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DESCRIPTION OF UNITARY REPRESENTATIONS

OF THE GROUP OF INFINITE p-ADIC INTEGER MATRICES

YURY A. NERETIN

Abstract. We classify irreducible unitary representations of the group of all
infinite matrices over a p-adic field (p �= 2) with integer elements equipped with

a natural topology. Any irreducible representation passes through a group GL
of infinite matrices over a residue ring modulo pk. Irreducible representations
of the latter group are induced from finite-dimensional representations of cer-
tain open subgroups.

1. Introduction

1.1. Notations and definitions.

(a) Rings. Let p be a prime,

p > 2.

Let Zpn := Z/pnZ be a residue ring, Fp := Zp be the field with p elements. The
ring of p-adic integers Op is the projective limit

Op = lim
←−n

Zpn

of the following chain (see, e.g., [32]):

· · · ←− Zpn−1 ←− Zpn ←− Zpn+1 ←− . . . ,

we have Zpn = Op/p
nOp. Denote by Qp the field of p-adic numbers.

(b) The infinite symmetric group and oligomorphic groups. Let Ω be a
countable set. Denote by S(Ω) the group of all permutations of Ω; denote S∞ :=
S(N). The topology on the infinite symmetric group S(Ω) is determined by the
condition: stabilizers of finite subsets are open subgroups and these subgroups
form a fundamental system of neighborhoods of the unit.1 Equivalently, a sequence
g(α) converges to g if for each ω ∈ Ω we have ωg(α) = ωg for sufficiently large α.

A closed subgroup G of S(Ω) is called oligomorphic if for each k it has only a
finite number of orbits on the product Ω× · · · × Ω of k copies of Ω; see [5].
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1Thus we get a structure of a Polish group. Moreover this topology is a unique separable

topology on the infinite symmetric group; see [13]. In particular, this means that a unitary
representation of S∞ in a separable Hilbert space is automatically continuous.
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(c) Modules l(Zpn) and groups GL(∞,Zpn). Define the module l(Zpn) as the
set of all sequences v = (v1, v2, . . . ), where vj ∈ Zpn and vj = 0 for sufficiently large
j. The set l(Zpn) is countable; we equip it with a discrete topology. Denote by ej
the standard basis elements, i.e., ej has a unit on j-th place, other elements are 0.

Define groups GL(∞,Zpn) as groups of infinite invertible matrices g over Zpn

such that:

• each row of g contains only a finite number of nonzero elements;
• each column contains only a finite number of nonzero elements;
• the inverse matrix g−1 satisfies the same conditions.

Notice that rows of a matrix g are precisely vectors eig, and columns are ejg
t

(we denote by gt a transposed matrix).
Actually, the topic of this paper is representations of GL(∞,Zpn).
This group is continual and we must define a topology on GL(∞,Zpn). A sequence

g(α) ∈ GL(∞,Zpn) converges to g if all sequences eig
(α) and ei(g

(α))t are eventually
constant and their limits are eig and ejg

t respectively. Thus we get a structure of
a totally disconnected topological group.

The group GL(∞,Zpn) acts on the countable set l(Zpn)⊕ l(Zpn) by transforma-
tions

(v, w) �→ (vg, w(gt)−1).

In particular, this defines an embedding of GL(∞,Zpn) to a symmetric group
S
(
l(Zpn) ⊕ l(Zpn)

)
. The image of the group GL(∞,Zpn) is a closed subgroup

of S
(
l(Zpn)⊕ l(Zpn)

)
and the induced topology coincides with the natural topology

on GL(∞,Zpn). By [27, Lemma 3.7], the group GL(∞,Zpn) is oligomorphic.

(d) Modules l(Op) and groups GL(∞,Op). Denote by l(Op) the set of all se-
quences r = (r1, r2, . . . ), where rj ∈ Op and |rj | → 0 as j → ∞. The space l(Op) is
a projective limit,

l(Op) = lim
←−n

l(Zpn),

we equip it with the topology of the projective limit. In other words, a sequence
r(j) ∈ l(Op) converges if for any pn the reduction of r(j) modulo pn is eventually
constant in Zpn .

We define GL(∞,Op) as the group of all infinite matrices g over Op such that:

• each row of g is an element of l(Op);
• each column of g is an element of l(Op);
• the matrix g has an inverse and g−1 satisfies the same conditions.

We say that a sequence g(α) ∈ GL(∞,Op) converges to g if for any i the sequence

eig
(α) converges to eig and for any j the sequence ei(g

(α))t converges to ejg
t. This

determines a structure of a totally disconnected topological group on GL(∞,Op).
We have obvious homomorphisms GL(∞,Zpn) → GL(∞,Zpn−1), the group

GL(∞,Op) is the projective limit

GL(∞,Op) = lim
←−n

GL(∞,Zpn)

and its topology is the topology of projective limit.
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1.2. Preliminary remarks. A priori we know the following statement:

Theorem 1.1.
(a) The group GL(∞,Op) is a type I group; it has a countable number of irre-

ducible unitary representations. Any unitary representation GL(∞,Op) is a sum of
irreducible representations. Any irreducible unitary representation of GL(∞,Op) is
in fact a representation of some group GL(∞,Zpn).

(b) Each irreducible representation of GL(∞,Zpn) is induced from a finite-dimen-
sional representation of an open subgroup. More precisely, for any irreducible uni-

tary representation of GL(∞,Zpn) there exists an open subgroup Q̂ ⊂ GL(∞,Zpn),

a normal subgroup Q ⊂ Q̂ of finite index and an irreducible representation ν of Q̂,
which is trivial on Q, such that ρ is induced from ν.

This is a special case of a theorem of Tsankov about unitary representations of
oligomorphic groups and projective limits of holomorphic groups; see [34, Theorem
1.3].2 It seems that [34], [2] are not sufficient to give a precise answer in our case.

Let us give a definition of an induced representation (see, e.g., [33, Sect. 7] and
[15, Sect. 13]) which is appropriate in our case. Let G be a totally disconnected
separable group, Q its open subgroup. Let ν be a unitary representation of Q in
a Hilbert space V . Consider the space H of V -valued functions f on a countable
homogeneous space Q \G such that∑

x∈Q\G
‖f(x)‖2 < ∞.

Equip H with the inner product

〈f1, f2〉H :=
∑

x∈Q\G
〈f1(x), f2(x)〉V .

Let U be a function on G× (Q \G) taking values in the group of unitary operators
in V such that:

• Formula

ρ(g)f(x) = U(g, x)f(xg)

determines a representation of G in H.
• Let x0 be the initial point of Q\G, i.e., x0Q = x0. Then for q ∈ Q we have
U(q, x0) = ν(q).

The first condition implies that the function U(g, x) satisfies the functional equa-
tion

U(x, g1g2) = U(x, g1)U(xg1, g2).

It can be shown that U(g, x) is uniquely defined up to a natural calibration

U(g, x) ∼ A(gx)−1U(g, x)A(x),

where A is a function on Q \ G taking values in the unitary group of V (see, e.g.,

[15, Sect 13.1]). For this reason, an induced representation ρ(g) = IndGQ(ν) is
canonically defined up to a unitary equivalence.

2A reduction of representations of GL(∞,Op) to representations of quotients GL(∞,Zpμ)
easily follows from [20, Proposition VII.1.3]; see [27, Corollary 3.5]. In our proof of Theorem 1.5
Tsankov’s theorem is used in the proof of Proposition 2.1, which was done in [27].
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We also can choose U(g, x) in the following way. For any x ∈ Q \ G we choose
an element s(x) ∈ G such that x0s(x) = x. Then U(g, x) = ν(q), where q is
determined from the condition s(x)g = q s(xg).

1.3. The statement. The result of the paper is Theorem 1.5, which claims that
irreducible representations of G are induced from finite dimensional representations
of certain family of subgroups G◦[L;M ]; these subgroups are described in Lemma
1.3.

Thus we fix a ring Zpμ and examine the group

G := GL(∞,Zpμ).

We consider two right actions of G on l(Zpμ), g : v �→ vg, g : v �→ v(gt)−1. Define a
pairing

l(Zpμ)× l(Zpμ) → Zpμ

by

(1.1) {v, w} :=
∑

vjwj = vwt,

our action preserves this pairing, i.e.,

{vg, v(gt)−1} = {v, w}.

Let L ⊂ l(Zpμ), M ⊂ l(Zpμ) be finitely generated Zpμ -submodules. Denote by

Ĝ[L;M ] the subgroup of G consisting of g such that Lg = L and M(gt)−1 = M .

By G◦[L;M ] ⊂ Ĝ[L;M ] we denote group of matrices fixing L and M pointwise.

Obviously, the quotient group Ĝ[L;M ]/G◦[L;M ] is finite; it acts on the direct
sum L ⊕ M preserving the pairing {f, g}. Any irreducible representation τ of

Ĝ[L;M ]/G◦[L;M ] can be regarded as a representation τ̂ the group Ĝ[L;M ], which
is trivial on G◦[L;M ]. For given L, M , τ we consider the representation

IndG
̂G[L;M ]

(τ̂)

of G induced from the representation τ̂ of the group Ĝ[L;M ]. Ol’shansǩı [30]
obtained the following statement3 for the group GL(∞,Fp) = GL(∞,Zp).

Theorem 1.2.
(a) Any irreducible unitary representation of the group GL(∞,Fp) has this form.
(b) Two irreducible representations can be equivalent only for a trivial reason,

i.e.,

IndG
̂G[L1;M1]

(τ1) ∼ IndG
̂G[L2;M2]

(τ2)

if and only if there exists h ∈ G such that L1h = L2h, M1(h
t)−1 = M2 and

τ2(q) = τ1(hqh
−1).

For groups GL(∞,Zpμ) with μ > 1 the situation is more delicate. Let L, M
actually be contained in (Zpμ)m ⊂ l(Zpμ). Fix a matrix b such that4 ker b = L and
a matrix c such that ker ct = M .

3A proof in [30] is only sketched; other proofs were given by Dudko [8] and Tsankov [34].
4We assume that each row of b and each column of c contain only a finite number of nonzero

elements.
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Lemma 1.3. The group G◦[L;M ] consists of all invertible matrices admitting the
following representation as a block matrix of size m+∞:

(1.2) g =

(
a bv
wc z

)
,

where the block ‘a’ can be written in both forms

a = 1− bS, a = 1− Tc.

Next, define a subgroup G•[L;M ] ⊂ G◦[L;M ] consisting of matrices having the
form

(1.3) g =

(
1− buc bv
wc z

)
.

Proposition 1.4. The group G•[L;M ] is the minimal subgroup of finite index in

Ĝ[L;M ], i.e., it is contained in any subgroup of finite index in Ĝ[L;M ].

Theorem 1.5.
(a) Any irreducible unitary representation of G is induced from a representation

τ of some group Ĝ[L;M ] that is trivial on the subgroup G•[L;M ].
(b) Two irreducible representations of this kind can be equivalent only for the

trivial reason as in Theorem 1.2.

Remark. Recall that p 
= 2. In several places of our proof we divide elements of
residue rings Zpμ by 2. Usually, this division can be replaced by longer considera-
tions. But in Lemma 6.8 this seems crucial. �

Remark. Let L, M ⊂ p · l(Zpμ). Then G[L;M ] contains a congruence subgroup
N consisting of elements of G that are equal 1 modulo pμ−1. Since N is a normal

subgroup in G, it is normal in Ĝ[L;M ]. Let τ be trivial on N . Then the induced

representation IndGG[L;M ](τ̂) is trivial on the congruence subgroup N and actually

we get representations of GL(∞,Zpμ−1). �

Remark. The statement (b) is a general fact for oligomorphic groups; see [34, Propo-
sition 4.1(ii)]. So we omit a proof (in our case this can be easily established by
examination of intertwining operators). �

1.4. Remarks: Infinite-dimensional p-adic groups. Now there exists a well-
developed representation theory of infinite symmetric groups and of infinite-dimen-
sional real classical groups. Parallel development in the p-adic case meets some
difficulties. However, infinite dimensional p-adic groups were a topic of sporadic
attacks since late 1980s; see [19], [36], [18]. We indicate some works on p-adic groups
and their parallels with nontrivial constructions for real and symmetric groups.

(a) An extension of the Weil representation of the infinite-dimensional symplectic
group Sp(2∞,C) to the semigroup of lattices (Nazarov [19], [18]; see a partial
exposition in [22, Sect. 11.1-11.2]).

(b) A construction of projective limits of p-adic Grassmannians and quasiinvari-
ant actions of p-adic GL(∞) on these Grassmannians [24]. This is an analog of
virtual permutations (or Chinese restaurant process, see, e.g., [1, 11.19]; they are
a base of harmonic analysis related to infinite symmetric group, see [14]), and of
projective limits of compact symmetric spaces (see [31], [21]); they are a standpoint
for a harmonic analysis related to infinite-dimensional classical groups; see [3].
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(c) An attempt to describe a multiplication of double cosets (see the next section)
for p-adic classical groups in [25]. In any case this leads to a strange geometric
construction, namely to simplicial maps of Bruhat–Tits buildings whose boundary
values are rational maps of p-adic Grassmannians.

(d) The work [4] contains a p-adic construction in the spirit of exchangeabil-
ity,5 namely, descriptions of invariant ergodic measures on spaces of infinite p-adic
matrices. By the Wigner–Mackey trick (see, e.g., [15, Sect. 13.3]), such kind
of statements can be translated to a description of spherical functions on certain
groups.

So during last years new elements of a nontrivial picture related to infinite-
dimensional p-adic groups appeared. For this reason, understanding of representa-
tions GL(∞,Op) becomes necessary.

1.5. Another completion of a group of infinite matrices over Zpn . Define
a group G consisting of infinite matrices g over Zpn such that:

• g contains only a finite number of elements in each column;
• g−1 exists and satisfies the same property.

A sequence g(α) converges to g if for each j we have a convergence of ejg
(α).

Clearly, G ⊃ G. Classification of irreducible unitary representations of G is the
following. For each finitely generated submodule in l(Zpn) we consider the subgroup

Ĝ[L] consisting of transformations sending L to itself and the subgroup G◦[L] fixing
L pointwise.

Proposition 1.6. Any irreducible unitary representation of G is induced from a

representation of some group Ĝ[L] trivial on G◦[L].

This follows from Theorem 1.5; on the other hand this can be deduced in a
straightforward way from Tsankov’s result [34].

2. Preliminaries: The category of double cosets

2.1. Multiplication of double cosets and the category K. Here we discuss a
version of a general construction of multiplication of double cosets (see [29], [30],
[20], [26], [27]).

Denote by Gfin ⊂ G the subgroup of finitary matrices, i.e., matrices g such that
g − 1 has only a finite number of nonzero elements. For α = 0, 1, . . . denote by

G(α) ⊂ G the subgroups consisting of matrices having the form

(
1α 0
0 u

)
, where 1α

denotes the unit matrix of size α and u is an arbitrary invertible matrix over Zpμ .
Obviously, G(α) is isomorphic to G. Consider double coset spaces G(α) \G/G(β);
their elements are matrices determined up to the equivalence

(2.1)

(
a b
c d

)
∼
(
1α 0
0 u

)(
a b
c d

)(
1β 0
0 v

)
=

(
a bv
uc udv

)
,

where a matrix g is represented as a block matrix of size (α+∞)× (β +∞). For
a matrix g we write the corresponding double coset as[

a b
c d

]
αβ

,

5i.e., of higher analogs of the de Finetti theorem; see [1]
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we will omit subscript αβ if it is not necessary to indicate a size. We wish to define
a natural multiplication

G(α) \G/G(β) × G(β) \G/G(γ) → G(α) \G/G(γ).

Let g1 ∈ G(α) \ G/G(β), g2 ∈ G(β) \ G/G(γ) be double cosets. By [27, Lemma
4.1], any double coset has a representative in Gfin. Choose such representatives g1
and g2 for g1, g2,

(2.2) g1 =

⎡⎣ a b
c d

1∞

⎤⎦
αβ

, g1 =

⎡⎣ p q
r t

1∞

⎤⎦
βγ

.

Let sizes of submatrices

(
a b
c d

)
,

(
p q
r t

)
, be N×N . Denote by θβ(j) the following

matrix

θβ(j) :=

⎛⎜⎜⎝
1β

0 1j
1j 0

1∞

⎞⎟⎟⎠ ∈ G(β).

Consider the sequence

G(α) · g1θβ(j) g2 ·G(γ) ∈ G(α) \G/G(γ).

It is more or less obvious that this sequence is eventually constant and its limit is

g1 ◦ g2 =

(2.3)

=

⎡⎢⎢⎣
⎛⎜⎜⎝

a b
c d

1L
1∞

⎞⎟⎟⎠
⎛⎜⎜⎝

1β
0 1L
1L 0

1∞

⎞⎟⎟⎠
⎛⎜⎜⎝

p q
r t

1L
1∞

⎞⎟⎟⎠
⎤⎥⎥⎦
αγ

,

where L � N − β. The final expression is

(2.4) g1 ◦ g2 =

⎡⎢⎢⎣
ap aq b
cp cq d
r t 0

1∞

⎤⎥⎥⎦
αγ

∼

⎡⎢⎢⎣
ap b aq
cp d cq
r 0 t

1∞

⎤⎥⎥⎦
αγ

.

In calculations below we use the last expression for ◦-product.
It is easy to verify that this multiplication is associative, i.e., for any

g1 ∈ G(α) \G/G(β), g2 ∈ G(β) \G/G(γ), g3 ∈ G(γ) \G/G(δ),

we have

(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).
In other words, we get a category. Objects of this category are numbers α =
0, 1, 2, . . . . Sets of morphisms are

Mor(β, α) := G(α) \G/G(β).

The multiplication is given by formula (2.4). Denote this category by K.
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The group of automorphisms AutK(α) is GL(α,Zpμ); it consists of double cosets

of the form

[
a 0
0 1∞

]
.

Next, the map g �→ g−1 induces maps

G(α) \G/G(β) → G(β) \G/G(α),

denote these maps by g �→ g∗. It is easy to see that we get an involution in the
category K, i.e.,

(g1 ◦ g2)∗ = g∗2 ◦ g∗1.
The map g �→ (gt)−1 determines an automorphism of the category K; denote it

by g �→ g�. It sends objects to themselves and

(g1 ◦ g2)� = g
�
2 ◦ g�

1 .

Remarks on notation.
(1) In formulas (2.2), (2.3), (2.4), the last columns, the last rows, and the blocks

1∞ contain no information and only enlarge sizes of matrices. For this reason,

below we will omit them. Precisely, for a matrix

(
a b
c d

)
of finite size we denote

[
a b
c d�

]
:=

⎡⎣ a b 0
c d 0
0 0 1∞

⎤⎦ (
a b
c d�

)
:=

⎛⎝ a b 0
c d 0
0 0 1∞

⎞⎠ .

(2) We will denote a multiplication of [g] by an automorphism A as A · [g],

A ·
[

a b
c d�

]
:=

[
A 0
0 1

]
◦
[

a b
c d�

]
=

[
Aa Ab
c d�

]
;[

a b
c d�

]
·A′ :=

[
a b
c d�

]
◦
[

A′ 0
0 1

]
=

[
aA′ b
cA′ d�

]
.

2.2. The multiplicativity theorem. Consider a unitary representation ρ of the
group G in a Hilbert space H. Denote by Hα ⊂ H the space of G(α)-fixed vectors.
Denote by Pα the operator of orthogonal projection to Hα.

Proposition 2.1.
(a) For any β the sequence ρ

(
θβ(j)

)
converges to Pβ in the weak operator topol-

ogy.
(b) The space ∪Hα is dense in H.

The first statement is Lemma 1.1 from [27]; the claim (b) is a special case of
Proposition VII.1.3 from [20].

Let g ∈ G, α, β ∈ Z+. Consider the operator

ρ̃αβ(g) : Hβ → Hα

given by

ρ̃αβ(g) := Pαρ(g)
∣∣∣
Hβ

.

It is easy to see that for h1 ∈ G(α), h2 ∈ G(β) we have

ρ̃αβ(g) = ρ̃αβ(h1gh2),

i.e., ρ̃αβ(g) actually depends on the double coset g containing g.
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Theorem 2.2.
(a) The map g �→ ρ̃αβ(g) is a representation of the category K, i.e., for any α,

β, γ for any g1 ∈ Mor(β, α), g2 ∈ Mor(γ, β) we have

ρ̃αβ(g1) ρ̃βγ(g2) = ρ̃αγ(g1 ◦ g2).
(b) ρ̃ is a ∗-representation, i.e.,

ρ̃αβ(g)
∗ = ρ̃βα(g

∗).

The statement (a) is an automatic corollary of Proposition 2.1; see [27, Theorem
2.1]. The statement (b) is obvious.

Remark. The considerations of Subsections 2.1, 2.2 are one-to-one repetitions of
similar statements for real classical groups and symmetric groups; see [30], [28],
[23], [26]. Further considerations drastically differ from these theories.

2.3. Structure of the paper. We derive the classification of unitary represen-
tations of G from the multiplicativity theorem and the following argumentation.
The semigroups Γ(m) := EndK(m) are finite. It is known that a finite semigroup
with an involution has a faithful ∗-representation in a Hilbert space if and only if
it is an inverse semigroup (see discussion below, Subsection 3.3). More generally,
if a category having finite sets of morphisms acts faithfully in Hilbert spaces, then
it must be an inverse category; see [12]. However, semigroups EndK(α) are not
inverse,6 and ∗-representations of K pass through a smaller category.

Section 3 contains preliminary remarks on inverse semigroup and construction
of an inverse category L, which is a quotient of K. This provides us lower estimate
of maximal inverse semigroup quotients of semigroups Γ(m).

In Section 4 we examine idempotents in maximal inverse semigroup quotients
inv(Γ(m)) of Γ(m). In Section 5 we show that some of idempotents of inv(Γ(m))
act by the same operators in all representations of G. Next, for any representation
of G there is a minimal m such that Hm 
= 0. In Section 6 we examine the image
of Γ(m) in such representation.

In Section 7 we discuss properties of the groups G◦[L;M ] and G•[L;M ].
The final part of the proof is contained in Section 8.

3. The reduced category and inverse semigroups

3.1. Notation. Below we work only with the group G := GL(∞,Zpμ). To simplify
notation, we write

GL(m) := GL(m,Zpμ), Γ(m) := EndK(m), lm := (Zpμ)m.

For a unitary representation ρ of a G we define the height h(ρ) as the minimum
of α such that Hα 
= 0.

By x(mod p) we denote a reduction of an object (a scalar, a vector, a matrix)
defined over Zpμ modulo p, i.e. to the field Fp. Notice that a square matrix A of
finite size over Zpμ is invertible if and only if A(mod p) is invertible. A matrix B is
nilpotent (i.e., BN = 0 for sufficiently large N) if and only if B(mod p) is nilpotent.
Indeed, if Bk = 0(mod p), then Bk has the form pC for some matrix C. Hence,
(Bk)μ+1 = pμ+1Cμ+1 = 0.

6This was observed by Ol’shansǩı [30] for GL(∞,Fp).
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We use several symbols for equivalences in MorK(β, α); the ∼ was defined by
(2.1); the symbols

≡, ≈, ≈m

are defined in the next two subsections.

3.2. The reduced category red(K). Let g1, g2 ∈ Mor(β, α). We say that they
are ≈-equivalent if for any unitary representation of G we have ρ̃αβ(g1) = ρ̃αβ(g2).
The reduced category red(K) is the category whose objects are nonnegative integers
and morphisms β → α are ≈-equivalence classes of Mor(β, α). Denote by red(Γ(m))
semigroups of endomorphisms of red(K).

Also we define a weaker equivalence, g1 ≈m g2 if ρ̃αβ(g1) = ρ̃αβ(g1) for all ρ of
height � m. Denote by redm(K) the corresponding m-reduced category.

Our proof of Theorem 1.5 is based on an examination of the categories red(K) and
redm(K). We obtain an information sufficient for a classification of representations
of G. However, the author does not know an answer to Question 3.1.

Question 3.1. Find a transparent description of the category red(K).

3.3. Inverse semigroups. Let P be a finite semigroup with an involution x �→ x∗.
Then the following conditions are equivalent.

(A) P admits a faithful representation in a Hilbert space.
(B) P admits an embedding to a semigroup of partial bijections7 of a finite set

compatible with the involutions in P and in partial bijections.
(C) P is an inverse semigroup (see [6], [17], [16]), i.e., for any x we have

(3.1) xx∗x = x, x∗xx∗ = x∗

and any two idempotents in P commute.
Discuss briefly some properties of inverse semigroups. Any idempotent in P is

self-adjoint, and for any x, the element x∗x is an idempotent. Since idempotents
commute, a product of idempotents is an idempotent. The semigroup of idempo-
tents has a natural partial order,

x � y if xy = x.

We have xy � x. If x � y and u � v, then xu � yv. Since our semigroup is finite,
the product of all idempotents is a minimal idempotent 0; we have 0x = x0 = 0
for any x.

Let R be a finite semigroup with involution. Then there exists an inverse semi-
group inv(R) and epimorphism π : R → inv(R) such that any homomorphism ψ
from R to an inverse semigroup Q has the form ψ = κπ for some homomorphism
κ : inv(R) → Q. We say that inv(R) is the maximal inverse semigroup quotient of
R.

Lemma 3.1. The semigroups Γ(m) are finite.

This is a corollary of the following statement; see [27, Lemma 4.1.a].

Lemma 3.2. Any double coset in G(m)\G/G(m) has a representative in GL(3m).

7Recall that a partial bijection σ from a set A to a set B is a bijection from a subset S of A
to a subset T of B; see e.g., [17] or [20, Sect. VIII.1]. The adjoint partial bijection σ∗ : B → A is
the inverse bijection T to S.
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We consider the following quotients of Γ(m):
(1) inv(Γ(m)) is the maximal inverse semigroup quotient of Γ(m);
(2) red(Γ(m)) := EndredK(m);
(3) redm(Γ(m)) := Endredm(K)(m).

We have the following sequence of epimorphisms8:

Γ(m) → inv(Γ(m)) → red(Γ(m)) → redm(Γ(m)).

For g ∈ Gfin we denote by [g]mm the corresponding element of Γ(m) and by [[g]]mm

the corresponding element of inv
(
Γ(m)

)
. The equality in Γ(m) we denote by ∼, in

inv Γ((m)) by ≡, in red(Γ(m)) by ≈, in redm(Γ(m)) by ≈m. Denote by [[g1]]� [[g2]]
the product in inv(Γ(m)).

Our next purpose is to present some (non-maximal) inverse semigroup quotients
of Γ(m).

3.4. The category L of partial isomorphisms. Let V , W be modules over Zpμ .
A partial isomorphism p : V → W is an isomorphism of a submodule A ⊂ V to
a submodule B ⊂ W . We denote dom p := A, im p := B. By p∗ we denote the
inverse map B → A. Let p : V → W , q : W → Y be partial isomorphisms. Then
the product pq is defined in the following way:

dom pq := p∗(dom q) ∩ dom p,

for v ∈ dom pq we define v(pq) = (vp)q.
A partial isomorphism p is an idempotent if dom p = im p and p is an identical

map.
Objects of the category L are modules

lα+ ⊕ lα− := (Zpμ)α ⊕ (Zpμ)α

equipped with the following pairing

{v+; v−} :=
∑
j

vj+v
j
− = v+(v−)

t,

where v± ∈ lα±. We say that two partial isomorphisms

ξ+ : lα+ → l
β
+, ξ− : lα− → l

β
−

are compatible if for any y+ ∈ dom ξ+ and y− ∈ dom ξ−, we have

{ξ+(y+), ξ−(y−)} = {y+, y−}.
Next, we define a category L. Its objects are spaces lα+ ⊕ lα− and morphisms are

pairs of compatible partial isomorphisms ξ+ : lα+ → l
β
+, ξ− : lα− → l

β
−.

The category L is equipped with an involution

(ξ+, ξ−)
∗ = (ξ∗+, ξ

∗
−)

and an automorphism

(ξ+, ξ−)
� = (ξ−, ξ+).

Lemma 3.3. The semigroups EndL(m) are inverse.

Indeed, EndL(m) is a semigroup of partial bijections of a finite set lm+ ⊕ lm− . The
whole category L is inverse for the same reason.

8All these semigroups are different.
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3.5. The functor Π : K → L. Consider g ∈ Gfin. Let actually g be contained in
GL(N). Represent g as a block (β + (N − β))× (α+ (N − α)) matrix and g−1 as
an (α+ (N − α))× (β + (N − β))-matrix,

g =

(
a b
c d�

)
, g−1 =

(
A B
C D�

)
.

Define maps ξ± : lα± → l
β
± by:

• dom ξ+ := ker b and ξ+ is the restriction of a to ker b;
• dom ξ− := kerCt and ξ− is the restriction of At to kerCt.

Proposition 3.4.
(a) The pair ξ+, ξ− depends only on the double coset containing g.
(b) Partial isomorphisms ξ+, ξ− are compatible.
(c) The map g �→ (ξ+, ξ−) determines a functor from the category K to the

category L.

Denote this functor by Π. By Π(g) we denote the morphism of L corresponding
to g. We have

(3.2) Π(g∗) = (Π(g))∗, Π(g�) = (Π(g))�.

Proof. For any invertible matrix v we have, ker b = ker bv. Therefore ξ+ depends
only on a double coset. For ξ− we apply (3.2).

(b) Let v ∈ ker b, w ∈ kerCt. Then

{v, w} = vwt = v(aA+ bC)wt = va · (wAt)t + vb · (wCt)t = {va, wAt}+ 0.

(c) We look to formula (2.4) for a product in K. The new ξ+ is a restriction of
ap to ker b ∩ ker aq. This is the product of two ξ-es. �

Remark. According Ol’shansǩı [30], for the case GL(∞,Fp) the functor Π : K → L

determines an isomorphism of categories red(K) → L. However, for μ > 1 the maps
Π : red(Γ(m)) → MorL(m) are neither surjective nor injective. However we will
observe that Π induces isomorphisms of semigroups of idempotents; this provides
us an important argument for the proof of Proposition 6.1.

4. Idempotents in inv(Γ(m))

Here we examine idempotents in the semigroup inv(Γ(m)). The main statement
of the section is Proposition 4.10.

4.1. Projectors9: Pα. Consider an irreducible representation ρ of G; let subspaces
Hm ⊂ H and orthogonal projectors Pm : H → Hm be as above.

Lemma 4.1.
(a) The projector

Pα

∣∣∣
Hm

: Hm → Hα

9This subsection contains generalities; K is an ordered category in the sense of [20, Sect. III.4];
this implies all statements of the subsection.
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is given by the operator ρ̃mm

(
Θα

[m]

)
, where

(4.1) Θα
[m] :=

⎡⎢⎢⎣
1α 0 0 0
0 0 1m−α 0
0 1m−α 0 0
0 0 0 1∞

⎤⎥⎥⎦
mm

∈ Γ(m).

(b) The tautological embedding Hα → Hm is defined by the operator ρ̃mα

(
Λα
[m]

)
,

where

Λα
[m] :=

⎡⎣ 1α 0 0
0 1mα 0
0 0 1∞

⎤⎦
αm

∈ MorK(α,m).

(c) The orthogonal projector Hm → Hα is given by ρ̃αm
(
(Λα

[m])
∗)

(Λα
m)∗ :=

⎡⎣ 1α 0 0
0 1m−α 0
0 0 1∞

⎤⎦
mα

∈ MorK(m,α).

Proof. (a) We apply Proposition 2.1(a). For j > m−α we have [θα(j)]mm = Θα
[m].

The same argument proves (b) and (c). �
Lemma 4.2.

(a) The map

ιαm :

[
a b
c d�

]
αα

�→

⎡⎢⎢⎣
a 0 b 0
0 0 0 1m−α

c 0 d 0
0 1m−α 0 0�

⎤⎥⎥⎦
mm

is a homomorphism Γ(α) → Γ(m).
(b) We have

ιαm(g) ∼ Λα
n ◦ g ◦ (Λα

n)
∗ .

This follows from a straightforward calculation.

Corollary 4.3. The map ιαm is compatible with representations ρ̃ of Γ(α) and Γ(m).
Namely, operators ρ̃mm(ιαm(g)) have the following block structure with respect to the
decomposition Hm = Hα ⊕ (Hm �Hα):

ρ̃mm(ιαm(g)) =

(
ρ̃αα(g) 0

0 0

)
.

4.2. Idempotents in inv(Γ(m)). Here we formulate several lemmas (their proofs
occupy Subsections 4.3–4.7); as a corollary we get Proposition 4.10.

Lemma 4.4. Let for

[g] =

[
a b
c d�

]
mm

∈ Γ(m)

one of the blocks a, d be degenerate. Then [[g]]mm ∈ inv(Γ(m)) has a representative
[g′], for which both blocks a, d are degenerate.

Denote by
Γ◦(m)

the subsemigroup in Γ(m) consisting of all [g], for which both blocks a, d are
nondegenerate.
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Lemma 4.5. Any idempotent in inv(Γ(m)) has a representative of the form q ·
[[R]] · q−1 with q ranging GL(m) and R having the form

(4.2) [R] :=

⎡⎢⎢⎣
1α 0 ϕ 0
0 0 0 1m−α

ψ 0 κ 0
0 1m−α 0 0�

⎤⎥⎥⎦
mm

∈ Γ(m),

where [
1 ϕ
ψ κ�

]
αα

∈ Γ(α)

represents an idempotent in inv(Γ◦(α)). The parameter α ranges in the set 0, 1, 2,
. . . , m.

Remark. Denote

R� :=

⎡⎣ 1α 0 ϕ
0 1m−α 0
ψ 0 κ�

⎤⎦
mm

.

Then the following elements of Γ(m) coincide:

(4.3) R = R�Θα
m = Θα

mR� = Θα
mR�Θα

m.

Denote

X(b, c) :=

⎛⎝ 1m b 0
0 1 0
c 0 1�

⎞⎠ ∈ Gfin.

Lemma 4.6. Elements of the form [X(b, c)] are idempotents in Γ◦(m). They de-
pend only on ker b and ker ct ⊂ lm.

Let L := ker b and M := ker ct. Denote

(4.4) X[L,M ] := [X(b, c)].

Lemma 4.7. We have

X[L1,M1] X[L2,M2] = X[L1 ∩ L2,M1 ∩M2].

Lemma 4.8. Any idempotent in inv(Γ◦(m)) has the form X[L,M ].

Corollary 4.9. Idempotents X[L,M ] are pairwise distinct in inv(Γ◦(m)).

Proof. Indeed, EndL(m) is an inverse semigroup; therefore we have a chain of maps

Γ◦(m) → inv(Γ◦(m)) → inv(Γ(m)) → MorL(m).

The image of X(b, c) in MorL(m) is precisely the pair of identical partial isomor-
phisms M → M , L → L. Therefore for nonequivalent X(b, c) we have different
images. �
Proposition 4.10. Any idempotent in inv(Γ(m)) has a representative of the form

q ·

⎡⎢⎢⎢⎢⎣
1α 0 b 0 0
0 0 0 0 1m−α

0 0 1 0 0
c 0 0 1 0
0 1m−α 0 0 0�

⎤⎥⎥⎥⎥⎦
mm

· q−1,

where q ∈ GL(m) = AutK(m).
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Proof. Lemma 4.2 defines a canonical embedding iαm : Γ(β) → Γ(m) for α < m. By
Lemma 4.5 any idempotent in inv(Γ(m)) is equivalent to an idempotent lying in
some iαm(Γ◦(α)). Lemma 4.8 gives us a canonical form of this idempotent. �

Now we start proofs of Lemmas 4.4–4.8,

4.3. Proof of Lemma 4.4. Clearly Γ(m) \ Γ◦(m) is a two-sided ideal in Γ(m).
Since [[g ◦ (g−1 ◦ g)]]mm = [[g]]mm, it is sufficient to prove the statement for idem-
potents.

Let

(4.5) g =

(
a b
c d�

)
, g−1 =:

(
A B
C D�

)
.

Then

[[g]] � [[g]]∗ ≡ [[g ◦ g−1]] ≡
[[

aA ∗
∗ ∗

]]
.

If a is degenerate, then aA is degenerate. Now let a be non-degenerate, d degenerate.
Since the matrices (4.5) are inverse one to another, we have

aA = 1− bC, Dd = 1− Cb.

We see that (1−Cb)(mod p) is degenerate, (1−bC)(mod p) also is degenerate, and
therefore aA is degenerate.

4.4. Proof of Lemma 4.5.

Step 1.

Lemma 4.11. Let x be an idempotent in inv(Γ(m)). Then it can be represented
as [[u]], where u = u−1.

Proof. Let x = [[g]]. Then

x = [[g]] � [[g]]∗ = [[g ◦ g−1]] = [[gθm(j)g−1]]

for sufficiently large j. We set u := gθm(j)g−1. �

Lemma 4.12. Let g = g−1 ∈ Gfin. For any N > 0 there exists a representative
r ∈ Gfin of [g]◦2N such that r = r−1.

Proof. Let actually g ∈ GL(m+ l). Then we choose the following representative of
[g]◦8:

r = g θm(l) g θm(2l) g θm(4l) g θm(8l) gθm(4l) g θm(2l) g θm(l) g.

Step 2.

Lemma 4.13. Let g = g−1 =

(
a b
c d�

)
∈ G. Then there exists a matrix

Z =

(
ζ 0
0 1�

)
∈ AutK(m), where ζ ∈ GL(m),

and N such that

[[Z · g · Z−1]]�N =

[[(
ζ 0
0 1�

)(
a b
c d�

)(
ζ 0
0 1�

)−1
]]�N
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has a form

r =

⎡⎣⎡⎣ 0 0 ∗
0 1k ∗
∗ ∗ ∗

⎤⎦⎤⎦ ,

where k is the rank of the reduced matrix am(mod p).

Clearly our lemma is a corollary of the following statement:

Lemma 4.14. For any m ×m matrix a over Zpμ there exists ζ ∈ GL(m) and N
such that

(ζaζ−1)N =

(
0 0
0 1k

)
.

Proof. We split the operator a(mod p) over the field Fp as a direct sum of a nilpotent

part S and an invertible part T . For sufficiently large M the matrix

(
S 0
0 T

)M

has the form

(
0 0
0 P

)
with a nondegenerate P . Since the group GL(k,Fp) is finite,

PL = 1k for some L.
Thus without a loss of generality, we can assume that a has a form

a =

(
pα pβ
pγ 1 + pδ

)
,

where α, β, γ, δ are matrices over Zpμ . We conjugate it as follows(
1 pu
0 1

)(
pα pβ
pγ 1 + pδ

)(
1 −pu
0 1

)
=

(
∗ −p2(αu+ uγu) + p

(
β + u(1 + pδ)

)
∗ ∗

)
.

We wish to choose u to make zero in the boxed block. It is sufficient to find a
matrix u satisfying the following equation:

(4.6) u =
(
−β + p(αu+ uγu)

)
(1 + pδ)−1 = −β + p(−δ + αu+ uγu)(1 + pδ)−1.

We look for a solution in the form

u =

μ∑
k=0

pkSk.

First, we consider Sk as formal noncommutative variables. Then we get a system
of equations of the form

S0 = −β, Sk = Fk(α, β, γ, δ; S0, S1, . . . , Sk−1),

where Fk are polynomial expressions with integer coefficients. These equations can
be regarded as recurrence formulas for Sk. In this way we get a solution u.

Thus without a loss of generality we can assume that a has the form

a =

(
pα′ 0
pγ′ 1 + pδ′

)
.

Raising it to μ-th power, we come to a matrix of the form

a =

(
0 0

pγ′′ 1 + pδ′′

)
.
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We conjugate it as(
1 0
pv 1

)(
0 0

pγ′′ 1 + pδ′′

)(
1 0

−pv 1

)
=

(
0 0

p(γ′′ − (1 + pδ′′)v) (1 + δ′′v)

)
.

Taking v = (1 + pδ′′)−1γ′′ we kill the left lower block and come to a matrix of the

form

(
0 0
0 1 + pδ′′′

)
. Raising it in pμ−1-th power we come to

(
0 0
0 1

)
. �

Step 3. Thus the element [[g]]�2N from Lemma 4.13 has a representative of the
following block (m− k) + k + (m− k) +∞ form:

r = r−1 =

⎛⎜⎜⎝
0 0 β11 β12

0 1k β21 β22

γ11 γ12 δ11 δ12
γ21 γ22 δ21 δ22�

⎞⎟⎟⎠ .

Lemma 4.15. There is a matrix U =

(
1m 0
0 u�

)
such that UrU−1 has the form

(4.7) r̃ =

⎛⎜⎜⎝
0 0 1m−k 0
0 1k 0 ϕ

1m−k 0 0 0
0 ψ 0 κ�

⎞⎟⎟⎠ .

Recall that [r] ∼ [UrU−1].

Proof. Since the matrix
(
β11 β12

)
is nondegenerate (otherwise r is degenerate),

we can choose a conjugation of r by matrices U =

(
1m 0
0 ∗

)
reducing this block to

the form
(
1 0

)
. We have r2 = 1; evaluating r2 we get γ11 in the left upper block.

Therefore γ11 = 1. Thus we come to new r,

r∼ =

⎛⎜⎜⎝
0 0 1 0
0 1k β21 β22

1 γ12 δ11 δ12
γ21 γ22 δ21 δ22�

⎞⎟⎟⎠
with new β, γ, δ. Next, we conjugate this matrix by⎛⎝ 1m 0 0

0 1m−k 0
0 −γ21 1�

⎞⎠
and kill γ21. Thus we come to new r,

r∼∼ =

⎛⎜⎜⎝
0 0 1 0
0 1k β21 β22

1 γ12 δ11 δ12
0 γ22 δ21 δ22�

⎞⎟⎟⎠ .

But (r∼∼)2 = 1. Looking to third row and third column of (r∼∼)2 we observe that

β21, δ11, δ21, γ12, δ12 are zero.

Thus, r∼∼ has the desired form. �
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4.5. Proof of Lemma 4.6. Denote

[X+(A)] :=

[
1 A
0 1�

]
.

We can conjugate this matrix by

(
1 0
0 u�

)
. Therefore a matrix A is defined up

to multiplications A ∼ Au, where u is an invertible matrix. The invariant of this
action is kerA (this is more or less clear; formally we can refer to Lemma 7.3 proved
below).

Next,

[X+(A)] ◦ [X+(A)] =

⎡⎣ 1 A A
0 1 0
0 0 1�

⎤⎦ .

We have ker
(
A A

)
= kerA and therefore [X+(A)] is an idempotent. In the same

way, [X−(B)] :=

[
1 0
B 1�

]
is an idempotent. It remains to notice that

[X(A,B)] = [X+(A)] � [X−(B)].

Thus [X(A,B)] is an idempotent.

4.6. Proof of Lemma 4.6. In notation of the previous subsection

X−(A1) ◦X−(A2) ∼ X
((

A1 A2

))
,

i.e.,

X[kerA1, 0] � X[kerA2, 0] ≡ X[kerA1 ∩ kerA2, 0],

or

X[L1, 0] � X[L2, 0] ≡ X[L1 ∩ L2, 0].

On the other hand, we have

X[L, 0] � X[0,M ] ≡ X[L,M ],

and now the statement becomes obvious.

Proof of Lemma 4.7. Indeed,

[X(b1, c1)] ◦ [X(b1, c1)] ∼
[
X

((
b1 b2

)
,

(
c1
c2

))]
and ker

(
b1 b2

)
= ker b1 ∩ ker b2. �

4.7. Proof of Lemma 4.8.

Step 1. Any idempotent [[g]] ∈ inv(Γ◦(m)) has a representative of the form

(
1 a
b 1�

)
,

where ab = 0.

Let [[g]] =

[[
α β
γ δ�

]]
be an idempotent; let α, δ be nondegenerate. By Lemma

4.11 without loss of generality we can assume g = g−1. Taking an appropriate power
[r] = [g]◦2N , we can achieve α = 1. By Lemma 4.12, we can assume r = r−1.

Set r =

(
1 −a
b c�

)
. Evaluating r2 = 1 we get the following collection of conditions

ab = 0 , ac = −a, cb = −b, c2 − ba = 1.
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We replace r by an equivalent matrix

r ∼
(
1 −a
b c�

)(
1 0
0 c−1

�

)
=

(
1 −ac−1

b 1�

)
=

(
1 a
b 1�

)
,

here we used the identity −ac−1 = a.

Step 2. We evaluate [r]◦2,

[r]◦2 =

⎡⎣⎛⎝ 1 a 0
b 1 0
0 0 1�

⎞⎠⎛⎝ 1 0 a
0 1 0
b 0 1�

⎞⎠⎤⎦ =

⎡⎣ 1 a a
b 1 ba
b 0 1�

⎤⎦
∼

⎡⎣⎛⎝ 1 a a
b 1 ba
b 0 1�

⎞⎠⎛⎝ 1 0 0
0 1 −ba
0 0 1�

⎞⎠⎤⎦ =

⎡⎣ 1 a a− aba
b 1 0
b 0 1�

⎤⎦ .

But ab = 0 and therefore aba = 0. Repeating the same reasoning, we get

(4.8) [[r]]�N ≡ [[q]] ≡

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

1m a . . . a
b 1 . . . 0
...

...
. . .

...
b 0 . . . 1�

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

Step 3. Next, we set N = pμ in formula (4.8). Consider the following block matrix
u of size pμ,

u :=

⎛⎜⎜⎜⎜⎜⎝
1
−1 1
0 −1 1
...

...
...

. . .

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ , u−1 :=

⎛⎜⎜⎜⎜⎜⎝
1
1 1
1 1 1
...

...
...

. . .

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

We conjugate the matrix q defined by (4.8) as(
1 0
0 u�

)
q

(
1 0
0 u−1

�

)
.

We have

u

⎛⎜⎜⎜⎝
b
b
b
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b
0
0
...

⎞⎟⎟⎟⎠ ,
(
a a a a . . .

)
u−1 =

(
0 −a −2a −3a . . .

)
,

and we get a matrix of the form X(A,B).

5. Idempotents in red(Γ(m))

Here the main statement is Proposition 5.1, which shows that all idempotents
in red(Γ(m)) have representatives in red(Γ◦(m)); therefore they have the form
X[L,M ]), where L ⊂ lm, M ⊂ lm. The second fact (Proposition 5.3), which
is important for the proof below, is a coherence of elements X[L,M ] in different
semigroups red(Γ(n)).
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5.1. Coincidence of idempotents.

Proposition 5.1. The following idempotents in inv(Γ(m)) coincide as elements of
red(Γ(m)):

[[X©
α (b, c)]] :=

[[
X

((
b 0
0 1m−α

)
,

(
c 0
0 1m−α

))]]

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
1α 0 b 0 0 0
0 1m−α 0 1m−α 0 0
0 0 1 0 0 0
0 0 0 1 0 0
c 0 0 0 1 0
0 1m−α 0 0 0 1�

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
mm

,

and

[[X�
α (b, c)]] :=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

1α 0 b 0 0
0 0 0 0 1m−α

0 0 1 0 0
c 0 0 1 0
0 1m−α 0 0 0�

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
mm

.

Corollary 5.2. Any idempotent in red(Γ(m)) has the form X[L,M ].

Proof of corollary. The semigroup redΓ(m)) is a quotient of inv(Γ(m)); the semi-
group of idempotents also is a quotient of the semigroup of idempotents. By Propo-
sition 4.10 all idempotents in inv(Γ(m)) have [[X©

α [b, c]]. By Proposition 5.1, they
also can be written as [[X�

α [b, c]] . �
Proposition will be proved in Subsection 5.3.

Remarks.
(a) The idempotents [[X©

α (b, c)]] and [[X�
α (b, c)]] are different in inv(Γ(m)). In-

deed, we have the following homomorphism from Γ(m) to the inverse semigroup
EndL(m). On Γ◦(m) we define it as the map Π described in Subsection 3.5. On
the other hand, we send Γ(m) \Γ◦(m) to 0, i.e., to a pair of partial bijections with
empty domains of definiteness. This map separates our idempotents.

(b) Idempotents X[L,M ] are pairwise different in red(Γ(m)). To verify this,
consider the representation of G in �2(G/G[L;M ]). It is easy to show that X(L,M)
is the minimal idempotent of red(Γ(m)) acting in this representation nontrivially.

5.2. Coherence. Let L, M ⊂ lm be submodules. Formula (4.4) defines the idem-
potent X[L,M ] = X(b, c) as an element of Γ(m); recall that L = ker b, M = ker ct.
However, for n > m we can regard L, M ⊂ lm as submodules L in ln ⊃ lm. In the
larger space we have

L = ker

(
b 0
0 1n−m

)
, M = ker

(
c 0
0 1n−m

)
.

Consider a unitary representation ρ of G in a Hilbert space H. For any n � m
we have an operator

(5.1) ρ̃nn

(
X

((
b 0
0 1n−m

)
,

(
c 0
0 1n−m

)))
: Hn → Hn.

We claim that these operators as operators H → H depend only on L, M and
not on n. Precisely, we have the following statement.
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Proposition 5.3.
(a) Let n � m. Then a block matrix structure of the operator (5.1) with respect

to the orthogonal decomposition Hn = Hm ⊕ (Hn �Hm) is

(5.2) ρ̃nn

(
X

((
b 0
0 1n−m

)
,

(
c 0
0 1n−m

)))
=

(
ρ̃mm(X(b, c)) 0

0 0

)
.

(b) For any L, M ⊂ lm we have a well-defined operator ρ̃(X[L,M ]) in H, which
sends Hm to Hm as ρ̃mm(X[L,M ]) and is zero on the orthocomplement H �Hm.

Proof. According Corollary 4.3, the right hand side of (5.2) is ρ̃nn(X
�
m(b, c)). By

Proposition 5.1, this operator coincides with ρ̃nn(X
©
m (b, c)). �

5.3. Proof of Proposition 5.1.

Lemma 5.4. Let g ∈ red(Γ(m)) be an idempotent. Let g be a representative of g
in Gfin. Then for any unitary representation ρ of G in a Hilbert space H the image
of the orthogonal projector ρ̃mm(g) coincides with the space of fixed points of the
subgroup in G generated by G(m) and g.

Proof. Let v ∈ im ρ̃mm(g), i.e.,

Pmρ(g)Pmv = v.

This happens if and only if Pmv = v, ρ(g)v = v. The condition Pmv = v means
that ρ(h)v = v for all h ∈ G(m). �

Therefore, it is sufficient to show that the group generated by G(m) andX©(b, c)
coincides with the group generated by G(m) and X�(b, c).

Lemma 5.5. The group generated by the subgroup G(β) and the matrix

X(1, 1) =

⎛⎝ 1β 1β 0
0 1β 0
1β 0 1β�

⎞⎠
coincides with G.

Proof. Denote by G the group generated by X(1, 1) and G(β). Conjugating X(1, 1)
by block diagonal matrices we can get any matrix of the form X(A,B) with non-
degenerate A, B. Multiplying such matrices we observe that elements of the form
X(A1 +A2, B1 + B2) are contained in G. In particular, X(0, 2) ∈ G. Since p 
= 2,
conjugating X(0, 2) by a block scalar matrix we come to X(0, 1) ∈ G. In the same
way X(1, 0) ∈ G. Now the statement became more-or-less obvious. �

Lemma 5.6. The group generated by G(β) and the matrix

(5.3)

(
0 1β
1β 0�

)
coincides with G.

Proof. Denote this group by G. Denote S∞(β) := S∞ ∩ G(β). Multiplying the
matrix (5.3) from the left and right by elements of S∞(β) we can get an arbitrary

matrix of the form

(
0 σ1

σ2 0�

)
with σ1, σ2 ∈ Sβ. Multiplying two matrices of

this type we can get any matrix

(
σ 1
0 1�

)
, where σ ∈ Sβ . Therefore our group
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contains the subgroup Sβ × S∞(β), which is maximal in S∞. Therefore G ⊃ S∞.
But S∞ and G(β) generate G; see [27, Lemma 3.6]. �

Proof of Proposition 5.1. Denote by
— G© the group generated by G(m) and X©

α (b, c);
— G� the group generated by G(m) and X�

α (b, c);
— G the group generated by G(α) and the matrix X�(b, c) defined by

X�(b, c) :=

⎛⎜⎜⎝
1α 0 b 0
0 1m−α 0 0
0 0 1 0
c 0 0 1�

⎞⎟⎟⎠ .

Obviously, G ⊃ G©, G ⊃ G�. Let us verify the opposite inclusions.

The inclusion G© ⊃ G. Clearly Xα(−b,−c) ∈ G©. Therefore G© contains

Xα(b, c)Xα(−b,−c) = X

((
0 0
0 2

)
,

(
0 0
0 2

))
∼ X

((
0 0
0 1

)
,

(
0 0
0 1

))
=: Y.

By Lemma 5.5, the group generated by Y and G(m) is G(α). On the other hand,
Y −1X©(b, c) ∼ X�(b, c).

5.3.1. The inclusion G� ⊃ G. We have

X�
α (b, c)2 ∼ X�(2b, 2c) ∼ X�(b, c).

Next, X�(b, c)
−1X�

α (b, c) ∼ Xα(0, 0) and we refer to Lemma 5.6.
Thus, G© = G�. By Lemma 5.4, for any unitary representation ρ of G we have

ρ̃mm

(
X©(b, c))

)
= ρ̃mm

(
X�(b, c))

)
and this completes the proof of Proposition 5.1. �

6. The semigroup redm(Γ(m))

6.1. Structure of the semigroup redm(Γ(m)). Denote by 0 the minimal idem-
potent of the semigroup redm(Γ(m)).

Proposition 6.1. Any element 
= 0 in redm(Γ(m)) has a representative of a form
aX(b, c), where a ∈ GL(m).

The proof occupies the rest of the section. As a byproduct of Lemma 6.3 we will
get the following statement.

Lemma 6.2. Any idempotent [X(b, c)] by a conjugation by a ∈ GL(m) can be
reduced to a form [

X

((
0 β
1 0

)
,

(
0 1
γ 0

))]
,

where γβ = 0(mod p), βγ = 0(mod p).
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6.2. Proof of Proposition 6.1.

Step 1.

Lemma 6.3.
(a) Let B be an m × N matrix over Zpμ , C an N ×m matrix. Then transfor-

mations
B �→ u−1Bv, C �→ v−1Cu

allow to reduce them to the form

(6.1) B̃ =

(
0 b12
b21 b22

)
, C̃ =

(
0 c12
c21 c22

)
,

where b12, c21 are square nondegenerate matrices of the same size, products b21c12,
c12b21 are nilpotent and b22 = 0(mod p), c22 = 0(mod p).

(b) The transformations

B �→ u−1Bv, C �→ w−1Cu,

where u, v, w are invertible, allow to reduce a pair (B,C) to the form

B̃ =

(
0 b12
1 0

)
, C̃ =

(
0 1
c21 0

)
,

where c21b12 = 0(mod p), b12c21 = 0(mod p).

Proof. (a) Reduce our matrices modulo p. A canonical form of a pair of counter
operators P : Fm

p → FN
p and Q : FN

p → Fm
p is a standard problem of linear

algebra; see, e.g., [7], [11]. In particular, such operators in some bases admit

block decompositions P =

(
Pr 0
0 Pn

)
, Q =

(
Qr 0
0 Qn

)
, where PrQr, QrPr are

nondegenerate and PnQn, QnPn are nilpotent.
Thus the matrices B, C can be reduced to the form

B′ =

(
b11 b12
b21 b22

)
, C ′ =

(
c11 c12
c21 c22

)
,

where
(1) b21, c12 are invertible matrices of the same size;
(2) products b12c21, c21b12 are nilpotent;
(3) the matrices b11, b22, c11, c22 reduced (mod p) are zero.
Set

u1 :=

(
1 b11b

−1
12

0 1

)
,

notice that u1 (mod p) is 1. We pass to new matrices

B′′ = u−1
1 B′, C ′′ = C ′′u1.

For new B the block b11 = 0; other properties (1)–(3) of matrices B, C are pre-

served. Next, we take a unique matrix of the form u2 =

(
1 0
∗ 1

)
such that C ′′u2

has zero block c12. On the other hand the block b11 of u−1
2 B′′ is zero. We come to

a desired form.
(b) We apply statement (a) and reduce (B,C) to the form (6.1). Next, we

multiply B̃ from right by

(
b21

1

)−1

and get 1 on the place of b21. After this, we
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multiply new B from right by

(
1 −b22
0 1

)
and kill b22. Finally, we repeat the same

transformations with C̃.
Now the problem is reduced to the same question for a pair b12, c21. If c21b12 
=

0(mod p), then we choose an invertible matrix U such that b12Uc21 is not nilpotent
and again repeat (a). Etc. �
Step 2.

Lemma 6.4. Let [g] ∈ Γ(m) have the form

[g] =

[
1 b
c 1�

]
mm

and [[g]] 
≈m 0. Then bc and cb are nilpotent.

Proof. We apply the previous lemma and represent [g] as

[g] =

⎡⎢⎢⎣
1α 0 0 b12
0 1m−α b21 b22
0 c12 1m−α 0
c21 c22 0 1�

⎤⎥⎥⎦
mm

.

Set

[hα
m] :=

⎡⎢⎢⎣
1α 0 0 0
0 1m−α 1m−α 0
0 0 1m−α 0
0 1m−α 0 1m−α�

⎤⎥⎥⎦ .

Let us show that

(6.2) [g] ◦ [hα
m] ∼ [g].

Indeed,

(6.3) [g] ◦ [hα
m] =

⎡⎢⎢⎢⎢⎢⎢⎣
1α 0 0 b12 0 0
0 1m−α b21 b22 1 0
0 c12 1m−α 0 c12 0
c21 c22 0 1 c22 0
0 0 0 0 1 0
0 1 0 0 0 1�

⎤⎥⎥⎥⎥⎥⎥⎦
mm

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1α 0 0 b12 0 0

0 1m−α b21 b22 1m−α 0

0 c12 1m−α 0 0 0
c21 c22 0 1 0 0
0 0 0 0 1 0

0 1m−α 0 0 0 1�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
mm

=: r,

to establish the equivalence we multiply [g] ◦ [hα
m] from the left by⎛⎜⎜⎜⎜⎝

1m
1 0 −c12
0 1 −c22
0 0 1

1�

⎞⎟⎟⎟⎟⎠ .
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Next, denote

v1 :=

⎛⎜⎜⎜⎜⎝
1m

1 0 −b−1
21

1 0
1

1�

⎞⎟⎟⎟⎟⎠ , v2 :=

⎛⎜⎜⎜⎜⎝
1m

1
1
0 1

−c−1
12 0 1�

⎞⎟⎟⎟⎟⎠ .

We have

[r] ∼ [v2v
−1
1 rv1v

−1
2 ],

the latter matrix is obtained from r, see (6.3), by removing two boxed blocks 1m−α ;

all other blocks are the same. Thus [r] ∼ [g], i.e., we established (6.2).
Suppose that α 
= m. Then by Proposition 5.1,

[g] ∼ [g] ◦ [hα
m] ≈ [g] ◦Θα

[m].

But Θα
[m] ≈m 0; therefore [[g]] �m 0. �

Step 3. Thus it is sufficient to prove Proposition 6.1 for [g] having the form

[g] =

[
1 b
c 1�

]
mm

, where bc, cb are nilpotent.

Lemma 6.5. Let [g] =

[
1 b
c 1�

]
mm

be invertible.10 Then

[g−1] ◦ [g] ≡ X(b, c).

Proof. By (3.1),

[g] ◦ ([g−1] ◦ [g]) ≡ [g], and [g−1] ◦ [g] is an idempotent.

We have (see, e.g., [9, Sect. 2.5])

[g−1] =

[
(1− bc)−1 −(1− bc)−1b

−c(1− bc)−1 (1− cb)−1
�

]
mm

∼
[

(1− bc)−1 b
c(1− bc)−1 1�

]
mm

.

We also keep in mind the identity

(6.4) c(1− bc)−1 = (1− cb)−1c,

to establish it, we multiply both sides from the left by (1− cb) and from the right
by (1− bc).

Next,

[g−1] ◦ [g] =

⎡⎣ (1− bc)−1 b (1− bc)−1b
c(1− bc)−1 1 c(1− bc)−1b

c 0 1�

⎤⎦
mm

∼

⎡⎣ (1− bc)−1 b b
c 1 0

c(1− bc)−1 0 1�

⎤⎦
mm

.

This matrix defines an idempotent in inv(Γ◦(m)). We must verify the following
statement: �

Lemma 6.6. Under our conditions,

[g−1] ◦ [g] ≡ X(b, c).

10This is equivalent to invertibility of (1− bc)−1 or invertibility of (1− cb)−1. Here we do not
need a nilpotency of bc.
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Proof. By Corollary 4.9 we can identify an idempotent in inv(Γ◦) evaluating its
image in MorL(m). So we get

[g] ◦ [g−1] ≡ [[X(B,C)]],

where

B :=
(
b b

)
, C :=

(
c

(1− cb)−1c

)
.

We have kerB = ker b, kerCt = ker ct; therefore by Lemma 4.6 we have [[X(B,C)]]
≡ [[X(b, c)]]. �

Corollary 6.7. Let

[g] =

[
1 b
c 1�

]
mm

, [g′] =

[
1 bu
c 1�

]
mm

be invertible and u also be invertible. Then

[g−1] ◦ [g] ≡ [(g′)−1] ◦ [g′].

Proof. Indeed, ker bu = ker b. So both sides are [[X(b, c)]]. �

Step 4.

Lemma 6.8. Let [g] =

[
1 b
c 1�

]
mm

; let bc and cb be nilpotent. Then there exists

u having the form

(6.5) u = −1

2
+
∑
j>0

σj

2nj
(cb)j , where σj ∈ Z, nj ∈ Z+,

such that

(6.6)

([(
1 bu
c 1�

)−1
]
mm

◦
[

1 bu
c 1�

]
mm

)
◦ [g−1]

≡

⎡⎣ (1− buc)−1(1− bc)−1 b 0
0 1 0
c 0 1�

⎤⎦
mm

.

Proof. The product is⎡⎢⎢⎣
(1− buc)−1(1− bc)−1 bu bu (1− buc)−1b

c(1− bc)−1 1 0 cb
c(1− buc)−1 0 1 c(1− buc)−1

c(1− bc)−1 0 0 1�

⎤⎥⎥⎦
mm

∼

⎡⎢⎢⎣
(1− buc)−1(1− bc)−1 bu bu (1− buc)−1b

c 1 0 0
c(1− buc)−1 0 1 0
c(1− bc)−1 0 0 1�

⎤⎥⎥⎦
mm

=:

[
A br
qc 1�

]
mm

,

here

r :=
(
u u (1− cbu)−1

)
, q :=

⎛⎝ 1
(1− cbu)−1

(1− cb)−1

⎞⎠ .

We claim that there exists a unique u such that rq = 0. A straightforward calcula-
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tion shows that
rq = 2u− ucbu+ (1− cb)−1.

Since cb is nilpotent, we can write the equation rq = 0 as

2u+ 1 = ucbu−
∑
j>0

(cb)j ,

the sum actually is finite. Clearly we can find a solution in the form u = −1/2 +∑
j>0 sj(cb)

j , where sj are dyadic rationals; for coefficients sj we have a system of

recurrent equations. This u is invertible (since we can write a finite series for u−1).

Next, we must show that the matrix

(
1 bu
c 1�

)
is invertible. Indeed, this is

equivalent to existence of (1−cbu)−1 and this is clear since by (6.5) cbu is nilpotent.

Next we wish to simplify the matrix

(
A br
qc 1�

)
by conjugations by matrices of

the form

(
1 0
0 D�

)
. In fact, we have transformations

r �→ r′ = pD−1, q �→ q′ = Dq.

For such transformations we have r′q′ = rq. Set

D =

⎛⎝1 1 u−1(1− cbu)−1

0 1 0
0 0 1�

⎞⎠ .

Then r′ =
(
u 0 0

)
. But u is invertible and r′q′ = 0. Therefore q′ has the form⎛⎝0

∗
∗

⎞⎠; on the other hand multiplication q �→ Dq does not change the second and

third elements of the column q. Thus we came to the matrix

R :=

⎡⎢⎢⎢⎢⎢⎢⎣
(1− buc)−1(1− bc)−1 b u 0 0

0 1 0 0

(1− cbu)−1 c 0 1 0

(1− cb)−1 c 0 0 1�

⎤⎥⎥⎥⎥⎥⎥⎦
mm

.

Consider the following matrices:

S :=

⎡⎢⎢⎣
1

u
1− cbu

(1− cb)�

⎤⎥⎥⎦ , T :=

⎡⎢⎢⎣
1

1
1
−1 1�

⎤⎥⎥⎦ .

The conjugation R �→ TRT−1 kills boxed elements of R. The conjugation R �→
STRT−1S−1 reduces the matrix to the desired form. �

Proof. Proof of Proposition 6.1 Thus we have[(
1 b
c 1�

)−1
]
mm

≡ (1− buc)−1(1− bc)−1 · [[X
(
(1− bc)(1− buc)b, c

)
]].

�
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The second factor is

[[X
(
b(1− cb)(1− cbu), c

)
]] ≡ [[X(b, c)]].

Passing to adjoint elements we get[
1 b
c 1

]
mm

≡ [[X(b, c)]] · (1− bc)(1− buc)

≡ (1− bc)(1− buc) · [[X((1− buc)−1(1− bc)−1b, c(1− bc)(1− buc))]]

≡ (1− bc)(1− buc) · [[X(b, c)]].

It remains to notice that [
a b
c 1

]
= a ·

[
1 a−1b
c 1

]
.

6.3. Proof of Lemma 6.2. We refer to Lemma 6.3.

7. The groups G•[L;M ]

In this section we examine subgroups G◦[L;M ], G•[L;M ] ⊂ G defined in Sub-
section 1.3. We prove that G•[L;M ] is well-defined. Lemma 7.5 shows that it is
generated by G(m) and the element X(b, c). Also we prove that it is a minimal
subgroup of finite index in G[L;M ] (equivalently, G•[L;M ] has no subgroups of
finite index, Proposition 7.11).

7.1. Several remarks on submodules in lk.

Lemma 7.1. Let L ⊂ lk be a submodule. Then there exists a basis ej ∈ lk such
that M := ⊕psjZpμej. The collection s1, s2, . . . is a unique GL(m)-invariant of a
submodule L.

This is equivalent to a classification of sublattices in (Op)
k under the action

of GL(k,Op) or equivalently to a classification of pairs of lattices in Qk
p under

GL(k,Qp); the latter question is standard; see, e.g., [35, Theorem I.2.2].

Corollary 7.2. Any submodule L ⊂ lk is a kernel of some endomorphism lk → lk.

Indeed, we pass to a canonical basis ej as in the lemma and consider the map
sending ej to pμ−sjej .

Lemma 7.3.
(a) Let L be a submodule in lm. Let b, b′ : lm → lN be morphisms of modules

such that L = ker b = ker b′. Then there is a transformation u ∈ GL(N) such that
b′ = bu.

(b) Let ker b = L, ker b′ = L′ ⊃ L. Then there is an endomorphism u : lN → lN

such that b′ = bu.

Proof. (a) The modules im b � im b′ � lm/L are isomorphic. By the previous
lemma there is an automorphism of lN identifying these submodules.

(b) L is a submodule of L′; therefore im b′ is a quotient module of im b. Therefore
there is a projection map π : im b → im b′; orders of elements do not increase under
this map. By Lemma 7.1 we have a basis ej ∈ lN such that psjej , where j = 1,
. . . , m, is the system of generators of im b. Choose arbitrary vectors vj such that
psjvj = π(psjej) and consider the map sending ej to vj . �
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7.2. The group G•. Here we show that G•[L;M ] is a group, and its definition
does not depend on the choice of matrices b, c.

Lemma 7.4.
(a) Fix a matrix B of size l × N . Then the set of invertible matrices g of the

form 1− BS, where S ranges in the set of N × l matrices, is a group.
(b) Fix matrices B, C of sizes l × N and N × l respectively. Then the set of

invertible matrices g of the form g = 1−BuC is a group.

Proof. Clearly, both sets are closed with respect to multiplication. We must show
that g−1 satisfies the same property. In the first case,

1− g−1 = 1− (1−BS)−1 = −BS(1−BS)−1.

In the second case,

1− g−1 = 1− (1− BuC)−1 = −BuC(1−BuC)−1 = −Bu(1− CBu)−1C.

�
Lemma 7.5. Fix matrices b, c of sizes m×N and N ×m respectively.

(a) The set of invertible matrices g =

(
a bv
wc z

)
such that the block ‘a’ admits

representations a = 1− bS, a = 1− Tc is a group.
(b) The set G•[L;M ], i.e., the set of all invertible matrices of the form g =(
1− buc bv
wc z

)
, is a group.

Proof. In the first case we write

g =

(
1− bS bv
wc z

)
=

(
1

1

)
−
(

bS −bv
−wc 1− z

)
=

(
1

1

)
−
(
b

1

)(
S −v

−wc 1− z

)
,

and reduce the statement to the previous lemma.
In the second case we write

g =

(
1

1

)
−
(
b

1

)(
u −v
−w 1− z

)(
c

1

)
,

and again we apply the previous lemma. �
7.3. The group G◦[L;M ].

Proof of Lemma 1.3. Let g =

(
α β
γ δ�

)
∈ G◦[L,M ], i.e., g fix pointwise L ⊂ lm

and gt fix pointwise of M ⊂ lm. Then L ⊂ kerβ and by Lemma 7.3(b) we have
β = bv for some matrix v. Also L ⊂ ker(1− α) and therefore α = 1− bS for some
S. �
7.4. Changes of coordinates.

Lemma 7.6. Let L, M ⊂ lm. Let a ∈ GL(m). Then

aG◦[L;M ]a−1 = G◦[aL, (at)−1M ], aG•[L;M ]a−1 = G•[aL, (at)−1M ].

The first statement is an immediate consequence of the definition; the second is
straightforward.
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7.5. Generators of G•[L;M ]. Let m, b, c be as in Subsection 1.3, i.e., L = ker b,
M = ker ct ⊂ lm.

Proposition 7.7. The group G•[L;M ] is generated by G(m) and the matrix X(b, c).

Proof. Consider the group G generated by G(m) and X(b, c). Clearly, G•[L,M ] ⊃
G. Let us prove the converse.

(1) Conjugating X(b, c) by block diagonal matrices ∈ G(m) we get arbitrary ma-
trices of the form X(bv, wc), where v, w are invertible matrices. Consider products

(7.1) X(bv, wc)X(b′v, wc′) = X((b+ b′)v, w(c+ c′)).

We set b = −b′; for any matrix σ we can find invertible matrices c, c′ such that11

c+ c′ = σ. Thus G contains all matrices of the form

(7.2)

(
1m bv

1m�

)
,

(
1m
wc 1m�

)
,

where v, w are arbitrary matrices.
(2) In virtue of Lemma 6.2, conjugating the matrices (7.2) by elements of GL(m)

and multiplying from the left and the right by elements of G(m) we can reduce the
matrices (7.2) to the forms
(7.3)

Y [β] :=

⎛⎜⎜⎝
1m−α 0 0 β

0 1α 1α 0

0 0 1α 0
0 0 0 1m−α�

⎞⎟⎟⎠ , Z[γ] :=

⎛⎜⎜⎝
1m−α 0 0 0
0 1α 0 0

0 1α 1α 0

γ 0 0 1m−α�

⎞⎟⎟⎠ ,

where γβ = 0(mod p), βγ = 0(mod p). Multiplying Y [β] from right by elements
of G(m + α) we can get any matrix Y [βr] with invertible r. The condition of
invertibility of r can be removed, because

Y [βr1]Y [βr2]
−1 Y [βr3] = Y [β(r1 − r2 + r3)],

and we can represent any matrix r as a sum of 3 invertible matrices.
In the same way we get that G contains all elements of the form Z[qγ].
Take r = 0, q = 0. Then the matrices Y [0] = Y [β · 0], Z[0] = Z[0 · γ] together

with G(m) generate the group G(m− α).
Next, G contains matrices Y [β]Y [0]−1 and Z[γ]Z[0]−1. They are matrices of the

form (7.3), where boxed blocks are replaced by zeroes.
Therefore our problem is reduced to a description of the subgroup generated by

G(m− α) and X(β, γ).
Thus, without loss of generality, we can assume that α = 0 and cb = 0(mod p),

bc = 0(mod p).
(3) Multiplying the matrices (7.2), we get(

1− bvwc bv
wc 1�

)
∈ G for any v, w.

11It is sufficient to verify this statement for matrices over Fp. Without loss of generality we
can assume that σ is diagonal. For p �= 2 any element of Fp is a sum of two nonzero elements,

where σ can be represented as a sum of two diagonal matrices.
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Since cb = 0(mod p), the bvwc is nilpotent, and therefore 1 − bvwc is invertible.
We represent our matrix as(

1 0
wc(1− bvwc)−1 1�

)(
1− bvwc 0

0 1�

)
×
(
1 0
0 1− wc(1− bvwc)−1bv�

)(
1 (1− bvwc)−1bv
0 1�

)
.

Since the whole product and three factors are contained in G, the fourth factor also
is contained in G, (

1− bvwc 0
0 1�

)
∈ G

for any v, w.
(4) Now consider an arbitrary element of G•[L;M ],(
1− buc bv
wc z�

)
=

(
1 0

wc(1− buc)−1 1�

)(
1− buc 0

0 1�

)
×
(
1 0
0 z − wc(1− buc)−1bv�

)(
1 (1− buc)−1bv
0 1�

)
.

All factors of the right hand side are contained in G, and therefore G•[L;M ] is
contained in G. �

Corollary 7.8. The group G•[L;M ] does not depend on a choice of m.

Proof. Let L, M ⊂ lm; let L = ker b, M = ker ct. Let us regard L, M as submodules
L′, M ′ of lm ⊕ lk. Then

L′ = ker b′, M ′ = ker(c′)t, where b′ =

(
b 0
0 1

)
, c′ =

(
c 0
0 1

)
.

Clearly the subgroup Gm generated by G(m) and X(b, c) and the subgroup Gm+k

generated by G(m + k) and X(b′, c′) coincide. Formally, we must repeat the first
two steps of the previous proof. �

7.6. The quotient G◦/G•.

Lemma 7.9. A group G•[L;M ] has finite index in G◦[L;M ].

Proof. Without loss of generality we can assume that cb = 0(mod p), bc = 0(mod p).
Denote by A◦ ⊂ GL(m) the subgroup consisting of matrices a admitting representa-
tions a = 1−bS, a = 1−Tc. Notice that 1−a is a nilpotent, since TcbS = 0(mod p).
Therefore a is invertible. Denote by A• the subgroup consisting of elements of the
form 1− buc.

The subgroup A• is normal in A◦. Indeed, let a ∈ A◦, a = 1− bS, a−1 = 1−Tc.
Then

a(1− buc)a−1 = 1− abuca−1 = 1− (1− bS)buc(1− Tc) = 1− b(1− Sb)u(1− cT )c.

Let g =

(
a bv
wc z

)
∈ G◦[L;M ]. Let us show that the map g �→ a induces a

homomorphism from G◦[L;M ] → A◦/A•. Indeed,

g1g2 =

(
a1 bv1
w1 z1

)(
a2 bv2
w2c z2

)
=

(
a1a2 + bv1w2c ∗

∗ ∗

)
.
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In the left upper block we have

a1a2(1 + a−1
2 a−1

1 bv1w2c).

We represent a−1
1 = 1− bS1, a

−1
2 = 1− bS2 and get

a1a2
(
1 + (1− bS2)(1− bS1)bv1w2c

)
= a1a2

{
1 + b(1− S2b)(1− S1b)v1w2c

}
.

The expression in the curly brackets is contained in A•.
Clearly, the kernel of the homomorphism is G•[L,M ]. Thus we have an isomor-

phism of quotient groups,

G◦[L;M ]/G•[L;M ] � A◦[L;M ]/A•[L;M ].

The group on the right-hand side is finite. �

7.7. Absence of subgroups of finite index.

Lemma 7.10. The group G has not proper open subgroups of finite index.

Proof. Let P be a proper open subgroup. Then it contains some group G(ν). On
the other hand G contains a complete infinite symmetric group S∞, and S∞ has
no subgroups of finite index. Therefore P contains S∞. But the subgroup in G

generated by G(ν) and S∞ is the whole group G; see [27, Lemma 3.6]. �

Proposition 7.11. The subgroup G•[L;M ] has no proper open subgroups of finite
index.

Proof. Let Q be such subgroup. By the previous lemma, G(m) has not open sub-
groups of finite index; we have Q ⊃ G(m). Hence Q contains a minimal normal
subgroup R containing G(m). The quotient Q/R is generated by the image ξ of
X(b, c); therefore Q/R is a cyclic group. But

X(b, c)2 = X(2b, 2c) =

⎛⎝ 1
1/2

2�

⎞⎠⎛⎝ 1 b 0
0 1 0
c 0 1�

⎞⎠⎛⎝ 1
2

1/2�

⎞⎠ .

Since p 
= 2 the elements X(b, c)2 and X(b, c) have the same images in Q/R.
Therefore the image of X[b, c] is 1. �

Corollary 7.12. Any subgroup of finite index in G[L,M ] contains G•[L,M ].

8. End of the proof

This section contains the end of the proof of Theorem 1.5. We know that all
idempotents in semigroups red(Γ(n)) have the form X[L,M ], see Corollary 5.2,
for different n they can be identified in a natural way; see Proposition 5.3. We
also know that any non-zero element of redm(Γ(m)) is a product of an invertible
element and an idempotent X[L,M ]; see Proposition 6.1. This implies that all irre-
ducible representations of G are induced from representations τ of groups G[L;M ].
Proposition 7.11 implies that such τ must be trivial on G•[L;M ].
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8.1. A preliminary remark.

Lemma 8.1. Consider an irreducible ∗-representation σ of the category K in a
sequence of Hilbert spaces Hj. Let ξ ∈ Hm be a nonzero vector. Then the matrix
element

c(g) = 〈σ(g)ξ, ξ〉Hm
, where g ranges in EndK(m),

determines σ up to equivalence.

This is a general statement on ∗-representations of categories (and a copy of
a similar statement for unitary representations of groups); we give a proof for
completeness.

Proof. For each g ∈ MorK(m,α) we define a vector

ωα
g = σ(g)ξ ∈ Hα.

Since σ is irreducible, vectors ωα
g , where g ranges in MorK(m,α), generate the space

Hα. Their inner products are determined by the function c:

〈ωα
g1
, ωα

g2
〉Hα

= 〈σ(g1)ξ, σ(g2)ξ〉Hα
= 〈σ(g∗2 ◦ g1)ξ, ξ〉Hm

= c(g∗2 ◦ g1).

Next, let h ∈ MorK(α, β). Let g, f range respectively in MorK(m,α), MorK(m,β).
Then

〈σ(h)ωg, ωf〉Hβ
= 〈σ(h)σ(g)ξ, σ(f)ξ〉Hβ

= 〈σ(f∗ ◦ h ◦ g)ξ, ξ〉Hm
= c(f∗ ◦ h ◦ g).

Clearly an operator σ(h) is uniquely determined by such inner products. �

8.2. Representations of the semigroup redm(Γ(m)). Consider an irreducible
representation of K of height m and the corresponding representation λ of the
semigroup EndK(m) in Hm. Recall that τ passes through semigroup redm(Γ(m)).
By Proposition 6.1, any nonzero element of the latter semigroup can be represented
as a · X[L,M ], where a ∈ GL(m). Denote

Ĝn[L,M ] = GL(n) ∩ Ĝ[L,M ], Ĝfin[L,M ] = Gfin ∩ Ĝm[L,M ].

Lemma 8.2 is a special case of general description of representations of finite
inverse semigroups; see, e.g., [10]. However, due to Proposition 6.1 our case is
simpler than general inverse semigroups. We show that the representation of GL(m)

in Hm is induced from an irreducible representation of some subgroup Ĝm[L,M ]
and idempotents X[N,K] act in the induced representation as multiplications by
indicator functions of certain sets. Precisely,

Lemma 8.2. Let X[L,M ] be the minimal idempotent in redm(Γ(m)) such that

λ(X[L,M ]) 
= 0. Then there is an irreducible representation τm of Ĝm[L,M ] in a
space V such that Hm can be identified with the space �2 of V -valued functions on

the homogeneous space Ĝm[L,M ] \GL(m) and
(1) The group GL(m) acts by transformations of the form

λ(g)f(x) = R(g, x)f(xg),

and for q ∈ Ĝm[L,M ] we have R(p, x0) = τm(q) (where x0 denotes the initial point

of Ĝm[L,M ] \GL(m)).
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(2) The semigroup of idempotents acts by multiplications by indicator functions.
Namely X[K,N ] acts by multiplication by the function

IK,N (x0a) =

{
1, if K ⊃ aL, N ⊃ (at)−1M ;

0, otherwise.

Proof. Consider the image V of the projector λ
(
X[L,M ]

)
. The idempotent X[L,M ]

commutes with Ĝm[L,M ]. Indeed, for q ∈ Ĝm[L,M ] we have

q · X[L,M ] · q−1 = X[Lq,M(qt)−1] = X[L,M ].

Therefore the subspace V is Ĝm[L,M ]-invariant. Denote by τm the representation

of the group Ĝm[L,M ] in V . We need Lemma 8.3:

Lemma 8.3. For any g ∈ redm(Γ(m)) we have λ(g)V = V or λ(g)V⊥V .

Proof of Lemma 8.3. Let us apply an arbitrary element of redm(Γ(m)) to v ∈ V ,

λ (a · X[K,N ]) v = λ(a) · λ (X[K,N ]X[L,M ]) v = λ(a) · λ (X[K ∩ L,N ∩M ]) v.

We have the following cases:
(1) If K 
⊃ L or N 
⊃ M , then by our choice of X[L,M ], we have

λ (X[K ∩ L,N ∩M ]) = 0.

(2) Otherwise we come to λ(a)λ (X[L,M ]) v = λ(a)v.

(2.1) If a ∈ Ĝm[L,M ], we get λ(a)v ∈ V .

(2.2) Let a /∈ Ĝm[L,M ]. Then

(8.1)

λ (X[L,M ])λ(a)λ (X[L,M ]) v = λ(a)
{
λ(a−1)λ (X[L,M ])λ(a)

}
λ (X[L,M ]) v

= λ(a)λ
(
X[La,M(at)−1]

)
λ (X[L;M ]) v

= λ(a)λ
(
X[La ∩ L,M(at)−1 ∩M ]

)
v = 0.

Since an idempotent X[a−1L ∩ L, atM ∩ M ] is strictly smaller than X[L,M ], the
λ(X[. . . ]) = 0. �
End of proof of Lemma 8.2. Thus Hm is an orthogonal direct sum of spaces Vx,

where x ranges in the homogeneous space Ĝm[L,M ] \GL(m), and λ(a) sends each
Vx to Vxa. This means that the representation λ of GL(m) is induced from the

representation of Ĝm[L,M ] in V ; see, e.g., [33, Sect.7.1].
Operators

λ
(
X[La−1, atM ]

)
= λ(a)λ(X[L,M ])λ(a−1)

act as orthogonal projectors to Vx0a. A projector λ
(
X[K,N ]

)
is identical on Vx0a if

and only if X[K,N ]X[La−1,Mat] = X[La−1,Mat] and this gives us the action of
the semigroup of idempotents.

It remains to show the representation of Ĝm[L,M ] in V is irreducible. Assume

that it contains a Ĝm[L,M ]-invariant subspace W ; then each Vx contains a copy
Wx of W and ⊕xWx is a GL(m)-invariant subspace in the whole Hm. �
Corollary 8.4. Let λ(g) be a nonzero operator leaving V invariant. Then there is

b ∈ Ĝm[L,M ] such that

λ(g)
∣∣∣
V
= ρ(b)

∣∣∣
V
.
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Proof. This operator can be represented as λ(a)λ(X[N,K]). An operator λ(X[N,K])
restricted to V is 0 or 1. Let this operator be 1. Then λ(a) preserves V only if

a ∈ Ĝm[L,M ]. In this case we set b = a. �

Keeping in mind Lemma 8.1 we get the following statement:

Corollary 8.5. An irreducible ∗-representation of the category K is determined
by its height m, a minimal idempotent X[L,M ] acting nontrivially in Hm and an

irreducible representation τ of the group Ĝm[L,M ].

We do not claim an existence of representation corresponding to given data of
this kind.

8.3. End of proof. Let ρ be an irreducible unitary representation of G of height
m in a Hilbert space H. Then we have a chain of subspaces in H:

Hm −→ Hm+1 −→ Hm+2 −→ . . . .

Lemma 4.2 defines a chain of semigroups

Γ(m) −→ Γ(m+ 1) −→ Γ(m+ 2) −→ . . . .

Each semigroup Γ(n) acts in H as follows: in Hn it acts by operators ρ̃nn(·); on
H⊥

n these operators are zero (see Lemma 4.1).
On the other hand, we have a chain of groups

GL(m) −→ GL(m+ 1) −→ GL(m+ 2) −→ . . .

acting by unitary operators; their inductive limit is the group Gfin. Each group
GL(n) preserves the subspace Hn; on this subspace the action of GL(n) coincides
with the action of the group AutK(n) = GL(n).

Consider the data listed in Corollary 8.5. We regard the subspace

V = im ρ̃mm(X[L,M ]) ⊂ Hm

as a subspace in H. Denote the GL(n)-cyclic of V by Wn; it is a subspace in Hn.

Lemma 8.6. Let g ∈ GL(n). If g ∈ G̃n[L;M ], then ρ(g)V = V . Otherwise,
ρ(g)V⊥V .

Proof. In the first case, we have

ρ̃nn(X[L,M ]) (ρ̃nn(g))
−1 ρ̃nn(X[Lg,M(gt)−1]) = ρ̃nn(X[L,M ])

and therefore the image V of ρ̃nn(X[L,M ]) is invariant with respect to ρ(g).
In the second case we repeat the line (8.1). �

Thus the representation of GL(n) in Wn is induced from the subgroup Ĝn[L,M ].
If k > n, then we have embeddings

GL(n) → GL(k), Ĝn[L,M ] → Ĝk[L,M ]

and therefore the map of homogeneous spaces

Ξn,k : Ĝn[L,M ] \GL(n) → Ĝk[L,M ] \GL(k).

On the other hand, we have an embedding Wn → Wk regarding the orthogonal
decompositions of these spaces into copies of V ; therefore the map Ξn,k is an em-
bedding.
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Finally, we get a representation of Gfin induced from the subgroup Ĝfin[L,M ].
By continuity, G acts regarding the same orthogonal decomposition ⊕Vxa. Hence

a representation of G is induced from closure12 of Ĝfin[L,M ], i.e., Ĝ[L,M ].

Lemma 8.7. The image of Ĝfin[L,M ] in the group of operators in V coincides

with the image of Ĝm[L,M ].

Proof. Let u ∈ Ĝn[L,M ]. Then ρ(u) preserves V ⊂ Hm. Therefore

ρ(u)
∣∣∣
V
= Pmρ(u)Pm

∣∣∣
V
= ρ̃([u]mm)

∣∣∣
V
.

By Corollary 8.4, this operator has the form ρ(u′)
∣∣∣
V
, where u′ ∈ Ĝm[L,M ]. �

Thus the representation τ of Ĝfin[L;M ] in V has a finite image. Its continuous
extension to G[L;M ] has the same image. The kernel of the representation τ is a
closed subgroup. Since it has a finite index, it is open. By Proposition 7.11, τ is
trivial on the subgroup G•[L;M ].
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