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FINITE DIMENSIONAL SEMIGROUPS OF UNITARY

ENDOMORPHISMS OF STANDARD SUBSPACES

KARL-H. NEEB

Abstract. Let V be a standard subspace in the complex Hilbert space H and
G be a finite dimensional Lie group of unitary and antiunitary operators on H
containing the modular group (Δit

V )t∈R of V and the corresponding modular
conjugation JV. We study the semigroup

SV = {g ∈ G ∩U(H) : gV ⊆ V}
and determine its Lie wedge L(SV) = {x ∈ g : exp(R+x) ⊆ SV}, i.e., the
generators of its one-parameter subsemigroups in the Lie algebra g of G. The
semigroup SV is analyzed in terms of antiunitary representations and their
analytic extension to semigroups of the form G exp(iC), where C ⊆ g is an
Ad(G)-invariant closed convex cone.

Our main results assert that the Lie wedge L(SV) spans a 3-graded Lie

subalgebra in which it can be described explicitly in terms of the involution
τ of g induced by JV, the generator h ∈ gτ of the modular group, and the
positive cone of the corresponding representation. We also derive some global
information on the semigroup SV itself.
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1. Introduction

Let H be a complex Hilbert space and M ⊆ B(H) be a von Neumann al-
gebra. Further, let Ω ∈ H be a unit vector which is cyclic for M (MΩ is
dense in H) and separating (the map M → H,M �→ MΩ is injective). By
the Tomita–Takesaki Theorem ([BR87, Thm. 2.5.14]), the closed real subspace

V := VM := {MΩ: M = M∗ ∈ M} is standard, i.e.,

(1) V ∩ iV = {0} (V is separating) and H = V+ iV (V is cyclic)
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(cf. [Lo08] for the basic theory of standard subspaces). To the standard subspace
V, we can associate a pair of modular objects (ΔV, JV), i.e., ΔV > 0 is a positive
selfadjoint operator, JV is a conjugation (an antiunitary involution), and these two
operators satisfy the modular relation JVΔVJV = Δ−1

V . The pair (ΔV, JV) is obtained

by the polar decomposition σV = JVΔ
1/2
V of the closed operator

σV : D(σV) := V+ iV → H, x+ iy �→ x− iy

with V = Fix(σV). The main assertion of the Tomita–Takesaki Theorem is that

JVMJV = M′ and Δit
V MΔ−it

V = M for t ∈ R.

So we obtain a one-parameter group of automorphisms of M (the modular group)
and a symmetry between M and its commutant M′, implemented by JV.

Motivated by the Haag–Kastler theory of local observables in Quantum Field
Theory (QFT) ([Ha96], [BS93], [BDFS00]), we are interested in finite dimensional
Lie groups G ⊆ U(H) of unitary operators fixing Ω, containing the corresponding
modular group (Δit

V )t∈R and invariant under conjugation with the modular conju-
gation JV. In this context, we would like to understand the subsemigroup

SM := {g ∈ G : gMg−1 ⊆ M}
of those elements of G acting by endomorphisms on M ([BLS11, LL15, Le15]).
As gΩ = Ω for g ∈ G, we have VgMg−1 = gVM, so that gMg−1 ⊆ M implies
gVM ⊆ VM. For V = VM, we therefore have

(2) SM ⊆ SV := {g ∈ G : gV ⊆ V}.
It follows in particular that if SM has interior points, then so does the semigroup
SV. In the present paper we determine its Lie wedge1

L(SV) = {x ∈ g : exp(R+x) ⊆ SV},
i.e., the set of generators of its one-parameter subsemigroups in the Lie algebra g

of G ([HHL89,HN93]).
The current interest in standard subspaces arose in the 1990s from the work of

Borchers and Wiesbrock ([Bo92,Wi93]). This in turn led to the concept of modular
localization in Quantum Field Theory introduced by Brunetti, Guido and Longo
in [BGL02,BGL94,BGL93]. We refer to Subsection 2.2 for more on the relation to
von Neumann algebras; see also [MN20] and [Oeh20a,Oeh20b].

Compared to the rather inaccessible object SM, the semigroup SV can be ana-
lyzed in terms of antiunitary representations of graded Lie groups: A graded Lie
group is a pair (G, εG), where εG : G → {±1} is a homomorphism. We write
G± = ε−1

G (±1), so that G+ � G is a normal subgroup of index 2 and G− = G\G+.
An important example is the group AU(H) of unitary or antiunitary operators on
a complex Hilbert space with AU(H)+ = U(H). A morphism of graded groups
U : G → AU(H) is called an antiunitary representation. Then U(G+) ⊆ U(H) and
U(G−) consists of antiunitary operators.

We write Stand(H) for the set of standard subspaces of H. We have already
seen that every standard subspace V determines a pair (ΔV, JV) of modular objects

and that V can be recovered from this pair as V = Fix(JVΔ
1/2
V ). This observation

1In the theory of Lie semigroups ([HHL89,HN93]) Lie wedges are the semigroup analogs of the
Lie algebras of closed subgroups. A Lie wedge is a closed convex cone W in a Lie algebra g such
that ead xW = W for x ∈ W ∩ −W . In particular, linear subspaces are Lie wedges if and only if
they are Lie subalgebras.
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can be used to obtain a representation theoretic parametrization of Stand(H): each
standard subspace V specifies a homomorphism

(3) UV : R× → AU(H) by UV(et) := Δ
−it/2π
V , UV(−1) := JV.

We thus obtain a bijection between Stand(H) and antiunitary representations of

the graded Lie group R× with ε(r) = sgn(r) ([NÓ17]). For a given antiunitary
representation (U,H) of a graded Lie group (G, εG), we thus obtain a natural map,
the Brunetti–Guido–Longo map

(4) BGL: Homgr(R
×, G) → Stand(H), γ �→ Vγ with UVγ = U ◦ γ

([BGL02], [NÓ17]). Note that γ ∈ Homgr(R
×, G) is completely determined by

(5) h := γ′(1) ∈ g and σ := γ(−1).

As σ2 = e, it defines an involution τG(g) := σgσ on G, an involution τ = Ad(σ)
on g with τ (h) = h, and G ∼= G+ � {idG, τG}.

This leads us to the problem to determine for an injective antiunitary represen-
tation (U,H) of a graded Lie group (G, εG) and a standard subspace V = Vγ ⊆ H,
obtained by the BGL construction from a pair (τ, h), consisting of an involutive
automorphism τ of g and an element h ∈ g with τ (h) = h, the semigroup

SV = {g ∈ G+ : U(g)V ⊆ V}.

A crucial piece of information on SV is contained in its Lie wedge L(SV). To for-
mulate our main results, for λ ∈ R and an adh-invariant subspace F ⊆ g, write
Fλ(h) := ker(adh − λ idg) ∩ F for the corresponding eigenspace. We also put
h := ker(τ − id) and q := ker(τ + id) and write CU := {x ∈ g : − i∂U(x) ≥ 0} for
the positive cone of U . The Structure Theorem (Theorem 5.4) asserts that

(6) L(SV) = C− ⊕ h0(h)⊕ C+

for the two pointed closed convex cones

(7) C± := ±CU ∩ q±1(h).

Further, L(SV) spans a 3-graded Lie subalgebra gred, and the cones C± are abelian
subsets of g.

So we obtain an explicit description of the Lie wedge L(SV) in terms of the
positive cone CU of the representation (U,H), the involution τ of g induced by
JV, and the generator h ∈ gτ of the modular group. It shows in particular that
the most interesting situations are those where g is 3-graded by adh, i.e., g =
g−1(h)⊕g0(h)⊕g1(h), and τ = eπi adh. In this context, the representation U should
be such that the cones CU ∩ g±1(h) generate g±1(h). We refer to Subsection 6.1
for more comments on related classification problems.

One of our key tools is a characterization of the operators contained in the
algebra AV := {A ∈ B(H) : AV ⊆ V} of V-real operators in terms of the orbit maps

αA(t) := αt(A) := Δ
−it/2π
V AΔ

it/2π
V .

The Araki–Zsidó Theorem ([AZ05]) asserts that, for A ∈ B(H), A ∈ AV is equiva-
lent to the existence of an analytic continuation of αA from R to the closure of the
strip

Sπ = {z ∈ C : 0 < Im z < π}
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satisfying αA(πi) = JVAJV. It follows in particular that AV is invariant under
the involution A� := JVA

∗JV, and that we obtain for every z ∈ Sπ an injective
representation

αz : AV → B(H), A �→ αA(z) with ‖αz‖ ≤ 1.

For z = πi
2 we even obtain a ∗-representation απi

2
: (AV, 
) → B(HJV), A �→ Â by

operators commuting with JV.
On the Lie group side, we mimic the Araki–Zsidó Theorem as follows. For a

unitary representation U : G → U(H) of a Lie group G, assumed with discrete
kernel, we can extend U to a representation of a semigroup

SU = G exp(iCU ),

where CU is the positive cone of U , and the polar map G × CU → SU , (g, x) �→
g exp(ix) is a homeomorphism2. Then U(g exp(ix)) = U(g)ei∂U(x) provides an
extension of U to SU ([Ne00, §XI.2]). To bring modular conjugations into the
picture, we also consider an involution τG ∈ Aut(G) (inducing an involution τ
on g), for which U extends to an antiunitary representation of the graded Lie
group G � {idG, τG}. Then J := U(τG) is a conjugation satisfying U(τG(g)) =
JU(g)J for g ∈ G. For h ∈ h = gτ we can now consider the standard subspace

V determined by JV = J and ΔV = e2πi∂U(h), so that Δ
−it/2π
V = U(exp th). Now

the role of the semigroup AV ∩U(H) in the Araki–Zsidó Theorem is played by the
subsemigroup SU

inv ⊆ G, consisting of all elements s ∈ G for which the orbit map
βs(t) = exp(th)s exp(−th), defined on R, extends analytically to a map from the
closure of the strip Sπ to SU , such that βs(πi) = τG(s). Our second main result is
the Inclusion Theorem (Theorem 4.11), asserting that SU

inv ⊆ SV. It is used to obtain
one inclusion in the Structure Theorem mentioned above. It has a partial converse
in the Germ Theorem (Theorem 5.1) which shows that both subsemigroups have the
same germ, i.e., that there exists an e-neighborhood U ⊆ G with SU

inv ∩U = SV∩U .
The content of this paper is as follows. We start in Section 2 with a short

section explaining some connections of our results to Quantum Field Theory and
von Neumann algebras in some more detail. In Section 3 we study for a standard
subspace V ⊆ H the semigroup

SV = {g ∈ U(H) : gV ⊆ V}
of all unitary endomorphisms of V. First we observe that SV is a group if and
only if ΔV is bounded, so that the situation is only interesting if ΔV is unbounded
(Lemma 3.1). We also state the Araki–Zsidó Theorem (a complete proof is provided
in Appendix A) and develop its consequences.

In Section 4 we prepare the ground for our analysis of the subsemigroup SU
inv ⊆

G ⊆ SU which provides a Lie theoretic framework for verifying the Araki–Zsidó
condition. The main result in Section 4 is the Inclusion Theorem SU

inv ⊆ SV (The-
orem 4.11). Since both semigroups SU

inv and SV are hard to describe globally, an
important consequence of the Inclusion Theorem is the inclusion L(SU

inv) ⊆ L(SV).
To use this inclusion to prove the Structure Theorem, we derive an explicit descrip-
tion of the wedge L(SU

inv) by interpreting it as analogous to L(SU )inv = (g+iCU )inv
in the abelian context.

2Such semigroups are called Olshanski semigroups. They first appear in Olshanski’s paper
[Ol82] and an exposition of their theory can be found in [Ne00]. The refinements needed for
representations with non-discrete kernel have recently been worked out in [Oeh18].
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This motivates our independent discussion of the case where G is a real Banach
space E, endowed with an involution τ and an operator h ∈ B(E), and W ⊆ E
is a pointed closed convex cone invariant under −τ and the one-parameter group
eRh (Subsection 4.1). In this simple situation, the semigroup (E + iW )inv can
be determined very explicitly by elementary means and provides an important
prototype for the more general non-abelian situation:

(E+iW )inv = (W ∩E−
1 (h))⊕E+

0 (h)⊕(−W ∩E−
−1(h)), where E± = ker(τ∓1).

In Subsection 4.2 we then recall the basic facts on Olshanski semigroups ΓG(W ) =
G exp(iW ) associated to invariant cones W ⊆ g. They are non-abelian generaliza-
tions of the tubes E + iW . We prove the Inclusion Theorem in Subsection 4.3 and
by applying it to the corresponding Lie wedges, we already obtain one inclusion of
the Structure Theorem.

The proof of the Structure Theorem (Theorem 5.4) is completed in Subsec-
tion 5.1, where we also prove the Germ Theorem. In Subsection 5.2 we describe
the unit group GV of SV, and in Subsection 5.3 we discuss some classes of exam-
ples. We conclude this paper with Section 6 on perspectives and open problems,
complementing those discussed already in Section 2. Some results that we did not
find in the appropriate form in the literature are stated and proved in appendices.

Notation.

• For a linear map A : E → E on a linear space E and λ ∈ C, we write

Eλ(A) := ker(A− λ idE)

for its eigenspaces.
• For a Lie group G, we write g for its Lie algebra, Ad: G → Aut(g) for the
adjoint action of G on g, induced by the conjugation action of G on G, and
adx(y) = [x, y] for the adjoint action of g on itself.

• (G, εG) denotes a graded group, where εG : G → {±1} is a homomorphism;
G± = ε−1

G (±1). An important example is the group AU(H) of unitary or
antiunitary operators on a complex Hilbert space H with AU(H)+ = U(H).
A morphism of graded groups U : G → AU(H) is called an antiunitary
representation. If G is a topological group, then antiunitary representations
are assumed to be continuous with respect to the strong operator topology
on AU(H).

• For a graded homomorphism γ : R× → G, we write σ := γ(−1), τ = Ad(σ),
and h := γ′(1) ∈ gτ . Then g = h⊕ q for the τ -eigenspaces h = ker(τ − idg)
and q = ker(τ + idg). We further write τG(g) := σgσ for the corresponding
involution on G.

• For a real standard subspace V ⊆ H, we write (ΔV, JV) for the corresponding

pair of modular objects with V = Fix(JVΔ
1/2
V ).

• Horizontal strips in the complex plane are denoted Sα,β := {z ∈ C : α <
Im z < β} and we also abbreviate Sβ := S0,β for β > 0.

• For a unitary representation U : G → U(H) of a finite dimensional Lie
group G, we write H∞ for the dense subspace of smooth vectors ξ, for
which the orbit maps Uξ : G → H, g �→ Ugξ is smooth. We also have
the dense subspace Hω ⊆ H∞ of analytic vectors for which the orbit map
Uξ is analytic. On H∞ we have a representation dU of the complex Lie
algebra gC given on x ∈ g by dU(x)ξ = d

dt

∣∣
t=0

U(exp tx)ξ. The infinitesimal
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generator of the unitary one-parameter group (U(exp tx))t∈R is denoted
∂U(x). It coincides with the closure of the operator dU(x). The closed
convex Ad(G)-invariant cone

CU := {x ∈ g : − i∂U(x) ≥ 0}

is called the positive cone of the representation U .

2. Motivation

In this short section we provide some more background on the relation of our
work with Quantum Field Theory and von Neumann algebras.

2.1. Quantum fields. In Algebraic Quantum Field Theory (AQFT), in the sense
of Haag–Kastler, one considers nets of von Neumann algebras M(O) ⊆ B(H),
associated to regions O in some space-time manifold M ([Ha96]). The hermit-
ian elements of the algebra M(O) are interpreted as observables that can be
measured in the “laboratory” O. One further assumes a unitary representation
U : G → U(H) of a Lie group G, acting as a space-time symmetry group on M ,
such that U(g)M(O)U(g)∗ = M(gO) for g ∈ G. In addition, one assumes a U(G)-
fixed unit vector Ω ∈ H, representing typically a vacuum state of a quantum field.
The domains O ⊆ M for which Ω is cyclic and separating for M(O) are of partic-
ular relevance. For these domains O, the von Neumann algebra M(O) specifies a
standard subspace V(O) ⊆ H which determines a pair (ΔO, JO) of modular objects

and in particular a modular automorphism group αt(M) = Δ
−it/2π
O MΔ

it/2π
O . It is

now an interesting question if this modular group is “geometric” in the sense that
it is implemented by a one-parameter subgroup of G, hence corresponds to a one-
parameter group of symmetries of M . The present paper contributes a crucial piece
in this puzzle by exhibiting the structural assumptions under which the inclusion
order on the orbit U(G)V(O) ⊆ Stand(H) is non-trivial.

Passing from operator algebras to the corresponding standard subspaces is a
tremendous reduction of information, but the net of standard subspaces V(O) still
encodes the geometric features of the original theory and in particular it reflects
the action of the symmetry group G. Conversely, one can use the functorial pro-
cess provided by Second Quantization ([Si74]) to associate to each standard sub-
space V ⊆ H a pair (R±(V),Ω), where R±(V) is a von Neumann algebra on the
bosonic/fermionic Fock space F±(H), for which the vacuum vector is cyclic and
separating ([Ar63,Ar64,BJL02]).

Addressing these structures from a representation theoretic perspective, we start
with an antiunitary representation (U,H) of a graded Lie group G. Then any in-
volution σ ∈ G− defines a conjugation J := U(σ) and we obtain for each pair
(h, σ) for which h ∈ g is fixed by τ = Ad(σ), a standard subspace V = V(h,σ,U) by
the BGL construction. As a consequence, standard subspaces can be associated to
antiunitary representations in abundance, but only a few of them carry interesting
geometric information. In particular, we would like to understand when a standard
subspace of the form V(h,σ,U) arises from a natural family V(O) of real subspaces
associated to open subsets of a homogeneous space M = G/P , and which domains
O ⊆ M (so-called generalized wedge domains) correspond to such standard sub-
spaces. The geometric investigation of such domains in causal symmetric spaces
will be pursued further in [NÓ21a,NÓ21b,NÓ20].
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In the case where M = G is a Lie group, the search for domains O with V(O) = V

naturally leads to domains which are semigroups. If the net is covariant in the sense
that V(gO) = U(g)V(O), then we should have O ⊆ SV = {g ∈ G : U(g)V ⊆ V}, and
this requires SV to have interior points. This is certainly the case if the Lie wedge
L(SV) has interior points, and the results of the present paper provide a precise
characterization of the triples (h, σ, U) for which this is the case.

2.2. Relations to von Neumann algebras. We already mentioned in the in-
troduction that the interest in the semigroups SV of endomorphisms of standard
subspaces stems to some extent from their correspondence to endomorphisms of
von Neumann algebras in the context of the theory of local observables ([Ha96]).
We now provide some more details on these applications.

We recall the notion of a Haag–Kastler net of C∗-subalgebras A(O) of a C∗-
algebra A, associated to regions O in d-dimensional Minkowski space R1,d−1. The
algebraA(O) is interpreted as observables that can be measured in the “laboratory”
O. Accordingly, one requires isotony, i.e., that O1 ⊆ O2 implies A(O1) ⊆ A(O2)
and that the A(O) generate A. Causality enters by the locality assumption that
A(O1) and A(O2) commute if O1 and O2 are space-like separated, i.e., cannot cor-
respond with each other. Finally one assumes an action σ : P (d)↑ → Aut(A) of
the orthochronous Poincaré group such that σg(A(O)) = A(gO). Every Poincaré
invariant state ω of the algebra A now leads by the GNS construction to a covariant
representation (πω,Hω,Ω) of A, and hence to a net M(O) := πω(A(O))′′ of von
Neumann algebras on Hω. Whenever Ω is cyclic and separating for M(O), we ob-
tain modular objects (ΔO, JO). This connection between the Araki–Haag–Kastler
theory of local observables and modular theory leads naturally to antiunitary group
representations (cf. [NÓ17, §5] and the introduction).

Let, more generally, (G, εG) be a graded group of spacetime symmetries, where
εG(g) = 1 means that g preserves time orientation and εG(g) = −1 that it reverses
time orientation; a typical example is the Poincaré group P (d) with P (d)+ = P (d)↑.
Then covariant representations of Haag–Kastler nets lead to families M(O) of von
Neumann algebras and antiunitary representations U : G → AU(H) satisfying

U(g)M(O)U(g)−1 = M(gO).

If the vacuum vector Ω ∈ H is fixed by U(G), cyclic and separating for the von Neu-
mann algebra M(O), and U(G) contains the corresponding modular conjugation
JO and the one-parameter group (Δit

O)t∈R, then we are in the situation mentioned
in the introduction, and we obtain information on the subsemigroup

SV(O) ⊇ SO := {g ∈ G+ : U(g)M(O)U(g)−1 ⊆ M(O)}.

Theorem 5.4 implies that, for a standard subspace V = V(h,σ,U) as above, the
Lie wedge L(SV) spans a 3-graded Lie subalgebra gred such that the corresponding
3-graded subgroup Gred ⊆ G has the property that SV∩Gred has interior points and
that the modular conjugation and the modular group also come from U(Gred). In
[Ne19b, Thm. 3.4] we show that, with the notation from (7) (see also Theorem 5.4),
the intersection of SV with the subgroup Gred has the simple form

(8) SV ∩Gred = exp(C+)(Gred)V exp(C−) = (Gred)V exp(C+ + C−).

Here (Gred)V = {g ∈ Gred : U(g)V = V} is the stabilizer group of V in Gred.
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Example 2.1.
(a) It is important to observe that, in the situation described in the introduction,

where Ω is a cyclic separating unit vector for the von Neumann algebra M and

V = {MΩ: M = M∗ ∈ M},
the inclusion

SM = {g ∈ G : gMg−1 ⊆ M} ⊆ SV = {g ∈ G : gV ⊆ V}
may be proper.

To see an example, we consider the Hilbert space H := B2(C
n) of Hilbert–

Schmidt operators on Cn with the scalar product 〈A,B〉 := tr(A∗B). By matrix
multiplications from the left, we obtain a von Neumann subalgebra M ⊆ B(H),
isomorphic to Mn(C), and its commutant M′ consists of right multiplications. The
unit vector Ω := 1√

n
1n is cyclic and separating, and the corresponding standard

subspaces for M and M′ coincide with the space

VM = VM′ = Hermn(C)

of hermitian matrices. Now θ(A) := A� defines a unitary operator on H preserving
VM = VM′ and satisfying θMθ−1 = M′. For G = U(H), we therefore obtain
SV �= SM.

(b) In the situation above, when M is given, the G-orbit of M in the space of
von Neumann subalgebras of B(H) can be identified with the homogeneous space
G/GM, and similarly, G/GV ↪→ Stand(H), gGV �→ gV is an embedding. The discrep-
ancy between both spaces comes from the fact that the von Neumann algebra M
need not be invariant under the stabilizer group GV of V.

Related questions have been analyzed by Y. Tanimoto in [Ta10]. He refines the
picture by considering the closed convex cone

V+M = {MΩ: 0 ≤ M = M∗ ∈ M} ⊆ VM,

which leads to the inclusions

SM ↪→ SV+M
= {g ∈ G : gV+M ⊆ V+M} ⊆ SVM .

Here the semigroup SV+M
appears to be much closer to SM than SV. From [Ta10,

Thm. 2.10] it follows in particular that, if M is purely infinite, then SV+M
= SM.

Let M∗ denote the predual of the von Neumann algebra M (the space of normal
linear functionals) and M+

∗ the convex cone of positive normal functionals. In this
context it is also interesting to note that the map

V+M → M+
∗ , ξ �→ ωξ, ωξ(M) = 〈ξ,Mξ〉

is a homeomorphism by [Ko80, Thm. 1.2]. Accordingly, every element g ∈ SV+M
induces a continuous map on M+

∗ .

Example 2.2. In many situations arising in QFT, the group G is the Poincaré
group P (d) ∼= R1,d−1 � OO1,d−1(R) acting by affine isometries on d-dimensional
Minkowski space R1,d−1. We define a grading on P (d) by time reversal, i.e.,
εG(v, g) = ε(g) and g(V+) = ε(g)V+ for the upper open light cone

V+ := {(x0,x) ∈ R1,d−1 : x0 > 0, x2
0 > x2}.

The generator h ∈ so1,d−1(R) of the Lorentz boost on the (x0, x1)-plane is

h(x0, x1, . . . , xd−1) = (x1, x0, 0, . . . , 0).
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It satisfies e2πi adh = 1, and τ := eπi adh defines an involution on the Poincaré–Lie
algebra p(d), acting on R1,d−1 by

τ (x0, x1, . . . , xd−1) = (−x0,−x1, x2, . . . , xd−1)

on R1,d−1.
For any positive energy representation of P (d) with discrete kernel, we then

have CU = V+, because this is, up to sign, the only non-zero pointed invariant cone
in the Lie algebra p(d) (for d > 2). Therefore the Lie wedge of the corresponding
semigroup SV associated to the standard subspace determined by the triple (U, τ, h)
is given by

L(SV) = h0(h)⊕ (q1(h) ∩ CU )⊕ (q−1(h) ∩ −CU )

(Theorem 5.4). Here h0(h) = g0(h) is the centralizer of the Lorentz boost:

g0(h) = ({(0, 0)} × Rd−2)� (so1,1(R)⊕ sod−2(R)) ∼= (Rd−2 � sod−2(R))⊕ Rh,

and, for qj := qj(h):

q1 ∩ CU = R(e0 + e1) ∩ V+ = R+(e1 + e0)

and

q−1 ∩ (−CU ) = R(e0 − e1) ∩ −V+ = R+(e1 − e0).

Therefore L(SV) coincides with the Lie wedge of the semigroup

SWR
:= {g ∈ P (d)+ : gWR ⊆ WR},

where WR := {x ∈ R1,d−1 : x1 > |x0|} is the open right wedge (see also [NÓ17,
Lemma 4.12]).

The starting point for the development that led to fruitful applications of modu-
lar theory in QFT was the Bisognano–Wichmann Theorem, asserting that the mod-
ular automorphisms αt(M) = Δ−it/2πMΔit/2π associated to the algebra M(WR)
of observables corresponding to the right wedge WR in Minkowski space are imple-
mented by the unitary action of a one-parameter group of Lorentz boosts preserv-
ing WR. This geometric implementation of modular automorphisms in terms of
Poincaré transformations was an important first step in a rich development based
on the work of Borchers and Wiesbrock in the 1990s [Bo92, Bo95, Bo97, Wi92,
Wi93,Wi93c]. They managed to distill the abstract essence from the Bisognano–
Wichmann Theorem which led to a better understanding of the basic configurations
of von Neumann algebras in terms of half-sided modular inclusions and modular
intersections. In his survey [Bo00], Borchers described how these concepts have
revolutionized Quantum Field Theory. Subsequent developments can be found in
[Ar99,BGL02,Lo08,LW11,JM18,Mo17].

2.3. Pairs of standard pairs. A standard pair (V, U) consists of a standard sub-
space V ⊆ H and a unitary one-parameter group (Ut)t∈R satisfying UtV ⊆ V for
t ≥ 0. For V ∈ Stand(H), one may expect that one-parameter groups U1 and U2,
for which (V, U j) form a standard pair, commute. By Proposition 5.3 this is true
if they both come from an antiunitary representation of a finite dimensional Lie
group. Example 2.3 shows that this is not true in general, not even if the two
one-parameter groups are conjugate under the stabilizer group U(H)V.
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Example 2.3. On L2(R) we consider the selfadjoint operators

(Qf)(x) = xf(x) and (Pf)(x) = if ′(x),

satisfying the canonical commutation relations [P,Q] = i1. For both operators,
the Schwartz space S(R) ⊆ L2(R) is a core. Actually it is the space of smooth
vectors for the representation of the 3-dimensional Heisenberg group generated by
the corresponding unitary one-parameter groups

(eitQf)(x) = eitxf(x) and (eitP f)(x) = f(x− t).

Since eix
3

is a smooth function for which all derivatives grow at most polynomially,
it defines a continuous linear operator on S(R) ([Tr67, Thm. 25.5]). Therefore the

unitary operator T := eiQ
3

maps S(R) continuously onto itself, and

P̃ := TPT ∗ = eiQ
3

Pe−iQ3

is a selfadjoint operator for which S(R) is a core. For f ∈ S(R), we obtain

(P̃ f)(x) = ieix
3 d

dx
e−ix3

f(x) = i(−i3x2f(x) + f ′(x)),

so that P̃ = P + 3Q2.
The two selfadjoint operators Q and eP are the infinitesimal generators of the

irreducible antiunitary representation of Aff(R) = R� R×, given by

U(b, et) = eibe
P

eitQ and (U(0,−1)f)(x) = f(−x).

Accordingly, the pair (Δ, J) with

Δ = e−2πQ and J = U(0,−1)

specifies a standard subspace V which combines with U1
t := eite

P

to an irreducible
standard pair (V, U1). The unitary operator T commutes with Δ and with J because
JQJ = −Q, so that T (V) = V. Therefore the unitary one-parameter group U2

t :=

eiQ
3

U1
t e

−iQ3

= eite
˜P

also defines a standard pair (V, U2). These two one-parameter
groups do not commute because otherwise the selfadjoint operators P and P +3Q2

would commute in the strong sense, hence in particular on their core S(R).

3. Endomorphisms of standard subspaces

For a standard subspace V ⊆ H, we are interested in the closed subsemigroup

SV = {U ∈ U(H) : UV ⊆ V}
of the unitary group. In the forthcoming sections, we shall study this semigroup by
intersecting with finite dimensional subgroups of U(H). In the present section we
discuss it on the general level to develop and present some tools that we shall use
below. In Subsection 3.1 we show that SV is a group if and only if ΔV is bounded,
so that the situation is only interesting if ΔV is unbounded. To understand the
semigroup SV, it is natural to consider the full algebra AV := {A ∈ B(H) : AV ⊆ V}
of V-real operators, which contains SV as AV ∩ U(H). In Subsection 3.2 we recall
an important characterization of the elements of AV in terms of the orbit maps

αA(t) := Δ
−it/2π
V AΔ

it/2π
V defined by the unitary group generated by ΔV: By results

of Araki and Zsidó [AZ05], A ∈ AV is equivalent to the existence of an analytic
continuation of αA from R to the closed strip Sπ satisfying αA(πi) = JVAJV. We
thus obtain for every z ∈ Sπ an injective representation αz on H, and for z = πi

2 we
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even obtain a ∗-representation απi
2
: AV → B(HJV), A �→ Â by operators commuting

with JV. We conclude this section with Subsection 3.3, where we take a brief look
at one-parameter semigroups of contractions in AV.

3.1. The case where all unitary endomorphisms are invertible. To under-
stand the subsemigroups SV ⊆ U(H), one needs to understand when they are trivial
in the sense that they are groups. This case is characterized in Lemma 3.1 which
shows that standard subspaces with bounded modular operators ΔV are too rigid
to have non-trivial unitary endomorphisms.

In the proof we shall need the “complementary” standard subspace

V′ := (iV)⊥R = {ξ ∈ H : (∀v ∈ iV) Re〈v, ξ〉 = 0} = {ξ ∈ H : (∀v ∈ V) Im〈v, ξ〉 = 0}.
Then

(9) ΔV′ = Δ−1
V , JV = JV′ and JVV = V′

([Lo08, Prop. 3.2], [NÓ17, Lemma 3.7]).

Lemma 3.1. For V ∈ Stand(H), the following are equivalent:

(a) ΔV is bounded.
(b) V+ iV = H.
(c) If H ⊇ V is standard, then H = V.
(d) If H ⊆ V is standard, then H = V.
(e) The closed subsemigroup SV ⊆ U(H) is a group.

These conditions are in particular satisfied if H is finite dimensional. Here (e)
corresponds to the well-known fact that every closed subsemigroup of the compact
group Un(C) is a group; cf. also Proposition 6.5.

Proof. The equivalence of (a) and (b) follows from V+ iV = D(Δ
1/2
V ).

(b) ⇒ (c): If H = V + iV ∼= V ⊕ iV and H ⊇ V is standard, then H = H ⊕ iH
implies V = H.

(c) ⇔ (d): Follows from H ⊆ V if and only if V′ ⊆ H′ and ΔV′ = Δ−1
V .

(d) ⇒ (e): For U ∈ SV the relation UV ⊆ V implies UV = V by (d) because UV is
also standard. Then U−1V = V as well, so that U−1 ∈ SV. This shows that SV is a
group.

(e) ⇒ (d): We show that, if H ⊆ V is a proper standard subspace, then SV is not
a group. In fact, the unitary operator U := JHJV satisfies UV = JHJVV = JHV

′ ⊆
JHH

′ = H ⊆ V. Therefore U ∈ SV, and since UV is a proper subset of V, the inverse
U−1 is not contained in SV.

(d) ⇒ (a): We show that, if ΔV is unbounded, then V contains a proper standard
subspace V1.

Step 1. First we show that D(Δ
1/2
V ) �⊆ D(Δ

−1/2
V ). If this is not the case, then

JVD(Δ
−1/2
V ) = D(Δ

1/2
V ) ⊆ D(Δ

−1/2
V )

implies that D(Δ
−1/2
V ) is JV-invariant. Since JV is an involution, this leads to

D(Δ
−1/2
V ) = JVD(Δ

1/2
V ) = D(Δ

1/2
V ), contradicting the unboundedness of ΔV.

Step 2. By Step 1, there exists a non-zero v0 ∈ V \ D(Δ
−1/2
V ) because D(Δ

1/2
V ) =

V+ iV. We consider the closed real hyperplane

V1 := {w ∈ V : Re〈w, v0〉 = 0} = v⊥R

0 ∩ V ⊆ V.
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Then V1∩iV1 ⊆ V∩iV = {0}. Further, the subspace V⊥R

1 = V⊥R⊕Rv0 = iV′⊕Rv0 is a

real form of V′+iV′+Cv0 = D(Δ
−1/2
V )⊕Cv0, so that (V1+iV1)

⊥R = V⊥R

1 ∩iV⊥R

1 = {0},
and this implies that V1 + iV1 is dense in H. �

Since every standard subspace V is uniquely determined by the pair (ΔV, JV), we
have:

Lemma 3.2. For V ∈ Stand(H), the stabilizer in the unitary group coincides with
the centralizer of the pair (ΔV, JV):

U(H)V := {U ∈ U(H) : UV = V} = {U ∈ U(H) : UJVU
−1 = JV, UΔVU

−1 = ΔV}.

3.2. The algebra AV of V-real operators. Although we are primarily interested
in the subsemigroup SV ⊆ U(H), it is of some advantage to consider also the closed
real subalgebra

AV = {A ∈ B(H) : AV ⊆ V}
of V-real operators. The following characterization of the elements of AV in terms of
analytic continuation of orbits maps ([Lo08, Thm. 3.18], [AZ05, Thm. 2.12]) will be
a central tool in the following. A proof can be found in Appendix A (Theorem A.3).

Theorem 3.3 (Araki–Zsidó Theorem on V-real operators). For A ∈ B(H), the
following are equivalent:

(i) A ∈ AV, i.e., AV ⊆ V.
(ii) A� := JVA

∗JV ∈ AV.

(iii) Δ
1/2
V AΔ

−1/2
V is defined on D(Δ

−1/2
V ) and coincides there with JVAJV.

(iv) The map αA : R → B(H), αt(A) := αA(t) := Δ
−it/2π
V AΔ

it/2π
V extends to a

strongly continuous function on the closed strip

Sπ = {z ∈ C : 0 ≤ Im z ≤ π}
such that αA is holomorphic on Sπ and αA(πi) = JVAJV.

If these conditions are satisfied, then

(a) ‖αA(z)‖ ≤ ‖A‖ for z ∈ Sπ.

(b) αA(z + t) = αt(α
A(z)) = Δ

−it/2π
V αA(z)Δ

it/2π
V for z ∈ Sπ, t ∈ R.

(c) αA(z + πi) = JVα
A(z)JV for z ∈ Sπ.

(d) αA(t)V ⊆ V and αA(t+ πi)V′ ⊆ V′ for all t ∈ R.

Based on the Araki–Zsidó Theorem, we obtain the following remarkable fact,
which characterizes in particular invertible elements in SV as those commuting either
with JV or with ΔV.

Corollary 3.4. For a standard subspace V ∈ Stand(H) and A ∈ B(H), the follow-
ing are equivalent:

(i) AV ⊆ V and A commutes with (Δit
V )t∈R.

(ii) AV ⊆ V and A commutes with JV.
(iii) A commutes with JV and (Δit

V )t∈R.

It follows in particular that

(10) U(H)V = {g ∈ SV : gΔVg
−1 = ΔV} = {g ∈ SV : gJVg

−1 = JV}.

Proof. (i) ⇒ (ii): If (i) is satisfied, then the function αA is constant. Hence A =
αA(iπ) = JVα

A(0)JV = JVAJV implies (ii).
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(ii) ⇒ (iii): If (ii) holds, then αA(iπ) = JVα
A(0)JV = JVAJV = A = αA(0), so

that Theorem 3.3(b) implies that αA(t + πi) = αA(t) for all t ∈ R. Therefore αA

extends to a πi-periodic bounded holomorphic function on all of C. Now Liouville’s
Theorem implies that αA is constant, so that A commutes with (Δit

V )t∈R.
(iii) ⇒ (i): Condition (iii) implies that the constant map αA(z) = A satisfies all

requirements of Theorem 3.3(iv), so that A ∈ AV.
Finally, (10) follows from the equivalence of (i) and (ii) and Lemma 3.2. �

Corollary 3.5. The semigroup SV is invariant under the involution 
, so that (SV, 
)
is an involutive semigroup. Its unitary group

U(SV, 
) := {s ∈ SV : s
�s = ss� = 1} = {s ∈ SV : s

� = s−1} = {s ∈ SV : JVsJV = s}
coincides with its unit group U(H)V = SV ∩ S−1

V .

Proof. That SV is 
-invariant follows from Theorem 3.3(ii). Clearly, U(SV, 
) consists
of units of SV. Conversely, any U ∈ SV∩S−1

V satisfies UV = V, so that UJVU
−1 = JV

and thus U � = U−1. �

Proposition 3.6 is a key tool in the following. It provides an analytic interpo-
lation between the representation U of SV on V by isometries and an involutive
∗-representation by contractions on the real subspace HJV .

Proposition 3.6. For every z ∈ Sπ, the map

αz : (AV, 
) → (B(H), 
), A �→ αA(z)

is an injective contractive morphism of real involutive unital Banach algebras with
the following properties:

(i) The restriction of αz to the closed unit ball BV := {A ∈ AV : ‖A‖ ≤ 1} is
continuous with respect to the strong operator topology on BV and B(H).

(ii) For z = πi/2, we have απi
2
(A)∗ = απi

2
(A�) and απi

2
(A)JV = JVαπi

2
(A),

so that απi
2

defines a ∗-representation A �→ Â of AV on the real Hilbert

space HJV .

Proof. Clearly, αt is multiplicative for every t ∈ R, so that

αAB(t) = αA(t)αB(t) for t ∈ R, A,B ∈ AV.

For ξ, η ∈ H, the maps

z �→ 〈ξ, αAB(z)η〉 and z �→ 〈ξ, αA(z)αB(z)η〉
are continuous because αA and αB are strongly continuous and bounded. As both
functions are holomorphic on Sπ and coincide on R, they coincide on Sπ for all
ξ, η ∈ H. This implies that αAB(z) = αA(z)αB(z) for all z ∈ Sπ.

For A ∈ AV, we have for t ∈ R

αA�

(t) = Δ
−it/2π
V JVA

∗JVΔ
it/2π
V = JVΔ

−it/2π
V A∗Δ

it/2π
V JV = JVα

A(t)∗JV = αA(t)�,

and therefore αA�

(z) = αA(z)� for z ∈ Sπ by uniqueness of analytic continuation.
Now we show that αz is injective. If αz(A) = αA(z) = 0, then αA(z + t) =

αt(α
A(z)) = 0 for all t ∈ R, and by analytic continuation we get αA = 0. In

particular, A = αA(0) = 0.
(i) We have to show that, for ξ ∈ H, the map

γξ : BV → H, γξ(A) := αz(A)ξ
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is continuous with respect to the strong operator topology on AV. As the linear map
H → �∞(BV,H), ξ �→ γξ satisfies ‖γξ‖∞ ≤ ‖ξ‖ (Theorem 3.3(a)), ξn → ξ implies
uniform convergence γξn → γξ. Hence the set of all elements ξ ∈ H for which γξ
is continuous with respect to the strong operator topology on BV is a closed linear
subspace of H. Therefore it suffices to assume that ξ has finite spectral support
with respect to the selfadjoint operator log(ΔV). Then

αz(A)ξ = Δ
−iz/2π
V AΔ

−1/2
V η for η := Δ

i(z−πi)/2π
V ξ.

By Corollary A.2, the continuity of γξ on BV thus follows from the continuity of
the maps

BV → H, A �→ Δ
1/2
V AΔ

−1/2
V η = JVAJVη and A �→ AΔ

−1/2
V η

(Theorem 3.3(iii)).
(ii) For z = πi/2, αz(A) commutes with JV (Theorem 3.3(c)), and thus αz(A)∗ =

αz(A)� = αz(A
�). �

On B(H) we consider the W ∗-dynamical system defined by

αt(A) = αA(t) = Δ
−it/2π
V AΔ

it/2π
V for A ∈ B(H), t ∈ R.

Then, for each A ∈ AV, the operators αA(z), z ∈ Sπ, belong to the space B(H)ω of

α-analytic vectors. In particular, Â = αA(πi/2) ∈ B(HJV). Conversely, we have:

Lemma 3.7. For an operator B ∈ B(H) commuting with JV, there exists a (unique)

A ∈ AV with Â = B if and only if B is an α-analytic vector whose orbit map αB

extends to a holomorphic function on the strip S−π/2,π/2 which extends to a strongly

continuous function on the closure. Then A = αB(−πi/2).

Proof. If B = Â = αA(πi/2), then αB(z) := αA(z + πi/2) defines a holomorphic
function on S−π/2,π/2 which is strongly continuous on the closure and extends the
orbit map of B.

Suppose, conversely, that such a function αB exists on S−π/2,π/2. Then the
relation JVBJV = B implies that

JVα
B(z)JV = αB(z) for | Im z| ≤ π

2
,

so that αA(z) := αB(z − πi/2) defines a holomorphic function on Sπ, strongly
continuous on the closure, extending the orbit map of A, and which satisfies

αA(πi) = αB(πi/2) = JVα
B(−πi/2)JV = JVα

A(0)JV = JVAJV. �

In the following we shall mainly work with the characterization of elements
A ∈ SV in terms of the analytic continuation of αA to Sπ, but the preceding lemma
provides a second perspective: We may also get information on the contraction

semigroup ŜV ⊆ B(HJV) and then obtain elements of SV by extending for B ∈ ŜV

the orbit map αB to −πi
2 . For a contraction B on HJV , the regularity condition

of being injective with dense range comes naturally into play. In this regard, we
record Lemma 3.8.

Lemma 3.8. Let H be a real or complex Hilbert space. Then the subset B(H)reg ⊆
B(H) of injective operators with dense range is a multiplicative ∗-subsemigroup of
B(H). It consists of those operators C : H → H for which the partial isometry U
in the polar decomposition C = UeB, B = B∗ bounded from above, is unitary.
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Proof. First we observe that the injective operators and the operators with dense
range are multiplicative subsemigroups of B(H). Hence their intersection B(H)reg
also is a subsemigroup. As C(H)⊥ = ker(C∗) and C∗(H)⊥ = ker(C), this semigroup
is ∗-invariant.

If C = UP is the polar decomposition of C, then P = P ∗ ≥ 0, and U is a partial
isometry from ker(C)⊥ onto C(H). Therefore the operator C is injective with dense
range if and only if U is unitary. Then the positive bounded operator P is injective
with dense range, so that it can be written as P = eB for the operator B := logP
which is bounded from above. �

Although all strongly continuous one-parameter semigroups of B(H) which are
either symmetric or unitary are contained in B(H)reg, this is not true for general
one-parameter semigroups, as the following simple example shows:

Example 3.9 (cf. [EN00, Ex. II.4.31]). On the Hilbert space H = L2([0, 1]) we
obtain by

(Utf)(x) :=

{
f(x+ t) for x+ t ≤ 1,

0 for x+ t > 1,

a strongly continuous contraction semigroup for which all operators Ut, t > 0, are
nilpotent. For Nt > 0 we have (Ut)

N = UtN = 0.

Problem 3.10. Let V ⊆ H be a standard subspace.

(a) Show that every one-parameter semigroup (Ut)t≥0 of SV satisfies Ût ∈
B(HJV)reg for t ≥ 0 or find an example where this is not the case.

(b) Let B = B∗ = e−H ∈ B(HJV) be a regular positive contraction for which a

unitary A ∈ SV with Â = B exists. Then the same is true for all powers Bn = Ân,
n ∈ N, but what about the other operators Bt = e−tH for t ≥ 0? Are they also

contained in ŜV? See also Example 6.4 for related problems.

3.3. One-parameter semigroups in AV. Classically, bounded strongly contin-
uous one-parameter semigroups on Banach spaces are studied through their infin-
itesimal generators and their resolvents. We start our analysis in this subsection
by recalling some key facts on one-parameter semigroups from [EN00]. This pro-
vides some tools used below for one-parameter subsemigroups of finite dimensional
semigroups.

Remark 3.11.
(a) If (Ut)t≥0 is a strongly continuous one-parameter semigroup of contractions

on the Banach space X and A : D(A) → X its infinitesimal generator, then we have
for every λ ∈ C with Reλ > 0 an integral formula for the resolvent:

(11) R(λ,A) := (λ1−A)−1 =

∫ ∞

0

e−tλUt dt and ‖R(λ,A)‖ ≤ 1

Reλ

([EN00, Thm. II.1.10]).
(b) If, conversely, A : D(A) → X is a closed, densely defined operator on X such

that, for λ > 0, the operators λ1 − A : D(A) → X have bounded inverses R(λ,A)
satisfying ‖R(λ,A)‖ ≤ λ−1, then A is the infinitesimal generator of a uniquely
determined semigroup of contractions ([EN00, Thm. II.3.5]). That this semigroup
can actually be obtained as the strong limit

(12) Ut = lim
n→∞

(
1− t

n
A

)−n

for t > 0
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follows from the discussion in [HP57, §12.3] (see also [Ch68] for related results).
Note that our assumption on A implies that∥∥∥(

1− t

n
A

)−1∥∥∥ =
n

t

∥∥∥(n

t
1−A

)−1∥∥∥ ≤ 1,

so that the right hand side of (12) is a contraction whenever the limit exists.
(c) If X is a Hilbert space and A a normal operator, then the assumption on

A implies that Spec(A) ⊆ C
 := {z ∈ C : Re z ≤ 0}. Then, for any z ∈ C
, we
have (1 − tz/n)−n → etz for t ≥ 0, as a pointwise limit of bounded functions on
C
. Therefore (12) is an immediate consequence of the measurable spectral calculus
and a normal operator A generates a one-parameter semigroup of contractions if
and only if Spec(A) ⊆ C
.

(d) A linear operator A : D(A) → X on a Banach space is said to be dissipative
if

‖(λ1−A)ξ‖ ≥ λ‖ξ‖ for λ > 0, ξ ∈ D(A),

which is equivalent to

(13) ‖(1− hA)ξ‖ ≥ ‖ξ‖ for h > 0, ξ ∈ D(A).

According to the Lumer–Phillips Theorem ([EN00, Thm. II.3.15]), a closed densely
defined operator A generates a contraction semigroup if and only if it is dissipative
and λ1−A has dense range for some (hence for all) λ > 0. If X is a Hilbert space,
then (13) implies that A is dissipative if and only if

Re〈ξ, Aξ〉 ≤ 0 for all ξ ∈ D(A)

([EN00, Prop. II.3.23]).

For a standard subspace V ∈ Stand(H), we recall the subalgebra AV ⊆ B(H)
from Theorem 3.3. We are mainly interested in the semigroup SV = AV ∩ U(H),
and for that the representations αz of AV will be extremely helpful. As AV is
strongly closed, (11) and (12) in Remark 3.11 lead to:

Proposition 3.12 (One-parameter semigroups of contractions in AV). Let (Ut)t≥0

be a strongly continuous one-parameter semigroup of contractions on H with infin-
itesimal generator A. Then

(∀t > 0) UtV ⊆ V ⇐⇒ (∀λ > 0) (λ1−A)−1V ⊆ V.

Corollary 3.13. Let (Ut)t≥0 be a strongly continuous one-parameter semigroup

of contractions in AV with infinitesimal generator A. Then, for every z ∈ Sπ,
(αz(Ut))t≥0 is a strongly continuous one-parameter semigroup of contractions on
H. Its infinitesimal generator Az satisfies

(λ1−Az)
−1 = αz((λ1−A)−1) for λ > 0.

Proof. The first assertion follows immediately from Proposition 3.6. By Proposi-
tion 3.12, (λ1− A)−1 ∈ AV for every λ > 0, so that αz((λ1− A)−1) is defined for
z ∈ Sπ. For the second assertion we now use (11) in Remark 3.11 and the strong
continuity of the representations αz (Proposition 3.6(ii)). �

In the following, Corollary 3.13 is of particular interest for z = πi/2. If A� = A,

then it leads to the infinitesimal generator Â = Aπi/2 of a symmetric contraction

semigroup on HJV , showing that Â ≤ 0. This will be important in the proof of the
Germ Theorem (Theorem 5.1).
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The following observation will not be used below, but we record it here because
it adds interesting information on certain results obtained in [Ne18], where we
have seen that Stand(H) carries the structure of a reflection space, specified by
(−1)V(W ) = JVW

′. Accordingly, a curve γ : R → Stand(H) is called a geodesic
if it is a morphism of reflection spaces, where R carries the canonical reflection
structure given by the point reflections (−1)x(y) = 2y − x. By [Ne18, Prop. 2.9],
geodesics γ : R → Stand(H) with γ(0) = V for which the curve (Jγ(t))t∈R is strongly
continuous, are the curves of the form γ(t) = UtV, where (Ut)t∈R is a unitary one-
parameter group satisfying JVUtJV = U−t for t ∈ R.

Proposition 3.14. Assigning to the generator A = A� = −A∗ of a strongly con-
tinuous 
-symmetric unitary one-parameter semigroup in AV the curve (etAV)t∈R in
Stand(H), we obtain a bijection onto the set of decreasing geodesics

γ : R → Stand(H)

with γ(0) = V.

Proof. The relation A� = A is equivalent to A∗ = JVAJV. If, in addition, A∗ = −A,
then JVAJV = −A. Then the curve γ(t) := etAV defines a geodesic in Stand(H)
which is decreasing because t < s implies that γ(s) = etAe(s−t)AV ⊆ etAV = γ(t).
That all decreasing geodesics are of this form follows from [Ne18, Prop. 2.9]. �

4. Wick rotations of tubes and Olshanski semigroups

To apply tools from finite dimensional Lie theory, we consider subsemigroups of
B(H) that arise by analytic continuation of a unitary representation U : G → U(H)
of a Lie group G to a semigroup SU = G exp(iCU ), where

CU := {x ∈ g : − i∂U(x) ≥ 0}
is the positive cone of U . Assuming that U has discrete kernel, the semigroup SU

always exists and U(g exp(ix)) = U(g)ei∂U(x) provides an extension of U to SU .
To implement JV as well, we also consider an involution τG ∈ Aut(G) (inducing
an involution τ on g), for which U extends to an antiunitary representation of
the graded Lie group G � {idG, τG}. Then J := U(τG) is a conjugation satisfying
U(τG(g)) = JU(g)J for g ∈ G. For h ∈ gτ we consider the standard subspace V

determined by

JV = J and ΔV = e2πi∂U(h), so that Δ
−it/2π
V = U(exp th).

By the Araki–Zsidó Theorem, we are led to the problem to determine the subsemi-
group SU

inv of those elements s∈G for which the orbit map βs(t)=exp(th)s exp(−th)
in SU extends holomorphically to the closure of Sπ, in such a way that βs(πi) =
τG(s). In Theorem 4.11, we show that

SU
inv ⊆ SV = {g ∈ G : U(g)V ⊆ V}.

To prepare this theorem, we start in Subsection 4.1 with a discussion of the “abelian
case”, where G is simply a real Banach space E, endowed with an involution τ
and an endomorphism h, and W ⊆ E is a pointed closed convex cone invariant
under −τ and the one-parameter group eRh. In this simple situation the semigroup
(E+ iW )inv is a closed convex cone in E that can be determined very explicitly by
elementary means. It provides an important blueprint for the more general non-
abelian situation. In Subsection 4.2 we then recall the basic facts on Olshanski
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semigroups ΓG(W ) associated to invariant cones W ⊆ g. They are the non-abelian
generalizations of the tube E + iW . Finally, we verify the inclusion SU

inv ⊆ SV in
Subsection 4.3.

4.1. Wick rotations of tubes. In this section we develop another tool that we
shall use below in the context of Lie algebras. This subsection represents some key
geometric features that can already be formulated in the abelian context.

Let E be a real Banach space endowed with the following data:

• A continuous involution τ ∈ GL(E); we write E = E+ ⊕ E−, E± :=
ker(τ ∓ 1) for the τ -eigenspace decomposition.

• An endomorphism h ∈ B(E), commuting with τ .
• A closed convex cone W ⊆ E which is pointed, i.e., W ∩ −W = {0}, and
invariant under −τ and the one-parameter group eRh.

We consider the closed convex cone

TW := E + iW ⊆ EC,

which is obviously invariant under eRh and −τ , where we use the same notation
for the complex linear extensions to EC. We do not assume that the cone W has
interior points, so that W −W may be a proper subspace of E. If σc : EC → EC is
the antilinear involution with fixed point set Ec := E+ + iE−, then σc acts on iE
as −τ , so that σc(TW ) = TW , and

Tσc

W = TW ∩Ec = E+ + i(W ∩E−)

is the closed convex cone of σc-fixed points in TW . We are interested in the closed
convex cone

TW,inv := {x ∈ E : eyihx ∈ TW for y ∈ [0, π]; eπihx = τ (x)}.

Lemma 4.1.

(a) For x ∈ E, the condition eπihx = τ (x) is equivalent to e
πi
2 hx ∈ Ec.

(b) TW,inv = {x ∈ E : ezhx ∈ TW for z ∈ Sπ; eπihx = τ (x)}.

Proof. (a) As above, let σc : EC → EC denote the antilinear extension of τ , so that

Fix(σc) = Ec. For x ∈ E and xc := e
πi
2 hx, the condition xc ∈ Ec is equivalent to

σc(xc) = xc, which is equivalent to

e
πi
2 hx = σc(e

πi
2 hx) = e−

πi
2 hσc(x) = e−

πi
2 hτ (x).

This in turn is equivalent to eπihx = τ (x).
(b) follows from the fact that TW is invariant under eRh. �

For an h-invariant real subspace F ⊆ EC, we write Fλ = Fλ(h) = F ∩ker(h−λ1)
for the h-eigenspaces in F .

Lemma 4.2. For x ∈ E, the condition eπihx = τ (x) is equivalent to the existence
of finitely many elements xn ∈ En(h) with x =

∑
n∈Z

xn and τ (xn) = (−1)nxn.

Proof. We write x = x+ + x− with x± ∈ E±. Then eπihx = τ (x) is equivalent to

(14) eπihx+ = x+ and eπihx− = −x−.

Combining both, we see that e2πihx = x. The space Efix
C

of fixed points of the
automorphism e2πih ∈ GL(EC) carries a norm continuous action of the circle T ∼=
R/Z, defined by βt(y) := e2πithy. As the sum of the T-weight spaces on Efix

C
is
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dense by the Peter–Weyl Theorem ([HM98]), the boundedness of Spec(h|Efix
C

) ⊆ Z

implies that Efix
C

is a direct sum of finitely many h-eigenspaces EC,n(h), n ∈ Z.
Accordingly, we write

x =
∑
n∈Z

xn with hxn = nxn.

As ‖h‖ < ∞, only finitely many summands are non-zero. The antilinear involution
σ of EC, whose fixed point set is E, commutes with h. Therefore the h-eigenspaces
are σ-invariant, and thus σ(x) = x implies σ(xn) = xn for every n ∈ Z, i.e., xn ∈ E.
Now eπihxn = (−1)nxn and (14) imply that x+ is the sum of the xn with n even,
and x− is the sum of the xn with n odd. As τ (x±) = ±x±, this in turn shows that
τ (xn) = (−1)nxn for n ∈ Z.

If, conversely, x =
∑

n∈Z
xn with xn ∈ E satisfying hxn = nxn and τ (xn) =

(−1)nxn, then the relation eπihx = τ (x) is obvious. �

Proposition 4.3 is a key geometric ingredient of the proof of our Structure The-
orem (Theorem 5.4).

Proposition 4.3. The cone TW,inv has the simple form

(15) TW,inv = (W ∩E−
1 (h))⊕ E+

0 (h)⊕ (−W ∩E−
−1(h)).

In particular, it is determined by the two cones W ∩ E−
±1(h).

Proof. First we note that the cone TW,inv is closed and invariant under eRh because
TW is invariant under eRh, the operators eyih commute with eRh, and so does τ .

Let x ∈ TW,inv. Then Lemma 4.2 implies that x =
∑

n∈Z
xn is a finite sum with

xn ∈ En(h) and τ (xn) = (−1)nxn. We claim that xn = 0 for |n| > 1. Suppose first
that there exists an n > 1 with xn �= 0 and assume that n is maximal with this
property. Then the invariance of TW,inv under eRh and its closedness imply that

(16) xn = lim
t→∞

e−nt
∑
m∈Z

emtxm = lim
t→∞

e−ntethx ∈ TW,inv.

As n > 1, we now obtain

e[0,π]ihxn = e[0,nπ]ixn � ±ixn.

This leads to ±xn ∈ W , and since W is pointed, we arrive at the contradiction
xn = 0. An analogous argument shows that xn = 0 for n < −1. We conclude that
x = x1 + x0 + x−1 with x0 ∈ E+

0 (h), and x±1 ∈ TW,inv, obtained from (16), implies

that ±ix±1 = e
πi
2 hx±1 ∈ TW = E + iW ; hence x±1 ∈ ±W ∩ E−

±1(h).

Conversely, every element of the form x = x−1 + x0 + x1 with x0 ∈ E+
0 (h) and

x±1 ∈ ±W ∩E−
±1(h) is contained in TW,inv because eπihx = −x−1+x0−x1 = τ (x),

and

eyihx = x0︸︷︷︸
∈E+

+cos(y)(x−1 + x1)︸ ︷︷ ︸
∈E−

+ i sin(y)(x1 − x−1)︸ ︷︷ ︸
iE−

∈ E + iW,

because sin(y)(x1 − x−1) ∈ W for y ∈ [0, π]. �
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From Proposition 4.3 we immediately obtain:

Corollary 4.4. Let g be a finite dimensional real Lie algebra, endowed with an
involution τ ∈ Aut(g) with eigenspace decomposition g = h ⊕ q, h := ker(τ − 1)
and q := ker(τ + 1), an element h ∈ h, and a pointed closed convex cone W ⊆ g,
invariant under −τ and eR adh. For TW := g + iW , the cone TW,inv then has the
simple form

(17) TW,inv = (W ∩ q1(h))⊕ h0(h)⊕ (−W ∩ q−1(h)).

In particular, it is determined by the two pointed cones W ∩ q±1(h).

4.2. Extensions of unitary representations to semigroups. Below we shall
need non-abelian analogs of the tubes TW = E + iW , where E is replaced by a
finite dimensional simply connected Lie group G and W ⊆ g is an Ad(G)-invariant
closed convex cone.

Definition 4.5 (Olshanski semigroups). Let G be a 1-connected Lie group with
Lie algebra g and W ⊆ g be a pointed Ad(G)-invariant closed convex cone3. The
corresponding Olshanski semigroup ΓG(W ) is defined as follows. Let GC be the
1-connected Lie group with Lie algebra gC and let ηG : G → GC be the canonical
morphism of Lie groups for which L(η) : g ↪→ gC is the inclusion4. As GC is simply
connected, the complex conjugation on gC integrates to an antiholomorphic invo-
lution σ : GC → GC with σ ◦ ηG = ηG, and this implies that ηG(G) coincides with
the subgroup (GC)

σ of σ-fixed points in GC
5.

As W is weakly elliptic, Lawson’s Theorem ([Ne00, Thm. XI.1.7]) asserts that

Γ′
G(W ) := Γ(GC)σ (W ) := (GC)

σ exp(iW ) ⊆ GC

is a closed subsemigroup of GC stable under the antiholomorphic involution s∗ :=
σ(s)−1, and that the polar map

(GC)
σ ×W → Γ′

G(W ), (g, x) �→ g exp(ix)

is a homeomorphism. Next we observe that ker ηG is a discrete subgroup of G and
define ΓG(W ) as the simply connected covering of Γ′

G(W ) ([Ne00, Def. XI.1.11]).
Basic covering theory implies that ΓG(W ) inherits an involution given by

(g exp(ix))∗ = exp(ix)g−1 = g−1 exp(Ad(g)ix)

and a homeomorphic polar map G × W → ΓG(W ), (g, x) �→ g exp(ix). We write
exp: g+ iW → ΓG(W ) for the canonical lift of the exponential function

exp: L(Γ′
G(W )) = g+ iW → Γ′

G(W ) ⊆ GC.

For every x ∈ g + iW , the curve γx(t) := exp(tx) is a continuous one-parameter
semigroup of ΓG(W ).

If W has interior points, then the polar map restricts to a diffeomorphism from
(GC)

σ×W 0 onto the interior Γ′
G(W

0) of Γ′
G(W ). Further, ΓG(W

0) = G exp(iW 0) is
a complex manifold with a holomorphic multiplication and the exponential function
g + iW 0 → ΓG(W

0) is holomorphic, whereas the involution ∗ is antiholomorphic
([Ne00, Thm. XI.1.12]).

3Then W is weakly elliptic in the sense that Spec(adx) ⊆ iR holds for every x ∈ W . In fact,
by [Ne00, Prop. VII.3.4(b)] W is weakly elliptic in the ideal W − W , and since [x, g] ⊆ W − W
holds for any x ∈ W , we have Spec(adx) ⊆ {0} ∪ Spec(adx|W−W ) ⊆ iR.

4In general the map ηG is not injective, as the example G = ˜SL2(R) with GC = SL2(C) shows.
5Since GC is simply connected, this subgroup is connected by Corollary B.3.



320 KARL-H. NEEB

We now turn to the analytic continuation of unitary representations of G to
Olshanski semigroups ΓG(W ).

Proposition 4.6 (Holomorphic extension of unitary representations). Let (U,H)
be a unitary representation of G with discrete kernel and consider the ideal nU :=
CU − CU and the corresponding normal integral subgroup NU � G6. Then the
following assertions hold:

(i) U extends by U(g exp(ix)) = U(g)ei∂U(x) to a strongly continuous contrac-
tion representation of the Olshanski semigroup SU := G exp(iCU ) which is
holomorphic on the complex manifold NU exp(iC0

U ).
(ii) If J : H → H is a conjugation and τG ∈ Aut(G) an involution with de-

rivative τ ∈ Aut(g), satisfying JU(g)J = U(τG(g)) for g ∈ G, then the
involutive automorphism of SU given by τS(g exp(ix)) = τG(g) exp(−iτ (x))
satisfies JU(s)J = U(τS(s)) for s ∈ SU .

Proof. (i) The assumption that ker(U) is discrete implies that CU is pointed. That

U(g exp(ix)) = U(g)ei∂U(x)

defines a representation which is holomorphic and non-degenerate on ΓNU
(C0

U ) =
NU exp(iC0

U ) follows from [Ne00, Thm XI.2.5]. Now [Ne00, Cor. IV.1.18, Prop.
IV.1.28] imply that U is strongly continuous on ΓNU

(CU ) because U(ΓNU
(CU ))

is bounded. The continuity on SU follows from SU = GΓNU
(CU ) = G exp(iCU ),

the fact that the polar map is a homeomorphism, and the strong continuity of the
multiplication on the operator ball.

(ii) The relation JU(g)J = U(τG(g)) implies J∂U(x)J = ∂U(τ (x)) for x ∈ g,
and therefore Ji∂U(x)J = −i∂U(τ (x)) implies that −τ (CU ) = CU . Therefore the
involution τS(g exp(ix)) = τG(g) exp(−iτ (x)) on SU is defined. As it is the unique
continuous lift of an automorphism of Γ′

G(CU ) ⊆ GC, preserving the base point
e ∈ SU , it defines an automorphism of SU = ΓG(CU ). For s = g exp(ix) we have

JU(s)J = JU(g)JJei∂U(x)J = U(τG(g))e
−i∂U(τx) = U(τG(g) exp−τ (x))

= U(τS(s)). �

Remark 4.7.
(a) Let (U,H) be an antiunitary representation of the graded Lie group (G, εG)

and σ ∈ G− be an involution. We write τG(g) = σgσ for the corresponding involu-
tive automorphism of G and τ = Ad(σ) ∈ Aut(g) for the corresponding involution
of the Lie algebra. Then the positive cone CU of U is a closed convex cone satisfying

Ad(g)CU = εG(g)CU for g ∈ G.

In particular, it is invariant under −τ (cf. Proposition 4.6(ii)).
(b) The fixed point set of the involution τS on SU is the subsemigroup

SU
G := GτG exp(i(q ∩ CU )) ⊆ SU

because s = g exp(ix) is τS-invariant if and only if τG(g) = g and τ (x) = −x, i.e.,
x ∈ q ∩ CU .

6Normal integral subgroups of 1-connected Lie groups are always closed and 1-connected by
[HN12, Thm. 11.1.21].
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4.3. Wick rotations of Olshanski semigroups. In this subsection we describe
how holomorphic extensions of unitary representations of complex Olshanski semi-
groups can be used to obtain non-trivial endomorphism semigroups SV ⊆ G for
certain standard subspaces.

LetG be a 1-connected Lie group andW ⊆ g be a pointed invariant closed convex
cone, so that we have the Olshanski semigroup ΓG(W ) = G exp(iW ) which is the
simply connected covering of the semigroup Γ′

G(W ) ⊆ GC. We write qS : ΓG(W ) →
Γ′
G(W ) ⊆ GC for the universal covering map (Definition 4.5). We further assume

that τG ∈ Aut(G) is an involution and that the corresponding automorphism τ ∈
Aut(g) satisfies τ (W ) = −W . For an element h ∈ h = gτ , we consider the R-action
on ΓG(W ), given by

βt(s) := βs(t) := exp(th)s exp(−th) for s ∈ ΓG(W ), t ∈ R

and note that the corresponding R-action on GC extends to a holomorphic C-action
by

(18) βz(g) := βg(z) := exp(zh)g exp(−zh) for z ∈ C, g ∈ GC.

Definition 4.8. If M is a complex manifold, then we call a continuous map
f : M → ΓG(W ) holomorphic if the composition qS ◦ f : M → GC is holomorphic.

Holomorphic extensions of the orbits maps βs : R → ΓG(W ) have to be under-
stood in this sense. For z ∈ C, we say that βs(z) exists if there exists a closed
strip Sa,b ⊆ C containing R and z, and an extension of βs to a continuous map

Sa,b → ΓG(W ) which is holomorphic on Sa,b. Then we write βs(z) = βz(s) for the
value of this analytic continuation in z, which does not depend on the choice of a
and b as long as a ≤ Im z ≤ b.

Lemma 4.9. For z ∈ C, let ΓG(W )z ⊆ ΓG(W ) be the set of all elements s ∈
ΓG(W ) for which βs(z) exists. Then the following assertions hold:

(i) ΓG(W )z = q−1
S (Γ′

G(W )z) and qS ◦ βz = βz ◦ qS on ΓG(W )z.
(ii) ΓG(W )z is a closed subsemigroup of ΓG(W ) and βz : ΓG(W )z → ΓG(W ) is

a continuous homomorphism.
(iii) The closed subsemigroup ΓG(W )τS := GτG exp(i(q ∩W )) is the set of fixed

points of the involutive automorphism τS of ΓG(W ), defined by τS(g exp(ix))
= τG(g) exp(−iτ (x)).

(iv) ΓG(W )inv := {g ∈ G∩ ΓG(W )πi : βπi(g) = τG(g)} is a closed subsemigroup
of ΓG(W ) with Lie wedge

L(ΓG(W )inv) = L(ΓG(W ))inv = (g+ iW )inv.

We recall from Corollary 4.4 the explicit description of (g+ iW )inv as

(g+ iW )inv = (W ∩ q1(h))⊕ h0(h)⊕ (−W ∩ q−1(h)).

Proof. (i) Since qS ◦ βt = βt ◦ qS holds for t ∈ R, the uniqueness of analytic
continuation implies that qS(ΓG(W )z) ⊆ Γ′

G(W )z with

qS ◦ βz = βz ◦ qS : ΓG(W )z → GC.

If s ∈ ΓG(W ) is such that qS(s) ∈ Γ′
G(W )z, we fix an analytic continuation

βqS(s) : Sa,b → Γ′
G(W ) ⊆ GC of the orbit map βqS(s) : R → Γ′

G(W ). As the closed

strip Sa,b is simply connected, there exists a unique continuous lift

β̃s : Sa,b → ΓG(W ) with qS ◦ β̃s = βqS(s) ◦ qS and β̃s(0) = s.
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Then the uniqueness of continuous lifts to coverings implies that β̃s(t) = βs(t)

for t ∈ R and, by construction, β̃s is holomorphic on Sa,b. This implies that

s ∈ ΓG(W )z with βs(z) = β̃s(z).
(ii) In GC we have for Im z > 0 that

Γ′
G(W )z = {s ∈ Γ′

G(W ) : 0 ≤ Imw ≤ Im z ⇒ βw(s) ∈ Γ′
G(W )}

=
⋂

0≤Imw≤Im z

β−1
w (Γ′

G(W )),

where βw ∈ Aut(GC) is the unique automorphism from (18) with L(βw) = ew adh.
Since Γ′

G(W ) is a closed subset of GC, the subset Γ
′
G(W )z of Γ′

G(W ) is closed. Now

(i) implies that ΓG(W )z = q−1
S (Γ′

G(W )z) is also closed.
Next we show that ΓG(W )z is a subsemigroup on which βz is multiplicative. Let

s1, s2 ∈ ΓG(W )z and consider the minimal strip Sa,b ⊆ C with R ∪ {z} ⊆ Sa,b.
Then the map

βs1 · βs2 : Sa,b → ΓG(W ), z �→ βs1(z)βs2(z),

is continuous and holomorphic on Sa,b. For t∈R, we have (βs1βs2)(t)=βt(s1)βt(s2)
= βt(s1s2) because βt is an automorphism of ΓG(W ). Uniqueness of analytic
continuation therefore implies that s1s2 ∈ ΓG(W )z with βz(s1s2) = βs1(z)βs2(z) =
βz(s1)βz(s2).

(iii) On GC we have a unique antiholomorphic involution σc inducing on gC the
antilinear extension of τ , so that its group of fixed points has the Lie algebra gc.
It acts on s = g exp(ix) by σc(s) = τG(g) exp(−iτ (x)). By uniqueness of lifts to
coverings, this implies that τS defines an involutive automorphism of ΓG(W ), and
the assertion follows immediately from the formula for τS .

(iv) follows from the trivial observation that, for a family (Sj)j∈J of closed
subsemigroups of ΓG(W ), we have L

(⋂
j Sj

)
=

⋂
j L(Sj). �

Lemma 4.10 provides an interesting tool that permits us to work effectively
with holomorphic maps with values in ΓG(W ), which neither is a manifold nor
“complex”.

Lemma 4.10. Let W ⊆ g be a closed pointed convex invariant cone and

U : ΓG(W ) → B(H), U(g exp(ix)) = U(g)ei∂U(x)

be a ∗-representation obtained from a unitary representation U of G. Then, for
every holomorphic map f : M → ΓG(W ), M a finite dimensional complex manifold,
the composition U ◦ f : M → B(H) is holomorphic.

Proof. As the assertion is local with respect to M , we may w.l.o.g. assume that M
is connected and that f(M) has compact closure in ΓG(W ). Let f : M → ΓG(W )
be a holomorphic map. Then f ′ := qS ◦ f : M → Γ′

G(W ) = GC is holomorphic by
definition. We consider the ideal n := W −W � g and the corresponding normal
integral subgroup N � G. As N is closed and 1-connected by [HN12, Thm. 11.1.21],
we obtain a quotient group Q := G/N . We likewise have a closed normal subgroup
NC � GC and QC := GC/NC. Let r : GC → QC denote the quotient map. Then

r(Γ′
G(W )) = r(G exp(iW )) = r(G) ⊆ (QC)

σ ⊆ QC

is contained in the totally real submanifold (QC)
σ of fixed points of the antiholo-

morphic involution σ of QC corresponding to the complex conjugation of qC with
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respect to q. We conclude that the holomorphic map r ◦ f ′ : M → r(G) ⊆ QC

is constant, hence equal to r(g′) for some g′ ∈ qS(G) ∩ f ′(M). This implies the
existence of a holomorphic map h : M → NC with f ′(m) = g′h(m) for m ∈ M .
Lifting to the covering space ΓG(W ), we conclude that there exists a g ∈ G with
f(m) = gh(m) for all m ∈ M , where h : M → ΓN (W ) is a holomorphic map.

Pick x ∈ W 0 (the interior of W with respect to n) and put sn := exp(n−1x) ∈
ΓG(W

0). We thus obtain a sequence U(sn)
∗ = U(sn) of hermitian operators con-

verging strongly to 1. Further, snh(M) is contained in the complex manifold
ΓN (W 0) and the map hn : M → ΓN (W 0),m �→ snh(m) is holomorphic. There-
fore the maps Hn := U ◦ hn : M → B(H) are holomorphic and we want to show
that H := U ◦ h is also holomorphic. For ξ, η ∈ H, we have

lim
n→∞

〈ξ,Hn(m)η〉 = lim
n→∞

〈U(sn)ξ,H(m)η〉 = 〈ξ,H(m)η〉,

and the boundedness of H(M)η implies that the convergence is uniform on M . This
shows that the bounded functionH : M → B(H) is weakly holomorphic, hence holo-
morphic by [Ne00, Cor. A.III.5]. Finally, the relation U(f(m)) = U(g)U(h(m)) =
U(g)H(m) implies that U ◦ f is holomorphic. �

Theorem 4.11 is the main result of this section. It provides a mechanism to
construct unitary endomorphisms of V by the inclusion SU

inv ⊆ SV. It implements the
analytic continuation process from Theorem 3.3 inside the Olshanski semigroup SU .

Theorem 4.11 (Inclusion Theorem). Let G be a 1-connected Lie group with the
involution τG and τ ∈ Aut(g) the induced automorphism. Further, let (U,H) be
a continuous antiunitary representation of G � {idG, τG} with discrete kernel and
consider the standard subspace V ⊆ H specified by JV = U(τG) and ΔV = e2πi∂U(h)

for some h ∈ gτ . Then

SU
inv ⊆ SV := {g ∈ G : U(g)V ⊆ V} and (g+ iCU )inv ⊆ L(SV).

Proof. We write U : SU → B(H), g exp(ix) �→ U(g)ei∂U(x) for the canonical exten-
sion of the unitary representation U to SU (Proposition 4.6). For s ∈ SU

inv, we
consider the bounded function

F : Sπ → B(H), F (z) := U(βz(s))

which is defined because βz(s) ∈ SU for z ∈ Sπ. We have

F (z+ t) = U(exp th)F (z)U(exp(−th)) = Δ
−it/2π
V F (z)Δ

it/2π
V for t ∈ R, z ∈ Sπ,

and F is strongly continuous (Proposition 4.6). That it is holomorphic on Sπ follows
from Lemma 4.10 and the holomorphy of the map Sπ → ΓG(CU ), z �→ βz(s) in the
sense of Definition 4.8. We further note that F (0) = U(s) ∈ U(G) is unitary and
that

JVF (0)JV = JVU(s)JV = U(τG(s)) = U(βs(πi)) = F (πi).

Now Theorem 3.3(iv) implies that U(s) = F (0) ∈ AV, and thus s ∈ SV.
The inclusion of the Lie wedges is an immediate consequence of

L(SU
inv) = (g+ iCU )inv

(Lemma 4.9(iv)). �
Problem 4.12. Show that we actually have the equality SU

inv = SV. In the Germ
Theorem (Theorem 5.1) we shall see that both subsemigroups do at least have the
same germ, i.e., that there exists an e-neighborhood U in G with SU

inv ∩U = SV∩U .
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Remark 4.13.
(a) The construction in the preceding proof shows that, for s ∈ SU

inv, the element
sc := βπi

2
(s) = h exp(ix) ∈ SU satisfies

Û(s) = απi
2
(U(s)) = U(sc) = U(h)ei∂U(x)

(cf. Proposition 3.6(ii)). Therefore Û(s) is injective with dense range (cf. Lemma 3.8).

If SV coincides with SU
inv, this implies that ŜV ⊆ B(H)reg.

(b) On the level of the Lie wedge L(SV), we know that

(g+ iCU )inv = (CU ∩ q1)⊕ h0 ⊕ (−CU ∩ q−1)

is a cone with a rather simple structure and completely determined by the pair (τ, h)
and the cone CU . In Section 5, we study SV from a different perspective and we
shall see that this cone actually generates a 3-graded Lie subalgebra (Theorem 5.4
and Corollary 5.5).

The global structure of the semigroup SU
inv is hard to analyze in the non-abelian

context. In Subsection 6.2 we explain how to reduce the determination of this
semigroup to the case where e2πi ad h = idgC

, i.e., adh is diagonalizable with integral
eigenvalues.

5. The subsemigroups SV in finite dimensional groups

As in Section 4.3, we start this section with an antiunitary representation (U,H)
of a finite dimensional graded Lie group G�{idG, τG}, where G is 1-connected, and

consider the standard subspace V = Vγ determined by JV = U(τG) and Δ
−it/2π
V =

U(exp th) with h ∈ h as explained in the introduction (see (4) and (5)). Under the
assumption that U has discrete kernel, we determine the Lie wedge of the closed
subsemigroup

SV = {g ∈ G : U(g)V ⊆ V} with the unit group GV = {g ∈ G : U(g)V = V}.

Our main result on L(SV) (Theorem 5.4) asserts that

L(SV) = (−CU ∩ q−1(h))⊕ h0(h)⊕ (CU ∩ q1(h))

and that L(SV) spans a 3-graded Lie subalgebra of g. This result is based on the
Germ Theorem (Theorem 5.1), asserting the existence of an e-neighborhood U in
G with SU

inv ∩ U = SV ∩ U , which implies in particular that L(SV) = L(SU
inv).

In Subsection 5.2 we discuss the unit group GV of SV, and we discuss some
examples in Subsection 5.3.

5.1. The Lie wedge of SV. Theorem 5.1 shows that the subsemigroups SV and
SU
inv of G have the same germ, i.e., identical intersection with some e-neighborhood.

Theorem 5.1 (The Germ Theorem). If ker(U) is discrete, then there exists an
e-neighborhood U ⊆ G such that SV ∩ U = SU

inv ∩ U .

Proof. In Theorem 4.11 we have already seen that SU
inv ⊆ SV. Therefore it suffices

to find U such that SV ∩ U ⊆ SU
inv. We write Hω ⊆ H for the subspace of analytic

vectors of the representation U of G (cf. [Nel59, Thm. 4]).
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Step 1. By [HN93, Lemma 9.16], there exists a dense subspace D ⊆ Hω which is
equianalytic in the sense that there exists an open convex circular 0-neighborhood
W ⊆ gC, such that the series

Uη(x) :=

∞∑
n=0

1

n!
(dU(x))nη

converges for η ∈ D and x ∈ W and defines a holomorphic function Uη : W → H.
It satisfies

(19) Uη(x) = U(expx)η for x ∈ W ∩ g

(see [Ne11, §6] for more on analytic vectors).

Step 2. We claim that

(20) Uη(ix) = ei∂U(x)η for x ∈ W ,

where the right hand side has to be understood in terms of the measurable functional
calculus for the selfadjoint operator i∂U(x). First we observe that the function

F : {z ∈ C : zx ∈ W} → H, F (z) = Uη(zx)

is holomorphic and coincides for z ∈ [−1, 1] ⊆ R with U(exp zx)η. Let ε > 0 be
such that Ω := {a + ib : |a| < ε,−ε < b < 1 + ε} satisfies Ωx ⊆ W . Then the
continuous function F (t) := U(exp tx)η on (−ε, ε) has an analytic continuation to
Ω, and this implies that it even extends to the strip Ω′ := R+ (−ε, 1 + ε)i ⊆ C, so

that [NÓ18, Lemma A.2.5] shows that η ∈ D(eti∂U(x)) for −ε < t < 1 + ε. As the
function Ω′ → H, z �→ ez∂U(x) is also holomorphic, we obtain Uη(ix) = ei∂U(x) by
analytic continuation.

Step 3. Let W ′ ⊆ W ⊆ gC be an open convex 0-neighborhood such that the Baker–
Campbell–Hausdorff product x ∗ y is defined by the convergent series for x, y ∈ W ′

and defines a holomorphic function W ′×W ′ → W ⊆ gC ([HN12, §9.2.5]). We claim
that

(21) Uη(x1 ∗ x2) = U(expx1)U
η(x2) for x1 ∈ W ′ ∩ g, x2 ∈ W ′

if W ′ is chosen small enough. As U(expx1) is unitary, both sides define H-valued
functions holomorphic in x2. Fixing x1 ∈ g ∩ W ′, both sides are equal by [Ne11,
Lemma 6.7] if we choose W ′ small enough. Here we use that the invariant subspace
U(gC)η generated by η under the derived representation is equianalytic ([Ne11,
Prop. 6.6]). Now (21) follows by analytic continuation.

Step 4. For x1, x2 ∈ g ∩W ′ we now obtain with (20) and (21)

(22) Uη(x1 ∗ ix2) = U(expx1)e
i∂U(x2)η.

Shrinking W ′ if necessary, we may further assume that the map

(W ′ ∩ g)× (W ′ ∩ g) → W , (x, y) �→ x ∗ iy
is a diffeomorphism onto an open subset W ′′ ⊆ W . As ker(U) is discrete, we may
further assume that U ◦ exp is injective on W ′ ∩ g.

Step 5. Now let W̃ :=
⋂

0≤y≤π e
−yi adh(W ′ ∩ W ′′) and observe that, by the com-

pactness of [0, π], this is an open convex 0-neighborhood in gC. For x ∈ W̃ ∩ g with
expx ∈ SV, we then find an ε > 0 such that

ez adhx ∈ W ′ ∩W for z ∈ Ω′′ := {w = a+ ib ∈ C : |a| < ε,−ε < b < 1 + ε}.
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Then Ω′′ → H, z �→ Uη(ez adhx) is a holomorphic function, and so is the continuous
function

Sπ → H, z �→ αz(U(expx))η

(Theorem 3.3). Since both functions coincide on the interval (−ε, ε) ⊆ R, we obtain
by analytic continuation

(23) αti(U(expx))η = Uη(eti adhx) for 0 ≤ t ≤ π.

As eit adhx ∈ W ′′ for 0 ≤ t ≤ π, we can write this element uniquely as xt ∗ iyt with
xt, yt ∈ g ∩W ′. We now obtain with (22)

‖Uη(xt ∗ iyt)‖ = ‖U(expxt)e
i∂U(yt)η‖ = ‖ei∂U(yt)η‖

and
‖Uη(xt ∗ iyt)‖ = ‖Uη(eit adhx)‖ = ‖αit(U(expx))η‖ ≤ ‖η‖

because ‖αit(U(expx))‖ ≤ ‖U(expx)‖ = 1 by Theorem 3.3. Comparing both
terms, we see that

‖ei∂U(yt)η‖ ≤ ‖η‖ for η ∈ D.

As the operator ei∂U(yt) is selfadjoint, it is in particular closed. The above estimate
shows that the closure of the restriction ei∂U(yt)|D is a bounded operator on D = H.
We conclude that ‖ei∂U(yt)‖ ≤ 1, and hence that i∂U(yt) ≤ 0. This implies that
yt ∈ CU for 0 ≤ t ≤ π. This in turn shows that

exp(eti adhx) = exp(xt ∗ iyt) = exp(xt) exp(iyt) ∈ SU

and therefore βit(expx) ∈ SU exists for t ∈ [0, π]. To see that expx ∈ SU
inv, it

remains to show that

(24) βπi(expx) = τG(expx) = exp(τ (x)).

From Theorem 3.3 we recall that

απi(U(expx)) = JVU(expx)JV = U(exp τ (x)).

We thus obtain for t = π and η ∈ D:

‖η‖ = ‖απi(U(expx))η‖ = ‖ei∂U(yπ)η‖,
and since i∂U(yπ) ≤ 0, this leads to ∂U(yπ)η = 0. As ker(U) is discrete, it follows
that yπ = 0, so that eπi adhx = xπ ∈ g. Now (23) yields

U(exp τ (x))η = απi(U(expx))η
(23)
= Uη(eπi ad hx) = U(exp(eπi adhx))η for η∈D,

which in turn leads to U(exp(eπi ad hx)) = U(exp τ (x)). As U ◦ exp is injective on
W ′ ∩ g, we obtain βπi(expx) = exp(eπi ad hx) = τG(expx), and this finally proves

that expx ∈ SU
inv for x ∈ W̃ ∩ g with expx ∈ SV. �

Corollary 5.2 is a converse to Theorem 4.11 on the level of infinitesimal genera-
tors. It follows immediately from the Germ Theorem (Theorem 5.1), Lemma 4.9(iv),
and the observation that subsemigroups with identical germs have identical Lie
wedges.

Corollary 5.2. If ker(U) is discrete, then

L(SV) = (g+ iCU )inv := {x ∈ g+ iCU : e[0,π]i adhx ⊆ (g+ iCU ); e
πi adhx = τ (x)}.

Before we can prove the Structure Theorem, we need one more ingredient. We
recall that a standard pair (V, U) consists of a standard subspace V ⊆ H and a
unitary one-parameter group (Ut)t∈R satisfying UtV ⊆ V for t ≥ 0.
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Proposition 5.3. Let (G, εG) be a finite dimensional graded Lie group and (U,H)
be an antiunitary representation of G. Suppose that (V, U j), j = 1, 2, are standard
pairs for which there exists a graded homomorphism γ : R× → G and x1, x2 ∈ g

such that

JV = U(γ(−1)), Δ
−it/2π
V = U(γ(et)), and

U j(t) = U(exp txj), t ∈ R, j = 1, 2.

Then the unitary one-parameter groups U1 and U2 commute.

In Subsection 2.3 we described an example showing that, without assuming that
they come from a finite dimensional Lie group G, the two one-parameter groups
U1 and U2 need not commute.

Proof. The positive cone CU ⊆ g of the representation U is a closed convex Ad(G)-
invariant cone. As we may w.l.o.g. assume that U is injective, the cone CU is
pointed.

Writing Δ
−it/2π
V = U(exp th) and U j

t = U(exp txj) with h, x1, x2 ∈ g, we have
[h, xj ] = xj for j = 1, 2 and x1, x2 ∈ CU . If

gλ(h) = ker(adh− λ1)

is the λ-eigenspace of adh in g, then [gλ(h), gμ(h)] ⊆ gλ+μ(h), so that g+ :=∑
λ>0 gλ(h) is a nilpotent Lie algebra. Therefore n := (CU ∩ g+) − (CU ∩ g+)

is a nilpotent Lie algebra generated by the pointed invariant cone CU ∩ g+. By
[Ne00, Ex. VII.3.21], n is abelian. Finally xj ∈ CU ∩ g1(h) ⊆ n implies that
[x1, x2] = 0. �

Theorem 5.4 not only provides an explicit description of the Lie wedge L(SV),
we also show that L(SV) spans a 3-graded Lie subalgebra gred of g.

Theorem 5.4 (Structure Theorem for L(SV)). If ker(U) is discrete, then

(25) L(SV) = C− ⊕ h0(h)⊕ C+, where C± = ±CU ∩ q±1(h).

If q± := C± − C± are the linear subspaces generated by C±, then L(SV) spans the
3-graded Lie subalgebra gred := q− ⊕ h0(h)⊕ q+.

Proof. From Corollary 5.2 we know that (g + iCU )inv = L(SV). Further, Corol-
lary 4.4 implies that

(g+ iCU )inv = (CU ∩ q1(h))⊕ h0(h)⊕ (−CU ∩ q−1(h)).

This proves (25). It follows in particular that q± = C± − C± ⊆ g±1(h). Proposi-
tion 5.3 shows that the two subspaces q± of g are abelian. Further, q± ⊆ g±1(h)
implies that [q−, q+] ⊆ h ∩ g0(h) = h0(h), and from Corollary 3.5 we know that
h0(h) = L(SV) ∩ −L(SV). As the cone L(SV) is a Lie wedge, the operators ead x,
x ∈ L(SV)∩h, on q preserve the cone L(SV)∩q. This shows that [[q+, q−], q±] ⊆ q±,
which implies that gred is a Lie subalgebra of g. It is clearly 3-graded by adh, and
the restriction of τ to gred coincides with the restriction of eπi adh. �

Corollary 5.5 (The wedge L(SV) in the 3-graded case). Suppose that U has discrete
kernel, and that

g = g−1(h)⊕ g0(h)⊕ g1(h) with τ = eπi ad h,
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so that h = g0(h) and q = g1(h)⊕ g−1(h). Then

L(SV) = C− ⊕ g0(h)⊕ C+, where C± = g±1(h) ∩ ±CU .

Independence of SV from JV.

Proposition 5.6 (Independence of SV from JV). Let (U j ,H)j=1,2 be antiunitary
representations of the graded Lie group (G, εG) which coincide on G+. Then, for
every graded homomorphism γ : R× → G, and the corresponding standard subspaces
V1γ and V2γ , we have

SV1γ
= SV2γ

.

Proof. By [NÓ17, Thm. 2.11] the antiunitary representations U1 and U2 are equiva-
lent because their restrictions to G+ coincide. Hence there exists a unitary operator
Φ ∈ U(H) with Φ ◦ U1(g) = U2(g) ◦ Φ for all g ∈ G. This implies in particular
that Φ(V1γ) = V2γ , and since Φ commutes with U1(G+) = U2(G+), it follows that
SV1γ

= SV2γ
. �

5.2. The unit group GV. In the following we denote the centralizer of x ∈ g in G
by CG(x) := {g ∈ G : Ad(g)x = x}.
Lemma 5.7. Suppose that ker(U) is discrete. The groups GV = SV ∩ CG+

(h) ⊇
CG+

(h)τG have the same Lie algebra gV = L(SV) ∩ g0(h) = h0(h). They coincide if
U is injective.

Proof. If g ∈ G+ satisfies Ad(g)h = h, i.e., g ∈ CG+
(h), then the unitary operator

U(g) commutes with ΔV. Therefore Corollary 3.4 implies that U(g)V ⊆ V is
equivalent to U(g)V = V. If g ∈ CG+

(h)τG , then U(g) commutes with JV and ΔV,
so that U(g)V = V (Lemma 3.2). This shows that

CG+
(h)τG ⊆ GV = SV ∩ CG+

(h).

If, in addition, U is injective, then U(g) ∈ GV implies that U(g) commutes with
U(τG) = JV, and therefore τG(g) = g.

For the Lie algebras of these groups, we obtain

gV = L(SV) ∩ −L(SV) = L(SV) ∩ g0(h) ⊇ h0(h).

Since the kernel of U is discrete and the derived representation is injective, the
fact that every x ∈ gV generates a unitary one-parameter group commuting with
JV = U(τG) (Lemma 3.2) implies that τ (x) = x, i.e., x ∈ h. We conclude that
gV = h0(h). This proves the assertion on the Lie algebras. �

Example 5.8 (Inequality in Lemma 5.7). We consider the group G+ = S̃L2(R)
whose center is Z(G+) ∼= Z ∼= π1(PSL2(R)). Here the fundamental group of
PSL2(R) is generated by the loop obtained from the inclusion PSO2(R) ↪→ PSL2(R).

Let τG ∈ Aut(G+) be the involution given on the Lie algebra level by τ

(
a b
c d

)
=(

a −b
−c d

)
, and observe that it induces the map τG(z) = z−1 on Z(G+).

Now consider an antiunitary representation (U,H) of PGL2(R), so that the cor-
responding representation of G := G+ � {id, τG} has kernel Z(G+). We there-
fore have Z(G+) = ker(U) ⊆ GV for every V ∈ Stand(H). On the other hand,
Z(G+) ⊆ CG+

(h), but Z(G+) is not pointwise fixed by τG. We therefore have a
proper inclusion CG+

(h)τG ⊂ GV in Lemma 5.7.
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Remark 5.9 (Degenerate cases).
(a) If q = {0} and G+ is connected, then τG = idG, so that Lemma 5.7 and

Corollary 3.5 imply that SV = GV = CG+
(h).

(b) If L(SV)∩q = {0}, then the Structure Theorem 5.4 implies that L(SV) = h0(h)
is a Lie subalgebra of h. Now [HHL89, Thm. IV.2.11] implies that the group GV

is “isolated” in SV, i.e., there exists an e-neighborhood U ⊆ G with U ∩ SV ⊆ GV.
Here we may w.l.o.g. assume that U = UGV is a tubular neighborhood of GV.

5.3. Some examples.

Example 5.10.
(a) (The affine group) For the graded group G := Aff(R) = R�R× and represen-

tations of the form U(b, a) := eibPUV(a), V ∈ Stand(H), we can use Theorem 5.4 to
calculate the semigroup SV. Since SV contains all positive dilations (0, a), a > 0, this
closed subsemigroup of R�R×

+ is of the form SV = C�R×
+, where C = (R×{1})∩SV

is a closed additive subsemigroup of R invariant under multiplication with positive
scalars. This leaves only the possibilities C = {0}, [0,∞) or (−∞, 0]. Comparing
with the Structure Theorem 5.4, we obtain

(26) SV = C �R×, where C := {x ∈ R : xP ≥ 0}.
This case can also be derived from the standard subspace version of the Borchers–

Wiesbrock Theorem ([Lo08, §3.2] and [NÓ17, Thms. 3.13, 3.15]).
(b) (Higher dimensional dilation groups) More generally, we consider a group

of the form G = E �α R×, where the homomorphism α : R× → GL(E) satisfies
α(r) = r1 for r > 0. Then τE := α(−1) is an involution and we write E = E+⊕E−

for the corresponding eigenspace decomposition.
Let (U,H) be an antiunitary representation of G, and consider the standard

subspace V ∈ Stand(H) with UV(r) = U(0, r) for r ∈ R×. Then we also have

SV = C �R×
+,

where C ⊆ E is a closed subsemigroup containing 0 which is invariant under mul-
tiplication with positive scalars, hence a closed convex cone. As h0(h) = {0} × R

and g1(h) = E, our Structure Theorem implies that C = CU ∩ E−. On the other
hand, [Lo08, Thm. 3.15] implies that E ∩ CU ⊆ E−, so that

C = CU ⊆ E−.

Note that we cannot apply (a) directly to the one-dimensional subspaces of E
because we did not assume that α(−1) = − idE .

Example 5.11 (More general R×-actions). We consider a group of the form G =
E�αR

×, so that τE := α(−1) is an involutive automorphism of E. Accordingly, we
write E = E+ ⊕ E− with E± = ker(τE ∓ 1) for the τE-eigenspace decomposition.
We then have g = E�Rh with q = E− and h = E+�Rh. As SV contains {0}�R×,
we have

(27) SV = (SV ∩E)�α R×
+,

where SV∩E is a closed subsemigroup of E, invariant under α(R×
+). We know from

Theorem 5.4 that

L(SV) = (E−
1 (h) ∩ CU )⊕ (−E−

−1(h) ∩ CU )⊕ (E+
0 (h)⊕ Rh),

where
L(SV) ∩ E− = (E−

1 (h) ∩ CU )⊕ (−E−
−1(h) ∩ CU )
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is a pointed convex cone determined by the positive cone CU of U , and

L(SV) ∩ −L(SV) = E+
0 (h)⊕ Rh

is a Lie subalgebra. Here we can even use Subsection 4.1 to determine the subsemi-
group SU

inv of SV. From SU
inv = (SU

inv ∩ E)�R×
+ and

SU
inv ∩E = (E + i(CU ∩ E))inv = L(SV) ∩ E,

we obtain

(28) SU
inv = (L(SV) ∩E)�R×

+,

so that SU
inv is the maximal infinitesimal generated subsemigroup of SV. Presently

we do not know if we always have SU
inv = SV for this class of groups, but this is

work in progress.

Example 5.12. Suppose that g is a simple real Lie algebra, that G = G+�{id, τG},
where the group G+ is connected, and that (U,H) is an antiunitary representation
with non-zero positive cone CU and discrete kernel. This already implies that g

is quite special; it has to be a hermitian Lie algebra (see [Ne00] for details and a
classification). As J := U(τG) is antiunitary, −τ (CU ) = CU by Remark 4.7. We
pick h ∈ h = gτ and consider the corresponding semigroup SV.

If q = {0}, then τ = idg, so that U(G+) ⊆ U(H)J implies that SV is a group,
namely the centralizer of ΔV in G+ (Remark 5.9(a)). We may therefore exclude
this case and assume that τ �= idg.

The Structure Theorem (Theorem 5.4) shows that

L(SV) = C− ⊕ h0(h)⊕ C+, where C± = ±CU ∩ q±1(h).

In general, this cone may be rather small, but we know from Theorem 5.4 that it
spans a 3-graded Lie algebra gred. If g = gred, then g itself is 3-graded, hence a her-
mitian Lie algebra of tube type, i.e., the conformal Lie algebra of a euclidean Jordan
algebra (see [Ne18, §3] for more details). In this case and for the centerless group
G with Lie algebra g, we have determined the semigroup SV in [Ne18, Thms. 3.8,
3.13]: It coincides with the product set

SV = exp(C+)(G
τG
+ ) exp(C−).

6. Perspectives

6.1. Classification problems. In the light of our results on the structure of the
Lie wedges L(SV), one would like to classify all situations, where these cones gener-
ate the Lie algebra g. As this requires g to be 3-graded by adh with τ = eπi adh, we
have to consider Lie groups G+ with Lie algebra g and ad-diagonalizable elements
h ∈ g with Spec(adh) ⊆ {−1, 0, 1}. Then we have to study unitary representations
of G+ extending to antiunitary representations of G = G+ � {idG, τG} in such a
way that the two cones g±1(h)∩CU generate g±1(h). Then the ideal g1 := [q, q]⊕q

generated by q is contained in CU − CU , so that the cone CU1 for the restriction
U1 := U |G1 is generating. This classification is presently carried out by Daniel
Oeh; the first part of this project, concerning semisimple Lie algebras, is contained
in [Oeh20a], and the second one dealing with general Lie algebras in [Oeh20b].

Since we expect the semigroup SV to be adapted to any direct integral decom-
position into irreducible representations (cf. [MT18, App. B]), the main point is
to understand the irreducible representations. For the normal subgroup G1 we
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thus have to study irreducible antiunitary representations U1 for which the cone
CU1 is pointed and generating. Up to the extendability question from G1

+ to G1

(cf. [NÓ17, Thm. 2.11(c),(d)]), we are then dealing with unitary highest weight
modules, whose classification theory can be found in [Ne00, §X.4]. So the first
steps in a classification should start with a faithful unitary highest weight repre-
sentation (Uλ,H) of a 1-connected Lie group G1

+ and a derivation D ∈ der(g1)
satisfying D3 = D, such that CU ∩ g±1(D) generates g±1(D). Then g = g1 �D R is
a Lie algebra to which our results apply.

6.2. Global information on the semigroup SV. We recall the context of Theo-
rem 4.11 with the semigroup SU = G exp(iCU ) on which the analytic extension of
the unitary representation (U,H) of the 1-connected Lie group G lives, and the sub-
semigroup SU

inv ⊆ SV which has the same germ as SV (Theorem 5.1). Therefore the
picture is very clear for the Lie wedges, but the global semigroups SV and SU

inv may
be more complicated and not even be generated by their one-parameter subsemi-
groups. It would be interesting to understand the structure of the subsemigroup
SU
inv ⊆ G better, but this problem is quite intricate as well. However, below we

shall see that it reduces to the situation where e2πi ad h = 1, which is a non-abelian
analog of Lemma 4.2.

Under the additional assumption that Spec(adh) ⊆ {−1, 0, 1}, i.e., that adh
defines a 3-grading of g, it is shown [Ne19b, Thm. 2.21] (with slightly different
notation) that

SU
inv = exp(C−)G

0 exp(C+),

where G0 ⊆ G is the centralizer of h.

Lemma 6.1. Consider the 1-connected complex Lie group GC with Lie algebra gC

and the two connected Lie subgroups G := Gσ
C
and Gc := Gσc

C
, where σ and σc are

the two antiholomorphic involutions of GC for which the derivative in e is complex
conjugation with respect to g and gc, respectively. Then the following assertions
hold:

(i) τGC
= σσc = σcσ is the holomorphic involution integrating the complex

linear extension of τ to gC.
(ii) For ζG := βπi/2 ∈ Aut(GC) and g ∈ G, we have ζG(g) ∈ Gc if and only

if βπi(g) = τG(g), and this implies that ζ4G(g) = g, so that ζ−1
G (Gc) ∩ G ⊆

Fix(ζ4G).
(iii) For elements of the form gc = h exp(x) ∈ Gc with h ∈ Hc := (Gc)τG and

x ∈ iq with Spec(adx) ⊆ R, we have gc ∈ ζG(G) if and only if h ∈ ζG(G)
and x ∈ ζ(g), where ζ ∈ Aut(gC) is the differential of ζG. If this is the
case, then eπi ad hx = −x and βπi(h) = h.

Proof. (i) follows by inspection of the differentials.
(ii) For the automorphisms βz ∈ Aut(GC) with differential ez adh, we have

σ ◦ βz = βz ◦ σ and σc ◦ βz = βz ◦ σc for z ∈ C.

For z = πi/2, we obtain in particular

σ ◦ ζG = ζ−1
G ◦ σ and σc ◦ ζG = ζ−1

G ◦ σc.

Now let g ∈ G. The condition ζG(g) ∈ Gc is by σc(g) = σcσ(g) = τG(g) equivalent
to

ζG(g)
!
=σc(ζG(g)) = ζ−1

G (σc(g)) = ζ−1
G (τG(g)),
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hence to τG(g) = ζ2G(g) = βπi(g). If this condition is satisfied, then

g = τG(τG(g)) = τG(ζ
2
G(g)) = ζ2G(τG(g)) = ζ4G(g).

(iii) If h ∈ ζG(G) and x ∈ ζ(g), then we clearly have h expx ∈ ζG(G).
Suppose, conversely, that g = h expx with h ∈ Hc and x ∈ iq with Spec(adx) ⊆

R satisfies g ∈ ζG(G). As ζG commutes with τG and the group G is invariant under
τG, the group ζG(G) is also τG-invariant. Hence g ∈ ζG(G) implies g� := τG(g)

−1 ∈
ζG(G) and thus also g�g = exp 2x ∈ ζG(G). The latter condition can be written
as exp(2σζ−1(x)) = exp(2ζ−1(x)). Since adx has real spectrum and GC is simply
connected, we obtain with Lemma B.1 that σζ−1(x) = ζ−1(x), i.e., x ∈ ζ(g). This
in turn implies that h ∈ ζG(G).

From (ii) we now obtain ζ(x) = ζ2(ζ−1(x)) = τ (ζ−1(x)) = ζ−1(τ (x)) = −ζ−1(x),
hence ζ2(x) = −x. We likewise get ζG(h) = ζ2G(ζ

−1
G (h)) = τG(ζ

−1
G (h)) = ζ−1

G (τG(h))

= ζ−1
G (h), and therefore ζ2G(h) = h. �

Proposition 6.2 reduces the determination of SU
inv to the case where ζ4 = 1, i.e.,

where adh is diagonalizable with integral eigenvalues. By Lemma 6.1(ii) we may
even assume that τζ2 = idgC

, so that ζ2 = τ and therefore ζ(g) = gc.

Proposition 6.2. Let qS : S
U = ΓG(CU ) → Γ′

G(CU ) ⊆ GC be the universal cov-
ering map of Γ′

G(CU ), where GC and G are the 1-connected Lie groups with Lie
algebra gC and g, respectively. Then qS(S

U
inv) is contained in the connected sub-

group Fix(ζ4G) of GC.

Proof. To apply Lemma 6.1(ii), we simply have to observe that qS(G) = (GC)
σ is

called G in Lemma 6.1 and that

βπi(qS(s)) = qS(βπi(s)) = qS(τG(s)) = τG(qS(s)) for s ∈ SU
inv.

The subgroup Fix(ζ4G) = (GC)
ζ4
G is connected by Theorem B.2. �

Remark 6.3.
(a) One can even go one step further than the preceding proposition by using

the same trick as in the proof of Lemma 4.10: Let g ∈ SU
inv ⊆ G and consider the

corresponding analytic extension

βg : Sπ → SU , z �→ βz(g)

of the orbit map of g. Then the argument in the proof of Lemma 4.10 shows that
βg(Sπ) ⊆ gΓN (CU ) for n = CU − CU , so that we obtain in particular

n � d

dt

∣∣∣
t=0

g−1βg(t) = Ad(g)−1h− h.

We conclude that

Ad(g)h ∈ h+ n for g ∈ SU
inv.

Therefore SU
inv is contained in a Lie subgroup B ⊆ G satisfying

Ad(B)h− h ⊆ n and ηG(B) ⊆ Fix(τGβπi) ⊆ Fix(ζ4G).

For the Lie algebra b of B this implies that [b, h] ⊆ n, so that the semisimplicity of
adh yields

b ⊆ n+ b0(h) ⊆ n+ h0(h),

where the last equality follows from the equality of eπi adh and τ on b.
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As h0 ⊆ L(SV) = L(SU
inv) and the corresponding integral subgroup H0(h) ⊆ G is

contained in SU
inv, we have

SU
inv ∩B ⊆ (SU

inv ∩N)H0(h),

so that the main point is to understand the subsemigroup

SU
inv ∩N.

(b) The subgroup Γ := eR ad h � {1, τ} ⊆ Aut(g) is abelian and adh is diagonal-
izable over R. Its Zariski closure is generated by the single element γ := ead hτ be-
cause γ2 = e2 adh generates a Zariski dense subgroup of eR ad h. Hence Theorem B.2
implies that the subgroup (GC)

Γ is connected. Its Lie algebra is gΓ
C
= hC,0(h) and

contains h0(h) as a real form.

Each automorphism βz ∈ Aut(GC) commutes with the holomorphic involution τ ,
and hence with the holomorphic antiinvolution g� = τ (g)−1. As G and SU are
invariant under 
 because CU is invariant under −τ , it follows that SU

inv is 
-invariant
as well. Therefore g = h exp(x) ∈ ζG(S

U
inv) ⊆ (SU )τS implies that exp(2x) = g�g ∈

ζG(S
U
inv). But it is not clear if this implies that exp(x) ∈ ζG(S

U
inv).

The following question is of a similar nature. Let x ∈ g and suppose that
z := eyi adhx ∈ gC satisfies exp 2z ∈ Γ′

G(W ) ⊆ GC. Does this imply that exp(z) ∈
Γ′
G(W )? It seems that such questions are hard to answer, as Example 6.4 shows.

Example 6.4. Consider the subsemigroup

S := {g ∈ GLn(C) : ‖g‖ ≤ 1} = Un(C) exp(C),

where C = {X ∈ Hermn(C) : X ≤ 0}.

For n = 2, we consider matrices of the form

s := ‖g‖−1g for g =

(
ε 1
0 ε

)
, ε > 0.

Then ‖s‖ ≤ 1, so that s ∈ S. Moreover, ε−1g is unipotent with

X := log g = (log ε)1+

(
0 ε−1

0 0

)
.

Then

Y := log s = X − (log ‖g‖)1 = log(ε‖g‖−1)1+

(
0 ε−1

0 0

)
satisfies s = eY ∈ S. That etY ∈ S holds for all t ≥ 0 is equivalent to Y being
dissipative, i.e., to

0 ≥ 1
2 (Y + Y ∗) = log(ε‖g‖−1)1+

1

2ε

(
0 1
1 0

)
(Remark 3.11(d)), which is equivalent to log(ε)− log(‖g‖) + 1

2ε ≤ 0. For ε → 0, we

have ‖g‖ → 1, and 1
2ε > − log(ε) if ε is sufficiently small. For any such ε, we then

have Y �∈ L(S), although eY ∈ S.
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6.3. Extensions to infinite dimensions.

6.3.1. Wick rotations for non-uniformly continuous actions. It would be very inter-
esting to understand to which extent Section 4 can be generalized beyond uniformly
continuous actions on Banach spaces, including W ∗-dynamical systems. A natural
setting would be that E is a real Banach space, endowed with the following data:

• A continuous involution τ ∈ GL(E); we write E = E+ ⊕ E−, E± :=
ker(τ ∓ 1) for the τ -eigenspace decomposition.

• A subspace E∗⊆E′ of the topological dual space which is norm-determining
in the sense that ‖v‖ = sup{|α(v)| : α ∈ E∗, ‖α‖ ≤ 1}.

• An R-action α : R → GL(E) commuting with τ such that, for every λ ∈ E∗
and for every v ∈ E, the functions t �→ λ(αt(v)) are continuous. We say
that α is E∗-weakly continuous.

• A pointed closed convex cone W ⊆ E, invariant under −τ and the one-
parameter group (αt)t∈R.

We say that, for v ∈ EC and z0 ∈ C, the element αv(z0) ∈ EC exists, if the
orbit map αv(t) := αt(v) extends analytically to an E∗-weakly continuous map on
a closed strip Sa,b containing z0.

We expect a natural analog of Lemma 4.2 to hold. If x ∈ E is such that απi(x)
exists and equals τ (x), then we should have an E∗-weakly convergent expansion
x =

∑
n∈Z

xn with αt(xn) = etnxn for t ∈ R and τ (xn) = (−1)nxn. This reduces
the interesting situations to the case where ζ := απi/2 exists on a dense subspace

and satisfies ζ4 = 1. As we cannot expect the expansion of x to be finite, the
arguments in the proof of Proposition 4.3 fail. Presently, we are not aware of
examples, where the conclusion of Proposition 4.3 fails.

As Olshanski semigroups and the extension of unitary representations also works
to some extent for Banach–Lie groups [MN12], one may expect that large portions
of our results can be generalized to Banach–Lie groups endowed with a suitably
continuous action of R×, encoding the modular objects.

6.3.2. The subsemigroup SV ⊆ U(H). It would be nice to find suitable regularity
properties of V that guarantee that the subsemigroup SV = {g ∈ U(H) : gV ⊆ V}
in the full unitary group is large in some sense. Of course, one could assume that
it has interior points, but that this never leads to proper subsemigroups is easy to
see:

Proposition 6.5. Let O ⊆ U(H) be an open subset. Then there exists an N ∈ N

such that

ON = {g1 · · · gN : gj ∈ O} = U(H).

In particular, every subsemigroup S ⊆ U(H) with interior points coincides with
U(H).

Proof. Since the exponential function exp: u(H) = {X ∈ B(H) : X∗ = −X} →
U(H) is surjective, the open subset exp−1(O) is non-empty. Using spectral calculus,
we find an n ∈ N and an element X ∈ exp−1(O) such that Spec(X) ⊆ 2πi

n Z. Then

g := eX ∈ O is of finite order n. Hence 1 ∈ On.
Let Br ⊆ u(H) be the open operator ball of radius r with center 0. Pick m ∈ N

such that exp(B≤π/m) ⊆ On. Then (On)m ⊇ exp(B≤π) = U(H). �
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Appendix A. Conjugation with unbounded operators

Proposition A.1 provides a direct path to the main ingredients of the Araki–Zsidó
Theorem (Theorem 3.3), namely the implication (iii) ⇒ (iv). We need its corollary
in the proof of Proposition 3.6. For the sake of completeness, we also include a
proof of the Araki–Zsidó Theorem in this appendix.

Below we write R(T ) := TD(T ) for the range of an unbounded operator
T : D(T ) → H.

Proposition A.1. Let H = H∗ be a selfadjoint operator and Ut = eitH denote
the corresponding unitary one-parameter group. Fix β > 0. Then the following are
equivalent for a bounded operator A ∈ B(H):

(i) The orbit map αA : R → B(H), αA(t) := UtAU∗
t extends to a bounded

strongly continuous function on the closed strip

Sβ = {z ∈ C : 0 ≤ Im z ≤ β}
which is holomorphic on Sβ.

(ii) AD(e−βH) = AR(eβH) ⊆ D(e−βH) and αA(βi) restricts on D(eβH) to
Aβ := e−βHAeβH .

If these conditions are satisfied, then

(a) ‖αA(z)‖ ≤ max(‖A‖, ‖Aβ‖) for z ∈ Sβ

(b) αA(z + t) = Utα
A(z)U∗

t for z ∈ Sβ, t ∈ R.
(c) αA(βi) = Aβ.

Proof. Let Hfin ⊆ H denote the dense subspace of vectors contained in spectral
subspaces for H corresponding to bounded intervals. If ξ, η ∈ Hfin, then both are
holomorphic vectors for (Ut)t∈R and

αξ,η : C → C, z �→ 〈e−izHξ, Ae−izHη〉
is an entire function with αξ,η(t) = 〈ξ, αA(t)η〉 for t ∈ R.

“(i) ⇒ (ii)”: Let ξ, η ∈ Hfin. Then the entire function αξ,η satisfies

(29) 〈ξ, αA(t+ βi)η〉 = αξ,η(t+ βi) = 〈e−βHU−tξ, AeβHU−tη〉 for t ∈ R.

For t = 0 and Aβ := αA(βi), we obtain in particular

(30) 〈ξ, Aβη〉 = 〈e−βHξ, AeβHη〉.
As Hfin is a core for the selfadjoint operators e±βH , (30) also holds for ξ ∈ D(e−βH)
and η ∈ D(eβH). We conclude that

AD(e−βH) = AR(eβH) ⊆ D((e−βH)∗) = D(e−βH),

and that e−βHAeβH = Aβ on D(eβH).
“(ii) ⇒ (i)”: Let ξ, η ∈ Hfin. Then the entire function αξ,η satisfies

(31) αξ,η(t+ βi) = 〈e−βHU−tξ, AeβHU−tη〉 = 〈U−tξ, AβU−tη〉 for t ∈ R.

From [Ru86, Thm. 12.9] we now derive that

(32) ‖αξ,η(z)‖ ≤ max(‖A‖, ‖Aβ‖) · ‖ξ‖‖η‖ for z ∈ Sπ

because this estimate holds on ∂Sβ = R ∪ (βi+ R). The map

Hfin ×Hfin → O(Sπ), (ξ, η) �→ αξ,η
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is sesquilinear, and continuous with respect to the sup-norm on O(Sπ) by (32);
hence it extends to a continuous map on H×H because Hfin is dense in H. From
the one-to-one isometric correspondence between bounded operators and continuous
sesquilinear maps on H via

(33) αξ,η(z) = 〈ξ, αA(z)η〉 for ξ, η ∈ H,

we thus obtain a weakly continuous bounded map αA : Sβ → B(H) which is weakly
holomorphic on Sβ . That the function αA : Sβ → B(H) is holomorphic follows from

[Ne00, Cor. A.III.5]. It remains to show that it is strongly continuous on Sβ, which
is done below.

We first observe that (a) follows from (32) and that (b) follows by analytic
continuation because it holds for z ∈ R. Relation (c) follows from the proof above.

For η ∈ H, we consider the functions αA,η : Sβ → H, z �→ αA(z)η. By (32), we
have ‖αA,η‖∞ ≤ max(‖A‖, ‖Aβ‖)‖η‖, so that the map

H → �∞(Sβ,H), η �→ αA,η

is linear and continuous. Hence it suffices to verify the continuity of αA,η for
η ∈ Hfin. For z = x+ iy ∈ Sβ, we have 0 ≤ y ≤ β, so that

Ae−izHη ∈ AD(e−βH) ⊆ D(e−βH) ⊆ D(e−yH) = D(eizH)

(cf. [NÓ18, Lemma A.2.5] for the next to last inclusion). We therefore have

αA,η(z) = eizHAe−izHη for z ∈ Sβ.

As the multiplication of operators is strongly continuous on bounded subsets of
B(H), (iii) shows that it suffices to verify the continuity of αA,η on the line segment
{yi : 0 ≤ y ≤ β}. For 0 ≤ y, y0 ≤ β, we have

αA,η(yi) = e−yHAeyHη = e−yHA(eyHη − ey0Hη) + e−yHAey0Hη.(34)

Let E denote the spectral measure of H, so that H =
∫
R
x dE(x). For ξ ∈ H

we obtain the positive finite measure Eξ := 〈ξ, E(·)ξ〉. Now, for ξ ∈ D(e−βH), the
function Sβ → H, z �→ eizHξ is continuous, because the kernel

(z, w) �→ 〈eiwHξ, eizHξ〉 =
∫
R

ei(z−w)t dEξ(t)

is continuous on S2β by the Dominated Convergence Theorem ([NÓ18, Lemma
A.2.5]). We conclude that the second summand in (34) is a continuous function
of y. We further have

‖eizHξ‖2 =

∫
R

e−2(Im z)t dEξ(t) ≤ max(‖ξ‖2, ‖e−βHξ‖2)

by the convexity of the Laplace transform of the measure Eξ ([Ne00, Prop. V.4.3]).
This implies that

(35) ‖e−yHξ‖ ≤ max(‖ξ‖, ‖e−βHξ‖),
and thus

‖e−yHA(eyHη − ey0Hη)‖ ≤ ‖A‖‖eyHη − ey0Hη‖+ ‖e−βHA(eyHη − ey0Hη)‖
= ‖A‖‖eyHη − ey0Hη‖+ ‖Aβ‖‖e−(β−y)Hη − e−(β−y0)Hη‖.

This estimate implies the continuity in y0 of the first summand in (34), and this
completes the proof of (i). �
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The estimate (35) has an interesting consequence:

Corollary A.2. Let X be a topological space and f : X → D(e−βH) be a func-
tion. If the two maps f : X → H and e−βH ◦ f : X → H are continuous, then the
composition eizH ◦ f : X → H is continuous for every z ∈ Sβ.

Theorem A.3 (Characterization of V-real operators). Let V ⊆ H be a standard
subspace. Then, for A ∈ B(H), the following are equivalent:

(i) A ∈ AV, i.e., AV ⊆ V.
(ii) A∗V′ ⊆ V′.
(iii) JVA

∗JV ∈ AV.

(iv) JVAJVΔ
1/2
V ⊆ Δ

1/2
V A.

(v) Δ
1/2
V AΔ

−1/2
V is defined on D(Δ

−1/2
V ) and coincides there with JVAJV.

(vi) The map αA : R → B(H), αA(t) = Δ
−it/2π
V AΔ

it/2π
V extends to a bounded

strongly continuous function αA on the closed strip

Sπ = {z ∈ C : 0 ≤ Im z ≤ π}
which is holomorphic on Sπ and satisfies αA(πi) = JVAJV.

If these conditions are satisfied, then

(a) ‖αA(z)‖ ≤ ‖A‖ for z ∈ Sπ.

(b) αA(z + t) = Δ
−it/2π
V αA(z)Δ

it/2π
V for z ∈ Sπ, t ∈ R.

(c) αA(z + πi) = JVα
A(z)JV for z ∈ Sπ.

(d) αA(t)V ⊆ V and αA(t+ πi)V′ ⊆ V′ for all t ∈ R.

Proof. (i) ⇒ (ii): If AV ⊆ V and v ∈ V, w ∈ V′, then Im〈A∗w, v〉 = Im〈w,Av〉 = 0
shows that A∗V′ ⊆ V′.

(ii) ⇒ (i) follows by apply applying the implication “(i) ⇒ (ii)” to V′ and A∗

and using that A = (A∗)∗ and V = (V′)′.
(ii)⇔ (iii): From V′ = JVV, it follows that A

∗V′ ⊆ V′ is equivalent to A∗JVV ⊆ JVV,
which is (iii).

(i) ⇔ (iv): For the antilinear involution σV = JVΔ
1/2
V , condition (iv) is equivalent

to AσV ⊆ σVA, i.e., to

AD(σV) = A(V+ iV) ⊆ V+ iV = D(σV) and AσV = σVA on V.

This is equivalent to (i).
(i) ⇔ (v): Conjugating with JV, we see that (v) is equivalent to σVAσ−1

V = σVAσV
being defined on D(Δ

1/2
V ) = JVD(Δ

−1/2
V ) and that it equals A on this space. This

in turn is equivalent to (i).

(v) ⇒ (vi) follows from Proposition A.1 with H = − 1
2β log(ΔV) and Δ

1/2
V =

e−βH .
(vi) ⇒ (v): If (vi) is satisfied, then (31) in the proof of Proposition A.1 yields

for ξ, η ∈ Hfin the relation

(36) 〈AΔ
−1/2
V ξ,Δ

1/2
V η〉 = 〈JVAJVξ, η〉.

As the dense subspace Hfin is a core of Δ
−1/2
V and Δ

1/2
V , the equality (36) holds for

ξ ∈ D(Δ
−1/2
V ) and η ∈ D(Δ

1/2
V ). It follows that

Δ
1/2
V AΔ

−1/2
V ξ = JVAJVξ for ξ ∈ D(Δ

−1/2
V ),

which is (v).
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Now we assume that the equivalent conditions (i)–(vi) are satisfied. From Propo-
sition A.1, we get (a) and (b). For z ∈ R, we derive (c) from (vi) and (b), and for
general z ∈ Sπ, it follows by analytic continuation. Finally, (d) follows from the
invariance of V under Δit

V for t ∈ R and JVV = V′. �

Appendix B. Some facts on Lie groups

Lemma B.1. Let G be a finite dimensional Lie group with Lie algebra g and
x, y ∈ g with expx = exp y. If exp is not singular in x, then [x, y] = 0 and
exp(x− y) = e.

If, in addition, G is simply connected and adx and ad y have real spectrum, then
x = y.

Proof. The first assertion follows from [HHL89, V.6.7]. If adx and ad y have real
spectrum, then exp is regular in x, so that [x, y] = 0 and z := x − y satisfies
exp(z) = e. The latter condition implies ead z = 1, so that ad z is semisimple with
purely imaginary spectrum. On the other hand, [adx, ad y] = ad[x, y] = 0 implies
that Spec(ad z) ⊆ Spec(adx)− Spec(ad y) ⊆ R (there exists a common generalized
eigenspace decomposition). Combining both facts, we see that ad z = 0, i.e., z ∈
z(g). If G is simply connected, then exp |z(g) is injective because Z(G)0 = exp(z(g))
is simply connected ([HN12, Thm. 11.1.21]). This implies z = 0. �
Theorem B.2. Let G be a 1-connected Lie group and let Γ ⊆ Aut(G) be a subgroup
such that the Lie algebra g is a semisimple Γ-module. Then the following assertions
hold:

(i) There exists a Γ-invariant Levi decomposition G ∼= R � S, so that the
subgroup of Γ-fixed points is GΓ ∼= RΓ � SΓ.

(ii) The group RΓ is connected.
(iii) If the action of Γ on the Lie algebra s of S has a relatively compact image

in Aut(s) ∼= Aut(S) which contains a dense cyclic subgroup, then SΓ is
connected7.

(iv) If ηS : S → SC is the universal complexification, then the Γ-action on S
induces an action on SC. If the image of Γ in the algebraic group Aut(s)
is generated by a single semisimple automorphism in the Zariski topology,
then (SC)

Γ is connected8.
Further ηS(S

Γ) is an open subgroup in the group ηS(S)
Γ = (SC)

Γ,σ,
where σ is the complex conjugation on SC with fixed point set η(S) = (SC)

σ.

Proof. (i) With [KN96, Prop. I.2] we find a Γ-invariant Levi decomposition g = r�s,
so that we obtain a Levi decomposition G ∼= R � S, where R is solvable, S is
semisimple and both are 1-connected and Γ-invariant. This proves (i).

(ii) We argue by induction on the dimension of R. If R is abelian, then this 1-
connected group is isomorphic to some Rn and Γ acts by linear maps. This implies
that RΓ is a linear subspace, hence connected.

If R is not abelian, then its commutator subgroup R′ = (R,R) has smaller
dimension and its Lie algebra r′ = [r, r] is a proper Γ-invariant ideal of r. Let n ⊇ r′

7For any element γ ∈ Γ for which γZ is dense in Γ we then have the same group of fixed points.
Note also that this assumption is satisfied if Γ is a product of a torus and a finite cyclic group.

8In Borel’s book [Bor91] one finds in particular that centralizers of complex tori are connected
([Bor91, Cor. 11.12]). Since every torus contains a single element with the same centralizer
([Bor91, Prop. 8.18]) this follows from the present statement of (iv).
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be a maximal proper Γ-invariant ideal of r and let N � R be the corresponding
normal integral subgroup. Since R is 1-connected, N is closed and 1-connected and
the abelian quotient group Q := R/N is also 1-connected ([HN12, Thm. 11.1.21]).
As N is 1-connected, our induction hypothesis implies that NΓ is connected. As
N is Γ-invariant, Q inherits a natural Γ-action and since Q is abelian, the above
argument shows that the fixed point group QΓ is connected.

Clearly, q(RΓ) ⊆ QΓ, and we claim that we actually have equality. Two cases
may occur. If QΓ = {e}, then RΓ = NΓ is connected. If QΓ �= {e}, then it is a con-
nected subgroup of positive dimension. As the action of Γ on r is semisimple, there
exists a Γ-invariant linear subspace e ⊆ r complementing n. Then L(q) : e → q is
a linear Γ-equivariant isomorphism, and since expQ : (q,+) → Q also is an isomor-
phism of Lie groups, it follows that

expQ ◦L(q) = q ◦ expR : eΓ → QΓ

is a bijection. Although e may not be a Lie subalgebra of r, the preceding argument
shows that RΓ/NΓ ∼= q(RΓ) = QΓ. As NΓ and QΓ are connected, we conclude that
the group RΓ is connected as well.

(iii) Replacing Γ, considered as a subgroup of Aut(s) ∼= Aut(S), by its compact
closure does not change the subgroup of fixed points because the action of Aut(s) ∼=
Aut(S) on S is smooth ([HN12, Thm. 11.3.5]). So we may w.l.o.g. assume that
Γ is compact. It therefore is contained in a maximal compact subgroup C ⊆
Aut(s) because Aut(s) is an algebraic group, hence has only finitely many connected
components ([HN12, §12.4]).

Now C ∩ Aut(s)0 = C ∩ Ad(S) is maximal compact in the identity component,
and therefore K := {s ∈ S : Ad(s) ∈ C} is maximal compactly embedded in S.
We conclude that K is 1-connected and therefore that K ∼= Z(K)× (K,K), where
Z(K) is a vector space and (K,K) is 1-connected compact, a maximal compact
subgroup of S ([HN12, Thm. 12.1.18]). As K is invariant under the action of C on
S, it is in particular invariant under Γ. Since Γ acts by automorphisms on K, it
preserves its center Z(K) and its commutator subgroup (K,K). Let p ⊆ s be the
orthogonal complement of the Lie algebra k of K with respect to the Killing form.
Then the polar map K×p → S, (k, x) �→ k expx is a Γ-equivariant diffeomorphism.
We thus obtain

SΓ = KΓ exp(pΓ) ∼= (K ′)Γ × Z(K)Γ × p
Γ.

As Z(K) is a vector space, the group Z(K)Γ is a linear subspace, hence connected.
The same is true for pΓ. To verify the connectedness of (K ′)Γ, we recall that
there exists a single element γ ∈ Γ for which the cyclic subgroup γZ is dense in
Γ, considered as a subgroup of Aut(s). As Aut(s) ∼= Aut(S) acts smoothly on S
([HN12, Thm. 11.3.5]), it follows that Γ and γ have the same fixed points. Now the
1-connectedness of the compact group K ′ implies that (K ′)Γ = (K ′)γ is connected
([HN12, Thm. 12.4.26]). This shows that SΓ is connected.

(iv) Let γ ∈ Γ ⊆ Aut(s) be a semisimple element for which Γ is contained in the
Zariski closure of the cyclic subgroup γZ. Since the action of the algebraic group
Aut(s) on the algebraic group SC is algebraic, γ and Γ have the same fixed point
group. As the group SC is 1-connected, the connectedness of Sγ

C
= SΓ

C
now follows

from [OV90, Thm. 4.4.9, p. 214]. The remaining assertions are clear. �
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From Theorem B.2(i)–(iii), we obtain in particular:

Corollary B.3. Let G be a 1-connected Lie group and ϕ ∈ Aut(G) an automor-
phism of finite order. Then the subgroup Gϕ = {g ∈ G : ϕ(g) = g} of fixed points
is connected.
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