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GLOBAL CRYSTAL BASES FOR INTEGRABLE MODULES
OVER A QUANTUM SYMMETRIC PAIR OF TYPE AIII

HIDEYA WATANABE

ABSTRACT. In this paper, we study basic properties of global j-crystal bases
for integrable modules over a quantum symmetric pair coideal subalgebra U7
associated to the Satake diagram of type AIIl without black nodes. Also,
we obtain an intrinsic characterization of the j-crystal bases, whose original
definition is artificial.

1. INTRODUCTION

Let U = Uy(sla,41) be the quantum group over the field Q(g) of rational func-
tions in one variable ¢, and U its coideal subalgebra such that (U, U?) forms
a quantum symmetric pair of type AIIIl in the sense of [Le99]. Bao and Wang
[BW18a] introduced the notion of j-canonical bases for the based U-modules. A
based U-module is a U-module M with a bar-involution 1, and a distinguished
basis B satisfying certain conditions (see [L10] for the precise definition). One of
the key ingredients for the construction of the j-canonical bases is the intertwiner
(also known as the quasi-K-matrix) Y. Using Y, Bao and Wang defined a new
involution 4}, := T o ¢ps on M which is compatible with the bar-involution ¢ on
UY. Then, for each b € B, there exists a unique ¥/ € M such that ¢}, (b)) = &
and & — b € Py ep qQlg]b’, where <7 is a certain partial order on B. Clearly,

b <7b
{V|beB}isa b;sis of M, which is called the j-canonical basis of (M, B).

The multi-parameter version of U7 was considered in [BWWI1§|. Thanks to
the integrality of the intertwiner Y, the notion of j-canonical bases can be de-
fined analogously. The condition &/ —b € @y cp ¢Q[¢]d" is replaced by ¥ — b €

b’ <’b
Dy s (PQlp, ¢, ¢ P qQ[g])V’. The general theory of the j-canonical bases (usually

b <7
calle<d bz—canonical bases) for the general quantum symmetric pairs was developed
in [BW18D)].

In [W17], the author classified all irreducible U7-modules in a category O,
which is an analog of the category Oj, of integrable U-modules, and proved that

O}, is semisimple; the isomorphism classes of irreducible modules in Oy, are classi-

fied by the set P? of bipartitions of length (r;r+1). When the parameters are in the
asymptotic case, to each irreducible module in O, the author associated a local
basis, the j-crystal basis, which is an analog of Kashiwara’s crystal basis. By the
complete reducibility, every object in O}, admits a j-crystal basis. In particular,

each U-module in Oy, regarded as a U’-module, has a j-crystal basis.
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It should be noted that the j-crystal basis of a U-module in Ojy; is the localized
J-canonical basis ([W1T, Section 1.3]). To be precise, let M € Oy with a canonical
basis (or global crystal basis) B. Since (M,B) is a based module, it has a j-
canonical basis {0/ | b € B}. Set L := Span, B, where Ay := {f/g € Q(p,q) |
fr9 € pQlp,q,47 '] ® Qlg], lim,_,o(lim,_0g) # 0}. Then, B:={b +qL | b€ B} is
a Q-basis of L/qL, and (L, B) forms a j-crystal basis of M. Hence, &’ 4+ gL can be
thought of as the localization of ¥’ at p = ¢ = 0. Conversely, we may say that the
J-canonical basis of a based U-module is a globalization of its j-crystal basis.

Here arises a natural question: Does a U’-module in O, that is not a based
U-module admit a globalization of its j-crystal basis? One of the main result of
this paper gives the affirmative answer to this question.

In our strategy, the multi-parameter g-Schur duality between U7 and the Hecke
algebra of type B ([BWWIS]), and the irreducibility of the Kazhdan-Lusztig cell
representations of the asymptotic multi-parameter Hecke algebra of type B ([BI03])
play key roles. Let us recall the latter objects briefly. Kazhdan and Lusztig [KL'7T9]
gave a partition W = Uxcpw)X of a Coxeter group W into the left cells; here,
L(W) denotes the set of left cells. To each left cell X € L(W), they associated
an H-module C% which is called the left cell representation corresponding to X.
The left cell representation C% is defined to be the quotient of a left ideal C<, x
of H spanned by some Kazhdan-Lusztig basis elements by its subspace C<, x,
which is also spanned by some Kazhdan-Lusztig basis elements. Therefore, C’)L(
has a basis consisting of the images of some Kazhdan-Lusztig basis elements under
the canonical map C<, x — C')L(. It is known that each left cell representation is
irreducible if W is of type A. When W is of type B, the irreducibility of the left cell
representations depends on the choice of the parameters p, g. According to [BI03],
the left cell representations are irreducible when the parameters are asymptotic.

By the multi-parameter ¢-Schur duality for type B, the tensor power V®4 of the
vector representation of U is equipped with a (U7, H)-bimodule structure whose
irreducible decomposition is multiplicity free, where H denotes the multi-parameter
Hecke algebra of type B over the field Q(p, ¢) of rational functions in two variables
p,q. Then, for each X € L(W), the left U%-module V& @y C% is irreducible,
where C% = Q(p, q) Ozp1,q+1] C')L(. Every irreducible U7-module can be obtained
in this way as d > 1 varies. The main result of this paper states that the basis of
V@ @y CL induced from the Kazhdan-Lusztig basis of C% is a globalization of
the j-crystal basis.

Our approach provides the following characterization of the j-crystal bases and
its globalization of the finite-dimensional irreducible U’-modules. Let L € O/, b
irreducible and v € L a highest weight vector. Define two symmetric bilinear forms
(-,-)1 and (-,-)2 on L and an involutive anti-linear automorphism ¢ on L by

(v,v)1 =1, (gm,n); = (m,o’(x)n); forallz € U, m,ne L,

(v,v)2 =1, (xm,n)s = (m,7(z)n)y for all x € U/, m,n € L,
Yl (v) = v, Y7 (zm) =’ (x)y] (m) for all z € U',m € L,

where o7, 77, and v’ are automorphisms of U’ defined in Proposition B.1.1l

Theorem A. Let A € P, L(\) the corresponding irreducible U?-module,
(L(X), B(X)) the g-crystal basis of L(X) such that v+ qL(X) € B(X). Then, there
exist G?(b), b € B(A) satisfying the following.
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(1) L) = {m € L(A) | (m,m)s € Ao}.

2) B(A) forms an orthonormal basis of L(X)/qL(X) with respect to the sym-
metric bilinear form induced from (-, ).

(3) Set La(X) = Spana {G?(b) | b € B(N\)}, where A := Qlp,p~',q,q7'].
Then, the triple (L(X), La(X),¥% (L(X))) forms a balanced triple with the
global basis {G7(b) | b€ B(A)}.

(4) L(X) has the basis dual to G?(B(X)) with respect to (-, -)1.

Next, we investigate basic properties of global j-crystal basis for not necessarily
irreducible U’-modules. Especially, we roughly describe the matrix coefficients of
the actions of the generators of U’ with respect to a given global j-crystal basis.

We end this paper by proving that the global j-crystal basis for a U-module (not
U’-module) is compatible with the filtration coming from the dominance order of
the bipartitions (see subsection [0.3] for the definition of this filtration). A similar
result is well-known for ordinary global crystal bases ([K93], [L10]).

Theorem B. Let M be a U-module with a global j-crystal basis G’(B). Then, for
each X € P7, the subquotient Wx(M) of M has {G?(b) + Wox(M) | I(b) = A} as a
global j-crystal basis. Moreover, there exists an isomorphism L(X)®™> — Wy (M)
which restricts to a bijection {G?(b) | b € B(A)}®™> — {G?(b) + W (M) | I(b) =
A}, where my denotes the multiplicity of L(A) in M.

In particular, if we take M to be an irreducible U’-module, we obtain the fol-
lowing.

Corollary C. Let A € P?. Then, {G’(b) | b € B(A)} is a unique global j-crystal
basis for L().

Finally, we mention that the results above are valid for the quantum symmetric
pair (U, U") of type AIV once we define a corresponding category O}, properly.

This paper is organized as follows. In Section Bl we prepare necessary notations
concerning (bi)partitions and Young (bi)tableaux. In Section [ and @ we give a
brief review of [W17]. In Section Bl we introduce the notion of global j-crystal
bases, and show that the j-canonical bases are examples of them. Sections [BHg] are
devoted to proving the existence theorem for the global j-crystal bases of the finite-
dimensional irreducible U’-modules. After studying basic properties of the global
g-crystal bases in Section [ we finally prove the compatibility of the j-crystal bases
and the filtration associated to the dominance order of the bipartitions in Section
L0

2. NOTATIONS

Throughout this paper, we fix a positive integer r. For n € %Z, set n:=n— %
Note that —n = —n + % # —n. We set

I={-r...,—-1,0,1,...;r}, TI:={-r,....,—1,1,...,r}, V:={1,...,r}

A partition of n € N of length [ € N is a nonincreasing sequence A = (A1,..., ;)

of nonnegative integers satisfying 22:1 Ai = n. Let |A] :=n and £(X\) := [, and call
them the size and the length of A, respectively. We denote by Par;(n) the set of
partitions of n of length I.

We often identify a partition with a Young diagram in a usual way. Let (L, <)
be a totally ordered set. A semistandard tableau of shape A € Par;(n) in letters
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L is a filling of the Young diagram A\ with elements of L, which weakly increases
(with respect to the total order <) from left to right along the rows, and strictly
increases from the top to the bottom along the columns.

A bipartition of n € N of length (I;m) € N? is an ordered pair X := (A7;AT) of
partitions such that £(A~) =1, {(AT) = m, and |A| := |A~| + |[AT| = n. We denote
by P;m)(n) the set of bipartitions of n of length (I;m). For totally ordered sets
(L7,=7) and (L*,=7), a semistandard tableau of shape XA € P(,,,)(n) in letters
(L~; L") is an ordered pair T = (T~;T%), where T+ is a semistandard tableau of
shape AT in letters L*.

For partitions p C A, define the skew partition A/p in a usual way. For bipar-
titions pp C A (i.e., p= C A~ and ™ C AT), define the skew bipartition A/p to
be (A~ /pu~; At /ut). A skew partition A\/u is said to be a horizontal strip if each
column of \/u contains at most one box. We say that a skew bipartition A/p is a
horizontal strip if A*/u® are.

Set

P(n) = Py(n) := Para,41(n): the set of partitions of n of length 2r + 1.

P = P, :=|],cy P(n): the set of partitions of length 2r + 1.

Par; := | |, Par;(n): the set of partitions of length /.

PI(n) = P)(n) := Py41,7)(n): the set of bipartitions of n of length (r+1;7).
P71 = Pl:=|],cn P?(n): the set of bipartitions of length (r + 1;7).
SST(A): the set of semistandard tableaux of shape A € P(n) in letters I.
SST(A): the set of semistandard tableaux of shape A € PJ(n) in letters
(I'\I’;17) with total orders 0 <~ —1 <~ --- <~ —rand 1 <t --- <T .

For A € P7, we refer the i-th row of A~ to as the —(i — 1)-th row of A, and the
j-th row of AT to as the j-th row of A. Also, for i € I, set A; to be the length of
the i-th row of A, i.e.,

N o A i<,
N DY if i > 0.

For i e IV, set A |;:= ()\0,)\,1,...,)\,i;Al,...,Ai) S PZJ

For T € SST(A) and i € I7, set T |; to be the semistandard tableau obtained
from T by deleting the boxes whose entries are less than —i or greater than i.

For each A € P7, let Ty € SST(A) be the unique semistandard tableau of shape
A whose entries in the i-th row are ¢. Note that we have Ty |;= Tyj,. For
T € SST(A) and ¢ € I, set T(¢) to be the number of boxes of T whose entries are
i.

Definition 2.0.1.

(1) <is a partial order (called the dominance order) on Par; defined as follows.

For A,y € Par;, we have A < p if

(a) I\l = ] and

(b) S N <Y _jpiforalll <j<lI
(2) < is a partial order (also called the dominance order) on P’ defined as

follows. For A, pu € P’ we have XA = p if

(a) |A] = |pl; }

() S oA <> gp_;foral 0<j<r, and

() AT+ < |p [+ piforall 1 <j<r.
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(3) <is a partial order on P? defined as follows. For A, u € P?, we have A < p
if A X p~ (dominance order on Par,;1) and AT < T (dominance order
on Par,.).

Clearly, A < p implies A < p.

3. REPRESENTATION THEORY OF U’

Let p and ¢ be independent indeterminates.

3.1. Definition of U’. Let A be the free Z-module with a free basis {¢; | i € I},
and with a symmetric bilinear form (-,-) defined by (¢;,¢;) = 6; ;. For i € I, set

Q= € — 6@, Q = ZZO@', Q+ = ZZZOQ’L"

i€l i€l

For A\, u € A, we write p < X if A — u € Q4. This defines a partial order on A.

The quantum group U = Uy,q1 = Uy(slory1) of type Ag, is an associative
algebra over Q(p,q) with generators Ei,Fi,Kiil, i € 1 subject to the following
relations: For i,j € 1,

KK '=K 'K, =1,
K K; = K;K;,
KE;K[ " = ¢ )E,
KiF;K; ' =q (@) F,

K, —K;!
q—q!
E?E; — (q+q YWEE;E; + E;E? =0 if i — j| =1,
FFyj = (q+q WEFF + FF) =0 if i —j] = 1,
EE; —E;E; =0 if|i—j]>1,
FF; — F;F; =0 if [i —j] > 1.

Y

EiFj — FjEl = 61-’]-

In this paper, we use the comultiplication A of U given by

AKPY =K oK, AE)=10E+FE oK,
Let (U, U’) denote the quantum symmetric pair over Q(p, ¢) of type AIII without
black nodes, that is, U? = U/ is the subalgebra of U generated by
kz;tl = (KiK*i)i1>
€; = Ei—f—p_éi’lF_éKz-_l,
fir=E_j+p"K_F, i€l
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The U has the following defining relations ([Le99], see also [BW18a], [BWW18]):
For 7,5 € 7,
kik; ' =k ki =1,
kik; = ki,
kiejk; = gleamasoie,
kifikyt = g (mamnea £
eifj — fiei = 5@]'% if (i,7) # (1, 1),
elej — (q+q Yeieje; +ejel =0 if i —j| =1,
f2fi—(a+ra fififi+ [iff =0 if|i—jl=1,
eie; —eje; =0 if |[i —j] > 1,
fifi—fifi=0 ifli—jl>1,
efi—(g+a Herfier + fred = —(a+q erlpghr +p~ g k),
fler=(a+a HVhefi+eff = =(a+a gk +p ¢ k) fr

Proposition 3.1.1.

(1) [BWI18al, Lemma 6.1 (3)]. There exists a unique Q-algebra automorphism
Y of U7 which maps e;, fi, ki, p,q to ei,fi,kfl,p_l,q_l, respectively.

(2) There exists a unique Q(p,q)-algebra anti-automorphism o of U? which
maps e;, fi, k; to fi,e;, k;, respectively.

(3) [BWI18bl Proposition 4.6]. There exists a unique Q(p, q)-algebra anti-auto-
morphism 17 of U7 which maps e;, f;, k; to p75i71q71ki_1fi, pPitqeik;, ki,
respectively.

Proof. 1t suffices to show that the images of the generators of U7 satisfy the defining
relations of UY; it is straightforward. ]

Remark 3.1.2. We have similar automorphisms on U:

(1) There exists a unique Q-algebra automorphism % of U which maps E;, F;,
Ki;,p,qto E;, F;, K; ', p~t, ¢~ ', respectively.
(2) There exists a unique Q(p, ¢)-algebra anti-automorphism o of U7 which
maps FE;, F;, K; to F;, E;, K;, respectively.
(3) There exists a unique Q(p, ¢)-algebra anti-automorphism 7 of U’ which
maps FE;, F;, K; to quKfl, ¢ 'K;E;, K;, respectively.
Note that 77 is the restriction of 7 [BWI18b, Proposition 4.6], while the others are
not.

Let U(I) denote the subalgebra of U generated by E;, F;, K;—Ll, iel\{1},j el
Note that we have e;, fi,k; € U(I) for all ¢ € I7 \ {1}, j € IV. Note that U(I) is the
quantum group of type A, x A,_1 with weight lattice A.

3.2. Category O .. Let us extend the bilinear form (-,-) on A to Ag := R®yz A.
Set B '=a; —a_;, t € P, and J :={A € Ag | (B;,A) = 0 for all ¢ € I?}. Then,
the induced bilinear form (-,-) : (3o, RBs) x (Ar/J) — R denoted by the same
symbol is nondegenerate. Let 6; € Ag/J be such that (5;,0;) = d; ; for all i, j € I,
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Set AV := 37, Zo;. Let v i= oy +J € M, i €V, and Q) =3, ., Z>ov: C M.

For A\, pp € A7, we write p1 <? X if X\ — € Q.. This defines a partial order on A7,
For a U7-module M and A € A7, we call My := {m € M | kym = ¢\#Mm for all

i € I’} the weight space of M of weight A. The category O is the full subcate-

gory of the category of all U7-modules consisting of U’-modules M satisfying the
following:

M has a weight space decomposition, i.e., M = Py, Max.

Each weight space of M is finite-dimensional.

There exist uy,...,u; € A such that if My # 0, then A <7 p; for some
i=1,...,1.

e The f;’s act on M locally nilpotently.

Theorem 3.2.1 ([W17]). The following hold:
(1) [WIT, Theorem 4.4.3]. O, is semisimple.

(2) W17, Corollary 7.6.3, 7.6.4]. Each irreducible U7-module in O} is iso-
morphic to the irreducible highest weight module L(X) with highest weight
A (in the sense of [W1T]) for some X € P.

(3) For A, € P?, we have L(A) ~ L(p) if and only if A; — p; is constant as
i runs through —r,...,r.

Remark 3.2.2. The last statement follows from the definition of L(A).

For each A € P7, let wt?(A) € A’ denote the weight of a highest weight vector
of L(X), namely,

Wtj()\) = Z()\i,1 — A1 + )‘—(i—l) — )\,1)61
il
Remark 3.2.3. There is an algebra U” that is closely related to U7 (see [BW184]).
It is a coideal subalgebra of U,(sly,) such that the pair (U,(sl.), U*) forms a
quantum symmetric pair of type AIV. As mentioned in the introduction part, the
results in this paper have counterparts for U*. The arguments are parallel except
the definition of the category O, which is the U’-analog of the category O} . The
main difference between U* and U7 is that U® has a distinguished generator ¢. In
the definition of O? ., we have to add the constraint that ¢ acts on each M € O!

int>» int
diagonally with eigenvalues of the form %, a € Z. Then, O!, becomes
semisimple, and the isoclasses of irreducible modules in O, is parametrized by the

int
set of bipartitions of length (r;r).

4. CRYSTAL BASIS THEORY

4.1. Crystal bases. The notion of crystal bases (or local bases at ¢ = 0) for inte-
grable modules over quantum groups was introduced independently by Kashiwara
and Lusztig in different ways ([K90], [L90a]). Although we will not review the
detail, we formulate here some notations concerning the crystal bases. Let Oy, de-
note the full subcategory of the BGG-category O for U consisting of the integrable
modules. Let Ei, E, i € T denote the Kashiwara operators. Let M € Oy, (£, B)
be its crystal basis. For b € B and i € I, set

e:(b) :=max{n | EI'b # 0}, ;(b) := max{n | F"b # 0}.
Also, wt(b) € A denotes the weight of b.
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Recall that, for each A € P, the irreducible module L(\) has a unique crystal
basis (L£(\), B(X)), which is identical to SST()). For each M € Oy with a crystal
basis (£, B), we have a unique irreducible decomposition B = [_|é:1 B;, where B; ~
B(X;) for some A; € P. By retaking \;’s if necessary, we may assume that |\;| —
|A;| <2r+1foralli,je{1,...,1}, and that there exists ¢ such that (A\;)2,41 = 0.
Then, \;’s are uniquely determined; we set P(M) = P.(M) := {A1,...,A\;}. For
b € B, we define I(b) = I,.(b) € P(M) to be X; if b € B;. Also let C(b) = C,.(b) C
B denote the connected component of B containing b. Furthermore, if we write
b=F; - F; by for some iy,...,% € I, where by denotes the highest weight vector
in C(b), then define Ty, € SST(I(b)) by Tj, := Fy, --- F;, Ty, where Ty € SST(I(b))
corresponding to by € C(b) = B(I(b)).

4.2. j-crystal bases. In [W17], the notion of j-crystal bases was introduced. Let
us recall some properties briefly.

Set A :=Q[p,p~ %, q,¢71]. We denote by Ag the subring of Q(p, q) consisting of
all elements of the form f/g with f, g € pQp,q, ¢ '] ® Q[g], limy—0(lim,_0 g) # 0.
Let IV := PU{2',...,7'}. The Kashiwara operators are denoted by ¢; and fiiel.

The following are basic results for the crystal basis theory of U’.

Theorem 4.2.1 ([WI7, Theorem 7.7.3]). Let A € P?, vy € L(\) be a highest
weight vector. Set

L(A) = Spaon{ﬁ1 e ﬁ-lvA |l € Z>o, i1,...,15 € I},

BON) = {fiy + fuva + aLN) |1 € Zo, in,...ir € D} {0},
Then, (L(X),B(N)) is a unique j-crystal basis of L(X). Moreover, B(X) is identical
to SST(A); v + gL(A) € B(X) corresponds to Tx € SST(A).

Theorem 4.2.2. Suppose that M € Oiy has a crystal basis (L,B). Then, as a
U?-module, M has a j-crystal basis whose underlying sets are equal to (L, B).

Proof. This is an easy consequence of [W17, Corollary 7.7.4]. ]

Let M € O}, with a j-crystal basis (£,B). For each b € B and i € 17, define

i(0), i(b), wii(b) € A, PI(M) = PY(M) C P2, P(b) = B(b) € P(M), C(b) =
Ci(b) C B, and T} € SST(I?(b)) in a similar way to Section E1l

5. GLOBAL BASES

5.1. Balanced triples. Let = be the Q-linear automorphism of Q(p, q) sending p
and g to p~! and ¢!, respectively. Set A, := Ag.

Definition 5.1.1. Let V be a Q(p, q)-vector space and x € {0,0,00}. An A -lattice
of V'is a free A -submodule U, of V of rank dimg, ) V' such that Q(p, ¢) ®a, U, =
V.

Definition 5.1.2 ([K93| Definition 2.1.2]). Let V be a Q(p, ¢)-vector space, U, an
A -lattice of V for z € {0,0,00}. The triple (Up, U, Us) is said to be balanced if
the canonical map

UsNUNUyx — Uo/qU()

is an isomorhism of Q-vector spaces.
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Let V be a Q(p, q)-vector space with a balanced triple (U, U, Uy,). Take a Q-
basis B of Uy/qUy. Since we have an isomorphism G : Uy/qUy — Uy N U N Uy of
Q-vector spaces, which is the inverse of the canonical map Uy NU NUs — Uy/qU,
we obtain an A,-basis G(B) = {G(b) | b € B} of U, for each x € {0,0, c0}. We call
G(B) the global basis of V associated to the balanced triple (Uy, U, Us) and the
basis B.

Lemma 5.1.3. Let V,Uy, U, Uy, B, G be as above. Take a subset B C B and set
U, to be the Ay-span of G(B') := {G(b) | b € B'} for each z € {0,0,00}. Also, let
V' be the Q(p, q)-span of G(B'). Then, the following hold:

(1) (UL, U',UL) is a balanced triple with the global basis G(B').

(2) (Up/Us,UJU Uso /UL, is a balanced triple with the global basis {G(b)+V" |

be B\B'}.

5.2. Global crystal bases and global j)-crystal bases. Let Ua denote the A-
subalgebra of U generated by Ei(n), Fi(")7 K i €1, n € Zso. Similaly, define U?,
to be the A-subalgebra of U’ generated by ez(-"), fi("), ki €V, n € Zso.
Lemma 5.2.1 ([L10, 1.3.5]). Let A be a Q(q)-algebra, x,y € A such that zy =
q*yx. Then, for each n € Zg, we have

x—l—y th(n t)|::|

Lemma 5.2.2. We have UA C Ua.

Proof. It suffices to show that egn)vfi(n) € Up forall i € I/, n € Zsg. We
prove egn) € Uj,; the proof for fi(n) € Up is similar. Setting z := E; and
Y= P_&“FfiKgl, we see that

=ty wy=qyr.
Then, we can apply Lemma [5.2.1] and obtain

n
e = 3 Hnty () n=0)
t=0

t(t 1)

It is easy to see that y(*) = p=du1tg=dia F(t)Kt € Ua. Hence, the assertion
follows. 0

Let V be a U-module in Oy (resp., U/-module in O ;) with a crystal basis
(L, B) (resp., g-crystal basis (£, B)). Assume that V' admits a Q-linear involution
~ satisfying the following:

0 =(x)v, foralzeU, veV
(vesp., 7o = ¢ (x)v, forallz € U, veV).

We call such an involution a v-involution (resp., ¥7-involution) on V. Since L is
an Ag-lattice of V, £ is an A-lattice of V.

Definition 5.2.3. Let V, L, B, be as above. V is said to have a global crystal
basis (resp., global j-crystal bams) if there exists a Ua-submodule (resp., U’ -
submodule) Vo of V' which is an A-lattice forming a balanced triple (£, VA,Z).
The associated global basis G(B) (resp., G?(B)) is called a global crystal basis
(resp., global j-crystal basis) of V.
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Example 5.2.4. Let XA € P/ and consider the irreducible Uj-module L(X). Recall
that L(A) is (Ap — A_1 + 1)-dimensional with a basis G7(X) := {fl(n)v [0<n<
Ao —A_1}, where v denotes a highest weight vector. Also, L(A) has a j-crystal basis
(L(A), B(A)), where £(X) is the Ag-span of GI(A), and B(A) = {f™v + qL(N) |
0<n<X —A_1}. Set L(A)a to be the A-span of G7(A). Note that there exists
a unique ¥7-involution ¢} on L(A) fixing v. Then, (L(X), L(A)a, Y3 (L(AN))) is a
balanced triple, and G?(A) is a global j-crystal basis of L(\).

Proposition 5.2.5. Let M € O}, with a global crystal j-crystal basis G’ (Bar),
and N € Oy, with a global crystal basis G(By) Then, M @ N has a global j-crystal
basis of the form

{Gj(bl)OG(bg) ‘ b, € BM, by € BN}
G](bl)OG(bg) S Gj(bl) & G(bg)

/ /
+ E Qb 1,bly5b1,bo Gj(bl) & G(bQ)a Ab'1,b%3b1,ba €A.
by €Bu, bheBN
wt(bh)<wt(b2)

Proof. The fact that By ® By forms a j-crystal basis of M ® N is proved in [WT7].
Now, one can construct a global j-crystal basis of M ® N with the desired property
in the same way as the proof of [BWW2(, Theorem 4]. O

5.3. j-canonical bases. In this subsection, we recall the notion of j-canonical
bases, which was introduced by Bao and Wang in [BW18a], and explain that j-
canonical bases are global j-crystal bases. One of the key ingredients for a con-
struction of j-canonical bases is the intertwiner Y:

Definition 5.3.1 ([BWIRal Theorem 6.4]). Let U~ denote the subalgebra of U
generated by I, i € I. For each A € @4, there exists a unique Yy € U_, satisfying
the following;:

[ ] TO = 1,

o T:=3 \cq, T satisfies 7 (2)T = Ty (x) for all z € U’.

Lemma 5.3.2 ([BW18a, Proposition 6.12]). Let M € O with a -involution
Yar. Then, the composite T oy is a Y7 -involution of M.

Theorem 5.3.3 ([BWI18al Theorem 6.24]). Let M € Oy have a global crystal
basis G(B) with a crystal basis (L,B), a v-involution ¥y, and an A-lattice Ma .
Set y, := Yonr. Then, for each b € B, there exists a unique G’(b) € M satisfying
the following.
(1) 43, (G7(b)) = G(b).
(2) G7(b) = G(b) + > pep e pG(V) for some cyp € qAo N A, Moreover,
ey b = 0 unless wt?(b') = wt?(b) and wt(b') < wt(b).

The new basis G?(B) := {G?(b) | b € B} thus constructed is called the j-canonical
basis of (M, G(B)).

Proposition 5.3.4. We keep the notation in Theorem B33l Then, (L,B) is a j-
crystal basis, (L, Ma,},(L)) is a balanced triple, and G?(B) is the global j-crystal
basis associated to the balanced triple (L, Ma,¢},(L)) and the basis B.
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Proof. That (L, B) is a j-crystal basis has already been stated in Theorem
Let us prove the rest. By the property (2) of Theorem B33 it is clear that £
(resp., Ma) is spanned by G?(B) over Ay (resp., A). Also, by (1) of Theorem
B33 ¢9,(L) is spanned by G?(B) over A. Hence, the canonical homomorphism
LN Ma Ny, (L) = L/gL is an isomorphism, and therefore, (£, Ma,¢},(L)) is
balanced. Finally, by Lemma[5.2.2] the Ua-module My is also a U’ -module. This
proves the proposition. O

6. KAZHDAN-LUSZTIG BASES

The subsequent three sections are dedicated to prove the existence of a global
J-crystal basis and its “dual” basis for L(A), A € P?. In this section, we formulate
variants of the Kazhdan-Lusztig bases following [KL79], [Deo87], and [L03].

6.1. Hecke algebra of type B. Fix d € Z~(y. Let W = W, be the Weyl group of
type Bq with simple reflections S = {sg, $1,...,84—1} such that

50515051 = $1505150, SiSit15i = Sit15:Sit1 if 1> 1, 8385 = s58; if [i — j] > 1.
Definition 6.1.1. The Hecke algebra H = H (W) associated to W with unequal

parameters p, ¢ is the associative algebra over Az := Z[p,p~', ¢, ¢~ !] generated by
{H, | s € S} subject to the following relations:

o (Hy —q; ") (Hs+gs) =0 for all s € S, where g5 = p if s = sp and ¢s = ¢

otherwise.
o H, H, H, H;, = H, Hs Hs Hy, .
e H,H, H,,=H, HgHg,  ifi>1

o Hy,H,, = Hy, H,, if |i — j| > 1.

We often write H; = H,,. For each w € W with a reduced expression w =
84, =+ 84, the product Hy, --- H;, is independent of the choice of a reduced expres-
sion of w; we denote it by H,,. Similarly, g, :=gs,, - qs,, s well-defined.

Let U,V be modules over Ay. We say a Z-linear map f : U — V is anti-linear
if it satisfies f(gu) = gf(u) for all g € Az and u € U. In the sequel, we will often
use the following automorphisms, all of which are involutions, of H.

Lemma 6.1.2.

(1) There exists a unique anti-linear algebra automorphism — of H such that
H,=H_",.

(2) There exists a unique anti-linear algebra automorphism sgn of H such that
sen(H,) = (1) H,. Here, £ : W — Zsq denotes the length function
on W.

(3) There exists a unique Az-algebra anti-automorphism (-)° of H such that
H) = H, 1.

Moreover, all of these automorphisms commute with each other.

For y,w € W, define r, ,, € Az by
H, = Z TywHy.
yew

It is well-known and easily proved that 7., = 1 for all w € W and 7., = 0 unless
y < w.
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6.2. Kazhdan-Lusztig bases. Let us formulate the Kazhdan-Lusztig basis and
the dual Kazhdan-Lusztig basis. Set

A=Az N Ag=pZlp,q,q ' @ qZlg,
Ag =AL =p'Zlp g0 @ g Zlg ).

Theorem 6.2.1 ([KL79, Theorem 1.1], [LO3, Theorem 5.2]). For each w € W,
there ezists a unique Cy, € H such that

(1) Cp =Cy.
(2) Cyp = W+Zy<w cywHy for some cy . € Ag, Here, < denotes the Bruhat
order on W.

Replacing A% with A, we see the following: For each w € W, there exists a
unique D,, € H such that

(1) Dy = Dy,
(2) Dy = Hy + Zy<w dy,wH, for some dy ., € A;.
Remark 6.2.2. Noting that the automorphisms ~ and sgn commute with each

other, it is easy to verify that D,, = (—1)%®) sgn(C,,).

It is obvious from the definitions that both {Cy, | w € W} and {D,, | w € W}
form Ayz-bases of H. We call the former the Kazhdan-Lusztig basis, and the latter
the dual Kazhdan-Lusztig basis of H.

6.3. Left cell representations. Let us recall from [KL79] the notion of left cells
of W and the associated left cell representations.
Definition 6.3.1. Let y,w € W.

(1) y = w if the coefficient of Cy, in C;C,, expanded in the Kazhdan-Lusztig
basis is nonzero for some s € S.

(2) y <p w if there exist y = yo,y1,...,y = w € W such that y;_1 —1 y:.

(3) yzzwifyngandeLy.

(4)

(5) Each equivalence class of W/ ~ is called a left cell of W. We denote by
L(W) the set of left cells of W.

y<Lwify§Lwandy7L4w.

Remark 6.3.2. By Remark [6.2.2] we obtain the same equivalence relation as > if
we replace Cy,’s by D,,’s.
For each X € L(W) and = € X, set

C<ox = P A2Cy, Cox = P A2C,, C% =C<,x/Cc,x,

y<rz y<rLz
L
D<,x =& AzD,, D.,x=€P AzD,, D% =D<,x/Dc,x.
y<rz y<rT

Note that these are independent of the choice of x € X. We denote the image
of m € C<,x (resp., m € D<, x) under the quotient map C<, x — C% (resp.,

D<,x = DX) by [m]x (resp., [m]’).

Lemma 6.3.3. Let X € L(W). Then, C<,x, C<,x, D<,x, and D, x are left
ideals of H, and consequently, C% and D% are left H-modules. Moreover, C% has
a basis {[Cy]x | * € X}, while DX has a basis {[D.]x | z € X}.
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Proof. The assertions are obvious from the definitions. |
We call C% the left cell representation of H (W) associated to X € L(W).

6.4. Bilinear form on H. Let H* := Homa,(H,Az). H* has a left H-module
structure given by

(Hf)(H') = f(H'H'), forall feH*, H H €H.

Let {hy | w € W} C H* be the dual basis of {H,, | w € W}, that is, they are
characterized by hy(H,,) = 0y, for all y,w € W.

Lemma 6.4.1. For each w € W and s € S, the following holds.

Hoh, = hsw » z:fw < sw,
hsw 4+ (¢5" — gs)hw if sw < w.
Proof. For each y € W, we compute as

(Hshw)(Hy) = hw(HsHy)

_ ) hw(Hsy) if sy >y,
how(Hsy + (q5' — qs)Hy) if sy <y

1 if sy >y and sy = w,
1 if sy <y and sy = w,
B = gs if sy <y and y = w,
0 otherwise
. hsw(Hy) if sw > w,
T (hw + (g5 — qs)hw)(Hy) if sw < w.
This implies
H,hy = Psu 1 %f sw > w,
hsw + (g5 — ¢s)hw if sw < w.
Thus, the proof completes. |

There exists an anti-linear automorphism = of H* defined by f(H) = f(H) for
feEH HeH.

Lemma 6.4.2. For each w € W, we have

ho = Tw,yly-
y>w
In particular, hy, = hw,, where wg € W denotes the longest element.

Proof. Let y € W. Then, we have

E(Hy) = hw(Fy) = hw(z Tz,sz) = m

2<y

Since h,, = > yew hw(Hy)h,, the assertion follows. O

Let {C} | w € W} C H* denote the dual basis of {Cy, | w € W}.



40 H. WATANABE

Proposition 6.4.3. C}, is characterized by the following two conditions:
(1) % =y
(2) Cp = hw+ Y0y Ch b for some ¢, . € A}
Proof. Thanks to Lemma [6.4.2] one can prove that there exists a unique C/, € H*
such that C}, = C, and C}, —hy € D~ A7 h, in a similar way to Theorem G.2.1]
Hence, it suffices to show that C satisfies the two conditions.
The first condition is verified as follows. For each y € W, we have

Ci(Cy) = C3(Cy) = C(Cy) =0y = 0y = C(Cy).

Since {C,, | y € W} is a basis of H, we obtain C}, = C}.
Next, we prove the second condition. For each y € W, we can write H, =
Cy+> .., bzyC. for some b, , € A}, Then, we have

Co = Z Co(Hy)hy = hy + Z buwyhy-

yew y>w

This completes the proof. (Il

Lemma 6.4.4. The linear map d : H — H*; H — H - hy, gives an isomorphism
of left H-modules. Moreover, we have

(1) d(Hy) = hyw, forally e W.
(2) d(H) = d(H) for all H € H.

Proof. By Lemma [6.4.1] the linear map ¢ : H — H*; H,, > h,, is an isomorphism
of left H-modules. On the other hand, the map ¢ : H - H; H — H - H,,, is clearly
an isomorphism of left 2{-modules. Thus, the composite map d := pop : H — H*
is an isomorphism of left H-modules satisfying

d(H)=¢(H -Hy,) =H - 9(Hy,) =H-hy, foral HeH.
Also, we have, for all y € W,
d(Hy) = ¢(Hy, - Hy,) = ‘P(H?}ll Hy-1Hyw,) = 0(Hyw,) = hyw,-
Finally, for each H, H' € H, we have
— — —b
ACH)(H') = (7 - sy )(H') = by ()" H'),

A(H)(H') = d(H) () = huy, () = To, (HPH').

Then, the equality d(H) = d(H) follows from the facts that f, = hq, and (ﬁ)b =
H?"; the former is proved in Lemma [6.4.2] and the latter is in Lemma O
Using this isomorphism, we define a bilinear form (- | -) on H by
(H|H'Y:=d(H')(H), (H,H €H).
Clearly, this bilinear form satisfies (H' | HH") = (H*H' | H") for all H, H', H" €
H.

Lemma 6.4.5. The bilinear from (- | ) is symmetric.

Proof. Let Hy, Hy € H. Tt suffices to show that hy,(H5Hy) = hy, (H: Hs). Since
H, = Hy,, it holds that he,(H") = hy,(H) for all H € H. Then, the assertion
follows if one notes (HSH;)” = H} H,. O
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Proposition 6.4.6. The bases {Cy, | w € W} and {Dyw, | w € W} are dual
to each other with respect to (- | -), that is, we have (Cy | Dy) = 0y ww, for all
y,we W.

Proof. Recall that D,, =
Then, we have

y<w dy.wHy with dy ., =1 and dy ., € A, forally < w.

d(Dy) = d(D.,,) = d(D,,),
d(Dy) = d(Dy) =d(Y_ dywHy) =Y dywhyw, = Y dewywhe.
y<w y<w z>wwo
This and Proposition show that d(D,) = C;,, . Hence, it holds that (C, |
Dy) = Cy,, (Cy) = 6y wwo, Which proves the proposition. O

Here, we describe the duality between C%’s and D% ’s.

Lemma 6.4.7. Let y,w € W, X € L(W). Then, the following hold.

(1) y =1 w if and only if wwy — 1, ywo.
(2) y <p w if and only if wwy <, ywo.
(3) Xwp :={awy |z € X} € L(W).

Proof. We first prove part (1). Suppose that y —7 w. Then, there exists s € S
such that (CsC\y | Dyw,) # 0. This implies that (Cy, | CsDyw,) # 0, and hence,
we obtain wwg —, ywy. Replacing y, w by ywgy, wwy, we also have the opposite
indication. This proves part (1). Assertion (2) is an immediate consequence of (1).
We prove part (3). Let x € X. Then, X = {y € W | z <p y < z}. By part
(2), we have x <y y <r, z if and only if zwy <y, ywy < zwy. This implies that
Xwo={z €W | zwy <p z <, zwp}, and it is a unique left cell of W containing
zwp. Thus, the proof completes. O

Lemma 6.4.8. The bilinear from (- | -) induces a non-degenerate bilinear form on
C% x D%, . Moreover, {[Cy]x | x € X} and {[Dyw,)xw, | © € X} form bases
which are dual to each other.

Proof. Let x € X, y,w € W be such that y <p x and wwg <p xwg. It suffices to
show that (Cy, | D,) = 0 for all u <; zwy and (Cy | Dyw,) = 0 for all v <, .
Both are obvious from Lemma [6:47] (2). (]

Proposition 6.4.9. Let X € L(W). Then, we have an isomorphism D%, ~ C%
of H-modules.

Proof. 1t suffices to show that the characters chpr — of D%, and cher of cL
wq
coincide with each other. For each w € W, we compute as

ChC)L( (Hw) = Z<Hw[CI]X ‘ [D:L’wo]leo>

= ZQCAX | Hw—l[Dsz]in0>

reX
= ChD)L<wO (wal) = ChD)L(wO (Hw)

Thus, the proof completes. (Il
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6.5. Parabolic Kazhdan-Lusztig bases. Throughout this subsection, we fix a
subset J C {0,1,...,d — 1} arbitrarily. Let W denote the parabolic subgroup of
W generated by {s; | j € J}, JW the set of minimal length coset representatives
for W \W, and wy € W the longest element. Also, we set

T = Qu, Z 4 Hy € H.
weW

Lemma 6.5.1. Let j € J. Then, the following hold.

(1) z;H; = q;jlx(].

(2) = 2.
(3) x5 = Cy,. In particular, Tj = x.

Proof. The assertion (1) follows from a direct calculation and the fact that W; =
{we Wy |w<sjwtU{we W, |sjw< w} The assertion (2) follows from the
definition of x; and the facts that W; = {w™! | w € W}, and g,,-1 = ¢, for all
w € W. The proof of (3) can be found in [X94] Proposition 1.17 (2)]. O

By Lemma (1), the right ideal z;H of H has a basis {x;H,, | w € 7W}.
Also, by Lemma (3), x;H is closed under the involution . Hence, we can
construct analogs of the Kazhdan-Lusztig basis and the dual Kazhdan-Lusztig basis
of H in the ideal z ;H:

Theorem 6.5.2 ([Deo87, Proposition 3.2]).

1) For each w € 7W, there exists a unique 'Cy € z;H such that
( ; q
(a) 7Oy =7C,.
(b) 7Cy = 25(Hy + ZyEJW chvay) for some JCWU € Ag,
y<w
2) For each w € "W, there exists a unique ' Dy, € x;H such that
( q

(a) 7Dy = 7 D,.
(b) 'Dy = x5(H, + Doyl w 7dy wHy) for some 7d, ., € A;.

y<w

Clearly, {/C, | w € W} and {/D,, | w € W} are linear bases of 2 ;4. We call
them the parabolic Kazhdan-Lusztig basis and the dual parabolic Kazhdan-Lusztig
basis of x;H, respectively.

Proposition 6.5.3 ([Deo87, Proposition 3.4]). Let w € "W. Then, 7Cy = Cu,w-

Proposition 6.5.4. Let w € 'W. Then, 'D,, = z;D,,.
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Proof. For each y € W, define y; € W; and Yy € /W to be the unique elements
satisfying y = y;7y and £(y) = £(ys) + £(’y). Then, we have
2Dy =15 Y dyuH,

y<w

=, (Hw +y dy,wHy,,HJy>

y<w

=y (H + > q,) dywHs > (by Lemma B5.11 (1))

y<w

=X H + Z Zq_ld:}cyw

cIwzeW,
y<w TY<W

This shows that x;D,, —x;H, € @yefw A z;H,. Hence, by Theorem [6.5.2] (2),
y<w

x Dy, coincides with 7 D,,. O

For a later use, let us consider z;Cy and z;D, for y € W.
Proposition 6.5.5. Let y € W. Then, we have
zyCy = Z aw? C,

we! W
wjw<ry

for some a,, € Agz.
Proof. Let us write
r;C, = Z ay’ Cyp = Z 0y Cy e for some oy, € Agz.
we W weSW
Also, by the definition of <j,, we can write

2;Cy= > B.C. forsome B, € Ay,

2<ry

This shows a,, = 0 unless wyw <p, y. O

Lemma 6.5.6 ([L03| Theorem 6.6 (b)]). Letw € W and s € S be such that sw < w.
Then, it holds that HyD,, = —qsD,,.

Proposition 6.5.7. Lety € W\ 'W. Then, x;D, = 0.

Proof. Since y ¢ W, there exists j € J such that s;y < y. For such j, we have
zyH; = q;li (Lemma [6.5.1] (1)) and H;Dy = —¢; D, (Lemma [6.5.6]). Hence, we
obtain

ryDy = qjx H; Dy = —q?IJD,
which implies z;D, = 0, as desired. O
Set Py = Gu, Y pew, 4~ € Az. Note that, by Lemma (1), it holds that
x4 = Pyxz ;. Then, for each H, H' € H, we have
(xyH |z H'Y = (2%H | H') = P;(H | H') € PyAz;
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here, we use Lemma [B6.5.1] (2). Hence, we can define an Az-valued bilinear form
(-[)gonz;Hby (-] )= p(])

Proposition 6.5.8. The basis {7C,, | w € "W} and {/Duw,ww, | w € W} are
dual to each other with respect to (- | -) s, that is, we have (?Cy | ' Dy) s = 8y wywwo
for all y,w € 7W.

Proof. Let y,w € 7W. We compute as follows:

1

<ch ‘ JDw>J = P, <JCy | JDw>
1
= P—J(Cwa | z;Dy) (by Proposition and [0.5.4)
= (Cu,y | Dw) (since Cy,, =7C, € ;M)
= 0w, y,wwe = Oywyww, (DY Proposition [(.2.0]).
This proves the proposition. (Il

7. HECKE MODULES AND THEIR CENTRALIZERS

In this section, we study the centralizer algebras of certain modules over the
Hecke algebra. They are known as (generalized) ¢-Schur algebras. Multiparameter
g-Schur algebra of type B is also studied in [LL19].

7.1. Fundamental properties. We follow ideas in [DDPWO08, Chapter 9.1]. Let
7 be an index set. Suppose that we are given amapw — {J | J C {0,1,...,d—1}}.
We denote by I the image of A € 7 under this map. For each A € 7, for simplicity,
we will denote Wiy, , wr,, xr,, etc. by Wy, wy, xx, etc.

Definition 7.1.1. Associated with 7, we define a right H-module

T(n) := @ A H,
AET
and its centralizer algebra S(m) := Endy/(T(7)); we let S(7) act on T(7) from the
left.

It is obvious that T(7) has two bases {*C,, | A € 7, w € *W} and {*D,, | A €
7, w € *W}; we call them the Kazhdan-Lusztig basis and dual Kazhdan-Lusztig
basis, respectively.

For each m = ), ma € T(m) with my € x\H, we define m € T(7) to be
> sex Ma. Also, for each f € S(7), define f € S(w) by f(m) = f(m) for all
m € T(x). This gives anti-linear automorphisms = on T(7) and S(7).

For each A € 7, define py € S(7) to be the composite

px: T(m) = xaH — T(nm)

of the projection and the inclusion. Clearly, {p) | A € 7} is a family of orthogonal
idempotents with ), . px = idr(x). Hence, we have a decomposition

S(m) = @ paS(m)pu, PaS(m)py = Homyy (z,H, 25 H).
A pET
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Take f € Homy (x,H,x M) arbitrarily. Since x,# is generated (as a right H-
module) by z,, the f is determined by f(x,) € zxH. Let us write

flzy) = Z Exwp(f)eaHy, for some ¢y, € Az.
weErW
Lemma 7.1.2. Let w € "W and j € I,, be such that w < ws;. Then, we have
C)\,w,,u(f) = qjc)\,wsj',#«(f)'
Consequently, we have

f(@n) = Z Z qgjlcx\,w,u(f)l"AHwy’

werWn yeW,
wy€>‘W

and hence, f is determined by (cxw,u(f))werwn € A;W“, where "WH == AW N
(*W)~t

Proof. We have
q; ' f(zn) = flzuHy)

= f(z.)H,;

= Z C)x,w,p(f)x)\(stj + (%fl - Qj)Hw) + Z Ck,w,u(f)x)\Hij
werWw werw
ws; <w ws; >w

= Z (CA,ijvﬂ(f)+(q;1 - Qj)CA,w,u(f))x)\Hw"" Z c,\,wsj,u(f)x,\Hw.
werW werNW
ws;<w ws; >w

Comparing the coefficients of x H,,, we obtain the assertion. O

Conversely, given (cx w,pu)werwn € A%W“, there exists a unique
g € Homy (z, H, 2\ H)
such that ¢y, .(9) = caw,y for all w € AWH#. Thus, we obtain an Ag-linear

isomorphism between A%W“ and Homy (z,H, z2H).

Lemma 7.1.3 ([DDPWOS|, Theorem 4.18]). Let A\, u € w. For each x € *W*, there
exists a unique J, C {0,1,...,d — 1} such that the multiplication map

Wy x {z} x J“”WM — WhaW,; (u,z,v) — uzv

is a bijection, where '+ W, := 7= WNW,.. Moreover, we have {(uzv) = {(u)+{(z)+
{(v) for allu € Wy and v € =W,,.

For A\, € m and z € *W*, define Exnepn € Homy(z,H,zyH) to be the one

corresponding to (0gwqs )werwn € A;W“, where 2/ € W, is the longest element
in J= W, (Jy is as in Lemma [[T.3]). Then, the next proposition is clear.

Proposition 7.1.4. {&{, .., | A\, p € m, x € *WH} forms a basis of S(r).

For each \, pn € 7, x € *WH, set

—1
I\,z,n = Quyza’ § qw H,.
weWxzW,
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Lemma 7.1.5. Let \,u € m, x € *WH,
(1) ng\,x,p, = Mzt A
(2) fk,m”u(xy) =M\z,pu = plun)\,z”u c Iy = PLA(E)\ D WNTE
(3) &xnen = Ene,us where e denotes the identity element of W.

Proof.

(1) By the definition of 2/, we have y := wyxz’ is the longest element in
WixzW,. Also, it is easily checked that the map W — W, w — wl
gives a bijection WyzW,, — W,z ~'W,. Since this bijection preserves the

length, y~! is the longest element in W,z ~'Wy. Then, we compute 73 ,,,
as follows:
ng\ﬂm =y Z qale*1 =4y Z Q;11Hw

wEW W, weEW, =1 Wy
_ E -1 _
= Qy-1 4y H, = Ny,x=1 X+
weW,x =1 Wy

(2) By the definition of & ;,,, we have

g)\,x,,u(x,u) = Z qz/qglx)\Hmy

yeW,
zye W

= Z Z qm/qi;lqwk qz_ley (by the definition of )
yeW,, zeWy
zye W

= Z QMAqugﬂq;le = M\z,u-
weEWx W,

This proves the first equation. Next, we have

Ma,p - Tp = gk,z,u(xi) = Puéxeu(@p) = Pulix e,

which implies the second equality. Finally, the third equality follows from
the fact that 9y, = &Exau(®y) € TAH.

(3) It suffices to check that &\ ¢ u(z,) = &xepu(xy) for all v € m. Only the
non-trivial case is when v = p. Since we have

Exen(T) = Exen(Tp) = Mo,

the problem is reduced to proving that 7 ., is fixed under the involution
. One can write

—1 —1
Mhepn = E QurGe’ Gy Huw = 22 E qerq, Hy.
’LUEWAW“ yEAW“
On the other hand, we have
—1 —1
TATy = TATI\NI, E qerq, Hy = Prynr, o E qerqy, Hy.
yerw, yerw,

Hence, we obtain
1

Prynr,
which is invariant under . Thus, the proof completes. ([l

Mepn = TAL p s
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Proposition 7.1.6. The linear map b : S(m) — S(7); Exep = Eup—1,2 defines an
Agz-algebra anti-automorphism on S(w).

Proof. We have to verify that (£x., * &ryn)’ = Euy—tm - Epo—ra for all A, p, v,k
and € \W*, y € *IWW". Since the both sides are equal to zero unless xk = p, we
may assume that £ = u. Let us write

(1) Enag Spyw = D C:érz. for some c, € A
Ze)\Wu
Applying the both sides to =, € T(n), by Lemma [[.T.5 (2), we obtain
1
(2) P_n)\,m,pnp,y,u - Z C2lN\,z,v-
I A
z€ WK

To prove the assertion, we compute as follows:

1
vyt Epara(Tr) = B Moyt Mw—1 A (by Lemma [[.TH (2))
o

1
= (—P M,z ~17M,y7y)b (by Lemma [[.TH] (1))
o

= ( Z crew)’ (by equation (2I))

2EXWY

= Z CeMyz—=1 A (by Lemma(l))
2EXWY

= Z CZ§V7Z—1’)\(.’II)\) (by Lemma(Q))
2EXWY

= (gk,x,u : fu,y,u)b(‘r)\) (by equation ().

This shows that &, 1, - 210 = (Exeu f#,yﬁy)b, and hence, the proof completes.
O

Recall the bilinear form (- | -)x = (- | -);, on z\H defined in Section

Proposition 7.1.7. Let \,up € m, m € x3H, and n € z,H. Then, for each
w € *"WH, we have

(M| Ex () = (& (M) | e

Proof. We compute as follows:

(11| Exuop (M) = P%m | Ex ()

1
= (M| Mxw,pum) (by Lemma [[.TH (2))
P)\PM yW,
1
= = (Npw-1m | n) (by Lemma [.TH (1))
P)\PH ’ ’

= 56 am) [ 1) (by Lemma [T (2)

= <£E\,w”u(m) ‘ 7’L>#.

This proves the proposition. (Il
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Define a bilinear form (- | -} on T(7) by (m | n), := 05 ,(m | n)x forall A\, p € m,
me H, ne€x,H.

Corollary 7.1.8. The two bases {*Cy, | A € m, w € *W} and {*Dyww, | A €
7, w € *W} of T(w) are dual to each other with respect to the bilinear form (| ).
Moreover, for all m,n € T(r) and = € S(7), we have (m | xn), = (°m | n).

7.2. Cell representations. Let X € L(W) and z € X. Set

Ce x(m @ @ Az*Cy, D<, (m @ @ Az Dy,

AET werw AET we W
wyxw<rpx w<px
Ce,x(m) =P @ AC, De, ()= € Az D,
AET welw AET we W
w xw< T w<px
C%(m) == Cc,x(m)/Cepx(m), D% () == D<, x(7)/D<, x (7).

Note that these objects are independent of the choice of x € X. We denote the
image of m € C<,_x(m) (resp., D<, x(m)) under the quotient map C<, x(7) —
C%(m) (vesp., D<,x(m) — D% ()) by [m]x (resp., [m]'y).

Proposition 7.2.1. Let X € L(W).
(1) C<,x(m) is a S(m)-submodule of T ().
(2) Cc, x(m) is a S(w)-submodule of T(r).
(3) CL(n) is a left S(m)-module having a basis {*Cylx | A € 7, w € *W N
wrX}. Here, wyX :={wyz |z € X}.

Proof. We will prove only (1) since the proof of (2) is similar to that of (1), and
(3) follows from (1) and (2). Fix z € X. In order to show that C<, x(7) is a
S(m)-submodule, it suffices to verify that &, ,/*Cyw € C<, x(7) for all A\, u € 7,
y € A\WH, and w € *W such that wyw <r z. By Proposition and Lemma
[T (2), we have

1
per _
! Cw =&y, uCupw = P My, Cuwjw-
m

Also, by Lemma [ZTH (2), we have nxy ., = &xnyu(zy) € x2H; one can write
My = TAH for some H € H. Then, HCy,, is a linear combination of C,,
w' <p w,w(<p x). Hence, by Proposition [6.5.5] 2 HC,y, . is a linear combination
of AC,y for w” € ’\W with wyw” <p w'(<r x). Therefore, we have &) 4,/ Cy =
P My nCupw € C<LX( ). However, since &y, ,*Cuw € 2aH = @D, copy AC,

we conclude that fA7y7#“C € C<,x(m). This completes the proof. O

Similarly, one can prove the following: D<, x(w) and D, x(m) are S(m)-sub-
modules, and D% (7) is a left S(7)-module having a basis {[*D,]x | A € 7, w €
AW N X}

8. GLOBAL J-CRYSTAL BASES FOR THE IRREDUCIBLE U’-MODULES
8.1. Surjection ¢ : U7 — S(n7). Let 77 = {A = (Ao,...,Ar) € ZLH | Yoo A
d} For A € @7, set I, = {0, 1,...,d — 1} \ {)\0,)\0’1, ey )\()’rfl}, where )\O,k =
k
Zi:O A
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Let V =@.__, Q(p,q)v; be the vector representation of U with v_, a highest
weight vector. Then, V@4 has a basis iy iy =05, @ Quiy | =7 <iiq,..., g <
r}. H:=Q(p,q) ®a, H acts on V&< by

Vi1 ,in,...,iq if 11 > 0,
Viy,iaHo = S p7 iy s ifi; =0,

Vi igyia + (071 = D)y if i3 <O,

Vo ijatyig.. if ij < ij+1,
Vi igHy = a7 g if i =ijy41,

Vooigansigee (@ = QUi i ifi; > dj41.

Then, it is easily seen that V®? is isomorphic to T(7?) := Q(p, q) ®a, T(7?) as a
right H-module. Setting S(77) := Q(p,q) ®a, S(7?), V¥ becomes a left S(77)-
module. By the double centralizer property between U’ and H on V®4 ([BW18a],
[BWWTS]), there exists a surjective algebra homomorphism ¢ : U’ — S(77). In
particular, every S(77)-modules are regarded as U?-modules via . In [W17T], it
is proved that for each A € P7, the irreducible highest weight module L(A) is
isomorphic to Ck (77) := Q(p, q) ®a, C%(77?) for some X € L(Wy), where d = ||

For i € IV, we define two maps ¢;, ﬁ : w0 — w7 U {0}, where 0 denotes a formal
symbol, as follows. Let A = (Ao, ..., A) € 7. Then, we set

~ (Aoy-w s dic, A+ LA = L A, .0, A) if A; >0,
67;)\:
if \; = 0,

and

f/\: ()\0,...,)\1',2,)\1',1—1,)\i+1,)\i+1,...,>\r) if )\i,1 >0,
' 0 if A1 = 0.

By convention, we set £\, =0if A=0o0r p=0.

Proposition 8.1.1. For i € IV, we have

§(ei) = Z §a.(0) e

Aemd

§(fi) = Z §5. 00 e

Aemd

Proof. We prove only the statement for fi; the proofs for f;, i # 1 and for e; are
similar. Recall the comultiplication A of U; we have

d d
AU (E) = S 1 g Be (KPR, AU (F) = S KR e Fo19F

k=1 k=1
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Then, we compute as

Ao

-1 _A Ao—k

fioa =pg g™ E q° Vpro—F 1,0k=1 1 1,... r2r

k=1

Ao

E : Ao—k

+ q 0 Uok—117170A07k11A1 11111 rAr
k=1

Ao
A DT AN STERY : A
k=1

Ao

i qurkvﬁ(k)}ho_l o H HoHy - Hyy
k=1

Ao
= pq2()\0—1) Zq—kﬁ-lvﬁ()\)}b\ofl e Hyy (k1)
k=1

+qu(/\o—l) Zpiqu()‘oJrk*Q)Uﬁ(,\)HArl <o H HoH, ---Hy,_4
= &7, (0),e (00)-

This proves the assertion. ([l

Here are immediate consequences.
Corollary 8.1.2. Let = € U7, Then, £(0?(z)) = £(2)°, £(W(x)) = £(x).
Corollary 8.1.3. The bilinear form (- | ). of T(w?) satisfies
{@m [ n)zs = (m | o’ (2)n)7s
for all x € U7, m,n € T(n?).

8.2. Global j-crystal basis of irreducible U’-module. Let X € L(W). Then,
CL(n7) ~ L(X) for some A € P7. Since L(A) is a highest weight module, there
exists a unique A € 77 and w € *W such that [*C\,]x € C%(7?) is a highest weight
vector.

Recall the isomorphism Df(wO ~ Ok of left H-modules. Set C% := Q(p, q) ®a,
C%, and define D% ~and D%, (#7) similarly. Then, we have

DXy, (1) = T(n’) ®n D, = T(r’) ®n Ck ~ Ck(n’)

as left U7-modules. Hence, [*Du,wwo)’xw, € DX, (77) is also a highest weight
vector. Thus, we obtain two isomorphisms

o : LX) = CE(77); va = [MCulx,
¢p : L(A) — D§w0 (m7); va = [)\Dwxwwowao
of U?-modules, where vy € L(A) is a fixed highest weight vector.

Definition 8.2.1. Let A € P? and vy € L(A) be a highest weight vector. Define
the bilinear form (,-); on L(A) by (va,va)1 = 1 and (xm,n); = (n,0?(x)n); for
all z € U7, m,n € L(A).

Proposition 8.2.2. Let A € P?. Then, the bilinear form (-,-)1 is nondegenerate.
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Proof. For m,n € L(XA), set (m,n) := (pc(m) | ¢p(n))r:. Then, we have

(v, va) = <[>\CUJ}X | [ADwxwwo]/XwO%rf =1,

and

(zm,n) = (zec(m) | ep(m))m = {pc(m) | o’ (z)ep(n))x = (m,o’(x)n).
Hence, we have (-,-) = (-,-);. Then, it is clear that {o5'([“Cylx) | u € 7, y €
PW Nw,X} and {50151([”Dwywo]l)(wo) | pen, yerWnXuwy} form bases which
are dual to each other with respect to (+,-);. This proves the proposition. O

Recall that the set {(u,y) | p € 77, y € "W Nw, X} is identical to B(A). For
each b € B(A), set

Glow (0) = 05 ("Cylx),  Glp(b) = 5 (" Duv,yuwo sy )
where (41, y) is the pair corresponding to b. Then, GJ  (A) := {G},,(b) | b€ B(A)}
and G, () == {G,(b) | b € B(A)} are bases of L( ).

Definition 8.2.3. Let A € PI(d), and vy € L(X) be a highest weight vector.
Define a bilinear form (-, -)2 on L(X), and a 9-involution ¢} on L(X) by

(van,vn)2 =1, (zm,n)s = (m,7(z)n)y for all x € U/, m,n € L(\),
¥} (ux) = va.

Let (L(X),B(A)) be the unique j-crystal basis of L(A) such that vy + ¢L(A) €
B(X).

Theorem 8.2.4. Let XA € P?(d). Then, the following hold.

(1) 1ZJ,\( 1OW( ) = 10w( ) for all b € B(X).

(2) VA(Gh(b)) = Gi,y(b) for all b € B(X).

(3) low( ) and G? (/\) are dual bases with respect to (-,-)1.

(4) LA) = {m € L()\) | (m,m)2 € Ag}. Consequently, (-,-)2 induces the
bilinear form (-,-)o on L(X)/qL(X) defined by (m + qL(A),n+ q¢L(N))g ==
lim,_o (lim,—o(m, n)2).

(5) {G1,,(b) | b € B(A)} forms an almost orthonormal basis with respect to
(-, )2, i-e., we have (G, (b), Gl (V)2 € by + qAg for all b, b € B(N).

(6) (b,V)o = 6b y for all b,b" € B(A).

(7) Let L(X)a be the A-span of Gi,(X). Then, (L(X),L(X)a, 3 (L(X))
balanced. Moreover, the global basis associated to B(A) is {Gi, (D) |
B(AN)}. In particular, L(X) has a global j-crystal basis.

) is
be

Proof. Ttems (1) and (2) are obvious from the definition of GY,
Item (3) follows from the proof of Proposition [8

To prove the rest, observe that L(\) is realized as a subquotient of V®¢ by
using Kazhdan-Lusztig basis elements. To be precise, let X € P7 be such that
L(X) ~ Ck(n7) and z € X. Then,

(b) and G, (b).

L (m) SpanQ(pvq){AC'w [N en!, werW, wyw <, x}

) = .

X Spang, H{HCy | p € ™, y € "W, w,y <p x}

Then, items (4)-(6) follows from the proof of [W17, Proposition 7.4.4]. To prove
item (7), it suffices to show that L(A) 4 is a U’ -module. It follows from the fact that

the A-submodule of V®¢ spanned by the Kazhdan-Lusztig basis is a U a-module,
and that U, C U,. O
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9. BASIC PROPERTIES OF GLOBAL CRYSTAL BASES

9.1. Global crystal bases. In this subsection, we exposite some basic properties
concerning global crystal bases of U-modules in Ojy,. Let M € Oy, (£, B) a crystal
basis of M, ¥y; a v-involution, and Ma a Ua-submodule of M. Suppose that M
has a global basis G(B) with the associated balanced triple (£, Ma, ¥ (L)).

Proposition 9.1.1 ([K93]). Let i € I, b € B and m € Z>q. Then, we have the
following.

(1) Ypom FVMa =D fss AGI(Y).
e; (b)>m

2) Yoo BEVMA =@ yes AGV).
w(b’)gm
(3) BGI(b) = [si(b) + UGUED) + 3 yep oy G) for some o), €

Ei(bl)>€i(b)+1
¢*~=*)Q[g].
(4) BEiGI() = [0i(b) + UG (Ed) + Y yep ey, GU(V) for some ef)), €
pi(0)>pi(b)+1
¢~ #(")Q[q].

For A € P(M), set Iy(M) to be the sum of submodules of M isomorphic to L(}).

Also, we set
)= Z IM(M)

w=A

Win(M) =Y " I,(M

pw=A
WA(M) = WEA(M)/W>.)\(M).

Theorem 9.1.2 ([K93], [L10]). Let M,L,B,Ma be as above. Then, for each
A € P(M), the following hold:

(1) Wea(M) has a global crystal basis Wex(G(B)) := {G(b) | I(b) = A} with
the associated balanced triple (Wex(L), Wer(Ma), Wer(¥a(L))), where
Wer(L) :=Wer(M) N L, and so on.

(2) Woea(M) has a global crystal basis W x(G(B)) := {G(b) | I(b)
the associated balanced triple (W (L), Wer(Ma), Wer(¥a(L))), where
Wea(L) :==Wex(M)N L, and so on.

(3) Wa(M) has a global crystal basis Wx(G(B)) := {G(b)+Wex(M) | I(b) = A}
with the associated balanced triple (Wx(L), Wx(Ma), Wx(¥ar(L))), where
WA(L) := Wer(L)/Wer(L), and so on.

(4) There exists a U-module isomorphism & : L(\)¥™x — Wy (M) which in-
duces an isomorphism

(L™ (L) A) ™ A(LA) ™) 2= (WA(L), WA(MA), Wa(var(£))),
where my := dim Homy (L(X\), M) denotes the multiplicity of L(\) in M.

Remark 9.1.3. By replacing P(M) with P7(M) and < with <, the same result
holds for integrable modules over U([) with global crystal bases.

= A} with

9.2. j-canonical bases. Let M € Oj, be a based U-module with a crystal ba-
sis (£, B), a global crystal basis G(B), a y-involution s, and a balanced triple
(L, Ma,¥r(L)). Set i), := YToyppr. We denote by G?(B) the associated j-canonical
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basis. Recall that ¢, is a ¥?-involution on M, and (£, Ma,v7,(L)) is a balanced
triple with the associated global basis G’(B5).

Lemma 9.2.1. Let b € B. Let us write as

GI(b) = G(b) + > v pG (D)

B

wt? (b )=wt’(b) and wt(b")<wt(b)
for some cy , € gAg N A. Then, we have cy p, = 0 unless
(3) P(b) 40 or [P(V) " < [I(b)" .
Proof. By the construction of G7(b), it suffices to show that ¢},(G(b)) is a linear
combination of G(b') with b’ satisfying @)). Since ¢},(G(b)) = YG(b) € U~ G(b),
it suffices to show that for each | € Z> and i1,...,i; € I, we have

Fj, -+ Fi,G(b) € Spang, »{G(V') | V' satisfies condition (3)}.

We prove it by induction on . When [ = 0, there are nothing to prove. So, assume
that [ > 0 and that F,_, --- F;, G(b) € Spang, »{G (') | b’ satisfies condition (3]}
for all 41,...,4,_1 € I. If 4; # 1, then, by Remark [@.1.3] we have

FA\G() € Spang,  {G(Y) | F(H) < P(1'))
for all V' satisfying condition ([B)). Since |I7(b"”)~| = |I7(¥') | for all b” with I7(d') <
(b)), b” satisfies condition (3.
If 4, = 1, then wt(F;,G(t')) = wt(G(V')) — az. This immediately implies that
F;,G(b') € Spang, n{1G(0") | [I7(b")7] < [17(0')~|}. Therefore, F;, - F;, G(b) is a
linear combination of G(¥') with |I?(b')~| < |I?(b)~|. Thus, the proof completes.

[l
Proposition 9.2.2. Let b€ B and i € 7\ {1}. Then, we have
eGP (b) = [pi(b) + G/ (Eb) + > ey G (1),
b’ eB\{E;b}
wt? (b )=wt? (b)+v; and wt(b)<wt(b)+ay
JiG2(6) = [p—y(b) + LG/ (B_p) + > Ty G ()
b eB\{E_;b}

wt? (b )=wt’ (b)—v; and wt(b)<wt(b)+a_;

for some e,(;?b,flf,i7)b € A. Moreover, 61(3317 = fb(,i?b = 0 unless I7(b) < I'(V') or
(7)< [7()~]-

Proof. We prove the assertion only for e;; the proof for f; is similar. By Lemma

0211 we can write
b)) =G+ > apG)
v eB\{b}
for some ¢y, € A such that ¢y, = 0 unless I7(b) < I7(b) or [I7(V)~| < [I7(b)~|.
Since e; € Uy(l), it holds that
e;G?(b) € Spanp {G(b") | I?(b) S IP(b) or |IP(V)~| < [I7(b)~ |}

Hence, it suffices to show that [e;G?(b) : GJ(Eib)] = [pi(b)+1]. By the definitions of
e; and G7(b), e;G?(b) is the sum of E;G(b) and a linear combination of weight vectors
of M of weight lower than wt(b) + o;. We know from Proposition (4) that
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[E;G7(b) : G(E;b)] = [ps(b) + 1]. Hence, we have [e;G7(b) : G?(E;b)] = [:(b) + 1].
This proves the assertion. (Il
9.3. Global j-crystal bases. Let M € O}, (£,B) a j-crystal basis of M, ¢,
a ’-involution, and Ma a U’ -submodule of M. Suppose that M has a j-global

basis G?(B) with the associated balanced triple (£, Ma,¥7,(L)).
Following [K02], let us introduce modified Kashiwara operators:

Definition 9.3.1. For n € Z, set
F = 30 e At ),

t>0,—n

0= 30 A ePan(t k),

t>0,—n

where

An(t;I) ::( t t 1—n) tH _ n+2s

an(t;:ﬂ) ::( t t t(l n) T Hq _ n+2s

Lemma 9.3.2. Let M € (’)fnt with the j-crystal basis (£, B). For n € Z, we have
f™Me e, and ™ML = frL modulo L.

Proof. If i # 1, then the statement follows from [K02, Proposition 6.1]. Hence, we
prove the case when ¢ = 1. It suffices to prove the following: For each u € L such
that e;u = 0, kiu = ¢“u, e1 fru = [bj{a — b — 1}u with a € Z and b € Z>(, we have

fln)f(m) fl(er") for some ¢ € 1 4+ gAg N A. First of all, we have

AR u= 3" an(tig* ™) {ern} {b m+t] H{a— b—m+ st

m—t t
t>0,—n

We compute the coefficient, say A, of the right-hand side as follows.

t—1
A= Z An( b 2m {m—kn] {b—m—i—t} H(1+p2q2(a—b—m+s))

—t t
t>0,—n s=0
> Bi+p* Y. B,
t>0,—n t>0,—n
where B; := A, (t;¢*~2™) [ﬁtﬂ [b7T+t], and g; € Z[p, q,q~ '] with

t—1

H(l +p2 2(a—b— m+s)) 1+p29t~
s=0

By the proof of [K02], Proposition 6.1], we have B; € 1+ ¢Z[q]. Also, it is clear that
p? Y is0,n Bt € p*Z[p,q,q~']. Thus, we have fl(n)fl(m)u € L and fl(n)flm)u =
f1(m+n)u = flnfl(m)u modulo ¢£. This proves the lemma. O

Proposition 9.3.3. Leti €', b € B and m € Z>o. Then, we have the following.

1) Ypom M =D e AGI(Y).
£ b
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@) Spome"Ma =@ yes AGV) ifi #1.

pi(b)>m ) )
(3) fiG7(b) = [es(0) + 1GU(fib) + X yen ey GOV for some i), €
, Ei(b,)>€,‘,(b)+l
¢*=")Q[g].
(4) e (b) = [pi(0) + UFPED) + Y yep ey G(V) for some ef)), €
, @i (b)) >pi(b)+1
@~ "Qlq) if i # 1.

Proof. Since (e;, ki, fi), @ # 1 forms an sly-triple, most of the assertions follows
from Proposition What we have to prove are assertions (1) and (3) for ¢ = 1.
First, we prove part (1) by induction on m. When m = 0, the both sides of the
equation to be proved are 0. Assume that assertion (1) holds for all m’ > m. Let

b € B be such that £1(b') = m. Set bf := €*b, and consider v := E"L)Gf(b{)). B
the definition of f; (™) and Lemma @32, we have
f(m)GJ bo) Zfl Mp and u+qL =1V
n>m
By our inductive hypothesis, we can write

w— fl(m)GJ(bB) — Z ab”Gj(b//)

b'eB
e1(”)>m

for some ap» € A. Then, we can take aj,, € ¢Q[¢] in a way such that ayr — @y =
ag// - m Set Vi=Uu— Zb” a;)//G‘?(bN) = ffm)G‘?(b(/)) + Eb” (ab'// — aé//)Gj(bN).
Then, we have v € Ma N L, ¢, (v) = v, and v+ gL = uw+ gL = V. These
implies that v = G?(V'), and therefore, G'(V') € 3°,5,, fl(")MA. Hence, we obtain

Sz VMAD @ yes AGY).
EL(b/)Zm
We prove the opposite inclusion. For each A € A7, we have

(Ma)r C Y AG(D)

beB
YOAGL)+ Y AGYW)
beBy b’ €Bx
al(b):O 51(b/)>1

C Z ACYY7 + Z fl MA))Hrn'n .
beEBA n>1
61(b):0

Hence, we obtain

APMac Y ARMGE0) + Y A (Ma)rsnn
beB) n>1
El(b)*

> ARGEB) + Y AT (Ma)xina,

beB n>1

€1 (b)*
Z A f1 G7 Z AG’(V) (by induction hypothesis).
beBA b’ €8x

e1(b)=0 sl(bl)>m
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Also, by the argument above, fl(m)GJ(b) with €1(b) = 0 is contained in
> AGY).
e(b’)>m

This completes the proof of part (1).
Next, we turn to prove assertion (3) for i = 1 by descending induction on m :=
€1(b). When m is maximum among {e;(b’) | ¥’ € B}, we have by (1) that

GG e Y fMa= Y AGU(W) =0,
n>m e1(b)>m

and the equation in (3) holds. Assume that (3) is true for all m’ > m. As in the
proof of (1), let us write

GI(b) = AMGE) + Y G,

b'eB
e1(b)>m
F(fb) = A"VEE) + Y de )
b’ eB
€1 (b”)>m+1

for some ¢y, dy: € A. Then, we have

AGM) = [m+1"TVEE )+ Y e AGUY)

e1(b')>m
=[m+ 1"V Er) + Y eV + UG (FY)
e1(b’)>m

+ Y el
e1(b")>e1(b)+1
=[m+ UG (fib)+ > eyller(t)) + G (D)

e1(b')>m

+ Y ey

e1(b)>eq1(b')+1

C Y W)
b’ eB
e1 (V) >m+1

Thus, we obtain that f;G7(b) = [e:(b) + 1G/(fib) + 32 wes  @,GI(V) for
. ‘ ci(b)>es(b)+1
some 901()1317 € A. It remains to prove that ga,(;?b e ¢ =1®)QJq]. Let us write
@)= fu
k>m
for some uy € Lyti(b)4+ry, such that ejup = 0. Note that G7(b) + gL = um, + qL.

Then, we have

RG ) = fm 4 LA™ D+ 3 e+ WA,
k>m
and that fl(mH)Um €L, fl(wH_l)um + gL = f1b. Hence, we have f1GY(b) = [m +
1]G-7(ﬁb)+zk>m[k+1]f1(k+1)uk modulo ¢>~™ L. Then, rewriting fl(k“)u;€ as a sum
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of GI(V), e1(V') < k + 1 with coeflicients in gAg, we conclude that the coefficient
of G/(V) in f1G?(b) lies in g2~ =1 (VA N A = 2 =1®)Q[g]. This completes the
proof. O

For a bipartition A € P7(M), define In(M), Wex(M), W (M), and Wi (M)
in a similar way as Iy, W, W, y, and W}, respectively.

Definition 9.3.4. We say that M has the property (x) if there exists a poset (5, <)
and a map s : B — S satisfying the following:

(1) The abelian group Q := >
additively.

(2) co<o+Aforal e Qi,0€S.

B) o+ A<o' +AforallxeQ,o0<c’ €S.

(4) s(b) = s(b') only if wt(b) = wt(V') for all bV’ € B.

(5)

(6)

se1 Za; acts on S freely; the action is written

Forbe Bandiel?\ {1}, s(Eb) = s(b) + oy if Eb # 0.
For i € IV \ {1},

e;G?(b) = [pi(b) + 1]GY (Eb) + > ey, GO (1),
b’ eB\{E;b}
wt? (b )=wt’ (b)+~; and s(b’)<s(b)+a;
F:G7(b) = [p—s(b) + G (E_ib) + 3 0,600
b eB\{E_;b}

wt? (b )=wt? (b)—v; and s(b")<s(b)+a_;

for some el(;?b, lgf’b € A.

Lemma 9.3.5. Let M € O, and L,B,{7,, Ma as above.

(1) If r =1, then M has the property (x).
(2) If M € Oi and the global j-crystal basis is the j-canonical basis, then M
has the property (x).

Proof. Setting S and s to be A and wt, respectively, part (1) is obvious, and part
(2) follows from Proposition .22 O

The main result in this paper is the following:

Theorem 9.3.6. Suppose that M has the property (x). Then, for each X € PI(M),
the following hold:

(1) Wex(M) has a global j-crystal basis Wex(G?(B)) = {G?(b) | I(b) >
A} with the associated balanced triple (Wex(L), Wex(Ma), Wea(¢3,(L))),
where Wex(L) := Wex(M)N L, and so on.

(2) Woa(M) has a global j-crystal basis Wox(G?(B)) = {G’(b) | 1(b) -
A} with the associated balanced triple (Wex (L), Wex(Ma), Wex(¢3,(L£))),
where We (L) := Wex(M)N L, and so on.

(3) Wx(M) has a global 3-crystal basis Wx(G?(B)) :={G?(b)+Wx(M) | I(b)=
A} with the associated balanced triple (Wx(L), Wx(Ma), Wa(¢},(L))),
where Wx(L) := Wex(L)/Wea(L), and so on.
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(4) There exists a UI-module isomorphism & : L(A)®™> — Wx (M) which in-
duces an isomorphism

(L) (L) A) T YR (LA)F™) 2= (WA(L), Wa(Ma), Wa(¥3,(£))),
where my 1= dim Homuys (L(A), M) denotes the multiplicity of L(X) in M.
The proof will be given in Section

Corollary 9.3.7. Let A € P7. Then, G} (\) is a unique global j-crystal basis of
L(A) satisfying the property ().

9.4. Operators é;+ and f;+. The definitions of &; and f; given in [W17] are
artificial, namely, they are defined by means of a distinguished basis GJ (), A €
P7 (in [W17], it is denoted by {br | T' € B(A)}). Here, we define new operators €;+

and f1+ for i € P\ {1}, and then, explain that the operators &;; and fz/ on j-crystal
bases are in fact intrinsic.

Lemma 9.4.1. Let v > 2, A € P?, and consider the irreducible highest weight
module L(X). As a Ul_,-module, L(X) is multiplicity-free.

Proof. Let b € B(X) be a Ul_;-highest weight vector with highest weight, say,
p € P, If we identify B(A) with SST(X), we have T} |,_1= T,. Since the
entries of the boxes of T}, corresponding to A/p are either —r or r, it must hold
that A/p is a horizontal strip. Conversely, given u € PJ_; such that A/p is a
horizontal strip, there exists a unique b € B(A) which is a U’_;-highest weight
vector with highest weight p. This proves the lemma. |

Lemma 9.4.2. Letr > 2, A € P?. Let b € B(A) be such that €,/b # 0. Then, there
exist unique b’ € B(A) and j € P\ {1} satisfying the following:

o U is a Ul_,-highest weight vector.

o There exist unique €; € {0,1} for each j < i < r — 1 such that b =

frfr 1)fr—1 " fjﬂbl

Proof. By the definition of €,/, b is a U’_,-highest weight vector with highest
weight, say, p € P/_; such that (7))~ = T . Then, T'Ejrlb Jr_1 is obtained from
T, by adding a box to the (j — 1)-th row for some uniquely determined j €
17\ {1}. Set b,_1 := €,+b. Now, we have exactly one of the following; €,_1b,._1 # 0
or €;—1ybr—1 # 0. Choose a unique &,_1 € {(},/} in a way such that b,_5 :=
€(r—1)sr—1br—1 # 0. Then, Tbj,.,z Jr—1is obtained from T}, by adding a box H to
the (j — 1)-th row. Repeating this procedure, we obtain ¢; € {0,/} and b;—; € B(A)
for j < i <r —1. By the construction, Tj iT_l is obtained from T}, by adding
a box to the (j — 1)-th row, which turned out to be T}/, where p’ € P/_,;
such that p), = pp + 0 -1, k € {— (T— 1) T — 1} Hence, b;j_; is a U’_,-

highest weight vector, and we have b = fr f 1)er— f] sbj—1. This proves the
assertion. ]

Set E,(A) :={p € P_, | p~ = A J,—1 and AT /u" is a horizontal strip}.
Then, the assignment

{b e B(A) | 6mb#0} = E(N); bes I, (b)
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is bijective. To each pu € E,.(A), we associate b’ € B(A), j € I’ \ {1}, and
g, €{0,1},j <i<r—1asin Lemma[@.42

Let » > 2. We define operators €;+ and fH on every UZ-modules in O} ; induc-
tively for all 2 < I < r. Let A € PJ. We define the linear operator €,+ on L(A)
by
1

[or(bu) +1]

where b,, € B(A) is the corresponding element to pu € E,.(X), p1(p) is the projection
from L(A) to the one-dimensional subspace L(ft)wts(

gr+ = @ pQ(H) ©

HEE.(A)

er o p1(p),

)
L(H)wt](p) C L(p) — L(X),

multiplicity free
and po(p) is the projection from L(A) to the one-dimensional subspace f(r_l)s,.,l

t fj‘;j L(p’l)wti(u/);

oty = Fooy L sy C L) = LX),

multiplicity free
where 6, =0 if e, =0, and 6, = + if e, =7 for [ = j,...,r — 1. Also, we define f,+
by
f'r‘" = @ ’é’;+1 OPQ(IJ’)a
HEE,(N)

where ’evr_f is the inverse of the linear isomorphism €,+ : L(t)wto(u) — f(r_l)s,.,l

']?]oj L(p')wis ()~ Finally, we extend the definitions of €,+ and }TT+ to a general
U’-module M € O], by the complete reducibility of M.

Proposition 9.4.3. Let A € P? and v € L(A) a highest weight vector. Then, we
have

LX) =Spanp {fi, - fiqv | 1 € Lo, in,..., i € PU{2F, .. T},
B(A) = {.El ﬁ,lv—’—qﬁ(x) | l EZZC? ilw“ail EHJL'{2+7"'7T+}}\{0}‘
Moreover, on B(X), we have €, = €;+ and fi= [ forallicl \ {1}.

Proof. We proceed by induction on r. Assume that the assertion holds for all
2 <1 < r (we assume nothing when r = 2). Let p € E,(X) and b, V', p' be as
above. By the uniqueness of the j-crystal bases for U/_ -modules, there exists a
unique vy, € L(A) such that U?_ v, = L(n), vy, +¢L(X) = b,. Then, we can write

Uy = Gfow(bli) —+ Z ab/Gfow(b/)
b eB(N\{bu}

for some ay € qAg. Note that this equation implies that &, (vy,) € G, (€bu) +
gL(N). Also, we have
1

O Glow(@rbu) + Y Gl (V) (since Euby, = Eyby.)

low
b EB(A)

for some ¢y € A. Again, by the complete reducibility of the U?_,-crystal bases,
there exists a unique v, € L(X) such that Ul_ v, = L(p'), vu +qL(A) =b'. By
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our induction hypothesis, we have u = f(r_l)s,,.,l -~-fj5j (o) € LA) NUL_ vy
and u + ¢L(A) = €,b,. Then, we can write

u:G w(€rby) Z dy G low
b/eB(A)

for some dy € qAqg. Hence, we have

€+ () € G (€7by) + qL(N).
Since we took p € F,.(A) arbitrarily, this equation ensures that €,+ preserves L(\)
and B(A) U {0}, and that €.+ = €. on B(A). By the definition of f,+, it also

preserves £(A) and B(A)LI{0}, and coincides with f, on B(X). Now, the assertions
are clear by the definition of (L(X), B(A)). O

Corollary 9.4.4. Let M € O] be a U7-module with a j-crystal basis (L,B). Then
ey =€+ and fi = fi+ on B for all i € P\ {1}.

10. PROOF OF THEOREM [9.3.0l

For a U’-module M with a global j-crystal basis G?(B), and for m € M, b € B,
let [m : G?(b)] denote the coefficient of G7(b) in m.

10.1. The r =1 case. In this subsection, we prove Theorem [0.3.6] for r = 1.

Proof of Theorem [0.3.0. We proceed by descending induction on A with respect
to <. Assume that the statement holds for all A’ = A. Replacing M with
M /W x(M), we may assume that A is maximal among P?(M). Let by, ..., by, € B
and uy, ..., Unm, € L be distinct highest weight vectors of type A with u; +¢L = b;,
i =1,...,mx. By retaking the u;’s if necessary, we may assume that [u; : G?(b;)] =
0;,; for all 4, j. Fix 4 arbitrarily, and set b := b;, u := u;. Then, we can write

u=G'b)+ Y G V), €A
Ij(blz)fA
We first prove that ¢y = 0 for all ¥ with £;(b’') = 0. Assume contrary, and
take b € B\ {b} such that cpy # 0, e1(/) = 0, and ¢1(b) is minimal among
{o1(0") | cpr # 0, €1(b") = 0}. Set p := I7(d'). Then, we have wt’ () = wt’/(A), in

particular, po = Ag. Since p % A, we have o1 () = po— p—1 > Ao — A_1 = p1(b).
Hence, we have

—APOIE@0) = o (PP Y dew GY)

1

e1(b")>p1(b)+1

+ Z Z db////7b///Gj(b””),

Y b
er (b)) 2e1 (b)) +p1(b)+1

for some dp, », € A. By our assumption, the coefficient of G7(f<p1 +1b’) in the
right-hand side is equal to ¢y On the other hand, the left-hand side is fixed by
¥}, and it belongs to Ma. Therefore, we have ¢,y € ¢Ag N A and ¢ = ¢, which
implies ¢y = 0.

Next, we prove that ¢,y = 0 for all ¥’ with £1(d’) > 0. Assume contrary that
¢y # 0 for some such b'. Set p := I’(¥'). Since A is maximal, we have pg + p_1 <
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Ao + A_1. Substituting po = Ag +e1(V), p_1 = Ao — 1(V'), and Ao — A_; =
©1(b), we obtain @1(b') > p1(b) + e1(V’). We may assume that (g1(b'), p1(d')) is
minimal (with respect to the lexigographical order) among such b"’s. Then, for all
t=1,...,e1(0') + 1, we have

e1(b) +1(b) + 1
El(b/)

This implies that ¢y € qAg, ¢ = ¢y, and ¢y [al(b/ij(‘g})(b)"’t] € A for all t =
1,...,e1(t/) + 1. Now, it suffices to show that ¢,y € A, which follows from next
lemma.

This far, we have proved that G7(b) = u, and hence, we have e;G’(b) = 0 and

UJG?(b) ~ L(X). Then, for alln =1,...,A9 — A_1, we have

A0 = fMu= flu
The left-hand side belongs to M4, while the right-hand side belongs to £. Moreover,
we have fw(fl(n)GJ(b)) = fl(")GJ(b), and fl'u + g€ = f{'b. This implies that
fl(n)GJ(b) = GI(f7'b). Thus, the proof completes. O

_fl(wl(b)th)GJ(b) = ¢y Gﬂ(ﬁ"l(b)ﬂb’) + (other terms).

Lemma 10.1.1. Let A € Q(p,q), m > n € Z>q. Suppose that A[m;t] € A for all
t=1,...,n+1. Then, we have A € A.

Proof. Let us write A = B/C for some B,C € AgN A that are coprime. By the

hypothesis, C' is a common devisor of [m;t], t=1,...,n+ 1. Hence, it suffices
to show that the greatest common divisor of them in Z[q] is equal to 1. This
is equivalent to say that the greatest common divisor of a; := [m + ¢][m + t —

1] m+t—n+1],t=1,...,n+ 1 is equal to [n]!. Since [|] = q’lH#dufbd,
where ®; = ®4(¢?) denotes the d-th cyclotomic polynomial in variable ¢2, we have

by = q"(m+t) "(" 1) H H .

1=0 1£d|(m+t—1)

which is the irreducible decomposition of b; in Z[g?]. Then, we have

by = H @' where mg, == [{0 <1 <n—1]|d|(m+t-1)},
d>2

and hence,

ged bt H q)mlﬂ1<t<n+1(md t)
1<t<n+1 d>2

We prove that mini<;<ni1(ma;) = [ 5] for all d. It is clear that mg; > [ %] for
all t since {m +t,m+t—1,...,m+t—(|5]d—1)} contains exactly | %] integers
divisible by d. If minj<j<pi1(mae) > [ 5], then {m 4+t — [5]d,m+t — (|5]d +
1),...,m+t—(n—1)} contains at least one multiple of d for all ¢. Then, for t = 1,
there exists Iy € {[5]d,[%]d+1,...,n — 1} such that m + 1 — (|5 |d + 1) € dZ.
Set t' :=n — Iy + 1, and consider the integers
,
m+t LdJ
These are (n— | %5 ]d) consecutive integers with (m+1—1;)+1 = 1 modulo d. Since
n—|%]d < d, they have no multiples of d. Hence, we have min;<;<ny1(ma;s) = [ 5]

d,m—i—t'—(L%jd—l—l),...,m—i—t'—(n—l)=(m+1—l1)+1
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for all d > 2. Thus, we obtain

ged (b)) = H @(EEJ - H cbe — H H Dy | = H[l] = [n]!.
lstsn+l a>2 d=2 1=2 \1£d'|l =2
This proves the lemma. O

10.2. The r > 2 case. Now, we are ready to prove Theorem [0.3.6] by induction on
r.

When r = 1, we have already completed the proof. Let r > 2 and assume that
the assertions hold for all ' < 7.

Lemma 10.2.1. Let XA € PI(M) be a mazimal element, b € B such that I7(b) = A
and €;b =0 for all i € IV. Suppose the following:
(1) There exists a homomorphism & : L(A) — M of U?-modules such that
(G (TY) = G2(Y) for all b € CI(b) which is strongly connected to some
b’ € C7(b) with wt?(b) <7 wt?(b").
(2) &€ commutes with the 1’ -involutions on L(X) and M.
(3) [6(Grow(T3)) - G7(b)] = 1.

Then, we have
HGLL@) =B+ Y aet)+ Y ae).

b’ eB\{b} b eCI (b)), cprpg
T}, =T} s(b")<s(b")

for some ¢y, cpr € Ag.

Proof. Since U7-module homomorphisms preserve j-crystal lattices, we have

E(GL(T)) € £, and &(GY,, (T])) + gL = b. Let us write
G (T =GB+ Y &)

b’eB\{b}

for some ¢y € gAy. Also, since & commutes with ¢7-involutions, we have ¢, = ¢,
Ty = cp. We claim the following: if ¥ € B\ {b} satisfies
(1) e # 0 and s(b') is maximal among {s(b”) | b"” € B\ {b} and ¢, # 0},

then T}, (—i) > A_; for all i = 0,1,...,r. By the case r = 1, we have I{(V') = I{(b),
which implies T}, (0) = T7(0) = Ao, and T},(—=1) > TJ(—1) = A_1. We proceed
by induction on i. Assume that i > 2, and that T},(—(i — 1)) > XA_(;_y) for all ¥/
satisfying (1). Suppose that there exists ¢’ satisfying () such that T}, (=) < A_;.
Let b” € B\ {b} be such that s(t") = s(b’) and ¢_p~ is minimal among such
elements. Recall that s(b”) = s(b') implies wt(b”) = wt('), and hence, T}, (—i) =
T}, (—i) < A_;. Then, we have

ei(t") = i (V") + T (= (i = 1)) = Ty (=) > T (= (i = 1)) = Ai + 4 (0").
By the minimality of ¢_;(b”), it holds that
(t) I(p - (I FE] — t
1 3 )G = o )
for all T}, (—(i — 1)) = A_; +1 <t < T}, (=(i — 1)) = A_; + ¢_;i(b") + 1. On the
other hand, fi(t)Gj (7)) is the sum of Gj

low low

£0

(T%‘b) and an A-linear combination of
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GJ

low

(Tg) such that b € C7(b;) is strongly connected to b"” € C?(b;) with wt?(b) <
wt?(b"""). Hence, we have

§(Glon(Th,)) = 1 E(GH () + D a6 (b)
b
= 106 ) + £ Z v GI (V') + Z aEGJ(E)

b’ eB\{b} b

for some a; € A. Here, note that we have Ejffb =0forall j =1,...,i—1,
(G (T4 ) - GI(fb)] = 1, and s(f1b") is maximal among {s(b"”) | b" #

fiv
fiband [€(GL (T%))) : G/(b")] # 0}. Then, by our induction hypothesis on i,

low( t
fib
we obtain that T2 (—(i —1)) > T% (—(i — 1)) = A_;, which is a contradiction

iz 7o "
since t > T}, (—(i—1))—A_;+1. Hence we must have [£(G] (T%tb)) (G = 0.

low

Since
¥ J C I TR — ¢
(§(Gln (T3,)) - CP(FIV)] = e L@_Z(bﬁ)} +

and the second and the third term of the right-hand side lies in A, we obtain

t
oo <4
forall T}, (—(1 —1)) = A_; +1 <t < T}, (—(i—1)) = A_; + ¢_i(b") + 1. By Lemma
IO.T11 this implies ¢y = 0.

This far, we have proved that if b" € B\ {b} satisfies (1), then we have T}, (—i) >
A_; foralli € {0,1,...,r}. In particular, we have I?(b') = X for such &’ (since A is
maximal in P?(M)). In this case, the condition T}, (—i) > A_; for all ¢ forces b’ to
satisfy that T}, = T;. Hence, we have

G M) =GO+ Y a@®)+ > a6,
b eB\{b} V'ECI(D'), yrso
T, =17 s(b")<s(b")

as desired. O

[£0G0) - G(FY)] + a gy,

Lemma 10.2.2. Let A € P?(M) be a mazimal element, j € 17\ {1}, b € B such
that I7(b) = A, €;b =0 for all i € I7, and €;:(b) # 0. Suppose the following:
(1) There exists a homomorphism & : L(A) — M of U?-modules such that
(G (T) = G2(Y) for all b € CI(b) which is strongly connected to some
b’ € C7(b) with wt?(b) <7 wt?(b").
(2) & commutes with the ¥I-involutions on L(X) and M.

Then, we have

EGLTN =G0+ Y @)+ Y ay).
b’ eB\{b} b'ECI(b'), eyruo
T, =T} s(b'")<s(b)

for some ¢y, cpr € Ag.

Proof. If we can prove that ¢, := [£(G],(T})) : G?(b)] = 1, then the assertion

follows from the previous lemma. Hence, we aim to show ¢, = 1.
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By the same argument as before, we have
~ t
J ek IANZAN
(G (T3 GE N =]

for all b € B\{b} satistying (1). Here, let us assume further that s(b') > s(b). Then,
we have [f(t)G]( b) : GJ(]?tb”)] = 0 since f(t)GJ( b) is a linear combination of G7(b)
with s(b) < s(b) +ta_ i <s()+ta; = s(fib"). Hence, we have ¢y [@_it(b/,)} €A,
and therefore, ¢;» = 0 by Lemma [I0.IJl In particular, we obtain that s(b) is
maximal. Then, we have

lej (G (D) + Y ew GI (V) : G7(€5:b)] = culip; () + 1.

+al G B) : V)] + agu,

On the other hand, since [e;G],, (T}) : G1,,,(€5:b)] = [¢;(b) + 1], we have

le; (G (D) + Y ewGI (V) : GY(E;0b)] = [105(b) + 11,
and hence, ¢, = 1, as desired. O

We prove Theorem by descending induction (with respect to <) on A. As
in the r = 1 case, we may assume that A is maximal among P?(M). Then, in order
to complete the proof, we have to show the following:

(1) In(M) has a basis {G?(b) | I’(b) = A}.

(2) There exists an isomorphism £ : L(A)®™* — I5(M) of U’-modules which
sends the j-global basis elements of L(X)®™* to those of Iy (M), where my
denotes the multiplicity of L(A) in M.

Let bi,...,bm, € B and uy,...,um, € L be distinct highest weight vectors of
type A with uy + gL = by, t = 1,...,mx. By retaking the u;’s if necessary, we
may assume that [u, : G7(b,)] = 0y, for all t,u. Let & : L(X) — M be the
UJ-homomorphism which sends vy to u;.

Lemma 10.2.3. We have & (G, (T})) = G/(by) for allt =1,...,mx.

Proof. By the setting above, we can write

(Gl () =u =)+ 3 aGW), a €qlo
If(bé)w\
Then, we can apply Lemma 0.2l to obtain & (G, (T},)) = G?(b:) as desired. [

In order to complete the proof, it suffices to prove the following: For each
t =1,...,mx and b € C?(b;), we have &(Gi,.(T}))) = G7(b). We prove this
statement by descending induction on wt?(b) and I7_,(b). When wt’(b) is max-
imal, it must hold that b = b;, and in this case, we have already shown that
§1(Glo (Ty,.)) = G?(bs). Suppose that wt?(b) <’ wt’(b;), and the statement holds
for all ¥ € [ ]{" C?(b;) such that wt/(')? > wt?(b) or wt’(b') = wt/(b) and
I (V) = I’_,(b). In this case, since b is not a U?-highest weight vector, the
exists ¢ € IV such that &;b # 0.

Lemma 10.2.4. Suppose there exists i € I7 such that e;b # 0. Then, the statement
holds.
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Proof. Set b’ := 'ef"’(b)b. We prove the lemma by descending induction on &;(b).
Since wt?(b') > wt?(b), we have G?(V') = &(GY,, (T}))) € UG?(b;). We know that

low

GI(b) (resp., G4, (T7)) is the sum of FEO Ga) (resp., PG (T7)) and a

low low

qQlg]-linear combination of G?(v') (resp., Gi, . (T}.,)) with wt?(b”) = wt’/(b) and

low
ei() > ;(b). By our induction hypothesis, G’(b) — &(GY. (b)) is a qQ[g]-linear

low
combination of G’(b”)’s, and is ¢} ,-invariant. Such a vector must be zero, and

hence, we obtain G’(b) = &(GYi, . (b)). O

low

Lemma 10.2.5. Suppose there exists j € I7 \ {1} such that €;:b # 0 and ¢;b =0
for alli € 17. Then, the statement holds.

Proof. Apply Lemma [10.2.2 O
Now, one can complete the proof by combining Lemma [10.2.3HT0.2.5] since each
b € B with I7(b) = X is connected to b; for some t =1,...,mx.
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