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CHARACTERS AND GENERATION OF SYLOW 2-SUBGROUPS

GABRIEL NAVARRO, NOELIA RIZO, A. A. SCHAEFFER FRY,
AND CAROLINA VALLEJO

Abstract. We show that the character table of a finite group G determines
whether a Sylow 2-subgroup of G is generated by 2 elements, in terms of the
Galois action on characters. Our proof of this result requires the use of the
Classification of Finite Simple Groups and provides new evidence for the so-far
elusive Alperin–McKay–Navarro conjecture.

1. Introduction

One of the main themes in Finite Group Representation Theory is the study of
how the values of characters in a p-block B of a finite group G affect the structure
of a defect group D of B, and vice versa. This topic was already suggested by
R. Brauer in his famous list of problems on Modular Representation Theory [2],
which is still a source of inspiration for unveiling global/local connections in finite
groups. In particular, the structure of p-blocks with cyclic group (for any p), and
with dihedral, semidihedral or quaternion defect groups (for p = 2) are cornerstones
of the theory, by pioneering work of R. Brauer, E. C. Dade, and J. B. Olsson in the
1970’s (prior to the Classification of Finite Simple Groups).

After studying cyclic defect groups or defect 2-groups D such that D/D′ has
order 4 (these are dihedral, semidihedral or quaternion), where D′ = [D,D] is the
derived subgroup of D, it is logical to study 2-blocks in which D is generated by
two elements, a hypothesis that naturally generalizes at the same time both of the
previous conditions. While for a given n ≥ 3, there are just three isomorphism
classes of groups D of order 2n with |D : D′| = 4, it is interesting to remark that
the number of non-isomorphic 2-generated groups of order 2n grows exponentially
with n (see [19]). Note that a non-cyclic 2-group D is 2-generated if, and only if,
|D : Φ(D)| = 4, where Φ(D) is the Frattini subgroup of D. Our aim in this paper
is to show that it is possible to characterize when |P : Φ(P )| = 4 by means of the

Received by the editors March 18, 2020, and, in revised form, April 1, 2020.
2020 Mathematics Subject Classification. Primary 20C20, 20C15.
Key words and phrases. Sylow 2-subgroups, character tables, principal blocks, Alperin–Galois–

McKay conjecture.
The first, second and fourth authors were partially supported by the Spanish Ministerio de

Ciencia e Innovación PID2019-103854GB-I00 and FEDER funds. The third author was partially
supported by the National Science Foundation under Grant No. DMS-1801156. The fourth author
also acknowledges support by Spanish Ministerio de Ciencia e Innovación MTM2017-82690-P and
the ICMAT Severo Ochoa project SEV-2015-0554. Part of this work was supported by the National

Security Agency under Grant No. H98230-19-1-0119, The Lyda Hill Foundation, The McGovern
Foundation, and Microsoft Research, while the second, third, and fourth authors were in residence
at the Mathematical Sciences Research Institute in Berkeley, California, during the summer of
2019.

c©2021 American Mathematical Society

142

https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/555


CHARACTERS AND GENERATION OF SYLOW 2-SUBGROUPS 143

values of the odd-degree irreducible characters in the principal 2-block of G, where
P is a Sylow p-subgroup of G.

Let σ ∈ Gal(Qab/Q) be the Galois automorphism that cubes 2-power roots of
unity and fixes odd-order roots of unity. The following global/local result is the
main theorem of this paper.

Theorem A. Let G be a finite group, let B be the principal 2-block of G, and
let P ∈ Syl2(G). Then |P : Φ(P )| = 4 if and only if the number of σ-invariant
odd-degree irreducible characters in B is 4.

The statement of Theorem A is yet another consequence of the Alperin–McKay–
Navarro conjecture [29], a conjecture that has turned out to be a quite useful
motivation for contributions to [2, Problem 12] (see, for instance, [32,35,37,39,40]).
In fact, it is also possible to prove that the Alperin–McKay–Navarro conjecture
implies that |P : Φ(P )| = 9 if and only if the number of τ -invariant, 3′-degree
characters in the principal 3-block of a group G with Sylow 3-subgroup P is 6 or 9;
where here τ is the Galois automorphism that fixes 3′-order roots of unity and raises
3-power roots of unity to the fourth power. It seems that a proof of this result would
require additional techniques. It also remains a challenge to find a corresponding
statement for primes larger than 3, or for a greater number of generators, if indeed
they exist.

Our proof of Theorem A requires the Classification of Finite Simple Groups and a
delicate reduction to almost simple groups of the problem. In particular, we believe
that the results in Section 4 in this paper represent a contribution to the general
problem of understanding the action of Galois automorphisms on the characters in
blocks of nonabelian simple groups.

In view of the fact that 2-blocks with a defect group P with |P : P ′| = 4 have
a bounded, and quite small, number of irreducible Brauer characters (see Section
6.2 of [7]), it is natural to ask if the same happens if we instead assume that
|P : Φ(P )| = 4. The following elegant counterexample is due to G. Malle, and it is
not so easy to find. Let n = 2a and let H be the Singer cycle in SLn(2), of order
2n − 1. Then its normalizer contains a regular unipotent element u (of order n).
The principal 2-block of the semidirect product of the natural module V with H〈u〉
has a Sylow 2-subgroup P with |P : Φ(P )| = 4 and at least 2n−2

n + 1 irreducible
2-Brauer characters.

2. Preliminaries

Our notation for characters follows [17] and [30]. Our notation for blocks follows
[27]. Sometimes we denote by B0(G) the principal p-block of G, where p is a
fixed prime in the context. If p is our fixed prime, let σk ∈ Gal(Qab/Q) be the
automorphism that fixes p′-roots of unity and sends p-power roots of unity ξ to

ξ1+pk

. (So the automorphism σ defined in the introduction is σ1 here, whenever
p = 2.) By elementary number theory, we have that σk restricted to any cyclotomic
field has order a power of p. Notice that a linear character λ of a finite group is
fixed by σk if and only if the p-part of the order of λ divides pk.

In the next results, we work with slightly more generality than is required. The
following is a well-known result by J. G. Thompson.

Lemma 2.1. Let G be a finite group, p be a prime and P ∈ Sylp(G). If every
linear character of P of order p extends to G, then G has a normal p-complement.
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Proof. Let M be the minimal normal subgroup of G such that G/M is a p-elemen-
tary abelian group. Clearly, Φ(P ) ⊆ M ∩ P . If λ ∈ Irr(P ) has order p and νP = λ,
where ν ∈ Irr(G), notice that (νp′)P = 1, so we may assume that ν has p-power
order. Also, since (νP )

p = λp = 1, we have that νp = 1. Hence M ⊆ Ker(ν) and
M ∩P ⊆ Ker(λ). We deduce that M ∩P ⊆ Φ(P ). By a theorem of Thompson (see
Problem 6.20 of [17])

1 = Op(P ) = Op(G) ∩ P .

Hence G has a normal p-complement. �
Recall that if G is a finite group, P ∈ Sylp(G) and N � G, then Φ(PN/N) =

Φ(P )N/N . We will frequently use the following fact.

Lemma 2.2. Suppose that G is a finite group, and let P ∈ Sylp(G). Let N � G

be such that G/N has order divisible by p. Assume that P/Φ(P ) has order p2.
Then either PN/Φ(P )N has order p and G/N has a cyclic Sylow p-subgroup, or
PN/Φ(P )N has order p2 and N has a normal p-complement.

Proof. Let Ḡ = G/N and use the bar notation. Now, 1 < P̄/Φ(P̄ ) has order a
divisor of p2. If P̄ /Φ(P̄ ) has order p, then P̄ is cyclic.

Suppose that P̄ /Φ(P̄ ) has order p2. Let Q = P ∩ N . Then Q ⊆ Φ(P ) and
therefore N ∩ Φ(P ) = Q ∈ Sylp(N). By Lemma 2.1 applied in the group NP , we
obtain that NP has a normal p-complement, and so does N . �
Lemma 2.3. Let G b a finite group. Write K = Op(G), P ∈ Sylp(G), and

Q = P ∩K. Assume that λ ∈ Irr(Q) is linear of order pk and is P -invariant. Then
there exists ρ ∈ Irr(P ) of order pk that extends λ.

Proof. Let τ be the restriction of σk to Q|G| = Q(ξ), where ξ ∈ C has order |G|.
Consider A = 〈τ 〉×P , so that A is a p-group and λ is A-invariant. By Lemma 2.1 (ii)
of [32], λK has a p′-degree irreducible A-invariant constituent θ with p′-multiplicity.
Let χ ∈ Irr(G) be the canonical extension of θ (using Corollary 6.28 of [17]), which
is 〈τ 〉-invariant (by uniqueness). Let ψ = χP . We have that [χQ, λ] = [θQ, λ] �≡ 0
mod p. By Lemma 2.1(ii) of [32], there is some τ -invariant constituent ρ ∈ Irr(P )
of ψ such that [ρQ, λ] is not divisible by p. Since λ is P -invariant, Q � P , and P is
a p-group, it follows that ρQ = λ (using Corollary 11.29 of [17]). Since o(λ) = pk

and o(ρ) divides pk (because ρ is τ -invariant), we have that o(ρ) = pk. This proves
the lemma. �
Lemma 2.4. Suppose that G is a finite group, P ∈ Sylp(G) and PCG(P ) ≤ H ≤
G. Suppose that θ ∈ Irr(b) has p′-degree and it is σk-invariant, where b is the
principal block of H. Then there exists a σk-invariant χ ∈ Irr(G) of p′-degree in
the principal block of G such that [χH , θ] is not divisible by p.

Proof. By the comments before Theorem 9.24 of [27], we know that bG is defined.
By Brauer’s third main theorem (Theorem 6.7 of [27]), we have that bG = B is the
principal block of G. Now, if

Ψ =
∑

χ∈Irr(B)

[θG, χ]χ ,

we have that Ψ(1)p = θG(1)p = 1 by Corollary 6.4 of [27]. Let A = 〈τ 〉, where
here τ is the restriction of σk to the |G|-th cyclotomic field extension Q|G| of Q, as
above. Since B is τ -invariant and θ is τ -invariant, we have that Ψ is τ -invariant.



CHARACTERS AND GENERATION OF SYLOW 2-SUBGROUPS 145

By Lemma 2.1 (ii) of [32], there is a p′-degree A-invariant constituent χ of Ψ with
p′-multiplicity. �

If a group A acts by automorphisms on G and τ ∈ Gal(Qab/Q), we shall denote
by Irrp′,A,τ (B0(G)) the set of A × 〈τ 〉-invariant characters in the principal block
of G which have degree not divisible by p. If A or τ are trivial, we choose not
to write A or τ . In the next three results, we want to relate Irrp′,σ(B0(G)) with
Irrp′,σ(B0(H)) for certain subgroups H in some special situations.

Lemma 2.5. Let G be a finite group, p be a prime and P ∈ Sylp(G). Write
N = Op(G), and suppose that G/N is cyclic and non-trivial. Then

|Irrp′,σ1
(B0(G))| = p|Irrp′,P,σ1

(B0(N))| .

Proof. If χ ∈ Irrp′(G), we have that χN = θ is irreducible by Corollary 11.29 of
[17]. Also θ is P -invariant. Furthermore, if χ is σ1-invariant, then θ is σ1-invariant.
Moreover, since G/N is a p-group, χ lies in the principal p-block of G if and only
if θ lies in the principal p-block of N , using [27, Corollary 9.6]. Conversely, if
θ ∈ Irrp′,P (N), then θ is G-invariant. We claim that the determinantal order
o(θ) = |N : Ker(det θ)| of θ is coprime to p (here det θ is defined as in [18, Problem
2.3]). Write K = Ker(det θ) � G as θ (and hence det θ) is G-invariant. Take
O/K = Op(N/K), so that O � G and G/O is a p-group. By definition O = N
and hence N/K is a p′-group (recall N/K is cyclic). As (θ(1)o(θ), |G : N |) = 1,
by [18, Corollary 6.28], θ has a canonical extension γ to G. In particular, γ is σ1-
invariant if and only if θ is. By [27, Corollary 9.6], if θ ∈ B0(N), then Irr(G|θ) ⊆
Irr(B0(G)). In this case, there is a canonical bijection Irr(G/N) → Irr(G|θ) given
by λ �→ λγ (by the Gallagher correspondence Corollary 1.23 of [30]), where linear
characters of G/N correspond to p′-degree characters of G over θ. Notice that if γ
is σ1-invariant and λ is linear, then λγ is σ1-invariant if and only if λ is σ1-invariant,
which happens if and only if λp = 1. Recall that since G/N > 1 is a cyclic p-group,
there are exactly p linear characters λ ∈ Irr(G/N) satisfying λp = 1. The proof of
the lemma easily follows from these considerations. �

The following is elementary.

Lemma 2.6. If G is a finite group of even order, then |Irr2′,σ(B0(G))| is even.

Proof. See Lemma 1.4 of [39]. �

Next is a well-known result of J. Alperin and E. C. Dade.

Theorem 2.7. Suppose that N is a normal subgroup of G, with G/N a p′-group.
Let P ∈ Sylp(G) and assume that G = NCG(P ). Then restriction of charac-
ters defines a natural bijection between the irreducible characters of the princi-
pal blocks of G and N . In particular, |Irrp′,τ (B0(G))| = |Irrp′,τ (B0(N))|, for any
τ ∈ Gal(Qab/Q).

Proof. The case where G/N is solvable was proved in [1] and the general case in
[8]. The last part of the statement follows immediately since τ acts on Irr(B0)
(preserving character degrees). �

Finally, we shall need the following.
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Theorem 2.8. Suppose that G is a finite group, and N is a normal subgroup of G
with N = Op(N). Suppose that G/N has a normal p-complement K/N , and that
P ∈ Sylp(G). Let L = NNG(P ). Then there is a natural bijection

Irrp′(B0(G)) → Irrp′(B0(L))

which commutes with Gal(Qab/Q)-action.

Proof. Let C = K ∩ L, and notice that C/N = CK/N (P ). By Theorem E of
[37], there is natural bijection ∗ : Irrp′,P (B0(K)) → Irrp′,P (B0(C)) that commutes
with Gal(Qab/Q)-action. Since N = Op(N) and K/N is a p′-group, notice that
K = Op(K) and C = Op(C). Every θ ∈ Irrp′,P (B0(K)) has a canonical extension

θ̂ to G, and every η ∈ Irrp′,P (B0(C)) has a canonical extension η̂ to L. Using the
Gallagher correspondence, and the fact that G/K is a p-group, we have that each

χ ∈ Irr2′(B0(G)) can be uniquely written as χ = λθ̂ for some λ ∈ Irr(G/K) linear,
where θ = χK . Similarly, every ψ ∈ Irr2′(B0(L)) can be uniquely written as ψ = λη̂

for some λ ∈ Irr(L/C) = Irr(G/K) linear, where η = ψC . Hence λθ̂ �→ λθ̂∗ yields
a natural bijection

Irr2′(B0(G)) → Irr2′(B0(L))

that commutes with Gal(Qab/Q)-action. �

3. Proof of Theorem A

In this section, we prove that Theorem A is true it if holds for certain almost
simple groups. We shall prove the following in Section 4.

Theorem 3.1. Suppose that G is a finite almost simple group, with socle S. As-
sume that G/S is a cyclic 2-group or a group of odd order. Let P ∈ Syl2(G). Then
P/Φ(P ) has order 4 if and only if |Irr2′,σ1

(B0(G))| = 4.

Although in some of the following we could work in slightly more generality, let
us fix now our prime p = 2, and let σ = σ1 for the rest of the section. We recall that
O2′(G) lies in the kernel of every character in the principal block by [27, Theorem
6.10].

We shall need to use one of the main results of [39].

Theorem 3.2. Suppose that G is a finite group. Then G has a cyclic Sylow 2-
subgroup if and only if |Irr2′,σ(B)| = 2, where B is the principal 2-block of G.

Also, we need a different (and much easier version) of the previous result.

Lemma 3.3. Suppose that G is a finite group and B is the principal 2-block of
G. Then G has a normal 2-complement if and only if Irr2′,σ(B) consists of linear
characters. Also, G has a cyclic Sylow 2-subgroup if and only if Irr2′,σ(B) consists
of two linear characters.

Proof. Let P be a Sylow 2-subgroup of G. We prove the first statement. First
suppose that Irr2′,σ(B) consists of linear characters. Let λ ∈ Irr(P/Φ(P )). Write

PCG(P ) = P ×U , and consider λ̂ = λ×1U . By Lemma 2.4 and the hypothesis, we
have that λ extends to a σ-invariant character of G. By Lemma 2.1, we have that
G has a normal 2-complement K. If furthermore Irr2′,σ(B) consists of two linear
characters, then P/Φ(P ) is cyclic, and P is cyclic.
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Suppose that G has a normal 2-complement M . Then Irr(B) = Irr(G/M) can
be identified with Irr(P ), by [27, Theorem 9.9.(c)]. Hence the converse follows
trivially.

The second statement is a direct consequence of the first one, since groups with a
cyclic Sylow 2-subgroup have a normal 2-complement by a well-known result proved
independently by Frobenius and Burnside. �

In the final step of the proof of Theorem A, we shall arrive at a particular minimal
situation. To solve that step takes longer than one would have expected.

Lemma 3.4. Suppose that G = NP , where N is a nonabelian nonsimple minimal
normal subgroup of G, CG(N) = 1, G/N is cyclic and P ∈ Syl2(G). Let S � N be
simple, H = NG(S), C = CG(S) and let V ∈ Syl2(H/C). Then the following hold.

(a) |Irr2′,σ(B0(G))| = 4 if and only if H > SC and |Irr2′,σ(B0(H/C))| = 4.
(b) |P : Φ(P )| = 4 if and only if H > SC and |V : Φ(V )| = 4.

Proof. Write G/N = 〈Nx〉 for some x ∈ P . Notice that H � G and G/H = 〈Hx〉.
Suppose that G/H has order k. Then N is the direct product of the subgroups

{Sxj}, j = 0, . . . , k − 1 (where xj ∈ P are representatives of the right cosets of H
in G). Write Q = H ∩P = NP (S) ∈ Syl2(H). Let R = N ∩P = N ∩Q ∈ Syl2(N),
and let R1 = S ∩ Q = S ∩ P = S ∩ R ∈ Syl2(S). By a standard argument, see
for instance, the next to the last paragraph of the proof of Theorem 2.4 of [32], we

have that Q = NP (R1). Also, R = R1 ×Rx
1 × · · · ×Rxk−1

1 . Use the bar convention
so that R̄1 = R1C/C is a Sylow 2-subgroup of S̄ = SC/C and Q̄ = QC/C is a
Sylow 2-subgroup of H̄ = H/C. Furthermore, Q̄∩ S̄ = R̄1, and Q̄/R̄1 is cyclic, and
by hypothesis, nontrivial. Since SC = S×C, we have that R̄1 is isomorphic to R1.
Notice too that H/SC is isomorphic to Q̄/R̄1.

By hypothesis S < N . In particular, G/N is non-trivial, H < G and Q < P .
Since P/R ∼= G/N is cyclic, we have that |P : RΦ(P )| = 2. Hence Q ⊆ RΦ(P )
(otherwise QRΦ(P ) = QΦ(P ) = P would yield Q = P ). If R1 ⊆ Φ(P ) then
Rx

1 ⊆ Φ(P ) (hence for every xj with j ∈ {0, . . . k − 1}), and thus R ⊆ Φ(P ). Then
|P : Φ(P )| = 2 and P is cyclic. In particular R would be cyclic, a contradiction.
Hence, Φ(P ) < R1Φ(P ) ≤ RΦ(P ).

First we prove the ‘only if’ implication of (b). Assume that |P : Φ(P )| = 4.
Then |RΦ(P ) : Φ(P )| = 2 and R1Φ(P ) = RΦ(P ). Let τ ∈ IrrQ(R1) be linear
of order 2. (Such character exists: for example, let λ ∈ Irr(R1Φ(P )/Φ(P )) be the
only nontrivial, then λ|R1

is nontrivial linear of order 2 and R1∩Φ(P ) ⊆ Ker(λ|R1
).

Since Q ⊆ RΦ(P ) = R1Φ(P ), we also have that λ|R1
is Q-invariant. Moreover λ|R1

is the unique linear Q-invariant character of order 2 of R1 with R1 ∩ Φ(P ) in its

kernel.) Write γ = τ ×τx×· · ·×τx
k−1 ∈ Irr(R). Then γ is linear of order 2 and, by

Lemma 4.1(ii) of [35], is P -invariant. By Lemma 2.3, there exists ν ∈ Irr(P/Φ(P ))
that extends γ, and therefore τ . In particular, Φ(P )∩R1 is contained in the kernel
of τ (so τ = λ|R1

). Hence, we see that IrrQ(R1) contains a unique linear character
of order 2. We claim that H > SC. Otherwise, QC = (P ∩ H)C = PC ∩ SC =
(P ∩ S)C = R1C. Thus Q̄ = R̄1, and IrrQ(R1) = Irr(R1) has a unique linear
character of order 2. Hence R1 is cyclic, but this is impossible as S is nonabelian
simple, and the claim follows.

Note that also R̄1
∼= R1 has a unique Q̄-invariant linear character of order 2

(as Q ∩ C = CP (S) acts trivially on Irr(R1)). Since every nontrivial character of
R̄1Φ(Q̄)/Φ(Q̄) corresponds to a Q̄-invariant linear character of order 2 of R̄1 (note
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R̄1Φ(Q̄) ≤ Q̄), this implies that, |R̄1 : Φ(Q̄) ∩ R̄1| = |R̄1Φ(Q̄) : Φ(Q̄)| = 2. Note
that R ≤ R1C. Then Q̄/R̄1 is cyclic, because P/R is cyclic, and nontrivial, since
otherwise R1 would be cyclic, as in the paragraph above (a contradiction). We
conclude that |Q̄ : Φ(Q̄)| = |Q̄ : R̄1Φ(Q̄)||R̄1Φ(Q̄) : Φ(Q̄)| = 4.

We now prove the ‘if’ implication of (b). Assume that |Q̄ : Φ(Q̄)| = 4 and
that H > SC (that is, Q̄ > R̄1). Since |P : RΦ(P )| = 2 it suffices to show
that |RΦ(P ) : Φ(P )| = 2. By Lemma 2.3, every Q̄-invariant linear character of
λ ∈ Irr(R̄1) of order 2 extends to a linear character of Q̄ of order 2, and hence
R̄1 ∩ Φ(Q̄) ⊆ Ker(λ). Using that |Q̄ : Φ(Q̄)| = 4, so that |R̄1Φ(Q̄) : Φ(Q̄)| = 2 we
deduce that λ is unique.

We work to show that |RΦ(P ) : Φ(P )| = 2. Note that RΦ(P )/Φ(P ) ∼= R/R ∩
Φ(P ). If γ ∈ Irr(R/R ∩ Φ(P )) has order 2, then γ is P -invariant (because it
may be identified with a character of RΦ(P )/Φ(P ) ≤ P/Φ(P )). Therefore γ =

τ × τx × · · · × τx
k−1 ∈ Irr(R) for some τ ∈ IrrQ(R1) linear of order 2 (by Lemma

4.1(ii) of [35]). In particular τ seen as a character of R̄1
∼= R1 is Q̄-invariant

of order 2, hence τ = λ. We deduce that there is only one choice for γ, and
|R : R ∩ Φ(P )| = 2, as wanted.

Finally, we show (a). By Lemma 4.1(ii) of [35], there is a natural bijection

Irr2′,Q(S) → Irr2′,P (N) given by ψ �→ ψ × ψx × · · · × ψxk−1

that respects σ-action
and principal 2-blocks. (The last part follows from the definition of principal block
as in [27, Definition 3.1]). In particular, |Irr2′,P,σ(B0(N))| = |Irr2′,Q,σ(B0(S))|.
Of course, this equals |Irr2′,QC/C,σ(B0(SC/C))|, since S and SC/C are naturally
isomorphic.

By Lemma 2.5 applied in G, we have that |Irr2′,σ(B0(G))| = 2|Irr2′,P,σ(B0(N))|.
If H > SC, by the same lemma we also have that

|Irr2′,σ(B0(H/C))| = 2|Irr2′,Q,σ(B0(S))|.

Suppose that |Irr2′,σ(B0(G))| = 4. Then we have that |Irr2′,P,σ(B0(N))| =
2. Thus |Irr2′,Q,σ(B0(S))| = 2. If H = SC, then Q = (Q ∩ S)CQ(S) fixes all
irreducible characters of S. Then |Irr2′,σ(B0(S))| = 2. By Theorem 3.2, we have
that S has a cyclic Sylow 2-subgroup, but this is not possible since S is nonabelian
simple. Therefore we have that H > SC in both directions, and |Irr2′,σ(B0(G))| =
|Irr2′,σ(B0(H/C))|. �

Notice that in Lemma 3.4, we need that H > SC, otherwise the wreath product
of A5 with C2 is a counterexample to both of its statements.

We are finally ready to prove Theorem A (assuming Theorem 3.1 on almost
simple groups), which we restate now.

Theorem 3.5. Suppose that G is a finite group, and let P ∈ Syl2(G). Assume
that Theorem 3.1 is true. Then |P : Φ(P )| = 4 if and only if |Irr2′,σ(B0(G))| = 4.

Proof. For both directions, we may assume that O2′(G) = 1.
Assume first that |P : Φ(P )| = 4. We prove that |Irr2′,σ(B0(G))| = 4 by induc-

tion on |G|. First note that if U is a complement of P in NG(P ) and we write
V = Op′(NG(P )), then U/V acts faithfully on P/Φ(P ) ∼= C2×C2 by [18, Corollary
3.30]. Thus either U = V or U/V ∼= C3.

Let N be a minimal normal subgroup of G. Since Φ(P )N/N = Φ(PN/N), we
have that |PN : Φ(P )N | is 1, 2 or 4.
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Assume that |PN : Φ(P )N | = 1, then G/N has odd order. Thus P ⊆ N . If N is
a 2-group, then we have that P = N � G, and either G = N or G = A4 (using that
O2′(G) = 1 and U/V has order 1 or 3). In both cases, the result is clear. If N is
nonabelian, then N is the direct product of k copies of a nonabelian simple group
S. Also, P is the direct product of k copies of the Sylow 2-subgroup of S, which is
not cyclic (as groups with cyclic Sylow 2-sugroups have a normal 2-complement).
Since P/Φ(P ) has order 4, necessarily k = 1, and N is simple. Since O2′(G) = 1
and Z(N) = 1, we have that CG(N) = 1. It follows that G is almost simple in this
case, and the result follows by Theorem 3.1.

Assume now that |PN : Φ(P )N | = 4. By Lemma 2.2, we have that N has a
normal 2-complement. Since O2′(G) = 1, we have in this case that N is a 2-group
and N ⊆ Φ(P ). By induction, we have that |Irr2′,σ(B0(G/N))| = 4. Hence, we
only need to prove that if χ ∈ Irr2′,σ(B0(G)), then N is in the kernel of χ and χ
belongs to the principal block of G/N when viewed as a character of G/N . If τ is
the restriction of σ to the |G|-th cyclotomic field, we know that τ has 2-power order.
By Lemma 2.1(ii) of [32], we have that χP contains a linear τ -invariant constituent
λ ∈ Irr(P ). Since λ is τ -invariant, it follows that λ2 = 1. Thus N ⊆ Φ(P ) ⊆ Ker(λ)
and hence N ⊆ Ker(χ). It remains to show that if χ̄ ∈ Irr(G/N) is the character
given by χ̄(Nx) = χ(x) for x ∈ G, then χ̄ ∈ Irr(B0(G/N)). Since χ̄ has odd degree,
it follows that χ̄ lies in a block of G/N of maximal defect P/N . By Problem 4.5
of [27], we only need to prove that if Nx ∈ G/N , with x ∈ G, is 2-regular with
P/N ⊆ CG/N (Nx), then( |G/N : CG/N (Nx)|χ̄(Nx)

χ̄(1)

)
≡ |G/N : CG/N (Nx)|

modulo any maximal ideal of the ring of algebraic integers in C containing 2. First
notice that Nx ∈ NG/N (P/N) = NG(P )/N . Also, we may assume that x is a
2-regular element, using that Nx = (Nx)2′ = Nx2′ . Notice that

CG/N (Nx) = CG(x)N/N ,

using that (|N |, o(x)) = 1 (and [18, Corollary 3.28]). We have shown that x is
a 2-regular element of NG(P ) centralizing P/N . Therefore x centralizes P/Φ(P ),
and by [18, Corollary 3.29] we have that x centralizes P . In particular, N ⊆ CG(x).
Then |G/N : CG/N (Nx)| = |G : CG(x)|. Since χ is in the principal block of G, we
have that( |G/N : CG/N (Nx)|χ̄(Nx)

χ̄(1)

)
=

(
|G : CG(x)|χ(x)

χ(1)

)
≡ |G : CG(x)| ,

modulo any maximal ideal of the ring of algebraic integers in C containing 2, as
desired.

Assume finally that |PN : Φ(P )N | = 2. Then G/N has a cyclic Sylow 2-
subgroup and therefore, a normal 2-complement K/N . Let Q = P ∩N ∈ Syl2(N).
Then P/Φ(P )Q and Φ(P )Q/Φ(P ) have order 2. Notice that U acts (trivially) on
P/Φ(P )Q and Φ(P )Q/Φ(P ), and hence U acts trivially on P/Φ(P ) by [18, Problem
3E.3]. In particular, U ⊆ CG(P ) by [18, Corollary 3.29] and hence V = U , so
NG(P ) = P × U .

IfN is a 2-group, thenG is (2-)solvable. Hence U ⊆ O2′(G) = 1, by [18, Theorem
4.33]. In this case, NG(P ) = P , and there is a natural bijection Irr2′(G) → Irr2′(P )
that commutes with Galois action (see Theorem F of [28], the Galois equivariance
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follows immediately from the description of the natural bijection). Since G has
only one 2-block (by Theorem 10.20 of [27]), the theorem is proven in this case.
Thus we may assume that O2(G) = 1. In particular, N is a direct product of
nonabelian simple groups. ( Thus O2(N) = 1). By Theorem 2.8, and by induction,
we may assume M = PN � G. Since NG(P ) = P × U = PCG(P ), we have that
G = NNG(P ) = MCG(P ). By Theorem 2.7 and induction, we may assume that
G = M . If N = G, then G is nonabelian simple and the statement follows by
Theorem 3.1. Therefore we may assume that N < G. Recall that G/N is a cyclic
2-group. Notice that CG(N) = 1. Otherwise, since N ∩ CG(N) = 1 and G/N is
a 2-group, we will conclude that O2(G) > 1. Let S � N be (nonabelian) simple,
and write H = NG(S), C = CG(S). We have that H/C is almost simple. Then
|Irr2′,σ(B0(G))| = 4 now follows from Lemma 3.4 and Theorem 3.1.

Assume now that |Irr2′,σ(B0(G))| = 4, and we prove that |P : Φ(P )| = 4 by
induction on |G|. We divide the proof of this direction in several steps.

Step 1. If N � G and γ ∈ Irr2′,σ(B0(NP )), then there is η ∈ Irr2′,σ(B0(G)) lying
over γ.

Proof. By Theorem 2.7 (applied to NP � NPCG(P )), there is an extension γ̂ ∈
Irr2′,σ(B0(NPCG(P ))) of γ. By Lemma 2.4, the claim follows. �

Step 2. We may assume that G has no proper normal subgroup M of odd index
such that CG(P ) ⊆ M .

Proof. Proof. Assume the contrary and let M � G be a proper normal subgroup of
odd index in G with CG(P ) ⊆ M .

By [33, Lemma 3.1], all irreducible characters of G that lie over characters in
the principal block of M are in the principal block of G. In particular, Irr(G/M) ⊆
Irr2′,σ(B0(G)) (for G/M has odd order) and hence |Irr(G/M)| ≤ 4 by hypothesis.
Then G/M ∼= C3 ([3, Note A]). Since |Irr(G/M)| = 3, we deduce that there is a
unique η ∈ Irr(B0(G)) of odd degree, σ-invariant which does not contain M in the
kernel. By Step 1, every 1 �= γ ∈ Irr2′,σ(B0(M)) lies under η. In particular, all
such γ are G-conjugate, by Clifford’s theorem, and there are exactly three of them
(otherwise γ would give rise to three extensions in Irr2′,σ(B0(G)) by [32, Lemma
5.1]). Hence |Irr2′,σ(B0(M))| = 4 and we are done by induction. �

Let N be a minimal normal subgroup of G. By Lemma 2.6 and using that
Irr(B0(G/N)) ⊆ Irr(B0(G)), we have |Irr2′,σ(B0(G/N))| = 2 or 4, unless G/N has
odd order.

Step 3. G/N does not have odd order.

Proof. Suppose first that N is semisimple. If G/N has odd order, then CG(N) = 1,
using thatO2′(G) = 1. Notice thatNCG(P )�G sinceG = NNG(P ) by the Frattini
argument. If NCG(P ) = G, then by Theorem 2.7 and induction, we may assume
that G = N . In this case, G is simple and the statement is true by Theorem 3.1.
So we assume that NCG(P ) < G, but this contradicts Step 2. So we are left with
the case where N is an elementary abelian 2-group. In this case N = P and, since
O2′(G) = 1, we have that CG(N) = N . By Step 2 we conclude that G = N , and
hence G ∼= C2, a contradiction. �

Step 4. If 1 < K is any normal subgroup of G, then |Irr2′,σ(B0(G/K))| �= 4.
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Suppose now that |Irr2′,σ(B0(G/K))| = 4. By induction, we have that |PK :
Φ(P )K| = 4. Also, every odd-degree σ-invariant irreducible character of G in the
principal block has K in its kernel. Hence, if θ ∈ Irr2′,σ(B0(KP )), then K is in
the kernel of θ, by Step 1. Assume that K is a 2-group. If θ ∈ Irr(P/Φ(P )), then
K ⊆ Ker(θ). Hence K ⊆ Φ(P ) and we have that |P : Φ(P )| = |PK : Φ(P )K| = 4.
Assume that KP has a normal 2-complement, then K has normal 2-complement.
Since O2′(G) = 1, then K is a 2-group, then K ⊆ Φ(P ) as before and we are
also done in this case. Hence, we may assume that KP does not have a normal 2-
complement. By Lemma 3.3, there is some γ ∈ Irr2′,σ(B0(KP )) which is nonlinear.
In particular, K is not contained in the kernel of γ, a contradiction.

Final Step. By Steps 3 and 4, it remains to deal with the case where |Irr2′,σ(B0(G/
N))| = 2. By Theorem 3.2, we have that G/N has a normal 2-complement K/N
and a nontrivial cyclic Sylow 2-subgroup PN/N . Since N is minimal normal
and O2′(G) = 1, we deduce that O2(K) = K. By Lemma 2.5, we have that
|Irr2′,P,σ(B0(K))| = 2.

Suppose that N is a 2-group. Then G is (2-)solvable, so G and K have only
one 2-block (by Theorem 10.20 of [27]) namely the principal one. In particular,
|Irr2′,P,σ(K)| = 2. Since the Sylow 2-subgroup of K is normal and 2-elementary
abelian, by [39, Lemma 2.2(a)] we conclude that |IrrP (K)| = |Irr2′,P,σ(K)| = 2. If
1 �= λ ∈ IrrP (N), then λ lies under some P -invariant irreducible character of K
because λK has odd-degree. We see therefore that |IrrP (K/N)| = 1 and by the
Glauberman correspondence, CK/N (P ) = 1. This implies that P = NG(P ). By
[28, Theorem F], there is a natural bijection Irr2′(G) → Irr2′(P ) that commutes
with Galois action (this easily follows from the description of the bijection). In
particular 4 = |Irr2′,σ(G)| = |Irr2′,σ(P )| = |P : Φ(P )| and we are done in this case.

So we may assume that N is semisimple. By Theorem 2.8 and induction, we may
assume that PN� G. Assume thatM = PN < G, and writeH = CG(P )M�G. By
Step 2, we have that H = G. By Theorem 2.7 (applied with respect to M� H = G)
and induction, we may assume that G = M = PN . Assume that D = CG(N) > 1.
Then D is a 2-group since D ∩ N = 1, and also D < P . By Lemma 2.6 and the
hypothesis |Irr2′,σ(B0(G/D))| = 2 or 4. Step 4 forces |Irr2′,σ(B0(G/D))| = 2. Thus
by Theorem 3.2, the subgroup P/D ∈ Syl2(G/D) is cyclic. Let Q = P ∩ N ∈
Syl2(N). In particular Q ∼= QD/D ≤ P/D is cyclic, a contradiction (as N is
nonsolvable). We conclude thatD = 1. IfN is simple, then we are done by Theorem
3.1. So we may assume that N is nonabelian nonsimple. Then the theorem follows
from Lemma 3.4 and Theorem 3.1 on almost simple groups. �

4. Almost simple groups

The goal in this section is to prove Theorem 3.1.

4.1. Alternating and sporadic groups. Here we consider the cases of alternat-
ing groups, sporadic groups, and some small groups of Lie type. The following
may be well-known, but we record it in part to illustrate the types of computations
with semidirect products that are also required for the details of some of the results
throughout Section 4.3 below.

Lemma 4.1. Let n be a positive integer. Let P ∈ Syl2(Sn) and let Q ∈ Syl2(An).
Then P/P ′ and Q/Q′ are elementary abelian. If n = 2k or 2k +1 with k > 1, then
|P : P ′| = |Q : Q′|. Otherwise, |P : P ′| = 2|Q : Q′|.
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Proof. If n = 2 or 3, then the respective Sylow 2-subgroups are cyclic of order 2,
so we may assume n ≥ 4.

Suppose that n = 2k or 2k + 1, so k > 1. We proceed by induction on k to see
that P/P ′ and Q/Q′ are isomorphic to Ck

2 .
If k = 2, then P/P ′ ∼= C2 × C2

∼= Q/Q′. Write Pj for a Sylow 2-subgroup
of S2j and Qj for a Sylow 2-subgroup of A2j with Qj ⊆ Pj . With the notation
of [38, Lemma 4.14] we can write Pk = {(x, y; zα) | x, y ∈ Pk−1, α ∈ {0, 1}} ∼=
Pk−1 � 〈z〉, where z is an involution of signature 1 that permutes the two copies of
Pk−1. Then Qk = {(x, y; zα) | x, y ∈ Pk−1, sgn(x) = sgn(y), α ∈ {0, 1}}. Hence,
we can write Qk = H � 〈z〉, where H = {(x, y; 1) | x, y ∈ Pk−1, sgn(x) = sgn(y)}.
Since P ′

k = (P ′
k−1 × P ′

k−1)ΔPk−1, where ΔPk−1 = {(x−1, x; 1) | x ∈ Pk−1} ≤
Pk, we have that Pk/P

′
k

∼= Pk−1/P
′
k−1 × C2 (by (x, y, zα)P ′

k �→ (xy, zα)). By

induction Pk/P
′
k
∼= Ck

2 . Similarly, one can see that Q′
k = (H � 〈z〉)′ = H ′ΔH,

where ΔH = {(h−1, h; 1) | h ∈ Pk−1}. In particular, Qk/Q
′
k
∼= H/H ′ΔH × C2 and

H/H ′ΔH ∼= Qk−1/Q
′
k−1. As before, the conclusion holds by induction.

Now suppose that n = 2k1 + · · · + 2kt , with k1 > . . . > kt ≥ 0, is not of the
form 2k nor 2k + 1. We can write P = Pk1

× · · · × Pkt
, with the notation for

Pj as above. It follows from the first part of the proof that P/P ′ is elementary
abelian. Note that Q = {(x1, . . . , xt) | xj ∈ Pkj

,
∏

j sgn(xj) = 1}. Of course,

Q′ ⊆ P ′. Since P is the direct product of at least two nontrivial wreath products,
then each of the projections of Q into Pkj

is surjective. Given [xj , yj ] ∈ P ′
kj
, we

want to see that (1, . . . , [xj , yj ], . . . , 1) ∈ P ′ is a commutator in Q. This can be
done using auxiliary elements z� ∈ P� with sgn(z�) = −1 (for example z� of cycle

type (2, 12
�−2)) whenever P� > 1. In particular, P ′ ⊆ Q′ and so P ′ = Q′. Hence

Q/Q′ is elementary abelian as it is a subgroup of P/P ′ and |P : P ′| = 2|Q : Q′| as
wanted. �

Lemma 4.2. Theorem 3.1 holds when S is an alternating group An with n ≥ 5.

Proof. If n ≤ 9, the statement can be checked using GAP, so we assume that
n > 9. Since Aut(S) = Sn, the only possibilities for A are A = An or A = Sn.
Let P ∈ Syl2(Sn). If n = 2k1 + · · · + 2kt where 0 ≤ kt < · · · < k1, then
using Lemma 4.1, |P/P ′| = |P/Φ(P )| = 2k1+···+kt > 8, since n > 9. Simi-
larly, since the characters of Sn are rational-valued, [23, Theorem 1.3] yields that
|Irr2′,σ1

(B0(Sn))| = 2k1+···+kt > 8, and therefore |Irr2′,σ1
(B0(An))| and |Q/Q′| are

at least 8, using Lemma 4.1 and the fact that every odd-degree character of Sn
restricts irreducibly to An. �

The next lemma reduces us to the case of simple groups of Lie type. Throughout,
we will let PSL±

n (q) denote the group PSLn(q) in the case + and PSUn(q) in the
case −, and similar for SL±

n (q), GL±
n (q), and PGL±

n (q).

Lemma 4.3. Let S be a simple sporadic group or one of the simple groups PSL3(2),
PSL3(4), PSU4(2), PSU4(3), PSL±

5 (2), PSL±
6 (2),

2B2(8), B3(2), B3(3), D4(2),
F4(2),

2F4(2)
′, E6(2),

2E6(2), G2(2)
′, or G2(4). Then Theorem 3.1 holds for S.

Proof. In these cases, the statement can be seen using [11] and the GAP Character
Table Library, together with some computation with semidirect products along the
lines of the groups of Lie type below. �
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4.2. General preliminaries. Due to the nature of their automorphism groups,
the following lemmas will often be helpful in the case of groups of Lie type.

Lemma 4.4. Let A be a finite group such that A = G�C is the semidirect product
of a subgroup G with a nontrivial cyclic 2-group C. Let K ≤ Gal(Qab/Q) be a
subgroup and let χ ∈ Irr2′(G) be invariant under C and K. Then there exist at
least two K-invariant elements of Irr2′(A) extending χ. In particular, for K = 〈σ1〉,
there are exactly two K-invariant extensions.

Proof. If χ is linear, then we may view χ as a character of G/G′. Since χ is invariant
under the cyclic group C ∼= A/G, we know that there are (linear) extensions to
A, which we may view as characters of A/Ker(χ) = G/Ker(χ) × C. Hence the
characters χ×1C and χ×η give the desired extensions, where η denotes the unique
member of Irr(C) of order 2. The general case follows using [17, Lemma 6.24], and
the last statement follows from the fact that {1, η} are the only characters of a
cyclic 2-group fixed by σ1. �
Lemma 4.5. Let A be a finite group and let G � A with |A/G| odd. If χ ∈ Irr(G)
is fixed by σ1, then every element of Irr(A|χ) is fixed by σ1.

Proof. This is a direct application of [32, Lemma 5.1]. �
The following lemma can be found, e.g., as [5, Lemma 17.2].

Lemma 4.6. Let G be a finite group. Two characters of S = G/Z(G) are in the
same block if and only if they are in the same block as a character of G.

We also record the following:

Lemma 4.7. Let G � A and χ ∈ Irr2′(B0(G)). Then:

(1) There exists χ̃ ∈ Irr(B0(A)|χ);
(2) If |A/G| is odd, then there exists χ̃ ∈ Irr2′(B0(A)|χ); and
(3) If |A/G| is a power of 2, then B0(A) is the unique block of A above B0(G).

Proof. Parts (1) and (3) are Theorem 9.4 and Corollary 9.6 of [27] in the case of
the principal block, and part (2) follows from Clifford theory. �
4.3. Groups of Lie type. By a group of Lie type, we will mean a finite group
G = GF that is the set of fixed points of a connected reductive algebraic group G
defined over Fq with q a power of a prime p, under a Steinberg map F . We also keep
the general set-up of [39, Section 3.1]. In particular, we fix a regular embedding

G ↪→ G̃ as in [5, Chapter 15], and write G̃ = G̃F . Here Z(G̃) is connected and

by [21] (see also [5, Theorem 15.11]), restrictions of characters from G̃ to G are
multiplicity-free. By a simple group of Lie type S, we mean S = G/Z(G) with
G = GF and G simple of simply connected type. In this situation, we will also

write S̃ = G̃/Z(G̃), so that Aut(S) = S̃ �D with D generated by certain so-called

graph and field automorphisms of S. We also remark that |S̃/S| is relatively prime
to q.

The set Irr(G̃) is partitioned into Lusztig series E(G̃, s), where s ranges over

semisimple elements of the dual group G̃∗, up to G̃∗-conjugacy. The characters

E(G̃, 1) are called unipotent characters, and there is a bijection between E(G̃, s)

and E(C
˜G∗(s), 1) such that if χ ∈ Irr(G̃) corresponds to ψ ∈ E(C

˜G∗(s), 1), then

χ(1) = [G̃∗ : C
˜G∗(s)]p′ψ(1).



154 GABRIEL NAVARRO ET AL.

A similar statement holds for G (see [21]), where now we denote by E(CG∗(s), 1)
the set of characters lying above those in E(CG∗(s)◦, 1). (Here as an abuse of

notation, we define CG∗(s)◦ := (CG∗(s)◦)
F∗

where (G∗, F ∗) is dual to (G, F )
and G∗ = (G∗)F

∗
.) We may therefore parametrize Irr(G) by (s, ψ) for s ∈ G∗

semisimple, up to conjugacy, and ψ ∈ E(CG∗(s), 1).
We will call any character in Lusztig correspondence with a character lying

over one parametrized by (s, 1CG∗ (s)◦) a semisimple character of G. Note that a
semisimple character has degree [G∗ : CG∗(s)]p′ . In particular, for a semisimple
element s ∈ G∗, we will often write χs for a choice of semisimple character of G
corresponding to s.

It will be useful to recall that in our situation, a semisimple character χs of

G̃ is trivial on the center as long as s ∈ G̃∗ lies in [G̃∗, G̃∗], using [34, Lemma
4.4], and restricts irreducibly to G as long as s is not conjugate to sz for any

1 �= z ∈ Z(G̃∗). Further, from [36, Corollary 2.5], χϕ
s = χsϕ∗ for ϕ ∈ D, where ϕ∗

is an automorphism of G̃∗ dual to ϕ.
We begin with the following, which is a direct consequence of [41, Lemma 3.4

and Proposition 3.8].

Lemma 4.8. Let G be a group of Lie type and let χ ∈ Irr(G) be a semisimple
character. Assume that one of the following holds:

• G is defined in characteristic 2; or
• G is defined in odd characteristic and χ is in a series indexed by s ∈ G∗

with s2 = 1.

Then χ is fixed by σ1.

Proof. Let G be defined over Fq. If s ∈ G∗ is semisimple with s2 = 1 or with q
a power of 2, then [41, Lemma 3.4] yields that E(G, s) is fixed by σ1, since either
s2 = 1 or |s| is odd, and σ1 fixes odd roots of unity. Further, the Gelfand-Graev
characters are fixed by σ1 since they are induced from characters obtained from
linear characters of (Fq,+), which is an elementary abelian 2-group or p-group with
p odd. Hence [41, Proposition 3.8] yields every semisimple character in E(G, s) is
fixed by σ1. �

4.3.1. Defining characteristic. Here we consider the case that G is defined in char-
acteristic 2.

Proposition 4.9. Let S be a simple group of Lie type defined in characteristic 2
and assume S is not isomorphic to an alternating group or one of the groups listed in
Proposition 4.3. Let A be an almost simple group with socle S such that A/S is odd
or a cyclic 2-group. Then |Irr2′,σ1

(B0(A))| > 4 and |P/Φ(P )| > 4 for P ∈ Syl2(A),

unless S = SL2(2
2b) or PSU3(2

2b−1

) with b ≥ 2 and A/S ∼= C2b a 2-group of field
automorphisms. In the latter cases, |Irr2′,σ1

(B0(A))| = 4 = |P/Φ(P )|.

Proof. We have S = G/Z(G), where G = GF is a (perfect) group of Lie type of

simply connected type over Fq with q a power of 2. Recall that S̃/S and Z(G) are

trivial unless G = SLn or E6, in which cases S̃/S ∼= Z(G) is odd and cyclic.

Let Φ and Π be the set of roots and simple roots, respectively, for G̃, with respect

to a fixed F -stable Borel subgroup B and maximal torus T for G̃. Then we may
write B = UT where U is the unipotent radical.
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1. The character side. We have Irr2′(B0(S)) = Irr2′(S) using [5, 6.14, 6.15, and
6.18]. Let X denote the set of semisimple characters of G trivial on Z(G). Then
X ⊆ Irr2′,σ1

(B0(S)), using Lemmas 4.6 and 4.8. Recall that if A/S is a cyclic
2-group, we may identify A = S �C, where C ≤ D is a cyclic 2-subgroup. We aim
to show that:

(i) X contains at least five pairwise non-Aut(S)-conjugate members; and
(ii) X contains at least three C-invariant members for any cyclic 2-subgroup

C ≤ D.

Note that (i) and (ii) will yield the result in the cases A/S is odd and A/S is a
cyclic 2-group, respectively, using Lemmas 4.5, and 4.4, together with Lemma 4.7.
Throughout the proof, let δ ∈ F×

q2 denote an element of order 3 and when q ≥ 4,

let ξ ∈ F×
q2 with |ξ| �∈ {1, 3}.

1.a. First assume S is not one of G2(q), F4(q),
3D4(q),

2B2(q),
2F4(q), or PSL

±
n (q).

In paragraphs 5 - 9 of [14, Proposition 4.3], two nontrivial semisimple elements of

G̃∗ are constructed in the case of defining characteristic larger than 3, using certain
products of elements hα(δ), where hα denotes a coroot corresponding to a simple

root α for fixed root system for G̃ and δ is a certain element of F×
q2 . The exact same

arguments work here, replacing the δ used there with our δ of order 3, yielding two

semisimple elements s1 and s2 of G̃∗ whose corresponding characters χs1 and χs2

of G̃ are trivial on Z(G̃), invariant under D, and have different degrees. In the case

Φ is not of type E6, we have G̃ = G, so we see (ii) holds. In the case Φ is type E6,

note that S̃/S has size dividing 3. Then if A/S is a cyclic 2-group, at least one of
the constituents of each restriction χS is A-invariant for each of χ = χs1 , χs2 , so (ii)
still holds. (Here we identify χsi with the corresponding character of S = G/Z(G).)

If q ≥ 4, then in all cases, taking two additional characters χs′1
and χs′2

of G̃
constructed in the same way as [14, Proposition 4.3], but with δ replaced with ξ will
ensure two more non-Aut (S)-conjugate members of X . Indeed, we see as before
that χs′1

and χs′2
have different degrees. Further, the orders of the semisimple

elements ensure that χsi and χs′i
are not Aut (S)-conjugate for i = 1, 2, completing

the argument for (i).
Now assume q = 2 and S is not as in Lemma 4.3. If S is 2D4(2), E7(2) or

E8(2), then the list of character degrees available at [20] yields at least 5 odd-
degree characters with multiplicity 1, completing the proof for these groups. If S
is Bn(2) or Cn(2) with n ≥ 3, then there are 5 odd-degree unipotent characters
(see [24, Theorem 6.8]), completing the proof in this case since Out(S) = 1 and
unipotent characters of classical groups are rational-valued by [22, Corollary 1.12].
If S is Dn(2) or

2Dn(2) with n ≥ 5, then we see that (i) holds since G∗ ∼= G has at
least 5 distinct centralizer structures of semisimple elements.

1.b. If S = G2(q) or F4(q), the list of character degrees available at [20] shows
that there are at least five distinct odd character degrees, which must come from
semisimple characters using [24, Theorem 6.8], accomplishing (i). (Recall that here
we have excluded the case q = 2.) For G2(q), the character table is also available in
CHEVIE [12]. To see that (ii) holds forG2(q), we may consider the trivial character,
together with the unique character of degree q3 + η, where q ≡ η (mod 3), and the
character χ14(k) or χ18(k) in CHEVIE notation with ζk1 = δ or ξk1 = δ, respectively,
in the cases η = 1 or −1. Here ζ1 and ξ1 are primitive q − 1 and q + 1 roots of
unity, respectively.
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To see that (ii) holds for S = F4(q) in the case q ≡ 1 (mod 3) (so q is an even
power of 2), we want three members of X invariant under any 2-group of field
automorphisms. This is achieved by considering the trivial character, the unique
character of degree Φ2

2Φ
2
3Φ

2
4Φ8Φ12 (here Φm is the mth cyclotomic polynomial in

q), and a semisimple character χs with s = h2 = (1, 1, z, z) in the notation of [43],
taking z = δ. Indeed, the generating field automorphism maps such an element
to its inverse, which defines the same conjugacy class as s. When S = F4(q) with
q ≡ −1 (mod 3), we need three members of X invariant under the order-two graph
automorphism. The trivial character, the unique character of degree Φ2

1Φ
2
3Φ

2
4Φ8Φ12,

and the character guaranteed by [41, Lemma 5.7 and Proposition 6.4] yields (ii) in
this case.

1.c. Let S = 3D4(q). If 3 | (q − 1), then taking the trivial character together

with the characters χ9(k1), χ9(k2), χ11(�1), and χ11(�2) such that |ζk1
1 | = |ϕ�1

3 | = 3

and |ζk2
1 | �= 3 �= |ϕ�2

3 | in CHEVIE notation show that (i) and (ii) are satisfied. If
3 | (q+1), we may instead use χ17(ki) and χ20(�i) with the roles of (ζ1, ϕ3) replaced
by (ξ1, ϕ6). (Here ζ1 is a q− 1 root of unity, ξ1 is a q+1 root of unity, and ϕ3 and
ϕ6 are q2 + q + 1 and q2 − q + 1 roots of unity, respectively.)

1.d. If S = 2B2(2
2n+1) or 2F4(2

2n+1), then Out(S) is cyclic with odd order, so it
suffices to know that (i) holds. For 2F4(2

2n+1) with n ≥ 1, this is clear just from
the list of character degrees, found at [20]. For 2B2(2

2n+1) with n ≥ 2, there are
four distinct odd character degrees, but using the character table in CHEVIE, we
see there are at least two of the same degree that are not conjugate under field
automorphisms, which generate Out(S).

1.e. For the remainder of part 1 of the proof, let S = PSL±
n (q), G̃ = GL±

n (q)
∼=

G̃∗, G = SL±
n (q) = [G̃, G̃], and S̃ = PGL±

n (q)
∼= G∗ for an appropriate value of n.

Further, recall that in this situation, semisimple classes of G̃∗ are determined by
eigenvalues.

If n ≥ 4 and q ≥ 4, the characters of G̃ of the form χs for s ∈ [G̃∗, G̃∗]
with eigenvalues {δ, δ−1, 1, . . . , 1}, {δ, δ−1, δ, δ−1, 1, . . . , 1}, {ξ, ξ−1, 1, . . . , 1}, and

{ξ, ξ−1, ξ, ξ−1, 1, . . . , 1} are irreducible on G and trivial on Z(G̃), since each s is

non-conjugate to sz for any 1 �= z ∈ Z(G̃). Since these semisimple elements are
pairwise not Aut(S)-conjugate and the same is true for their images in G∗, we see
that the same is also true for the corresponding characters of S. Further, those
involving δ are invariant under the field automorphisms, and in case +, all of these
characters are also invariant under the inverse-transpose map, which induces the
graph automorphism. This yields that (i) and (ii) hold for PSL±

n (q) with n ≥ 4
and q ≥ 4.

If n ≥ 7 and q = 2, the characters of G̃ of the form χs for s ∈ [G̃∗, G̃∗] with
eigenvalues {δ, δ−1, 1, . . . , 1} and {δ, δ−1, δ, δ−1, 1, . . . , 1} satisfy the same properties
as above, showing that (ii) holds. To obtain (i), we note that there are at least

two more semisimple elements of G whose centralizers in G̃ have distinct struc-
tures, yielding at least two more non-Aut (S)-conjugate characters in X when the
corresponding semisimple characters are restricted to G and viewed as characters
of S.

1.f. Let S = SL2(q) with q ≥ 8 a power of 2. Then we obtain at least five Aut(S)-

orbits in X by taking semisimple characters of S̃ = G̃ = GL2(q) corresponding to

semisimple elements s ∈ G̃∗ ∼= G̃ with eigenvalues {ξ, ξ−1}, where ξ ranges over
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elements ξ ∈ F×
q2 , since they must restrict irreducibly to S. Write q = 22

b·m with

m odd. If A/S is a cyclic 2-group, we may view A as A = S � C with C ≤ 〈Fm
2 〉,

where F2 is the generating field automorphism induced by x �→ x2. Then if m > 1,
we may construct characters as above with ξ = ξ1 and ξ2, 2

m−1 and 2m+1 roots of
unity, respectively, to obtain two nontrivial semisimple characters invariant under
C and yielding the desired three C-invariant members of X . If m = 1 but C does
not contain F2, then C is contained in 〈F 2

2 〉. In this case, taking ξ1 and ξ2 to instead
be 3rd and 5th roots of unity yields the result. Finally, if m = 1 and C = 〈F2〉,
then the only nontrivial C-invariant character in Irr2′(S) is of the form χs where s
has eigenvalues {δ, δ−1} with |δ| = 3. This yields |Irr2′,σ1

(B0(A))| = 4 in this case,
using Lemma 4.4.

1.g. When S = PSL±
3 (q), we may consider the same semisimple elements of G̃∗

as in case 1.f above, adding an eigenvalue of 1. The corresponding semisimple

characters of S̃ = PGL±
3 (q) are in this case also fixed by τ . However, in the case

3 | (q∓ 1), a semisimple element s of G̃∗ with eigenvalues {δ, δ−1, 1}, where |δ| = 3,

is conjugate to sz with z = δ · I3 ∈ Z(G̃∗). This yields that the corresponding

character χs of G̃ (or of S̃) restricts to the sum of three irreducible characters of
G (or S). The character χs is invariant under graph and field automorphisms, and
hence for any 2-group of automorphisms C, at least one of these constituents must
be fixed by C. Then with this in mind, the same arguments as for SL2(q) above

yield that (i) holds, and further (ii) holds except possibly if q = 22
b

and C = 〈τF2〉
in the case + or C = 〈F2〉 in either case ±.

So, let S = PSL3(q), where q = 22
b

with b ≥ 2 and let A = S � C with C cyclic
of size 2b. Note that these conditions force 3 | (q − 1) and 7 | (q2 + q + 1). The

semisimple character χs of G̃, where s has eigenvalues {δ, δ−1, 1}, restricts to the
sum of three irreducible characters of G (or S) of degree 1

3 (q+1)(q2+ q+1). Since
χs is A-invariant and |C| is a power of 2, it follows that at least one of these three
irreducible characters of S must also be C-invariant. Further, from [25, Lemma 3.5],
we see that that all three of these characters are invariant under 〈τF2〉, completing
(ii) when C = 〈τF2〉. In the case C = 〈F2〉, we may let μ ∈ F×

q3 with |μ| = 7

and consider the character χs of G̃ with s ∈ G̃∗ having eigenvalues (μ, μ2, μ4), or

equivalently, (μ, μq, μq2). Then χs is trivial on Z(G̃), restricts irreducibly to G, and
is invariant under C, completing the proof of (ii) in this case.

Finally, suppose S = PSU3(q) with q = 22
b−1

and b ≥ 2 and let A = S � C
with C = 〈F2〉 ∼= C2b . Note that S = G in this case, since 3 | (q − 1). The only
nontrivial C-invariant odd-degree character of G comes from the character χs of

G̃, where s ∈ G̃∗ has eigenvalues {δ, δ−1, 1}, which is trivial on Z(G̃) and restricts
irreducibly to G. Hence using Lemmas 4.4 and 4.7, we see that |Irr2′,σ1

(B0(A))| = 4
in this case.

2. The Sylow side. Note that |Z(G)| and |G̃/G| are odd, so a Sylow 2-subgroup

of S may be identified with one of G or G̃, which is the unipotent radical U =
UF . Now, by [10, Lemma 2.2], we have U/U ′ is isomorphic to the direct product∏

ω∈Ω(Fq|ω|,+), where the product is taken over the orbits Ω of the action induced

by F on the fundamental roots Π for G̃. In particular, from this we see that U/U ′

is not 2-generated, since we are assuming q ≥ 8 in the case of PSL2(q) and
2B2(q).

Then |P/Φ(P )| > 4 if A/S is odd.
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Now, if A = S � C with C induced by an order-two graph automorphism sta-
bilizing U , then U/〈U ′, [U,C]〉 is of the form (Fq,+)k, where k is the number of
orbits of C on the simple roots Π. Note that in the cases with nontrivial graph
automorphisms being considered, we have q ≥ 4 or k ≥ 2, and hence this is at least
2-generated. Then a generating set for P/P ′ = U/〈U ′, [U,C]〉 × C contains more
than 2 elements.

Finally, if A = S �C with C a cyclic 2-group generated by a field or graph-field
automorphism ϕ, then U/〈U ′, [U,C]〉 ∼= (U/U ′)ϕ, the fixed points under ϕ. Hence
this is at least 2-generated, yielding a generating set for P/P ′ ∼= U/〈U ′, [U,C]〉×C
with more than two elements, except in the case ϕ = F2 and G = SL2 or G = SL3

with F twisted. In the latter cases, we see U/〈U ′, [U,C]〉 ∼= (F2,+) is cyclic, so
P/P ′ is 2-generated. �

4.3.2. Non-defining characteristic. Now we consider the case that G is defined in
characteristic p �= 2.

Lemma 4.10. Let q be odd and let S be a simple group of type G2(q), F4(q), E7(q),
or 3D4(q). Then every odd-degree character of S is rational-valued, and hence lies
in the principal block. Further, the following hold:

• |Irr2′(S)| > 4;
• for S �= G2(q), there are more than 4 odd degrees with multiplicity one; and
• for S = G2(q), exactly 4 of the odd degrees have multiplicity one.

Proof. By [31, Lemma 3.1], we have all odd-degree real-valued characters lie in the
principal block. Observing the character tables for G2(q) and

3D4(q) in CHEVIE,
we see that odd-degree characters are rational and that the statements about mul-
tiplicities holds. We see from the list of character degrees in [20] that the odd
character degrees of F4(q) and E7(q)sc have multiplicity one. In all cases, there are
more than five odd-degree characters. In the case of E7, since |Z(E7(q)sc)| = 2,
these characters are also trivial on the center and hence are characters of S. This
completes the proof. �

Before stating the next lemma, we recall that the unipotent characters of G̃ are

irreducible when restricted to G and trivial on Z(G̃), by the work of Lusztig [21].

Hence we may view these characters as characters of S, S̃, G, or G̃, as needed.

Lemma 4.11. Let G be a group of Lie type defined in odd characteristic such that
G is of simply connected type An−1 with n ≥ 6, Bn or Cn with n ≥ 3, Dn with
n ≥ 5, or En with n ≥ 6, or such that G is of type 2D4. Then there exist more than
four odd-degree unipotent characters of G. Further, these characters are rational-

valued as characters of G̃, lie in the principal 2-blocks of G̃ and G, and at least five
of them extend to Aut(S) when viewed as characters of S = G/Z(G).

Proof. By [26, Proposition 7.4], all unipotent characters of G with odd degree lie
in the principal series, and hence are in bijection with Irr2′(W ), where W is the
Weyl group of G. Further, by the work of Lusztig [22], every unipotent character
is realizable over Q in the case of classical groups, and by [40, Proposition 4.4],

all odd-degree unipotent characters (of G or G̃) are realizable over Q, and hence
lie in the principal block using [31, Lemma 3.1]. For classical groups, W has a
quotient isomorphic to Sn, which has at least 8 odd-degree characters for n ≥ 6,
using [23, Corollary 1.3]. We also see, for example using GAP, that there are
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at least 8 odd-degree characters of W in the cases G is of type Bn or Cn with
3 ≤ n ≤ 5, D5,

2D4, or
2D5. In the case G is of type E6, E7, or E8, the explicit list

of unipotent character degrees in [6, Section 13.9] yields more than 4 odd-degree
unipotent characters. The last assertion follows using [25, Proposition 2.3 and
Theorem 2.5], noting that there are at least five unipotent characters in the case
Dn(q) with n > 4 even that are labeled by nondegenerate symbols. �

Proposition 4.12. Let S be a simple group of Lie type defined in odd characteristic
and such that S is not isomorphic to an alternating group or one of the groups listed
in Lemma 4.3. Let A be an almost simple group with socle S such that A/S has
odd order or is a cyclic 2-group, and let P ∈ Syl2(A). Then |Irr2′,σ1

(B0(A))| > 4
and |P/Φ(P )| > 4, unless one of the following holds:

• S = PSL2(q) and A/S is not a cyclic 2-group generated by field automor-
phisms; or

• S = PSL±
3 (q) and |A/S| is odd.

In the latter cases, |Irr2′,σ1
(B0(A))| = 4 = |P/Φ(P )|.

Proof. Recall that A may be viewed as a subgroup of a semidirect product S̃ �C,
where C ≤ D has odd order or is a cyclic 2-group.

1. The character side. Similar to Proposition 4.9, except for the listed exceptional
cases and some cases that must be treated slightly differently, our strategy is to show
that there are at least 5 pairwise non-Aut (S)-conjugate members of Irr2′,σ1

(B0(S))

that restrict irreducibly from B0(S̃), which will give the result when A ≤ S̃ or |A/S|
is odd using Lemmas 4.5 and 4.7. We also aim to show that there are three members
of Irr2′,σ1

(B0(S)) that are invariant under 2-elements in D, which will complete the
proof using Lemma 4.4 in the remaining cases that A/S is a cyclic 2-group.

1.i. If S = G/Z(G) with G as in Lemmas 4.10 or 4.11, then we are done by
combining those with Lemmas 4.4, 4.5, and 4.7. For S = 2G2(3

2r+1), we see from the
character table in CHEVIE [12] that there are exactly eight odd-degree characters
and they are all fixed by σ1, and from [44] that they all also lie in the principal
block. Further, four of these character degrees have multiplicity one, yielding at
least 5 pairwise non-Aut(S)-conjugate members of Irr2′,σ1

(B0(S)), which completes
the proof in this case since |Out(S)| is odd.

In the remaining cases, G is of classical type, and using [5, 21.14], B0(G) is

comprised of those series E(G, s) with |s| a power of 2, and similar for B0(G̃).

1.ii. Now let S = D4(q) = PΩ+
8 (q) or S = C2(q) = PSp4(q). Here S̃/S is a

2-group. Using [25, Proposition 2.4 and Theorem 2.5], we see that there are four
A-invariant unipotent characters of odd degree if A does not contain the graph
automorphism of order 3 in the case D4(q), which are also rational-valued (even

as characters of S̃) by the work of Lusztig [22, Corollary 1.12]. This is enough if
A/S is a nontrivial cyclic 2-group, using Lemma 4.4. Even if A contains the triality
graph automorphism, note that four unipotent characters of odd degree may still
be chosen to be pairwise non-A-conjugate.

Let s ∈ G∗ lie in the center of a Sylow 2-subgroup of G∗ and have order 2. Then
χs has odd degree and is σ1-invariant by Lemma 4.8. Since G is perfect and Z(G)
is a 2-group, we see that χs may be viewed as a character of Irr2′(B0(S)), using
Lemma 4.6. Since χs is not Aut(S)-conjugate to any unipotent character, this takes
care of the case |A/S| is odd.
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It remains to deal with the cases S = PSL±
n (q) with 2 ≤ n ≤ 5. Let S = PSL±

n (q),

G = SL±
n (q), and G̃ ∼= G̃∗ = GL±

n (q) for the appropriate value of n. Note that again
in these cases, unipotent characters lie in the principal block and are rational-valued
and extend to Aut(S), for the same reason as in Lemma 4.11.

1.iii. First let n = 4 or 5. Then we have four unipotent characters of odd degree,

which may be viewed as characters of S̃ that restrict irreducibly to S. Note that

in the case n = 4, there is one more σ1-invariant extension to S̃ for each of these

unipotent characters, which also must lie in the principal block since S̃/S is a 2-

group. This yields eight members of |Irr2′,σ1
(B0(A))| if PSL±

4 (q) < A ≤ S̃. Hence
if A/S is a nontrivial cyclic 2-group, we are done by also using Lemma 4.4.

Now, let s ∈ G̃∗ be semisimple with eigenvalues {−1,−1, 1, 1} in case n = 4

or {−1,−1,−1,−1, 1} in case n = 5. Note that s ∈ [G̃∗, G̃∗] ∼= G, and hence

the corresponding semisimple character χs of G̃ is trivial on Z(G̃). Further, since

|s| = 2, χs lies in B0(G̃), and is fixed by σ1 by Lemma 4.8. In the case n = 5,

χs has odd degree and s is not G̃∗-conjugate to any sz for 1 �= z ∈ Z(G̃∗), and
hence χs restricts irreducibly to G. In the case n = 4, the degree of the character

χs of G̃ is 2 (mod 4), and it restricts to the sum of two irreducible odd-degree
characters in G, since s is conjugate to −s. These restricted characters are also
semisimple, indexed by semisimple elements of G∗ of order 2, and hence are still
fixed by σ1 using Lemma 4.8. This yields a fifth member of Irr2′,σ1

(B0(S)) that is
non-Aut(S)-conjugate to the unipotent characters discussed above, completing the
proof for the cases PSL±

4 (q) or PSL
±
5 (q).

1.iv. If S = PSL2(q), then there are four odd-degree characters of S. These
come from the two unipotent characters and the two odd-degree restrictions of the

character χs of G̃ where s has eigenvalues {ε4, ε−1
4 } with |ε4| = 4. Here as in

the case of PSL4(q) in 1.iii above, the degree of χs is 2 (mod 4). For the same
reasons as there, these characters lie in B0(S) and are fixed by σ1. Also, note

that S̃ = PGL2(q) also has exactly four odd-degree characters, coming from the

two extensions of each unipotent character of S, which are also in Irr2′,σ1
(B0(S̃))

following the same reasoning as in 1.iii.
We can see from the character table of S that the four members of Irr2′,σ1

(B0(S))
are fixed by field automorphisms. Hence, if A is the semidirect product S � C
with C a 2-group of field automorphisms, then these extend to give 8 members of
Irr2′,σ1

(B0(A)), using Lemma 4.4.

If q is square and A �= S̃ is an extension of S by a cyclic 2-group not comprised
of field automorphisms, then we may write A = S〈αϕ〉, where α is a diagonal auto-
morphism and ϕ is a field automorphism. Since the four members of Irr2′,σ1

(B0(S))
are fixed by field automorphisms but only the two unipotent characters are fixed by
a nontrivial diagonal automorphism, we see that the odd-degree characters of A are
again the extensions of the two unipotent characters (namely, the trivial and Stein-
berg characters) of S. As A/S is a 2-group, each such extension lies in Irr2′(B0(A)).
Further, the trivial and Steinberg characters each extend to a rational-valued char-
acter of Aut (S) (see [42] for extensions of the Steinberg character) and we therefore
again obtain exactly two σ1-invariant extensions of each of these two characters,
yielding |Irr2′,σ1

(B0(A))| = 4.
This leaves the case A is the semidirect product A = S�C with C a group of field

automorphisms of odd order. In this case, we claim that each χ ∈ Irr2′(B0(S)) =
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Irr2′,σ1
(B0(S)) has a unique extension that lies in B0(A). By Theorem 2.7 and

Lemma 4.5, it suffices to know that α centralizes a Sylow 2-subgroup of S for any

α ∈ C. Write q = p2
bm withm odd and let Fp be the generating field automorphism

for S induced by the map x �→ xp. By considering the construction of a Sylow 2-
subgroup of GL2(q) in [4], we see that there is a P2 ∈ Syl2(GL2(q)) centralized by

F 2b

p , and hence centralized by C. To be more precise, if q ≡ 1 (mod 4), we have P2

is generated by matrices with entries 1, 0, and ε with ε a (q−1)2-root of unity in F×
q .

Since 2 divides Φd(p) if and only if d is a power of 2, we see (q − 1)2 = (p2
b − 1)2,

and hence F 2b

p fixes ε. If q ≡ 3 (mod 4), note that q is an odd power of p. Here P2

instead is generated by matrices with entries ±1, 0, ε′ + ε′q, where ε′ is a (q2 − 1)2-
root of unity in F×

q2 . Using the same argument as above, but using instead the

generator F 2
p , shows that again P2 is centralized by C. Then we are done, taking a

Sylow 2-subgroup of SL2(q) as a subgroup of P2.
1.v. If S = PSL±

3 (q), there are two unipotent characters of odd degree. We may

also consider the two odd-degree characters that come from the series E(G̃, s) of

G̃, where we define s to have eigenvalues {−1,−1, 1}. These correspond to the
trivial character and Steinberg character of C

˜G∗(s) ∼= GL±
2 (q)×GL±

1 (q) under the
Jordan decomposition of characters. Note that these characters are irreducible on

G and trivial on Z(G̃) since s ∈ [G̃∗, G̃∗] ∼= G and s is not G̃∗-conjugate to sz

for 1 �= z ∈ Z(G̃∗). Further, since |s| = 2, these characters lie in B0(G̃), and

the corresponding characters of G, S̃, and S are then also in the principal block,

since B0(G̃) covers a unique block of G and using Lemma 4.6. Lemma 4.8 implies
χs is fixed by σ1, and hence so is the character corresponding to the Steinberg
character of C

˜G∗(s), since it is the unique character in the series with that degree.
Similarly, since the class of s is invariant under Aut(S), we know that so are these
two characters. Note that these two characters and the two unipotent characters
are the only members of Irr2′,σ1

(B0(S)). If A/S is a nontrivial cyclic 2-group, this
yields 8 members of Irr2′,σ1

(B0(A)), using Lemmas 4.4 and 4.7.
If |A/S| is odd, we claim that for each member of Irr2′,σ1

(B0(S)), exactly
one character of A above it lies in B0(A), yielding exactly four characters of

Irr2′,σ1
(B0(A)) using Lemma 4.5 and 4.7(2). For A = S̃, the characters of G̃ lying

above the series E(G, 1) and E(G, s) must lie in the series E(G, z) and E(G, sz) for

z ∈ Z(G̃∗), by [5, Proposition 15.6]. To be trivial on Z(G̃), we further require

z ∈ [G̃∗, G̃∗] ∩ Z(G̃∗), which has size dividing 3. Recalling that only series indexed

by 2-elements are in the principal block of G̃, this shows the claim when A = S̃. To

complete the proof, as in the case 1.iv above, it suffices to know that F 2b

p centralizes

a Sylow 2-subgroup of G̃ = GL±
3 (q). Here, we write q̄ = p2

bm with m odd, where
q̄ = q in the case PSL3(q) and q̄ = q2 in the case PSU3(q). Since such a Sylow
2-subgroup is the direct product of P2 × P1, by [4], where Pi ∈ Syl2(GL±

i (q)) for
i = 1, 2, we are done by the same arguments as 1.iv, since P1 is cyclic generated by
a (q ∓ 1)2 root of unity in F×

q̄ .

2. The Sylow side. If S = 2G2(3
2r+1), then |Out(S)| is odd, so P is a Sylow

2-subgroup of S, which is elementary abelian of order 8. We therefore assume that
S is not 2G2(q).

Let W be the Weyl group NG(T)/T of G and write w = 1 if q ≡ 1 (mod 4) and
w = w0, the longest element of W , if q ≡ 3 (mod 4). By [16, Theorem 4.10.2], a
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Sylow 2-subgroup P0 of either G or G̃/Z(G̃) contains an abelian normal subgroup
PT containing the 2-part of Z(G), such that P0/PT is isomorphic to a Sylow 2-
subgroup of CW (Fw). We remark (see [13, Exercise 1.13]) that w0 is central in W
unless W is type An with n ≥ 2, Dn with n odd, or E6. In any case, P0/PT is
isomorphic to a Sylow 2-subgroup of an irreducible Weyl group. Now, the structure
of these groups is well-known, and we see that a Sylow 2-subgroup of such a Weyl
group is at least three-generated, except for the Weyl groups W (G2), W (B2), and
W (An) with n < 5.

2.i. Assume first that CW (Fw) is not one of these groups. That is, we assume S
is not one of G2(q),

3D4(q), B2(q) = PSp4(q), or PSL
±
n (q) with n ≤ 5. In this case,

it remains to show that the statement holds in the case A/S is a cyclic 2-group
generated by graph and field automorphisms, and hence may be taken to be of the
form A = S �C with C ≤ D. Now, from the construction in [16, Theorem 4.10.2],
P0 may be chosen so that P0 and PT are normalized by C and such that the action
of C on Q0 := P0/PT ≤ CW (Fw) is compatible with that on W , and hence there is
a Sylow 2-subgroup P of A that has a quotient of the form Q := Q0�C. Since field
automorphisms act trivially on W (and hence on Q0), and graph automorphisms
permute the generators of W and hence act trivially on the abelianization of Q0,
we see that Q is again at least three-generated.

2.ii. Although the Sylow 2-subgroups of W (G2) are 2-generated, the Sylow 2-
subgroups of S = G2(q), which are the same for 3D4(q), are well-studied (see, e.g.
[15]) and not 2-generated. Since Out(S) is generated by field automorphisms unless
q is a power of 3 in the case of G2, which act trivially on W , we see a Sylow 2-
subgroup of A is also not 2-generated in this case. If A has socle G2(q) with q
a power of 3 and contains a graph or graph-field automorphism, we may argue
as in the case of B2(q) in 2.i. For S = PSL±

n (q) with n = 4, 5 or PSp4(q), we
have Q0 is 2-generated. Similarly, we see Q0 � C is more than 2-generated when
C is a nontrivial cyclic 2-group of field automorphisms. A Sylow 2-subgroup of
PSL±

5 (q) is the same as that of SL±
5 (q), which is isomorphic to a Sylow 2-subgroup

of GL±
4 (q). So, it suffices to note that we can deduce that the Sylow 2-subgroups

of PSL4(q)
±, GL±

4 (q), PGL±
4 (q), PSp4(q), and PCSp4(q) are at least 3-generated

by the construction in [4] of Sylow 2-subgroups of classical groups.
2.iii. The Sylow 2-subgroups of PSL2(q) and PGL2(q) are either Klein-4 or di-

hedral, and hence 2-generated. When q is square and A/S is a cyclic 2-group with
A of the form PSL2(q)〈αϕ〉, where ϕ is a field automorphism and α is a diagonal
automorphism, α can be induced by the diagonal matrix in GL2(q) with diagonal
(ω, 1), where ω is a (q − 1)2-root of unity in F×

q . Then, modulo Z(SL2(q)), a Sy-
low 2-subgroup of A can be generated by αϕ and the anti-diagonal matrix with
anti-diagonal (1,−1).

Now, the group P2 × P1, where Pi ∈ Syl2(GL±
i (q)) for i = 1, 2, is a Sylow

2-subgroup of GL±
3 (q). Then there is a Sylow 2-subgroup of SL±

3 (q), which is
isomorphic to that of PSL±

3 (q), comprised of the set of (x, y) ∈ P2 × P1 with
y = det x−1, which is isomorphic to P2. By [4], we see P2 is either semidihedral or
C2s �C2, both of which are 2-generated. If A = S�C with S = PSL2(q) or PSL

±
3 (q)

and C ≤ D a nontrivial cyclic 2-group, and P̄ is a Sylow 2-subgroup of S, then
we can see using the constructions in [4] that P̄ can be chosen so that the order-2
generators of P̄ /Φ(P̄ ) are C-invariant, and hence P = P̄ �C is three-generated in
this case. �



CHARACTERS AND GENERATION OF SYLOW 2-SUBGROUPS 163

Propositions 4.9 and 4.12, together with Lemmas 4.2 and 4.3, complete the proof
of Theorem 3.1.
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