χ1 ⊗ ν−1/2χ2

)
(w′−1

aw′)

= |χ1 ⊗ χ2(w
′−1

aw′)||ν1/2 ⊗ ν−1/2(w′−1
aw′)|

< 1,



SPEH REPRESENTATIONS ARE RELATIVELY DISCRETE 549

for all χ1 ∈ ExpA1
(δN1

), χ2 ∈ ExpA2
(δN2

), and s = w+aw
−1
+ ∈ SΘ \ S1

ΘSG, where

w′ = w−1
+ ww+ as above. Finally, we have established the desired result:

Proposition 6.5. Let Θ = Θk, 1 ≤ k ≤ n − 1, be a maximal θ-split subset
of Δ0. Let w ∈ [WΘ\W0/WΩ] be such that PΘ ∩ wMΩ is a proper parabolic sub-
group of wMΩ. Let δ be an irreducible admissible square integrable representation of
GLn(F ). The exponents of πN , and U(δ, 2)N , corresponding to the irreducible sub-
quotients of F

ww+

N (δ, 2) = (ww+[δ])NΘ∩wMΩ
satisfy condition (2.2) of Theorem 2.7.
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viii+360. MR3764130
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[Tad86] Marko Tadić, Classification of unitary representations in irreducible representations of

general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986),
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