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JANTZEN FILTRATION OF WEYL MODULES, PRODUCT

OF YOUNG SYMMETRIZERS AND DENOMINATOR

OF YOUNG’S SEMINORMAL BASIS

MING FANG, KAY JIN LIM, AND KAI MENG TAN

Abstract. Let G be a connected reductive algebraic group over an alge-
braically closed field of characteristic p > 0, Δ(λ) denote the Weyl module
of G of highest weight λ and ιλ,μ : Δ(λ + μ) → Δ(λ) ⊗ Δ(μ) be the canon-
ical G-morphism. We study the split condition for ιλ,μ over Z(p), and apply
this as an approach to compare the Jantzen filtrations of the Weyl modules
Δ(λ) and Δ(λ+ μ). In the case when G is of type A, we show that the split
condition is closely related to the product of certain Young symmetrizers and,
under some mild conditions, is further characterized by the denominator of a
certain Young’s seminormal basis vector. We obtain explicit formulas for the
split condition in some cases.

1. Introduction

Let GZ be a split connected reductive group defined over Z, and G denote the
algebraic group over an algebraically closed field F of prime characteristic p obtained
from GZ. The Jantzen filtration of a Weyl module of G, introduced in [12], enjoys
a rich structure, which led to many remarkable results (see, for example, [2, 3, 13,
15, 21]), giving us a more complete understanding of the representation theory of
G.

Despite these advances, how these filtrations for different Weyl modules are re-
lated remains to this day a very difficult open problem. Conjectures concerning this
open problem for simply connected semisimple algebraic groups include Jantzen’s
conjecture, stated in [2], that relates the Jantzen filtrations of two Weyl modules
with adjacent highest weights, and Xi’s conjecture [23, Conjecture H] which implies
a relation between the Jantzen filtrations of Δ(λ) and that of Δ(λ + p(p − 1)ρ),
where λ is a p-restricted dominant integral weight and ρ is the half sum of all
positive roots.

The main results in this paper are Theorems 3.1, 3.8 and 3.13. We first concern
ourselves with the relationship between the Jantzen filtrations of the Weyl modules
Δ(λ) and Δ(λ + μ) for two dominant integral weights λ and μ. Let Z(p) be the

ring Z localized at the prime ideal (p), and write ΔZ(p)
(λ)i for the i-th term in

the Jantzen filtration of the Weyl module ΔZ(p)
(λ) over Z(p), and similarly for the

weights μ and λ+μ. Our first main result (Theorem 3.1) states that if the canonical
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G-morphism ιλ,μ : Δ(λ + μ) → Δ(λ) ⊗ Δ(μ) admits a splitting map defined over
Z(p), then ΔZ(p)

(λ)i may be naturally embedded into ΔZ(p)
(λ+μ)i as Z(p)-modules

for all i. In particular, the induced F-linear map from Δ(λ) to Δ(λ + μ) respects
the Jantzen filtrations, see Remark 3.2.

The split condition for ιλ,μ over Z(p) appears to be of independent interest.
Indeed, Andersen communicated to us some necessary conditions for this splitting
over F (hence over Z(p)) by considering the restriction to SL2; see Proposition 3.3.
In the case when G is the general linear group, the split condition for λ = (m) and
μ = (n) is obtained by Donkin [5, §4.8(12) Proposition] (see also Proposition 3.4)
and has played a crucial role in the determination of the global dimensions of Schur
algebras [22] (see also [5, §4.8]). We note also that for type A, the split condition
for λ an arbitrary partition and μ = (1) may be approached using the theory of
translation functors developed in [4].

Having shown that the splitting of ιλ,μ over Z(p) plays a significant role in the
comparison of the Jantzen filtrations of Δ(λ) and Δ(λ + μ), we next seek to de-
termine some necessary and sufficient conditions for this splitting for the case of
the general linear groups. Our second main result (Theorem 3.8) gives such a con-
dition in terms of θλ,μ, which is the greatest common divisor of the coefficients of
the product of certain Young symmetrizers in the integral group ring of symmetric
groups.

Young’s seminormal basis (see [16, 17] and the references therein), a substantial
ingredient nowadays in the representation theory of symmetric groups, is by defi-
nition only a Q-basis of the group algebra of symmetric groups. The denominators
of these basis elements are not known in general, but seem to control certain parts
of the modular representation theory ([16,19,20]). Our third main result (Theorem
3.13) relates further the above split condition to the mysterious denominator of a
certain Young’s seminormal basis element. To be precise, assume that the Young
diagram of λ+ μ can be obtained by putting the Young diagrams of λ and μ side
by side; then the split condition can be characterized in terms of the denominator
dtλ�tμ of ftλ�tμ , an element of Young’s seminormal basis of the dual Specht module

SQ
λ+μ. This particular denominator is not well studied yet, to our knowledge, and

we leave further investigation in our future work.
We conclude the paper with an explicit computation of θλ,μ for two cases: λ =

(1n) and μ = (m), and λ = (k, �) and μ = (m). In particular, the determination
of θ(k,�),(m) gives us a split condition for ι(k,�),(m) over Z(p) which generalizes the
aforementioned result of Donkin.

The paper is organized as follows: in the following section, we recall the nec-
essary background, fix some notations which shall be used throughout and prove
some preliminary results. In Section 3, we state and prove our main results, namely
Theorems 3.1, 3.8 and 3.13. We then conclude in Section 4 with the explicit com-
putations of the products of Young symmetrizers that lead to the closed formulas
for θ(1n),(m) and θ(k,�),(m).

2. Preliminaries

In this section, we recall the background theory that we require, fix all relevant
notations and prove some preliminary results. Throughout this article, F denotes
an algebraically closed field of prime characteristic p, and Z(p) denotes the ring of
integers localized at the prime ideal (p). We identify Z(p) with the subring of Q
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consisting of all rational numbers with denominators not divisible by p, and note
that F is a natural Z(p)-module.

We remark that our results in fact hold even when F is not algebraically closed,
but we assume F to be algebraically closed here for the ease of presentation, which
avoids the discussion of group schemes when defining the Weyl modules.

2.1. Weyl modules and Jantzen filtration. Following [13, II, Chapter 1], for a
split connected reductive group GZ defined over Z, let Dist(GZ) be its distribution
algebra, and let TZ be a split maximal torus contained in a split Borel subgroup
BZ of GZ. For a commutative ring O with 1, set GO = (GZ)O, TO = (TZ)O,
and Dist(GO) = Dist(GZ) ⊗Z O. By [13, II, Section 1.12(2)], Dist(GO) admits a
triangular decomposition

Dist(GO) ∼= Dist(GO)
+ ⊗O Dist(GO)

0 ⊗O Dist(GO)
−.

Since rational GO-modules are identified with locally finite Dist(GO)-TO-modules—
see [13, II, Section 1.20] for the technical notions and assumptions involved—we use
this distribution algebra approach with some care about the action of TO to describe
these GO-modules.

For a dominant integral weight λ, let ΔQ(λ) denote the finite-dimensional irre-
ducible GQ-module with the highest weight λ. Fix a nonzero highest weight vector
ηλ ∈ ΔQ(λ), and let ΔZ(λ) = Dist(GZ)ηλ and ΔO(λ) = ΔZ(λ) ⊗Z O. Note that
different choices of ηλ result in the same GO-module ΔO(λ) (up to isomorphism).

Denote by τ the Cartan involution on Dist(GO); thus τ fixes Dist(GO)
0 pointwise

and interchanges Dist(GO)
+ and Dist(GO)

−. A symmetric bilinear form [−,−] on a
Dist(GO)-moduleM is said to be contravariant if [zu, v] = [u, τ (z)v] for all u, v ∈ M
and z ∈ Dist(GO).

It is well known that there exists a contravariant symmetric bilinear form (−,−)
on ΔO(λ) such that (ηλ, ηλ) = 1 and (tu, v) = (u, tv) for all t ∈ TO and u, v ∈
ΔO(λ), which is non-degenerate when O is a field of characteristic 0. In addition,
all other contravariant symmetric bilinear forms on ΔO(λ) are scalar multiples of
(−,−).

When O = Z(p), we write cλ for (−,−), and define

ΔZ(p)
(λ)i = {x ∈ ΔZ(p)

(λ) | cλ(x, y) ∈ piZ(p), ∀y ∈ ΔZ(p)
(λ)}.

Then
ΔZ(p)

(λ) ⊇ ΔZ(p)
(λ)1 ⊇ ΔZ(p)

(λ)2 ⊇ · · ·
is the Jantzen filtration of ΔZ(p)

(λ). Writing Δ(λ)i for the image of ΔZ(p)
(λ)i in

the Weyl module Δ(λ) := ΔF(λ), we have the corresponding Jantzen filtration

Δ(λ) ⊇ Δ(λ)1 ⊇ Δ(λ)2 ⊇ · · ·
of Δ(λ), see [13, II, Chapter 8].

2.2. Symmetric groups. Denote the group of bijections on a nonempty set X
by SX , and further write Sn for S{1,...,n}. We view elements of such a group
as functions, so that we compose these elements from right to left. When Y is a
nonempty subset of X, we view SY as a subgroup of SX by identifying an element
of SY with its extension that sends x to x for all x ∈ X \ Y .

As usual, Z+ denotes the set of all positive integers. Let X ⊆ Z+ and k ∈ Z+.
Define X+k := {x + k | x ∈ X}, and for any function σ : X → X, write σ+k :
X+k → X+k for the function such that σ+k(x+ k) = σ(x) + k for all x ∈ X. Then



554 MING FANG, KAY JIN LIM, AND KAI MENG TAN

σ 	→ σ+k is a group isomorphism fromSX toSX+k , and this extends further to give
an isomorphism ZSX → ZSX+k . If R ⊆ ZSX , we write R+k for {r+k | r ∈ R}. In
particular, S+k

X = SX+k .
For a subset S of Sn, define {S}, [S] ∈ ZSn by

{S} :=
∑
σ∈S

σ, [S] :=
∑
σ∈S

sgn(σ)σ,

where sgn(σ) ∈ {±1} is the usual signature of σ.

2.3. Partitions and Young tableaux. Let n be a natural number. A partition
λ of n, denoted λ 
 n, is a non-increasing sequence λ = (λ1, λ2, . . .) of non-negative
integers such that λ1 + λ2 + · · · = n. The dominance order � on all partitions of n
is given by: λ� μ if and only if λ1 + · · ·+ λk ≤ μ1 + · · ·+ μk for all k ∈ Z+.

The Young diagram of λ is defined to be the set [λ] = {(a, b) ∈ (Z+)2 | b ≤ λa};
and we call its elements the nodes of λ. The conjugate of λ is the partition λ′ with
λ′
i = |{j | (j, i) ∈ [λ]}| for all i. We depict [λ] as an array of left-justified boxes in

which the i-th row comprises exactly λi boxes, with each box representing a node
of λ.

A λ-tableau is a bijective map s : [λ] → {1, . . . , n}, and λ is said to be the
shape of s, denoted by Shape(s). We identify s with the pictorial depiction of the
Young diagram [λ] in which each box in [λ] is filled with {1, 2, . . . , n} so that each
integer appears exactly once. For 1 ≤ r ≤ n, the residue ress(r) is equal to j − i if
s(i, j) = r. Denote the set of all λ-tableaux by T (λ).

A λ-tableau s is said to be standard if the entries in s are increasing along
each row and down each column in the Young diagram. Let Std(λ) be the set
of all standard λ-tableaux. Let s ∈ Std(λ) and 1 ≤ r ≤ n. Since s is standard,
s−1({1, . . . , r}) is the Young diagram of a partition, and we define the subtableau
s↓r of s to be the restriction of s to this subdomain. Pictorially, s↓r consists
precisely of those boxes in [λ] which are filled with 1, . . . , r in s. The dominance
order � on Std(λ) is given by s� t if and only if, for each 1 ≤ r ≤ n, we have

Shape(s↓r)� Shape(t↓r).
Let tλ be the λ-tableau such that tλ(a, b) = λ1 + · · ·+ λa−1 + b. Similarly, let tλ

be the λ-tableau such that tλ(a, b) = a+ λ′
1 + · · ·+ λ′

b−1. For example,

t
(2,2,1) =

1 2

3 4

5

, t(2,2,1) =
1 4

2 5

3

.

It is well known that, with respect to �, tλ and tλ are the largest and smallest
respectively in Std(λ).

Post-composition of λ-tableaux by elements of Sn gives a well-defined, faithful
and transitive left action of Sn on T (λ), i.e. σ · s = σ ◦ s for σ ∈ Sn and s ∈ T (λ).
For a λ-tableau s, let d(s) be the element inSn such that s = d(s)·tλ, or equivalently
d(s) = s ◦ (tλ)−1. Furthermore, we write

σλ := d(tλ).

We denote by Rs and Cs the row and column stabilizers of s, respectively. The
associated Young symmetrizer Ys ∈ ZSn is defined as

Ys := {Rs}[Cs].
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It is well known that Y 2
s = hλYs, where hλ := n!

| Std(λ)| ∈ Z+, and that if t = σ · s,
where σ ∈ Sn, then Rt = σRsσ

−1 and Ct = σCsσ
−1, and so Yt = σYsσ

−1.
For a λ-tableau s and k ∈ Z+, define s+k : [λ] → Z+ by s+k(i, j) = s(i, j)+ k for

(i, j) ∈ [λ]. We view s+k as a filling of the boxes in [λ] by the numbers k+1, . . . , k+n.
We may thus speak of row and column stabilizers of s+k too, which are subgroups
of S+k

n . Note that R+k
s = Rs+k and C+k

s = Cs+k .
Let λ 
 n and μ 
 m, and let s ∈ T (λ) and t ∈ T (μ). We have λ + μ =

(λ1 + μ1, λ2 + μ2, . . . ) 
 n +m, and we now define a (λ + μ)-tableau s � t, which
has the properties that Cs�t = CsCt+n and Rs�t ⊇ RsRt+n . To obtain s � t, we
insert the columns of t+n into s successively, starting from the leftmost column and
working towards the rightmost, such that a column of t+n is inserted between two
adjacent columns, the left of which is at least as long as the column to be inserted,
while the right of which is strictly shorter. We illustrate this with the following
example:

Example 2.1. Let

s =
1 3 6
2 4
5

, t =
1 2 4 6
3 7 8
5

.

Then

t
+6 =

7 8 1012
9 1314
11

, and s� t =
1 7 3 8 10 6 12
2 9 4 1314
5 11

.

Thus

Rs�t = S{1,3,6,7,8,10,12}S{2,4,9,13,14}S{5,11};

Cs�t = S{1,2,5}S{3,4}S{7,9,11}S{8,13}S{10,14}.

2.4. Dual Specht modules. Let λ be a partition of n. We briefly review the
construction of the permutation module Mλ

Z using λ-tabloids [7, Chapter 7]. Two
λ-tableaux s and t are row equivalent if t = σ · s for some σ ∈ Rs, and a λ-tabloid
is a row equivalence class of λ-tableaux, which we usually write as {t} and depict,
for example, as follows:

1 6 5 4
7 2
3

=
1 4 5 6
2 7
3

The left action of Sn on T (λ) induces an action on the set of λ-tabloids, i.e.
σ · {t} = {σ · t} for σ ∈ Sn and t ∈ T (λ), and Mλ

Z is the associated permutation
representation of this action over Z. The integral dual Specht module SZ

λ is then
defined to be the quotient of Mλ

Z by the Garnir relations [7, §7.4 Exercise 14]: let
{t} be a λ-tabloid, and X be any k elements in its (i+ 1)-th row of t, then

{t} ≡ (−1)k
∑

{s}

where the sum runs over all λ-tableaux s obtained from t by interchanging X with
k elements in the i-th row, maintaining the orders of the two sets. (Readers are
cautioned to the misprint of sign in [7, §7.4 Exercise 14].)

For each s ∈ T (λ), let es denote the image of {s} in SZ
λ under the quotient map.

Since the action of Sn is transitive on T (λ), it is also transitive on {es | s ∈ T (λ)},
so that SZ

λ is a cyclic ZSn-module, generated by any es. It is well known that
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{es | s ∈ Std(λ)} is a Z-basis for SZ
λ , called the standard basis. Furthermore, the

ZSn-morphism ϕZ
s defined by es 	→ Ys gives an isomorphism SZ

λ
∼= ZSnYs.

Given a commutative ringO with 1, define SO
λ := O⊗ZS

Z
λ . The above statements

about SZ
λ behave well under base change, so that analogous statements hold when Z

is replaced by O. In particular, for each s ∈ Std(λ), we have an OSn-isomorphism
ϕO
s : SO

λ → OSnYs sending es → Ys. Thus, from the following commutative
diagram

SO
λ O ⊗Z SZ

λ

idO⊗ϕZ

s−−−−−→∼=
O ⊗Z ZSnYs

ϕO
s

⏐⏐�∼=
⏐⏐�idO⊗inc

OSnYs
↪→−−−−→ OSn

∼=−−−−→ O ⊗Z ZSn

we conclude that the right vertical map idO ⊗ inc : O ⊗Z ZSnYs → O ⊗Z ZSn,
where inc is the inclusion map, is injective. Hence, by considering the long exact
sequence induced by the Tor functor on the short exact sequence 0 → ZSnYs →
ZSn → ZSn/ZSnYs → 0, we get TorZ1 (O,ZSn/ZSnYs) = 0. This is true for all
commutative rings O with 1, so that in particular ZSn/ZSnYs is torsion-free, and
hence free, as a Z-module. Consequently, ZSnYs is a Z-summand of ZSn.

The set {SQ
λ | λ 
 n} is a complete set of pairwise non-isomorphic irreducible

QSn-modules. In particular, the dimension of SQ
λ , | Std(λ)|, divides n!, the order

of Sn, so that indeed we have hλ = n!
| Std(λ)| ∈ Z+, as claimed in the Subsection 2.3.

2.5. Young’s seminormal basis. Following [17, Section 4], but considering the
left Sn-action (where composition of elements of Sn are from right to left) instead
and taking the classical limit q → 1, we have the following constructions and facts.

For 2 ≤ k ≤ n, define the k-th Jucys-Murphy element Lk := (1, k) + · · · +
(k − 1, k) ∈ ZSn, and let R(k) be the set {i ∈ Z | −k < i < k} if k ≥ 4, and
{i ∈ Z | −k < i < k, i �= 0} otherwise. For each λ 
 n and s ∈ Std(λ), define, as
the Jucys-Murphy elements pairwise commute,

Es :=
n∏

k=2

∏
m∈R(k)\{ress(k)}

(Lk −m)

ress(k)−m
∈ QSn.

Then {Es | s ∈ Std(λ), λ 
 n} is a complete set of pairwise orthogonal idempotents
of QSn [17, p.505, last paragraph].

Definition 2.2. Let λ 
 n.

(1) For each t ∈ Std(λ), define

γt :=
∏

(i,j)∈[λ]

∏
(k,�)∈Γt(i,j)

(j − i)− (�− k) + 1

(j − i)− (�− k)
,

where, for each (i, j) ∈ [λ],

Γt(i, j) = {(k, �) ∈ [λ] | � < j, t(k, �) < t(i, j), t(k′, �) > t(i, j) ∀k′ > k}
(see [17, Section 6]).

(2) For any s, t ∈ Std(λ), define

fs,t := Es d(s){Rtλ}d(t)−1Et ∈ QSn,

and fs := γtλ′ fs,tλ .
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From now on, for each 1 ≤ i < n, denote the basic transposition (i, i+ 1) ∈ Sn

by si.

Theorem 2.3.

(1) For λ 
 n, we have γtλ′γtλ = hλ (= n!
| Std(λ)| ).

(2) The group algebra QSn has a Q-basis {fs,t | λ 
 n, s, t ∈ Std(λ)}, called
Young’s seminormal basis.

(3) For λ, μ 
 n, s, t ∈ Std(λ) and u, v ∈ Std(μ), we have fs,tfu,v = δtuγtfs,v,
where δtu is the Kronecker delta.

(4) For λ 
 n and s, t ∈ Std(λ), we have

sifs,t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fs,t, if si ∈ Rs;

−fs,t, if si ∈ Cs;

aifs,t + fsi·s,t, if si · s ∈ Std(λ) and s� si · s;
aifs,t + (1− a2i )fsi·s,t, if si · s ∈ Std(λ) and s� si · s,

where ai = (ress(i+ 1)− ress(i))
−1.

(5) For λ 
 n, recall that σλ = d(tλ). We have

Ytλ = ftλσλ, and Ytλ = σλftλ .

(6) We have that {fs | s ∈ Std(λ)} is a Q-basis of QSnftλ = QSnYtλσ
−1
λ ,

which is another realisation of the dual Specht module SQ
λ . This basis is

known as Young’s seminormal basis of SQ
λ .

Proof. Part (1) follows from the penultimate displayed equation on [17, p.507].
For parts (2)–(4), we first prove that EsxstEt and ζst(= EsξstEt) in [17] are equal

(we refer the reader to [17] for the definitions of xst and ξst). By [17, Theorem 4.5],
we see that ξst = xst + hst where

hst ∈ Ȟλ := span{xuv | u, v ∈ Std(μ), μ 
 n, μ� λ}.
By [16, 3.20] (note that mst in [16] is xst in [17]), {ξst | s, t ∈ Std(λ), λ 
 n} is
another basis for H, and that, in fact,

span{ξuv | u, v ∈ Std(μ), μ 
 n, μ� λ} = Ȟλ � hst.

Now, ξuvEt = 0 for all u, v ∈ Std(μ) for some μ 
 n with μ�λ by [17, (5.5)]. Thus,
ξstEt = (xst + hst)Et = xstEt, and so ζst = EsxstEt.

Note that [17] uses the convention of composing the elements of the symmetric
group from left to right, opposite of that used here, so that our symmetric group
algebra is the opposite ring of the Hecke algebra of [17] at the limit q → 1. As
such, our ft,s is precisely EsxstEt = ζs,t at the limit q → 1, and thus parts (2)
and (3) follow from p.505 to p.506, and the last displayed equation on p.510 of [17]
respectively. Part (4) also follows from [17, Theorem 6.4] in the same way, once the
incorrect formula given there is corrected. The correct formula should be:

ζusTv =

⎧⎪⎪⎨
⎪⎪⎩
− 1

[−h]q
ζus, if |h| = 1;

− 1
[h]q

ζus + ζut, if h > 1;

− 1
[h]q

ζus +
q[h+1]q[h−1]q

[h]2q
ζut, if h < −1.

This mistake is rendered by another error in Lemma 6.2 of [17], which the formula
depends on (the author erroneously attributed to Lemma 6.1 instead), where for
the first displayed equation to hold, one needs to define h to be a − b instead of
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b− a. (There is another minor error, inconsequential to the proof of Theorem 6.4,
in the second displayed equation in Lemma 6.2 too). The readers are welcome to
verify that the correct results are as claimed above.

For part (5), using the penultimate display equation on page 511 of [17] in our
context,

[Ctλ ]σλ{Rtλ} = γtλ′ ftλ,tλ .

Applying the anti-automorphism of QSn defined by
∑

σ∈Sn
aσσ 	→

∑
σ∈Sn

aσσ
−1

to the above equation, since Es is invariant under the anti-automorphism, we get

ftλ = γtλ′ ftλ,tλ = {Rtλ}σ−1
λ [Ctλ ] = {Rtλ}[Ctλ ]σ

−1
λ = Ytλσ

−1
λ ,

and, similarly, ftλ = σ−1
λ {Rtλ}[Ctλ ] = σ−1

λ Ytλ .
Part (6) follows immediately from parts (2), (3) and (5). �

Remark 2.4. Any scalar multiple of the fs’s would of course also give a Q-basis of
QSnYtλσ

−1
λ . We choose the scaling for the fs’s so that ftλ = Ytλσ

−1
λ (cf. Theorem

2.3(5)).

The following are the results about Young’s seminormal basis that we require in
this paper:

Proposition 2.5. Let λ 
 n and μ 
 m, and let s, t ∈ Std(λ) and u, v ∈ Std(μ).

(1) If m ≤ n, then fu,vfs,t = 0 unless s↓m = v, in which case,

fu,vfs,t = γvfs′,t,

where s′ ∈ Std(λ) is obtained from s by replacing its subtableau s↓m by u.
(2) Suppose that the last column of [λ] is no shorter than the first column of

[μ], and let σ ∈ Sm. If σfu,v =
∑

w∈Std(μ) awfw,v (aw ∈ Q), then

σ+nfs�u,q =
∑

awfs�w,q

for any q ∈ Std(λ+ μ).
(3) We have

d(s)ftλ,t = fs,t +
∑

r∈Std(λ)
r�s

arfr,t (ar ∈ Q).

(4) Let φ : SQ
λ → QSnftλ be the QSn-isomorphism obtained by post-composing

the QSn-isomorphism SQ
λ → QSnYtλ that sends etλ to Ytλ , with right

multiplication by σ−1
λ . Then φ(etλ) = ftλ , and

fs = φ(es) +
∑

r∈Std(λ)
r�s

brφ(er) (br ∈ Q).

Proof.

(1) If v �= s↓m, then EvEs↓m
= 0 since these are distinct orthogonal idempo-

tents. Consequently EvEs = 0, and thus fu,vfs,t = 0.
If v = s↓m, then [μ] is a subdiagram of [λ]. Let p be the skew λ/μ-

tableau obtained by removing v from s. For a μ-tableau w, let w � p be
the λ-tableau obtained by patching p and w together (thus s = v � p and
s′ = u � p). Since p takes values in {m + 1, . . . , n}, it follows that w � p

is standard whenever w is standard. By Theorem 2.3(4), if σ ∈ Sm, and
w ∈ Std(μ) such that if σfv,w =

∑
vi∈Std(μ) aifvi,w for ai ∈ Q, then the
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coefficients ai are independent of the choice of w, and moreover σfv	p,q =∑
vi∈Std(μ) aifvi	p,q for any q ∈ Std(λ). Since this is true for all σ ∈ Sm, it

remains true when we replace σ by any element of QSm. Since fu,v ∈ QSm,
and fu,vfv,w = γvfu,w by Theorem 2.3(3), it follows that

fu,vfs,t = fu,vfv	p,t = γvfu	p,t = γvfs′,t

as desired.
(2) The conditions on [λ] and [μ] imply that s � w ∈ Std(λ + μ) for all w ∈

Std(μ), and that ress�u(n+ j) = resu(j) + λ1 for all 1 ≤ j ≤ m, and thus

ress�u(n+ i+ 1)− ress�u(n+ i) = resu(i+ 1)− resu(i)

for any 1 ≤ i ≤ m − 1. It is enough to prove part (2) for the case when
σ = si for some 1 ≤ i ≤ m− 1, and since s+n

i = si+n, this follows directly
from Theorem 2.3(4).

(3) The statement is trivial for s = tλ, and so let s �= tλ. Then, since s is
standard, there exists some i such that i+ 1 lies on a higher row of s than
i. Let s′ = si · s. Then s′ ∈ Std(λ), and s′ � s [16, Lemma 3.7], so that
premultiplying any reduced expression of d(s′) by si will yield a reduced
expression for d(s). By induction, we have

d(s)ftλ,t = sid(s
′)ftλ,t = si(fs′,t +

∑
r∈Std(λ)

r�s
′

arfr,t) (ar ∈ Q).

If si · r ∈ Std(λ) for some r ∈ Std(λ) with r � s′, then, since d(r) � d(s′)
([16, Theorem 3.8], we have that d(r) has a reduced expression which is a
proper subexpression of a reduced expression of d(s′), so that sid(r) has a
reduced expression which is a proper subexpression of a reduced expression
of sid(s

′) = d(s), or equivalently, si · r � s. The proof is now complete by
applying Theorem 2.3(4).

(4) We have φ(etλ) = Ytλσ
−1
λ = ftλ by Theorem 2.3(5). Furthermore, by part

(3),

φ(es) = φ(d(s)etλ) = d(s)ftλ = fs +
∑
r�s

arfr.

Thus, fs = φ(es)−
∑

r�s
arfr, and the desired result follows by induction.

�

2.6. Gcds.

Definition 2.6. Let L be a free Z-module of finite rank. We define, for each
non-zero z ∈ L ⊗Z Q,

gcdL(z) := sup{κ ∈ Q | z/κ ∈ L} ∈ Q ∪ {∞}.

We gather together some elementary properties resulting from this definition.

Lemma 2.7. Let L be a free Z-module of finite rank, and let z ∈ L ⊗Z Q.

(1) If {v1, . . . , vn} is a Z-basis for L, so that it is a Q-basis for L ⊗Z Q, and
z =

∑n
i=1

ai

bi
vi �= 0 where gcd(ai, bi) = 1 for each 1 ≤ i ≤ n, then gcdL(z)

is the (positive) greatest common divisor of the integers a1, . . . , an divided
by the (positive) least common multiple of the integers b1, . . . , bn.

In particular, gcdL(z) = max{κ ∈ Q | z/κ ∈ L}.
(2) If a ∈ Q>0, then gcdL(az) = a gcdL(z).
(3) We have z ∈ L ⊗Z Z(p) if and only if gcdL(z) ∈ Z(p).
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(4) Let K be a direct Z-summand of L, and suppose that z ∈ K ⊗Z Q. Then
gcdK(z) = gcdL(z).

Proof. Part (1) follows directly from the definition of gcdL, while parts (2) and (3)
follow immediately from part (1).

For part (4), since K is a direct summand of L, it follows that L = K ⊕ K′ for
some submodule K′ of L. With respect to this decomposition, z regarded as an
element of L⊗ZQ is realized as (z, 0). Thus for any κ ∈ Q, (z, 0)/κ = (z/κ, 0), and
in particular gcdK(z) = gcdL(z). �

Remark 2.8.

(1) One can give an alternative definition of gcdL using Lemma 2.7(1), but our
definition makes it clear that gcdL is independent of the basis chosen for L.

(2) The condition that K is a direct summand, instead of merely a submodule,
in Lemma 2.7(4) is necessary. For example, 2Z is a submodule, but not a
direct summand of Z, and for 1 ∈ 2Z ⊗Z Q ∼= Q, we have gcd2Z(1) = 1/2,
while gcdZ(1) = 1.

(3) It is clear from Lemma 2.7(1) that gcdL(z) generalizes the greatest com-
mon divisor of the coefficients of z (which makes sense when the latter are
integers).

Recall Young’s seminormal basis {fs | s ∈ Std(λ)} for the dual Specht module

SQ
λ defined in Theorem 2.3(6).

Lemma 2.9. Let λ 
 n and s ∈ Std(λ). Then gcdZSn
(fs) =

1
ds

for some ds ∈ Z+.
We call ds the denominator of fs.

Proof. By Theorem 2.3(5), ftλ = Ytλσ
−1
λ ∈ ZSn. Thus, since ZSnYtλ is a Z-

summand of ZSn, so is ZSnftλ . Consequently gcdZSn
(fs) = gcdZSnftλ

(fs) by

Lemma 2.7(4). Using the QSn-isomorphism φ in Proposition 2.5(4), we have
φ(SZ

λ) = ZSnftλ and φ−1(fs) = es +
∑

r�s
brer where br ∈ Q. Thus,

gcdZSnf
tλ
(fs) = gcdSZ

λ
(φ−1(fs)) =

1

ds
,

for some ds ∈ Z+, by Lemma 2.7(1). �

3. Main results

3.1. Comparison of Jantzen filtrations. Keep the notations in Subsection 2.1.
Let G be a connected reductive algebraic group over F, obtained from a split con-
nected reductive group GZ. Let λ and μ be dominant integral weights. The canon-
ical G-morphism

ιλ,μ : Δ(λ+ μ) → Δ(λ)⊗Δ(μ)

is characterized by ιλ,μ(ηλ+μ) = ηλ ⊗ ημ, where ην is the highest weight vector
generating the Weyl module Δ(ν) for any dominant integral weight ν. This G-
morphism certainly depends on the choice of the highest weight vectors in the
Weyl modules, but is unique up to scalars. It is injective, and sometimes admits a
splitting ψλ,μ (i.e. a G-morphism satisfying ψλ,μ ◦ ιλ,μ = id). We say that ψλ,μ is
defined over Z(p) if ψλ,μ is induced from a GZ(p)

-morphism

ψ
Z(p)

λ,μ : ΔZ(p)
(λ)⊗ΔZ(p)

(μ) → ΔZ(p)
(λ+ μ).

By abusing notation, we shall also write ψλ,μ for ψ
Z(p)

λ,μ in what follows.
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As our first main result which also serves as a motivation to the study of the
split condition for ιλ,μ, we have the following result that compares the Jantzen
filtrations of ΔZ(p)

(λ) and ΔZ(p)
(λ+ μ).

Theorem 3.1. Let G be a connected reductive algebraic group over F, obtained from
a split connected reductive group GZ. Let λ and μ be dominant integral weights. If
the canonical G-morphism ιλ,μ : Δ(λ+ μ) → Δ(λ) ⊗Δ(μ) admits a splitting ψλ,μ

defined over Z(p), then there are injective Z(p)-linear maps

ψλ,μ ◦ ιλ : ΔZ(p)
(λ)i → ΔZ(p)

(λ+ μ)i

for all i ≥ 0, where ιλ is the map ΔZ(p)
(λ) → ΔZ(p)

(λ)⊗ΔZ(p)
(μ) given by ιλ(x) =

x⊗ ημ, and ημ is the highest weight vector in ΔZ(p)
(μ).

Proof. By assumption, ψλ,μ◦ιλ,μ = id, and so we have the decomposition ΔZ(p)
(λ)⊗

ΔZ(p)
(μ) ∼= ΔZ(p)

(λ+μ)⊕ker(ψλ,μ) as Dist(GZ(p)
)-modules. Recall the contravariant

symmetric bilinear forms cλ, cμ and cλ+μ introduced in Subsection 2.1. The tensor
product cλ ⊗ cμ defines a symmetric bilinear form on ΔZ(p)

(λ) ⊗ ΔZ(p)
(μ). Since

the Cartan involution τ commutes with the comultiplication Δ on Dist(GZ(p)
),

i.e., (τ ⊗ τ )Δ = Δτ , it follows that cλ ⊗ cμ and its restriction to ΔZ(p)
(λ + μ)

are symmetric and contravariant. As a result, cλ ⊗ cμ coincides with cλ+μ on
ΔZ(p)

(λ+ μ) as

(cλ⊗cμ)(ιλ,μ(ηλ+μ), ιλ,μ(ηλ+μ))=(cλ⊗cμ)(ηλ⊗ημ, ηλ⊗ημ)=cλ(ηλ, ηλ)cμ(ημ, ημ)=1.

We claim that (cλ ⊗ cμ)(ιλ,μ(uηλ+μ), w) = 0 for any u ∈ Dist(GZ(p)
) and w ∈

ker(ψλ,μ). Indeed, λ+ μ is the highest weight in both ΔZ(p)
(λ+ μ) and ΔZ(p)

(λ)⊗
ΔZ(p)

(μ), and the corresponding weight spaces are of rank one. It follows that all

weights in ker(ψλ,μ) are strictly smaller than λ+ μ, and thus

(cλ ⊗ cμ)(ηλ ⊗ ημ, ker(ψλ,μ)) = 0.

So, for any u ∈ Dist(GZ(p)
) and w ∈ ker(ψλ,μ), we have

(cλ⊗cμ)(ιλ,μ(uηλ+μ), w) = (cλ⊗cμ)(u·(ηλ⊗ημ), w) = (cλ⊗cμ)(ηλ⊗ημ, τ (u)w) = 0.

Now for uηλ ∈ ΔZ(p)
(λ), we have ιλ(uηλ) = uηλ ⊗ ημ = ιλ,μψλ,μ(uηλ ⊗ ημ) + w

for some w ∈ ker(ψλ,μ), and for any u′ηλ+μ ∈ ΔZ(p)
(λ+ μ), using the claim above,

cλ+μ(ψλ,μιλ(uηλ), u
′ηλ+μ) = (cλ ⊗ cμ)(ιλ,μψλ,μιλ(uηλ), ιλ,μ(u

′ηλ+μ))

= (cλ ⊗ cμ)(ιλ,μψλ,μ(uηλ ⊗ ημ), ιλ,μ(u
′ηλ+μ))

= (cλ ⊗ cμ)(ιλ(uηλ), ιλ,μ(u
′ηλ+μ))

= (cλ ⊗ cμ)(uηλ ⊗ ημ, u
′(ηλ ⊗ ημ))

= cλ(uηλ, u
′ηλ).

Consequently, if uηλ ∈ ΔZ(p)
(λ)i, then ψλ,μιλ(uηλ) ∈ ΔZ(p)

(λ + μ)i. It remains

to show that ψλ,μιλ : ΔZ(p)
(λ) → ΔZ(p)

(λ + μ) is injective, i.e., ψλ,μιλ(uηλ) �= 0

for uηλ �= 0. We may take u′ηλ ∈ ΔZ(p)
(λ) for some u′ ∈ Dist(GZ(p)

) such that

cλ(uηλ, u
′ηλ) �= 0. Here we use the fact that cλ is non-degenerate over the field

of fractions of Z(p). Then the identity above reads cλ+μ(ψλ,μιλ(uηλ), u
′ηλ+μ) =

cλ(uηλ, u
′ηλ) �= 0. So ψλ,μιλ(uηλ) �= 0 as desired. �
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Remark 3.2. The injective Z(p)-linear map ψλ,μιλ : ΔZ(p)
(λ)i → ΔZ(p)

(λ + μ)i

clearly induces an F-linear map Δ(λ)i → Δ(λ+μ)i. But the latter is not necessarily
injective. For example, when p = 3, the canonical SL2(F)-morphism Δ(5) →
Δ(3) ⊗ Δ(2) admits a splitting ψ3,2 defined over Z(3) by Theorem 3.8 (here the
weight nω, where ω is the unique fundamental weight of SL2(F), is denoted simply
by n). In ΔZ(3)

(3)⊗ΔZ(3)
(2), we have

fαη3 ⊗ η2 = 3
5fα(η3 ⊗ η2) + (− 3

5η2 ⊗ fαη2 +
2
5fαη3 ⊗ η2).

Therefore, ψ3,2(fαη3⊗η2) =
3
5fαη5. In particular, the image of fαη3 under ψ3,2◦ι3,

in Δ(5), is zero.

We thank H. Andersen for communicating to us the following result, which gives
a necessary split condition for ιλ,μ over F, which is certainly a necessary split
condition for ιλ,μ over Z(p).

Proposition 3.3 (Andersen). Let G be a connected, simply-connected and semisim-
ple algebraic group of rank n over F, and let ω1, . . . , ωn be its fundamental weights.
Let λ =

∑n
i=1 λiωi and μ =

∑n
i=1 μiωi be two dominant integral weights for G.

Then the canonical G-morphism ιλ,μ : Δ(λ+ μ) → Δ(λ)⊗Δ(μ) splits over F only

if p �
(
λi+μi

λi

)
for all i.

Proof. Let UF be the hyperalgebra of G, and for each 1 ≤ i ≤ n, let U i
F be the

F-subalgebra of UF generated by the divided powers e
(m)
αi , f

(m)
αi and

(
hi

m

)
for all

m ∈ Z+. Let Δαi(λ) be the U i
F-submodule of Δ(λ) generated by the highest weight

vector ηλ and let Δαi(μ) and Δαi(λ+ μ) be defined similarly. For each 1 ≤ i ≤ n,
there is a commutative diagram of U i

F-modules as follows, where ϕi is the canonical
morphism:

Δαi(λ+ μ)
ϕi−−−−−→ Δαi(λ)⊗Δαi(μ)

⏐⏐�
⏐⏐�

Δ(λ+ μ)
ιλ,μ−−−−−→ Δ(λ)⊗Δ(μ)

Note that U i
F is canonically isomorphic to the hyperalgebra of SL2(F). Moreover,

under this identification, Δαi(λ) is the same as the Weyl module Δ(λi) for SL2(F),
and ϕi is the same as the canonical SL2(F)-morphism Δ(λi+μi) → Δ(λi)⊗Δ(μi).
Also note that if ιλ,μ admits a splitting ψλ,μ, then the image of Δαi(λ) ⊗Δαi(μ)
under ψλ,μ lies in the U i

F-submodule Δαi(λ + μ) of Δ(λ + μ), i.e., ψλ,μ restricts
down to give a splitting of ϕi. Now by [5, §4.8(12)] (or Proposition 3.4, see later),

ϕi admits a splitting if and only if p �
(
λi+μi

λi

)
, and so ιλ,μ splits only if p �

(
λi+μi

λi

)
for all i. �

In view of Proposition 3.3, we shall refer to the condition p �
(
λi+μi

λi

)
for all i as

Andersen’s condition (on p, for the fixed pair (λ, μ) of dominant integral weights.)

3.2. Split condition for ιλ,μ for type A. The rest of the section is devoted to
the split condition for ιλ,μ when G is the general linear group GLN (F), for which we
are able to relate the split condition to the product of certain Young symmetrizers
and to the denominator of a certain Young’s seminormal basis vector. The weights
λ and μ of G in this subsection are polynomial weights, written as partitions with
at most N parts. We recall first the following result, essentially due to Donkin.
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Proposition 3.4. Let m,n ∈ Z+, and let λ = (m) and μ = (n). The following
statements are equivalent:

(i) ιλ,μ splits over Z(p);
(ii) ιλ,μ splits over F;

(iii) p �
(
m+n
n

)
.

Proof. The equivalence of (ii) and (iii) is proved by Donkin; see [5, §4.8(12)] for its
quantized analogue. As the splitting map constructed by Donkin is defined over
Z(p), this proves that (ii) implies (i). That (i) implies (ii) is obvious. �

Remark 3.5. The splitting of ιλ,μ over Z(p) and over F seems to be intimately
related, as suggested by Proposition 3.4. The former certainly implies the latter,
and we know of no example which shows that the latter does not imply the former.

To state the condition for which ιλ,μ splits over Z(p), we make the following
definition:

Definition 3.6. Let λ 
 n and μ 
 m. Define θλ,μ ∈ Z+ by

θλ,μ := gcdZSn+m
(YtλY(tμ)+nYtλ�tμ).

We first collect together some properties of θλ,μ.

Lemma 3.7. Let λ 
 n, μ 
 m, and let s ∈ T (λ) and t ∈ T (μ). Then

(1) θλ,μ = gcdZSn+m
(YsYt+nYs�t) = gcdZSn+m

([Cs�t]Ys�t{RsRt+n}),
(2) θλ,μ = θμ,λ, and
(3) θλ,μ | hλ+μ.

Proof. Under the anti-automorphism of ZSn+m induced by the inverse operator
on Sn+m, the image of YsYt+nYs�t = {Rs}[Cs]{Rt+n}[Ct+n ]{Rs�t}[Cs�t] is

[Cs�t]{Rs�t}[Ct+n ]{Rt+n}[Cs]{Rs} = [Cs�t]{Rs�t}[Ct+n ][Cs]{Rt+n}{Rs}
= [Cs�t]Ys�t{RsRt+n},

since Cs commutes with {Rt+n}, and Cs�t = CsCt+n . In particular, they have the
same gcd in ZSn+m. This proves the second equality in part (1).

For the first equality in part (1), let h = d(s)d(t)+n ∈ Sn+m, so that s =
h · tλ and t+n = h · (tμ)+n, and hence s � t = h · (tλ � tμ). Thus YsYt+nYs�t =
h(YtλY(tμ)+nYtλ�tμ)h

−1, and so YsYt+nYs�t has the same gcd as YtλY(tμ)+nYtλ�tμ

in ZSn+m.
For part (2), let τ ∈ Sn+m such that τ (i) = i + m if i ≤ n, and τ (i) = i − n

otherwise. Then τ ·s = s+m and τ · t+n = t. Furthermore, τ ·(s� t) is a column-wise
rearrangement of t � s; consequently, Yτ ·(s�t) = Yt�s. Thus τ (YsYt+nYs�t)τ

−1 =
YtYs+mYτ ·(s�t) = YtYs+mYt�s, and so YtYs+mYt�s has the same gcd as YsYt+nYs�t,
giving θλ,μ = θμ,λ.

For part (3), note that Cs�t = CsCt+n , while Rs�t contains RsRt+n . Let Γ be a
left transversal of RsRt+n in Rs�t. Then

Ys�t={Rs�t}[Cs�t]={ΓRsRt+n}[CsCt+n ]={Γ}{Rs}{Rt+n}[Cs][Ct+n ]={Γ}YsYt+n .
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Thus,
hλ+μYs�t = (Ys�t)

2 = {Γ}YsYt+nYs�t,

and so, since {Γ} ∈ ZSn+m and gcdZSn+m
(Ys�t) = 1, we have

gcdZSn+m
(YsYt+nYs�t) | gcdZSn+m

({Γ}YsYt+nYs�t) = gcdZSn+m
(hλ+μYs�t)

= hλ+μ.

�
We now state our result on the split condition for ιλ,μ for type A.

Theorem 3.8. Let λ 
 n, μ 
 m and N ∈ Z+ with N ≥ n + m. The canonical
GLN (F)-morphism ιλ,μ : Δ(λ + μ) → Δ(λ)⊗Δ(μ) admits a splitting defined over

Z(p) if and only if p � hλ+μ

θλ,μ
.

To prove this theorem, we need some preparations. Let GZ = GLN (Z) and EZ

be a free Z-module of rank N with a Z-basis {v1, . . . , vN}. The r-th tensor power
E⊗r

Z is a (ZGZ,ZSr)-bimodule, where Sr acts on the right by place permutation,
with a Z-basis

B := {vf := vf(1) ⊗ · · · ⊗ vf(r) | f : {1, . . . , r} → {1, . . . , N} }.
The right action of Sr on E⊗r

Z restricts to give an action on B via vf · σ = vf◦σ, so
that B is a disjoint union of Sr-orbits. This induces a decomposition of E⊗r

Z into
a direct sum of right ZSr-submodules, where each summand is indexed by an Sr-
orbit. In particular, when N ≥ r, so that each σ ∈ Sr may be viewed as a function
from {1, . . . , r} to {1, . . . , N}, BSr

:= {vσ | σ ∈ Sr} is such an Sr-orbit, and its
Z-span, denoted ZBSr

, is a ZSr-summand of E⊗r
Z isomorphic to ZSr, where vσ is

identified with σ.
Let H be a subgroup of Sr, and define

(E⊗r
Z )H := E⊗r

Z ⊗ZSr
ZSr{H}.

Since E⊗r
Z decomposes, as a right Sr-module, into a direct sum where each sum-

mand is indexed by a Sr-orbit of B, (E⊗r
Z )H decomposes as a Z-module into an

analogous direct sum. We have a GZ-morphism ΦH : (E⊗r
Z )H → E⊗r

Z , defined by

a ⊗ {H} 	→ a{H} for a ∈ E⊗r
Z , which respects the abovementioned decomposi-

tion. When N ≥ r so that ZBSr
is a right Sr-summand of E⊗r

Z , the map ΦH is
injective when restricted to the corresponding summand (ZBSr

)H , and when post-
composed with the isomorphism ZBSr

∼= ZSr, sends (ZBSr
)H bijectively onto

ZSr{H}, which is a Z-summand of ZSr, since ZSr = ZSr{H} ⊕
⊕

σ∈Sr\Γ Zσ,

where Γ is a left transversal of H in Sr.
Let λ be a partition of r of at most N parts and let s be a λ-tableau. Consider

the GZ-morphism:
δZs : E⊗r

Z [Cs] ↪→ E⊗r
Z � (E⊗r

Z )Rs
,

where the second map sends a ∈ E⊗r
Z to a ⊗ {Rs} ∈ (E⊗r

Z )Rs
. Its image Im(δZs )

is isomorphic to the integral dual Weyl module ∇Z(λ) [1, p.219–220], and is a Z-
summand of (E⊗r

Z )Rs
. To describe the highest weight vector in Im(δZs ), let 1s :

{1, . . . , r} → {1, . . . , N} be the function such that 1s(i) = j if the node labelled i
in s lies in its j-th row. Then δZs (v1s [Cs]) is a highest weight vector in Im(δZs ).

All the statements in the previous three paragraphs behave well under base
change, so that we have entirely analogous statements as above, with Z being
replaced by any commutative ring O with 1.
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Proof of Theorem 3.8. Note that ιλ,μ admits a splitting defined over Z(p) if and
only if the canonical GLN (F)-morphism φ : ∇(λ) ⊗ ∇(μ) → ∇(λ + μ) admits a
splitting defined over Z(p).

Let s = tλ and t = tμ. Recall that [Cs�t] = [Cs][Ct+n ], so that E
⊗(n+m)
O [Cs�t] =

E⊗n
O [Cs]⊗E⊗m

O [Ct], for any commutative ring O with 1. Thus we have the following
GZ-morphisms, which are well-behaved under base change:

ζZ : E
⊗(n+m)
Z [Cs�t]

δZs�t−−−→ (E
⊗(n+m)
Z )Rs�t

β−→ E
⊗(n+m)
Z [Cs�t]

ψZ : E
⊗(n+m)
Z [Cs�t]

ζZ−→ E
⊗(n+m)
Z [Cs�t]

= E⊗n
Z [Cs]⊗ E⊗m

Z [Ct]
δZs⊗δZt−−−−→ (E⊗n

Z )Rs
⊗ (E⊗m

Z )Rt

where β(u⊗{Rs�t}) = u{Rs�t}[Cs�t] for u ∈ E
⊗(n+m)
Z , so that ζZ is the same as the

right ‘multiplication’ by Ys�t = {Rs�t}[Cs�t]. Let ψ
′ : Im(δZs�t) → Im(δZs )⊗Im(δZt )

be the map (δZs ⊗ δZt ) ◦ β restricted to Im(δZs�t). Then ψZ = ψ′ ◦ δZs�t, and so ψ′

satisfies, over Q,

ψ′(δQs�t(v1s�t [Cs�t])) = ψQ(v1s�t [Cs�t])

= (δQs ⊗ δQt )(v1s�t [Cs�t]Ys�t)

=
1

|Rs�t|
(δQs ⊗ δQt )(v1s�t{Rs�t}[Cs�t]Ys�t)

=
hλ+μ

|Rs�t|
(δQs ⊗ δQt )(v1s�t{Rs�t}[Cs�t])

= hλ+μ(δQs ⊗ δQt )(v1s�t [Cs�t])

= hλ+μ(δQs (v1s [Cs])⊗ δQt (v1t [Ct]))

= hλ+μ(δZs (v1s [Cs])⊗ δZt (v1t [Ct]))

where the third equality holds since Rs�t is the stabilizer of v1s�t , and the fourth

follows since Y 2
s�t = hλ+μYs�t, see Subsection 2.3.

Assume that φ admits a splitting ξ defined over Z(p). Identify ∇Z(p)
(λ + μ) ∼=

Im(δ
Z(p)

s�t ), ∇Z(p)
(λ) ∼= Im(δ

Z(p)
s ) and ∇Z(p)

(μ) ∼= Im(δ
Z(p)

t ). Under these identifica-
tions the splitting map ξ of φ satisfies

ξ(δ
Z(p)

s�t (v1s�t [Cs�t])) = δ
Z(p)
s (v1s [Cs])⊗ δ

Z(p)

t (v1t [Ct]) = δZs (v1s [Cs])⊗ δZt (v1t [Ct]).

Since dimQ HomGLN (Q)(∇Q(λ+μ),∇Q(λ)⊗∇Q(μ)) = 1, we must have ψ′ = hλ+μξ.
To proceed, note that N ≥ n +m implies that elements of Sn+m may be viewed
as functions from {1, . . . , n + m} to {1, . . . , N}. Let ω be the identity element in
Sn+m, viewed in this way. Then, since

ψ′(δQs�t(vω[Cs�t])) = (δQs ⊗ δQt )(vω[Cs�t]Ys�t) = (vω[Cs�t]Ys�t)⊗ {RsRt+n},
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we have, by Lemmas 2.7(4) and 3.7(1),

gcdL1
(ψ′(δQs�t(vω[Cs�t]))) = gcdL2

(vω[Cs�t]Ys�t ⊗ {RsRt+n})
= gcdL3

(vω[Cs�t]Ys�t ⊗ {RsRt+n})
= gcdZSn+m{RsRt+n}([Cs�t]Ys�t{RsRt+n})
= gcdZSn+m

([Cs�t]Ys�t{RsRt+n}) = θλ,μ,

where L1 := Im(δZs ⊗ δZt ) is a Z-summand of L2 := (E
⊗(n+m)
Z )RsRt+n , which

also has another Z-summand L3 := (ZBSn+m
)RsRt+n that is Z-isomorphic to

ZSn+m{RsRt+n}, a Z-summand of ZSn+m. Since ψ′ = hλ+μξ, and ξ is defined
over Z(p), we thus have

θλ,μ
hλ+μ

=
1

hλ+μ
gcdL1

(ψ′(δQs�t(vω[Cs�t]))) = gcdL1
(ξ(δ

Z(p)

s�t (vω[Cs�t]))) ∈ Z(p).

In particular, since θλ,μ | hλ+μ by Lemma 3.7(3), we must have p � hλ+μ

θλ,μ
.

Conversely, suppose that p � hλ+μ

θλ,μ
, or equivalently,

θλ,μ

hλ,μ ∈ Z(p). For each vf ∈ B,
there exists gf ∈ ZGZ such that gf (vω) = vf , where ω continues to denote the
identity of Sn+m, viewed as a function from {1, . . . , n+m} → {1, . . . , N}. Thus,

gcdL1
(ψ′(δQs�t(vf [Cs�t]))) = gcdL1

(ψ′(δQs�t(gf (vω)[Cs�t])))

= gcdL1
(gf (ψ

′(δQs�t(vω[Cs�t])))),

which is an integer multiple of gcdL1
(ψ′(δQs�t(vω[Cs�t]))) = θλ,μ, since gf ∈ ZGZ

stabilizes L1. Consequently,

gcdL1
(

ψ′

hλ+μ
(δQs�t(vf [Cs�t]))) =

gcdL1
(ψ′(δQs�t(vf [Cs�t])))

θλ,μ

θλ,μ
hλ,μ

∈ Z
θλ,μ
hλ,μ

⊆ Z(p).

Therefore, ψ′

hλ+μ is defined over Z(p), and, as we have seen above, is a splitting map
for φ. �

Without the assumption N ≥ n+m in the above theorem, we get the following
partial result.

Corollary 3.9. Let N be a natural number, and let λ 
 n and μ 
 m be parti-

tions of at most N parts. If p � hλ+μ

θλ,μ
, then the canonical GLN (F)-morphism ιλ,μ :

Δ(λ+ μ) → Δ(λ)⊗Δ(μ) admits a splitting defined over Z(p).

Proof. Suppose that p � hλ+μ

θλ,μ
. If N ≥ n + m, then the statement follows from

Theorem 3.8. If N < n + m, then let N ′ = n + m and, by Theorem 3.8, the
canonical GLN ′(F)-morphism ΔN ′(λ + μ) → ΔN ′(λ) ⊗ΔN ′(μ) admits a splitting
defined over Z(p) (here we put the subscript N ′ to emphasize that ΔN ′(λ),ΔN ′(μ)
and ΔN ′(λ+ μ) are Weyl modules for GLN ′(F)). Now applying the Schur functor
dN ′,N from polynomial representations of GLN ′(F) to polynomial representations of
GLN (F) (see [9, §6.5]), we deduce that the canonical GLN (F)-morphism Δ(λ+μ) →
Δ(λ)⊗Δ(μ) also admits a splitting defined over Z(p). �

Example 3.10. The following examples in type A show that Andersen’s condition
is generally not sufficient for ιλ,μ to split (over Z(p)), and in the case N < n +m,

the condition p � hλ+μ

θλ,μ
is not always necessary. Note that for a polynomial weight
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(λ1, . . . , λr) (with r ≤ N) of GLN (F), its associated dominant integral weight for
SLN (F) is (λ1 − λ2)ω1 + · · · + (λN−1 − λN )ωN−1, where ω1, . . . , ωN−1 are the
fundamental weights of SLN (F) and λi is set to be zero if i > r.

(1) λ = (1, 1), μ = (1, 0): In this case, Andersen’s condition is empty (re-

gardless of N), while p � hλ+μ

θλ,μ
yields p �= 3. When N = 2, Δ(λ) is

the one-dimensional determinant representation for GL2(F) and so, ιλ,μ :
Δ(λ + μ) → Δ(λ) ⊗ Δ(μ) is the canonical isomorphism, and thus splits
over Z(p) for all p, showing that the condition p �= 3 is not necessary. If
N ≥ 3, ιλ,μ splits over Z(p) if and only if p �= 3, as predicted by Theorem
3.8, showing that Andersen’s condition is insufficient.

(2) λ = (1, 1), μ = (4, 2): In this case, Andersen’s condition is empty forN = 2,

and is p �= 3 for N ≥ 3, while p � hλ+μ

θλ,μ
yields p /∈ {2, 3}. Once again, when

N = 2, Δ(λ) is the one-dimensional determinant representation for GL2(F),
and so ιλ,μ splits over Z(p) for all p, show that the condition p /∈ {2, 3} is
unnecessary. For N ≥ 3, we found by brute force that ιλ,μ splits over Z(p)

if and only if p /∈ {2, 3}, showing once again that Andersen’s condition is
insufficient.

We also have a result analogous to Theorem 3.8 for the symmetric groups.

Proposition 3.11. Let λ, μ be partitions of n and m respectively. Then the canon-

ical FSn+m-morphism jλ,μ : SF
λ+μ → Ind

Sn+m

Sn×Sm
(SF

λ�SF
μ) admits a splitting defined

over Z(p) if and only if p � hλ+μ

θλ,μ
. Here, we identify Sn × Sm with the subgroup

SnS
+n
m of Sn+m.

Proof. Let s ∈ T (λ) and t ∈ T (μ). Recall that the dual Specht modules SO
λ and SO

μ

(over any commutative ground ring O with 1) may be realized as left ideals of the
symmetric group rings generated by the Young symmetrizers Ys and Yt respectively.

The induced module Ind
Sn+m

Sn×Sm
(SO

λ � SO
μ ) may then be realized as the left ideal

generated by YsYt+n . As shown in the proof of Lemma 3.7,

Ys�t = {Γ}YsYt+n ∈ OSn+mYsYt+n

where Γ is a left transversal of RsRt+n in Rs�t. As such, the left ideal in OSn+m

generated by YsYt+n , namely Ind
Sn+m

Sn×Sm
(SO

λ � SO
μ ), contains SO

λ+μ which is gen-
erated by Ys�t. Under this realisation, the canonical OSn+m-morphism jλ,μ :

SO
λ+μ → Ind

Sn+m

Sn×Sm
(SO

λ � SO
μ ) is the inclusion map.

Let χ : Ind
Sn+m

Sn×Sm
(SQ

λ � SQ
μ ) → SQ

λ+μ be a nonzero QSn+m-morphism, which

exists since QSn+m is semisimple. Then χ(YsYt+n) = αYs�t for some α ∈ QSn+m.
We evaluate χ(YsYt+n(YsYt+n)) in two ways. Firstly,

χ(YsYt+n(YsYt+n)) = χ((Ys)
2(Yt+n)2)) = hλhμχ(YsYt+n) = hλhμ(αYs�t).

On the other hand, we also have

χ(YsYt+n(YsYt+n)) = YsYt+nχ(YsYt+n)

= YsYt+nαYs�t

= {Rs}{Rt+n}[Cs][Ct+n ]α{Rs�t}[Cs�t].

Since [Cs][Ct+n ]σ{Rs�t} = [Cs�t]σ{Rs�t} ∈ {0,±[Cs�t]{Rs�t}} for all σ ∈ Sn+m

by [11, Lemma 4.6], we have [Cs][Ct+n ]α{Rs�t} = z[Cs][Ct+n ]{Rs�t} for some
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z ∈ Q, and hence, continuing with the second evaluation, we get

χ(YsYt+n(YsYt+n)) = zYsYt+nYs�t.

Equating the two evaluations, we have, for y := z/(hλhμ) ∈ Q,

yYsYt+nYs�t = αYs�t = χ(YsYt+n).

Thus,

χ(Ys�t)=χ({Γ}YsYt+n)={Γ}χ(YsYt+n)={Γ}yYsYt+nYs�t=y(Ys�t)
2=y hλ+μYs�t.

Now, χ is a splitting map for the inclusion map jλ,μ if, and only if, χ(Ys�t) = Ys�t,
i.e. y = 1

hλ+μ . Now this splitting map is defined over Z(p) if and only if

S
Z(p)

λ+μ = Z(p)Sn+mYs�t � χ(YsYt+n) =
1

hλ+μ
YsYt+nYs�t,

i.e. Z(p) � gcdZSn+mYs�t
( 1
hλ+μYsYt+nYs�t) = 1

hλ+μ gcdZSn+m
(YsYt+nYs�t) =

θλ,μ

hλ+μ ,

or equivalently, p � hλ+μ

θλ,μ
; here, we have used the fact that ZSn+mYs�t is a Z-

summand of ZSn+m and Lemmas 2.7(2),(4) and 3.7(1). �

Remark 3.12. Theorem 3.8 and Proposition 3.11 appears to be intimately related,
but we are unable to immediately prove one using the other. To be sure, one can
certainly apply the Schur functor to Theorem 3.8 to deduce immediately the re-
verse direction of Proposition 3.11, but the forward direction does not seem to be
obtainable in this way due to the lack of inverse Schur functor in general. More
precisely, the Hom spaces HomGLN (F)(X,Y ) and HomFSn+m

(fX, fY ) for polyno-
mial GLN (F)-modules X and Y are not necessarily isomorphic, even when both
X and Y are filtered by Weyl modules (for example, p = 2, X = Δ(3, 14) and
Y = Δ(5, 12)). We note however that, in the case of p ≥ 5, these Hom spaces are
indeed isomorphic [10, Corollary 3.9.2], and using this, one can show that Theorem
3.8 and Proposition 3.11 are equivalent in this case.

Our next result relates θλ,μ to the denominator of ftλ�tμ when the last column of
[λ] is no shorter than the first column of [μ], which is equivalent to either tλ � tμ ∈
Std(λ+ μ) or tλ � tμ = tλ+μ.

Theorem 3.13. Let λ 
 n and μ 
 m, and suppose that the last column of [λ] is
no shorter than the first column of [μ]. Then

θλ,μ =
hλhμ

dtλ�tμ
,

where dtλ�tμ ∈ Z+ is the denominator of ftλ�tμ (see Lemma 2.9).
In particular, ιλ,μ (when N ≥ n+m) and jλ,μ admit a splitting defined over Z(p)

if and only if p �
hλ+μd

tλ�tμ

hλhμ
.

Proof. Let s = tλ and t = tμ. Then s� t = tλ+μ. By Theorem 2.3(5), we have

Ys = γ
tλ

′σλftλ,tλ
;

Yt = γ
tμ

′σμftμ,tμ ;

Ys�t = Ytλ+μ = γ
t(λ+μ)′σλ+μftλ+μ,tλ+μ

.
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Thus, we have, by the various parts of Proposition 2.5 as indicated below,

YsYt+nYs�t

= Yt+nYsYs�t

= γ
tμ

′ γ
tλ

′ γ
t(λ+μ)′ (σμftμ,tμ)

+nσλftλ,tλ
σλ+μftλ+μ,tλ+μ

= γ
tμ

′ γ
tλ

′ γ
t(λ+μ)′ (σμftμ,tμ)

+nσλftλ,tλ

⎛
⎝ftλ+μ,tλ+μ +

∑
r �=tλ+μ

arfr,tλ+μ

⎞
⎠ (by (3))

= γ
tμ

′ γ
tλ

′ γ
t(λ+μ)′ γtλσλσ

+n
μ (ftμ,tμ)

+n

⎛
⎝ftλ�tμ,tλ+μ

+
∑
p �=tμ

atλ�pftλ�p,tλ+μ

⎞
⎠ (by (1))

= γ
tμ

′ γ
tλ

′ γ
t(λ+μ)′ γtλγtμσλσ

+n
μ ftλ�tμ,tλ+μ

(by (2) and Theorem 2.3(3))

= hλhμσλσ
+n
μ ftλ�tμ (by Theorem 2.3(1)).

Thus, we have, by Lemmas 2.7(2) and 2.9,

θλ,μ = gcdZSn+m
(YsYt+nYs�t) = gcdZSn+m

(hλhμσλσ
+n
μ ftλ�tμ)

= hλhμ gcdZSn+m
(ftλ�tμ) =

hλhμ

dtλ�tμ

.

The last assertion now follows from Theorem 3.8 and Proposition 3.11. �

Since dtλ�tμ ∈ Z+ by Lemma 2.9, we have the following immediately corollary,
when combined with Lemma 3.7(3).

Corollary 3.14. Suppose that the last column of [λ] is no shorter than the first
column of [μ]. Then θλ,μ | gcd(hλhμ, hλ+μ).

4. Some examples

Perhaps to be expected, the computation of θλ,μ is difficult in general. The
only work (of which we are aware) that relates to the computation of YsYt+nYs�t

is by Raicu [18, Theorem 1.2], in which he provides a simplified way of evaluating
YsYt+nYs�t when t is the unique (1)-tableau. However, it is not clear how one can
deduce θλ,(1) immediately from his result.

In this concluding section, we provide closed formulas for θλ,μ for two ‘easy’
cases, in which we compute explicitly the product YtλY(tμ)+nYtλ�tμ and obtain the
greatest common divisor of its coefficients.

We shall use the following notation in this section: for a, b ∈ Z with a ≤ b, we
write [a, b] for the integer interval between a and b (both inclusive), i.e.

[a, b] := {c ∈ Z | a ≤ c ≤ b}.

4.1. The case λ = (1n) and μ = (m). We have Ytλ = [Sn], Ytμ = {Sm} and
Ytλ�tμ = {S{1}∪[n+1,n+m]}[Sn]. Let γ0 = 1Sn+m

, the identity of Sn+m, and let

γi = (1, n+ i) for all 1 ≤ i ≤ m. Then Γ := {γ0, . . . , γm} is a transversal of S+n
m in

S{1}∪[n+1,n+m]. Thus,

YtλY(tμ)+nYtλ�tμ = [Sn]{S+n
m }{S{1}∪[n+1,n+m]}[Sn]

=
∑

σ1,σ2∈Sn
τ1,τ2∈Sm

m∑
i=0

sgn(σ1σ2)σ1τ
+n
1 γiτ

+n
2 σ2.
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Write YtλY(tμ)+nYtλ�tμ =
∑

ρ∈Sn+m
cρρ; then cρ =

∑
sgn(σ1σ2) where the sum

runs over all σ1, σ2 ∈ Sn, τ1, τ2 ∈ Sm and γi ∈ Γ such that σ1τ
+n
1 γiτ

+n
2 σ2 = ρ.

Fix i ∈ [1,m], and let H = S[2,n] and Ki = S[n+1,n+m]\{n+i}. For a ∈ [1, n] and
b ∈ [1,m], define αa = (1, a) and βb = (n+ i, n+ b) (where (1, 1) and (n+ i, n+ i)
are to be read as 1Sn+m

). Then {α1, . . . , αn} is a transversal of H in Sn while
{β1, . . . , βm} is a transversal of Ki in S+n

m , so that

SnS
+n
m γiS

+n
m Sn =

n⋃
a=1

m⋃
b=1

SnβbKiγiS
+n
m Hαa.

Furthermore, we clearly have

Ca,b := SnβbKiγiS
+n
m Hαa ⊆ {ρ ∈ Sn+m | ρ([1, n] \ {a}) ⊆ [1, n], ρ(a) = n+ b};

in particular, the Ca,b’s are pairwise disjoint. We claim that the above inequality
is in fact an equality. If ρ ∈ Sn+m such that ρ(j) ∈ [1, n] for all j ∈ [1, n] \ {a},
and ρ(a) = n + b, let a′ ∈ [1, n] be the unique element such that a′ /∈ ρ([1, n]).
Then γiβbαa′ραa ∈ Sn+m sends [1, n] to [1, n], and fixes 1, so that γiβbαa′ραa =
τ+n
ρ,i hρ,i for some unique hρ,i ∈ H and τρ,i ∈ Sm. Thus, ρ = αa′βbγiτ

+n
ρ,i hρ,iαa ∈

SnβbKiγiS
+n
m Hαa. This proves the claim. In particular, this justifies our notation

Ca,b which is independent of i ∈ [1,m]. Now, let ρ ∈ Ca,b. Then we have seen
above that there exist unique a′ ∈ [1, n], hρ,i ∈ H and τρ,i ∈ Sm such that ρ =
αa′βbγiτ

+n
ρ,i hρ,iαa. For any σ ∈ Sn, κ ∈ Ki, τ ∈ Sm and h ∈ H, we have

αa′βbγiτ
+n
ρ,i hρ,iαa = ρ = σβbκγiτ

+nhαa

⇐⇒ αa′γiτ
+n
ρ,i hρ,i = σκγiτ

+nh

⇐⇒ αa′hρ,iγiτ
+n
ρ,i = σhγiκτ

+n

⇐⇒ (σh)−1αa′hρ,i = γi(κ(ττ
−1
ρ,i )

+n)γ−1
i

⇐⇒ (σh)−1αa′hρ,i = γi(κ(ττ
−1
ρ,i )

+n)γ−1
i = 1Sn+m

⇐⇒ σ = αa′hρ,ih
−1 and τ+n = κτ+n

ρ,i ,

where the penultimate line holds because the lefthand side of the previous line
has support a subset of [1, n] while the righthand side has support a subset of
{1} ∪ [n+ 1, n+m]. Thus, exactly |Ki||H| = (m− 1)!(n− 1)! such quadruples will
contribute to cρ, with each contributing sgn(σhαa) = sgn(αa′hρ,iαa) = sgn(hρ,i).

For i, j ∈ [1,m] and ρ ∈ Ca,b, we have αa′βbγiτ
+n
ρ,i hρ,iαa=ρ=αa′βbγjτ

+n
ρ,j hρ,jαa,

giving hρ,ih
−1
ρ,j = (τ−1

ρ,i )
+nγiγjτ

+n
ρ,j , which has to be the identity since the two ex-

pressions have disjoint support. Thus, hρ,i = hρ,j , which we shall now denote as hρ.
Since, for each i ∈ [1,m], we have exactly m!(n− 1)! contributions to cρ, with each
contributing sgn(hρ,i) = sgn(hρ), and since SnS

+n
m γ0S

+n
m Sn = SnS

+n
m is disjoint

from the Ca,b’s, we conclude that cρ = m!(n− 1)! sgn(hρ).
Finally, for ρ ∈ SnS

+n
m , and σ1, σ2 ∈ Sn and τ1, τ2 ∈ Sm, we have

ρ = σ1τ
+n
1 τ+n

2 σ2 ⇐⇒ σ1σ2 = σρ and τ1τ2 = τρ,

where σρ ∈ Sn and τρ ∈ Sm are the unique elements such that ρ = σρτ
+n
ρ . Thus,

there are exactly |Sn||Sm| = n!m! contributions to cρ, with each contributing
sgn(σ1σ2) = sgn(σρ).
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We have therefore shown that:

Proposition 4.1. Let λ = (1n) and μ = (m). Then

YtλY(tμ)+nYtλ�tμ =
∑

ρ∈SnS
+n
m

m!n! sgn(σρ)ρ+

n∑
a=1

m∑
b=1

∑
ρ∈Ca,b

m!(n− 1)! sgn(hρ)ρ.

In particular, θ(1n),(m) = m!(n− 1)!.

We thus conclude from Proposition 4.1, Theorem 3.8 and Proposition 3.11 that
ι(1n),(m) (when N ≥ n+m) and j(1n),(m) admit a splitting defined over Z(p) if and

only if p � h(m+1,1n−1)

m!(n−1)! = n+m.

Remark 4.2. It is perhaps not surprising that p � (n+m) is sufficient for the splitting
of ι(1n),(m), as one may draw the same conclusion by considering the Weyl filtration
of Δ(λ) ⊗ Δ(μ) obtained from the Littlewood-Richardson’s rule and the block(s)
in which the Weyl factors, in particular Δ(λ + μ), lie. Our results show that the
condition is also necessary, which agrees with [8, Theorem 1.4(i)(c)].

4.2. The case λ = (k, �) and μ = (m). Let s = tλ and t = tμ, and let

A1 := [1, k]; A2 := [k + 1, k + �]; A3 := [k + �+ 1, k + �+m].

Then Cs�t = Cs = 〈(j − k, j) | j ∈ A2〉, an elementary Abelian 2-group of rank �,
which implies in particular that κ = κ−1 for all κ ∈ Cs, a fact that we shall use
repeatedly in what follows without further comment, while Rs�t = SA1∪A3

SA2
.

Denote the subgroup RsRt+(k+�) = SkS
+k
� S

+(k+�)
m = SA1

SA2
SA3

by Rs×t. Then

YsYt+(k+�)Ys�t={Rs}[Cs]{Rt+(k+�)}[Ct+(k+�) ]{Rs�t}[Cs�t]={Rs×t}[Cs]{Rs�t}[Cs].

Let m : Rs×t × Cs × Rs�t × Cs → Sk+�+m be defined by m(ρ, κ, ρ′, κ′) = ρκρ′κ′.
Then the image of m is precisely Rs×tCsRs�tCs, and so

YsYt+(k+�)Ys�t =
∑

σ∈Rs×tCsRs�tCs

aσσ,

where

aσ =
∑

(ρ,κ,ρ′,κ′)∈m−1({σ})
sgn(κκ′).

To continue, we will describe Rs×tCsRs�tCs first, then m−1({σ}) for σ ∈
Rs×tCsRs�tCs, and finally compute aσ.

Denote the conjugacy class of Sk+�+m consisting of all permutations having
cycle type (2�, 1k−�+m) by C. There is a unique element of Cs in C, namely πs :=∏

j∈A2
(j − k, j). The symmetric group Sk+�+m acts naturally and transitively

(from the left) on C by conjugation, i.e. g · π = gπg−1 for g ∈ Sk+�+m and π ∈
C. Under this action, the stabilizer of πs is its centralizer in Sk+�+m, namely
Δ2(S�)S[�+1,k]∪A3

Cs, where

Δ2(S�) = {σσ+k | σ ∈ S�}.
Observe also that Rs�t · πs = {

∏
j∈A2

(aj , j) | aj ’s distinct elements of A1 ∪ A3}.

Proposition 4.3. Let σ ∈ Sk+�+m and κ ∈ Cs. Then σ ∈ Rs×tCsRs�tκ if and
only if σκ(A2) ⊆ A1 ∪ A2.
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Proof. The forward direction of the statement is clear.
Conversely, if σκ(A2) ⊆ A1∪A2, then we can find ρ ∈ SA1

such that ρ(σκ(A2)) ⊆
[1, �] ∪ A2. Let τ = (ρσκ)−1. Then τ ([1, �] ∪ A2) contains precisely A2 and � other
integers in A1 ∪ A3. Consider τ · πs =

∏
j∈A2

(τ (j − k), τ (j)). Let

J := {j ∈ A2 | τ (j − k), τ (j) ∈ A2},
J ′ := {j ∈ A2 | τ (j − k), τ (j) /∈ A2}.

Then |J | = |J ′| =: r. Let J = {j1, . . . , jr} and J ′ = {j′1, . . . , j′r}, and let ρ1 =∏r
i=1(ji, j

′
i) ∈ SA2

. Then for each j ∈ A2, exactly one of (τρ1)(j − k) and (τρ1)(j)
lie in A2, so that

(τρ1) · πs =
∏
j∈A2

((τρ1)(j − k), (τρ1)(j)) ∈ Rs�t · πs,

and hence (σκ)−1ρ−1ρ1 = τρ1 ∈ Rs�tStabSk+�+m
(πs) = Rs�tCs. Consequently,

(σκ)−1 ∈ Rs�tCsRs×t as ρ, ρ1 ∈ Rs×t, or equivalently, σκ ∈ Rs×tCsRs�t as desired.
�

The following corollary provides a description for the set Rs×tCsRs�tCs as
promised.

Corollary 4.4. Rs×tCsRs�tCs = {σ ∈ Sk+�+m | {σ(j − k), σ(j)} �⊆ A3 ∀j ∈ A2}.

Proof. That the lefthand side is a subset of the righthand side follows immediately
from Proposition 4.3. For the converse, let σ be an element of the righthand side,
and let κ :=

∏
j∈A2∩σ−1(A3)

(j − k, j) ∈ Cs. Then σκ(j) /∈ A3 for all j ∈ A2, and

thus σ ∈ Rs×tCsRs�tκ ⊆ Rs×tCsRs�tCs by Proposition 4.3. �

Let σ ∈ Rs×tCsRs�tCs. Define

Jσ = {j ∈ A2 | σ(j), σ(j − k) /∈ A3};
J ′
σ = {j ∈ A2 | σ(j) ∈ A3}.

Then σ ∈ Rs×tCsRs�tκ for some κ ∈ Cs if and only if κ = κσ,I :=
∏

j∈I∪J′
σ
(j−k, j)

for some I ⊆ Jσ by Corollary 4.4 and Proposition 4.3. Thus, to describe m−1(σ),
it suffices to consider σκσ,I ∈ Rs×tCsRs�t for various subsets I of Jσ.

For the remainder of this paper, we need the following notation. For σ ∈ Sk+�+m

and i, j ∈ [1, 3], let

Xσ
ij = σ(Ai) ∩Aj .

We record some easy consequences and leave their proofs to the reader as an easy
exercise.

Lemma 4.5.

(1) (a) If ρ ∈ Rs×t, then Xσρ
ij = Xσ

ij and Xρσ
ij = ρ(Xσ

ij) for all i, j ∈ [1, 3].

(b) If ρ′ ∈ Rs�t, then Xσρ′

2j = Xσ
2j and Xρ′σ

i2 = ρ′(Xσ
i2) for all i, j ∈ [1, 3].

(2) Let κ ∈ Cs and J ⊆ A1. The following statements are equivalent:
(a) Xκ

21 = J ;
(b) κ =

∏
j∈J (j, j + k);

(c) Xκ
12 = πs(J) = J+k.

In particular, κ(Xκ
12) = Xκ

21, and sgn(κ) = (−1)|X
κ
12| = (−1)|X

κ
21|.
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Proposition 4.6. Let τ = ρκρ′, where κ ∈ Cs, ρ ∈ Rs×t and ρ′ ∈ Rs�t, and let
ρ1 ∈ Rs×t. Then τ ∈ ρ1CsRs�t if and only if ρ−1

1 ρ(Xκ
12) = (ρ−1

1 ρ(Xκ
21))

+k, in
which case there exist unique κ1 ∈ Cs and ρ′1 ∈ Rs�t such that τ = ρ1κ1ρ

′
1.

In particular,

|{(ρ1, κ1, ρ
′
1) ∈ Rs×t × Cs ×Rs�t | ρ1κ1ρ

′
1 = τ}| = |Xτ

21|!(k − |Xτ
21|)!�!m!.

Proof. If τ = ρ1κ1ρ
′
1 with κ1 ∈ Cs and ρ′1 ∈ Rs�t, then

SA1∪A2
SA3

� κ−1
1 ρ−1

1 ρκ = ρ′1ρ
′−1 ∈ Rs�t = SA1∪A3

SA2

so that κ−1
1 ρ−1

1 ρκ ∈ SA1∪A2
SA3

∩SA1∪A3
SA2

= SA1
SA2

SA3
. In particular, for

all i ∈ Xκ
21, we have ρ−1

1 ρκ(i) ∈ A2 (since κ(i) ∈ A2 and ρ−1
1 ρ ∈ Rs×t) while

κ−1
1 (ρ−1

1 ρκ(i)) ∈ A1 (since i ∈ A1), so that ρ−1
1 ρκ(i) ∈ Xκ1

12 . By Lemma 4.5, we
have |Xκ

21| = |Xτ
21| = |Xκ1

21 | = |Xκ1
12 | and hence Xκ1

12 = ρ−1
1 ρκ(Xκ

21) = ρ−1
1 ρ(Xκ

12);
consequently κ1 =

∏
j∈Xκ

12
(ρ−1

1 ρ(j)− k, ρ−1
1 ρ(j)). In particular, κ1 is unique, and

hence so is ρ′1. Repeating the same argument with Xκ
12 replacing Xκ

21, we also get
Xκ1

21 = ρ−1
1 ρ(Xκ

21). Thus

ρ−1
1 ρ(Xκ

12) = Xκ1
12 = (Xκ1

21 )
+k = (ρ−1

1 ρ(Xκ
21))

+k.

Conversely, if ρ−1
1 ρ(Xκ

12) = (ρ−1
1 ρ(Xκ

21))
+k, let

κ1 =
∏

i∈Xκ
21

(ρ−1
1 ρ(i), ρ−1

1 ρ(i) + k) =
∏

j∈Xκ
12

(ρ−1
1 ρ(j)− k, ρ−1

1 ρ(j)).

Then for j ∈ Xκ
12, we have κ(j) ∈ Xκ

21 by Lemma 4.5(2), so that κ1ρ
−1
1 ρκ(j) =

ρ−1
1 ρκ(j) + k ∈ A2. On the other hand, if j ∈ A2 \ Xκ

12, then κ1ρ
−1
1 ρκ(j) =

κ1(ρ
−1
1 ρ(j)) = ρ−1

1 ρ(j) ∈ A2. Thus, κ1ρ
−1
1 ρκ(A2) = A2, and so κ1ρ

−1
1 ρκ ∈

SA1
SA2

SA3
, and hence κ1ρ

−1
1 τ = κ1ρ

−1
1 ρκρ′ ∈ Rs�t as desired.

Let B1 = ρ(Xκ
21) ⊆ A1 and B2 = ρ(Xκ

12) ⊆ A2. Then |B1| = |B2| = |Xκ
21| =

|Xτ
21| by Lemma 4.5. Suppose that ρ−1

1 = σ1σ2σ3 where σi ∈ SAi
for all i. The

condition ρ−1
1 ρ(Xκ

12) = (ρ−1
1 ρ(Xκ

21))
+k is equivalent to σ2(B2) = (σ1(B1))

+k. For
each pair (σ2, σ3) ∈ SA2

×SA3
,

|{σ1 ∈ A1 | (σ1(B1))
+k = σ2(B2)}| = |Xτ

21|!(k − |Xτ
21|)!.

The last assertion thus follows. �

Lemma 4.7. Let σ ∈ Rs×tCsRs�tCs. If (σ(j − k), σ(j)) ∈ Rs×t for some j ∈ A2,
then aσ = 0.

Proof. The map f : m−1({σ}) → m−1({σ}) defined by

(ρ, κ, ρ′, κ′) 	→ ((σ(j − k), σ(j))ρ, κ, ρ′, κ′(j − k, j))

is a well-defined fixed-point-free involution onm−1({σ}). Furthermore, sgn(κ)sgn(κ′)

=− sgn(κ) sgn(κ′(j−k, j)), so that the contributions by (κ, ρ, κ′, ρ′) and f(κ, ρ, κ′, ρ′)
to aσ cancel out. Thus aσ = 0. �
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Proposition 4.8. Let σ ∈ Rs×tCsRs�tCs such that (σ(j− k), σ(j)) /∈ Rs×t for all
j ∈ A2. Then there exists εσ ∈ {±1} such that sgn(κκ′) = εσ for all (ρ, κ, ρ′, κ′) ∈
m−1({σ}).

Proof. We assume first that Xσ
21 = σ(A2) ∩ A1 = ∅. Let (ρ, κ, ρ′, κ′) ∈ m−1({σ}).

Then σκ′ = ρκρ′, and so Xσκ′

21 = Xρκρ′

21 = ρ(Xκ
21) by Lemma 4.5(1). On the other

hand, by Lemma 4.5(2),

Xσκ′

21 = (σκ′)(A2) ∩A1 = (σκ′)(Xκ′

12 ∪ (A2 \Xκ′

12)) ∩A1

= (σ(Xκ′

21) ∪ σ(A2 \Xκ′

12)) ∩ A1 = σ(Xκ′

21) ∩A1,

since σ(A2) ∩ A1 = ∅.

We claim that σ(Xκ′

21) \ Xσκ′

21 = σ([1, �]) ∩ A2. Firstly, for i ∈ Xκ′

21, we have
i ∈ [1, �], and σ(i) = σκ′(κ′(i)) ∈ A1 ∪ A2 by Proposition 4.3, since κ′(i) ∈ A2.

If σ(i) ∈ A1, then σ(i) ∈ σ(Xκ′

21) ∩ A1 = Xσκ′

21 . Thus, for i ∈ Xκ′

21 such that

σ(i) �∈ Xσκ′

21 , we have σ(i) ∈ A2 and hence σ(i) ∈ σ([1, �]) ∩ A2. Conversely, if
i′ ∈ [1, �] ∩ σ−1(A2), then σ(i′) ∈ A2. Since σ(A2) ∩ A1 = ∅ (our assumption) and
(σ(i′), σ(i′+k)) /∈ Rs×t (the condition in the proposition), we must have σ(i′+k) ∈
A3. But by Proposition 4.3, we have σκ′(i′ + k) /∈ A3, and so κ′(i′ + k) �= i′ + k.

Thus, by Lemma 4.5(2), i′+k ∈ Xκ′

12 and σ(i′) = σκ′(i′+k) ∈ σ(Xκ′

21). Furthermore,

since σ(i′) ∈ A2, we have σ(i
′) /∈ Xσκ′

21 ⊆ A1, and the proof of the claim is complete.

Since ρ(Xκ
21) = Xσκ′

21 ⊆ σ(Xκ′

21), we conclude from the above that |Xκ′

21|−|Xκ
21| =

|σ([1, �]) ∩A2|. Let εσ = (−1)|σ([1,�])∩A2|. Then, by Lemma 4.5(2),

sgn(κκ′) = (−1)|X
κ′
21 |−|Xκ

21| = (−1)|σ([1,�])∩A2| = εσ.

For general σ, let κ′′ =
∏

j∈A2∩σ−1(A1)
(j − k, j) ∈ Cs, and let σ0 = σκ′′. Then

for all j ∈ A2, if σ(j) /∈ A1, then σ0(j) = σ(j) /∈ A1, while if σ(j) ∈ A1, then
σ0(j) = σκ′′(j) = σ(j − k) /∈ A1 since (σ(j− k), σ(j)) /∈ Rs×t. Thus σ0(A2)∩A1 =
∅. Furthermore, σ0 ∈ Rs×tCsRs�tCs such that (σ0(j − k), σ0(j)) /∈ Rs�t for
all j ∈ A2. If (ρ, κ, ρ′, κ′) ∈ m−1({σ}), then (ρ, κ, ρ′, κ′κ′′) ∈ m−1({σ0}), and
so sgn(κκ′κ′′) = εσ0

, and hence sgn(κκ′) = sgn(κ′′)εσ0
=: εσ, and the proof is

complete. �

We will need the next result in the proof of Proposition 4.10 later.

Lemma 4.9. Let r, s ∈ Z≥0 with r + s ≤ k. Then

k−r−s∑
i=0

(
k − r − s

i

)
(i+ s)!(k − i− s)! =

(k + 1)!r!s!

(r + s+ 1)!
.

Proof. We prove by induction on k − r − s, where the base case of k − r − s = 0
can be easily verified. Assume therefore that k − r − s > 0. Using the identity(
n
a

)
=

(
n−1
a

)
+

(
n−1
a−1

)
, together with the convention that

(
n
a

)
= 0 if a > n or a < 0,
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we have

LHS =

k−r−s∑
i=0

((
k − r − s− 1

i

)
+

(
k − r − s− 1

i− 1

))
(i+ s)!(k − i− s)!

=

k−r−s−1∑
i=0

(
k − r − s− 1

i

)
(i+ s)!(k − i− s)!

+
k−r−s∑
i=1

(
k − r − s− 1

i− 1

)
(i+ s)!(k − i− s)!

=
k−r−s−1∑

i=0

(
k − r − s− 1

i

)
(i+ s)!(k − i− s)!

+
k−r−s−1∑

i=0

(
k − r − s− 1

i

)
(i+ s+ 1)!(k − i− s− 1)!

=
(k + 1)!(r + 1)!s!

(r + s+ 2)!
+

(k + 1)!r!(s+ 1)!

(r + s+ 2)!

=
(k + 1)!r!s!

(r + s+ 2)!
(r + 1 + s+ 1) =

(k + 1)!r!s!

(r + s+ 1)!
,

where the fourth equality follows from induction hypothesis. �

Proposition 4.10. Let σ ∈ Rs×tCsRs�tCs such that (σ(j − k), σ(j)) /∈ Rs×t for
all j ∈ A2. Let

r = |{i ∈ [�+ 1, k] ∪A3 | σ(i) ∈ A1}|;
s = |{j ∈ A2 | σ(j), σ(j − k) /∈ A2}|.

Then

(1) r ≥ k − � and r + s ≤ min(k, k − �+m);
(2)

aσ = εσ
�!m!(k + 1)!r!s!

(r + s+ 1)!
.

Proof. For each i ∈ [1, 3], let Bi = {a ∈ [1, �] ∪ A2 | σ(a) ∈ Ai}. Then our imposed
condition on σ implies that for each j ∈ A2, at most one of σ(j) and σ(j − k)
may lie in Ai, so that |Bi| ≤ �. Furthermore, for each of the s j’s in A2 for which
σ(j), σ(j− k) /∈ A2, exactly one of σ(j) and σ(j− k) lies in A1, while the other lies
in A3. Thus, there are exactly (|B1| − s) j’s in A2 such that exactly one of σ(j)
and σ(j − k) lies in A1 while the other lies in A2.

(1) There are exactly k i’s from [1, k + � + m] such that σ(i) ∈ A1, and thus
r+ s ≤ k. Exactly |B1| of these i’s lie in [1, �]∪A2, while exactly r of these
i’s lie outside [1, �] ∪ A2. Thus r + |B1| = k, giving r = k − |B1| ≥ k − �.
There are exactly |B1| j’s in A2 for which {σ(j), σ(j − k)} ∩ A1 �= ∅, and
hence exactly � − |B1| j’s in A2 for which σ(j), σ(j − k) /∈ A1, which is
equivalent to having exactly one of σ(j) and σ(j − k) lying in A2 while the
other lying in A3. Consequently, m ≥ |B3| ≥ s+(�−|B1|) = s+�− (k−r),
as desired.
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(2) By Proposition 4.8, we have aσ = εσ|m−1({σ})|. Recall the paragraph right
after Corollary 4.4 that (ρ, κ, ρ′, κ′) ∈ m−1({σ}) if and only if κ′ = κσ,I =∏

j∈I∪J′
σ
(j − k, j) for some I ⊆ Jσ, where Jσ = {j ∈ A2 | σ(j), σ(j − k) /∈

A3} and J ′
σ = {j ∈ A2 | σ(j) ∈ A3}, and that

|{(ρ, κ, ρ′) ∈ Rs×t × Cs ×Rs�t | ρκρ′κσ,I = σ}| = |Xσκσ,I

21 |!(k − |Xσκσ,I

21 |)!�!m!

by Proposition 4.6. We conclude from the above discussion that |Jσ| =
|B1| − s = k − r − s, and that |Xσκσ,I

21 | = s + |{j ∈ Jσ | σκσ,I(j) ∈ A1}|.
Thus, for each i ∈ [0, k − r − s], there are exactly

(
k−r−s

i

)
subsets I of Jσ

such that |Xσκσ,I

21 | = s+ i. Hence,

|m−1({σ})| =
k−r−s∑
i=0

(
k − r − s

i

)
(i+ s)!(k − i− s)!�!m! =

(k + 1)!r!s!

(r + s+ 1)!
�!m!

by Lemma 4.9. �

Lemma 4.11. Let r, s ∈ Z≥0 such that r ≥ k − � and r + s ≤ min(k, k − � +m).
Then there exists σ ∈ Rs×tCsRs�tCs such that (σ(j − k), σ(j)) /∈ Rs×t for all
j ∈ A2, and

r = |{i ∈ [�+ 1, k] ∪ A3 | σ(i) ∈ A1}| and s = |{j ∈ A2 | σ(j), σ(j − k) /∈ A2}|.

Proof. Let ρ′ =
∏r+s−k+�

j=1 (j, k + �+ j) ∈ Rs�t and κ =
∏s

j=1(j, j + k) ∈ Cs. Then

for σ = κρ′, we have

{i ∈ [�+ 1, k] ∪A3 | σ(i) ∈ A1} = [�+ 1, k] ∪ [k + �+ s+ 1, 2�+ s+ r];

{j ∈ A2 | σ(j), σ(j − k) /∈ A2} = [k + 1, k + s].

�

We need the following number theoretic result to express θ(k,�),(m) in a nice
closed form.

Lemma 4.12. Let a, b ∈ Z≥0.

(1) We have
(a+b+1)!

a!b! | lcmZ([a+ 1, a+ b+ 1]).

(2) The following two subsets of positive integers have the same least common
multiple: {

(r+s+1)!
r!s! | r, s ∈ Z≥0, r ≥ a, r + s ≤ a+ b

}
[a+ 1, a+ b+ 1].

Proof.

(1) It suffices to show that vp(
(a+b+1)!

a!b! ) ≤ vp(lcmZ([a + 1, a + b + 1])) for any

prime integer p. We have vp(
(a+b+1)!

a!b! ) = vp((a+ 1)
(
a+b+1
a+1

)
) = vp(a+ 1) +

vp(
(
a+b+1
a+1

)
). Let

a+ 1 =

∞∑
i=0

αip
i and b =

∞∑
i=0

βip
i
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be the p-adic decompositions of a+ 1 and b. Let

I = {i ∈ Z≥0 |
i∑

j=0

(αj + βj)p
j ≥ pi+1}.

By a result of Kummer [14, p.116], we have vp(
(
a+b+1
a+1

)
) = |I|.

If I = ∅, then

vp(
(a+b+1)!

a!b! ) = vp(a+ 1) ≤ vp(lcmZ([a+ 1, a+ b+ 1])).

Assume thus I �= ∅, and let i0 = min(I) and i1 = max(I). Since αj = 0

for all j < vp(a+ 1), we have
∑i

j=0(αj + βj)p
j =

∑i
j=0 βjp

j < pi+1 for all

i < vp(a+ 1), so that i0 ≥ vp(a+ 1). Let c = pi1+1 +
∑∞

i=i1+1 αip
i. Then

c− (a+ 1) = pi1+1 −
∑i1

i=0 αip
i > 0, while

(a+ b+ 1)− c =

∞∑
i=i1+1

βi +

i1∑
j=0

(αj + βj)p
j − pi1+1 ≥ 0

since i1 ∈ I, so that c ∈ [a+ 1, a+ b+ 1]. Thus,

vp(
(a+b+1)!

a!b! )=vp(a+ 1)+vp(
(
a+b+1
a+1

)
) ≤ i0 + |I|
≤ i1 + 1≤vp(c)≤vp(lcmZ([a+ 1, a+ b+ 1]),

and we are done.
(2) Fix a ∈ Z≥0. Let Sb =

{
(r+s+1)!

r!s! | r, s ∈ Z≥0, r ≥ a, r + s ≤ a+ b
}
, and

�b = lcmZ(Sb). We prove by induction on b ∈ Z≥0, with the base case of
b = 0 being trivial. Assume thus that b > 0 and �b−1 = lcmZ([a+1, a+ b]).

When s = 0 we have (r+s+1)!
r!s! = r+ 1. Thus [a+ 1, a+ b+ 1] ⊆ Sb, so that

lcmZ([a+ 1, a+ b+ 1]) | �b.

Conversely, as Sb = Sb−1 ∪ { (a+b+1)!
(a+b−s)!s! | s ∈ [0, b]}, we have, for any x ∈

Sb−1, x | �b−1 = lcmZ([a+ 1, a+ b]) | lcmZ([a+ 1, a+ b+ 1]) by induction,
while

(a+b+1)!
(a+b−s)!s! | lcmZ([a+ b− s+ 1, a+ b+ 1]) | lcmZ([a+ 1, a+ b+ 1])

for all s ∈ [0, b] by part (1), and the proof is complete. �

Theorem 4.13. We have

θ(k,�),(m) =
(k + 1)! �!m!

lcmZ([k − �+ 1, k − �+ 1 +min(�,m)])
.

Proof. By Lemmas 4.7 and 4.11, and Proposition 4.10, we have

θ(k,�),(m) = gcdZ{
�!m!(k+1)!r!s!

(r+s+1)! | r, s ∈ Z≥0, r ≥ k − �, r + s ≤ min(k, k − �+m)}

=
�!m!(k + 1)!

lcmZ{ (r+s+1)!
r!s! | r, s ∈ Z≥0, r ≥ k − �, r + s ≤ k − �+min(�,m)}

=
�!m!(k + 1)!

lcmZ([k − �+ 1, k − �+ 1 +min(�,m)])
,

where the last equality follows from Lemma 4.12(3). �
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Remark 4.14.

(1) Theorem 4.13 in particular provides an alterative proof that statements
(i) and (iii) of Proposition 3.4 are equivalent, which we now demonstrate.
Putting � = 0 in Theorem 4.13, we obtain θ(k),(m) = k!m!, and so by
Theorem 3.8, the canonical GLN (F)-morphism ι(k),(m) splits over Z(p) if

and only if p � h(k+m)

k!m! = (k+m)!
k!m! =

(
k+m
m

)
when N ≥ k + m. When

N < k + m, let MZ(p)
(N, k +m) (respectively, MZ(p)

(k +m, k +m)) de-

note the category of homomogeneous polynomial GLN (Z(p))-modules (re-
spectively, GLk+m(Z(p))-modules) of degree k+m, and consider the ‘trun-
cation’ functor (see, for example, [9, §6.5])

f : MZ(p)
(k +m, k +m) → MZ(p)

(N, k +m).

Let E and Ê be the natural GLN (Z(p))- and GLk+m(Z(p))-modules respec-
tively. The Weyl module ΔZ(p)

(r), for GLN (Z(p)) and GLk+m(Z(p)), is

isomorphic to the divided power DrE and DrÊ respectively, for all r ≥ 1.
Since k + m ≥ 2, both DkÊ ⊗ DmÊ and Dk+mÊ are projective mod-
ules in MZ(p)

(k +m, k +m), while f(DkÊ ⊗ DmÊ) = DkE ⊗ DmE and

f(Dk+mÊ) = Dk+mE are projective modules in MZ(p)
(N, k +m). It fol-

lows that f induces the natural isomorphism

HomMZ(p)
(k+m,k+m)(D

kÊ ⊗DmÊ,Dk+mÊ)

∼= HomMZ(p)
(N,k+m)(f(D

kÊ ⊗DmÊ), f(Dk+mÊ))

= HomMZ(p)
(N,k+m)(D

kE ⊗DmE,Dk+mE).

Thus the canonical morphism Dk+mE → DkE ⊗ DmE splits over Z(p) if

and only if Dk+mÊ → DkÊ ⊗DmÊ splits over Z(p). As a result, ι(k),(m)

splits over Z(p) if and only if p �
(
k+m
k

)
, irrespective of the value of N .

(2) Since hν is the product of all hook lengths in the Young diagram [ν], Corol-
lary 3.14 may suggest to some readers that θλ,μ could be a product of some
subset of hook lengths in [λ+μ] or in [λ]∪[μ], and that furthermore it might
be possible to describe such a subset combinatorially. The appearance of
the least (positive) common multiple of an integer interval in Theorem 4.13
indicates that if this is indeed true, the description of such a subset may
be rather complicated.

(3) After this paper has been submitted, the authors studied Young’s seminor-
mal basis vectors and their denominators, and are able to provide closed
formula for dtλ�tμ directly when μ is a one-row partition and λ is either
a two-row partition or a hook partition. This provides an alternative way
of computing θλ,μ via Theorem 3.13 for the examples listed in this section.
We refer the interested reader to our forthcoming paper [6].
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