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GLOBAL CRYSTAL BASES FOR INTEGRABLE MODULES

OVER A QUANTUM SYMMETRIC PAIR OF TYPE AIII

HIDEYA WATANABE

Abstract. In this paper, we study basic properties of global j-crystal bases
for integrable modules over a quantum symmetric pair coideal subalgebra Uj

associated to the Satake diagram of type AIII without black nodes. Also,
we obtain an intrinsic characterization of the j-crystal bases, whose original
definition is artificial.

1. Introduction

Let U = Uq(sl2r+1) be the quantum group over the field Q(q) of rational func-
tions in one variable q, and Uj its coideal subalgebra such that (U,Uj) forms
a quantum symmetric pair of type AIII in the sense of [Le99]. Bao and Wang
[BW18a] introduced the notion of j-canonical bases for the based U-modules. A
based U-module is a U-module M with a bar-involution ψM and a distinguished
basis B satisfying certain conditions (see [L10] for the precise definition). One of
the key ingredients for the construction of the j-canonical bases is the intertwiner
(also known as the quasi-K-matrix) Υ. Using Υ, Bao and Wang defined a new
involution ψj

M := Υ ◦ ψM on M which is compatible with the bar-involution ψj on
Uj. Then, for each b ∈ B, there exists a unique bj ∈ M such that ψj

M (bj) = bj

and bj − b ∈
⊕

b′∈B
b′≺jb

qQ[q]b′, where �j is a certain partial order on B. Clearly,

{bj | b ∈ B} is a basis of M , which is called the j-canonical basis of (M,B).
The multi-parameter version of Uj was considered in [BWW18]. Thanks to

the integrality of the intertwiner Υ, the notion of j-canonical bases can be de-
fined analogously. The condition bj − b ∈

⊕
b′∈B
b′≺jb

qQ[q]b′ is replaced by bj − b ∈⊕
b′∈B
b′≺jb

(pQ[p, q, q−1]⊕qQ[q])b′. The general theory of the j-canonical bases (usually

called ı-canonical bases) for the general quantum symmetric pairs was developed
in [BW18b].

In [W17], the author classified all irreducible Uj-modules in a category Oj
int,

which is an analog of the category Oint of integrable U-modules, and proved that
Oj

int is semisimple; the isomorphism classes of irreducible modules in Oj
int are classi-

fied by the set P j of bipartitions of length (r; r+1). When the parameters are in the
asymptotic case, to each irreducible module in Oj

int, the author associated a local
basis, the j-crystal basis, which is an analog of Kashiwara’s crystal basis. By the
complete reducibility, every object in Oj

int admits a j-crystal basis. In particular,
each U-module in Oint, regarded as a Uj-module, has a j-crystal basis.
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It should be noted that the j-crystal basis of a U-module in Oint is the localized
j-canonical basis ([W17, Section 1.3]). To be precise, let M ∈ Oint with a canonical
basis (or global crystal basis) B. Since (M,B) is a based module, it has a j-
canonical basis {bj | b ∈ B}. Set L := SpanA0

B, where A0 := {f/g ∈ Q(p, q) |
f, g ∈ pQ[p, q, q−1]⊕Q[q], limq→0(limp→0 g) �= 0}. Then, B := {bj + qL | b ∈ B} is
a Q-basis of L/qL, and (L,B) forms a j-crystal basis of M . Hence, bj + qL can be
thought of as the localization of bj at p = q = 0. Conversely, we may say that the
j-canonical basis of a based U-module is a globalization of its j-crystal basis.

Here arises a natural question: Does a Uj-module in Oj
int that is not a based

U-module admit a globalization of its j-crystal basis? One of the main result of
this paper gives the affirmative answer to this question.

In our strategy, the multi-parameter q-Schur duality between Uj and the Hecke
algebra of type B ([BWW18]), and the irreducibility of the Kazhdan-Lusztig cell
representations of the asymptotic multi-parameter Hecke algebra of type B ([BI03])
play key roles. Let us recall the latter objects briefly. Kazhdan and Lusztig [KL79]
gave a partition W = �X∈L(W )X of a Coxeter group W into the left cells; here,
L(W ) denotes the set of left cells. To each left cell X ∈ L(W ), they associated
an H-module CL

X which is called the left cell representation corresponding to X.
The left cell representation CL

X is defined to be the quotient of a left ideal C≤LX

of H spanned by some Kazhdan-Lusztig basis elements by its subspace C<LX ,
which is also spanned by some Kazhdan-Lusztig basis elements. Therefore, CL

X

has a basis consisting of the images of some Kazhdan-Lusztig basis elements under
the canonical map C≤LX � CL

X . It is known that each left cell representation is
irreducible if W is of type A. When W is of type B, the irreducibility of the left cell
representations depends on the choice of the parameters p, q. According to [BI03],
the left cell representations are irreducible when the parameters are asymptotic.

By the multi-parameter q-Schur duality for type B, the tensor power V⊗d of the
vector representation of U is equipped with a (Uj,H)-bimodule structure whose
irreducible decomposition is multiplicity free, where H denotes the multi-parameter
Hecke algebra of type B over the field Q(p, q) of rational functions in two variables
p, q. Then, for each X ∈ L(W ), the left Uj-module V⊗d ⊗H CL

X is irreducible,
where CL

X := Q(p, q)⊗Z[p±1,q±1] C
L
X . Every irreducible Uj-module can be obtained

in this way as d ≥ 1 varies. The main result of this paper states that the basis of
V⊗d ⊗H CL

X induced from the Kazhdan-Lusztig basis of CL
X is a globalization of

the j-crystal basis.
Our approach provides the following characterization of the j-crystal bases and

its globalization of the finite-dimensional irreducible Uj-modules. Let L ∈ Oj
int be

irreducible and v ∈ L a highest weight vector. Define two symmetric bilinear forms
(·, ·)1 and (·, ·)2 on L and an involutive anti-linear automorphism ψj

L on L by

(v, v)1 = 1, (xm, n)1 = (m,σj(x)n)1 for all x ∈ Uj, m, n ∈ L,

(v, v)2 = 1, (xm, n)2 = (m, τ j(x)n)2 for all x ∈ Uj, m, n ∈ L,

ψj
L(v) = v, ψj

L(xm) = ψj(x)ψj
L(m) for all x ∈ Uj,m ∈ L,

where σj, τ j, and ψj are automorphisms of Uj defined in Proposition 3.1.1.

Theorem A. Let λ ∈ P j, L(λ) the corresponding irreducible Uj-module,
(L(λ),B(λ)) the j-crystal basis of L(λ) such that v + qL(λ) ∈ B(λ). Then, there
exist Gj(b), b ∈ B(λ) satisfying the following.
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(1) L(λ) = {m ∈ L(λ) | (m,m)2 ∈ A0}.
(2) B(λ) forms an orthonormal basis of L(λ)/qL(λ) with respect to the sym-

metric bilinear form induced from (·, ·)2.
(3) Set LA(λ) := SpanA{Gj(b) | b ∈ B(λ)}, where A := Q[p, p−1, q, q−1].

Then, the triple (L(λ), LA(λ), ψj
L(L(λ))) forms a balanced triple with the

global basis {Gj(b) | b ∈ B(λ)}.
(4) L(λ) has the basis dual to Gj(B(λ)) with respect to (·, ·)1.

Next, we investigate basic properties of global j-crystal basis for not necessarily
irreducible Uj-modules. Especially, we roughly describe the matrix coefficients of
the actions of the generators of Uj with respect to a given global j-crystal basis.

We end this paper by proving that the global j-crystal basis for a U-module (not
Uj-module) is compatible with the filtration coming from the dominance order of
the bipartitions (see subsection 9.3 for the definition of this filtration). A similar
result is well-known for ordinary global crystal bases ([K93], [L10]).

Theorem B. Let M be a U-module with a global j-crystal basis Gj(B). Then, for
each λ ∈ P j, the subquotient Wλ(M) of M has {Gj(b) +W�λ(M) | I(b) = λ} as a
global j-crystal basis. Moreover, there exists an isomorphism L(λ)⊕mλ → Wλ(M)
which restricts to a bijection {Gj(b) | b ∈ B(λ)}⊕mλ → {Gj(b) +W�λ(M) | I(b) =
λ}, where mλ denotes the multiplicity of L(λ) in M .

In particular, if we take M to be an irreducible Uj-module, we obtain the fol-
lowing.

Corollary C. Let λ ∈ P j. Then, {Gj(b) | b ∈ B(λ)} is a unique global j-crystal
basis for L(λ).

Finally, we mention that the results above are valid for the quantum symmetric
pair (U,Uı) of type AIV once we define a corresponding category Oı

int properly.
This paper is organized as follows. In Section 2, we prepare necessary notations

concerning (bi)partitions and Young (bi)tableaux. In Section 3 and 4, we give a
brief review of [W17]. In Section 5, we introduce the notion of global j-crystal
bases, and show that the j-canonical bases are examples of them. Sections 6–8 are
devoted to proving the existence theorem for the global j-crystal bases of the finite-
dimensional irreducible Uj-modules. After studying basic properties of the global
j-crystal bases in Section 9, we finally prove the compatibility of the j-crystal bases
and the filtration associated to the dominance order of the bipartitions in Section
10.

2. Notations

Throughout this paper, we fix a positive integer r. For n ∈ 1
2Z, set n := n− 1

2 .

Note that −n = −n+ 1
2 �= −n. We set

I := {−r, . . . ,−1, 0, 1, . . . , r}, I := {−r, . . . ,−1, 1, . . . , r}, Ij := {1, . . . , r}.
A partition of n ∈ N of length l ∈ N is a nonincreasing sequence λ = (λ1, . . . , λl)

of nonnegative integers satisfying
∑l

i=1 λi = n. Let |λ| := n and �(λ) := l, and call
them the size and the length of λ, respectively. We denote by Parl(n) the set of
partitions of n of length l.

We often identify a partition with a Young diagram in a usual way. Let (L,�)
be a totally ordered set. A semistandard tableau of shape λ ∈ Parl(n) in letters
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L is a filling of the Young diagram λ with elements of L, which weakly increases
(with respect to the total order �) from left to right along the rows, and strictly
increases from the top to the bottom along the columns.

A bipartition of n ∈ N of length (l;m) ∈ N2 is an ordered pair λ := (λ−;λ+) of
partitions such that �(λ−) = l, �(λ+) = m, and |λ| := |λ−|+ |λ+| = n. We denote
by P(l;m)(n) the set of bipartitions of n of length (l;m). For totally ordered sets

(L−,�−) and (L+,�+), a semistandard tableau of shape λ ∈ P(l;m)(n) in letters

(L−;L+) is an ordered pair T = (T−;T+), where T± is a semistandard tableau of
shape λ± in letters L±.

For partitions μ ⊂ λ, define the skew partition λ/μ in a usual way. For bipar-
titions μ ⊂ λ (i.e., μ− ⊂ λ− and μ+ ⊂ λ+), define the skew bipartition λ/μ to
be (λ−/μ−;λ+/μ+). A skew partition λ/μ is said to be a horizontal strip if each
column of λ/μ contains at most one box. We say that a skew bipartition λ/μ is a
horizontal strip if λ±/μ± are.

Set

• P (n) = Pr(n) := Par2r+1(n): the set of partitions of n of length 2r + 1.
• P = Pr :=

⊔
n∈N P (n): the set of partitions of length 2r + 1.

• Parl :=
⊔

n∈N Parl(n): the set of partitions of length l.
• P j(n) = P j

r (n) := P(r+1;r)(n): the set of bipartitions of n of length (r+1; r).
• P j = P j

r :=
⊔

n∈N P j(n): the set of bipartitions of length (r + 1; r).
• SST(λ): the set of semistandard tableaux of shape λ ∈ P (n) in letters I.
• SST(λ): the set of semistandard tableaux of shape λ ∈ P j(n) in letters
(I \ Ij; Ij) with total orders 0 ≺− −1 ≺− · · · ≺− −r and 1 ≺+ · · · ≺+ r.

For λ ∈ P j, we refer the i-th row of λ− to as the −(i− 1)-th row of λ, and the
j-th row of λ+ to as the j-th row of λ. Also, for i ∈ I, set λi to be the length of
the i-th row of λ, i.e.,

λi :=

{
λ−
−i+1 if i ≤ 0,

λ+
i if i > 0.

For i ∈ Ij, set λ ↓i:= (λ0,λ−1, . . . ,λ−i;λ1, . . . ,λi) ∈ P j
i .

For T ∈ SST(λ) and i ∈ Ij, set T ↓i to be the semistandard tableau obtained
from T by deleting the boxes whose entries are less than −i or greater than i.

For each λ ∈ P j, let Tλ ∈ SST(λ) be the unique semistandard tableau of shape
λ whose entries in the i-th row are i. Note that we have Tλ ↓i= Tλ↓i

. For
T ∈ SST(λ) and i ∈ I, set T(i) to be the number of boxes of T whose entries are
i.

Definition 2.0.1.

(1) � is a partial order (called the dominance order) on Parl defined as follows.
For λ, μ ∈ Parl, we have λ � μ if
(a) |λ| = |μ| and
(b)

∑j
i=1 λi ≤

∑j
i=1 μi for all 1 ≤ j ≤ l.

(2) � is a partial order (also called the dominance order) on P j defined as
follows. For λ,μ ∈ P j, we have λ � μ if
(a) |λ| = |μ|,
(b)

∑j
i=0 λ−i ≤

∑j
i=0 μ−i for all 0 ≤ j ≤ r, and

(c) |λ−|+
∑j

i=1 λi ≤ |μ−|+
∑j

i=1 μi for all 1 ≤ j ≤ r.
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(3) � is a partial order on P j defined as follows. For λ,μ ∈ P j, we have λ � μ
if λ− � μ− (dominance order on Parr+1) and λ+ � μ+ (dominance order
on Parr).

Clearly, λ � μ implies λ � μ.

3. Representation theory of Uj

Let p and q be independent indeterminates.

3.1. Definition of Uj. Let Λ be the free Z-module with a free basis {εi | i ∈ I},
and with a symmetric bilinear form (·, ·) defined by (εi, εj) = δi,j . For i ∈ I, set

αi := εi − εi+1, Q :=
∑
i∈I

Zαi, Q+ :=
∑
i∈I

Z≥0αi.

For λ, μ ∈ Λ, we write μ ≤ λ if λ− μ ∈ Q+. This defines a partial order on Λ.
The quantum group U = U2r+1 = Uq(sl2r+1) of type A2r is an associative

algebra over Q(p, q) with generators Ei, Fi,K
±1
i , i ∈ I subject to the following

relations: For i, j ∈ I,

KiK
−1
i = K−1

i Ki = 1,

KiKj = KjKi,

KiEjK
−1
i = q(αi,αj)Ei,

KiFjK
−1
i = q−(αi,αj)Fi,

EiFj − FjEi = δi,j
Ki −K−1

i

q − q−1
,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 if |i− j| = 1,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0 if |i− j| = 1,

EiEj − EjEi = 0 if |i− j| > 1,

FiFj − FjFi = 0 if |i− j| > 1.

In this paper, we use the comultiplication Δ of U given by

Δ(K±1
i ) = K±1

i ⊗K±1
i , Δ(Ei) = 1⊗ Ei + Ei ⊗K−1

i ,

Δ(Fi) = Fi ⊗ 1 +Ki ⊗ Fi i ∈ I.

Let (U,Uj) denote the quantum symmetric pair over Q(p, q) of type AIII without
black nodes, that is, Uj = Uj

r is the subalgebra of U generated by

k±1
i := (KiK−i)

±1,

ei := Ei + p−δi,1F−iK
−1
i ,

fi := E−i + pδi,1K−1
−i Fi, i ∈ Ij.
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TheUj has the following defining relations ([Le99], see also [BW18a], [BWW18]):
For i, j ∈ Ij,

kik
−1
i = k−1

i ki = 1,

kikj = kjki,

kiejk
−1
i = q(αi−α−i,αj)ej ,

kifjk
−1
i = q−(αi−α−i,αj)fj ,

eifj − fjei = δi,j
ki − k−1

i

q − q−1
if (i, j) �= (1, 1),

e2i ej − (q + q−1)eiejei + eje
2
i = 0 if |i− j| = 1,

f2
i fj − (q + q−1)fifjfi + fjf

2
i = 0 if |i− j| = 1,

eiej − ejei = 0 if |i− j| > 1,

fifj − fjfi = 0 if |i− j| > 1,

e21f1 − (q + q−1)e1f1e1 + f1e
2
1 = −(q + q−1)e1(pqk1 + p−1q−1k−1

1 ),

f2
1 e1 − (q + q−1)f1e1f1 + e1f

2
1 = −(q + q−1)(pqk1 + p−1q−1k−1

1 )f1.

Proposition 3.1.1.

(1) [BW18a, Lemma 6.1 (3)]. There exists a unique Q-algebra automorphism
ψj of Uj which maps ei, fi, ki, p, q to ei, fi, k

−1
i , p−1, q−1, respectively.

(2) There exists a unique Q(p, q)-algebra anti-automorphism σj of Uj which
maps ei, fi, ki to fi, ei, ki, respectively.

(3) [BW18b, Proposition 4.6]. There exists a unique Q(p, q)-algebra anti-auto-
morphism τ j of Uj which maps ei, fi, ki to p−δi,1q−1k−1

i fi, p
δi,1qeiki, ki,

respectively.

Proof. It suffices to show that the images of the generators ofUj satisfy the defining
relations of Uj; it is straightforward. �

Remark 3.1.2. We have similar automorphisms on U:

(1) There exists a unique Q-algebra automorphism ψ of U which maps Ei, Fi,
Ki, p, q to Ei, Fi,K

−1
i , p−1, q−1, respectively.

(2) There exists a unique Q(p, q)-algebra anti-automorphism σ of Uj which
maps Ei, Fi,Ki to Fi, Ei,Ki, respectively.

(3) There exists a unique Q(p, q)-algebra anti-automorphism τ of Uj which
maps Ei, Fi,Ki to qFiK

−1
i , q−1KiEi, Ki, respectively.

Note that τ j is the restriction of τ [BW18b, Proposition 4.6], while the others are
not.

Let U(l) denote the subalgebra of U generated by Ei, Fi,K
±1
j , i ∈ I \ {1}, j ∈ I.

Note that we have ei, fi, kj ∈ U(l) for all i ∈ Ij \ {1}, j ∈ Ij. Note that U(l) is the
quantum group of type Ar ×Ar−1 with weight lattice Λ.

3.2. Category Oj
int. Let us extend the bilinear form (·, ·) on Λ to ΛR := R ⊗Z Λ.

Set βi := αi − α−i, i ∈ Ij, and J := {λ ∈ ΛR | (βi, λ) = 0 for all i ∈ Ij}. Then,
the induced bilinear form (·, ·) : (

∑
i∈Ij Rβi) × (ΛR/J) → R denoted by the same

symbol is nondegenerate. Let δj ∈ ΛR/J be such that (βi, δj) = δi,j for all i, j ∈ Ij.
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Set Λj :=
∑

i∈Ij Zδi. Let γi := αi + J ∈ Λj, i ∈ Ij, and Qj
+ :=

∑
i∈Ij Z≥0γi ⊂ Λj.

For λ, μ ∈ Λj, we write μ ≤j λ if λ− μ ∈ Qj
+. This defines a partial order on Λj.

For a Uj-module M and λ ∈ Λj, we call Mλ := {m ∈ M | kim = q(βi,λ)m for all
i ∈ Ij} the weight space of M of weight λ. The category Oj

int is the full subcate-
gory of the category of all Uj-modules consisting of Uj-modules M satisfying the
following:

• M has a weight space decomposition, i.e., M =
⊕

λ∈Λj Mλ.
• Each weight space of M is finite-dimensional.
• There exist μ1, . . . , μl ∈ Λj such that if Mλ �= 0, then λ ≤j μi for some
i = 1, . . . , l.

• The fi’s act on M locally nilpotently.

Theorem 3.2.1 ([W17]). The following hold:

(1) [W17, Theorem 4.4.3]. Oj
int is semisimple.

(2) [W17, Corollary 7.6.3, 7.6.4]. Each irreducible Uj-module in Oj
int is iso-

morphic to the irreducible highest weight module L(λ) with highest weight
λ (in the sense of [W17]) for some λ ∈ P j.

(3) For λ,μ ∈ P j, we have L(λ) � L(μ) if and only if λi − μi is constant as
i runs through −r, . . . , r.

Remark 3.2.2. The last statement follows from the definition of L(λ).

For each λ ∈ P j, let wtj(λ) ∈ Λj denote the weight of a highest weight vector
of L(λ), namely,

wtj(λ) :=
∑
i∈Ij

(λi−1 − λi + λ−(i−1) − λ−i)δi.

Remark 3.2.3. There is an algebra Uı that is closely related to Uj (see [BW18a]).
It is a coideal subalgebra of Uq(sl2r) such that the pair (Uq(sl2r),U

ı) forms a
quantum symmetric pair of type AIV. As mentioned in the introduction part, the
results in this paper have counterparts for Uı. The arguments are parallel except
the definition of the category Oı

int, which is the Uı-analog of the category Oj
int. The

main difference between Uı and Uj is that Uı has a distinguished generator t. In
the definition of Oı

int, we have to add the constraint that t acts on each M ∈ Oı
int

diagonally with eigenvalues of the form pqa−p−1q−a

q−q−1 , a ∈ Z. Then, Oı
int becomes

semisimple, and the isoclasses of irreducible modules in Oı
int is parametrized by the

set of bipartitions of length (r; r).

4. Crystal basis theory

4.1. Crystal bases. The notion of crystal bases (or local bases at q = 0) for inte-
grable modules over quantum groups was introduced independently by Kashiwara
and Lusztig in different ways ([K90], [L90a]). Although we will not review the
detail, we formulate here some notations concerning the crystal bases. Let Oint de-
note the full subcategory of the BGG-category O for U consisting of the integrable

modules. Let Ẽi, F̃i, i ∈ I denote the Kashiwara operators. Let M ∈ Oint, (L,B)
be its crystal basis. For b ∈ B and i ∈ I, set

εi(b) := max{n | Ẽn
i b �= 0}, ϕi(b) := max{n | F̃n

i b �= 0}.
Also, wt(b) ∈ Λ denotes the weight of b.
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Recall that, for each λ ∈ P , the irreducible module L(λ) has a unique crystal
basis (L(λ),B(λ)), which is identical to SST(λ). For each M ∈ Oint with a crystal

basis (L,B), we have a unique irreducible decomposition B =
⊔l

i=1 Bi, where Bi �
B(λi) for some λi ∈ P . By retaking λi’s if necessary, we may assume that |λi| −
|λj | < 2r+ 1 for all i, j ∈ {1, . . . , l}, and that there exists i such that (λi)2r+1 = 0.
Then, λi’s are uniquely determined; we set P (M) = Pr(M) := {λ1, . . . , λl}. For
b ∈ B, we define I(b) = Ir(b) ∈ P (M) to be λi if b ∈ Bi. Also let C(b) = Cr(b) ⊂
B denote the connected component of B containing b. Furthermore, if we write

b = F̃i1 · · · F̃ilb0 for some i1, . . . , il ∈ I, where b0 denotes the highest weight vector

in C(b), then define Tb ∈ SST(I(b)) by Tb := F̃i1 · · · F̃ilT0, where T0 ∈ SST(I(b))
corresponding to b0 ∈ C(b) = B(I(b)).

4.2. j-crystal bases. In [W17], the notion of j-crystal bases was introduced. Let
us recall some properties briefly.

Set A := Q[p, p−1, q, q−1]. We denote by A0 the subring of Q(p, q) consisting of
all elements of the form f/g with f, g ∈ pQ[p, q, q−1]⊕Q[q], limq→0(limp→0 g) �= 0.

Let Ij := Ij�{2′, . . . , r′}. The Kashiwara operators are denoted by ẽi and f̃i, i ∈ Ij.
The following are basic results for the crystal basis theory of Uj.

Theorem 4.2.1 ([W17, Theorem 7.7.3]). Let λ ∈ P j, vλ ∈ L(λ) be a highest
weight vector. Set

L(λ) := SpanA0
{f̃i1 · · · f̃ilvλ | l ∈ Z≥0, i1, . . . , il ∈ Ij},

B(λ) := {f̃i1 · · · f̃ilvλ + qL(λ) | l ∈ Z≥0, i1, . . . , il ∈ Ij} \ {0}.

Then, (L(λ),B(λ)) is a unique j-crystal basis of L(λ). Moreover, B(λ) is identical
to SST(λ); vλ + qL(λ) ∈ B(λ) corresponds to Tλ ∈ SST(λ).

Theorem 4.2.2. Suppose that M ∈ Oint has a crystal basis (L,B). Then, as a
Uj-module, M has a j-crystal basis whose underlying sets are equal to (L,B).

Proof. This is an easy consequence of [W17, Corollary 7.7.4]. �

Let M ∈ Oj
int with a j-crystal basis (L,B). For each b ∈ B and i ∈ Ij, define

εi(b), ϕi(b), wt
j(b) ∈ Λj, P j(M) = P j

r (M) ⊂ P j, Ij(b) = Ijr(b) ∈ P j(M), Cj(b) =
Cj

r(b) ⊂ B, and T j
b ∈ SST(Ij(b)) in a similar way to Section 4.1.

5. Global bases

5.1. Balanced triples. Let · be the Q-linear automorphism of Q(p, q) sending p
and q to p−1 and q−1, respectively. Set A∞ := A0.

Definition 5.1.1. Let V be aQ(p, q)-vector space and x ∈ {0, ∅,∞}. AnAx-lattice
of V is a free Ax-submodule Ux of V of rank dimQ(p,q) V such that Q(p, q)⊗Ax

Ux =
V .

Definition 5.1.2 ([K93, Definition 2.1.2]). Let V be a Q(p, q)-vector space, Ux an
Ax-lattice of V for x ∈ {0, ∅,∞}. The triple (U0, U, U∞) is said to be balanced if
the canonical map

U0 ∩ U ∩ U∞ → U0/qU0

is an isomorhism of Q-vector spaces.
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Let V be a Q(p, q)-vector space with a balanced triple (U0, U, U∞). Take a Q-
basis B of U0/qU0. Since we have an isomorphism G : U0/qU0 → U0 ∩ U ∩ U∞ of
Q-vector spaces, which is the inverse of the canonical map U0 ∩U ∩U∞ → U0/qU0,
we obtain an Ax-basis G(B) = {G(b) | b ∈ B} of Ux for each x ∈ {0, ∅,∞}. We call
G(B) the global basis of V associated to the balanced triple (U0, U, U∞) and the
basis B.
Lemma 5.1.3. Let V, U0, U, U∞,B, G be as above. Take a subset B′ ⊂ B and set
U ′
x to be the Ax-span of G(B′) := {G(b) | b ∈ B′} for each x ∈ {0, ∅,∞}. Also, let

V ′ be the Q(p, q)-span of G(B′). Then, the following hold:

(1) (U ′
0, U

′, U ′
∞) is a balanced triple with the global basis G(B′).

(2) (U0/U
′
0, U/U

′, U∞/U ′
∞) is a balanced triple with the global basis {G(b)+V ′ |

b ∈ B \ B′}.
5.2. Global crystal bases and global j-crystal bases. Let UA denote the A-

subalgebra of U generated by E
(n)
i , F

(n)
i ,K±1

i , i ∈ I, n ∈ Z>0. Similaly, define Uj
A

to be the A-subalgebra of Uj generated by e
(n)
i , f

(n)
i , k±1

i , i ∈ Ij, n ∈ Z>0.

Lemma 5.2.1 ([L10, 1.3.5]). Let A be a Q(q)-algebra, x, y ∈ A such that xy =
q2yx. Then, for each n ∈ Z>0, we have

(x+ y)n =
n∑

t=0

qt(n−t)

[
n

t

]
ytxn−t.

Lemma 5.2.2. We have Uj
A ⊂ UA.

Proof. It suffices to show that e
(n)
i , f

(n)
i ∈ UA for all i ∈ Ij, n ∈ Z>0. We

prove e
(n)
i ∈ UA; the proof for f

(n)
i ∈ UA is similar. Setting x := Ei and

y := p−δi,1F−iK
−1
i , we see that

ei = x+ y, xy = q2yx.

Then, we can apply Lemma 5.2.1, and obtain

e
(n)
i =

n∑
t=0

qt(n−t)y(t)x(n−t).

It is easy to see that y(t) = p−δi,1tq−δi,1
t(t−1)

2 F
(t)
−iK

t
i ∈ UA. Hence, the assertion

follows. �
Let V be a U-module in Oint (resp., Uj-module in Oj

int) with a crystal basis
(L,B) (resp., j-crystal basis (L,B)). Assume that V admits a Q-linear involution
· satisfying the following:

xv = ψ(x)v, for all x ∈ U, v ∈ V

(resp., xv = ψj(x)v, for all x ∈ Uj, v ∈ V ).

We call such an involution a ψ-involution (resp., ψj-involution) on V . Since L is
an A0-lattice of V , L is an A∞-lattice of V .

Definition 5.2.3. Let V,L,B, · be as above. V is said to have a global crystal
basis (resp., global j-crystal basis) if there exists a UA-submodule (resp., Uj

A-

submodule) VA of V which is an A-lattice forming a balanced triple (L, VA,L).
The associated global basis G(B) (resp., Gj(B)) is called a global crystal basis
(resp., global j-crystal basis) of V .
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Example 5.2.4. Let λ ∈ P j
1 and consider the irreducible Uj

1-module L(λ). Recall

that L(λ) is (λ0 − λ−1 + 1)-dimensional with a basis Gj(λ) := {f (n)
1 v | 0 ≤ n ≤

λ0−λ−1}, where v denotes a highest weight vector. Also, L(λ) has a j-crystal basis

(L(λ),B(λ)), where L(λ) is the A0-span of Gj(λ), and B(λ) = {f (n)
1 v + qL(λ) |

0 ≤ n ≤ λ0 − λ−1}. Set L(λ)A to be the A-span of Gj(λ). Note that there exists
a unique ψj-involution ψj

λ on L(λ) fixing v. Then, (L(λ), L(λ)A, ψj
λ(L(λ))) is a

balanced triple, and Gj(λ) is a global j-crystal basis of L(λ).

Proposition 5.2.5. Let M ∈ Oj
int with a global crystal j-crystal basis Gj(BM ),

and N ∈ Oint with a global crystal basis G(BN ) Then, M ⊗N has a global j-crystal
basis of the form

{Gj(b1)♦G(b2) | b1 ∈ BM , b2 ∈ BN}.
Gj(b1)♦G(b2) ∈ Gj(b1)⊗G(b2)

+
∑

b′1∈BM , b′2∈BN

wt(b′2)<wt(b2)

ab′1,b′2;b1,b2G
j(b′1)⊗G(b′2), ab′1,b′2;b1,b2 ∈ A.

Proof. The fact that BM ⊗BN forms a j-crystal basis of M ⊗N is proved in [W17].
Now, one can construct a global j-crystal basis of M ⊗N with the desired property
in the same way as the proof of [BWW20, Theorem 4]. �

5.3. j-canonical bases. In this subsection, we recall the notion of j-canonical
bases, which was introduced by Bao and Wang in [BW18a], and explain that j-
canonical bases are global j-crystal bases. One of the key ingredients for a con-
struction of j-canonical bases is the intertwiner Υ:

Definition 5.3.1 ([BW18a, Theorem 6.4]). Let U− denote the subalgebra of U
generated by Fi, i ∈ I. For each λ ∈ Q+, there exists a unique Υλ ∈ U−

−λ satisfying
the following:

• Υ0 = 1,
• Υ :=

∑
λ∈Q+

Υλ satisfies ψj(x)Υ = Υψ(x) for all x ∈ Uj.

Lemma 5.3.2 ([BW18a, Proposition 6.12]). Let M ∈ Oint with a ψ-involution
ψM . Then, the composite Υ ◦ ψM is a ψj-involution of M .

Theorem 5.3.3 ([BW18a, Theorem 6.24]). Let M ∈ Oint have a global crystal
basis G(B) with a crystal basis (L,B), a ψ-involution ψM , and an A-lattice MA.
Set ψj

M := Υ◦ψM . Then, for each b ∈ B, there exists a unique Gj(b) ∈ M satisfying
the following.

(1) ψj
M (Gj(b)) = Gj(b).

(2) Gj(b) = G(b) +
∑

b′∈B cb′,bG(b′) for some cb′,b ∈ qA0 ∩ A. Moreover,
cb′,b = 0 unless wtj(b′) = wtj(b) and wt(b′) < wt(b).

The new basis Gj(B) := {Gj(b) | b ∈ B} thus constructed is called the j-canonical
basis of (M,G(B)).

Proposition 5.3.4. We keep the notation in Theorem 5.3.3. Then, (L,B) is a j-
crystal basis, (L,MA, ψj

M (L)) is a balanced triple, and Gj(B) is the global j-crystal
basis associated to the balanced triple (L,MA, ψj

M (L)) and the basis B.
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Proof. That (L,B) is a j-crystal basis has already been stated in Theorem 4.2.2.
Let us prove the rest. By the property (2) of Theorem 5.3.3, it is clear that L
(resp., MA) is spanned by Gj(B) over A0 (resp., A). Also, by (1) of Theorem
5.3.3, ψj

M (L) is spanned by Gj(B) over A∞. Hence, the canonical homomorphism
L ∩ MA ∩ ψj

M (L) → L/qL is an isomorphism, and therefore, (L,MA, ψj
M (L)) is

balanced. Finally, by Lemma 5.2.2, the UA-module MA is also a Uj
A-module. This

proves the proposition. �

6. Kazhdan-Lusztig bases

The subsequent three sections are dedicated to prove the existence of a global
j-crystal basis and its “dual” basis for L(λ), λ ∈ P j. In this section, we formulate
variants of the Kazhdan-Lusztig bases following [KL79], [Deo87], and [L03].

6.1. Hecke algebra of type B. Fix d ∈ Z>0. Let W = Wd be the Weyl group of
type Bd with simple reflections S = {s0, s1, . . . , sd−1} such that

s0s1s0s1 = s1s0s1s0, sisi+1si = si+1sisi+1 if i ≥ 1, sisj = sjsi if |i− j| > 1.

Definition 6.1.1. The Hecke algebra H = H(W ) associated to W with unequal
parameters p, q is the associative algebra over AZ := Z[p, p−1, q, q−1] generated by
{Hs | s ∈ S} subject to the following relations:

• (Hs − q−1
s )(Hs + qs) = 0 for all s ∈ S, where qs = p if s = s0 and qs = q

otherwise.
• Hs0Hs1Hs0Hs1 = Hs1Hs0Hs1Hs0 .
• HsiHsi+1

Hsi = Hsi+1
HsiHsi+1

if i ≥ 1.
• HsiHsj = HsjHsi if |i− j| > 1.

We often write Hi = Hsi . For each w ∈ W with a reduced expression w =
si1 · · · sil , the product Hi1 · · ·Hil is independent of the choice of a reduced expres-
sion of w; we denote it by Hw. Similarly, qw := qsi1 · · · qsil is well-defined.

Let U, V be modules over AZ. We say a Z-linear map f : U → V is anti-linear
if it satisfies f(gu) = gf(u) for all g ∈ AZ and u ∈ U . In the sequel, we will often
use the following automorphisms, all of which are involutions, of H.

Lemma 6.1.2.

(1) There exists a unique anti-linear algebra automorphism · of H such that
Hw = H−1

w−1 .
(2) There exists a unique anti-linear algebra automorphism sgn of H such that

sgn(Hw) = (−1)�(w)Hw. Here, � : W → Z≥0 denotes the length function
on W .

(3) There exists a unique AZ-algebra anti-automorphism (·)� of H such that
H�

w = Hw−1 .

Moreover, all of these automorphisms commute with each other.

For y, w ∈ W , define ry,w ∈ AZ by

Hw =
∑
y∈W

ry,wHy.

It is well-known and easily proved that rw,w = 1 for all w ∈ W and ry,w = 0 unless
y ≤ w.
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6.2. Kazhdan-Lusztig bases. Let us formulate the Kazhdan-Lusztig basis and
the dual Kazhdan-Lusztig basis. Set

A+
Z
:= AZ ∩A0 = pZ[p, q, q−1]⊕ qZ[q],

A−
Z
:= A+

Z = p−1Z[p−1, q, q−1]⊕ q−1Z[q−1].

Theorem 6.2.1 ([KL79, Theorem 1.1], [L03, Theorem 5.2]). For each w ∈ W ,
there exists a unique Cw ∈ H such that

(1) Cw = Cw.
(2) Cw = Hw+

∑
y<w cy,wHy for some cy,w ∈ A+

Z . Here, < denotes the Bruhat
order on W .

Replacing A+
Z with A−

Z , we see the following: For each w ∈ W , there exists a
unique Dw ∈ H such that

(1) Dw = Dw.
(2) Dw = Hw +

∑
y<w dy,wHy for some dy,w ∈ A−

Z .

Remark 6.2.2. Noting that the automorphisms · and sgn commute with each
other, it is easy to verify that Dw = (−1)�(w) sgn(Cw).

It is obvious from the definitions that both {Cw | w ∈ W} and {Dw | w ∈ W}
form AZ-bases of H. We call the former the Kazhdan-Lusztig basis, and the latter
the dual Kazhdan-Lusztig basis of H.

6.3. Left cell representations. Let us recall from [KL79] the notion of left cells
of W and the associated left cell representations.

Definition 6.3.1. Let y, w ∈ W .

(1) y →L w if the coefficient of Cy in CsCw expanded in the Kazhdan-Lusztig
basis is nonzero for some s ∈ S.

(2) y ≤L w if there exist y = y0, y1, . . . , yl = w ∈ W such that yi−1 →L yi.
(3) y ∼

L
w if y ≤L w and w ≤L y.

(4) y <L w if y ≤L w and y �∼
L
w.

(5) Each equivalence class of W/ ∼
L

is called a left cell of W . We denote by

L(W ) the set of left cells of W .

Remark 6.3.2. By Remark 6.2.2, we obtain the same equivalence relation as ∼
L

if

we replace Cw’s by Dw’s.

For each X ∈ L(W ) and x ∈ X, set

C≤LX =
⊕
y≤Lx

AZCy, C<LX =
⊕
y<Lx

AZCy, CL
X = C≤LX/C<LX ,

D≤LX =
⊕
y≤Lx

AZDy, D<LX =
⊕
y<Lx

AZDy, DL
X = D≤LX/D<LX .

Note that these are independent of the choice of x ∈ X. We denote the image
of m ∈ C≤LX (resp., m ∈ D≤LX) under the quotient map C≤LX → CL

X (resp.,
D≤LX → DL

X) by [m]X (resp., [m]′X).

Lemma 6.3.3. Let X ∈ L(W ). Then, C≤LX , C<LX , D≤LX , and D<LX are left
ideals of H, and consequently, CL

X and DL
X are left H-modules. Moreover, CL

X has
a basis {[Cx]X | x ∈ X}, while DL

X has a basis {[Dx]
′
X | x ∈ X}.
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Proof. The assertions are obvious from the definitions. �

We call CL
X the left cell representation of H(W ) associated to X ∈ L(W ).

6.4. Bilinear form on H. Let H∗ := HomAZ
(H,AZ). H∗ has a left H-module

structure given by

(Hf)(H ′) = f(H�H ′), for all f ∈ H∗, H,H ′ ∈ H.

Let {hw | w ∈ W} ⊂ H∗ be the dual basis of {Hw | w ∈ W}, that is, they are
characterized by hy(Hw) = δy,w for all y, w ∈ W .

Lemma 6.4.1. For each w ∈ W and s ∈ S, the following holds.

Hshw =

{
hsw if w < sw,

hsw + (q−1
s − qs)hw if sw < w.

Proof. For each y ∈ W , we compute as

(Hshw)(Hy) = hw(HsHy)

=

{
hw(Hsy) if sy > y,

hw(Hsy + (q−1
s − qs)Hy) if sy < y

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if sy > y and sy = w,

1 if sy < y and sy = w,

q−1
s − qs if sy < y and y = w,

0 otherwise

=

{
hsw(Hy) if sw > w,

(hsw + (q−1
s − qs)hw)(Hy) if sw < w.

This implies

Hshw =

{
hsw if sw > w,

hsw + (q−1
s − qs)hw if sw < w.

Thus, the proof completes. �

There exists an anti-linear automorphism · of H∗ defined by f(H) = f(H) for
f ∈ H∗, H ∈ H.

Lemma 6.4.2. For each w ∈ W , we have

hw =
∑
y≥w

rw,yhy.

In particular, hw0
= hw0

, where w0 ∈ W denotes the longest element.

Proof. Let y ∈ W . Then, we have

hw(Hy) = hw(Hy) = hw(
∑
z≤y

rz,yHz) = rw,y.

Since hw =
∑

y∈W hw(Hy)hy, the assertion follows. �

Let {C∗
w | w ∈ W} ⊂ H∗ denote the dual basis of {Cw | w ∈ W}.
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Proposition 6.4.3. C∗
w is characterized by the following two conditions:

(1) C∗
w = C∗

w.
(2) C∗

w = hw +
∑

z>w c∗w,zhz for some c∗w,z ∈ A+
Z .

Proof. Thanks to Lemma 6.4.2, one can prove that there exists a unique C ′
w ∈ H∗

such that C ′
w = C ′

w and C ′
w−hw ∈

⊕
y>w A+

Z hy in a similar way to Theorem 6.2.1.
Hence, it suffices to show that C∗

w satisfies the two conditions.
The first condition is verified as follows. For each y ∈ W , we have

C∗
w(Cy) = C∗

w(Cy) = C∗
w(Cy) = δy,w = δy,w = C∗

w(Cy).

Since {Cy | y ∈ W} is a basis of H, we obtain C∗
w = C∗

w.
Next, we prove the second condition. For each y ∈ W , we can write Hy =

Cy +
∑

z<y bz,yCz for some bz,y ∈ A+
Z . Then, we have

C∗
w =

∑
y∈W

C∗
w(Hy)hy = hw +

∑
y>w

bw,yhy.

This completes the proof. �
Lemma 6.4.4. The linear map d : H → H∗; H �→ H · hw0

gives an isomorphism
of left H-modules. Moreover, we have

(1) d(Hy) = hyw0
for all y ∈ W .

(2) d(H) = d(H) for all H ∈ H.

Proof. By Lemma 6.4.1, the linear map ϕ : H → H∗; Hw �→ hw is an isomorphism
of left H-modules. On the other hand, the map ψ : H → H; H �→ H ·Hw0

is clearly
an isomorphism of left H-modules. Thus, the composite map d := ϕ ◦ ψ : H → H∗

is an isomorphism of left H-modules satisfying

d(H) = ϕ(H ·Hw0
) = H · ϕ(Hw0

) = H · hw0
for all H ∈ H.

Also, we have, for all y ∈ W ,

d(Hy) = ϕ(Hy ·Hw0
) = ϕ(H−1

y−1 ·Hy−1Hyw0
) = ϕ(Hyw0

) = hyw0
.

Finally, for each H,H ′ ∈ H, we have

d(H)(H ′) = (H · hw0
)(H ′) = hw0

((
H
)�
H ′

)
,

d(H)(H ′) = d(H)(H ′) = hw0
(H�H ′) = hw0

(
H�H ′

)
.

Then, the equality d(H) = d(H) follows from the facts that hw0
= hw0

and
(
H
)�

=

H�; the former is proved in Lemma 6.4.2, and the latter is in Lemma 6.1.2. �
Using this isomorphism, we define a bilinear form 〈· | ·〉 on H by

〈H | H ′〉 := d(H ′)(H), (H,H ′ ∈ H).

Clearly, this bilinear form satisfies 〈H ′ | HH ′′〉 = 〈H�H ′ | H ′′〉 for all H,H ′, H ′′ ∈
H.

Lemma 6.4.5. The bilinear from 〈· | ·〉 is symmetric.

Proof. Let H1, H2 ∈ H. It suffices to show that hw0
(H�

2H1) = hw0
(H�

1H2). Since
H�

w0
= Hw0

, it holds that hw0
(H�) = hw0

(H) for all H ∈ H. Then, the assertion

follows if one notes (H�
2H1)

� = H�
1H2. �
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Proposition 6.4.6. The bases {Cw | w ∈ W} and {Dww0
| w ∈ W} are dual

to each other with respect to 〈· | ·〉, that is, we have 〈Cy | Dw〉 = δy,ww0
for all

y, w ∈ W .

Proof. Recall that Dw =
∑

y≤w dy,wHy with dw,w = 1 and dy,w ∈ A−
Z for all y < w.

Then, we have

d(Dw) = d(Dw) = d(Dw),

d(Dw) = d(Dw) = d(
∑
y≤w

dy,wHy) =
∑
y≤w

dy,whyw0
=

∑
z≥ww0

dzw0,whz.

This and Proposition 6.4.3 show that d(Dw) = C∗
ww0

. Hence, it holds that 〈Cy |
Dw〉 = C∗

ww0
(Cy) = δy,ww0

, which proves the proposition. �

Here, we describe the duality between CL
X ’s and DL

X ’s.

Lemma 6.4.7. Let y, w ∈ W , X ∈ L(W ). Then, the following hold.

(1) y →L w if and only if ww0 →L yw0.
(2) y ≤L w if and only if ww0 ≤L yw0.
(3) Xw0 := {xw0 | x ∈ X} ∈ L(W ).

Proof. We first prove part (1). Suppose that y →L w. Then, there exists s ∈ S
such that 〈CsCw | Dyw0

〉 �= 0. This implies that 〈Cw | CsDyw0
〉 �= 0, and hence,

we obtain ww0 →L yw0. Replacing y, w by yw0, ww0, we also have the opposite
indication. This proves part (1). Assertion (2) is an immediate consequence of (1).
We prove part (3). Let x ∈ X. Then, X = {y ∈ W | x ≤L y ≤L x}. By part
(2), we have x ≤L y ≤L x if and only if xw0 ≤L yw0 ≤L xw0. This implies that
Xw0 = {z ∈ W | xw0 ≤L z ≤L xw0}, and it is a unique left cell of W containing
xw0. Thus, the proof completes. �

Lemma 6.4.8. The bilinear from 〈· | ·〉 induces a non-degenerate bilinear form on
CL

X × DL
Xw0

. Moreover, {[Cx]X | x ∈ X} and {[Dxw0
]′Xw0

| x ∈ X} form bases
which are dual to each other.

Proof. Let x ∈ X, y, w ∈ W be such that y <L x and ww0 <L xw0. It suffices to
show that 〈Cy | Du〉 = 0 for all u ≤L xw0 and 〈Cv | Dww0

〉 = 0 for all v ≤L x.
Both are obvious from Lemma 6.4.7 (2). �

Proposition 6.4.9. Let X ∈ L(W ). Then, we have an isomorphism DL
Xw0

� CL
X

of H-modules.

Proof. It suffices to show that the characters chDL
Xw0

of DL
Xw0

and chCL
X

of CL
X

coincide with each other. For each w ∈ W , we compute as

chCL
X
(Hw) =

∑
x∈X

〈Hw[Cx]X | [Dxw0
]′Xw0

〉

=
∑
x∈X

〈[Cx]X | Hw−1 [Dxw0
]′Xw0

〉

= chDL
Xw0

(Hw−1) = chDL
Xw0

(Hw).

Thus, the proof completes. �
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6.5. Parabolic Kazhdan-Lusztig bases. Throughout this subsection, we fix a
subset J ⊂ {0, 1, . . . , d − 1} arbitrarily. Let WJ denote the parabolic subgroup of
W generated by {sj | j ∈ J}, JW the set of minimal length coset representatives
for WJ\W , and wJ ∈ WJ the longest element. Also, we set

xJ := qwJ

∑
w∈WJ

q−1
w Hw ∈ H.

Lemma 6.5.1. Let j ∈ J . Then, the following hold.

(1) xJHj = q−1
sj xJ .

(2) x�
J = xJ .

(3) xJ = CwJ
. In particular, xJ = xJ .

Proof. The assertion (1) follows from a direct calculation and the fact that WJ =
{w ∈ WJ | w < sjw} � {w ∈ WJ | sjw < w}. The assertion (2) follows from the
definition of xJ and the facts that WJ = {w−1 | w ∈ WJ}, and qw−1 = qw for all
w ∈ W . The proof of (3) can be found in [X94, Proposition 1.17 (2)]. �

By Lemma 6.5.1 (1), the right ideal xJH of H has a basis {xJHw | w ∈ JW}.
Also, by Lemma 6.5.1 (3), xJH is closed under the involution · . Hence, we can
construct analogs of the Kazhdan-Lusztig basis and the dual Kazhdan-Lusztig basis
of H in the ideal xJH:

Theorem 6.5.2 ([Deo87, Proposition 3.2]).

(1) For each w ∈ JW , there exists a unique JCw ∈ xJH such that

(a) JCw = JCw.
(b) JCw = xJ(Hw +

∑
y∈JW
y<w

Jcy,wHy) for some Jcy,w ∈ A+
Z .

(2) For each w ∈ JW , there exists a unique JDw ∈ xJH such that

(a) JDw = JDw.
(b) JDw = xJ(Hw +

∑
y∈JW
y<w

Jdy,wHy) for some Jdy,w ∈ A−
Z .

Clearly, {JCw | w ∈ JW} and {JDw | w ∈ JW} are linear bases of xJH. We call
them the parabolic Kazhdan-Lusztig basis and the dual parabolic Kazhdan-Lusztig
basis of xJH, respectively.

Proposition 6.5.3 ([Deo87, Proposition 3.4]). Let w ∈ JW . Then, JCw = CwJw.

Proposition 6.5.4. Let w ∈ JW . Then, JDw = xJDw.
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Proof. For each y ∈ W , define yJ ∈ WJ and Jy ∈ JW to be the unique elements
satisfying y = yJ

Jy and �(y) = �(yJ ) + �(Jy). Then, we have

xJDw = xJ

∑
y≤w

dy,wHy

= xJ

(
Hw +

∑
y<w

dy,wHyJ
HJy

)

= xJ

(
Hw +

∑
y<w

q−1
yJ

dy,wHJy

)
(by Lemma 6.5.1 (1))

= xJ

⎛⎜⎜⎝Hw +
∑

y∈JW
y<w

∑
x∈WJ
xy<w

q−1
x dxy,wHy

⎞⎟⎟⎠ .

This shows that xJDw − xJHw ∈
⊕

y∈JW
y<w

A−
Z xJHy. Hence, by Theorem 6.5.2 (2),

xJDw coincides with JDw. �
For a later use, let us consider xJCy and xJDy for y ∈ W .

Proposition 6.5.5. Let y ∈ W . Then, we have

xJCy =
∑

w∈JW
wJw≤Ly

αw
JCw,

for some αw ∈ AZ.

Proof. Let us write

xJCy =
∑

w∈JW

αw
JCw =

∑
w∈JW

αwCwJw for some αw ∈ AZ.

Also, by the definition of ≤L, we can write

xJCy =
∑
z≤Ly

βzCz for some βz ∈ AZ.

This shows αw = 0 unless wJw ≤L y. �
Lemma 6.5.6 ([L03, Theorem 6.6 (b)]). Let w ∈ W and s ∈ S be such that sw < w.
Then, it holds that HsDw = −qsDw.

Proposition 6.5.7. Let y ∈ W \ JW . Then, xJDy = 0.

Proof. Since y /∈ JW , there exists j ∈ J such that sjy < y. For such j, we have

xJHj = q−1
j xJ (Lemma 6.5.1 (1)) and HjDy = −qjDy (Lemma 6.5.6). Hence, we

obtain

xJDy = qjxJHjDy = −q2jxJD,

which implies xJDy = 0, as desired. �
Set PJ := qwJ

∑
x∈WJ

q−2
x ∈ AZ. Note that, by Lemma 6.5.1 (1), it holds that

x2
J = PJxJ . Then, for each H,H ′ ∈ H, we have

〈xJH | xJH
′〉 = 〈x2

JH | H ′〉 = PJ〈H | H ′〉 ∈ PJAZ;
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here, we use Lemma 6.5.1 (2). Hence, we can define an AZ-valued bilinear form
〈· | ·〉J on xJH by 〈· | ·〉J := 1

PJ
〈· | ·〉.

Proposition 6.5.8. The basis {JCw | w ∈ JW} and {JDwJww0
| w ∈ JW} are

dual to each other with respect to 〈· | ·〉J , that is, we have 〈JCy | JDw〉J = δy,wJww0

for all y, w ∈ JW .

Proof. Let y, w ∈ JW . We compute as follows:

〈JCy | JDw〉J =
1

PJ
〈JCy | JDw〉

=
1

PJ
〈CwJy | xJDw〉 (by Proposition 6.5.3 and 6.5.4)

= 〈CwJy | Dw〉 (since CwJy = JCy ∈ xJH)

= δwJy,ww0
= δy,wJww0

(by Proposition 6.4.6).

This proves the proposition. �

7. Hecke modules and their centralizers

In this section, we study the centralizer algebras of certain modules over the
Hecke algebra. They are known as (generalized) q-Schur algebras. Multiparameter
q-Schur algebra of type B is also studied in [LL19].

7.1. Fundamental properties. We follow ideas in [DDPW08, Chapter 9.1]. Let
π be an index set. Suppose that we are given a map π → {J | J ⊂ {0, 1, . . . , d−1}}.
We denote by Iλ the image of λ ∈ π under this map. For each λ ∈ π, for simplicity,
we will denote WIλ , wIλ , xIλ , etc. by Wλ, wλ, xλ, etc.

Definition 7.1.1. Associated with π, we define a right H-module

T(π) :=
⊕
λ∈π

xλH,

and its centralizer algebra S(π) := EndH(T(π)); we let S(π) act on T(π) from the
left.

It is obvious that T(π) has two bases {λCw | λ ∈ π, w ∈ λW} and {λDw | λ ∈
π, w ∈ λW}; we call them the Kazhdan-Lusztig basis and dual Kazhdan-Lusztig
basis, respectively.

For each m =
∑

λ∈π mλ ∈ T(π) with mλ ∈ xλH, we define m ∈ T(π) to be∑
λ∈π mλ. Also, for each f ∈ S(π), define f ∈ S(π) by f(m) = f(m) for all

m ∈ T(π). This gives anti-linear automorphisms · on T(π) and S(π).
For each λ ∈ π, define pλ ∈ S(π) to be the composite

pλ : T(π) � xλH ↪→ T(π)

of the projection and the inclusion. Clearly, {pλ | λ ∈ π} is a family of orthogonal
idempotents with

∑
λ∈π pλ = idT(π). Hence, we have a decomposition

S(π) =
⊕

λ,μ∈π

pλS(π)pμ, pλS(π)pμ = HomH(xμH, xλH).
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Take f ∈ HomH(xμH, xλH) arbitrarily. Since xμH is generated (as a right H-
module) by xμ, the f is determined by f(xμ) ∈ xλH. Let us write

f(xμ) =
∑

w∈λW

cλ,w,μ(f)xλHw, for some cλ,w,μ ∈ AZ.

Lemma 7.1.2. Let w ∈ λW and j ∈ Iμ be such that w < wsj. Then, we have

cλ,w,μ(f) = qjcλ,wsj ,μ(f).

Consequently, we have

f(xμ) =
∑

w∈λWμ

∑
y∈Wμ

wy∈λW

q−1
y cλ,w,μ(f)xλHwy,

and hence, f is determined by (cλ,w,μ(f))w∈λWμ ∈ A
λWμ

Z , where λWμ := λW ∩
(μW )−1.

Proof. We have

q−1
j f(xμ) = f(xμHj)

= f(xμ)Hj

=
∑

w∈λW
wsj<w

cλ,w,μ(f)xλ(Hwsj + (q−1
j − qj)Hw) +

∑
w∈λW
wsj>w

cλ,w,μ(f)xλHwsj

=
∑

w∈λW
wsj<w

(cλ,wsj ,μ(f)+(q−1
j − qj)cλ,w,μ(f))xλHw+

∑
w∈λW
wsj>w

cλ,wsj ,μ(f)xλHw.

Comparing the coefficients of xλHw, we obtain the assertion. �

Conversely, given (cλ,w,μ)w∈λWμ ∈ A
λWμ

Z , there exists a unique

g ∈ HomH(xμH, xλH)

such that cλ,w,μ(g) = cλ,w,μ for all w ∈ λWμ. Thus, we obtain an AZ-linear

isomorphism between A
λWμ

Z and HomH(xμH, xλH).

Lemma 7.1.3 ([DDPW08, Theorem 4.18]). Let λ, μ ∈ π. For each x ∈ λWμ, there
exists a unique Jx ⊂ {0, 1, . . . , d− 1} such that the multiplication map

Wλ × {x} × JxWμ → WλxWμ; (u, x, v) �→ uxv

is a bijection, where JxWμ := JxW ∩Wμ. Moreover, we have �(uxv) = �(u)+�(x)+
�(v) for all u ∈ Wλ and v ∈ JxWμ.

For λ, μ ∈ π and x ∈ λWμ, define ξλ,x,μ ∈ HomH(xμH, xλH) to be the one

corresponding to (δx,wqx′)w∈λWμ ∈ A
λWμ

Z , where x′ ∈ Wμ is the longest element
in JxWμ (Jx is as in Lemma 7.1.3). Then, the next proposition is clear.

Proposition 7.1.4. {ξλ,x,μ | λ, μ ∈ π, x ∈ λWμ} forms a basis of S(π).

For each λ, μ ∈ π, x ∈ λWμ, set

ηλ,x,μ = qwλxx′
∑

w∈WλxWμ

q−1
w Hw.
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Lemma 7.1.5. Let λ, μ ∈ π, x ∈ λWμ.

(1) η�λ,x,μ = ημ,x−1,λ.

(2) ξλ,x,μ(xμ) = ηλ,x,μ = 1
Pμ

ηλ,x,μ · xμ = 1
Pλ

xλ · ηλ,x,μ.
(3) ξλ,e,μ = ξλ,e,μ, where e denotes the identity element of W .

Proof.

(1) By the definition of x′, we have y := wλxx
′ is the longest element in

WλxWμ. Also, it is easily checked that the map W → W, w �→ w−1

gives a bijection WλxWμ → Wμx
−1Wλ. Since this bijection preserves the

length, y−1 is the longest element in Wμx
−1Wλ. Then, we compute η�λ,xμ

as follows:

η�λ,xμ = qy
∑

w∈WλxWμ

q−1
w Hw−1 = qy

∑
w∈Wμx−1Wλ

q−1
w−1Hw

= qy−1

∑
w∈Wμx−1Wλ

q−1
w Hw = ημ,x−1,λ.

(2) By the definition of ξλ,x,μ, we have

ξλ,x,μ(xμ) =
∑

y∈Wμ

xy∈λW

qx′q−1
y xλHxy

=
∑

y∈Wμ

xy∈λW

∑
z∈Wλ

qx′q−1
y qwλ

q−1
z Hzxy (by the definition of xλ)

=
∑

w∈WλxWμ

qwλ
qxqx′q−1

w Hw = ηλ,x,μ.

This proves the first equation. Next, we have

ηλ,x,μ · xμ = ξλ,x,μ(x
2
μ) = Pμξλ,x,μ(xμ) = Pμηλ,x,μ,

which implies the second equality. Finally, the third equality follows from
the fact that ηλ,x,μ = ξλ,x,μ(xμ) ∈ xλH.

(3) It suffices to check that ξλ,e,μ(xν) = ξλ,e,μ(xν) for all ν ∈ π. Only the
non-trivial case is when ν = μ. Since we have

ξλ,e,μ(xμ) = ξλ,e,μ(xμ) = ηλ,e,μ,

the problem is reduced to proving that ηλ,e,μ is fixed under the involution
· . One can write

ηλ,e,μ =
∑

w∈WλWμ

qwλ
qe′q

−1
w Hw = xλ

∑
y∈λWμ

qe′q
−1
y Hy.

On the other hand, we have

xλxμ = xλxIλ∩Iμ

∑
y∈λWμ

qe′q
−1
y Hy = PIλ∩Iμxλ

∑
y∈λWμ

qe′q
−1
y Hy.

Hence, we obtain

ηλ,e,μ =
1

PIλ∩Iμ

xλxμ,

which is invariant under · . Thus, the proof completes. �
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Proposition 7.1.6. The linear map � : S(π) → S(π); ξλ,x,μ �→ ξμ,x−1,λ defines an
AZ-algebra anti-automorphism on S(π).

Proof. We have to verify that (ξλ,x,μ · ξκ,y,ν)� = ξν,y−1,κ · ξμ,x−1,λ for all λ, μ, ν, κ

and x ∈ λWμ, y ∈ κW ν . Since the both sides are equal to zero unless κ = μ, we
may assume that κ = μ. Let us write

ξλ,x,μ · ξμ,y,ν =
∑

z∈λW ν

czξλ,z,ν for some cz ∈ AZ.(1)

Applying the both sides to xν ∈ T(π), by Lemma 7.1.5 (2), we obtain

1

Pμ
ηλ,x,μημ,y,ν =

∑
z∈λWμ

czηλ,z,ν .(2)

To prove the assertion, we compute as follows:

ξν,y−1,μ · ξμ,x−1,λ(xλ) =
1

Pμ
ην,y−1,μ · ημ,x−1,λ (by Lemma 7.1.5 (2))

= (
1

Pμ
ηλ,x,μ · ημ,y,ν)� (by Lemma 7.1.5 (1))

= (
∑

z∈λW ν

czηλ,z,ν)
� (by equation (2))

=
∑

z∈λW ν

czην,z−1,λ (by Lemma 7.1.5 (1))

=
∑

z∈λW ν

czξν,z−1,λ(xλ) (by Lemma 7.1.5 (2))

= (ξλ,x,μ · ξμ,y,ν)�(xλ) (by equation (1)).

This shows that ξν,y−1,μ ·ξμ,x−1,λ = (ξλ,x,μ ·ξμ,y,ν)�, and hence, the proof completes.
�

Recall the bilinear form 〈· | ·〉λ = 〈· | ·〉Iλ on xλH defined in Section 6.5.

Proposition 7.1.7. Let λ, μ ∈ π, m ∈ xλH, and n ∈ xμH. Then, for each
w ∈ λWμ, we have

〈m | ξλ,w,μ(n)〉λ = 〈ξ�λ,w,μ(m) | n〉μ.

Proof. We compute as follows:

〈m | ξλ,w,μ(n)〉λ =
1

Pλ
〈m | ξλ,w,μ(n)〉

=
1

PλPμ
〈m | ηλ,w,μn〉 (by Lemma 7.1.5 (2))

=
1

PλPμ
〈ημ,w−1,λm | n〉 (by Lemma 7.1.5 (1))

=
1

Pμ
〈ξμ,w−1,λ(m) | n〉 (by Lemma 7.1.5 (2))

= 〈ξ�λ,w,μ(m) | n〉μ.
This proves the proposition. �
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Define a bilinear form 〈· | ·〉π on T(π) by 〈m | n〉π := δλ,μ〈m | n〉λ for all λ, μ ∈ π,
m ∈ xλH, n ∈ xμH.

Corollary 7.1.8. The two bases {λCw | λ ∈ π, w ∈ λW} and {λDwλww0
| λ ∈

π, w ∈ λW} of T(π) are dual to each other with respect to the bilinear form 〈· | ·〉π.
Moreover, for all m,n ∈ T(π) and x ∈ S(π), we have 〈m | xn〉π = 〈x�m | n〉π.

7.2. Cell representations. Let X ∈ L(W ) and x ∈ X. Set

C≤LX(π) :=
⊕
λ∈π

⊕
w∈λW

wλw≤Lx

AZ
λCw, D≤L

(π) :=
⊕
λ∈π

⊕
w∈λW
w≤Lx

AZ
λDw,

C<LX(π) :=
⊕
λ∈π

⊕
w∈λW

wλw<Lx

AZ
λCw, D≤L

(π) :=
⊕
λ∈π

⊕
w∈λW
w<Lx

AZ
λDw,

CL
X(π) := C≤LX(π)/C<LX(π), DL

X(π) := D≤LX(π)/D<LX(π).

Note that these objects are independent of the choice of x ∈ X. We denote the
image of m ∈ C≤LX(π) (resp., D≤LX(π)) under the quotient map C≤LX(π) →
CL

X(π) (resp., D≤LX(π) → DL
X(π)) by [m]X (resp., [m]′X).

Proposition 7.2.1. Let X ∈ L(W ).

(1) C≤LX(π) is a S(π)-submodule of T(π).
(2) C<LX(π) is a S(π)-submodule of T(π).
(3) CL

X(π) is a left S(π)-module having a basis {[λCw]X | λ ∈ π, w ∈ λW ∩
wλX}. Here, wλX := {wλx | x ∈ X}.

Proof. We will prove only (1) since the proof of (2) is similar to that of (1), and
(3) follows from (1) and (2). Fix x ∈ X. In order to show that C≤LX(π) is a
S(π)-submodule, it suffices to verify that ξλ,y,μ

μCw ∈ C≤LX(π) for all λ, μ ∈ π,
y ∈ λWμ, and w ∈ μW such that wμw ≤L x. By Proposition 6.5.3 and Lemma
7.1.5 (2), we have

ξλ,y,μ
μCw = ξλ,y,μCwμw =

1

Pμ
ηλ,y,μCwμw.

Also, by Lemma 7.1.5 (2), we have ηλ,y,μ = ξλ,y,μ(xμ) ∈ xλH; one can write
ηλ,y,μ = xλH for some H ∈ H. Then, HCwμw is a linear combination of Cw′ ,
w′ ≤L wμw(≤L x). Hence, by Proposition 6.5.5, xλHCwμw is a linear combination

of λCw′′ for w′′ ∈ λW with wλw
′′ ≤L w′(≤L x). Therefore, we have ξλ,y,μ

μCw =
1
Pμ

ηλ,y,μCwμw ∈ 1
Pμ

C≤LX(π). However, since ξλ,y,μ
μCw ∈ xλH =

⊕
z∈λW AZ

λCz,

we conclude that ξλ,y,μ
μCw ∈ C≤LX(π). This completes the proof. �

Similarly, one can prove the following: D≤LX(π) and D<LX(π) are S(π)-sub-
modules, and DL

X(π) is a left S(π)-module having a basis {[λDw]
′
X | λ ∈ π, w ∈

λW ∩X}.

8. Global j-crystal bases for the irreducible Uj
-modules

8.1. Surjection ξ : Uj → S(πj). Let πj = {λ = (λ0, . . . , λr) ∈ Zr+1
≥0 |

∑r
i=0 λi =

d}. For λ ∈ πj, set Iλ = {0, 1, . . . , d − 1} \ {λ0, λ0,1, . . . , λ0,r−1}, where λ0,k =∑k
i=0 λi.
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Let V =
⊕r

i=−r Q(p, q)vi be the vector representation of U with v−r a highest

weight vector. Then, V⊗d has a basis {vi1,...,id := vi1 ⊗ · · · ⊗ vid | −r ≤ i1, . . . , id ≤
r}. H := Q(p, q)⊗AZ

H acts on V⊗d by

vi1,...,idH0 =

⎧⎪⎨⎪⎩
v−i1,i2,...,id if i1 > 0,

p−1vi1,...,id if i1 = 0,

v−i1,i2,...,id + (p−1 − p)vi1,...,id if i1 < 0,

vi1,...,idHj =

⎧⎪⎨⎪⎩
v...,ij+1,ij ,... if ij < ij+1,

q−1vi1,...,id if ij = ij+1,

v...,ij+1,ij ,... + (q−1 − q)vi1,...,id if ij > ij+1.

Then, it is easily seen that V⊗d is isomorphic to T(πj) := Q(p, q) ⊗AZ
T(πj) as a

right H-module. Setting S(πj) := Q(p, q) ⊗AZ
S(πj), V⊗d becomes a left S(πj)-

module. By the double centralizer property between Uj and H on V⊗d ([BW18a],
[BWW18]), there exists a surjective algebra homomorphism ξ : Uj → S(πj). In
particular, every S(πj)-modules are regarded as Uj-modules via ξ. In [W17], it
is proved that for each λ ∈ P j, the irreducible highest weight module L(λ) is
isomorphic to CL

X(πj) := Q(p, q)⊗AZ
CL

X(πj) for some X ∈ L(Wd), where d = |λ|.
For i ∈ Ij, we define two maps ẽi, f̃i : π

j → πj � {0}, where 0 denotes a formal
symbol, as follows. Let λ = (λ0, . . . , λr) ∈ πj. Then, we set

ẽiλ =

{
(λ0, . . . , λi−2, λi−1 + 1, λi − 1, λi+1, . . . , λr) if λi > 0,

0 if λi = 0,

and

f̃iλ =

{
(λ0, . . . , λi−2, λi−1 − 1, λi + 1, λi+1, . . . , λr) if λi−1 > 0,

0 if λi−1 = 0.

By convention, we set ξλ,x,μ = 0 if λ = 0 or μ = 0.

Proposition 8.1.1. For i ∈ Ij, we have

ξ(ei) =
∑
λ∈πj

ξẽi(λ),e,λ,

ξ(fi) =
∑
λ∈πj

ξ
˜fi(λ),e,λ

.

Proof. We prove only the statement for f1; the proofs for fi, i �= 1 and for ei are
similar. Recall the comultiplication Δ of U; we have

Δ(d−1)(Ei) =
d∑

k=1

1⊗k−1⊗Ei⊗ (K−1
i )⊗d−k, Δ(d−1)(Fi) =

d∑
k=1

K⊗d−k
i ⊗Fi⊗1⊗k−1.
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Then, we compute as

f1vλ = pq−1qλ0

λ0∑
k=1

qλ0−kv0λ0−k,1,0k−1,1λ1 ,...,rλr

+

λ0∑
k=1

qλ0−kv0k−1,−1,0λ0−k,1λ1 ,...,rλr

= pqλ0−1
λ0∑
k=1

qλ0−kv
˜f1(λ)

Hλ0−1 · · ·Hλ0−(k−1)

+

λ0∑
k=1

qλ0−kv
˜f1(λ)

Hλ0−1 · · ·H1H0H1 · · ·Hk−1

= pq2(λ0−1)
λ0∑
k=1

q−k+1v
˜f1(λ)

Hλ0−1 · · ·Hλ0−(k−1)

+ pq2(λ0−1)
∑

p−1q−(λ0+k−2)v
˜f1(λ)

Hλ0−1 · · ·H1H0H1 · · ·Hk−1

= ξ
˜f1(λ),e,λ

(vλ).

This proves the assertion. �

Here are immediate consequences.

Corollary 8.1.2. Let x ∈ Uj. Then, ξ(σj(x)) = ξ(x)�, ξ(ψj(x)) = ξ(x).

Corollary 8.1.3. The bilinear form 〈· | ·〉πj of T(πj) satisfies

〈xm | n〉πj = 〈m | σj(x)n〉πj

for all x ∈ Uj, m,n ∈ T(πj).

8.2. Global j-crystal basis of irreducible Uj-module. Let X ∈ L(W ). Then,
CL

X(πj) � L(λ) for some λ ∈ P j. Since L(λ) is a highest weight module, there
exists a unique λ ∈ πj and w ∈ λW such that [λCw]X ∈ CL

X(πj) is a highest weight
vector.

Recall the isomorphism DL
Xw0

� CL
X of left H-modules. Set CL

X := Q(p, q)⊗AZ

CL
X , and define DL

Xw0
and DL

Xw0
(πj) similarly. Then, we have

DL
Xw0

(πj) � T(πj)⊗H DL
Xw0

� T(πj)⊗H CL
X � CL

X(πj)

as left Uj-modules. Hence, [λDwλww0
]′Xw0

∈ DL
Xw0

(πj) is also a highest weight
vector. Thus, we obtain two isomorphisms

ϕC : L(λ) → CL
X(πj); vλ �→ [λCw]X ,

ϕD : L(λ) → DL
Xw0

(πj); vλ �→ [λDwλww0
]′Xw0

of Uj-modules, where vλ ∈ L(λ) is a fixed highest weight vector.

Definition 8.2.1. Let λ ∈ P j and vλ ∈ L(λ) be a highest weight vector. Define
the bilinear form (·, ·)1 on L(λ) by (vλ, vλ)1 = 1 and (xm, n)1 = (n, σj(x)n)1 for
all x ∈ Uj, m,n ∈ L(λ).

Proposition 8.2.2. Let λ ∈ P j. Then, the bilinear form (·, ·)1 is nondegenerate.
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Proof. For m,n ∈ L(λ), set (m,n) := 〈ϕC(m) | ϕD(n)〉πj . Then, we have

(vλ, vλ) = 〈[λCw]X | [λDwλww0
]′Xw0

〉πj = 1,

and

(xm, n) = 〈xϕC(m) | ϕD(m)〉πj = 〈ϕC(m) | σj(x)ϕD(n)〉πj = (m,σj(x)n).

Hence, we have (·, ·) = (·, ·)1. Then, it is clear that {ϕ−1
C ([μCy]X) | μ ∈ πj, y ∈

μW ∩wμX} and {ϕ−1
D ([μDwμyw0

]′Xw0
) | μ ∈ πj, y ∈ μW ∩Xw0} form bases which

are dual to each other with respect to (·, ·)1. This proves the proposition. �
Recall that the set {(μ, y) | μ ∈ πj, y ∈ μW ∩ wμX} is identical to B(λ). For

each b ∈ B(λ), set
Gj

low(b) := ϕ−1
C ([μCy]X), Gj

up(b) := ϕ−1
D ([μDwμyw0

]′Xw0
),

where (μ, y) is the pair corresponding to b. Then, Gj
low(λ) := {Gj

low(b) | b ∈ B(λ)}
and Gj

up(λ) := {Gj
up(b) | b ∈ B(λ)} are bases of L(λ).

Definition 8.2.3. Let λ ∈ P j(d), and vλ ∈ L(λ) be a highest weight vector.
Define a bilinear form (·, ·)2 on L(λ), and a ψj-involution ψj

λ on L(λ) by

(vλ, vλ)2 = 1, (xm, n)2 = (m, τ j(x)n)2 for all x ∈ Uj, m, n ∈ L(λ),

ψj
λ(vλ) = vλ.

Let (L(λ),B(λ)) be the unique j-crystal basis of L(λ) such that vλ + qL(λ) ∈
B(λ).
Theorem 8.2.4. Let λ ∈ P j(d). Then, the following hold.

(1) ψj
λ(G

j
low(b)) = Gj

low(b) for all b ∈ B(λ).
(2) ψj

λ(G
j
up(b)) = Gj

up(b) for all b ∈ B(λ).
(3) Gj

low(λ) and Gj
up(λ) are dual bases with respect to (·, ·)1.

(4) L(λ) = {m ∈ L(λ) | (m,m)2 ∈ A0}. Consequently, (·, ·)2 induces the
bilinear form (·, ·)0 on L(λ)/qL(λ) defined by (m+ qL(λ), n+ qL(λ))0 :=
limq→0(limp→0(m,n)2).

(5) {Gj
low(b) | b ∈ B(λ)} forms an almost orthonormal basis with respect to

(·, ·)2, i.e., we have (Gj
low(b), G

j
low(b

′))2 ∈ δb,b′ + qA0 for all b, b′ ∈ B(λ).
(6) (b, b′)0 = δb,b′ for all b, b′ ∈ B(λ).
(7) Let L(λ)A be the A-span of Gj

low(λ). Then, (L(λ), L(λ)A, ψj
λ(L(λ))) is

balanced. Moreover, the global basis associated to B(λ) is {Gj
low(b) | b ∈

B(λ)}. In particular, L(λ) has a global j-crystal basis.

Proof. Items (1) and (2) are obvious from the definition of Gj
low(b) and Gj

up(b).
Item (3) follows from the proof of Proposition 8.2.2.

To prove the rest, observe that L(λ) is realized as a subquotient of V⊗d by
using Kazhdan-Lusztig basis elements. To be precise, let X ∈ P j be such that
L(λ) � CL

X(πj) and x ∈ X. Then,

CL
X(πj) =

SpanQ(p,q){λCw | λ ∈ πj, w ∈ λW, wλw ≤L x}
SpanQ(p,q){μCy | μ ∈ πj, y ∈ μW, wμy <L x} .

Then, items (4)-(6) follows from the proof of [W17, Proposition 7.4.4]. To prove
item (7), it suffices to show that L(λ)A is aUj

A-module. It follows from the fact that
the A-submodule of V⊗d spanned by the Kazhdan-Lusztig basis is a UA-module,
and that Uj

A ⊂ UA. �
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9. Basic properties of global crystal bases

9.1. Global crystal bases. In this subsection, we exposite some basic properties
concerning global crystal bases ofU-modules inOint. LetM ∈ Oint, (L,B) a crystal
basis of M , ψM a ψ-involution, and MA a UA-submodule of M . Suppose that M
has a global basis G(B) with the associated balanced triple (L,MA, ψM (L)).
Proposition 9.1.1 ([K93]). Let i ∈ I, b ∈ B and m ∈ Z≥0. Then, we have the
following.

(1)
∑

n≥m F
(n)
i MA =

⊕
b′∈B

εi(b
′)≥m

AGj(b′).

(2)
∑

n≥m E
(n)
i MA =

⊕
b′∈B

ϕi(b
′)≥m

AGj(b′).

(3) FiG
j(b) = [εi(b) + 1]Gj(F̃ib) +

∑
b′∈B

εi(b
′)>εi(b)+1

ϕ
(i)
b′,bG

j(b′) for some ϕ
(i)
b′,b ∈

q2−εi(b
′)Q[q].

(4) EiG
j(b) = [ϕi(b) + 1]Gj(Ẽib) +

∑
b′∈B

ϕi(b
′)>ϕi(b)+1

ε
(i)
b′,bG

j(b′) for some ε
(i)
b′,b ∈

q2−ϕi(b
′)Q[q].

For λ ∈ P (M), set Iλ(M) to be the sum of submodules of M isomorphic to L(λ).
Also, we set

W�λ(M) :=
∑
μ�λ

Iμ(M),

W�λ(M) :=
∑
μ�λ

Iμ(M),

Wλ(M) := W�λ(M)/W�λ(M).

Theorem 9.1.2 ([K93], [L10]). Let M,L,B,MA be as above. Then, for each
λ ∈ P (M), the following hold:

(1) W�λ(M) has a global crystal basis W�λ(G(B)) := {G(b) | I(b) � λ} with
the associated balanced triple (W�λ(L),W�λ(MA),W�λ(ψM (L))), where
W�λ(L) := W�λ(M) ∩ L, and so on.

(2) W�λ(M) has a global crystal basis W�λ(G(B)) := {G(b) | I(b) � λ} with
the associated balanced triple (W�λ(L),W�λ(MA),W�λ(ψM (L))), where
W�λ(L) := W�λ(M) ∩ L, and so on.

(3) Wλ(M) has a global crystal basis Wλ(G(B)) := {G(b)+W�λ(M) | I(b) = λ}
with the associated balanced triple (Wλ(L),Wλ(MA),Wλ(ψM (L))), where
Wλ(L) := W�λ(L)/W�λ(L), and so on.

(4) There exists a U-module isomorphism ξ : L(λ)⊕mλ → Wλ(M) which in-
duces an isomorphism

(L(λ)⊕mλ , (L(λ)A)⊕mλ , ψλ(L(λ))⊕mλ) � (Wλ(L),Wλ(MA),Wλ(ψM (L))),
where mλ := dimHomU(L(λ),M) denotes the multiplicity of L(λ) in M .

Remark 9.1.3. By replacing P (M) with P j(M) and � with �, the same result
holds for integrable modules over U(l) with global crystal bases.

9.2. j-canonical bases. Let M ∈ Oint be a based U-module with a crystal ba-
sis (L,B), a global crystal basis G(B), a ψ-involution ψM , and a balanced triple
(L,MA, ψM (L)). Set ψj

M := Υ◦ψM . We denote by Gj(B) the associated j-canonical
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basis. Recall that ψj
M is a ψj-involution on M , and (L,MA, ψj

M (L)) is a balanced
triple with the associated global basis Gj(B).

Lemma 9.2.1. Let b ∈ B. Let us write as

Gj(b) = G(b) +
∑
b′∈B

wtj(b′)=wtj(b) and wt(b′)<wt(b)

cb′,bG(b′)

for some cb′,b ∈ qA0 ∩A. Then, we have cb′,b = 0 unless

Ij(b) � Ij(b′) or |Ij(b′)−| < |Ij(b)−|.(3)

Proof. By the construction of Gj(b), it suffices to show that ψj
M (G(b)) is a linear

combination of G(b′) with b′ satisfying (3). Since ψj
M (G(b)) = ΥG(b) ∈ U−G(b),

it suffices to show that for each l ∈ Z≥0 and i1, . . . , il ∈ I, we have

Fil · · ·Fi1G(b) ∈ SpanQ(p,q){G(b′) | b′ satisfies condition (3)}.
We prove it by induction on l. When l = 0, there are nothing to prove. So, assume
that l > 0 and that Fil−1

· · ·Fi1G(b) ∈ SpanQ(p,q){G(b′) | b′ satisfies condition (3)}
for all i1, . . . , il−1 ∈ I. If il �= 1, then, by Remark 9.1.3, we have

FilG(b′) ∈ SpanQ(p,q){G(b′′) | Ij(b′) � Ij(b′′)}
for all b′ satisfying condition (3). Since |Ij(b′′)−| = |Ij(b′)−| for all b′′ with Ij(b′) �
Ij(b′′), b′′ satisfies condition (3).

If il = 1, then wt(FilG(b′)) = wt(G(b′)) − α1. This immediately implies that
FilG(b′) ∈ SpanQ(p,q){G(b′′) | |Ij(b′′)−| < |Ij(b′)−|}. Therefore, Fil · · ·Fi1G(b) is a

linear combination of G(b′) with |Ij(b′)−| < |Ij(b)−|. Thus, the proof completes.
�

Proposition 9.2.2. Let b ∈ B and i ∈ Ij \ {1}. Then, we have

eiG
j(b) = [ϕi(b) + 1]Gj(Ẽib) +

∑
b′∈B\{ ˜Eib}

wtj(b′)=wtj(b)+γi and wt(b′)≤wt(b)+αi

e
(i)
b′,bG

j(b′),

fiG
j(b) = [ϕ−i(b) + 1]Gj(Ẽ−ib) +

∑
b′∈B\{ ˜E−ib}

wtj(b′)=wtj(b)−γi and wt(b′)≤wt(b)+α−i

f
(i)
b′,bG

j(b′)

for some e
(i)
b′,b, f

(i)
b′,b ∈ A. Moreover, e

(i)
b′,b = f

(i)
b′,b = 0 unless Ij(b) � Ij(b′) or

|Ij(b′)−| < |Ij(b)−|.

Proof. We prove the assertion only for ei; the proof for fi is similar. By Lemma
9.2.1, we can write

Gj(b) = G(b) +
∑

b′∈B\{b}
cb′,bG(b′)

for some cb′,b ∈ A such that cb′,b = 0 unless Ij(b) � Ij(b′) or |Ij(b′)−| < |Ij(b)−|.
Since ei ∈ Uq(l), it holds that

eiG
j(b) ∈ SpanA{G(b′′) | Ij(b) � Ij(b′) or |Ij(b′)−| < |Ij(b)−|}.

Hence, it suffices to show that [eiG
j(b) : Gj(Ẽib)] = [ϕi(b)+1]. By the definitions of

ei andGj(b), eiG
j(b) is the sum of EiG(b) and a linear combination of weight vectors

of M of weight lower than wt(b) + αi. We know from Proposition 9.1.1 (4) that



54 H. WATANABE

[EiG
j(b) : G(Ẽib)] = [ϕi(b) + 1]. Hence, we have [eiG

j(b) : Gj(Ẽib)] = [ϕi(b) + 1].
This proves the assertion. �
9.3. Global j-crystal bases. Let M ∈ Oj

int, (L,B) a j-crystal basis of M , ψj
M

a ψj-involution, and MA a Uj
A-submodule of M . Suppose that M has a j-global

basis Gj(B) with the associated balanced triple (L,MA, ψj
M (L)).

Following [K02], let us introduce modified Kashiwara operators:

Definition 9.3.1. For n ∈ Z, set

f̃
(n)
i :=

∑
t≥0,−n

f
(n+t)
i e

(t)
i An(t; ki),

f̃
(n)
1 :=

∑
t≥0,−n

f
(n+t)
1 e

(t)
1 an(t; k1),

where

An(t;x) := (−1)tqt(1−n)xt
t−1∏
s=0

(1− qn+2s),

an(t;x) := (−1)tptqt(1−n)xt
t−1∏
s=0

qs(1− qn+2s).

Lemma 9.3.2. Let M ∈ Oj
int with the j-crystal basis (L,B). For n ∈ Z, we have

f̃
(n)
i L ⊂ L, and f̃

(n)
i L = f̃n

i L modulo qL.

Proof. If i �= 1, then the statement follows from [K02, Proposition 6.1]. Hence, we
prove the case when i = 1. It suffices to prove the following: For each u ∈ L such
that e1u = 0, k1u = qau, e1f1u = [b]{a− b− 1}u with a ∈ Z and b ∈ Z≥0, we have

f̃
(n)
1 f

(m)
1 u = cf

(m+n)
1 for some c ∈ 1 + qA0 ∩A. First of all, we have

f̃
(n)
1 f

(m)
1 u =

∑
t≥0,−n

an(t; q
a−3m)

[
m+ n

m− t

][
b−m+ t

t

] t−1∏
s=0

{a− b−m+ s}f (m+n)
1 u.

We compute the coefficient, say A, of the right-hand side as follows.

A =
∑

t≥0,−n

An(t; q
b−2m)

[
m+ n

m− t

][
b−m+ t

t

] t−1∏
s=0

(1 + p2q2(a−b−m+s))

=
∑

t≥0,−n

Bt + p2
∑

t≥0,−n

Btgt,

where Bt := An(t; q
b−2m)

[
m+n
m−t

][
b−m+t

t

]
, and gt ∈ Z[p, q, q−1] with

t−1∏
s=0

(1 + p2q2(a−b−m+s)) = 1 + p2gt.

By the proof of [K02, Proposition 6.1], we have Bt ∈ 1+qZ[q]. Also, it is clear that

p2
∑

t≥0,−n Btgt ∈ p2Z[p, q, q−1]. Thus, we have f̃
(n)
1 f

(m)
1 u ∈ L and f̃

(n)
1 f

(m)
1 u =

f
(m+n)
1 u = f̃n

1 f
(m)
1 u modulo qL. This proves the lemma. �

Proposition 9.3.3. Let i ∈ Ij, b ∈ B and m ∈ Z≥0. Then, we have the following.

(1)
∑

n≥m f
(n)
i MA =

⊕
b′∈B

εi(b
′)≥m

AGj(b′).
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(2)
∑

n≥m e
(n)
i MA =

⊕
b′∈B

ϕi(b
′)≥m

AGj(b′) if i �= 1.

(3) fiG
j(b) = [εi(b) + 1]Gj(f̃ib) +

∑
b′∈B

εi(b
′)>εi(b)+1

ϕ
(i)
b′,bG

j(b′) for some ϕ
(i)
b′,b ∈

q2−εi(b
′)Q[q].

(4) eiG
j(b) = [ϕi(b) + 1]Gj(ẽib) +

∑
b′∈B

ϕi(b
′)>ϕi(b)+1

ε
(i)
b′,bG

j(b′) for some ε
(i)
b′,b ∈

q2−ϕi(b
′)Q[q] if i �= 1.

Proof. Since (ei, ki, fi), i �= 1 forms an sl2-triple, most of the assertions follows
from Proposition 9.1.1. What we have to prove are assertions (1) and (3) for i = 1.
First, we prove part (1) by induction on m. When m = 0, the both sides of the
equation to be proved are 0. Assume that assertion (1) holds for all m′ > m. Let

b′ ∈ B be such that ε1(b
′) = m. Set b′0 := ẽm1 b, and consider u := f̃

(m)
1 Gj(b′0). By

the definition of f̃
(m)
1 and Lemma 9.3.2, we have

u− f
(m)
1 Gj(b′0) ∈

∑
n>m

f
(n)
1 MA and u+ qL = b′.

By our inductive hypothesis, we can write

u− f
(m)
1 Gj(b′0) =

∑
b′′∈B

ε1(b
′′)>m

ab′′G
j(b′′)

for some ab′′ ∈ A. Then, we can take a′b′′ ∈ qQ[q] in a way such that ab′′ − ab′′ =

a′b′′ − a′b′′′ . Set v := u −
∑

b′′ a
′
b′′G

j(b′′) = f
(m)
1 Gj(b′0) +

∑
b′′(ab′′′ − a′b′′)G

j(b′′).
Then, we have v ∈ MA ∩ L, ψj

M (v) = v, and v + qL = u + qL = b′. These

implies that v = Gj(b′), and therefore, Gj(b′) ∈
∑

n≥m f
(n)
1 MA. Hence, we obtain∑

n≥m f
(n)
i MA ⊃

⊕
b′∈B

εi(b
′)≥m

AGj(b′).

We prove the opposite inclusion. For each λ ∈ Λj, we have

(MA)λ ⊂
∑
b∈Bλ

AGj(b)

=
∑
b∈Bλ

ε1(b)=0

AGj(b) +
∑

b′∈Bλ

ε1(b
′)≥1

AGj(b′)

⊂
∑
b∈Bλ

ε1(b)=0

AGj(b) +
∑
n≥1

f
(n)
1 (MA)λ+nγ1

.

Hence, we obtain

f
(m)
1 (MA)λ ⊂

∑
b∈Bλ

ε1(b)=0

Af
(m)
1 Gj(b) +

∑
n≥1

f
(m)
1 f

(n)
1 (MA)λ+nγ1

⊂
∑
b∈Bλ

ε1(b)=0

Af
(m)
1 Gj(b) +

∑
n≥1

f
(m+n)
1 (MA)λ+nγ1

=
∑
b∈Bλ

ε1(b)=0

Af
(m)
1 Gj(b) +

∑
b′∈Bλ

ε1(b
′)>m

AGj(b′) (by induction hypothesis).
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Also, by the argument above, f
(m)
1 Gj(b) with ε1(b) = 0 is contained in∑

ε(b′)≥m

AGj(b′).

This completes the proof of part (1).
Next, we turn to prove assertion (3) for i = 1 by descending induction on m :=

ε1(b). When m is maximum among {ε1(b′) | b′ ∈ B}, we have by (1) that

f1G
j(b) ∈

∑
n>m

f
(n)
1 MA =

∑
ε1(b′)>m

AGj(b′) = 0,

and the equation in (3) holds. Assume that (3) is true for all m′ > m. As in the
proof of (1), let us write

Gj(b) = f
(m)
1 Gj(ẽm1 b) +

∑
b′∈B

ε1(b
′)>m

cb′G
j(b′),

Gj(f̃1b) = f
(m+1)
1 Gj(ẽm1 b) +

∑
b′′∈B

ε1(b
′′)>m+1

db′′G
j(b′′)

for some cb′ , db′′ ∈ A. Then, we have

f1G
j(b) = [m+ 1]f

(m+1)
1 Gj(ẽm1 b) +

∑
ε1(b′)>m

cb′f1G
j(b′)

= [m+ 1]f
(m+1)
1 Gj(ẽm1 b) +

∑
ε1(b′)>m

cb′([ε1(b
′) + 1]Gj(f̃1b

′)

+
∑

ε1(b′′)>ε1(b′)+1

ϕ
(1)
b′′,b′G

j(b′′))

= [m+ 1]Gj(f̃1b) +
∑

ε1(b′)>m

cb′([ε1(b
′) + 1]Gj(f̃1b

′)

+
∑

ε1(b′′)>ε1(b′)+1

ϕ
(1)
b′′,b′G

j(b′′))

−
∑
b′′∈B

ε1(b
′′)>m+1

[m+ 1]db′′G
j(b′′).

Thus, we obtain that fiG
j(b) = [εi(b) + 1]Gj(f̃ib) +

∑
b′∈B

εi(b
′)>εi(b)+1

ϕ
(i)
b′,bG

j(b′) for

some ϕ
(i)
b′,b ∈ A. It remains to prove that ϕ

(i)
b′,b ∈ q2−ε1(b

′)Q[q]. Let us write

Gj(b) =
∑
k≥m

f
(k)
1 uk

for some uk ∈ Lwtj(b)+kγ1
such that e1uk = 0. Note that Gj(b) + qL = um + qL.

Then, we have

f1G
j(b) = [m+ 1]f

(m+1)
1 um +

∑
k>m

[k + 1]f
(k+1)
1 uk,

and that f
(m+1)
1 um ∈ L, f (m+1)

1 um + qL = f̃1b. Hence, we have f1G
j(b) = [m +

1]Gj(f̃1b)+
∑

k>m[k+1]f
(k+1)
1 uk modulo q2−mL. Then, rewriting f (k+1)

1 uk as a sum
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of Gj(b′), ε1(b
′) ≤ k + 1 with coefficients in qA0, we conclude that the coefficient

of Gj(b′) in f1G
j(b) lies in q2−ε1(b

′)A0 ∩ A = q2−ε1(b
′)Q[q]. This completes the

proof. �

For a bipartition λ ∈ P j(M), define Iλ(M), W�λ(M), W�λ(M), and Wλ(M)
in a similar way as Iλ, W�λ, W�λ, and Wλ, respectively.

Definition 9.3.4. We say that M has the property (∗) if there exists a poset (S,≤)
and a map s : B → S satisfying the following:

(1) The abelian group Q :=
∑

i∈I Zαi acts on S freely; the action is written
additively.

(2) σ ≤ σ + λ for all λ ∈ Q+, σ ∈ S.
(3) σ + λ ≤ σ′ + λ for all λ ∈ Q, σ ≤ σ′ ∈ S.
(4) s(b) = s(b′) only if wt(b) = wt(b′) for all b, b′ ∈ B.
(5) For b ∈ B and i ∈ Ij \ {1}, s(Ẽib) = s(b) + αi if Ẽib �= 0.
(6) For i ∈ Ij \ {1},

eiG
j(b) = [ϕi(b) + 1]Gj(Ẽib) +

∑
b′∈B\{ ˜Eib}

wtj(b′)=wtj(b)+γi and s(b′)≤s(b)+αi

e
(i)
b′,bG

j(b′),

fiG
j(b) = [ϕ−i(b) + 1]Gj(Ẽ−ib) +

∑
b′∈B\{ ˜E−ib}

wtj(b′)=wtj(b)−γi and s(b′)≤s(b)+α−i

f
(i)
b′,bG

j(b′)

for some e
(i)
b′,b, f

(i)
b′,b ∈ A.

Lemma 9.3.5. Let M ∈ Oj
int, and L,B, ψj

M ,MA as above.

(1) If r = 1, then M has the property (∗).
(2) If M ∈ Oint and the global j-crystal basis is the j-canonical basis, then M

has the property (∗).

Proof. Setting S and s to be Λ and wt, respectively, part (1) is obvious, and part
(2) follows from Proposition 9.2.2. �

The main result in this paper is the following:

Theorem 9.3.6. Suppose that M has the property (∗). Then, for each λ ∈ P j(M),
the following hold:

(1) W�λ(M) has a global j-crystal basis W�λ(G
j(B)) := {Gj(b) | I(b) �

λ} with the associated balanced triple (W�λ(L),W�λ(MA),W�λ(ψ
j
M (L))),

where W�λ(L) := W�λ(M) ∩ L, and so on.
(2) W�λ(M) has a global j-crystal basis W�λ(G

j(B)) := {Gj(b) | I(b) �
λ} with the associated balanced triple (W�λ(L),W�λ(MA),W�λ(ψ

j
M (L))),

where W�λ(L) := W�λ(M) ∩ L, and so on.
(3) Wλ(M) has a global j-crystal basis Wλ(G

j(B)) :={Gj(b)+W�λ(M) | I(b)=
λ} with the associated balanced triple (Wλ(L),Wλ(MA),Wλ(ψ

j
M (L))),

where Wλ(L) := W�λ(L)/W�λ(L), and so on.
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(4) There exists a Uj-module isomorphism ξ : L(λ)⊕mλ → Wλ(M) which in-
duces an isomorphism

(L(λ)⊕mλ , (L(λ)A)⊕mλ , ψj
λ(L(λ))⊕mλ) � (Wλ(L),Wλ(MA),Wλ(ψ

j
M (L))),

where mλ := dimHomUj(L(λ),M) denotes the multiplicity of L(λ) in M .

The proof will be given in Section 10.

Corollary 9.3.7. Let λ ∈ P j. Then, Gj
low(λ) is a unique global j-crystal basis of

L(λ) satisfying the property (∗).

9.4. Operators ẽi+ and f̃i+ . The definitions of ẽi′ and f̃i′ given in [W17] are
artificial, namely, they are defined by means of a distinguished basis Gj

low(λ), λ ∈
P j (in [W17], it is denoted by {bT | T ∈ B(λ)}). Here, we define new operators ẽi+

and f̃i+ for i ∈ Ij \{1}, and then, explain that the operators ẽi′ and f̃i′ on j-crystal
bases are in fact intrinsic.

Lemma 9.4.1. Let r ≥ 2, λ ∈ P j, and consider the irreducible highest weight
module L(λ). As a Uj

r−1-module, L(λ) is multiplicity-free.

Proof. Let b ∈ B(λ) be a Uj
r−1-highest weight vector with highest weight, say,

μ ∈ P j
r−1. If we identify B(λ) with SST(λ), we have T j

b ↓r−1= Tμ. Since the
entries of the boxes of T j

b′ corresponding to λ/μ are either −r or r, it must hold
that λ/μ is a horizontal strip. Conversely, given μ ∈ P j

r−1 such that λ/μ is a
horizontal strip, there exists a unique b ∈ B(λ) which is a Uj

r−1-highest weight
vector with highest weight μ. This proves the lemma. �

Lemma 9.4.2. Let r ≥ 2, λ ∈ P j. Let b ∈ B(λ) be such that ẽr′b �= 0. Then, there
exist unique b′ ∈ B(λ) and j ∈ Ij \ {1} satisfying the following:

• b′ is a Uj
r−1-highest weight vector.

• There exist unique εi ∈ {∅, ′} for each j ≤ i ≤ r − 1 such that b =

f̃r′ f̃(r−1)εr−1 · · · f̃jεj b′.

Proof. By the definition of ẽr′ , b is a Uj
r−1-highest weight vector with highest

weight, say, μ ∈ P j
r−1 such that (T j

b )
− = T−

λ . Then, T j
ẽr′b

↓r−1 is obtained from

Tμ by adding a box r − 1 to the (j − 1)-th row for some uniquely determined j ∈
Ij \ {1}. Set br−1 := ẽr′b. Now, we have exactly one of the following; ẽr−1br−1 �= 0
or ẽ(r−1)′br−1 �= 0. Choose a unique εr−1 ∈ {∅, ′} in a way such that br−2 :=

ẽ(r−1)εr−1 br−1 �= 0. Then, T j
br−2

↓r−1 is obtained from Tμ by adding a box r − 2 to

the (j−1)-th row. Repeating this procedure, we obtain εi ∈ {∅, ′} and bi−1 ∈ B(λ)
for j ≤ i ≤ r − 1. By the construction, T j

bj−1
↓r−1 is obtained from Tμ by adding

a box j − 1 to the (j − 1)-th row, which turned out to be Tμ′ , where μ′ ∈ P j
r−1

such that μ′
k = μk + δk,j−1, k ∈ {−(r − 1), . . . , r − 1}. Hence, bj−1 is a Uj

r−1-

highest weight vector, and we have b = f̃r′ f̃(r−1)εr−1 · · · f̃jεj bj−1. This proves the
assertion. �

Set Er(λ) := {μ ∈ P j
r−1 | μ− = λ− ↓r−1 and λ+/μ+ is a horizontal strip}.

Then, the assignment

{b ∈ B(λ) | ẽr′b �= 0} → Er(λ); b �→ Ijr−1(b)
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is bijective. To each μ ∈ Er(λ), we associate b, b′ ∈ B(λ), j ∈ Ij \ {1}, and
εi ∈ {∅, ′}, j ≤ i ≤ r − 1 as in Lemma 9.4.2.

Let r ≥ 2. We define operators ẽl+ and f̃l+ on every Uj-modules in Oj
int induc-

tively for all 2 ≤ l < r. Let λ ∈ P j. We define the linear operator ẽr+ on L(λ)
by

ẽr+ :=
⊕

μ∈Er(λ)

p2(μ) ◦
1

[ϕr(bμ) + 1]
er ◦ p1(μ),

where bμ ∈ B(λ) is the corresponding element to μ ∈ Er(λ), p1(μ) is the projection
from L(λ) to the one-dimensional subspace L(μ)wtj(μ);

L(μ)wtj(μ) ⊂ L(μ) ↪→
multiplicity free

L(λ),

and p2(μ) is the projection from L(λ) to the one-dimensional subspace f̃(r−1)δr−1

· · · f̃jδjL(μ′)wtj(μ′);

f̃(r−1)δr−1 · · · f̃jδjL(μ
′)wtj(μ′) ⊂ L(μ′) ↪→

multiplicity free
L(λ),

where δl = ∅ if εl = ∅, and δl = + if εl = ′ for l = j, . . . , r − 1. Also, we define f̃r+
by

f̃r+ =
⊕

μ∈Er(λ)

ẽ−1
r+ ◦ p2(μ),

where ẽ−1
r+ is the inverse of the linear isomorphism ẽr+ : L(μ)wtj(μ) → f̃(r−1)δr−1

· · · f̃jδjL(μ′)wtj(μ′). Finally, we extend the definitions of ẽr+ and f̃r+ to a general

Uj-module M ∈ Oj
int by the complete reducibility of M .

Proposition 9.4.3. Let λ ∈ P j and v ∈ L(λ) a highest weight vector. Then, we
have

L(λ) = SpanA0
{f̃i1 · · · f̃i,lv | l ∈ Z≥0, i1, . . . , il ∈ Ij � {2+, . . . , r+}},

B(λ) = {f̃i1 · · · f̃i,lv + qL(λ) | l ∈ Z≥0, i1, . . . , il ∈ Ij � {2+, . . . , r+}} \ {0}.

Moreover, on B(λ), we have ẽi′ = ẽi+ and f̃i′ = f̃i+ for all i ∈ Ij \ {1}.

Proof. We proceed by induction on r. Assume that the assertion holds for all
2 ≤ l < r (we assume nothing when r = 2). Let μ ∈ Er(λ) and bμ, b

′, μ′ be as
above. By the uniqueness of the j-crystal bases for Uj

r−1-modules, there exists a
unique vμ ∈ L(λ) such that Uj

r−1vμ = L(μ), vμ+ qL(λ) = bμ. Then, we can write

vμ = Gj
low(bμ) +

∑
b′∈B(λ)\{bμ}

ab′G
j
low(b

′)

for some ab′ ∈ qA0. Note that this equation implies that ẽr′(vμ) ∈ Gj
low(ẽr′bμ) +

qL(λ). Also, we have

1

[ϕr(bμ) + 1]
ervμ = Gj

low(ẽr′bμ) +
∑

b′∈B(λ)

cb′G
j
low(b

′) (since ẽr′bμ = Ẽrbμ.)

for some cb′ ∈ A. Again, by the complete reducibility of the Uj
r−1-crystal bases,

there exists a unique vμ′ ∈ L(λ) such that Uj
r−1vμ′ = L(μ′), vμ′ + qL(λ) = b′. By
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our induction hypothesis, we have u := f̃(r−1)δr−1 · · · f̃jδj (vμ′) ∈ L(λ) ∩ Uj
r−1vμ′

and u+ qL(λ) = ẽr′bμ. Then, we can write

u = Gj
low(ẽr′bμ) +

∑
b′∈B(λ)

db′G
j
low(b

′)

for some db′ ∈ qA0. Hence, we have

ẽr+(vμ) ∈ Gj
low(ẽr′bμ) + qL(λ).

Since we took μ ∈ Er(λ) arbitrarily, this equation ensures that ẽr+ preserves L(λ)
and B(λ) � {0}, and that ẽr+ = ẽr′ on B(λ). By the definition of f̃r+ , it also

preserves L(λ) and B(λ)�{0}, and coincides with f̃r′ on B(λ). Now, the assertions
are clear by the definition of (L(λ),B(λ)). �

Corollary 9.4.4. Let M ∈ Oj
int be a Uj-module with a j-crystal basis (L,B). Then

ẽi′ = ẽi+ and f̃i′ = f̃i+ on B for all i ∈ Ij \ {1}.

10. Proof of Theorem 9.3.6

For a Uj-module M with a global j-crystal basis Gj(B), and for m ∈ M , b ∈ B,
let [m : Gj(b)] denote the coefficient of Gj(b) in m.

10.1. The r = 1 case. In this subsection, we prove Theorem 9.3.6 for r = 1.

Proof of Theorem 9.3.6. We proceed by descending induction on λ with respect
to �. Assume that the statement holds for all λ′ � λ. Replacing M with
M/W�λ(M), we may assume that λ is maximal among P j(M). Let b1, . . . , bmλ

∈ B
and u1, . . . , umλ

∈ L be distinct highest weight vectors of type λ with ui+ qL = bi,
i = 1, . . . ,mλ. By retaking the ui’s if necessary, we may assume that [ui : G

j(bj)] =
δi,j for all i, j. Fix i arbitrarily, and set b := bi, u := ui. Then, we can write

u = Gj(b) +
∑
b′

Ij(b′) ��λ

cb′G
j(b′), cb′ ∈ qA0.

We first prove that cb′ = 0 for all b′ with ε1(b
′) = 0. Assume contrary, and

take b′ ∈ B \ {b} such that cb′ �= 0, ε1(b
′) = 0, and ϕ1(b

′) is minimal among
{ϕ1(b

′′) | cb′′ �= 0, ε1(b
′′) = 0}. Set μ := Ij(b′). Then, we have wtj(μ) = wtj(λ), in

particular, μ0 = λ0. Since μ �� λ, we have ϕ1(b
′) = μ0−μ−1 > λ0 −λ−1 = ϕ1(b).

Hence, we have

−f
(ϕ1(b)+1)
1 Gj(b) = cb′

(
Gj(f̃

ϕ1(b)+1
1 b′) +

∑
b′′

ε1(b
′′)>ϕ1(b)+1

db′′,b′G
j(b′′)

)
+

∑
b′′′ �=b′

∑
b′′′′

ε1(b
′′′′)≥ε1(b

′′′)+ϕ1(b)+1

db′′′′,b′′′G
j(b′′′′),

for some db1,b2 ∈ A. By our assumption, the coefficient of Gj(f̃
ϕ1(b)+1
1 b′) in the

right-hand side is equal to cb′ . On the other hand, the left-hand side is fixed by
ψj
M , and it belongs to MA. Therefore, we have cb′ ∈ qA0 ∩A and cb′ = cb′ , which

implies cb′ = 0.
Next, we prove that cb′ = 0 for all b′ with ε1(b

′) > 0. Assume contrary that
cb′ �= 0 for some such b′. Set μ := Ij(b′). Since λ is maximal, we have μ0 +μ−1 <
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λ0 + λ−1. Substituting μ0 = λ0 + ε1(b
′), μ−1 = λ0 − ϕ1(b

′), and λ0 − λ−1 =
ϕ1(b), we obtain ϕ1(b

′) > ϕ1(b) + ε1(b
′). We may assume that (ε1(b

′), ϕ1(b
′)) is

minimal (with respect to the lexigographical order) among such b′’s. Then, for all
t = 1, . . . , ε1(b

′) + 1, we have

−f
(ϕ1(b)+t)
1 Gj(b) = cb′

[
ε1(b

′) + ϕ1(b) + t

ε1(b′)

]
Gj(f̃

ϕ1(b)+t
1 b′) + (other terms).

This implies that cb′ ∈ qA0, cb′ = cb′ , and cb′
[ε1(b′)+ϕ1(b)+t

ε1(b′)

]
∈ A for all t =

1, . . . , ε1(b
′) + 1. Now, it suffices to show that cb′ ∈ A, which follows from next

lemma.
This far, we have proved that Gj(b) = u, and hence, we have e1G

j(b) = 0 and
Uj

1G
j(b) � L(λ). Then, for all n = 1, . . . ,λ0 − λ−1, we have

f
(n)
1 Gj(b) = f

(n)
1 u = f̃n

1 u.

The left-hand side belongs toMA, while the right-hand side belongs to L. Moreover,

we have ψj
M (f

(n)
1 Gj(b)) = f

(n)
1 Gj(b), and f̃n

1 u + qL = f̃n
1 b. This implies that

f
(n)
1 Gj(b) = Gj(f̃n

1 b). Thus, the proof completes. �

Lemma 10.1.1. Let A ∈ Q(p, q), m ≥ n ∈ Z≥0. Suppose that A
[
m+t
n

]
∈ A for all

t = 1, . . . , n+ 1. Then, we have A ∈ A.

Proof. Let us write A = B/C for some B,C ∈ A0 ∩A that are coprime. By the
hypothesis, C is a common devisor of

[
m+t
n

]
, t = 1, . . . , n + 1. Hence, it suffices

to show that the greatest common divisor of them in Z[q] is equal to 1. This
is equivalent to say that the greatest common divisor of at := [m + t][m + t −
1] · · · [m + t − n + 1], t = 1, . . . , n + 1 is equal to [n]!. Since [l] = q−l

∏
1�=d|l Φd,

where Φd = Φd(q
2) denotes the d-th cyclotomic polynomial in variable q2, we have

bt := qn(m+t)−n(n−1)
2 at =

n−1∏
l=0

∏
1�=d|(m+t−l)

Φd,

which is the irreducible decomposition of bt in Z[q2]. Then, we have

bt =
∏
d≥2

Φ
md,t

d , where md,t := |{0 ≤ l ≤ n− 1 | d|(m+ t− l)}|,

and hence,

gcd
1≤t≤n+1

(bt) =
∏
d≥2

Φ
min1≤t≤n+1(md,t)
d .

We prove that min1≤t≤n+1(md,t) = �n
d � for all d. It is clear that md,t ≥ �n

d � for
all t since {m+ t,m+ t− 1, . . . ,m+ t− (�n

d �d− 1)} contains exactly �n
d � integers

divisible by d. If min1≤t≤n+1(md,t) > �n
d �, then {m + t − �n

d �d,m + t − (�n
d �d +

1), . . . ,m+ t− (n− 1)} contains at least one multiple of d for all t. Then, for t = 1,
there exists l1 ∈ {�n

d �d, �
n
d �d + 1, . . . , n − 1} such that m + 1 − (�n

d �d + l1) ∈ dZ.
Set t′ := n− l1 + 1, and consider the integers

m+ t′ − �n
d
�d,m+ t′ − (�n

d
�d+ 1), . . . ,m+ t′ − (n− 1) = (m+ 1− l1) + 1.

These are (n−�n
d �d) consecutive integers with (m+1− l1)+1 = 1 modulo d. Since

n−�n
d �d < d, they have no multiples of d. Hence, we have min1≤t≤n+1(md,t) = �n

d �
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for all d ≥ 2. Thus, we obtain

gcd
1≤t≤n+1

(bt) =
∏
d≥2

Φ
�n

d �
d =

n∏
d=2

Φ
�n

d �
d =

n∏
l=2

⎛⎝ ∏
1�=d′|l

Φd′

⎞⎠ =

n∏
l=2

[l] = [n]!.

This proves the lemma. �

10.2. The r ≥ 2 case. Now, we are ready to prove Theorem 9.3.6 by induction on
r.

When r = 1, we have already completed the proof. Let r ≥ 2 and assume that
the assertions hold for all r′ < r.

Lemma 10.2.1. Let λ ∈ P j(M) be a maximal element, b ∈ B such that Ij(b) = λ
and ẽib = 0 for all i ∈ Ij. Suppose the following:

(1) There exists a homomorphism ξ : L(λ) → M of Uj-modules such that
ξ(Gj

low(T
j
b′)) = Gj(b′) for all b′ ∈ Cj(b) which is strongly connected to some

b′′ ∈ Cj(b) with wtj(b) <j wtj(b′′).
(2) ξ commutes with the ψj-involutions on L(λ) and M .
(3) [ξ(Gj

low(T
j
b )) : G

j(b)] = 1.

Then, we have

ξ(Gj
low(T

j
b )) = Gj(b) +

∑
b′∈B\{b}
T j

b′=T j
b

cb′G
j(b′) +

∑
b′′∈Cj(b′), cb′ �=0

s(b′′)<s(b′)

cb′′G
j(b′′).

for some cb′ , cb′′ ∈ A0.

Proof. Since Uj-module homomorphisms preserve j-crystal lattices, we have
ξ(Gj

low(T
j
b )) ∈ L, and ξ(Gj

low(T
j
b )) + qL = b. Let us write

ξ(Gj
low(T

j
b )) = Gj(b) +

∑
b′∈B\{b}

cb′G
j(b′)

for some cb′ ∈ qA0. Also, since ξ commutes with ψj-involutions, we have cb = cb,
cb′ = cb′ . We claim the following: if b′ ∈ B \ {b} satisfies

(†) cb′ �= 0 and s(b′) is maximal among {s(b′′) | b′′ ∈ B \ {b} and cb′′ �= 0},
then T j

b′(−i) ≥ λ−i for all i = 0, 1, . . . , r. By the case r = 1, we have Ij1(b
′) � Ij1(b),

which implies T j
b′(0) = T j

b (0) = λ0, and T j
b′(−1) ≥ T j

b (−1) = λ−1. We proceed
by induction on i. Assume that i ≥ 2, and that T j

b′(−(i − 1)) ≥ λ−(i−1) for all b′

satisfying (†). Suppose that there exists b′ satisfying (†) such that T j
b′(−i) < λ−i.

Let b′′ ∈ B \ {b} be such that s(b′′) = s(b′) and ϕ−b′′ is minimal among such
elements. Recall that s(b′′) = s(b′) implies wt(b′′) = wt(b′), and hence, T j

b′′(−i) =
T j
b′(−i) < λ−i. Then, we have

ε−i(b
′′) = ϕ−i(b

′′) + T j
b′′(−(i− 1))− T j

b′′(−i) > T j
b′′(−(i− 1))− λ−i + ϕ−i(b

′′).

By the minimality of ϕ−i(b
′′), it holds that

[f
(t)
i

∑
b′∈B\{b}

cb′′G
j(b′) : Gj(f̃ t

i b
′′)] = cb′

[
t

ϕ−i(b′′)

]
�= 0

for all T j
b′′(−(i − 1)) − λ−i + 1 ≤ t ≤ T j

b′′(−(i − 1)) − λ−i + ϕ−i(b
′′) + 1. On the

other hand, f
(t)
i Gj

low(T
j
b ) is the sum of Gj

low(T
j
˜ft
i b
) and an A-linear combination of
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Gj
low(T

j
̂b
) such that b̂ ∈ Cj(bt) is strongly connected to b′′′ ∈ Cj(bt) with wtj(b) <j

wtj(b′′′). Hence, we have

ξ(Gj
low(T

j
˜ft
i b
)) = f

(t)
i ξ(Gj

low(T
j
b )) +

∑
̂b

a
̂bG

j(b̂)

= f
(t)
i Gj(b) + f

(t)
i

∑
b′∈B\{b}

cb′G
j(b′) +

∑
̂b

a
̂bG

j(b̂)

for some a
̂b ∈ A. Here, note that we have ẽj f̃

t
i b = 0 for all j = 1, . . . , i − 1,

[ξ(Gj
low(T

j
˜ft
i b
)) : Gj(f̃ t

i b)] = 1, and s(f̃ t
i b

′′) is maximal among {s(b′′′) | b′′′ �=

f̃ t
i b and [ξ(Gj

low(T
j
˜ft
i b
)) : Gj(b′′′)] �= 0}. Then, by our induction hypothesis on i,

we obtain that T j
˜ft
i b

′′(−(i − 1)) ≥ T j
˜ft
i b
(−(i − 1)) = λ−i, which is a contradiction

since t ≥ T j
b′′(−(i−1))−λ−i+1. Hence we must have [ξ(Gj

low(T
j
˜ft
i b
)) : Gj(f̃ t

i b
′′)] = 0.

Since

[ξ(Gj
low(T

j
˜ft
i b
)) : Gj(f̃ t

i b
′′)] = cb′′

[
t

ϕ−i(b′′)

]
+ [f

(t)
i Gj(b) : Gj(f̃ t

i b
′′)] + a

˜ft
i b

′′ ,

and the second and the third term of the right-hand side lies in A, we obtain

cb′′

[
t

ϕ−i(b′′)

]
∈ A

for all T j
b′′(−(i− 1))−λ−i+1 ≤ t ≤ T j

b′′(−(i− 1))−λ−i+ϕ−i(b
′′)+ 1. By Lemma

10.1.1, this implies cb′′ = 0.
This far, we have proved that if b′ ∈ B \ {b} satisfies (†), then we have T j

b′(−i) ≥
λ−i for all i ∈ {0, 1, . . . , r}. In particular, we have Ij(b′) = λ for such b′ (since λ is
maximal in P j(M)). In this case, the condition T j

b′(−i) ≥ λ−i for all i forces b
′ to

satisfy that T j
b′ = T j

b . Hence, we have

ξ(Gj
low(T

j
b )) = Gj(b) +

∑
b′∈B\{b}
T j

b′=T j
b

cb′G
j(b′) +

∑
b′′∈Cj(b′), cb′ �=0

s(b′′)<s(b′)

cb′′G
j(b′′),

as desired. �

Lemma 10.2.2. Let λ ∈ P j(M) be a maximal element, j ∈ Ij \ {1}, b ∈ B such
that Ij(b) = λ, ẽib = 0 for all i ∈ Ij, and ẽj′(b) �= 0. Suppose the following:

(1) There exists a homomorphism ξ : L(λ) → M of Uj-modules such that
ξ(Gj

low(T
j
b′)) = Gj(b′) for all b′ ∈ Cj(b) which is strongly connected to some

b′′ ∈ Cj(b) with wtj(b) <j wtj(b′′).
(2) ξ commutes with the ψj-involutions on L(λ) and M .

Then, we have

ξ(Gj
low(T

j
b )) = Gj(b) +

∑
b′∈B\{b}
T j

b′=T j
b

cb′G
j(b′) +

∑
b′′∈Cj(b′), cb′ �=0

s(b′′)<s(b′)

cb′′G
j(b′′).

for some cb′ , cb′′ ∈ A0.

Proof. If we can prove that cb := [ξ(Gj
low(T

j
b )) : Gj(b)] = 1, then the assertion

follows from the previous lemma. Hence, we aim to show cb = 1.
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By the same argument as before, we have

[ξ(Gj
low(T

j
˜ft
i b
)) : Gj(f̃ t

i b
′′)] = cb′′

[
t

ϕ−i(b′′)

]
+ cb[f

(t)
i Gj(b) : Gj(f̃ t

i b
′′)] + a

˜ft
i b

′′ ,

for all b′′ ∈ B\{b} satisfying (†). Here, let us assume further that s(b′) > s(b). Then,

we have [f
(t)
i Gj(b) : Gj(f̃ t

i b
′′)] = 0 since f

(t)
i Gj(b) is a linear combination of Gj(b̃)

with s(b̃) ≤ s(b)+ tα−i < s(b′′)+ tα−i = s(f̃ t
i b

′′). Hence, we have cb′′
[

t
ϕ−i(b′′)

]
∈ A,

and therefore, cb′′ = 0 by Lemma 10.1.1. In particular, we obtain that s(b) is
maximal. Then, we have

[ej(cbG
j(b) +

∑
cb′G

j(b′)) : Gj(ẽj′b)] = cb[ϕj(b) + 1].

On the other hand, since [ejG
j
low(T

j
b ) : G

j
low(ẽj′b)] = [ϕj(b) + 1], we have

[ej(cbG
j(b) +

∑
cb′G

j(b′)) : Gj(ẽj′b)] = [ϕj(b) + 1],

and hence, cb = 1, as desired. �

We prove Theorem 9.3.6 by descending induction (with respect to �) on λ. As
in the r = 1 case, we may assume that λ is maximal among P j(M). Then, in order
to complete the proof, we have to show the following:

(1) Iλ(M) has a basis {Gj(b) | Ij(b) = λ}.
(2) There exists an isomorphism ξ : L(λ)⊕mλ → Iλ(M) of Uj-modules which

sends the j-global basis elements of L(λ)⊕mλ to those of Iλ(M), where mλ

denotes the multiplicity of L(λ) in M .

Let b1, . . . , bmλ
∈ B and u1, . . . , umλ

∈ L be distinct highest weight vectors of
type λ with ut + qL = bt, t = 1, . . . ,mλ. By retaking the ut’s if necessary, we
may assume that [ut : Gj(bu)] = δt,u for all t, u. Let ξt : L(λ) → M be the
Uj-homomorphism which sends vλ to ut.

Lemma 10.2.3. We have ξt(G
j
low(T

j
bt
)) = Gj(bt) for all t = 1, . . . ,mλ.

Proof. By the setting above, we can write

ξt(G
j
low(T

j
bt
)) = ut = Gj(bt) +

∑
b′

Ij(b′) ��λ

cb′G
j(b′), cb′ ∈ qA0.

Then, we can apply Lemma 10.2.1 to obtain ξt(G
j
low(T

j
bt
)) = Gj(bt) as desired. �

In order to complete the proof, it suffices to prove the following: For each
t = 1, . . . ,mλ and b ∈ Cj(bt), we have ξt(G

j
low(T

j
b )) = Gj(b). We prove this

statement by descending induction on wtj(b) and Ijr−1(b). When wtj(b) is max-
imal, it must hold that b = bt, and in this case, we have already shown that
ξt(G

j
low(T

j
bt
)) = Gj(bt). Suppose that wtj(b) <j wtj(bt), and the statement holds

for all b′ ∈
⊔mλ

t=1 C
j(bt) such that wtj(b′)j > wtj(b) or wtj(b′) = wtj(b) and

Ijr−1(b
′) � Ijr−1(b). In this case, since b is not a Uj-highest weight vector, the

exists i ∈ Ij such that ẽib �= 0.

Lemma 10.2.4. Suppose there exists i ∈ Ij such that ẽib �= 0. Then, the statement
holds.
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Proof. Set b′ := ẽ
εi(b)
i b. We prove the lemma by descending induction on εi(b

′).
Since wtj(b′) > wtj(b), we have Gj(b′) = ξt(G

j
low(T

j
b′)) ∈ UjGj(bi). We know that

Gj(b) (resp., Gj
low(T

j
b )) is the sum of f̃

(εi(b))
i Gj(b′) (resp., f̃

(εi(b))
i Gj

low(T
j
b′)) and a

qQ[q]-linear combination of Gj(b′′) (resp., Gj
low(T

j
b′′)) with wtj(b′′) = wtj(b) and

εi(b
′′) > εi(b). By our induction hypothesis, Gj(b) − ξt(G

j
low(b)) is a qQ[q]-linear

combination of Gj(b′′)’s, and is ψj
M -invariant. Such a vector must be zero, and

hence, we obtain Gj(b) = ξt(G
j
low(b)). �

Lemma 10.2.5. Suppose there exists j ∈ Ij \ {1} such that ẽj′b �= 0 and ẽib = 0
for all i ∈ Ij. Then, the statement holds.

Proof. Apply Lemma 10.2.2. �

Now, one can complete the proof by combining Lemma 10.2.3-10.2.5 since each
b ∈ B with Ij(b) = λ is connected to bt for some t = 1, . . . ,mλ.
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