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THE SPARSITY OF CHARACTER TABLES

OF HIGH RANK GROUPS OF LIE TYPE

MICHAEL J. LARSEN AND ALEXANDER R. MILLER

Abstract. In the high rank limit, the fraction of non-zero character table
entries of finite simple groups of Lie type goes to zero.

1. Introduction

Let G be a finite group. Let GG denote the set of conjugacy classes of G and
Irr(G) the set of irreducible characters, so k(G) = |GG| = | Irr(G)|. A well-known
theorem of Burnside asserts that if χ ∈ Irr(G) and χ(1) > 1, then there exists
g ∈ G such that χ(g) = 0; in particular, there are zero entries in the character table
of every non-abelian G. In fact, one can make much stronger statements about
the subset of GG × Irr(G) determined by the vanishing condition, and there is a
substantial literature devoted to such results. We are interested in the opposite
extreme from abelian groups, namely groups for which almost all entries are zero.

We define the sparsity Σ(G) to be the fraction of non-zero entries in the character
table of G:

Σ(G) :=
|{(gG, χ) ∈ GG × Irr(G) | χ(g) �= 0}|

k(G)| Irr(G)| .

For finite simple groups of bounded rank, it is not too difficult to analyze the
asymptotic behavior of Σ(G). For instance,

lim
q→∞

Σ(L2(q)) =
1

2
.

In this paper, we consider what happens when G ranges over finite simple groups
of Lie type of unbounded rank. Our result is the following.

Theorem 1.1. Given any sequence Gi of finite simple groups of Lie type with rank
tending to ∞, limi→∞ Σ(Gi) = 0.

To round out the story, it would be interesting to know whether Σ(An) → 0 (or,
equivalently, whether Σ(Sn) → 0) as n → ∞. This remains open. The numerical
evidence [16] seems to point to a limit strictly between 0 and 1. Interestingly, Miller
proved [15] that for random pairs (χ, g) ∈ Irr(G)×G, the probability that χ(g) = 0
goes to 1 as G ranges over symmetric groups.
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The proof of Theorem 1.1 uses a trick of Burnside and roughly parallels that of
[7]. Given a pair (gG, χ), let

dgG,χ :=
χ(1)

(χ(1), |gG|) .

By [7], χ(g) is divisible by dgG,χ in a ring of cyclotomic integers. If α �= 0 is
an algebraic integer, then the average of |αi|2 over all conjugates αi of α is at
least 1 [6, p. 459]. Therefore, if α is divisible by a rational integer d, then the
average is at least d2. The multiset of values χ(g) �= 0 where χ(g) is divisible by
some rational integer d > D is stable under the action of Gal(Q(ζ|G|)/Q), so the

average of |χ(g)|2 over all such values is greater than D2. By the orthonormality of
characters, the average of |χ(g)|2 over all pairs (χ, g) is 1. Of course, this average
is over elements rather than conjugacy classes, so a key ingredient of the argument
is Proposition 10.1, which implies that, for finite simple groups of Lie type, it does
not make much difference which kind of average one takes. This is not true for
alternating groups, since the partition associated to a randomly chosen element of
Sn has log n + o(log n) parts [3], while a typical partition of n has (π−1

√
3/2 +

o(1))
√
n log n parts [2].

To show that dgG,χ is usually large, we show that for most choices of (gG, χ),

we can find a large Zsigmondy prime � such that ord� |gG| < ord� χ(1). To do
this, we need to have a good qualitative understanding of the degrees of irreducible
characters of G. This is provided by the Lusztig theory. In the large q limit, regular
semisimple elements and irreducible Deligne-Lusztig characters predominate, and
it is relatively easy prove the needed estimates. For fixed q, we have to work harder,
but most of what is needed is already available in work of Fulman-Guralnick [4, 5]
and Larsen-Shalev [10].

2. General framework

A key technical difficulty in implementing our strategy is that in counting con-
jugacy classes and characters, it is often easier to work not with G but with some
closely related group. For instance, for PSLn(Fq), it is easier to study conjugacy
classes of SLn(Fq) and characters of PGLn(Fq). To deal with these difficulties, we
consider the following general situation. Suppose that we have maps of finite sets

(2.1) Ã
f ��

φ
����

P B̃
g��

ψ
����

A B

and a subset X ⊂ A × B. Our goal is to show that, under suitable conditions,
|X| is small compared to |A × B|. We say P◦ ⊂ P and A◦ ⊂ A are compatible if

f−1(P◦) = φ−1(A◦), and likewise for P◦ and B◦. In this case, we define Ã◦ ⊂ Ã

(respectively B̃◦ ⊂ B̃) to be this common inverse image.
In the intended application, A will be the set of conjugacy classes of a finite simple

group G, B the set of irreducible characters of G, and X, which we want to prove
small, will be the set of pairs (gG, χ) for which χ(g) �= 0. The precise definitions of

Ã, B̃, and P are given in §5. The definitions of the sets A◦, Ã◦, B◦, B̃◦,P◦ depend
on a single parameter as explained in §9.
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Proposition 2.1. There exists an absolute constant N with the following property.
For all ε > 0 there exists δ > 0 such that given data (2.1), a subset X ⊂ A × B,
and compatible subsets A◦ ⊂ A, B◦ ⊂ B, and P◦ ⊂ P which are compatible and
satisfy the following conditions, then |X| ≤ ε|A×B|:

(1) |A◦| > (1− δ)|A|.
(2) |B◦| > (1− δ)|B|.
(3) For a1 ∈ A◦, a2 ∈ A we have |φ−1(a1)| ≥ |φ−1(a2)|.
(4) For b1 ∈ B◦, b2 ∈ B we have |ψ−1(b1)| ≥ |ψ−1(b2)|.
(5) For all n ≥ N , {P ∈ P | |f−1(P )| ≥ n} has less than n−2|P| elements.
(6) For all n ≥ N , {P ∈ P | |g−1(P )| ≥ n} has less than n−2|P| elements.

(7) |P| ≤ |Ã|.
(8) |P| ≤ |B̃|.
(9) The set of pairs (P1, P2) ∈ P◦×P◦ such that (P1, P2) ∈ (f, g)((φ, ψ)−1(X))

has cardinality less than δ|P|2.

Proof. By conditions (3) and (4), every (φ, ψ)-fiber over A◦×B◦ has cardinality at
least

|Ã× B̃|
|A×B| .

Let x = |X|/|A×B|. Then by conditions (1) and (2),

|X ∩ (A◦ ×B◦)| > (x− 2δ)|A×B|,

so

(2.2) |(φ, ψ)−1(X) ∩ (Ã◦ × B̃◦)| = |(φ, ψ)−1(X ∩ (A◦ ×B◦))| > (x− 2δ)|Ã× B̃|.

Let Pf,n denote the set of elements P ∈ P◦ such that |f−1(P )| = n. Let M ≥ N .
By condition (5),

∣∣ ⋃

n≥M

f−1(Pf,n)
∣∣=

∑

n≥M

n|Pf,n|

= M |{P ∈ P◦ | |f−1(P )| ≥ M}|+
∞∑

i=1

|{P ∈ P◦ | |f−1(P )| ≥ M + i}|

≤ |P|
M

+

∞∑

i=1

|P|
(M + i)2

≤ 2|P|
M

.

(2.3)

Likewise, condition (6) implies

∣∣ ⋃

n≥M

g−1(Pg,n)
∣∣≤ 2|P|

M
.

By inequality (2.2) and conditions (7) and (8), the subset of (φ, ψ)−1(X) consisting
of elements which map by (f, g) to

{P ∈ P◦ | |f−1(P )| < M} × {P ∈ P◦ | |g−1(P )| < M}

has more than

(x− 2δ − 4M−1)|P|2
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elements. On this set the map (f, g) takes at most M2 elements to any given
element, so the cardinality of the image by (f, g) is at least

(x− 2δ − 4M−1)|P|2
M2

.

By condition (9), this must be less than δ|P|2, so x < M2δ + 2δ + 4M−1. By
choosing M larger than N and 8/ε, we get x < ε if δ < ε

2M2+4 . �

3. Subexponential sequences

In this section, we prove some basic facts about subexponential sequences that
will be useful for checking the hypotheses of Proposition 2.1.

We say that a sequence a1, a2, . . . of nonnegative integers is subexponential if for
all γ > 1 we have limn→∞ γ−nan = 0. This is equivalent to the condition that∑

n anz
n converges in the open unit disk. It is clear from this criterion that the

coefficients of the product of power series with subexponential coefficients again
has subexponential coefficients. From the definition, it is clear that the termwise
product of subexponential sequences is again subexponential.

Lemma 3.1. If (ai)i=1,2,... is subexponential, then the sequence Am of coefficients
of the formal power series

A(z) :=
∞∏

i=1

(1− zi)−ai =
∑

m

Amzm

is likewise subexponential.

Proof. As ai ≥ 0 for all i,

A(n)(z) :=

n∏

i=1

(1− zi)−ai =

∞∑

m=0

A(n)
m zm

has nonnegative coefficients, and for each m ≥ 0, the sequence (A
(n)
m )n=1,2,... is

nondecreasing. Therefore, for any z0 ∈ (0, 1), the sequence (A(n)(z0))n=1,2,... is

nondecreasing. As Am = A
(n)
m , for all n ≥ m, we have

A(n)(z0) ≥
n∑

m=0

Amzm0 .

Thus, if A(z) converges at z = z0, then limn→∞ A(n)(z0) exists and equals A(z0),
and conversely, if limn→∞ A(n)(z0) exists, then its limit is an upper bound for the
increasing sequence of partial sums of

∑∞
m=0 Amzm0 , so this series converges.

As limz↓0
log(1−z)

z = −1, the function log(1−z)
z is bounded on every interval of

the form (0, a] ⊂ (0, 1). Applying this for a = z0, we obtain

logA(n)(z0) =

n∑

i=1

−ai log(1− zi0) < C

n∑

i=1

aiz
i
0,

where C depends on z0 but not on n. As ai is subexponential, the right hand side in
this inequality is bounded independent of n, so the sequence A(n)(z0) is bounded,
so it converges. �

In particular, when ai = 1 for all i, we obtain the well-known fact that the
partition function p(n) is subexponential.
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Lemma 3.2. Let (ai)i=1,2,... and (bi)i=1,2,... be two sequences of positive integers
such that ai is subexponential and bi is arbitrary. Define ck to be the maximum of∏

j a
ej
j as 1e12e2 · · · ranges over all partitions of k with ei ≤ bi for all i. Then ck

is subexponential.

Proof. For all ε > 0, there exists r such that ai < (1 + ε)i for i > r. Thus

ck < ab11 · · · abrr (1 + ε)k.

�

4. Counting polynomials

In this section, we introduce several sets of polynomials which are candidates for
the set P in Proposition 2.1.

For P (x) ∈ Fq2 [x] a monic polynomial with non-zero constant term, we define

(4.1) P ∗(x) := P̄ (0)−1xdegP P̄ (1/x),

where P̄ is the polynomial obtained from P by applying the q-Frobenius au-
tomorphism to each coefficient. In particular, if P (x) ∈ Fq[x], then P ∗(x) =
P (0)−1xdegPP (1/x). Note that P ∗(x) is a monic polynomial of the same degree as
P . If P (x) =

∏
i(x− ri), then

P ∗(x) =
∏

i

(x− 1/r̄i) =
∏

i

(1− r−q
i ).

Therefore, if P = P ∗, then the roots of P , taken with multiplicity, form a union of
orbits in F̄×

q under the map x �→ x−q. Any orbit under this map is stable by the

q2-Frobenius, so if P (x) is irreducible in Fq2 [x], its roots form a single orbit under
x �→ x−q. If P (x) ∈ Fq[x] and P is irreducible as a polynomial over Fq, then it may
form one orbit or two mutually reciprocal orbits.

Following [10], we denote by Ln(q) the set of monic polynomials P (x) ∈ Fq[x] of
degree n such that P (0) = (−1)n. We define by Un(q) the set of monic polynomials
P (x) ∈ Fq2 [x] of degree n such that P = P ∗ and P (0) = (−1)n. When n is even,
we denote by On(q) the set of monic polynomials P (x) ∈ Fq[x] of degree n such
that P = P ∗ and P (0) = 1. For c ∈ F×

q , we denote by Ln,c(q) the set of monic

polynomials P (x) ∈ Fq[x] of degree n such that P (0) = c. Likewise, for c ∈ F×
q2

with cc̄ = 1, let Un,c(q) denote the set of monic polynomials P (x) ∈ Fq2 [x] of degree
n such that P = P ∗ and P (0) = c.

Lemma 4.1. Let r be a positive integer and q a prime power. Then

|Lr+1(q)| = |Ur+1(q)| = |O2r(q)| = qr.

Proof. In each case, the leading coefficient and the constant coefficient are fixed.
For Lr+1(q), the remaining r coefficients can be chosen independently from Fq. For
Ur+1(q), if 0 < i < (r + 1)/2, the xi coefficient can be any element of Fq2 and it
uniquely determines the xr+1−i coefficient. That finishes the U case if r+1 is odd.

If it is even, the x
r+1
2 coefficient can be any element of Fq, so again |Ur+1(q)| = qr.

For O2r(q), the xi coefficients can be chosen independently from Fq for 0 < i ≤ r,
and the xi coefficient determines the x2r−i coefficient. �

Proposition 4.2. There exists a positive real sequence (εi)i=1,2,... tending to 0 such
that all of the following statements hold for all integers r ≥ 1.
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(1) Let n = r + 1. If m >
√
n and c ∈ F×

q , then the number of elements in
Ln,c(q) with an irreducible factor whose degree is divisible by m is less than
εr|Ln,c(q)|. Likewise, the number of elements with an irreducible factor
whose degree is >

√
n and divides � − 1 for some prime divisor � of n is

less than εr|Ln,c(q)|.
(2) Let n = r + 1. If m >

√
n and c ∈ F×

q2 with cc̄ = 1, then the number

of elements in Un,c(q) with an irreducible factor whose degree is divisible
by m is less than εr|Un,c(q)|. Likewise, the number of elements with an
irreducible factor whose degree is >

√
n and divides � − 1 for some prime

divisor � of n is less than εr|Un,c(q)|.
(3) Let n = 2r. If m >

√
n, then the number of elements in On(q) with an

irreducible factor whose degree is divisible by m is less than εr|On(q)|.

Proof. A monic irreducible polynomial over Fq of degree k corresponds to a q-
Frobenius orbit of length k in F̄×

q . Any such orbit is contained in the (qk − 1)-roots

of 1 in F̄q, so there are less than qk/k such polynomials. Therefore, the number
of monic polynomials of degree n with constant term c and an irreducible factor

of degree k is less than qn−1

k . Summing over multiples of m, the number of monic
polynomials of degree n with constant term c and an irreducible factor whose degree
lies in mZ is less than

∑

1≤i≤n/m

qn−1

mi
<

qr(1 + log n)

m
=

|Ln,c(q)|(1 + log n)

m
,

which gives the first claim in part (1). For the second claim, we note that n has at
most one prime divisor � >

√
n. So it suffices to prove that the sum of 1/m over

divisors m of n which are larger than
√
n is o((1+ log n)−1). This follows from the

fact that the total number of divisors of any integer n is no(1).
For (2), we proceed in the same way, using the fact that |Un,c(q)| = qn−1. If

Q ∈ Un,c(q) and P divides Q, then P ∗ divides Q. It follows that if P �= P ∗, then
any element of Un,c(q) divisible by P is the product of PP ∗ and a polynomial in
Un−2k,cP (0)q−1 . If P = P ∗, then any element of Un,c(q) divisible by P is the product
of P and an element of Un−k,cP (0)−1 . The first case gives less than

q2k

k
qn−2k−1 =

qr

k

elements of Un,c(q).
For the second term, every monic irreducible degree k polynomial P (x) ∈ Fq2 [x]

such that P = P ∗ corresponds to a length-k orbit

r, r−q, rq
2

, . . . , r(−q)k = r,

so r is a (qk − (−1)k)-root of 1. If k ≥ 2, the q + 1 fixed points of x �→ x−q do
not belong to such an orbit, so the number of orbits is again less than qk/k, thus
contributing less than

qk

k
qn−k−1 =

qr

k
elements of Un,c(q). The argument therefore goes through as before.

For (3), we follow (2). The number of elements in On(q) is qr. If a monic
polynomial P (x) ∈ Fq[x] satisfies P �= P ∗ and P divides Q ∈ On(q), then Q is
the product of PP ∗ and an element of On−2k(q). For k ≥ 2, a monic irreducible
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polynomial P of degree k satisfying P = P ∗ must be of even degree, and every
element of On(q) divisible by P is the multiple of P by an element of On−k(q).
By the proof of [10, Prop. 2.6], the number of irreducible monic polynomials of
degree k ≥ 4 satisfying P = P ∗ is the same as the number of monic irreducible
polynomials of degree k/2, and for k = 2, the number is at most q − 1. Thus, the
argument goes through as before. �

For any monic polynomial P (x) over a field F , we define ρ(P ) to be the sum∑j
i=1 bi(ai − 1), where P = P a1

1 · · ·P aj

j , and the Pi are pairwise distinct monic

irreducible polynomials over F of degree bi. For a perfect field F , ρ(P ) does not
change if F is replaced by a field extension.

Lemma 4.3. Let m and n be positive integers.

(1) The number of polynomials P ∈ Ln(q) with ρ(P ) ≥ m is less than
2q−m/2|Ln(q)|.

(2) The number of polynomials P ∈ Un(q) with ρ(P ) ≥ m is less than
4q−m/2|Un(q)|.

(3) If n is even, the number of polynomials P ∈ On(q) with ρ(P ) ≥ m is less
than 2q−m/4|On(q)|.

Proof. Recall that P =
∏j

i=1 P
ai
i , and let

Q =

j∏

i=1

P
	ai/2

i , R =

P

Q2
.

For claim (2) (resp. (3)), if P ∗
i = Pj , then ai = aj , so the multiplicities of Pi

and Pj in Q (or in R) are the same. Therefore, Q ∈ UdegQ,Q(0)(q) and R ∈
UdegR,P (0)Q(0)−2(q) (resp. Q ∈ OdegQ(q) and R ∈ OdegR(q).) In all three cases, we
have ∑

i

bi�ai/2
 ≥
1

2

∑

i

bi(ai − 1),

so degQ ≥ ρ(P )/2 and 2 degQ+ degR = n.
For Ln(q), the total number of possibilities for (Q,R) with ρ(P ) ≥ m is therefore

at most ∑

i≥m/2

qiqn−2i−1 < 2qn−1−m/2.

For Un(q), there are q + 1 elements c ∈ Fq2 with cc = 1, and for each of these

|Uk,c| = qk−1, so the total number of possibilities for (Q,R) with ρ(P ) ≥ m is at
most ∑

i≥m/2

(q + 1)qi−1qn−2i−1 < 4qn−1−m/2.

For On(q), the number of possibilities is at most
∑

i≥m/2

qi/2q(n−2i)/2 < 2qn/2−m/4.

�

With ai, bi, and j as above, we define

α(P ) :=

∏j
i=1(1 + q−bi)

1− q−1
.
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Lemma 4.4. For all ε > 0 there exists M such that for all n ≥ 1 and all prime
powers q:

(1) The number of polynomials P ∈ Ln(q) with α(P ) < (1 + q−1)M is greater
than (1− ε)|Ln(q)|.

(2) The number of polynomials P ∈ Un(q) with α(P ) < (1 + q−1)M is greater
than (1− ε)|Un(q)|.

(3) If n is even, the number of polynomials P ∈ On(q) with α(P ) < (1+q−1)M

is greater than (1− ε)|On(q)|.

Proof. As there exists C such that (1− q−1)−1
∏

i≥1(1 + q−i) < (1 + q−1)C for all
q ≥ 2, it suffices to prove that there exists e ≥ 2 such that the fraction of polynomi-
als P in Ln(q) (resp. Un(q) or On(q)) divisible by e different irreducible polynomials
of the same degree is less than ε. The number of monic irreducible polynomials of
degree k in Fq[x] is less than qk/k, so the number of sets {Q1, . . . , Qe} of e such
polynomials is at most k−eqek/e!. For each possibility, there are qn−ek−1 choices
for the remaining factor P/

∏
i Qi, so there are at most (k−e/e!)qn−1 elements of

Ln(q) with e distinct irreducible degree k factors. Summing over k, we get an upper
bound of ζ(2)qn−1/e!, and ζ(2)/e! goes to 0 as e goes to ∞.

For statements (2) and (3) we consider factors of degree k which are either of the
form Q, where Q = Q∗ is irreducible (in Fq2 [x] or Fq[x] respectively) or which are
of the form QQ∗, where Q is of degree k/2 and Q �= Q∗. As in Lemma 4.2, the two
cases together contribute less than 2qk/k possibilities. The number of e-element
sets of such polynomials is therefore less than (2k)−eqek/e!, and the argument goes
through as before. �

Lemma 4.5. Let n ≥ 2 be an integer and q a prime power. The number of elements
P ∈ Ln(q) such that

P (ζx) ≡ P (x)

for some ζ ∈ Fq \ {1} is less than 2qn/2−1. Likewise, the number of elements
P ∈ Un(q) such that

P (ζx) ≡ P (x)

for some ζ ∈ Fq2 \ {1} is less than 2qn/2−1.

Proof. In both cases, if P (ζx) ≡ P (x) for some ζ �= 1, then by comparing co-
efficients, the order d > 1 of ζ divides n, and P (x) = P ′(xd) for some element
P ′ ∈ Ln/d,(−1)n(q) (resp. Un/d,(−1)n(q)), for which there are qn/d−1 possibilities. So
the number of P ∈ Ln(q) (resp. Un(q)) with P (ζx) ≡ P (x) for some ζ ∈ Fq \ {1}
(resp. Fq2 \ {1}) is at most

∑

2≤i≤n/2

qn/i−1 < 2qn/2−1.

�

5. Classical groups

Finite simple groups G of rank r > 8 must be of type Ar,
2Ar, Br, Cr, Dr,

or 2Dr. In each case, G is closely related to a classical group G′, which we define
below. We also define the sets A, Ã, B, B̃, and P used in Proposition 2.1.

In every case, A denotes the set of conjugacy classes of G and Ã, the set of
conjugacy classes of the universal central extension G̃ of G. We denote by Z the
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center of G̃, so that we can think of |Z| as the “generic” size of the fibers of the map

φ obtained from the covering homomorphism G̃ → G by taking conjugacy classes.
The map f takes a conjugacy class of G̃ to its characteristic polynomial, with a
slight modification when G is of type B.

We can regard G as the commutator group [Gad(Fq), Gad(Fq)], where Gad is an

adjoint simple algebraic group defined over Fq. We define B := Irr(G), while B̃
denotes the set of pairs (χ, χad)∈ Irr(G)×Irr(Gad(Fq)) such that 〈χ,ResG χad〉G≥1.
We define ψ(χ, χad) := χ. The Lusztig classification (see §8 below) assigns to each
character χad a semisimple conjugacy class in the Fq-points of the dual group to
Gad. This is a simply connected simple algebraic group of classical type, so it has a
natural representation, and we define g((χ, χad)) to be the characteristic polynomial
of this semisimple class in this natural representation, with a slight modification in
the case that G is of type C.

We divide into cases. A reference for dual groups for the various groups of
classical types is [1, §2].

Case A. In this case, Gmust be of the form PSLn(Fq) or PSUn(Fq), where n = r+1.
We define G′ to be SLn(Fq) or SUn(Fq) respectively. As Gad is PGLn or PGUn

respectively, the dual group (Gad)
∗ is SLn or SUn respectively, and P = Ln(q). We

have |Z| ≤ n.

Case B. In this case, G is of the form Ωn(Fq), where n = 2r+ 1, and we define G′

to be SOn(Fq). In this case, G′ is a subgroup of G of index ≤ 2. As Gad = SOn,
the dual group (Gad)

∗ is Sp2r. The characteristic polynomial of every element of
Sp2r(Fq) lies in P := O2r(q). The characteristic polynomial of every element of
SOn(Fq) is (x− 1) times an element of O2r(q), and we define f as the composition

of G̃ → G, G → GLn(Fq), the characteristic polynomial map, and division by
(x− 1). We have |Z| ≤ 2.

Case C. In this case, G is of the form PSpn(Fq), where n = 2r, and we define G′

to be Spn(Fq), so G is the quotient of G′ by a normal subgroup of order ≤ 2, and f
is defined via the usual map Spn(Fq) → On(Fq). As Gad = PGSpn, the dual group
(Gad)

∗ is Spin2r+1. We define the map g by composing the maps Spin2r+1(Fq) →
SO2r+1(Fq), SO2r+1(Fq) → GL2r+1(Fq), the characteristic polynomial map, and
division by (x− 1). We have |Z| ≤ 2.

Case D. In this case, G is of the form PΩ±
n (Fq), where n = 2r, and we define

G′ to be SO±
n (Fq), so G is the quotient of a subgroup Ω±

n (Fq) of index ≤ 2 in

G′ by a normal subgroup of order ≤ 2. As Gad = PO±
n , the dual group (Gad)

∗ is
Spin±n . Both f and g are defined by composing Spin±n (Fq) → SO±

n (Fq), SO
±
n (Fq) →

GLn(Fq), and the characteristic polynomial map, which sends orthogonal n × n
matrices to elements of On(q). Note that in this case f and g are not surjective.
We have |Z| ≤ 4.
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We summarize all this information in the following table.

G G′ G̃ Gad

PSLr+1(Fq) SLr+1(Fq) SLr+1(Fq) PGLr+1

PSUr+1(Fq) SUr+1(Fq) SUr+1(Fq) PGUr+1

Ω2r+1(Fq) SO2r+1(Fq) Spin2r+1(Fq) SO2r+1

PSp2r(Fq) Sp2r(Fq) Sp2r(Fq) PGSp2r
PΩ+

2r(Fq) SO+
2r(Fq) Spin+2r(Fq) PO+

2r

PΩ−
2r(Fq) SO−

2r(Fq) Spin−2r(Fq) PO−
2r

Lemma 5.1. In all four cases, conditions (7) and (8) of Proposition 2.1 hold if
N > 2.

Proof. By [4, Theorem 1.1], k(G̃) ≥ qr. By Lemma 4.1,

|Ã| = k(G̃) ≥ qr = |P|.
This implies condition (7). As the projection map from B̃ to Irr(Gad(Fq)) is sur-
jective,

|B̃| ≥ Irr(Gad(Fq)) = k(Gad(Fq)) ≥ qr = |P|,
again by [4, Theorem 1.1]. �

Proposition 5.2. Let G′ ⊂ GLn(Fq2) be a classical group. The characteristic
polynomial of every element of g belongs to Ln(q), Un(q), (x − 1)On−1(q), On(q),
On(q), or On(q) if G

′ is of type A, 2A, B, C, D, or 2D respectively. Moreover, for
each such element, there exist at most 4 semisimple conjugacy classes in G′ whose
elements have this characteristic polynomial.

Proof. The first part is well-known; see, e.g., [10]. The second part follows from
the following two claims. First, we assert the map from the variety of semisimple
conjugacy classes of the underlying linear, unitary, symplectic, or orthogonal alge-
braic group to the variety of conjugacy classes of GLn is at most 2 to 1. Second, we
assert that the elements of G′ in any semisimple conjugacy class of the underlying
algebraic group G split into at most 2 G′-conjugacy classes.

For the first assertion, we may work over Fq and fix a maximal torus T of G
which lies in the maximal torus D of diagonal elements in GLn. Let W denote
the Weyl group of G with respect to T and consider the map T/W → D/Sn. We
claim that for any t ∈ T , there are at most 2 different W -orbits in T ∩ tSn . This is
obvious for type A. If n = 2r, two n-tuples of the form

(x1, x
−1
1 , . . . , xr, x

−1
r )

are the same up to rearrangement if and only if the multisets

{{x1, x
−1
1 }, . . . , {xr, x

−1
r }}

are the same, and this implies that the n-tuples lie in the same (Z/2Z)r �Sr-orbit.
This shows that the map T/W → D/Sn is one-to-one in case C and at most 2 to
1 in case D. If n = 2r + 1, then two n-tuples

(x1, x
−1
1 , . . . , xr, x

−1
r , 1)

are the same up to rearrangement if and only if the n-tuples lie in the same
(Z/2Z)r � Sr-orbit, so again the map is one-to-one.

For the second assertion, we use the fact that the map from the universal cover
of G to G is at most 2 to 1. From Steinberg’s theorem [17, Theorem 9.1] it follows



SPARSE CHARACTER TABLES IN HIGH RANK 183

that if Zs is the centralizer of a semisimple element s in G, then Zs/Z
◦
s is of order 1

or 2. By Lang’s theorem, it follows that there are at most two G′-conjugacy classes
of elements in G′ conjugate to s under G. �

6. Unipotent conjugacy classes

Lemma 6.1. The sequence whose rth term is maximum number of unipotent con-
jugacy classes in any classical group of rank r over any field Fq has subexponential
growth.

Proof. By [8, Prop. 2.1], the number of unipotent conjugacy classes in SLn(Fq) is ≤
np(n). By [8, Prop. 2.2], the same bound applies for SUn(Fq). By [8, Prop. 2.3], for
a symplectic group of rank r, the number of unipotent conjugacy classes is the sum
of 2aλ over partitions λ of 2r, where aλ denotes the number of distinct even parts.
Since the sum of aλ distinct positive even integers is at least a2λ+aλ ≤ 2r, it follows
that the maximum of 2aλ is subexponential in r, as is p(2r). By [8, Prop. 2.4], for
any orthogonal group of rank r, the number of unipotent conjugacy classes is the
sum of 2aλ over partitions λ of 2r, where aλ is one less than the number of odd
parts in λ, with the exception that if λ has no odd parts, the summand is either 0
or 1, depending on whether G is of the form SO− or SO+.

For G either orthogonal or symplectic and q even, [8, Prop. 3.1] gives a more
complicated classification of unipotent conjugacy classes, but the number of repre-
sentations is certainly bounded above by ordered quadruples of partitions summing
to r, which is the zr coefficient of

∏∞
i=1(1 − zi)−4 and therefore subexponential

in r. �

Proposition 6.2. For all ε > 0 there exists N with the following property. For any
finite field Fq, any n > N , and any semisimple element s in a classical subgroup
G′ = G′(Fq) of GLn(Fq), let H be the centralizer of s in G′, H◦ the identity
component of H, S the derived group of H◦, and r the absolute rank of S. Then
the number of H(Fq)-conjugacy classes of unipotent elements in H◦(Fq) is less than
qεr. The analogous statement is also true when H is the centralizer of a semisimple
element s in G′ = SUn(Fq).

Proof. It suffices to prove that the number of conjugacy classes of unipotent ele-
ments in H◦(Fq) is subexponential. As H◦/S is a torus, every unipotent element
of H◦(Fq) lies in S(Fq). Thus it suffices to prove a subexponential bound for the
unipotent conjugacy classes of S(Fq).

We decompose the natural representation space of Fn
q of GLn(Fq) by s into s-

isotypic factors VQ
∼= W

aQ

Q indexed by monic irreducible polynomials Q(x) ∈ Fq[x]

and denote by bQ the dimension dimWQ = degQ. If G′ = SLn(Fq), then

S =
∏

Q

ResF
q
bQ

/Fq
SLaQ,Fq

,

where Res denotes restriction of scalars. Each factor is of rank bQ(aQ − 1) over Fq,
so the rank of S is ρ(P ), where P is the characteristic polynomial of s.

For orthogonal groupsG′, let Π denote the set of orbits for the involutionQ �→ Q∗

defined in (4.1). For π ∈ Π, we denote by Vπ, Wπ, aπ, and bπ the sum
⊕

Q∈π VQ,⊕
Q∈π WQ, aQ = aQ∗ , and dimWπ respectively. As s preserves the inner product
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〈 , 〉, we have VQ ⊥ VR unless Q and R belong to the same orbit, so the centralizer
of s in G′ is

(6.1)
∏

π∈Π

AutF
qbπ

(Vπ, 〈 , 〉).

The derived group of the identity component is therefore a product of simple alge-
braic groups Sπ indexed by π ∈ Π. If π = {x − 1} or π = {x + 1}, then Sπ is of
absolute rank �ax/2
 and of type D or B as ax is even or odd. Otherwise, it is of
type D or A, depending on whether π has one element or two and of absolute rank
bπ(aπ − 1) in either case. For symplectic groups, we proceed in the same way, with
the difference that polynomials Q = Q∗ give rise to factors of type C.

For unitary groups, G′ acts on an n-dimensional vector space over Fq2 . We

decompose Fn
q2 into isotypical spaces VQ

∼= W
aQ

Q for the action of s, where Q

ranges over monic irreducible polynomials in Fq2 [x]. Let Π denote the set of orbits
of {Q | aQ > 0} under Q �→ Q∗. Let Wπ =

⊕
Q∈π WQ and Vπ =

⊕
Q∈π VQ =

W aπ
π . Let 〈 , 〉 denote the sesquilinear form which G′ respects. The different Vπ

are mutually orthogonal with respect to this form, and the centralizer of s in G′ is
again given by (6.1). The derived group is therefore a product of simple algebraic
groups indexed by Q, and each is of type A and absolute rank bπ(aπ − 1), where
bπ = dimWπ.

In every case, therefore, S(Fq) is a product of classical groups of total rank
r ≤ ρ(P ). The number of unipotent conjugacy classes is therefore ≤

∏
Q cbQ , where

(ci)i=1,2,... is the subexponential sequence given by Lemma 6.1. By Lemma 3.2, for

any fixed q, the number of conjugacy classes is O(qεr/2) and therefore less than qεr

if r is sufficiently large. On the other hand, there exists α such that ci < αi for
all i. If q > α1/ε, then the number of conjugacy classes is less than or equal to
αr ≤ qεr. �

7. Unipotent characters

Let G be a connected reductive group over Fq. Following Lusztig [13], we say
that an irreducible character of G(Fq) is unipotent if it appears with non-zero mul-

tiplicity in the Deligne-Lusztig character R
G
T (1) associated to the trivial character

on maximal torus T (Fq). In particular, the trivial character is unipotent. The
classification of unipotent characters depends only on the adjoint quotient of G
(see [14, Remark]), therefore only on the root system of G together with Frobenius
action.

Assuming G has connected center, Lusztig gave [13, p. x] a “Jordan decomposi-
tion” of irreducible characters χ of G(Fq). We briefly recall the setup, referring the
reader to [13] for details. Each such character has non-zero multiplicity in some

Deligne-Lusztig character R
T
G(θ), and θ determines a semisimple element t of the

dual group G∗(Fq), where G∗ is the connected reductive algebraic group over Fq

whose root datum is dual to that of G, with corresponding Frobenius action. The
element t is determined up to conjugation by χ. As G has connected center, the de-
rived group of G∗ is simply connected, so choosing a representative t, the centralizer
H∗ of t in G∗ is a connected reductive group. If H denotes the dual group of H∗,
there is a bijective correspondence π �→ χπ between the set of unipotent characters
π of H(Fq) and the set E(t) of irreducible characters χπ of G(Fq) associated to the
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class of t. For us, the most important point is that

(7.1) χπ(1) =
|G(Fq)|′
|H(Fq)|′

π(1),

where m′ denotes the largest divisor of m prime to q.
We record the following consequence.

Lemma 7.1. If χad is a character of Gad(Fq) associated to the class of a semisimple
element t ∈ (Gad)

∗(Fq), and if the order of the centralizer of t is not divisible by a
prime � � q, then

ord� χad(1) = ord� |Gad(Fq)|.
Proof. As � � q, we have ord� |Gad(Fq)| = ord� |Gad(Fq)|′. Defining π so that
χad = χπ, by (7.1),

ord� χad(1) = ord� |Gad(Fq)|π(1) ≥ ord� |Gad(Fq)|.
The opposite inequality follows from the fact that χad(1) divides |Gad(Fq)|. �
Proposition 7.2. For all ε > 0 there exists N with the following property. For
any finite field Fq, any r > N , any adjoint simple group G over Fq of type A, B,
C, or D, and any semisimple element t ∈ G∗(Fq), such that the centralizer of t in
G∗ has absolute semisimple rank r, the number of elements in E(t) is less than qεr.

Proof. The proof is essentially the same as that of Proposition 6.2. The only dif-
ference is that instead of Lemma 6.1, we use a subexponential estimate for the
number of unipotent characters of a classical simple group of rank r. The number
of unipotent characters is independent of q. For special linear and unitary groups,
it is given by the partition function p(r) [13, p. 358]. For orthogonal and symplectic
groups, there are at most two different unipotent characters associated to a Lusztig
symbol of rank r [13, p. 359]. The number of such symbols grows subexponentially
by [12, Prop. 3.4] and Proposition 3.1. �

The irreducible characters of the finite simple group G can be regarded as the
Z-trivial characters of G̃, where Z is the center of G̃ = Gsc(Fq). By [14, Prop. 5.1],

Irr(G̃) can be decomposed into rational Lusztig series E(s) indexed by semisimple
conjugacy classes in (Gsc)

∗(Fq). Moreover, the conjugation action of Gad(Fq)/G
on Irr(G) preserves this decomposition, and the orbits corresponding to elements
of t ∈ (Gsc)

∗(Fq) with connected centralizer are singletons. For such s, therefore,
each character of G extends to |Z| different characters of Gad(Fq), obtained from
one another by tensor product by 1-dimensional characters of Gad(Fq)/G (which
are necessarily trivial on G). Thus the correspondence between Irr(Gad(Fq)) and
Irr(G) is given by a function (namely, restriction) on the complement of the set
of characters of Irr(G) corresponding to t with disconnected centralizer. If t̃ ∈
(Gad)

∗(Fq) is a lift of t to an element on the universal cover, then t fails to have
connected centralizer only if the multiple of t̃ by some non-trivial central element is
conjugate to t̃ and therefore only if the characteristic polynomial of t̃ is a polynomial
P (x) satisfying P (ζx) ≡ P (x) for some ζ �= 1.

8. Zsigmondy primes

We recall that given q and m, a Zsigmondy prime for the pair (q,m) is a prime
� such that q has order exactly m in F×

� . Zsigmondy’s theorem asserts that such a
prime always exists if m > 6.
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Lemma 8.1. If � is a Zsigmondy prime for (q,m), then � divides qk−1 if and only
if m divides k, and � divides qk + 1 if and only if 2 | m and k is an odd multiple of
m/2.

Proof. The condition that � divides qk − 1 is equivalent to the condition that the
kth power of q in F×

� is 1, i.e., that m divides k. The condition that � divides qk+1
is equivalent to the condition that m divides 2k but not k, i.e., dm = 2k for some
odd integer d. Equivalently k is an odd multiple of m/2. �

Lemma 8.2. If a semisimple element s ∈ SLn(Fq) has characteristic polynomial
P , m > 2ρ(P ), and no irreducible factor of P has degree a multiple of m, then any
Zsigmondy prime � for (q,m) is relatively prime to the order of the centralizer of s
in SLn(Fq). Likewise, if m > 4ρ(P ), s ∈ SUn(Fq), and no irreducible Fq2 [x] factor
of P has degree an integer multiple of m/2, then any Zsigmondy prime � for (q,m)
is relatively prime to the order of the centralizer of s in SUn(Fq).

Proof. For SLn(Fq), it suffices to prove that � does not divide the order of the
centralizer of s in GLn(Fq). Factoring

P =

j∏

i=1

Qai
i ,

with degQi = bi, the centralizer of s can be written

j∏

i=1

GLai
(Fqbi ).

For each i, bi(ai − 1) ≤ ρ(P ), so if ai ≥ 2, we have aibi ≤ 2ρ(P ) < m, so

|GLai
(Fqbi )| =

ai−1∏

k=0

qbik(qbi(ai−k) − 1)

is prime to �. If ai = 1, then GL1(Fqbi ) has order q
bi − 1 which is again prime to �.

For SUn(Fq), we proceed as before, computing the centralizer of s in Un(Fq) as
in Proposition 6.2. In this case, the centralizer factors are of the form Uai

(Fqbi ) or

GLai
(F2bi

q ) depending on whether Qi = Q∗
i . As ai ≥ 2 implies 2aibi ≤ 4ρ(P ) < m,

it follows that no Zsigmondy prime for (q,m) can divide the order of a factor of
either kind, so we may assume ai = 1. As bi is not a multiple of m/2, � divides
neither the order of GL1(F

2bi
q ) nor U1(F

bi
q ). �

We remark that if � is a Zsigmondy prime for (q,m), then m divides �− 1.

9. Weak regularity conditions

Let k ≥ 1 and m ≥ 0 be integers. We say a polynomial P (x) ∈ F̄q[x] is m-regular
if the following two conditions hold:

(1) ρ(P ) ≤ m.
(2) P (x) is not identical to P (ζx) for any ζ �= 1.

If the characteristic polynomial of an element in GLn(F̄q) is m-regular, we say
that this element is m-regular. This depends only on the semisimple part s in the
Jordan decomposition of the element. Likewise, we say an irreducible character
of Gad(Fq) is m-regular if and only if it belongs to E(s), where the characteristic
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polynomial of the image of s under the natural representation of (Gad)
∗(Fq) is

m-regular.
Let G be a classical finite simple group. We define G′, A, Ã, B, B̃, P as in §5.

Given a fixed choice of m, we define P◦ to be the subset of m-regular polynomials
in P, Ã◦ := f−1(P◦), A◦ := φ(Ã◦), B̃◦ := g−1(P◦), B◦ := ψ(B̃◦). Note that

φ−1(A◦) = Ã◦ since ρ(P (x)) = ρ(ω− degPP (ωx)) for all scalars ω �= 0. Likewise,

ψ−1(B◦) = B̃◦, since if (χ, χad) and (χ, χ′
ad) both lie in B̃, and s ∈ G̃ lies in the

semisimple class associated to χad, then there exists z ∈ Z such that zs lies in the
semisimple class associated to χ′

ad.

By definition, the image of any element of Ã◦ in G′ is m-regular. Part (2) of the
definition of m-regularity guarantees that the fibers of φ over A◦ and of ψ over B◦

all have exactly |Z| elements, where Z is the center of G̃. Since G̃ → G is |Z| to 1
and G is of index |Z| in Gad(Fq), all fibers of φ and ψ have cardinality ≤ |Z|. This
gives conditions (3) and (4) of Proposition 2.1.

If s ∈ G′ is semisimple and m-regular, its centralizer in G′ is the group of Fq-
points of a reductive algebraic group H over Fq. We have seen that H has at most
2 components, so if q is odd, every unipotent element u ∈ G′ which commutes with
s lies in H◦(Fq). If q is even, we can regard G′ as the group of Fq-points of a
simply connected semisimple group, so the centralizer of s is connected, and again
u ∈ H◦(Fq). To bound the number of G′-conjugacy classes of elements in G′ with
semisimple part conjugate to s, it suffices to bound the H◦(Fq)-conjugacy classes
of unipotent elements in H◦(Fq). By Proposition 6.2, we have a subexponential

bound for this quantity. As the homomorphism G̃ → G′ is at most 2 to 1, we have
a subexponential bound in m for the number of elements of Ã◦ mapping to any
element of P◦, the set of m-regular polynomials in P. Likewise, by Proposition 7.2,
we have a subexponential bound for the number of elements of B̃◦ mapping to any
element of P◦.

By Lemma 4.3, the fraction of elements P of P with ρ(P ) ≥ m is less than or
equal to 4 · 2−m/4. There exists a subexponential sequence σ1, σ2, . . . such that

|f−1(P )|, |g−1(P )| ≤ σm

if ρ(P ) ≤ m, so there exists N for which conditions (5) and (6) of Proposition 2.1

hold. Each element in Ã\ Ã◦ either has ρ-invariant greater than m or has invariant
≤ m but satisfies P (x) ≡ P (ζx) for some ζ �= 1. If m is sufficiently large in absolute
terms, we may assume that the contribution of all elements with ρ-invariant greater
than m to either Ã or B̃ represents less than a δ/2 fraction of the total elements of

Ã or B̃ respectively. Once m is fixed, we have an upper bound for the size of fibers
of f or g, so if qn is sufficiently large, Lemma 4.5 implies that the contribution of all
fibers of all elements of P with P (x) ≡ P (ζx), as ζ ranges over all elements other

than 1, is again less than a δ/2 fraction of the elements of Ã or B̃. To summarize,
we have proven the following.

Proposition 9.1. If G is sufficiently large, for all δ > 0 if m is chosen to be
sufficiently large, conditions (1)–(6) of Proposition 2.1 hold for P◦ defined by m-
regularity.
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10. End of the proof

Proposition 10.1. For all ε > 0, there exists C such that if G is a classical finite
simple group of rank r, the fraction of elements P ∈ P such that some element of
f−1(P ) has centralizer order greater than Cqr in G̃ is less than ε.

Proof. By Lemma 4.3, if q > 8/ε, the fraction of elements P ∈ P for which ρ(P ) > 0
is less than ε/2. When ρ(P ) = 0, the centralizer of every element of f−1(P ) is
the group of Fq-points of a maximal torus. We claim that this group has order
≤ α(P )qr. For semisimple s ∈ SLr+1(Fq) with characteristic polynomial Q1 · · ·Qj ,
Qi irreducible, the order of the centralizer of s is

∏j
i=1(q

degQi − 1)

q − 1
≤ (1− q−1)−1qr ≤ α(P )qr.

For semisimple s ∈ SUr+1(Fq) with characteristic polynomial Q1 · · ·Qj , the order
of the centralizer is

∏j
i=1(q

degQi − (−1)degQi)

q + 1
≤ α(P )qr.

For SO2r+1(Fq), Sp2r(Fq) or SO±
2r(Fq) every irreducible Qi = Q∗

i of degree ≥ 2

contributes a factor of qdegQi/2 − 1, while every pair {Qi, Qj} with Qj = Q∗
i con-

tributes a factor of qdegQi + 1 = qdegQj + 1, so the centralizer order is less than
α(P )qr.

By Lemma 4.4, if q is sufficiently large, we may assume α(P ) < 2 for all but
an ε/2 fraction of elements of P, and the lemma follows. It therefore suffices to
prove the lemma when q is fixed. By Lemma 4.3, we may additionally assume
ρ(P ) is bounded. We can therefore factor P as a product of two polynomials, a
square-free factor Q and a factor R relatively prime to Q and of bounded degree.
The centralizer of s is therefore a product of a torus with ≤ α(Q)qr−r0 elements,
and a connected reductive group of rank r0, with a bounded number of elements.
This gives the desired bound. �

The following theorem is not needed for the main result but may be of interest
in its own right.

Theorem 10.2. For all ε > 0 there exists δ > 0 such that if G is a finite simple
group of Lie type, and S is a normal subset of G with less than δ|G| elements, then
S consists of less than εk(G) conjugacy classes.

Proof. First we assume that G is of type A–D and of sufficiently high rank, so
we are in the setting of Proposition 2.1. Let T ⊂ A denote the set of conjugacy
classes in G corresponding to elements of S. By construction, the cardinality of
any fiber of φ : Ã → A over A◦ is |Z|. By Proposition 9.1, hypotheses (1) and (3)

of Proposition 2.1 hold when Ã = G̃G̃ and A = GG. Choosing the parameter δ of
this proposition sufficiently small, we may assume that |φ−1(T )| > |Z||T |/2.

Let S̃ denote the inverse image of S in G̃, so |S̃|/|G̃| = |S|/|G|. Let T̃ ⊂ Ã

denote the set of conjugacy classes in G̃ corresponding to elements of S̃. Then
T̃ = φ−1(T ), so

|T̃ |
|Ã|

>
|Z||T |
2|Ã|

≥ |T |
2|A| .
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It therefore suffices to prove that for all ε > 0 there exists δ > 0 such that for
all normal subsets S̃ of G̃ with |S̃| ≤ δ|G̃| elements, the number |T̃ | of conjugacy
classes in S̃ is ≤ ε|Ã| = εk(G̃).

By Proposition 10.1, fixing C sufficiently large, the fraction of elements in P
whose fibers have elements with centralizer order greater than Cqr is as small as
desired. By inequality (2.3) and condition (7), the fraction of elements in G̃ with
centralizer order greater than Cqr is likewise as small as desired. Therefore, we
may assume that in any normal subset S̃ of G̃ containing εk(G̃) conjugacy classes,

at least εk(G̃)/2 have centralizer order ≤ Cqr. These account for at least

εk(G̃)|G̃|
2Cqr

elements in S̃. By [4, Theorem 1.1], k(G̃) ≥ qr, so we may take δ := ε/2C. This
leaves the bounded rank case.

In the limit as q → ∞, the fraction of elements of G̃ which are regular semisimple
goes to 1. The centralizers of any semisimple element is connected reductive, and
for regular semisimple elements, the centralizer is a torus and therefore has at most
(q + 1)r elements. As r is fixed, this gives an upper bound of the form Cqr. Thus,

the above claim for S̃ holds as in the high rank classical case.
In the large q limit, the fraction of elements g of G̃ which are conjugate to gz for

some non-trivial central element z ∈ Z goes to 0, essentially by the uniform version
of the Lang-Weil estimate. The precise statement we want is that if G is a split,
simply connected, semisimple group scheme over Spec Z, H is a closed subscheme
of G, p is a rational prime such that H(F̄p) is a proper subset of G(F̄p), and F
is a generalized Frobenius map (possibly of Suzuki-Ree type), then the fraction of
elements of G(F̄p)

F which lie in H(F̄p) goes to zero as the degree of F goes to ∞,
independently of the value of p. A proof of this statement is given in [9, Prop. 3.4].
The proposition is proved in the setting that G is a power of a simple group scheme
and H is the fiber of a word map, but the proof makes no use of these assumptions.
In the complement of the set of elements g which are conjugate to gz, the map from
conjugacy classes of G̃ to conjugacy classes of G is |Z| to 1. Thus, the theorem for

S again reduces to the claim for S̃, just as in the classical case.
For Suzuki and Ree groups, the proof of [9, Prop. 3.4] uses deep algebraic geom-

etry, and we are grateful to the referee for pointing out the following direct proof.
For G of type 2B2(q

2), 2G2(q
2), and 2F4(q

2) respectively, by [11], the number of
conjugacy classes (regular semisimple conjugacy classes) is q2 + 3 (q2 − 1), q2 + 8
(q2 − 2), and q4 +2q2 +17 (q4 − 2q2 +1) respectively. Therefore, if q is sufficiently
large, the number of conjugacy classes in S which are not regular semisimple is less
than δk(G). Again, if q is sufficiently large, the number N of regular semisimple
conjugacy classes in S satisfies

N |G|
qr

≤ 1.5|S| < 1.5δ|G|,

so N < 1.5δqr < 2δk(G). Choosing δ < ε/3 small enough that q must be sufficiently
large, we conclude that together the number of conjugacy classes in S is less than
3δk(G) < εk(G). �

We now prove Theorem 1.1.
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Proof. We need only prove that given ε > 0, if |G| is sufficiently large, we can
choose δ > 0 and then m so that for P◦ defined by m-regularity, condition (9) of
Proposition 2.1 holds.

For all k > 0 there exists N such if n ≥ 2 and q is a prime power, then the
fraction of elements of Ln(q), Un(q), or On(q) with more than N log n factors is
less than n−k [10, Prop. 2.4–2.6]. Therefore, for every k, for sufficiently large n, in
any of these groups, the fraction of elements with no irreducible factor of degree
> 2

√
n is less than n−k, which can be taken as small as we wish. In the case

that G is of linear or unitary type, by Lemma 4.2, we may further assume that
no prime factor of n is ≡ 1 modulo the degree of an irreducible factor with degree
> 2

√
n. Assuming P1 ∈ P◦ has an irreducible factor Q of degree > 2

√
n, then by

Lemma 4.2, the fraction of elements P2 ∈ P◦ such that P2 has an irreducible factor
whose degree is an integer multiple of degQ/2 goes to 0 as n → ∞. By Lemma 8.2,
if ε1 > 0 and n is sufficiently large, at least a 1− ε1 fraction of pairs (P1, P2) ∈ P2

have the property that if si ∈ G̃ is semisimple and maps to Pi for i = 1 and i = 2,
then there exists a prime � such that

(10.1) � | |ZG̃(s1)|, � � |ZG̃(s2)|.

By construction, � does not divide n.
To prove condition (9), we may partition the set

{(P1, P2) ∈ P◦ × P◦ | (P1, P2) ∈ (f, g)((φ, ψ)−1(X))}

into two subsets, one consisting of pairs satisfying (10.1) and one consisting of pairs
which do not satisfy it. We have already bounded the latter set, and it suffices to
prove that for ε2 > 0, if n is sufficiently large, the first set has less than ε2|P|2
elements. Suppose that this is not the case.

If (P1, P2) belongs to the subset satisfying (10.1), choose g̃G̃ ∈ Ã lying over

P1 and (χ, χad) in B̃ lying over P2 such that χ(g) �= 0, where gG = φ(g̃G̃). We

denote the semisimple conjugacy class of G̃ = (Gad)
∗(Fq) associated to χad by tG̃,

so the image of t in its natural representation has characteristic polynomial P2. By
Lemma 8.1, there exists a Zsigmondy prime � >

√
n which divides the order of the

centralizer of g in G but not the order of the centralizer of t in G̃. Therefore,

ord� |gG| < ord� |G| = ord� |G̃| = ord� χad(1).

The fraction χad(1)/χ(1) is an integer dividing the order of the center of G̃ and
therefore not divisible by �, so � divides dgG,χ. As the map φ is at most |Z| to 1,

we obtain at least ε2|P|2/|Z| such pairs (gG, χ).
For any α ∈ Q(ζ|G|), let T (α) denote the normalized trace

1

[Q(ζ|G|) : Q]
TrQ(ζ|G|)/Q(α).

Note that Gal(Q(ζ|G|)/Q) is commutative, and complex conjugation is an element
of the group, so if the Aut(C)-orbit of a non-zero algebraic integer α is {α1, . . . , αk},
then

T (|α|2) = T (αᾱ) =
1

k

k∑

i=1

αiᾱi ≥ 1.
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As (gG, χ) ∈ X, by definition χ(g) �= 0, so T (|χ(g)|2) ≥ n. Therefore,
∑

h∈gG

T (|χ(h)|2) ≥ n|gG|.

If n is sufficiently large, by Proposition 10.1, we may assume that at least ε3|P|2/|Z|
pairs (gG, χ) arising in this way satisfy |gG| > |G|/Cqr. Thus,

|G| · Irr(G) = T (
∑

h∈G

∑

χ∈Irr(G)

|χ(h)|2)

=
∑

h∈G

∑

χ∈Irr(G)

T (|χ(h)|2) ≥ ε3|P|2
|Z|

n|G|
Cqr

=
ε3q

rn|G|
|Z|C .

By [4, Th. 1.1], | Irr(G)| ≤ 27.2qr. For orthogonal and symplectic groups, |Z| ≤ 4, so
that | Irr(G)| < 109qr/|Z|. By [4, Cor. 3.7], | Irr(G)| < 4qr/|Z| for G = PSLr+1(q),
and by [4, Prop. 3.10], | Irr(G)| ≤ 9qr/|Z| for G = PSLr+1(q). Putting these
together, we deduce 109 > ε3n/C, which is impossible for large n. �
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