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MIRKOVIĆ–VILONEN BASIS IN TYPE A1

PIERRE BAUMANN AND ARNAUD DEMARAIS

Abstract. Let G be a connected reductive algebraic group over C. Through
the geometric Satake equivalence, the fundamental classes of the Mirković–
Vilonen cycles define a basis in each tensor product V (λ1) ⊗ · · · ⊗ V (λr) of
irreducible representations ofG. We compute this basis in the caseG = SL2(C)
and conclude that in this case it coincides with the dual canonical basis at
q = 1.

1. Introduction

Let G be a connected reductive algebraic group over C, endowed with a Borel
subgroup B and a maximal torus T ⊂ B. Irreducible rational representations of G
are classified by their highest weight: to the dominant integral weight λ corresponds
the irreducible representation V (λ).

Several constructions provide bases of V (λ), for instance:

• Exploiting the geometry of moduli spaces of quiver representations, Lusztig
defines in [16] the so-called canonical basis of the quantum deformation Vq(λ).
We are in fact interested in the dual of this basis, aka Kashiwara’s upper
global basis [14]. Taking the classical limit q = 1 provides a basis of V (λ).

• The geometric Satake correspondence [15,18] realizes V (λ) as the intersection

cohomology of a certain Schubert variety Grλ in the affine Grassmannian of
the Langlands dual of G. The fundamental classes of the Mirković–Vilonen
cycles form a basis of this cohomology space, hence of V (λ).

These two bases share nice properties; they can both be endowed with a Kashi-
wara crystal structure which controls the action of the Chevalley generators of the
Lie algebra of G, and they are both bases over Z of the costandard integral form of
V (λ). They coincide in small rank but usually differ: counterexamples were found
in [2] with G = SO8(C) and SL6(C). This disparity seems related to the theory of
cluster algebras. Namely, the algebra C[N ] of regular functions on the unipotent
radical N of B has a cluster structure, which is of infinite type if G = SO8(C) or
SL6(C). Each representation V (λ) can be embedded into C[N ], and the counterex-
amples in [2] are located at points where the dual canonical basis elements are not
cluster monomials (see e.g. [10], sect. 19).

A tensor product V (λ1)⊗ · · · ⊗ V (λr) of irreducible representations also admits
a dual canonical basis (see chapter 27 in [17]) and a Mirković–Vilonen basis (see
sect. 2.4 in [12]). In each case, one modifies the tensor product of the bases of
the factors in a specific way to produce a new basis, that still enjoys the pleasant
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properties mentioned earlier, and is moreover compatible with the isotypic filtration.
In this more general setup, the dual canonical basis and the Mirković–Vilonen basis
already differ for G = SL3(C) [6].

It is possible to carry out the complete calculations in the case G = SL2(C). This
task was performed by Frenkel and Khovanov [7] for the dual canonical basis, and
the purpose of this paper is to do the same for the Mirković–Vilonen basis. Recall
that each dominant weight of SL2(C) is a nonnegative multiple of the fundamental
weight �. The following result is a corollary of our work.

Theorem. For G=SL2(C), the Mirković–Vilonen basis of a tensor product V (n1�)
⊗ · · · ⊗ V (nr�) coincides with the dual canonical basis of this space specialized at
q = 1.

In truth, this theorem holds only after reversal of the order of the tensor factors,
but this defect is merely caused by a discrepancy in the conventions.

The theorem is trivial in the case r = 1 and can be expeditiously deduced
from general properties shared by the two bases in the case r = 2. When r ≥ 3,
the presence of multiplicities in the tensor product renders the result less obvious.
Perhaps one can deduce the theorem from a compatibility of both bases with an
appropriate rigid structure. (One option here would be to use the symmetric Howe
duality relative to the dual pair (GL2,GLr) in conjunction with the cluster algebras
C[B−

K\G] studied in [11].) However, we shall not pursue this avenue. Instead, we

regard V (n1�) ⊗ · · · ⊗ V (nr�) as a quotient of V (�)⊗(n1+···+nr) and note that
both the dual canonical basis and the Mirković–Vilonen basis behave well under
this operation. We can therefore reduce the general statement to the particular
case of the tensor power V (�)⊗n. We then deal with the latter by direct though
complicated calculations.

The paper is organized in the following way. In sect. 2, we define a basis of
V (�)⊗n by a simple recursive formula and argue that it matches Frenkel and Kho-
vanov’s characterization of the dual canonical basis. In sect. 3, we recall the defini-
tion of the Mirković–Vilonen basis in tensor products of irreducible representations
and prove its good behavior under the quotient operation of the previous para-
graph. In sect. 4, we show that the Mirković–Vilonen basis of V (�)⊗n satisfies the
recursive formula from sect. 2 (this is the difficult part in the paper).

While preparing this paper, we learned that independently Pak-Hin Li computed
the Mirković–Vilonen basis for the tensor product of two irreducible representations
of SL2(C).

This work is based on the PhD thesis of the second author [5]. We however
rewrote the proof to render it more accessible and remove ambiguities.

2. Combinatorics and linear algebra

Let K be a field and let V be the vector space K2. In this section, we define
in an elementary manner an explicit basis in each tensor power V ⊗n that has nice
properties with respect to the natural action of SL2(K).

2.1. Words. Given a nonnegative integer n, we set Cn = {+,−}n. We regard an
element in Cn as a word of length n on the alphabet {+,−}. Concatenation of
words endows C =

⋃
n≥0 Cn with the structure of a monoid. The word of length

zero is denoted by ∅.



782 PIERRE BAUMANN AND ARNAUD DEMARAIS

The weight of a word w ∈ C , denoted by wt (w), is the number of letters +
minus the number of letters − that w contains. A word w = w(1)w(2) · · ·w(n) is
said to be semistable if its weight is 0 and if each initial segment w(1) · · ·w(j) has
nonpositive weight.

Words are best understood through a representation as planar paths, where
letters + and − are depicted by upward and downward segments, respectively. A
word is semistable if the endpoints of its graphical representation are on the same
horizontal line and if the whole path lies below this line.

Any word w can be uniquely factorized as a concatenation

w−r+ · · ·+w−1+w0−w1− · · · −ws

where r and s are nonnegative integers and where the words w−r, . . . , ws are
semistable. The r letters + and the s letters − that do not occur in the semistable
words are called significant. Informally, a letter + is significant if it records the
first time an altitude is reached, and a letter − is significant if it marks a descent
from a height that is never attained again. A word is semistable if and only if it
does not contain any significant letter.

Example. The following picture illustrates the factorization of the word

w = −++−+−+++−−+−−++++−−+−.

This word has length 22 and weight 2. Here (r, s) = (4, 2) and the words w−2, w0

and w2 are empty. Significant letters are written in black, non-significant ones in
orange.

Given a word w, we denote by P(w) the set of words obtained from w by
changing a single significant letter + into a −. With our previous notation, P(w)
has r elements.

2.2. Bases. Let (x+, x−) be the standard basis of the vector space V . Each word
w = w(1)w(2) · · ·w(n) in C n defines an element xw = xw(1) ⊗ · · · ⊗ xw(n) in the

n-th tensor power of V . The family (xw)w∈Cn
is a basis of V ⊗n.

We define another family of elements (yw)w∈C in the tensor algebra of V by the
convention y∅ = 1 and the recursive formulas

y+w = x+ ⊗ yw and y−w = x− ⊗ yw −
∑

v∈P(w)

x+ ⊗ yv.

Rewriting the latter as

(1) x+ ⊗ yw = y+w and x− ⊗ yw = y−w +
∑

v∈P(w)

y+v

one easily shows by induction on the length of words that each element xw can be
expressed as a linear combination of elements yv, using only words v that have the
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same length and weight as w. It follows that for each nonnegative integer n, the
family (yw)w∈Cn

spans V ⊗n, hence is a basis of this space.

Proposition 1. The family (yw)w∈C is characterized by the following conditions:

(i) If w is of the form + · · ·+− · · · − (a collection of + followed by a collection
of −), then yw = xw.

(ii) y−+ = x−+ − x+−.
(iii) Let u be a semistable word and let (w′, w′′) ∈ Cn′ × Cn′′ . Write yw′w′′ =∑

i z′i ⊗ z′′i with (z′i, z
′′
i ) ∈ V ⊗n′ × V ⊗n′′

. Then yw′uw′′ =
∑

i z′i ⊗ yu ⊗ z′′i .

Proof. Statements (i) and (ii) follow straightforwardly from the definition of the
elements yw. We prove (iii) by induction on the length of w′uw′′. Discarding a
trivial case, we assume that u is not the empty word.

Suppose first that w′ is the empty word. Let us write u as a concatenation
−u′+u′′ where u′ and u′′ are (possibly empty) semistable words. Equation (1)
gives

x− ⊗ yw′′ = y−w′′ +
∑

v∈P(w′′)

y+v.

Applying the induction hypothesis to the semistable word u′′ and the pairs (−, w′′)
and (+, v), for each v ∈ P(w′′), we obtain

x− ⊗ yu′′ ⊗ yw′′ = y−u′′w′′ +
∑

v∈P(w′′)

y+u′′v.

Since x− ⊗ yu′′ = y−u′′ , we get

y−u′′ ⊗ yw′′ = y−u′′w′′ +
∑

v∈P(w′′)

y+u′′v

and applying once more the induction hypothesis, this time to the semistable word
u′ and the pairs (∅,−u′′), (∅,−u′′w′′) and (∅,+u′′v), we arrive at

(2) yu′−u′′ ⊗ yw′′ = yu′−u′′w′′ +
∑

v∈P(w′′)

yu′+u′′v.

Starting now with
x+ ⊗ yw′′ = y+w′′

we arrive by similar transformations at

(3) yu′+u′′ ⊗ yw′′ = yu′+u′′w′′ .

Since P(u′+u′′) = {u′−u′′}, we have by definition

(4) yu = x− ⊗ yu′+u′′ − x+ ⊗ yu′−u′′ .

Likewise, P(u′+u′′w′′) = {u′−u′′w′′} ∪ {u′+u′′v | v ∈ P(w′′)} leads to

(5) yuw′′ = x− ⊗ yu′+u′′w′′ − x+ ⊗ yu′−u′′w′′ −
∑

v∈P(w′′)

x+ ⊗ yu′+u′′v.

Combining (2)–(5), we obtain the desired equation

yuw′′ = yu ⊗ yw′′ .

We now address the case where w′ is not empty. Suppose that the first letter of w′

is a + and write w′ = +w̃′. Then

yw′w′′ = x+ ⊗ yw̃′w′′ and yw′uw′′ = x+ ⊗ yw̃′uw′′
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and the result follows from the induction hypothesis applied to the semistable word
u and the pair (w̃′, w′′).

If on the contrary the first letter of w′ is a −, then we write w′ = −w̃′. Since
u is semistable, its insertion in the middle of a word does not add or remove any
significant letter; in particular, the set of significant letters in w̃′w′′ is in natural
bijection with the set of significant letters in w̃′uw′′. This observation leads to a
bijection from P(w̃′w′′) onto P(w̃′uw′′), which splits a word v in two subwords
v′ ∈ Cn′−1 and v′′ ∈ Cn′′ and then returns v′uv′′. With this notation,

yw′w′′ = x− ⊗ yw̃′w′′ −
∑

v∈P(w̃′w′′)

x+ ⊗ yv′v′′

and

yw′uw′′ = x− ⊗ yw̃′uw′′ −
∑

v∈P(w̃′w′′)

x+ ⊗ yv′uv′′ .

Again the desired equation follows from the induction hypothesis applied to the
semistable word u and the pairs (w̃′, w′′) and (v′, v′′), for each v ∈ P(w̃′w′′).

Condition (iii) computes yw′uw′′ from the datum of yw′w′′ and yu whenever
u is semistable; condition (i) provide the value of yw when w is of the form
+ · · ·+− · · ·−; and condition (ii) provides the value of y−+. Noting that any word
in C can be obtained from a word of the form + · · ·+− · · ·− by repetitively insert-
ing the semistable word −+ (possibly at non disjoint positions), we conclude that
conditions (i)–(iii) fully characterize the family (yw)w∈C . �

As a consequence of this proposition, we see that if

w−k+ · · ·+w−1+w0−w1− · · ·−w�

is the factorization of a word w, as in section 2.1, then

(6) yw = yw−k
⊗x+⊗· · ·⊗x+⊗yw−1

⊗x+⊗yw0
⊗x−⊗yw1

⊗x−⊗· · ·⊗x−⊗yw�
.

Remark. The transition matrix between the two bases (xw)w∈Cn
and (yw)w∈Cn

of
V ⊗n is unitriangular: if we write

xw =
∑
v∈Cn

nw,v yv

then the diagonal coefficient nw,w is equal to one and the entry nw,v is zero except
when the path representing v lies above the path representing w. In addition, all
the coefficients nw,v are nonnegative integers. The proof of these facts is left to the
reader.

2.3. Representations. In this section, we regard V as the defining representation
of SL2(K). From now on, we assume that K has characteristic zero. We denote by
(e, h, f) the usual basis of sl2(K).

Fix a nonnegative integer n. Given a word w ∈ Cn, we denote by ε(w) (respec-
tively, ϕ(w)) the number of significant letters − (respectively, +) that w contains.
Thus, in the notation of section 2.1, ε(w) = s and ϕ(w) = r. If ε(w) > 0, we can
change in w the leftmost significant letter − into a +; the resulting word is denoted
by ẽ(w). Likewise, if ϕ(w) > 0, we can change in w the rightmost significant letter

+ into a −; the resulting word is denoted by f̃(w). If these operations are not
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feasible, then ẽ(w) or f̃(w) is defined to be 0. Endowed with the maps wt , ε, ϕ, ẽ,

f̃ , the set Cn identifies with the crystal∗ of the sl2(K)-module V ⊗n.
We denote by �(w) = ε(w) + ϕ(w) the number of significant letters in a word

w ∈ Cn; thus w is semistable if and only if �(w) = 0. For each p ∈ {0, . . . , n},
we denote by (V ⊗n)≤p the subspace of V ⊗n spanned by the elements yw such that
�(w) ≤ p. We agree that (V ⊗n)≤−1 = {0}.
Proposition 2. The basis (yw)w∈Cn

of V ⊗n enjoys the following properties.

(i) For each w ∈ Cn, we have

e · yw ≡ ε(w) yẽ(w) and f · yw ≡ ϕ(w) yf̃(w)

modulo terms in (V ⊗n)≤�(w)−1.

(ii) For each p ∈ {0, . . . , n}, the subspace (V ⊗n)≤p is a subrepresentation of
V ⊗n, and the quotient (V ⊗n)≤p/(V

⊗n)≤p−1 is an isotypic representation,
specifically the sum of simple sl2(K)-modules of dimension p+ 1.

(iii) The elements yw with w semistable form a basis of the space of invariants
(V ⊗n)SL2(K).

Sketch of proof. We first note that y−+ is invariant under the action of SL2(K)
on V ⊗2 and that any semistable word is the result of repetitive insertions of the
word −+ inside the empty word (possibly at non disjoint positions). From Propo-
sition 1(iii), it then follows that any element yw with w semistable is SL2(K)-
invariant. Using now (6), we reduce the proof of statement (i) to the case where w
is of the form + · · ·+− · · · − (perhaps for a smaller n), which is easily dealt with.

Statement (ii) is a direct consequence of statement (i) and implies that (V ⊗n)≤0

is the subspace of invariants (V ⊗n)SL2(K), an assertion equivalent to statement (iii).
�

The basis (yw)w∈Cn
of V ⊗n is even more remarkable than what Proposition 2

claims. In fact, let Vq be the vector space with basis (x+, x−) over the field C(q).
On the one hand, we can recover V (in the case K = C) as the specialization of Vq

at q = 1; on the other hand, we can regard Vq as the defining representation of the
quantum group Uq(sl2). Frenkel and Khovanov showed ([7], Theorem 1.9) that the
elements in the dual canonical basis of the Uq(sl2)-module V ⊗n

q are produced by

inserting repetitively the element x+ ⊗ x− − q−1x− ⊗ x+ inside an element of the
form x− ⊗ · · · ⊗ x− ⊗ x+ ⊗ · · · ⊗ x+. Comparing with Proposition 1, we deduce:

Theorem 3. Up to the reversal of the order of the tensor factors, (yw)w∈Cn
is the

dual canonical basis of V ⊗n
q specialized at q = 1.

3. The Mirković–Vilonen basis

In this section, we consider a connected reductive group G over C and explain
the definition of the Mirković–Vilonen basis (from now on: MV basis) in a tensor
product V (λ) = V (λ1)⊗· · ·⊗V (λn) of irreducible representations of G. References
for the material presented here are [18] and sect. 2.4 in [12]. We recall the recipe
from [1] to compute the transition matrix between the MV basis of V (λ) and the
tensor product of the MV bases of the factors V (λ1), . . . , V (λn). We state and
prove a compatibility property of the MV bases with tensor products of projections
onto Cartan components.

∗In fact, here we use the opposite of the usual tensor product of crystals.
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3.1. Definition of the basis. We choose a maximal torus T and a Borel subgroup
B of G such that T ⊂ B. The Langlands dual G∨ of G comes with a maximal torus
T∨ and a Borel subgroup B∨. We denote by N−,∨ the unipotent radical of the
Borel subgroup of G∨ opposite to B∨ with respect to T∨. We denote by Λ the
weight lattice of T and by Λ+ ⊂ Λ the set of dominant weights. Let ≤ be the
dominance order on Λ: positive elements with respect to ≤ are sums of positive
roots. We view the half-sum of all positive coroots as a linear form ρ : Λ → Q.

The affine Grassmannian of G∨ is the homogeneous space

Gr = G∨(C[z, z−1
])
/G∨(C[z]),

where z is an indeterminate. It is endowed with the structure of an ind-variety.
A weight λ∈Λ is a cocharacter of T∨. Its value at z is a point zλ∈T∨(C[z, z−1

])
,

whose image in Gr is denoted by Lλ.
Assume that λ is dominant. Then the G∨(C[z])-orbit through Lλ in Gr, denoted

by Grλ, is a smooth connected variety of dimension 2ρ(λ). The Cartan decompo-
sition implies that

Gr =
⊔

λ∈Λ+

Grλ; moreover Grλ =
⊔

μ∈Λ+

μ≤λ

Grμ.

The geometric Satake correspondence identifies the irreducible representation of

G of highest weight λ with the intersection cohomology of Grλ with trivial local
system of coefficients:

V (λ) = IH
(
Grλ,C

)
.

Let n be a positive integer. The group G∨(C[z])n acts on the space G∨(C[z, z−1
])n

by

(h1, . . . , hn) · (g1, . . . , gn) = (g1h
−1
1 , h1g2h

−1
2 , . . . , hn−1gnh

−1
n )

where (h1, . . . , hn) ∈ G∨(C[z])n and (g1, . . . , gn) ∈ G∨(C[z, z−1
])n

. The quotient
is called the n-fold convolution variety and is denoted by Grn. We will use the
customary notation

Grn = G∨(C[z, z−1
])

×G∨(C[z]) · · · ×G∨(C[z]) G∨(C[z, z−1
])

/G∨(C[z])

to indicate this construction and denote the image in Grn of a tuple (g1, . . . , gn) by
[g1, . . . , gn]. Then Grn is endowed with the structure of an ind-variety. One notes
that Gr1 is just the affine Grassmannian Gr. We define a map mn : Grn → Gr by
mn([g1, . . . , gn]) = [g1 . . . gn].

For each tuple λ = (λ1, . . . , λn) in Λn, we set

|λ| = λ1 + · · ·+ λn.

Given λ ∈ Λ+, we set Ĝrλ = G∨(C[z]) zλ G∨(C[z]); this is the preimage of Grλ

under the quotient map G∨(C[z, z−1
])

→ Gr. Given λ = (λ1, . . . , λn) in (Λ+)n,
we define

Grλn = Ĝrλ1 ×G∨(C[z]) · · · ×G∨(C[z]) Ĝrλn /G∨(C[z]),

a subset of Grn. The geometric Satake correspondence identifies the tensor product

V (λ) = V (λ1)⊗ · · · ⊗ V (λn)

with the intersection cohomology of Grλn .
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Given μ ∈ Λ, the N−,∨(C[z, z−1
])
-orbit through Lμ is denoted by Tμ; this is a

locally closed sub-ind-variety of Gr. The Iwasawa decomposition implies that

Gr =
⊔
μ∈Λ

Tμ; moreover Tμ =
⊔
ν∈Λ
ν≥μ

Tν .

For each (λ, μ) ∈ Λ+ × Λ, the intersection Grλ ∩ Tμ (if non-empty) has pure di-
mension ρ(λ − μ). Using this fact, Mirković and Vilonen set up the geometric
Satake correspondence so that the μ-weight subspace of V (λ) identifies with the

top-dimensional Borel–Moore homology of Grλ ∩ Tμ ([18], Corollary 7.4):

V (λ)μ = HBM
2ρ(λ−μ)

(
Grλ ∩ Tμ

)
.

We denote by Z (λ)μ the set of irreducible components of Grλ ∩Tμ. If Z ∈ Z (λ)μ,

then Z ∩Grλ is an irreducible component of Grλ ∩ Tμ, whose fundamental class in
Borel–Moore homology is denoted by 〈Z〉. The classes 〈Z〉, for Z ∈ Z (λ)μ, form a
basis of V (λ)μ.

Likewise, for each (λ, μ) ∈ (Λ+)n × Λ, the intersection Grλn ∩ (mn)
−1(Tμ) has

pure dimension ρ(|λ| − μ), and we can identify

V (λ)μ = HBM
2ρ(|λ|−μ)

(
Grλn ∩ (mn)

−1(Tμ)
)
.

We denote by Z (λ)μ the set of irreducible components of Grλn ∩ (mn)
−1(Tμ). If

Z ∈ Z (λ)μ, then Z∩Grλn is an irreducible component of Grλn ∩ (mn)
−1(Tμ), whose

fundamental class in Borel–Moore homology is denoted by 〈Z〉. The classes 〈Z〉,
for Z ∈ Z (λ)μ, form a basis of V (λ)μ.

We set
Z (λ) =

⊔
μ∈Λ

Z (λ)μ and Z (λ) =
⊔
μ∈Λ

Z (λ)μ.

Elements in these sets are called Mirković–Vilonen (MV) cycles, and the bases of
V (λ) and V (λ) obtained above are called MV bases.

3.2. Indexation of the Mirković–Vilonen cycles. In this short section, we
explain that there is a natural bijection

(7) Z (λ) ∼= Z (λ1)× · · · × Z (λn)

for any λ = (λ1, . . . , λn) in (Λ+)n. The construction goes back to Braverman and
Gaitsgory [4]; details can be found in [1], Proposition 2.2 and Corollary 4.10.

For μ ∈ Λ, we define

T̃μ = N−,∨(C[z, z−1
])

zμ

and note that the natural map

T̃μ /N
−,∨(C[z]) → Tμ

is bijective. Given a N−,∨(C[z])-invariant subset Z ⊂ Tμ, we denote by Z̃ the

preimage of Z by the quotient map T̃μ → Tμ. In particular, the notation Z̃ is
defined for any MV cycle Z.

Pick μ = (μ1, . . . , μn) in Λn and Z = (Z1, . . . , Zn) in Z (λ1)μ1
× · · · ×Z (λn)μn

.
Then the closure of{

[g1, . . . , gn]
∣∣∣ (g1, . . . , gn) ∈ Z̃1 × · · · × Z̃n

}
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in (mn)
−1
(
T|μ|

)
is an MV cycle, and actually belongs to Z (λ)|μ|. Each MV cycle

in Z (λ) can be uniquely obtained in this manner, which defines the bijection (7).
Because of this, we will allow ourselves to write elements in Z (λ) as tuples Z

as above.

3.3. Transition matrix. We continue with our tuple of dominant weights λ =
(λ1, . . . , λn). To compute the MV basis of V (λ), we compare it with the tensor
product of the MV bases of the factors V (λ1), . . . , V (λn). This requires the intro-
duction of a nice geometric object.

Let n be a positive integer. We define the n-fold Beilinson–Drinfeld convolution
variety Grn as the set of pairs (x1, . . . , xn; [g1, . . . , gn]), where (x1, . . . , xn) ∈ Cn

and [g1, . . . , gn] belongs to

G∨(C[z, (z − x1)
−1
])

×G∨(C[z]) · · · ×G∨(C[z]) G∨(C[z, (z − xn)
−1
])

/G∨(C[z]).
We denote by π : Grn → Cn the morphism which forgets [g1, . . . , gn]. It is known
that Grn is endowed with the structure of an ind-variety and that π is ind-proper.

To each composition n = (n1, . . . , nr) of n in r parts corresponds a partial
diagonal Δn in Cn, defined as the set of all elements of the form

(8) x = (x1, . . . , x1︸ ︷︷ ︸
n1 times

, . . . , xr, . . . , xr︸ ︷︷ ︸
nr times

)

for (x1, . . . , xr) ∈ Cr. The small diagonal is the particular case n = (n); we denote
it simply by Δ. We define Grn

∣∣
Δn

to be π−1(Δn).

Given g ∈ G∨(C[z, z−1
])

and x ∈ C, we denote by g|x the result of substituting

z − x for z in g. We define Grλn to be the set of all pairs
(
x1, . . . , xn;

[
g1|x1

, . . . ,

gn|xn

])
with (x1, . . . , xn) ∈ Cn and gj ∈ Ĝrλj for each j ∈ {1, . . . , n}. Sim-

ilarly, given μ = (μ1, . . . , μn) in Λn, we define Tμ to be the set of all pairs(
x1, . . . , xn;

[
g1|x1

, . . . , gn|xn

])
with (x1, . . . , xn) ∈ Cn and gj ∈ T̃μj

for each j ∈
{1, . . . , n}. For μ ∈ Λ, we set (leaving n out of the notation)

Ṫμ =
⋃

μ∈Λn

|μ|=μ

Tμ.

Given (μ1, . . . , μn) ∈ Λn and Z = (Z1, . . . , Zn) in Z (λ1)μ1
×· · ·×Z (λn)μn

, we de-

fine Ẋ (Z) to be the set of all pairs
(
x1, . . . , xn;

[
g1|x1

, . . . , gn|xn

])
with (x1, . . . , xn) ∈

Cn and gj ∈ Z̃j for each j ∈ {1, . . . , n}. Given in addition a composition n of n,
we define

X (Z,n) = Ẋ (Z)
∣∣
Δn

∩ Grλn .

(In [1], Ẋ (Z) is denoted by Ψ(Z1 ∝ · · · ∝ Zn) and X (Z,n) is defined as Ẋ (Z)
∣∣
Δn

∩
Grλn ∩ Ṫμ.)

For given λ, μ and n, the subsets X (Z,n) ∩ Ṫμ for Z in

Z (λ)μ =
⊔

(μ1,...,μn)∈Λn

μ1+···+μn=μ

Z (λ1)μ1
× · · · × Z (λn)μn

are the irreducible components of
(
Grλn ∩ Ṫμ

)∣∣
Δn

(see [1], proof of Proposition 5.4).

We adopt a special notation for the small diagonal and set Y(Z) = X (Z, (n)).
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Now fix n, the tuple λ ∈ (Λ+)n, the weight μ ∈ Λ, and the composition n
of n. We write λ as a concatenation

(
λ(1), . . . ,λ(r)

)
, where each λ(j) belongs to

(Λ+)nj , and similarly we write each tuple Z ∈ Z (λ)μ as
(
Z(1), . . . ,Z(r)

)
with

Z(j) ∈ Z (λ(j)). Then

V (λ) = V
(
λ(1)

)
⊗ · · · ⊗ V

(
λ(r)

)
and

〈
Z(j)

〉
∈ V

(
λ(j)

)
.

With this notation ([1], Proposition 5.10):

Proposition 4. Let (Z′,Z′′) ∈ (Z (λ)μ)
2. The coefficient bZ′,Z′′ in the expansion〈

Z′′
(1)

〉
⊗ · · · ⊗

〈
Z′′

(r)

〉
=

∑
Z∈Z (λ)μ

bZ,Z′′ 〈Z〉

is the multiplicity of Y(Z′) in the intersection product X (Z′′,n) · Grλn
∣∣
Δ

computed

in the ambient space Grλn
∣∣
Δn

.

3.4. Projecting onto Cartan components. To begin with, let n be a positive
integer and let λ ∈ (Λ+)n. We denote by p : V (λ) → V (|λ|) the projection onto
the Cartan component of V (λ), i.e. the top step in the isotypic filtration. The map

mn : Grn → Gr restricts to an isomorphism Grλn∩ (mn)
−1
(
Gr|λ|)→ Gr|λ| (see [13],

p. 2110). Given μ ∈ Λ and Z ∈ Z (λ)μ, we define |Z| to be the closure in Tμ of

mn(Z) ∩Gr|λ|.
Proposition 5 is a direct consequence of Theorem 3.4 in [1] and its proof.

Proposition 5.

(i) The map Z �→ |Z| defines a bijection
{
Z ∈ Z (λ)

∣∣ |Z| �= ∅
}
→ Z (|λ|).

(ii) Let Z ∈ Z (λ). If |Z| �= ∅, then p(〈Z〉) =
〈
|Z|
〉
; otherwise p(〈Z〉) = 0.

By Corollary 4.10 in [1], the condition |Z| �= ∅ concretely means that under the
bijection (7), Z ∈ Z (λ) belongs to the connected component of highest weight |λ|
of the tensor product of crystals Z (λ1)× · · · × Z (λn).

Now let n = (n1, . . . , nr) be a composition of n in r parts. We again write
λ as a concatenation

(
λ(1), . . . ,λ(r)

)
, where each λ(j) belongs to (Λ+)nj , and set

‖λ‖ =
(∣∣λ(1)

∣∣, . . . , ∣∣λ(r)

∣∣); then
V (‖λ‖) = V

(∣∣λ(1)

∣∣)⊗ · · · ⊗ V
(∣∣λ(r)

∣∣).
For each j ∈ {1, . . . , r}, we denote by p(j) : V

(
λ(j)

)
→ V

(∣∣λ(j)

∣∣) the projection
onto the Cartan component and define

p = p(1) ⊗ · · · ⊗ p(r);

thus p : V (λ) → V (‖λ‖).
Likewise, we again write each tuple Z ∈ Z (λ) as a concatenation

(
Z(1), . . . ,Z(r)

)
with Z(j) ∈ Z (λ(j)) and set ‖Z‖ =

(∣∣Z(1)

∣∣, . . . , ∣∣Z(r)

∣∣).
Proposition 6. Let Z ∈ Z (λ). If

∣∣Z(j)

∣∣ �= ∅ for all j ∈ {1, . . . , r}, then p(〈Z〉) =〈
‖Z‖

〉
; otherwise p(〈Z〉) = 0.

Proof. Let Z̊ (λ) be the set of all Z ∈ Z (λ) such that
∣∣Z(j)

∣∣ �= ∅ for all j ∈
{1, . . . , r}; then the map Z �→ ‖Z‖ realizes a bijection from Z̊ (λ) onto Z (‖λ‖).
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We fix a weight μ ∈ Λ and introduce the transition matrices (bZ′,Z′′) and
(aY′,Y′′), where (Z′,Z′′) ∈ (Z (λ)μ)

2 and (Y′,Y′′) ∈ (Z (‖λ‖)μ)2, that encode
the expansions 〈

Z′′
(1)

〉
⊗ · · · ⊗

〈
Z′′

(r)

〉
=

∑
Z′∈Z (λ)μ

bZ′,Z′′ 〈Z′〉

and 〈
Y ′′
1

〉
⊗ · · · ⊗

〈
Y ′′
r

〉
=

∑
Y′∈Z (‖λ‖)μ

aY′,Y′′ 〈Y′〉

in the MV bases of V (λ) and V (‖λ‖). We claim that if Z′ ∈ Z̊ (λ), then

(9) bZ′,Z′′ =

{
a‖Z′‖,‖Z′′‖ if Z′′ ∈ Z̊ (λ),

0 otherwise.

Assuming (9), we conclude the proof as follows. Let p̃ : V (λ) → V (‖λ‖) be the
linear map defined by the requirement that for all Z ∈ Z (λ),

p̃(〈Z〉) =
{〈

‖Z‖
〉

if Z ∈ Z̊ (λ),

0 otherwise.

Then (9) gives

p̃
(〈
Z(1)

〉
⊗ · · · ⊗

〈
Z(r)

〉)
=

{〈
|Z(1)|

〉
⊗ · · · ⊗

〈
|Z(r)|

〉
if Z ∈ Z̊ (λ),

0 otherwise,

and from Proposition 5, we conclude that p̃ = p.
We are thus reduced to prove (9). We define a map mn : Grn

∣∣
Δn

→ Grr by

mn(x; [g1, . . . , gn])

= (x1, . . . , xr; [g1 · · · gn1
, gn1+1 · · · gn1+n2

, . . . , gn1+...+nr−1+1 · · · gn])

for x as in (8). Then U = Grλn
∣∣
Δn

∩(mn)
−1
(
Gr‖λ‖

r

)
is an open subset of Grλn

∣∣
Δn

and mn restricts to an isomorphism U → Gr‖λ‖
r .

Let (Z′,Z′′) ∈ (Z (λ)μ)
2. By Proposition 4, the coefficient bZ′,Z′′ is the mul-

tiplicity of Y(Z′) in the intersection product X (Z′′,n) ·
(
Grλn

)∣∣
Δ

computed in the

ambient space Grλn
∣∣
Δn

.

Assume first that both Z′ and Z′′ lie in Z̊ (λ). Then the open subset U meets
Y(Z′) and X (Z′′,n). Since intersection multiplicities are of local nature, bZ′,Z′′

is the multiplicity of Y(Z′) ∩ U in the intersection product
(
X (Z′′,n) ∩ U

)
· U
∣∣
Δ

computed in the ambient space U
∣∣
Δn

. On the other hand, Proposition 4 for the

composition (1r) = (1, . . . , 1) of r gives that a‖Z′‖,‖Z′′‖ is the multiplicity of Y(‖Z′‖)
in the intersection product X (‖Z′′‖, (1r)) ·

(
Gr‖λ‖

r

)∣∣
Δ
computed in the ambient space

Gr‖λ‖
r . Observing that

mn

(
Y(Z′) ∩ U

)
= Y(‖Z′‖) and mn

(
X (Z′′,n) ∩ U

)
= X (‖Z′′‖, (1r)),

we conclude that bZ′,Z′′ = a‖Z′‖,‖Z′′‖ in this case.

Now assume that Z′ is in Z̊ (λ) but not Z′′. Then there exists j ∈ {1, . . . , r}
such that Z′′

(j) is contained in F = Gr
λ(j)
nj \ (mnj

)−1
(
Gr|λ(j)|

)
. For x ∈ C, denote
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by F̂ |x the set of all tuples
(
g1|x, . . . , gnj |x

)
where

(g1, . . . , gnj
) ∈

(
G∨(C[z, z−1

]))nj and [g1, . . . , gnj
] ∈ F,

and denote by F the subset of Grλn
∣∣
Δn

consisting of all pairs (x; [g1, . . . , gn]) such

that
(gn1+···+nj−1+1, . . . , gn1+···+nj

) ∈ F̂ |xj

where x is written as in (8). Then F is closed in Gr
λ(j)
nj and X (Z′′,n) is contained

in F . As Y(Z′) is not contained in F , it is not contained in X (Z′′,n), so here
bZ′,Z′′ = 0. �

3.5. Truncation. In this section, we come back to the setup of sect. 3.3 and record
a property which will simplify our analysis.

We fix nonnegative integers n1, n2, n3 and tuples λ(1) ∈ (Λ+)n1 , λ(2) ∈ (Λ+)n2 ,

λ(3) ∈ (Λ+)n3 . We define λ to be the concatenation
(
λ(1),λ(2),λ(3)

)
and we regard

elements Z ∈ Z (λ) as concatenations
(
Z(1),Z(2),Z(3)

)
where each Z(j) belongs to

Z (λ(j)). If ν ∈ Λ and Z(3) ∈ Z (λ(3))ν , then we set wtZ(3) = ν.
We fix a weight μ ∈ Λ and introduce the transition matrix (aZ′,Z′′), where

(Z′,Z′′) ∈ (Z (λ)μ)
2, that encodes the expansions〈

Z′′
(1)

〉
⊗
〈(
Z′′

(2),Z
′′
(3)

)〉
=

∑
Z′∈Z (λ)μ

aZ′,Z′′
〈(
Z′

(1),Z
′
(2),Z

′
(3)

)〉
in the MV basis of V (λ).

Proposition 7.

(i) Let (Z′,Z′′) ∈ (Z (λ)μ)
2. If aZ′,Z′′ �= 0, then either wtZ′

(3) < wtZ′′
(3) or

Z′
(3) = Z′′

(3).

(ii) Let Z′′ ∈ Z (λ)μ. Then〈
Z′′

(1)

〉
⊗
〈
Z′′

(2)

〉
=

∑
Z′∈Z (λ)μ

Z′
(3)=Z′′

(3)

aZ′,Z′′
〈(
Z′

(1),Z
′
(2)

)〉

in V
(
λ(1)

)
⊗ V

(
λ(2)

)
.

Proof. Let Z′′ ∈ Z (λ)μ and set ν = wtZ′′
(3). Expanding

〈
Z′′

(1)

〉
⊗
〈
Z′′

(2)

〉
in the MV

basis of V
(
λ(1)

)
⊗ V

(
λ(2)

)
, we write〈

Z′′
(1)

〉
⊗
〈
Z′′

(2)

〉
=

∑
Z∈Z (λ(1),λ(2))μ−ν

cZ 〈Z〉

for some complex numbers cZ.
We denote by V

(
λ(3)

)
<ν the sum of the ξ-weight subspaces of V

(
λ(3)

)
with

ξ < ν. By Theorem 5.13 in [1],〈
Z′′

(2)

〉
⊗
〈
Z′′

(3)

〉
≡
〈(
Z′′

(2),Z
′′
(3)

)〉 (
mod V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν

)
and for each Z ∈ Z (λ(1),λ(2)),〈

Z
〉
⊗
〈
Z′′

(3)

〉
≡
〈(
Z,Z′′

(3)

)〉 (
mod V

(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν

)
.
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Consequently,∑
Z′∈Z (λ)μ

aZ′,Z′′
〈(
Z′

(1),Z
′
(2),Z

′
(3)

)〉
≡

∑
Z∈Z (λ(1),λ(2))μ−ν

cZ
〈(
Z,Z′′

(3)

)〉
modulo V

(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν .

We conclude by noticing that the subspace V
(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν is

spanned by the basis vectors 〈Z′〉 such that wtZ′
(3) < ν; see Corollary 5.12 in [1]. �

4. Geometry

In this section, we prove that the MV basis of the tensor powers of the natural
representation of G = SL2(C) is the basis (yw) from sect. 2. As a matter of fact,
by Theorem 5.13 in [1], the MV basis satisfies the first equation in (1), so we only
have to prove that it satisfies the second one too.

4.1. Notation. We endow G with its usual maximal torus and Borel subgroup.
The weight lattice is represented as usual as the quotient (Zε1 ⊕ Zε2)/Z(ε1 + ε2).
The fundamental weight � is the image of ε1 in this quotient. The notation Gr
indicates the affine Grassmannian of G∨ = PGL2(C).

In this section, λ will always be of the form (�, . . . , �); the number n of times

� is repeated will usually appears as a subscript in notation like Grλn or Grλn .
The cell Gr� is isomorphic to the projective line, hence is closed. The two MV

cycles in Z (�) are

Z+ = Gr�∩T� =

{[(
z 0
0 1

)]}
and Z− = Gr�∩T−� =

{[(
1 0
a z

)] ∣∣∣∣ a ∈ C

}
(the matrices above should actually be viewed in PGL2

(
C
[
z, z−1

])
). The standard

basis of V (�) = C2 is then (x+, x−) = (〈Z+〉, 〈Z−〉).
Given a word v ∈ Cn, we set

P (v) =
{
� ∈ {1, . . . , n}

∣∣ v(�) = +
}

and Zv =
(
Zv(1), . . . , Zv(n)

)
.

Thanks to the bijection (7), we regard Zv as an element in Z (λ).
For (x, a) ∈ C2, we set

ϕ+(x, a) =

(
z − x a
0 1

)
and ϕ−(x, a) =

(
1 0
a z − x

)
.

Recall the notation introduced in sect. 3.3. For each word v ∈ Cn, we define an
embedding φv : C2n → Grλn by

φv(x; a) =
(
x;
[
ϕv(1)(x1, a1), . . . , ϕv(n)(xn, an)

])
where x = (x1, . . . , xn) and a = (a1, . . . , an). The image of φv is an open subset

Uv and φv can be regarded as a chart on the manifold Grλn . This chart is designed
so that Ẋ (Zv) is the algebraic subset of Uv defined by the equations a� = 0 for
� ∈ P (v) (compare with the construction presented in [9]).
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4.2. The simplest example. In this section, we consider the case n = 2; the
variety Grλ2 has dimension 4. The words v = +− and w = −+ give rise to charts

φv and φw on Grλ2 defined by

φv(x1, x2; a1, a2) =

(
x1, x2;

[(
z − x1 a1

0 1

)
,

(
1 0
a2 z − x2

)])
,

φw(x1, x2; b1, b2) =

(
x1, x2;

[(
1 0
b1 z − x1

)
,

(
z − x2 b2

0 1

)])
.

The transition map (φw)
−1 ◦φv is given by

b1 = 1/a1, b2 = −a1(x2 − x1 + a1a2)

on the domain

(φv)
−1(Uv ∩ Uw) =

{
(x1, x2, a1, a2) ∈ C4

∣∣ a1 �= 0
}
.

We set A = C[x1, x2, a1, a2]; this is the coordinate ring of (φv)
−1(Uv). We let

B = S −1A be the localization of A with respect to the multiplicative subset S
generated by a1; this is the coordinate ring of (φv)

−1(Uv ∩ Uw).
In the chart φv, the cycle Y(Zv) is defined by the equations a1 = x1 − x2 = 0,

so the ideal in A of the subvariety

V = (φv)
−1(Uv ∩ Y(Zv))

is

p = (a1, x1 − x2).

In the chart φw, the cycle Ẋ (Zw) is defined by the equation b2 = 0, and the

closure in Uv of Uv ∩ Ẋ (Zw) is Uv ∩ X (Zw, (1, 1)). Therefore the ideal in B of

(φv)
−1
(
Uv ∩ Ẋ (Zw)

)
is q̊ = (−a1(x2 − x1 + a1a2)) and the ideal in A of the

subvariety

X = (φv)
−1(Uv ∩ X (Zw, (1, 1)))

is the preimage

q = (x2 − x1 + a1a2)

of q̊ under the canonical map A → B.
Plainly q ⊂ p, which shows that V ⊂ X. The local ring OV,X of X along V is

the localization of A = A/q at the ideal p = p/q. Since a2 is not in p, its image
in A p is invertible, and then we see that x1 − x2 generates the maximal ideal of

A p. As a consequence, the order of vanishing of x1 − x2 along V (see [8], sect. 1.2)
is equal to one. By definition, this is the multiplicity of Y(Zv) in the intersection

product X (Zw, (1, 1)) · Grλ2
∣∣
Δ
.

Proposition 4 then asserts that y+− = 〈Zv〉 occurs with coefficient one in the
expansion of xw = 〈Z−〉⊗ 〈Z+〉 on the MV basis of V (�)⊗2, in agreement with the
equation

x−+ = y−+ + y+−.

The proof of the general case follows the same pattern, but more elaborate combi-
natorics is needed to manage the equations.
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4.3. Transition maps. Pick v, w in Cn. Set P0 = S0 = 1 and Q0 = R0 = 0. For
� ∈ {1, . . . , n}, let K� = C(x1, . . . , x�, a1, . . . , a�) be the field of rational functions
and define by induction an element b� ∈ K� and a matrix(

P� Q�

R� S�

)
with coefficients in K�[z] and determinant one as follows:

• If (v(�), w(�)) = (+,+), then

b� =

(
a�P�−1 +Q�−1

)(
x�

)(
a�R�−1 + S�−1

)(
x�

) ,
⎧⎨⎩P� = P�−1 − b�R�−1, Q� =

a�P�−1 +Q�−1 − b�S�

z − x�
,

R� = (z − x�)R�−1, S� = a�R�−1 + S�−1.

• If (v(�), w(�)) = (−,+), then

b� =

(
P�−1 + a�Q�−1

)(
x�

)(
R�−1 + a�S�−1

)(
x�

) ,
⎧⎨⎩P� =

P�−1 + a�Q�−1 − b�R�

z − x�
, Q� = Q�−1 − b�S�−1,

R� = R�−1 + a�S�−1, S� = (z − x�)S�−1.

• If (v(�), w(�)) = (+,−), then

b� =

(
a�R�−1 + S�−1

)(
x�

)(
a�P�−1 +Q�−1

)(
x�

) ,
⎧⎨⎩

P� = (z − x�)P�−1, Q� = a�P�−1 +Q�−1,

R� = R�−1 − b�P�−1, S� =
a�R�−1 + S�−1 − b�Q�

z − x�
.

• If (v(�), w(�)) = (−,−), then

b� =

(
R�−1 + a�S�−1

)(
x�

)(
P�−1 + a�Q�−1

)(
x�

) ,
⎧⎨⎩

P� = P�−1 + a�Q�−1, Q� = (z − x�)Q�−1,

R� =
R�−1 + a�S�−1 − b�P�

z − x�
, S� = S�−1 − b�Q�−1.

Since the matrix

(
P�−1 Q�−1

R�−1 S�−1

)
has determinant one, the denominator in the

fraction that defines b� is not the zero polynomial and everything is well-defined.

Proposition 8. The transition map

(φw)
−1 ◦ φv : (φv)

−1(Uv ∩ Uw) → (φw)
−1(Uv ∩ Uw)

is given by the rational map

(x1, . . . , xn; a1, . . . , an) �→ (x1, . . . , xn; b1, . . . , bn)

where b1, . . . , bn are defined above.

Proof. The definitions are set up so that

ϕw(�)(x�, b�)

(
P� Q�

R� S�

)
=

(
P�−1 Q�−1

R�−1 S�−1

)
ϕv(�)(x�, a�)

and therefore (
�∏

j=1

ϕw(j)(xj , bj)

)(
P� Q�

R� S�

)
=

(
�∏

j=1

ϕv(j)(xj , aj)

)
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for each � ∈ {1, . . . , n}. Thus, when complex values are assigned to the indetermi-
nates x1, . . . , xn, a1, . . . , an, we get[

�∏
j=1

ϕv(j)(xj , aj)

]
=

[
�∏

j=1

ϕw(j)(xj , bj)

]
in PGL2

(
C
[
z, (z − x1)

−1, . . . , (z − x�)
−1
])

/PGL2(C[z]). This implies the equality

φv(x1, . . . , xn; a1, . . . , an) = φw(x1, . . . , xn; b1, . . . , bn)

in Grn. �

The parameters b� and the coefficients of the polynomials P�, Q�, R�, S� were
defined as elements in K�. We can however be more precise and define recur-
sively a subring B� ⊂ K� to which they belong: we start with B0 = C, and for
� ∈ {1, . . . , n}, we set B� = B�−1

[
x�, a�, f

−1
�

]
, where f� ∈ B�−1[x�, a�] is the de-

nominator in the fraction that defines b�.
Let A� = C[x1, . . . , x�, a1, . . . , a�] be the polynomial algebra. One can easily

build by induction a finitely generated multiplicative set S� ⊂ A� such that B� is
the localization S −1

� A�. While An is the coordinate ring of (φv)
−1(Uv), we see

that Bn is the coordinate ring of the open subset (φv)
−1(Uv ∩ Uw). In fact, since

the matrix

(
P� Q�

R� S�

)
has determinant one, the numerator and the denominator

of b� cannot both vanish at the same time. As a consequence, (φw)
−1 ◦φv cannot

be defined at a point where a function in Sn vanishes.

4.4. Finding the equations. To prove that the MV basis satisfies the equa-
tion (1), we need intersection multiplicities in the ambient space Grλn

∣∣
Δ(1,n−1)

. In

practice, we make the base change Δ(1,n−1) → Cn by letting x2 = · · · = xn in the
definition of the charts and by agreeing that from now on, Uv actually means
Uv

∣∣
Δ(1,n−1)

. Then, in view of the invariance of the whole system under transla-

tion along the small diagonal Δ, all our equations will only involve the difference
x = x1 − x2.

We will consider words v and w in Cn such that (v(1), w(1)) = (+,−) and
wt (v) = wt (w). The planar paths that represent v and w have then the same
endpoints. We write w as a concatenation −w′ where w′ ∈ Cn−1. Proposition 4
asserts that the basis element yv occurs in the expansion of x−⊗yw′ in the MV basis
of V (�)⊗n only if Y(Zv) ⊂ X (Zw, (1, n− 1)), and when this condition is fulfilled,
its coefficient is the multiplicity of Y(Zv) in the intersection product X (Zw, (1, n−
1)) · Grλn

∣∣
Δ
.

The next sections are devoted to the determination of these inclusions and in-
tersection multiplicities. The actual calculations require the ideals in An of the
subvarieties (φv)

−1(Uv ∩Y(Zv)) and (φv)
−1(Uv ∩X (Zw, (1, n−1))) of (φv)

−1(Uv):
the first one, denoted by p, is generated by x and the elements a� for � ∈ P (v); the
second one, denoted by q, is less easily determined.

Taking into account our notational convention regarding the base change Δ(1,n−1)

→ Cn, we observe that Uv∩X (Zw, (1, n−1)) is the closure in Uv of Uv∩Ẋ (Zw). Let

q̊n be the ideal in Bn of the closed subset (φv)
−1
(
Uv ∩Ẋ (Zw)

)
of (φv)

−1(Uv ∩Uw).
Then q̊n is generated by the elements b� for � ∈ P (w) and q is the preimage of
q̊n under the canonical map An → Bn. In other words, q is the saturation with



796 PIERRE BAUMANN AND ARNAUD DEMARAIS

respect to Sn of the ideal of An generated by the numerators of the elements b�
for � ∈ P (w). Though algorithmically doable in any concrete example, finding the
saturation is a demanding calculation, which we will bypass by replacing q by an
approximation q̃n.

4.5. Inclusion and multiplicity, I. This section is devoted to the situation where
the paths representing v and w stay parallel to each other at distance two; specif-
ically, we assume that v(�) = w(�) for each � ∈ {2, . . . , n − 1} and (v(n), w(n)) =
(−,+).

Proposition 9. Under these assumptions:

(i) The inclusion Y(Zv) ⊂ X (Zw, (1, n− 1)) holds if and only if the last letter of
w′ is significant.

(ii) If the condition in (i) is fulfilled, then the multiplicity of Y(Zv) in the inter-

section product X (Zw, (1, n− 1)) · Grλn
∣∣
Δ

is equal to one.

The proof of Proposition 9 fills the remainder of this section.
Let us denote by S(v) the set of all positions � ∈ {1, . . . , n} such that the letter

v(�) is significant in v.
In agreement with the convention set forth in section 4.4, we define A� =

C[x2][x, a1, . . . , a�] for each � ∈ {1, . . . , n}, where x = x1 − x2. We rewrite the

indeterminate z as z̃ + x2. We set P̃1 = z̃ − x and Q̃1 = a1. For � ∈ {2, . . . , n− 1},
we define by induction two polynomials P̃�, Q̃� in A�[z̃] as follows:

• If v(�) = w(�) = + and � ∈ S(v), then

P̃� = P̃�−1 and Q̃� =
a�P̃�−1 + Q̃�−1 −

(
a�P̃�−1 + Q̃�−1

)(
0
)

z̃
.

• If v(�) = w(�) = + and � /∈ S(v), then P̃� = P̃�−1 and Q̃� =
(
Q̃�−1 −

Q̃�−1

(
0
))
/z̃.

• If v(�) = w(�) = −, then P̃� = P̃�−1 + a�Q̃�−1 and Q̃� = z̃ Q̃�−1.

Moreover, in the case where v(�) = w(�) = +, set

c̃� =

{(
a�P̃�−1 + Q̃�−1

)(
0
)

if � ∈ S(v),

a� otherwise,

and set

c̃n =
(
P̃n−1 + anQ̃n−1

)(
0
)
.

Remark 10. The polynomials P̃� and Q̃� do not depend on the variables aj with
j ∈ P (v) \ S(v). The elements c̃� for � ∈ {2, . . . , n− 1} ∩ P (v) ∩ S(v) and c̃n enjoy
the same property.

For � ∈ {1, . . . , n}:
• let q̊� be the ideal of B� generated by {bj | j ∈ P (w), j ≤ �};
• let q̃� be the ideal of A� generated by {c̃j | j ∈ P (w), j ≤ �};
• let d� be the weight of the word v(1)v(2) · · · v(�) and set D� = max(d1, d2, . . . ,
d�).
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As noticed before, a + letter at position � in v is significant if and only if �
marks the first time that the path representing v reaches a new height; agreeing
that D0 = 0, this translates to

� ∈ P (v) ∩ S(v) ⇐⇒ d� > D�−1.

For the record, we also note that the last letter of w′ is significant if and only if
dn−1 = Dn−1.

Lemma 11. For � ∈ {1, . . . , n− 1}, we have

(i)� S −1
� q̃� = q̊�,

(ii)� P̃�(z̃) ≡ P�(z) (mod q̊�[z]) and Q̃�(z̃) ≡ Q�(z) (mod q̊�[z]),

(iii)� z̃D�−d� divides Q̃�.

Proof. We proceed by induction on �. The statements are banal for � = 1. Suppose
that 2 ≤ � ≤ n− 1 and that statements (i)�−1, (ii)�−1 and (iii)�−1 hold.

Suppose first that (v(�), w(�)) = (+,+). Then by construction

b� =
(
a�P�−1 +Q�−1

)(
x2

)
× f−1

� ,(10)

P� = P�−1 − b�R�−1, Q� =
a�P�−1 +Q�−1 − b�S�

z − x2
.(11)

If � /∈ S(v), then d�−1 +1 = d� ≤ D�−1, and we see by (iii)�−1 that Q̃�−1(0) = 0.
Using (ii)�−1, we deduce that Q�−1(x2) ∈ q̊�−1. On the other hand, the matrix(
P�−1(x2) Q�−1(x2)
R�−1(x2) S�−1(x2)

)
with coefficients in B�−1 has determinant one. After re-

duction modulo q̊�−1, the coefficient in the top right corner becomes zero; it follows
that P�−1(x2) is invertible in the quotient ring B�−1/̊q�−1. Reducing (10) modulo
q̊�−1B� and noting that here c̃� = a�, we deduce that b� and c̃� generate the same
ideal in B�/̊q�−1B�. This piece of information allows to deduce (i)� from (i)�−1.
From (11) and the fact that a� ∈ q̊�, we get

P� ≡ P�−1 (mod q̊�[z]), Q� ≡
Q�−1 −Q�−1(x2)

z − x2
(mod q̊�[z]).

Then (ii)� and (iii)� follow from (ii)�−1 and (iii)�−1 and from the definition of P̃�

and Q̃�.
If � ∈ S(v), then (10) and (ii)�−1 lead to b� ≡ c̃�/f� modulo q̊�−1B�. Again, b�

and c̃� generate the same ideal in B�/̊q�−1B�, so we can deduce (i)� from (i)�−1.
Then (ii)� follows from (ii)�−1 and (11). Also, (iii)�−1 holds trivially since D� = d�.

It remains to tackle the case (v(�), w(�)) = (−,−). Here (i)�, (ii)� and (iii)� can
be deduced from (i)�−1, (ii)�−1 and (iii)�−1 without ado. �

Lemma 12. With the notation above,

S −1
n q̃n = q̊n and q =

{
g ∈ An

∣∣ ∃f ∈ Sn, fg ∈ q̃n
}
.

Proof. From (v(n), w(n)) = (−,+), we deduce

bn =
(
Pn−1 + anQn−1

)(
x2

)
× f−1

n .

From the assertion (ii)n−1 in Lemma 11, we deduce that bn ≡ c̃n/fn modulo
q̊n−1Bn. Thus, bn and c̃n generate the same ideal in Bn/̊qn−1Bn, and from the
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assertion (i)n−1 in Lemma 11, we conclude that S −1
n q̃n = q̊n. The second an-

nounced equality then follows from the definition of q as the preimage of q̊n under
the canonical map An → Bn, with Bn = S −1

n An. �

Lemma 13. If the last letter of w′ is not significant, then q̊n = Bn.

Proof. Assume that the last letter of w′ is not significant. Then Dn−1 − dn−1 ≥
1, and by assertion (iii)n−1 in Lemma 11, we get Q̃n−1(0) = 0. Using asser-
tion (ii)n−1 in that lemma, we deduce that Qn−1(x2) ∈ q̊n−1. Since the matrix(
Pn−1(x2) Qn−1(x2)
Rn−1(x2) Sn−1(x2)

)
has determinant 1, we see that Pn−1(x2) is invertible in

the ring Bn−1/̊qn−1. Then bn =
(
Pn−1 + anQn−1

)(
x2

)
× f−1

n is invertible in
Bn/̊qn−1Bn, and we conclude that q̊n = Bn. �

Lemma 13 asserts that if the last letter of w′ is not significant, then Uv∩Ẋ (Zw) =
∅, and thus Uv∩X (Zw, (1, n−1)) = ∅. Since Uv contains a dense subset of Y(Zv),
this proves half of Proposition 9(i).

For the rest of this section, we assume that the last letter of w′ is significant. We
want to show that Y(Zv) is contained in X (Zw, (1, n− 1)). It would be rather easy
to prove the inclusion q̃n ⊂ p, but this would not be quite enough, since we do not
know that q̃n = q. (We believe that this equality is correct but we are not able to
prove it.) Instead we will look explicitly at the zero set of q̃n in the neighborhood
of (φv)

−1(Uv ∩Y(Zv)). This zero set is the algebraic subset of (φv)
−1(Uv) defined

by the equations c̃� for � ∈ P (w).
Our analysis is pedestrian. We observe that there are two kinds of equations c̃�.

When � ∈ P (v) \S(v), the equation c̃� reduces to the variable a�; this equation and
variable can simply be discarded because a� is an equation for Y(Zv) as well. The
other equations involve the other variables.

Set D = Dn. The map � �→ d� is an increasing bijection from P (v) ∩ S(v) onto
{1, . . . , D}. We define L as the largest element in P (v)∩S(v); then L is the smallest
element in {� | d� = D}. For � ∈ {1, . . . , n}, we denote by �− the largest element
in {1, . . . , �} ∩ P (v) ∩ S(v). In particular, �− = � if � ∈ P (v) ∩ S(v) and �− = L if
� ≥ L; also d�− = D�.

Given � ∈ {1, . . . , n}, let σ� be the sum of the variables aj for j ∈ {2, . . . , �} such
that v(j) = − and dj−1 = D; thus σ� = 0 if � ≤ L.

We define a grading on An by setting deg x = 1, deg a� = D + 1 − d� for
� ∈ P (v)∩S(v), and deg a� = 0 for the other variables. For d ≥ 1, we denote by Jd
the ideal of An spanned by monomials of degree at least d.

Lemma 14. Let � ∈ {1, . . . , n− 1}.
(i)� If � ≤ L, then P̃�(z̃) ≡ z̃ − x (mod J2[z̃]); if � ≥ L, then P̃�(0) ≡ aLσ� − x

(mod J2).

(ii)� Q̃�(z̃) ≡ z̃D�−d� a�− (mod JD+2−d�−
[z̃]).

Proof. The proof starts with a banal verification for � = 1 and then proceeds by
induction on �. Suppose that 2 ≤ � ≤ n− 1 and that statements (i)�−1 and (ii)�−1

hold.
Assume first that v(�) = w(�) = −. Here (ii)� is an immediate consequence of

(ii)�−1. If � − 1 < L, then d(�−1)− < D, so deg a(�−1)− ≥ 2, and Q̃�−1 ∈ J2[z̃] by

statement (ii)�−1. As a result, P̃� ≡ P̃�−1 (mod J2[z̃]), so (i)� follows from (i)�−1.
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If � − 1 ≥ L, then either d�−1 = D, in which case Q̃�−1(0) ≡ aL (mod J2) and

σ� = σ�−1 + a�, or d�−1 < D, in which case Q̃�−1(0) ≡ 0 (mod J2) and σ� = σ�−1.

In both cases, P̃�(0)−(aLσ�) ≡ P̃�−1(0)−(aLσ�−1) (mod J2), and again (i)� follows
from (i)�−1.

Assume now that v(�) = w(�) = + and that � ∈ S(v). Certainly then (i)� follows

from (i)�−1. Further, d(�−1)− = d�− − 1, so deg a(�−1)− = D + 2− d�− , hence Q̃�−1

is zero modulo JD+2−d�−
[z̃] by (ii)�−1. Using (i)�−1, we conclude that Q̃� ≡ a�

(mod JD+2−d�−
[z̃]), so (ii)� holds.

The third situation, namely v(�) = w(�) = + and � /∈ S(v), presents no difficul-
ties. �

Lemma 15.

(i) For �∈{2, . . . , n−1}∩P (v)∩S(v), we have c̃�≡−a� x+a(�−1)− (mod JD+3−d�
).

(ii) We have c̃n ≡ aLσn − x (mod J2).

Proof. Let � ∈ {2, . . . , n−1}∩P (v)∩S(v). Then D�−1 = d�−1 and d(�−1)− = d�−1.

By Lemma 14, P̃�−1(0) ≡ −x (mod J2) and Q̃�−1(0) ≡ a(�−1)− (mod JD+3−d�
).

This gives (i).
Since the last letter of w′ is assumed to be significant, we have dn−1 = Dn−1 = D,

so σn = σn−1 + an. From Lemma 14, we get P̃n−1(0) ≡ aLσn−1 − x (mod J2) and

Q̃n−1(0) ≡ aL (mod J2). This gives (ii). �

Lemma 16. There exists an element g̃ ∈ An, which depends only on the variables
x, a1, and aj with v(j) = −, such that

g̃ ≡ c̃n x
D−1 ×

∏
�∈P (v)∩S(v)

�≥2

(
−P̃�−1(0)

)p�

(mod q̃L)(12)

g̃ ≡ xq
(
a1σn − xD

)
(mod Jq+D+1)(13)

where each p� and q are nonnegative integers.

Proof. Consider

g̃L = c̃n x
D−1 +

∑
�∈P (v)∩S(v)

�≥2

c̃� σn x
d�−2.

An immediate calculation based on Lemma 15 yields

g̃L ≡ a1σn − xD (mod JD+1).

This g̃L meets the specifications for g̃ (with p� and q all equal to zero) except that
it may involve other variables than those prescribed.

We are not bothered by the variables aj for j ∈ P (v) \ S(v) because g̃L do
not depend on them (see Remark 10). The variables x and aj with v(j) = − are
allowed. The only trouble comes then from the variables aj with j ∈ {2, . . . , n −
1} ∩ P (v) ∩ S(v). We will eliminate them in turn.

Assume that L ≥ 2. Let � ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v) and assume that we
succeeded in constructing an element g̃� ∈ q̃n which satisfies (12) and (13) and
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depends only on the variables x and aj with v(j) = − or j ≤ �. Expand g̃� as a
polynomial in a�

g̃� =

r∑
s=0

hs a
s
�

where the coefficients hs only depend on x and on the variables aj such that v(j) =
− or j < �. Then define

g̃(�−1)− =
r∑

s=0

hs

(
−P̃�−1(0)

)r−s (
Q̃�−1(0)

)s
.

This g̃(�−1)− only involves the variables x and aj with v(j) = − or j ≤ � − 1. In

fact, we can strengthen the latter inequality to j ≤ (� − 1)− because g̃(�−1)− does
not depend on the variables aj with j ∈ P (v)\S(v). Moreover, g̃(�−1)− also satisfies
(12) and (13), but for different integers than g̃�: one has to increase p� and q by r.
(To verify that g̃(�−1)− satisfies (13) with q + r instead of q, one observes that

h0 ≡ xq
(
a1σn − xD

)
(mod Jq+D+1)

hs ∈ Jq+D+1−s(D+1−d�) for each s ∈ {1, . . . , r}
and uses Lemma 14.)

At the end of the process, we obtain an element g̃ = g̃1 which enjoys the desired
properties. �

Let us recall a few important points:

• An = C[x2][x, a1, . . . , an] is the coordinate ring of (φv)
−1(Uv). The variable

x2 is dummy (no equations depend on it); we get rid of it by specializing it
to an arbitrary value.

• The ring B1 is C[x2]
[
x, a1, f

−1
1

]
with f1 = a1. For � ≥ 2, we produce an

explicit function f� ∈ B�−1[a�] and we set B� = B�−1

[
a�, f

−1
�

]
. The ring Bn

is the coordinate ring of (φv)
−1(Uv ∩ Uw).

• Sn is a finitely generated multiplicative subset of An such that Bn = S −1
n An.

• Polynomials c̃� ∈ A� are defined for each � ∈ P (w). The ideal of An generated
by these elements is denoted by q̃n.

• The ideal p ⊂ An of (φv)
−1(Uv ∩Y(Zv)) is generated by the variables x and

a� for � ∈ P (v).
• The ideal q ⊂ An of (φv)

−1(Uv ∩ X (Zw, (1, n − 1))) is the saturation of q̃n
with respect to Sn.

• σ1, . . . , σn are certain sums of variables a� with v(�) = −; these linear forms
are not pairwise distinct, but σn differs from all the other ones, for only it
involves an.

Lemma 17. Fix α� ∈ C for each � ∈ {1, . . . , n} \ P (v) such that, when a� is
assigned the value α�, the linear form σn takes a value different from all the other
σj. Consider these numbers α� as constant functions of the variable ξ. Set also
α� = 0 for � ∈ P (v) \ S(v). Then there exists a neighborhood Ω of 0 in C and
analytic functions α� : Ω → C for � ∈ P (v) ∩ S(v) such that

(i) If � ∈ P (v) ∩ S(v), then α�(ξ) ∼ ξD+1−d�/σn.
(ii) The point (ξ, α1(ξ), . . . , αn(ξ)) belongs to the zero locus of q̃n for each ξ ∈ Ω.
(iii) The point (ξ, α1(ξ), . . . , αn(ξ)) belongs to (φv)

−1(Uv ∩ Uw) for each ξ �= 0
in Ω.
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Proof. Let g̃ be as in Lemma 16. We consider that the variables a� with � > 1
occurring in g̃ are assigned the values α� fixed in the statement of the lemma. We
can then regard g̃ as a polynomial in the indeterminates x and a1 with complex
coefficients, or as a polynomial in the indeterminate a1 with coefficients in the
valued field C((x)). Equation (13) shows that the points (0, D + q) and (1, q) are
vertices of the Newton polygon of g̃. Therefore g̃ admits a unique root of valuation
D in C((x)), which we denote by α1, and the power series α1 has a positive radius
of convergence. Proceeding by induction on � ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v), and
solving the equation c̃� = 0, we define

(14) α�(ξ) = −Q̃�−1(0)/P̃�−1(0),

where the right-hand side is evaluated at (ξ, α1(ξ), . . . , α�−1(ξ)); this is a well-
defined process and α�(ξ) satisfies the equivalent given in the statement, because
Lemma 14 guarantees that after evaluation

P̃�−1(0) = −ξ +O
(
ξ2
)

and Q̃�−1(0) = α(�−1)−(ξ) +O
(
ξD+2−d(�−1)−

)
,

so the denominator in (14) does not vanish if ξ �= 0. Moreover, (12) ensures that
the equation c̃n = 0 is enforced too. Therefore this construction gives (i) and (ii).

We will prove (iii) by showing that none of the functions f� vanish when evaluated
at the point (ξ, α1(ξ), . . . , αn(ξ)) with ξ �= 0 in Ω. Further, to achieve this result,
we have the latitude to shrink Ω as needed.

Since f1 = a1, we have f1(ξ, α1(ξ), . . . , αn(ξ)) = α1(ξ), and this quantity does
not vanish for ξ �= 0 small enough, because α1(ξ) ∼ ξD/σn. Proceeding by induc-
tion, we assume known that f1, . . . , f�−1 do not vanish at our point.

• In the case (v(�), w(�)) = (+,+), we have

f� =
(
a�R�−1 + S�−1

)(
x2

)
.

The congruences in Lemma 11 allow to rewrite the equation c̃� = 0 in the
form (

a�P�−1 +Q�−1

)(
x2

)
= 0;

this is satisfied after evaluation at the point (ξ, α1(ξ), . . . , αn(ξ)). Using then
the relation

(
P�−1S�−1 −Q�−1R�−1

)(
x2

)
= 1, we obtain

P�−1(x2)×f�=P�−1(x2)
(
a�R�−1+S�−1

)(
x2

)
=1+R�−1(x2)

(
a�P�−1+Q�−1

)(
x2

)
=1.

Thus, f� does not vanish at (ξ, α1(ξ), . . . , αn(ξ)).
• The case (v(�), w(�)) = (−,+), that is � = n, is amenable to a similar treat-
ment.

• The remaining case is (v(�), w(�)) = (−,−). Here by Lemma 11 we have after
substitution

f� =
(
P�−1 + a�Q�−1

)(
x2

)
=
(
P̃�−1 + a�Q̃�−1

)(
0
)
,

and by Lemma 14 and the equivalence in (i)

P̃�−1(0)=(σ�−1/σn − 1) ξ +O
(
ξ2
)

and

Q̃�−1(0)=

{
ξ/σn +O(ξ2) if d�−1=D�−1=D,

O(ξ2) otherwise.
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Therefore f�(ξ, α1(ξ), . . . , αn(ξ)) is equivalent to (σ�/σn − 1) ξ, hence does
not vanish if ξ �= 0 is small enough.

This concludes the induction and establishes (iii). �

To sum up, the lemma constructs a germ of a (parameterized) smooth algebraic
curve ξ �→ (ξ, α1(ξ), . . . , αn(ξ)) contained in the zero locus of q̃n. The ideal of this
curve is a prime ideal of An which contains q̃n and is disjoint from Sn, hence it
contains q. As a result, our curve is contained in (φv)

−1(Uv ∩ X (Zw, (1, n − 1))).
The point ξ = 0 of this curve has for coordinates x = 0, a� = 0 if � ∈ P (v), and
a� = α� if � ∈ {1, . . . , n}\P (v). Now points of this form fill an open dense subset of
(φv)

−1(Uv ∩ Y(Zv)), because the values α� were chosen arbitrarily, subject to the
sole requirement that σn �= σj for j ∈ {1, . . . , n − 1}. We can then conclude that
Y(Zv) ⊂ X (Zw, (1, n − 1)). This proves the missing half of Proposition 9(i) (the
first half was obtained just after Lemma 13).

As a consequence, q ⊂ p. To ease the reading of the sequel, we will omit the
subscripts n in the notation An and q̃n. For � ∈ {1, . . . , n}, we set R(�) =

{
j ∈

{2, . . . , �}
∣∣ v(j) = −, dj−1 = Dj−1

}
.

Lemma 18.

(i) For each � ∈ {1, . . . , n− 1}, we have

P̃� ≡ z̃ (mod p[z̃]), Q̃� ≡ z̃D�−d� a�− (mod p
2[z̃]),

P̃�(0) ≡ −x+
∑

j∈R(�)

a(j−1)−aj (mod p
2).

(ii) In the local ring Ap, we have pAp = xAp + qAp + p2Ap.

Proof. Statement (i) is proved by a banal induction. Let us tackle (ii).
If � ∈ P (v) \ S(v), then a� = c̃� belongs to q̃.
If � ∈ (P (v)∩S(v))\{L}, then there existsm ∈ P (v)∩S(v) such that d� = dm−1.

Then � = (m− 1)− and Dm−1 = dm−1, whence by statement (i)

a� ≡ Q̃m−1(0) = c̃m − amP̃m−1(0) ≡ c̃m (mod p
2),

and therefore a� ∈ q̃+ p2.
Surely Dn−1 = dn−1 = D and L = (n− 1)−, so again by statement (i), we have

c̃n = P̃n−1(0) + anQ̃n−1(0) ≡ P̃n−1(0) + aLan ≡ −x+
∑

j∈R(n)

a(j−1)−aj (mod p2).

In the last sum, we gather the terms with the same value � for (j − 1)−: denoting
by τ� the sum of the variables aj for j ∈ {2, . . . , n} such that v(j) = − and
dj−1 = Dj−1 = d�, we obtain

c̃n ≡ −x+
∑

�∈P (v)∩S(v)

a� τ� (mod p2).

Noting that a� ∈ q̃+ p2 for � ∈ P (v)∩S(v) \ {L} and that τL = σn, we get aLσn ∈
(x)+ q̃+ p2. Since σn is invertible in Ap, we conclude that aL ∈ xAp+ q̃Ap+ p2Ap.

Altogether the remarks above show the inclusion

pAp ⊂ xAp + q̃Ap + p2Ap.

Joint with q̃ ⊂ q ⊂ p, this gives statement (ii). �
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The ideal in A of the subvarieties

V = (φv)
−1(Uv ∩ Y(Zv)) and X = (φv)

−1(Uv ∩ X (Zw, (1, n− 1)))

are p and q, respectively. The local ring OV,X of X along V is the localization of

A = A/q at the ideal p = p/q. Lemma 18(ii) combined with Nakayama’s lemma
shows that the image of x = x1−x2 in A generates the ideal pAp. As a consequence,
the order of vanishing of x1 − x2 along V is equal to one, and by definition, this
is the multiplicity of Y(Zv) in the intersection product X (Zw, (1, n− 1)) · Grλn

∣∣
Δ
.

This proves Proposition 9(ii).

4.6. Inclusion, II. In this section, we again consider words v and w such that
(v(1), w(1)) = (+,−) and wt (v) = wt (w) and explore the situation where the path
representing v lies strictly above the one representing w (except of course at the
two endpoints) but does not stay parallel to it. We thus assume that there exists
k ∈ {2, . . . , n− 1} such that (v(k), w(k)) = (+,−).

Proposition 19. Under these assumptions, Y(Zv) �⊂ X (Zw, (1, n− 1)).

The proof of Proposition 19 fills the remainder of this section. Our argument is
similar to our proof in Proposition 9(i).

For each � ∈ {1, . . . , n}, we define A� = C[x2][x, a1, . . . , a�], where x = x1 − x2.
We introduce z̃ = z − x2.

In addition:

• letK be the largest integer k ∈ {2, . . . , n−1} such that (v(k), w(k)) = (+,−);
• for � ∈ {K, . . . , n}, let d� be the weight of the word v(K+1)v(K+2) · · · v(�),
with the convention dK = 0;

• let L be the smallest position � > K such that (v(�), w(�)) = (−,+) or d� > 0.

Set P̃1 = z̃ − x and Q̃1 = a1. For � ∈ {2, . . . , L − 1}, define by induction two

polynomials P̃�, Q̃� in A�[z] as follows:

• If (v(�), w(�)) = (+,+), then

P̃� = P̃�−1 and Q̃� =

⎧⎪⎪⎨⎪⎪⎩
a�P̃�−1 + Q̃�−1 −

(
a�P̃�−1 + Q̃�−1

)(
0
)

z̃
if � < K,

Q̃�−1 − Q̃�−1(0)

z̃
if � > K.

• If (v(�), w(�)) = (−,+), then

P̃� =
P̃�−1 + a�Q̃�−1 −

(
P̃�−1 + a�Q̃�−1

)(
0
)

z̃
and Q̃� = Q̃�−1.

• If (v(�), w(�)) = (+,−), then P̃� = z̃ P̃�−1 and Q̃� = a�P̃�−1 + Q̃�−1.

• If (v(�), w(�)) = (−,−), then P̃� = P̃�−1 + a�Q̃�−1 and Q̃� = z̃ Q̃�−1.

For � ∈ {1, . . . , L}:
• let q̊� be the ideal of B� generated by {bj | j ∈ P (w), j ≤ �};
• if � ≥ K, let σ� be the sum of the aj for j ∈ {K+1, . . . , �} such that v(j) = −
and dj−1 = 0, with the convention σK = 0.

Lemma 20. For � ∈ {1, . . . , L− 1}, we have

(i)� P̃�(z̃) ≡ P�(z) (mod q̊�[z]) and Q̃�(z̃) ≡ Q�(z) (mod q̊�[z]),

(ii)� if � ≥ K, then P̃�(0) = Q̃K(0)σ� and Q̃� = z̃−d�Q̃K .
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Proof. One again proceeds by induction. The details are straightforward, except in
the case where (v(�), w(�)) = (+,+) and � > K, where one can follow the arguments
offered in the proof of Lemma 11 to get a� ∈ q̊�. �

We now distinguish three cases:

• Assume that dL−1 < 0. Then necessarily (v(L), w(L)) = (−,+). By as-

sertion (ii)L−1 in Lemma 20, we get Q̃L−1(0) = 0. Using assertion (i)L−1

in that lemma, we deduce that QL−1(x2) ∈ q̊L−1. Then, by the iden-
tity PL−1SL−1 − QL−1RL−1 = 1, we see that PL−1(x2) is invertible in the
ring BL−1/̊qL−1. Thus, bL =

(
PL−1 + aLQL−1

)(
x2

)
× f−1

L is invertible in
BL/̊qL−1BL. We conclude that q̊L = BL, and therefore q̊n = Bn. Thus,

Uv ∩ Ẋ (Zw) = ∅, so X (Zw, (1, n− 1)) does not meet Uv and cannot contain
Y(Zv).

• Assume that dL−1 = 0 and (v(L), w(L)) = (−,+). We note that PK(x2) = 0
by construction. The identity PKSK −QKRK = 1 then implies that QK(x2)

is invertible in BK , and by assertion (i)K in Lemma 20, Q̃K(0) is invertible
in BK /̊qK . Moreover, fLbL =

(
PL−1 + aLQL−1

)(
x2

)
belongs to q̊L. Using

assertion (ii)L−1 in Lemma 20, we deduce that(
P̃L−1 + aLQ̃L−1

)(
0
)
= Q̃K(0)(σL−1 + aL) = Q̃K(0)σL

belongs to q̊L too. Therefore σL belongs to q̊L, hence to q. However σL /∈ p,
because aL is a summand in the sum that defines σL whereas L /∈ P (v). We
must then conclude that q �⊂ p, in other words that Y(Zv) �⊂ X (Zw, (1, n−1)).

• Assume that dL−1 = 0 and (v(L), w(L)) = (+,+). As in the previous case, we

note that Q̃K(0) is invertible in BK /̊qK . But now we have fLbL =
(
aLPL−1+

QL−1

)(
x2

)
, so we get

Q̃K(0)(aLσL−1 + 1) ∈ q̊L

and then aLσL−1 + 1 ∈ q. Here however aL ∈ p, so aLσL−1 + 1 /∈ p. Again
we must conclude that q �⊂ p and Y(Zv) �⊂ X (Zw, (1, n− 1)).

Proposition 19 is then proved.

4.7. Loose ends. We can now prove that the MV basis of V (�)⊗n satisfies the
second formula in (1). We consider two words v and w in Cn with w(1) = − and
wt (v) = wt (w) and we look for the coefficient of yv in the expansion of x− ⊗ yw′

in the MV basis, where w′ is the word w stripped from its first letter.
If v(1) = −, then this coefficient is zero except for v = w, in which case the

coefficient is one. This follows from Theorem 5.13 in [1].
If v(1) = +, then the path representing v starts above the path representing w.

We distinguish two cases.
In the case where v stays strictly above w until the very end, we can refer to

Propositions 9 and 19: the coefficient of yv is non-zero only if v stays parallel to w
at distance two and the last letter of w′ is significant. If this condition is fulfilled,
then the coefficient is one.

In the case where v and w rejoin before the end, after m letters, then we write v
and w as concatenations +v(2)v(3) and −w(2)w(3), respectively, with v(2) and w(2)

of length m−1 and v(3) and w(3) of length n−m. By assumption, wt v(3) = wtw(3).
We can then apply Proposition 7 with n1 = 1, n2 = m − 1 and n3 = n − m: if
v(3) �= w(3), then the coefficient of yv in the expansion of x−⊗yw′ is zero; otherwise,
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it is equal to the coefficient of y+v(2) in the expansion of x−⊗yw(2) in the MV basis

of V (�)⊗m.
Thus, Proposition 7 reduces the second case to the first one, but for words of

length m. The coefficient is then non-zero only if +v(2) stays parallel to −w(2) at
distance two and the last letter of w(2) is significant, in which case the coefficient
is one.

To sum up: if (v(1), w(1)) = (+,−), then the coefficient of yv in the expansion
of x−⊗ yw′ is either zero or one; it is one if and only if v is obtained by flipping the
first letter − of w into a + and flipping a significant letter + in w′ into a −. This
shows that the MV basis satisfies the second formula in (1). We have proved:

Theorem 21. (yw)w∈Cn
is the MV basis of V (�)⊗n.

Putting Theorem 21 alongside Theorem 3, Proposition 6, and Theorem 1.11 in
[7], we obtain the result stated in section 1.
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7 rue René Descartes, 67084 Strasbourg Cedex, France

Current address: 15 allée du puits, 01290 Crottet, France

Email address: arnaud.demarais@ac-dijon.fr

https://www.ams.org/mathscinet-getitem?mr=1203234
https://www.ams.org/mathscinet-getitem?mr=737932
https://www.ams.org/mathscinet-getitem?mr=1035415
https://www.ams.org/mathscinet-getitem?mr=1227098
https://www.ams.org/mathscinet-getitem?mr=2342692

	1. Introduction
	2. Combinatorics and linear algebra
	2.1. Words
	2.2. Bases
	2.3. Representations

	3. The Mirković–Vilonen basis
	3.1. Definition of the basis
	3.2. Indexation of the Mirković–Vilonen cycles
	3.3. Transition matrix
	3.4. Projecting onto Cartan components
	3.5. Truncation

	4. Geometry
	4.1. Notation
	4.2. The simplest example
	4.3. Transition maps
	4.4. Finding the equations
	4.5. Inclusion and multiplicity, I
	4.6. Inclusion, II
	4.7. Loose ends

	Acknowledgment
	References

