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PARABOLIC INDUCTION VIA THE PARABOLIC

PRO-p IWAHORI–HECKE ALGEBRA

CLAUDIUS HEYER

Abstract. Let G be a connected reductive group defined over a locally com-
pact non-archimedean field F , let P be a parabolic subgroup with Levi M
and compatible with a pro-p Iwahori subgroup of G := G(F ). Let R be a
commutative unital ring.

We introduce the parabolic pro-p Iwahori–Hecke R-algebra HR(P ) of P :=
P(F ) and construct two R-algebra morphisms ΘP

M : HR(P ) → HR(M) and

ΞP
G : HR(P ) → HR(G) into the pro-p Iwahori–Hecke R-algebra of M := M(F )

and G, respectively. We prove that the resulting functor Mod -HR(M) →
Mod -HR(G) from the category of right HR(M)-modules to the category of
right HR(G)-modules (obtained by pulling back via ΘP

M and extension of

scalars along ΞP
G) coincides with the parabolic induction due to Ollivier–

Vignéras.

The maps ΘP
M and ΞP

G factor through a common subalgebra HR(M,G) of
HR(G) which is very similar to HR(M). Studying these algebras HR(M,G)
for varying (M,G) we prove a transitivity property for tensor products. As an

application we give a new proof of the transitivity of parabolic induction.
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1. Introduction

1.1. Motivation. Let G be a connected reductive group over a locally compact
non-archimedean field F with residue field of characteristic p > 0. In this intro-
duction all representations will be on vector spaces over a fixed field k. Given a
parabolic subgroup P of G with Levi M, parabolic induction is a process to obtain
smooth representations of G := G(F ) from smooth representations of M := M(F ).
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More precisely, it is obtained as the composite

(1)
Repk(M) Repk(P ) Repk(G),

V V IndGP V.

Here, V is first viewed as a smooth representation of P := P(F ) by letting the

unipotent radical UP := UP(F ) of P act trivially. Then we form the space IndGP V
of locally constant functions f : G → V satisfying f(γg) = γ · f(g) for all γ ∈ P
and g ∈ G. Parabolic induction plays a fundamental role in classifying the smooth
admissible representations of G.

A second important method to study smooth representations of G is via the
functor of K-invariants V �→ V K , for K any compact open subgroup of G. The
ring of G-equivariant endomorphisms

Hk(K,G) := Endk[G]

(
k[K\G]

)
of the space k[K\G] of maps K\G → k with finite support acts on

V K ∼= Homk[G](k[K\G], V )

by Frobenius reciprocity. In this way one obtains a functor

(2) Repk(G) −→ Mod -Hk(K,G), V �−→ V K

from Repk(G) into the category of right modules over the k-algebra Hk(K,G). If
k has characteristic p, it suffices to restrict attention to a pro-p Iwahori subgroup
I1 of G; this is because for K = I1 the functor (2) sends non-zero representations
to non-zero modules. One is therefore led to study the modules over the pro-p
Iwahori–Hecke algebra Hk(G) := Hk(I1, G). A systematic study of Hk(G) was
carried out by Vignéras in [Vig05] (for F -split G) and [Vig16] (for arbitrary G).

Again, classifying the simple modules of Hk(G) is accomplished by studying
induction functors

Mod -Hk(M) −→ Mod -Hk(G),

for parabolic subgroups P = MUP of G that are compatible with I1, which is
compatible with parabolic induction via (2). Such a functor was defined and studied
by Ollivier [Oll10] for G = GLn, and for general G by Ollivier–Vignéras [OV18],
Vignéras [Vig15], and Abe [Abe16,Abe19]. Explicitly, this functor is given by

(3) m �−→ m⊗Hk(M+) Hk(G),

where Hk(M
+) is a certain subalgebra of Hk(M) embedding naturally into Hk(G).

This algebra Hk(M
+) depends on I1 ∩ UP(F ), hence also on P . However, the

analogy between (1) and (3) is not as strong as one might hope for. Let us recall the
reason why the parabolic P shows up in (1). One could directly define an induction

functor Repk(M) → Repk(G) by V �→ IndGM V . But this functor is very difficult to

handle, because the coset space G/M and hence the representation IndGM V is “too
large”. On the other hand, the quotient G/P is compact which makes it possible

to effectively study IndGP V . In this light it is surprising that (3) is defined using
the small algebra Hk(M

+). Instead, one would expect to use as big an algebra
as possible to define (3); the parabolic Hecke algebra Hk(P ) := Hk(I1 ∩ P, P ) is a
natural candidate although it is not at all obvious how this can be achieved.

To summarize, this article is motivated by the following questions:

(Q1) Can we replace Hk(M
+) in (3) by the algebra Hk(P )?
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(Q2) Assume the answer to (Q1) is affirmative. Is the functor

Mod -Hk(M) −→ Mod -Hk(G), m �−→ m⊗Hk(P ) Hk(G)

naturally isomorphic to (3)?

1.2. Main results. We answer question (Q1) positively even for k an arbitrary
commutative unital ring. This amounts to constructing two k-algebra homomor-
phisms ΘP

M : Hk(P ) → Hk(M) and ΞP
G : Hk(P ) → Hk(G).

The map ΘP
M (see Proposition 4.3) exists quite generally and is induced by the

canonical projection map k[I1 ∩ P\P ] → k[I1 ∩ M\M ]. Its origins can be traced
back to the works of Andrianov; see, e.g., [And77, (3.3)] or [AZ95, Definition of
Φ before Chapter 3, Proposition 3.28], who seems to have been the first to study
“parabolic Hecke algebras”, albeit in a different context.

The main contribution of this work lies in the construction of ΞP
G. Observing

that the image of ΘP
M contains Hk(M

+), the idea is to try to extend the embed-
ding ξ+ : Hk(M

+) → Hk(G) to Im(ΘP
M ) and then to define ΞP

G as the composite

Hk(P )
ΘP

M−−→ Im(ΘP
M ) → Hk(G). However, since the goal for ΞP

G : Hk(P ) → Hk(G)
is to have as large image as possible, this approach will not always yield optimal
results. Since in this approach ΞP

G factors through a subalgebra of Hk(M), the best
we can expect is for the image of ΞP

G to be canonically isomorphic to Hk(M) as a
k-module. If k happens to be p-torsionfree, this is indeed the case. We prove:

Theorem (Proposition 4.7). Assume that k is p-torsionfree. The embedding

ξ+ : Hk(M
+) → Hk(G)

extends to an injective k-algebra morphism Im(ΘP
M ) → Hk(G). Moreover, this

extension is unique and Im(ΘP
M ) is the maximal subalgebra of Hk(M) with this

property.

Further, Corollary 4.4 shows that Im(ΘP
M ) identifies canonically with Hk(M)

as a k-module. If, on the other hand, k is not p-torsionfree, then Im(ΘP
M ) is

much smaller than Hk(M). (For example, if k is a field of characteristic p, then
Im(ΘP

M ) = Hk(M
+).) Hence, even if the assertion of Proposition 4.7 could be

proved without requiring that k be p-torsionfree, defining ΞP
G as the composite

Hk(P ) → Im(ΘP
M ) → Hk(G) would yield a morphism with small image. Instead,

we make the following crucial definition:

Definition. Let k be arbitrary. We define

ΞP
G = idk ⊗ΞP

G,Z : Hk(P ) → Hk(G).

Here, ΞP
G,Z is the composite HZ(P )

ΘP
M−−→ Im(ΘP

M ) → HZ(G), where the second

arrow is the map in Proposition 4.7 (for k = Z).

In this way the image of ΞP
G will always be large, that is, it can be canonically

identified with Hk(M) as a k-module. The assumption on k in Proposition 4.7 is
therefore inconsequential for the rest of the paper.

Question (Q2) is a consequence of the construction of ΘP
M and ΞP

G, that is, we
prove:

Theorem (Theorem 4.9). The functor Mod -Hk(M)→Mod -Hk(G), m �→m⊗Hk(P )

Hk(G) is naturally isomorphic to (3).



810 CLAUDIUS HEYER

As an application we will give a new proof (see Corollary 5.8) of the transitivity
of parabolic induction originally due to Vignéras [Vig15, Proposition 4.3].

1.3. Structure of the paper. Section 2 is devoted to setting up the notation
and reviewing some parts of Bruhat–Tits theory. This part draws heavily from
the original paper [BT72] by Bruhat–Tits and from the comprehensive summary in
[Vig16].

In section 3 we will study the group index μUP
(g) := [IUP

: IUP
∩ g−1IUP

g]
for g ∈ P , where IUP

= I1 ∩ UP . This index appears in the double coset for-
mula (Proposition 3.1) which is used to give an explicit description of the map
ΘP

M (Proposition 4.3). The results of subsection 3.2 are used to prove the estimate
μUP

(g) ≥ μUP
(gM ), where gM is the image of the projection of g in M ; see Propo-

sition 3.4. It allows us to give a concrete description of a basis of Im(ΘP
M ) which

will be necessary for the construction of ΞP
G. In subsection 3.4 we explain how μUP

naturally gives rise to a function defined on the Iwahori–Weyl group WM of M ,
again denoted μUP

. Proposition 3.14 shows that μUP
measures how far the length

function on WM deviates from the length function on the Iwahori–Weyl group W
of G, and that μUP

is compatible with the Bruhat order on WM . These properties
will become useful in the construction of ΞP

G (Proposition 4.7) and in the study of
the algebras Hk(M,G) (section 5). We also obtain new and short proofs of two
lemmas due to Abe in Corollaries 3.16 and 3.17.

Section 4 contains the main results. Subsection 4.1 gives a short introduction to
abstract Hecke algebras as double coset algebras following [AZ95, Chapter 3]. In
subsection 4.2 we describe the map ΘP

M explicitly; see Proposition 4.3. Together
with the inequality μUP

(g) ≥ μUP
(gM ) this yields a minimal generating system

of Im(ΘP
M ) which is even a basis provided the coefficient ring R is p-torsionfree;

see Corollary 4.4. The main results on the construction of ΞP
G and on parabolic

induction are proved in Proposition 4.7 and Theorem 4.9, respectively.

Finally, section 5 is devoted to applying our previous results to give a new proof
of the transitivity of parabolic induction. The algebras Hk(M,G) are introduced
and studied in subsection 5.1. In Proposition 5.3 we show that these algebras, for
varying G, are localizations of each other. The main result is the general Theo-
rem 5.7 from which we deduce that parabolic induction is transitive. To finish,
we construct in subsection 5.3 a natural filtration on Hk(M,G) (Proposition 5.10)
which might be of independent interest.

2. Notations and preliminaries

Throughout the article we fix a locally compact non-archimedean field F with
residue field Fq of characteristic p and normalized valuation valF : F → Z ∪ {∞}.

Given a group G, a subgroup H ⊆ G, and elements g, h ∈ G, we write

hg := g−1hg, Hg := {hg |h ∈ H} , H(g) := H ∩Hg.

We also write [g, h] := ghg−1h−1 for the commutator of g and h.
The symbol

⊔
denotes “disjoint union”.

Given an algebraic group H over F , we denote by the corresponding lightface
letter H := H(F ) its group of F -rational points. The topology of F makes H into
a topological group. We denote

− H◦ the identity component of H;
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− X∗(H) (resp. X∗(H)) the group of algebraic F -characters (resp. F -cochar-
acters) of H.

Let G be a connected reductive group defined over F . Fix a maximal F -split
torus T and denote by Z := ZG(T) (resp. N := NG(T)) the centralizer (resp.
normalizer) of T in G. The finite Weyl group W0 := N/Z acts on the (relative)
root system Φ := Φ(G,T) ⊆ X∗(T ) associated with T; it identifies with the Weyl
group of Φ.

Notation. Given a subset Ψ ⊆ Φ, we denote Ψred :=
{
α ∈ Ψ

∣∣ 1
2α /∈ Ψ

}
the set of

reduced roots in Ψ.

Let Uα be the root group associated with α ∈ Φ. Then U2α ⊆ Uα whenever
α, 2α ∈ Φ. Fix a minimal parabolic F -subgroup B with Levi decomposition B =
ZU. This corresponds to a choice Φ+ of positive roots in Φ, and we have U =∏

α∈Φ+
red

Uα. In this article parabolic subgroups are always standard and defined

over F . By a Levi subgroup we mean the unique Levi F -subgroupM ofP containing
Z; this is expressed by writing P = MUP, where UP denotes the unipotent radical
of P. Conversely, a Levi subgroup M in G determines a unique parabolic group
PM with Levi M and unipotent radical UPM

=
∏

α∈(Φ+�ΦM )red
Uα.

2.1. The standard apartment. Consider the finite-dimensional R-vector space

V := R⊗X∗(T )/X∗(C),

where C denotes the connected center of G. The finite Weyl group W0 acts on V
via the conjugation action on T , and the natural pairing 〈 · , · 〉 : V ∗ × V → R is
W0-invariant, where V ∗ denotes the R-linear dual of V . Fix a W0-invariant scalar
product ( · , · ) on V . The root system Φ embeds into V ∗. For each α ∈ Φ there
exists a unique coroot α∨ ∈ V with 〈α, α∨〉 = 2 such that the reflection

sα : V
∗ −→ V ∗, x �−→ x− 〈x, α∨〉 · α

leaves Φ invariant.

2.1.1. Valuations. A valuation ϕ = (ϕα)α∈Φ on the root group datum (Z, (Uα)α∈Φ)
consists of a family of functions ϕα : Uα → R ∪ {∞} satisfying a list of axioms
[BT72, (6.2.1)]. Then ϕ is called discrete if the set of values Γα := ϕα(Uα�{1}) ⊆ R
is discrete. It is called special if 0 ∈ Γα for all α ∈ Φred. We write

Γ′
α := {ϕα(u) |u ∈ Uα � {1} and ϕα(u) = supϕα(uU2α)} .

Then Γ′
α = Γα if 2α /∈ Φ and Γα = Γ′

α ∪ ( 12Γ2α) for all α ∈ Φ [BT72, (6.2.2)].
The group N acts naturally on the set of valuations via

(n.ϕ)α(u) = ϕw−1(α)(n
−1un), for u ∈ Uα, n ∈ N ,

where w := vν(n) ∈ W0 = N/Z and vν : N → N/Z = W0 denotes the projection
map.

The vector space V acts faithfully on the set of valuations via

(ϕ+ v)α(u) = ϕα(u) + 〈α, v〉, for u ∈ Uα, v ∈ V .

One easily verifies n.(ϕ+ v) = n.ϕ+ vν(n)(v) for n ∈ N , v ∈ V [BT72, (6.2.5)].
Given z ∈ Z, there is a unique vector ν(z) ∈ V satisfying z.ϕ = ϕ+ ν(z) [BT72,

Proposition (6.2.10), Proof of (i)]. In this way we obtain a group homomorphism

(4) ν : Z −→ V, z �−→ ν(z).
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Restriction of characters realizes X∗(Z) as a subgroup of finite index in X∗(T )
[Ren10, V.2.6. Lemme]. Therefore, given χ ∈ X∗(T ), there exists n ∈ Z>0 with
nχ ∈ X∗(Z), and one easily verifies that the definition

(valF ◦χ)(z) := 1

n
· valF

(
(nχ)(z)

)
∈ R, for z ∈ Z,

is independent of n. We say that ϕ is compatible with valF if〈
α, ν(z)

〉
= −(valF ◦α)(z), for all z ∈ Z, α ∈ Φ.

2.1.2. The apartment, hyperplanes, and affine roots. From now on we fix a discrete,
special valuation ϕ0 = (ϕ0,α)α∈Φ on (Z, (Uα)α∈Φ) which is compatible with valF ;
it exists by [BT84, 5.1.20. Theorème and 5.1.23. Proposition]. By [Vig16, (37)] the
subgroups

Uα,r := {u ∈ Uα |ϕ0,α(u) ≥ r} , for r ∈ R,

form a basis of compact open neighborhoods of the neutral element in Uα, α ∈ Φ.
The apartment of G is defined as the affine space

A := {ϕ0 + v | v ∈ V }

under V . It follows from [BT72, Proposition (6.2.10)] that the action of N on
valuations induces a group homomorphism

ν : N −→ AutA

extending (4). The fixed W0-invariant scalar product on V endows A with a
Euclidean metric.

Given α ∈ V ∗ and r ∈ R, we put

aα,r := {ϕ0 + v ∈ A | 〈α, v〉+ r ≥ 0} and

Hα,r := {ϕ0 + v ∈ A | 〈α, v〉+ r = 0} .

We call Φaff := {aα,r |α ∈ Φ and r ∈ Γ′
α} the set of affine roots of A and denote

H := {Hα,r |α ∈ Φ and r ∈ Γ′
α} = {Hα,r |α ∈ Φred and r ∈ Γα}

the set of hyperplanes in A . A connected component of A �
⋃
H is called a

chamber. Associated with ϕ0 and B there is a unique chamber C determined by
ϕ0 ∈ C (topological closure) and

C ⊆
{
ϕ0 + v ∈ A

∣∣ 〈α, v〉 > 0, for all α ∈ Φ+
}
.

We call C the fundamental chamber.
The action of N on A induces natural actions on Φaff and on H. Explicitly, we

have

n.aα,r = aw(α),r−〈w(α),n.ϕ0−ϕ0〉,

for all aα,r ∈ Φaff and n ∈ N , where w := vν(n) ∈ W0. A similar formula holds for
Hα,r. Likewise,

(5) nUα,rn
−1 = Uw(α),r−〈w(α),n.ϕ0−ϕ0〉,

for all α ∈ Φ, r ∈ R, n ∈ N .
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2.1.3. The affine Weyl group. Denote sH ∈AutA the orthogonal reflection through
H ∈ H and put

S(H) := {sH |H ∈ H} .
Conversely, we denote Hs ∈ H the hyperplane fixed by s ∈ S(H). The affine Weyl

group W aff is the subgroup of W̃ := ν(N) ⊆ AutA generated by S(H). Notice

that wsHw−1 = sw(H) and wHs = Hwsw−1 for all w ∈ W̃ , s ∈ S(H), and H ∈ H.

We denote by Saff the set of reflections in the walls of the fundamental chamber C.
It generates W aff as a group. Moreover, W aff acts simply transitively on the set of
chambers of A .

The stabilizer Wϕ0
of ϕ0 in W̃ identifies with W0, because ϕ0 is special. We

obtain semidirect product decompositions

W̃ = W0 � (W̃ ∩ V ) and W aff = W0 � (W aff ∩ V ),

and W aff ∩ V is generated by the translations rα∨, for α ∈ Φred and r ∈ Γα

[BT72, Proposition (6.2.19)].
By [BT72, Proposition (6.2.22)] there exists a unique reduced root system Σ in

V ∗ such that W aff is the affine Weyl group of Σ, i.e., it is the subgroup of AutA
generated by the reflections

sα,k : AutA −→ AutA , ϕ0 + v �−→ ϕ0 + v −
(
〈α, v〉+ k

)
· α∨,

for (α, k) ∈ Σaff := Σ×Z. By a suitable scaling we obtain a surjective map Φ → Σ,
α �→ εαα between root systems which induces a bijection Φred

∼= Σ. By [Vig16, (39)
ff] we have εα = ε−α ∈ Z>0 and Γα = ε−1

α Z, for α ∈ Φred, is a group.

Notation. In order to avoid confusion when working with the two root systems
Φred and Σ we will write H(α,k) and U(α,k) instead of Hα,k and Uβ,ε−1

β k whenever

β ∈ Φred, α = εββ, and k ∈ Z.

Given n ∈ N with image w in W̃ and (α, k) ∈ Σaff , we have wH(α,k) = Hw·(α,k)
and

(6) nU(α,k)n
−1 = Uw·(α,k).

2.2. Parahoric subgroups. The pointwise stabilizer of ϕ0, resp. C, in the kernel
of the Kottwitz homomorphism κG [Kot97, 7.1 to 7.4] is denoted by K, resp. I.
We call I the Iwahori subgroup; its pro-p Sylow subgroup I1 is called the pro-p
Iwahori subgroup. Both K and I are examples of parahoric subgroups [HR08]; they
are compact open subgroups of G.

We remark that K is a special parahoric subgroup containing I, and it satisfies
[Vig16, (51)]

K ∩ Uα = U(α,0), for all α ∈ Φ.

Put Z0 := Z ∩K = Z ∩ I [HR09, Lemma 4.2.1] with pro-p radical Z1 = Z ∩ I1.
Then Z0 is the unique parahoric subgroup of Z, and N normalizes both Z0 and Z1.
The multiplication map

(7)
∏

α∈−Σ+

U(α,1) × Z1 ×
∏

α∈Σ+

U(α,0)

∼=−→ I1

is a homeomorphism [Vig16, Corollary 3.20] with respect to any ordering of the
factors.
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2.3. The Iwahori–Weyl group. We call

W := N/Z0, resp. W (1) := N/Z1

the Iwahori–Weyl group, resp. pro-p Iwahori–Weyl group. There are exact se-
quences

1 −→ Z0/Z1 −→ W (1) −→ W −→ 1

and

(8) 0 −→ Λ −→ W −→ W0 −→ 1,

where Λ := Z/Z0 is a finitely generated abelian group with finite torsion and the
same rank as X∗(T ) [HR09, Theorem 1.0.1]. It is thus written additively. When
viewed as an element of W we use the exponential notation eλ rather than λ ∈ Λ
in order to avoid confusion.

Given a subset X ⊆ W , we denote X(1) the preimage of X under the projection
W (1) → W .

We remark that the sequence (8) splits, providing a semidirect product decom-
position

W = Λ�W0.

In particular, W0 acts on Λ via w(λ) = weλw−1. The group Λ(1) is not abelian in
general. Notice that (4) factors through Λ (and hence Λ(1)).

The inclusion N ↪→ G induces bijections

W0
∼= B\G/B, W ∼= I\G/I, W (1) ∼= I1\G/I1.(9)

The group Ω = {u ∈ W |uC = C} is abelian and acts on Saff by conjugation, and
we have a decomposition

W = W aff � Ω.

The length function  on the Coxeter group (W aff , Saff) extends to a length function
 on W if we define (wu) = (w) for w ∈ W aff , u ∈ Ω. By inflation we also obtain
a length function  on W (1).

We denote by ≤ the Bruhat order on W aff . It extends to the Bruhat order ≤ on
W if we put

wu ≤ w′u′ ⇐⇒ w ≤ w′ and u = u′, for w,w′ ∈ W aff , u, u′ ∈ Ω.

We define v < w as v ≤ w and v �= w. By inflation, we obtain the Bruhat order <
on W (1): given ṽ, w̃ ∈ W (1) with image v, w ∈ W , respectively, we define

ṽ < w̃ ⇐⇒ v < w.

2.4. The integers qw. Given n ∈ N with image w in W (or W (1)), one defines

qw :=
∣∣InI/I∣∣ = ∣∣I1nI1/I1∣∣.

An application of [Vig16, Proposition 3.38] shows

qw = qs1 · · · qs�(w)

whenever w = s1 · · · s�(w)u with si ∈ Saff and u ∈ Ω (or si ∈ Saff(1) and u ∈ Ω(1)).

Given s ∈ Saff , write Hs = Hβ,r = H(α,k) with β ∈ Φ+
red, r ∈ Γβ and α = εββ ∈ Σ+,

k = εβr ∈ Z. Then

(10) qs =
∣∣Uβ,r/Uβ,r+

∣∣ = ∣∣U(α,k)/U(α,k+1)

∣∣,
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where Uβ,r+ :=
⋂

r′>r Uβ,r′ . Indeed, if r ∈ Γβ � Γ′
β, then 2β ∈ Φ+ and 2r ∈ Γ′

2β .

In this case we have Uβ,r+ · U2β,2r = Uβ,r, and [Vig16, Lemma 3.8] yields an
isomorphism

Uβ,r/Uβ,r+
∼= U2β,2r/U2β,2r+.

Now, the first equality in (10) follows from [Vig16, Corollary 3.31] while the second
equality is clear.

Notice that qs = qs′ whenever s, s
′ ∈ Saff are conjugate in W [Vig16, (67)]. As

every hyperplane in H is of the form wHs for some w ∈ W , s ∈ Saff , we obtain a
well-defined function

(11) H −→ qZ>0 , q(wHs) := qs.

For every w ∈ W (or W (1)) we then have [Vig16, Definition 4.14]

(12) qw =
∏

H∈Hw

q(H),

where Hw denotes the set of hyperplanes in H separating C and wC.
For v, w ∈ W (or W (1)) there exists a unique integer qv,w ∈ qZ≥0 satisfying

[Vig16, Definition 4.14]
qvqw = qvwq

2
v,w.

Notice that
qv,w =

∏
H∈Hv∩vHw

q(H).

(In [Vig16, Lemma 4.19] this is only stated for v, w ∈ W aff . But this follows in
general from the facts that Hwu = Hw and uHw = Huwu−1 whenever w ∈ W aff and
u ∈ Ω.)

Remark. (a) If G is F -split, then qw = q�(w) for all w ∈ W . For this reason the
function w �→ qw may be viewed as a generalized length function on W .

(b) In general, qv,w = 1 if and only if (vw) = (v) + (w).

2.5. Levi subgroups. Let P = MUP be a (standard) parabolic subgroup. Then
Z ⊆ M and NM := NM(T) = N ∩M. All the objects we have defined for G have
an analogue for M and we denote them by attaching the index M ; for example, we
write ΦM , W0,M , AM , HM , qM,w, etc.

Notice thatW0,M is contained inW0, WM identifies with Λ�W0,M , andWM (1) is
the preimage ofWM underW (1)→W . The restriction ϕ0,M of ϕ0 to (Z, (Uα)α∈ΦM

)
is again discrete, special, and compatible with valF . The R-vector space

VM := R⊗X∗(T )/X∗(CM ),

where CM =
(⋂

α∈Φ+
M
Kerα

)◦
is the connected center of M, is a quotient of V .

Then ΦM = V ∗
M ∩Φ and ΣM = V ∗

M ∩Σ. The projection V � VM induces a natural
NM -equivariant projection

pM : A −� AM

sending ϕ0 �→ ϕ0,M . Taking inverse images we obtain NM -equivariant inclusions
Φaff

M ⊆ Φaff and HM ⊆ H. Therefore, we have also S(HM ) ⊆ S(H) and hence
W aff

M ⊆ W aff .

Remark. In general we have only pM (C) ⊆ CM and not an equality. In this case we
have Saff

M � Saff . Therefore, the length and Bruhat order on W aff
M are not obtained

by restricting the length and Bruhat order of W aff .
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3. Groups, double cosets, and indices

We fix a (standard) parabolic F -subgroup P = MUP of G.

3.1. A double coset formula. Let Γ ⊆ P be a compact open subgroup satisfying
Γ = ΓMΓUP

, where ΓM := Γ∩M and ΓUP
:= Γ∩UP . This means that every g ∈ Γ

can be uniquely written as

g = gM · gUP
, for some gM ∈ ΓM , gUP

∈ ΓUP
.

Notice that for all g ∈ P and m ∈ M the indices

μ(g) := [Γ : Γ(g)], μUP
(g) := [ΓUP

: (ΓUP
)(g)], μM (m) := [ΓM : (ΓM )(m)]

are finite, because Γ ⊆ P is compact open. We also remark that the projection map
prM : P � M is continuous and open, so that νM (g) := [(ΓM )(gM ) : prM (Γ(g))] is
finite.

Proposition 3.1 generalizes [Gri88, Lemma 2].

Proposition 3.1. Given g ∈ P , consider the coset decompositions

ΓM =

μM (gM )⊔
i=1

(ΓM )(gM )mi, (ΓM )(gM ) =

νM (g)⊔
j=1

prM (Γ(g))hj ,

ΓUP
=

μUP
(g)⊔

s=1

(ΓUP
)(g)us.

Then one has a decomposition of the double coset

(13) ΓgΓ =

μM (gM )⋃
i=1

νM (g)⋃
j=1

μUP
(g)⋃

s=1

Γgushjmi.

Moreover, the union is disjoint. In particular, μ(g) = μM (gM ) · νM (g) · μUP
(g).

Proof. It is clear that the right hand side of (13) is contained in ΓgΓ. For the
converse inclusion let γ = γMγUP

∈ Γ. Write

γM = mmi, for some m ∈ (ΓM )(gM ) and 1 ≤ i ≤ μM (gM ),

m = hhj , for some h ∈ prM (Γ(g)) and 1 ≤ j ≤ νM (g).

By definition of h there exists u ∈ ΓUP
with hu−1 ∈ Γ(g), i.e., with ghu−1 = yg for

some y ∈ Γ. Thus,

γ = γMγUP
= hhjmiγUP

= hu−1 · uγ(hjmi)
−1

UP
· hjmi.

As ΓM normalizes ΓUP
we may write vus = uγ

(hjmi)
−1

UP
∈ ΓUP

for some v ∈ (ΓUP
)(g)

and some integer 1 ≤ s ≤ μUP
(g). Then also vg

−1 ∈ ΓUP
, and therefore

gγ = ghu−1 · uγ(hjmi)
−1

UP
· hjmi

= yg · vus · hjmi

= yvg
−1 · g · ushjmi ∈ Γgushjmi.

This proves equality in (13). To see disjointness in (13), assume gushjmi =
γguthamb for some γ ∈ Γ. Rearranging gives

(14) γg = ushjmim
−1
b h−1

a u−1
t ∈ Γ(g).
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Applying prM to (14) yields

(15) γgM
M = hjmim

−1
b h−1

a ∈ prM
(
Γ(g)

)
.

In particular, mim
−1
b = h−1

j γgM
M ha ∈ (ΓM )(gM ), whence i = b. Therefore, equation

(15) reads γgM
M = hjh

−1
a ∈ prM

(
Γ(g)

)
, and we deduce j = a. Going back to (14)

gives γg = usu
−1
t ∈ Γ(g) ∩ UP . But notice that Γ(g) ∩ UP = (ΓUP

)(g), because g

normalizes UP . Consequently, usu
−1
t ∈ (ΓUP

)(g), whence s = t. This concludes the
proof of the disjointness assertion.

The map Γ(g)\Γ → Γ\ΓgΓ, sending Γ(g)γ �→ Γgγ, is well-defined and bijective.
Hence, we have μ(g) = [Γ : Γ(g)] = |Γ\ΓgΓ| and the last assertion follows. �

Remark. In general, we have νM (g) �= 1, i.e., prM (Γ(g)) � (ΓM )(gM ). As a concrete
example consider the group P of upper triangular matrices inside GL2(Qp). It con-
tains the subgroup M of diagonal matrices and the subgroup UP of upper triangular

unipotent matrices. Let Γ =
(

(1+pZp)
× Zp

0 (1+pZp)
×

)
and g :=

(
1 p−n−1

0 1

)
for some in-

teger n ∈ Z≥0. Then gM = 1, whence (ΓM )(gM ) = ΓM . Given any γ =
(

1+pa b
0 1+pc

)
in Γ, we compute gγg−1 =

(
1+pa b+p−n(c−a)

0 1+pc

)
. Therefore, gγg−1 ∈ Γ if and only if

c− a ∈ pnZp. Thus, Γ(g) =
{(

1+pa b

0 1+pa+pn+1c

) ∣∣∣ a, b, c ∈ Zp

}
, so that

prM
(
Γ(g)

)
=

{(
1 + pa 0

0 1 + pa+ pn+1c

) ∣∣∣∣ a, c ∈ Zp

}
.

From this description it is already clear that νM (g) �= 1 in general. As an exercise,
and in order to illustrate the methods employed in section 3.3, we explicitly compute
νM (g). Consider the reduction modulo pn+1 map

ψ : ΓM =

(
(1 + pZp)

× 0
0 (1 + pZp)

×

)
−→

(
(Zp/p

n+1Zp)
× 0

0 (Zp/p
n+1Zp)

×

)
.

Its kernel is contained in prM
(
Γ(g)

)
, and we have

ψ
(
ΓM

)
=

{(
1 + pa+ pn+1Zp 0

0 1 + pc+ pn+1Zp

) ∣∣∣∣ a, c ∈ Zp

}
and

ψ
(
prM (Γ(g))

)
=

{(
1 + pa+ pn+1Zp 0

0 1 + pa+ pn+1Zp

) ∣∣∣∣ a ∈ Zp

}
,

whence |ψ(ΓM )| = p2n and |ψ
(
prM (Γ(g))

)
| = pn. Therefore,

νM (g) = [ΓM : prM (Γ(g))] = |ψ(ΓM )|/|ψ
(
prM (Γ(g))

)
| = pn.

3.2. Two technical lemmas. In this subsection we prove two technical lemmas
which will be needed for the proof of the fundamental Proposition 3.4.

Recall the finite-dimensional R-vector space V , the root system Φ inside the
dual vector space V ∗, and the set of positive roots Φ+. Fix a subset Ψ ⊆ Φ+. We
consider the partial ordering on Ψ defined by

α ≤ β

if there exist γ1, . . . , γn ∈ Ψ and r, s1, . . . , sn ∈ Z≥0, with r > 0, such that β = rα+∑n
i=1 siγi. The relation is clearly reflexive and transitive. It is also antisymmetric,

since there exists v ∈ V with 〈α, v〉 > 0 for all α ∈ Φ+. We write α < β if α ≤ β
and α �= β.
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Let X be a group. For each α ∈ Ψ let Yα be a subgroup of X. Define

Xα :=

{
Yα, if 2α /∈ Ψ,

YαY2α, if 2α ∈ Ψ.

Put X2α := {1} if 2α /∈ Ψ. We impose the following conditions:

(i) X is generated by the Yα, for α ∈ Ψ.
(ii) For all α, β ∈ Ψ the commutator subgroup [Yα, Yβ ] is contained in the

subgroup of X generated by the Yrα+sβ, where r, s ∈ Z>0 with rα+sβ ∈ Ψ.
(iii) The intersection of the groups generated by

⋃
α∈Ψ,

〈α,v〉≤0

Yα and
⋃

α∈Ψ,
〈α,v〉>0

Yα,

respectively, is trivial for each v ∈ V .

Notice thatXα is a group thanks to (ii). Fix a bijection o :Ψred→{1, 2, . . . , |Ψred|}
and define ∏

α∈Ψred

xα := xo−1(1) · xo−1(2) · · ·xo−1(|Ψred|), for xα ∈ Xα.

We call o an ordering of the factors. It follows from [BT72, Lemme (6.1.7)] that
the multiplication map ∏

α∈Ψred

Xα −→ X

is bijective.

Lemma 3.2. Let f : X → X be a group homomorphism such that

f(xα)x
−1
α ∈ 〈Xβ | β > α〉, for all xα ∈ Xα, all α ∈ Ψred.

For all
∏

α∈Ψred
xα ∈ X, with xα ∈ Xα, one has

(16) f
( ∏
α∈Ψred

xα

)
=

∏
α∈Ψred

zαz̃α(xα)xα,

where zα = zα((xβ)β<α) ∈ Xα depends only on (xβ)β<α, and where z̃α : Xα → X2α

is a group homomorphism factoring through Xα/X2α. Moreover,

• zα and z̃α are uniquely determined by (16).
• z̃α depends only on those xβ with β < α and o(β) > o(α).

In particular, if o is such that β1 < β2 implies o(β1) < o(β2), then z̃α does not
depend on (xβ)β<α. In this case, z̃α(xα) is the image of f(xα)x

−1
α under the pro-

jection
∏

β∈Ψred
Xβ → Xα.

Remark. (a) The homomorphism f : X → X in Lemma 3.2 is necessarily an
automorphism.

(b) The main example to keep in mind is the case where f : X → X is conju-
gation by some element of X. (See Lemma 3.6 for a proof of why such f
satisfies the hypothesis of Lemma 3.2.) This is also the only morphism to
which we apply Lemma 3.2.

Proof of Lemma 3.2. The uniqueness assertions are immediate (for example, the
uniqueness of zα follows by letting xα = 1). Notice that (ii) above implies that X2α

is central in Xα and that the commutator subgroup [Xα, Xα] is contained in X2α.
We prove (16) by induction on |Ψred|. Suppose Ψred = {α}. By the hypothesis

on f the map
z̃α : Xα −→ X2α, x �−→ f(x)x−1
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is well-defined and satisfies z̃α(X2α) = {1}. Given x, y ∈ Xα, we compute

z̃α(xy) = f(xy) · (xy)−1 = f(x)f(y)y−1x−1

= f(x)z̃α(y)x
−1 = f(x)x−1 · z̃α(y) = z̃α(x) · z̃α(y).

Hence, z̃α is a group homomorphism, which proves the base case (with zα := 1).
Suppose now |Ψred| > 1 and choose a root α0 ∈ Ψred maximal with respect to

the partial order. We start by proving the following useful claim:

Claim. Suppose f
(∏

α∈Ψred
xα

)
=
∏

α∈Ψred
yα, where xα, yα ∈ Xα. Then yα0

depends only on the xβ with β ≤ α0.

Proof of the claim. Let Ψ′ be the largest subset of Ψ with Ψ′
red={β∈Ψred |β �≤ α0},

and let Zα0
be the subgroup of X generated by the groups Xβ, for β ∈ Ψ′

red. No-
tice that Ψ′ is upwards closed in Ψ, that is, γ ≥ β with γ ∈ Ψ and β ∈ Ψ′ implies
γ ∈ Ψ′. Therefore, Zα0

is a normal subgroup of X. The hypotheses (i)–(iii) remain
satisfied if we replace X, Ψ, and (Yα)α∈Ψ by Zα0

, Ψ′, and (Yα)α∈Ψ′ , respectively.
Hence, the multiplication map

∏
α∈Ψ′

red
Xα → Zα0

is bijective, and the canonical

projection

pr≤α0
: X ∼=

∏
β∈Ψred

Xβ −→
∏

β≤α0

Xβ
∼= X/Zα0

,

is a group homomorphism with kernel Zα0
. The hypothesis on f implies f(Zα0

) ⊆
Zα0

, again since Ψ′ is upwards closed. We obtain an induced group homomorphism
f : X/Zα0

→ X/Zα0
such that, after identifying X ∼=

∏
β∈Ψred

Xβ and X/Zα0
∼=∏

β≤α0
Xβ, the diagram ∏

β∈Ψred
Xβ

∏
β∈Ψred

Xβ

∏
β≤α0

Xβ

∏
β≤α0

Xβ

f

pr≤α0
pr≤α0

f

is commutative. As the restriction of pr≤α0
to Xα0

is injective, it follows immedi-
ately that yα0

only depends on the xβ with β ≤ α0. The claim is proved. �

Let (xα)α ∈
∏

α∈Ψred
and write f

(∏
α∈Ψred

xα

)
=
∏

α∈Ψred
yα as in the claim.

We prove (16) in two steps.

Step 1. We have yα = zαz̃α(xα)xα, for α �= α0, with zα and z̃α as in the statement
of the lemma.

This follows from the induction hypothesis as follows: as Xα0
is normal in X,

the quotient X ′ := X/Xα0
is a group. Put Ψ′ := Ψ � {α0, 2α0}. Under the

projection map X � X ′ the subgroups Yα, Xα of X embed into X ′ for α ∈ Ψ′.
Denote f ′ : X ′ → X ′ the homomorphism induced by f . The hypotheses of the
lemma remain satisfied if we replace X, Ψ, (Yα)α∈Ψ, f by X ′, Ψ′, (Yα)α∈Ψ′ , f ′,
respectively. The diagram

X ∼=
∏

α∈Ψred
Xα

∏
α∈Ψred

Xα
∼= X

X ′ ∼=
∏

α∈Ψ′
red

Xα

∏
α∈Ψ′

red
Xα

∼= X ′

pr

f

pr

f ′
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is commutative. Therefore, f ′(∏
α∈Ψ′

red
xα

)
=
∏

α∈Ψ′
red

yα, and the induction hy-

pothesis implies yα = zαz̃α(xα)xα for certain elements zα ∈ Xα and group homo-
morphisms z̃α : Xα → X2α factoring through Xα/X2α and only depending on the
xβ with β < α, α ∈ Ψ′

red = Ψred � {α0}.

Step 2. We have yα0
= zα0

z̃α0
(xα0

)xα0
with zα0

and z̃α0
as in the statement of the

lemma.
We introduce the following notation:

x< :=
∏

α∈Ψred

o(α)<o(α0)

xα, x> :=
∏

α∈Ψred

o(α)>o(α0)

xα, x := x< · xα0
· x>, x′ := x< · x>,

f(x<) =
∏

α∈Ψred

y<α , f(x>) =
∏

α∈Ψred

y>α , f(x) =
∏

α∈Ψred

yα, f(x′) =
∏

α∈Ψred

y′α.

The claim implies that y<α0
(resp. y>α0

, resp. y′α0
) depends only on the xβ with

β < α0 and o(β) < o(α0) (resp. o(β) > o(α0), resp. o(β) �= o(α0)). Using that
X2α0

is central in X and that Xα0
is centralized by all Xβ with β �= α0 we compute∏

α∈Ψred

yα = f(x) = f(x<) · f(xα0
) · f(x>) = f(x<) · f(xα0

) ·
∏

α∈Ψred

y>α

= f(x<) ·
( ∏
α∈Ψred

y>α

)
· [f(xα0

), y>α0
] · f(xα0

)

= f(x′) · [f(xα0
), y>α0

] · f(xα0
) =
( ∏
α∈Ψred

y′α

)
· [f(xα0

), y>α0
] · f(xα0

).

We obtain yα0
= y′α0

· [f(xα0
), y>α0

] · f(xα0
). The claim implies that the element

zα0
:= y′α0

∈ Xα only depends on the xβ with β < α0. Moreover, define

(17) z̃α0
(xα0

) := [f(xα0
), y>α0

] · f(xα0
)x−1

α0
∈ X2α0

.

Now, X2α0
is central inXα0

and f is the identity onX2α0
, whence z̃α0

(X2α0
) = {1}.

It remains to show that z̃α0
: Xα0

→ X2α0
is a group homomorphism. The base

case shows that Xα0
→ X2α0

, x �→ f(x)x−1 is a homomorphism. As X2α0
is

abelian it suffices to show that Xα0
→ X2α0

, x �→ [f(x), y>α0
] is a homomorphism.

But this is immediate from the general identity [uv, w] = u[v, w]u−1 · [u,w] for all
u, v, w ∈ Xα0

. Hence, yα0
= zα0

z̃α0
(xα0

)xα0
, with zα0

and z̃α0
depending only on

the xβ with β < α0.

Putting together Steps 1 and 2 finishes the proof of (16). For the last statement
we may assume that α = α0 is maximal. Then the claim follows from (17), because
y>α0

depends only on those xβ with β < α0 and o(β) > o(α0). �

For Lemma 3.3 we choose the ordering o of the factors such that α < β implies
o(α) < o(β).
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Lemma 3.3. Assume that X is finite. Let Y ⊆ X and Zα ⊆ Xα, for each α ∈ Ψred,
be subgroups. Assume further that the following condition is satisfied:

For all 1 ≤ i ≤ |Ψred| and all (x1, . . . , xi−1) ∈
i−1∏
j=1

Xo−1(j), there exists z ∈ Xo−1(i)

depending only on (x1, . . . , xi−1) and satisfying the following property: whenever∏
α∈Ψred

yα∈Y is such that yo−1(j)=xj , for all 1≤j≤ i−1, we have yo−1(i)∈zZo−1(i).

Then |Y | ≤
∏

α∈Ψred
|Zα|.

Proof. Given 0 ≤ i ≤ |Ψred| and (x1, . . . , xi) ∈
∏i

j=1 Xo−1(j), we put

Y (x1, . . . , xi) :=

{ ∏
α∈Ψred

yα ∈ Y

∣∣∣∣∣ yo−1(j) = xj for all 1 ≤ j ≤ i

}
.

For i = 0 we define (x1, . . . , x0) to be the empty tuple (). In this case we have
Y () = Y . Whenever i < |Ψred| we say that xi+1 ∈ Xo−1(i+1) extends (x1, . . . , xi) if
Y (x1, . . . , xi+1) is not the empty set.

With i as above we will prove

(18) |Y (x1, . . . , xi)| ≤
|Ψred|∏
j=i+1

|Zo−1(j)|, for all (x1, . . . , xi) ∈
i∏

j=1

Xo−1(j)

by descending induction on the length i of the tuple (x1, . . . , xi). Then (18) for
i = 0 is precisely the assertion of the lemma.

The base case i = |Ψred| is satisfied, because the right hand side equals 1 (being
the empty product) and since |Y (x1, . . . , x|Ψred|)| is 1 or 0 depending on whether
x1 · · ·x|Ψred| lies in Y or not. Assume now that (18) is satisfied for some 1 ≤ i ≤
|Ψred|. Take (x1, . . . , xi−1) ∈

∏i−1
j=1 Xo−1(j) and put

J(x1, . . . , xi−1) :=
{
y ∈ Xo−1(i)

∣∣ y extends (x1, . . . , xi−1)
}
.

We may assume that Y (x1, . . . , xi−1) is non-empty. In this case J(x1, . . . , xi−1) is
also non-empty and condition (3.3) implies |J(x1, . . . , xi−1)| = |Zo−1(i)|. Observe
that

Y (x1, . . . , xi−1) =
⋃

y∈J(x1,...,xi−1)

Y (x1, . . . , xi−1, y).

We now compute

|Y (x1, . . . , xi−1)| ≤
∑

y∈J(x1,...,xi−1)

|Y (x1, . . . , xi−1, y)|

≤
∑

y∈J(x1,...,xi−1)

|Ψred|∏
j=i+1

|Zo−1(j)|

= |Zo−1(i)| ·
|Ψred|∏
j=i+1

|Zo−1(j)| =
|Ψred|∏
j=i

|Zo−1(j)|,

where the second estimate uses the induction hypothesis. This finishes the induction
step and proves the lemma. �
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3.3. An inequality of indices. Let Γ ⊆ P be an open compact subgroup with
Γ = ΓMIUP

, where ΓM = Γ ∩M and IUP
= I ∩ UP . Here I is the (fixed) Iwahori

subgroup of G. For example, Γ could be K ∩ P or I ∩ P or even I1 ∩ P .

Remark. Since the function μUP
takes values in qZ≥0 , there is an equivalence

μUP
(g) ≤ μUP

(g′) ⇐⇒ μUP
(g) divides μUP

(g′).

Therefore, we use “≤” in this context to implicitly mean “divides”.

The main goal of this section is to prove the following fundamental result.

Proposition 3.4. Each g ∈ P with image gM in M satisfies

μUP
(g) ≥ μUP

(gM ).

Example. The ensuing proof is long and technical notwithstanding the lemmas
in subsection 3.2. We will therefore discuss first an example in order to fix ideas.
Let G = GL3(Qp), P the Borel subgroup of upper triangular matrices, and M
the torus of diagonal matrices. Let I be the standard Iwahori determined by P .

Let g = gUgM with gU =
(

1 x z
0 1 y
0 0 1

)
∈ UP and gM = diag(pm+n, pn, 1) ∈ M with

n,m ∈ Z. The inequality in Proposition 3.4 is equivalent to

(19)
∣∣(IUP

)(g)/H
∣∣ ≤ ∣∣(IUP

)(gM )/H
∣∣,

where H ⊆ IUP
is any sufficiently small open normal subgroup. For a general

element
(

1 u w
0 1 v
0 0 1

)
of IUP

we compute

(20) g−1
M

⎛⎝1 u w
0 1 v
0 0 1

⎞⎠ gM =

⎛⎝1 p−mu p−m−nw
0 1 p−nv
0 0 1

⎞⎠ .

For (20) to lie in (IUP
)(gM ) it is necessary and sufficient that u, v, w satisfy the

following conditions:
(i) valQp

(p−mu) ≥ 0; (ii) valQp
(p−nv) ≥ 0; (iii) valQp

(p−m−nw) ≥ 0.
We deduce

(IUP
)(gM ) =

(
1 pmax{0,−m}Zp pmax{0,−m−n}Zp

0 1 pmax{0,−n}Zp

0 0 1

)
.

Now, compute that g−1
(

1 u w
0 1 v
0 0 1

)
g equals

(21)

⎛⎝1 p−mu y · p−mu− x · p−nv + p−m−nw
0 1 p−nv
0 0 1

⎞⎠ .

Observe that (21) and the right hand side of (20) differ only in the upper right
entry, and their difference is z(u, v) := y · p−mu− x · p−nv which depends only on
the terms coming from root groups of smaller roots. Lemma 3.2 shows that this is
the general behavior. For (21) to lie in (IUP

)(g) it is necessary that u and v satisfy
(i), (ii), and

(iii’) valQp
(z(u, v)) ≥ min{0,−m− n}.

The important observation to make here is that (iii’) may fail even if u and v
satisfy (i) and (ii). This further restriction on u and v is the main reason why
there is an inequality in (19). Now, we assume that u and v do satisfy (iii’) and
we determine the possible upper right entries in (21). If valQp

(z(u, v)) ≥ −m − n,
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then the possible entries lie exactly in pmax{0,−m−n}Zp. If, on the other hand,
we have −m − n > valQp

(z(u, v)) ≥ 0, then they lie exactly in the proper coset

z(u, v)+pmax{0,−m−n}Zp. Note that in both cases pmax{0,−m−n}Zp does not depend

on u and v. If H =

(
1 prZp prZp

0 1 prZp

0 0 1

)
, for r � 0 large enough, this discussion shows

∣∣(IUP
)(g)/H

∣∣ ≤ ∣∣∣∣pmax{0,−m}Zp

prZp

∣∣∣∣ · ∣∣∣∣pmax{0,−n}Zp

prZp

∣∣∣∣ · ∣∣∣∣pmax{0,−m−n}Zp

prZp

∣∣∣∣
=
∣∣(IUP

)(gM )/H
∣∣.

The role of Lemma 3.3 is to show that we can make this estimate in general.

We now turn to the proof of Proposition 3.4. As the example above illustrates,
it will be necessary to analyse (IUP

)(g) = IUP
∩ g−1IUP

g. We will make extensive
use of the identification

IUP
∼=

∏
α∈Σ+�ΣM

U(α,0),

which follows from (7). As G is not assumed F -split, the root system Φ need not
be reduced. If α, 2α ∈ Φ, the root group Uα is not abelian in general; it contains
the non-trivial abelian subgroup U2α, and the quotient Uα/U2α is abelian. This
phenomenon motivates the next definition.

Definition. Let FGrp be the category whose

− objects are pairs (X0, X) of groups such that X0 is a normal subgroup of
X;

− morphisms (X0, X) → (X ′
0, X

′) are group homomorphisms f : X → X ′

satisfying f(X0) ⊆ f(X ′
0).

We write (X0, X) ⊆ (X ′
0, X

′) if X ⊆ X ′ and X0 = X ′
0 ∩X.

There is a canonical functor gr : FGrp → Grp into the category of graded groups
given by

gr(X0, X) := gr0(X0, X)× gr1(X0, X),

where gr0(X0, X) := X0 and gr1(X0, X) := X/X0. We will need the following
elementary lemma, the proof of which will be left as an exercise for the reader.

Lemma 3.5. Let (X0, X) ⊆ (X ′
0, X

′) be objects in FGrp.

(a) One has gr(X0, X) ⊆ gr(X ′
0, X

′).
(b) Assume [X ′ : X] < ∞. Then [X ′ : X] = [gr(X ′

0, X
′) : gr(X0, X)].

3.3.1. Proof of Proposition 3.4. Let g ∈ P . Recall that gM denotes the image of g
in M and that gU := g−1

M g ∈ UP . The group KM = K ∩ M normalizes IUP
and

hence the function μUP
: P → qZ≥0 is constant on KMgKM . By [HR09, Lemma

4.1.1] the group KM is a maximal parahoric subgroup of M . Hence, the Cartan
decomposition [HR09, Theorem 1.0.3] implies that the intersection KMgMKM ∩Z
is non-empty. Thus, we may assume gM ∈ Z.

For each α ∈ Σ+ � ΣM we have g−1
M U(α,0)gM = U(α,〈α,ν(gM )〉) by (5) and hence

(22) (U(α,0))(gM ) =

{
U(α,0), if 〈α, ν(gM )〉 ≤ 0,

UgM
(α,0), otherwise.
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Write Ψ := Φ+�ΦM and choose an ordering o of the factors of
∏

α∈Ψred
Uα in such

a way that β < α implies o(β) < o(α).
Consider the automorphism f : UP → UP , x �→ g−1

U xgU . We proceed with a
series of lemmas.

Lemma 3.6. For each xα ∈ Uα, α ∈ Ψred, the element f(xα)x
−1
α is contained in

the subgroup 〈Uβ | β > α〉 of UP generated by the Uβ for β ∈ Ψred with β > α.

Proof. Write gU = uα1
· · ·uαr

for certain uαi
∈ Uαi

and α1, . . . , αr ∈ Ψred. We
prove the assertion by induction on r.

As (Z, (Uα)α∈Φ) is a root group datum, it satisfies [BT72, (6.1.1), (DR 2)]:

(DR 2) For each α, β ∈ Φ the commutator subgroup [Uα, Uβ ] is contained in the
group generated by the Urα+sβ , for r, s ∈ Z>0 with rα+ sβ ∈ Φ.

The base case r = 1 is clear from (DR 2). Now, assume r > 1 and

y := (uα1
· · ·uαr−1

)−1 · xα · (uα1
· · ·uαr−1

) · x−1
α ∈ 〈Uβ | β > α〉.

Again from (DR 2) we know yuαr ∈ 〈Uβ | β > α〉. Therefore, g−1
U xαgUx

−1
α =

yuαr · [u−1
αr

, xα] is contained in 〈Uβ | β > α〉, proving the assertion. �

Lemma 3.6 allows us to apply Lemma 3.2: for each (xα)α ∈
∏

α∈Ψred
Uα there

exist an element zα(xβ)β<α ∈ Uα (depending only on (xβ)β<α) and a group homo-
morphism z̃α : Uα → U2α, factoring through Uα/U2α and independent of (xβ)β<α,
such that

(23) f
( ∏
α∈Ψred

xα

)
=

∏
α∈Ψred

zα(xβ)β<α · z̃α(xα) · xα.

Identify Ψred with Σ+ � ΣM . For α ∈ Ψred we consider the homomorphism

fα : U
gM
(α,0) −→ Uα, x �−→ z̃α(x) · x.

Remark. Observe that fα is the identity if the root system Φ is reduced (e.g., if G
is F -split). In this case Lemmas 3.7 and 3.8 are trivial.

Lemma 3.7. The image of fα is open in Uα.

Proof. Put Ψ′ := {β ∈ Ψred |β �< α} and let Zα ⊆ UP be the subgroup generated
by the Uβ with β ∈ Ψ′. Then Zα is normal in UP by (DR 2), and the multiplication
map induces a homeomorphism

∏
β∈Ψ′ Uβ

∼= Zα. The projection map prα : Zα →
Uα and the automorphism f ′ := f

∣∣
Zα

, induced by the inner automorphism f , are

open. Hence, the subset

fα
(
UgM
(α,0)

)
= (prα ◦f ′)

(
UgM
(α,0) ×

∏
β∈Ψ′�{α}

U(β,0)

)
⊆ Uα

is open. �

Lemma 3.8.
[
U(α,0) : fα

(
UgM
(α,0)

)
∩ U(α,0)

]
≥
[
U(α,0) : (U(α,0))(gM )

]
Proof. For each subgroup X of Uα we have (U2α ∩X,X) ⊆ (U2α, Uα) in FGrp. In
order to simplify the notation we write X instead of (U2α ∩X,X).

Step 1. We show gr0
(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
= gr0

(
(U(α,0))(gM )

)
, i.e.,

(24) fα
(
UgM
(α,0)

)
∩ U(α,0) ∩ U2α = (U(α,0))(gM ) ∩ U2α.
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Take x ∈ U(α,0) with fα(x
gM ) = z̃α(x

gM ) ·xgM ∈ U(α,0)∩U2α. As z̃α takes values in
U2α, we must have xgM ∈ U2α. As z̃α vanishes on U2α we deduce fα(x

gM ) = xgM

which is contained in the right hand side of (24). Conversely, given x ∈ U(α,0) with
xgM ∈ U(α,0) ∩ U2α, we have xgM = fα(x

gM ), which is contained in the left hand
side of (24).

Step 2. We prove gr1
(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
⊆ gr1

(
(U(α,0))(gM )

)
. We first show

(25)
(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
· U2α ⊆ UgM

(α,0)U2α ∩ U(α,0)U2α = (U(α,0))(gM ) · U2α.

The inclusion is a consequence of fα
(
UgM
(α,0)

)
U2α = UgM

(α,0)U2α and the equality

follows from (22). We compute

gr1
(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
=

fα
(
UgM
(α,0)

)
∩ U(α,0)

fα
(
UgM
(α,0)

)
∩ U(α,0) ∩ U2α

=

(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
· U2α

U2α

(25)

⊆
(U(α,0))(gM ) · U2α

U2α
=

(U(α,0))(gM )

(U(α,0))(gM ) ∩ U2α
= gr1

(
(U(α,0))(gM )

)
.

Step 3. Proof of the assertion. Steps 1 and 2 imply gr
(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)
⊆

gr
(
(U(α,0))(gM )

)
. The index of fα

(
UgM
(α,0)

)
∩ U(α,0) in U(α,0) is finite by Lemma 3.7.

Applying Lemma 3.5.(b) twice finally shows[
U(α,0) : fα

(
UgM
(α,0)

)
∩ U(α,0)

]
=
[
gr(U(α,0)) : gr

(
fα
(
UgM
(α,0)

)
∩ U(α,0)

)]
≥
[
gr(U(α,0)) : gr

(
(U(α,0))(gM )

)]
=
[
U(α,0) : (U(α,0))(gM )

]
. �

Given α ∈ Ψred and (xβ)β<α ∈
∏

β∈Ψred
β<α

Uβ , we consider the subset

X(xβ)β<α
:= U(α,0) ∩

{
zα
(
xgM
β

)
β<α

· z̃α
(
xgM
α

)
· xgM

α

∣∣∣xα ∈ U(α,0)

}
⊆ U(α,0).

As (IUP
)(g) = IUP

∩ f
(
IgMUP

)
it is immediate from (23) that

(26)

(IUP
)(g) =

⎧⎨⎩ ∏
α∈Ψred

yα = f
( ∏
α∈Ψred

xgM
α

)
∈
∏

α∈Ψred

U(α,0)

∣∣∣∣∣∣
xα ∈ U(α,0) and
yα ∈ X(xβ)β<α

for all α ∈ Ψred

⎫⎬⎭ .

Lemma 3.9. The set X(xβ)β<α
is either empty or a left coset of fα

(
UgM
(α,0)

)
∩U(α,0).

Proof. Clearly,X(xβ)β<α
is stable under right multiplication by elements of fα

(
UgM
(α,0)

)
∩ U(α,0). Now, take two elements

γi := zα
(
xgM
β

)
β<α

· z̃α(xgM
i ) · xgM

i ∈ X(xβ)β<α
, with xi ∈ U(α,0), i = 1, 2.

Then γ−1
2 γ1 = fα

(
(x−1

2 x1)
gM
)
∈ fα

(
UgM
(α,0)

)
∩ U(α,0) proving the claim. �

Choose r ∈ Z>0 big enough so that U(α,r) is contained in fα
(
UgM
(α,0)

)
∩ U(α,0) ∩

UgM
(α,0) for all α ∈ Ψred and such that the subgroup H :=

∏
α∈Ψred

U(α,r) of IUP
is

contained in (IUP
)(g) ∩ (IUP

)(gM ). Observe that H is normal, since the valuation
ϕ0 satisfies [BT72, (6.2.1), (V 3)].
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We will apply Lemma 3.3 next with X, Y , Zα equal to IUP
/H and (IUP

)(g)/H
and fα(U

gM
(α,0)) ∩ U(α,0)/U(α,r), respectively. If

∏
α∈Ψred

xα ∈
∏

α∈Ψred
U(α,0) and∏

α∈Ψred
yα = f(

∏
α∈Ψred

xgM
α ), then each xα, and hence (xβ)β<α, depends only

on (yβ)β<α (apply the Lemma 3.2 to f−1). Therefore, X(xβ)β<α
depends only

on (yβ)β<α and, in particular, on (y1, . . . , yo(α)−1) by our choice of o. In fact,
X(xβ)β<α

depends only on the cosets yβU(β,r), for β < α, since we assumed U(β,r) ⊆
fβ
(
UgM
(β,0)

)
∩U(β,0). Now, (26) and Lemma 3.9 show that condition (3.3) is satisfied.

Lemma 3.3 implies

(27)
∣∣(IUP

)(g)/H
∣∣ ≤ ∏

α∈Ψred

∣∣fα(UgM
(α,0)) ∩ U(α,0)/U(α,r)

∣∣.
Further, using Lemma 3.8 we estimate∣∣fα(UgM

(α,0)

)
∩ U(α,0)/U(α,r)

∣∣ = |U(α,0)/U(α,r)|
[U(α,0) : fα

(
UgM
(α,0)

)
∩ U(α,0)]

(28)

≤
|U(α,0)/U(α,r)|

[U(α,0) : (U(α,0))(gM )]
=
∣∣(U(α,0))(gM )/U(α,r)

∣∣.
Putting (27) and (28) together yields∣∣(IUP

)(g)/H
∣∣ ≤ ∏

α∈Ψred

∣∣(U(α,0))(gM )/U(α,r)

∣∣ = ∣∣(IUP
)(gM )/H

∣∣.
Finally, we conclude μUP

(g) =
|IUP

/H|
|(IUP

)(g)/H| ≥
|IUP

/H|
|(IUP

)(gM )/H| = μUP
(gM ), finishing

the proof of Proposition 3.4.

3.4. Properties of μUP
(w).

Notation. As μUP
: M → qZ≥0 is constant on double cosets with respect to KM

(hence also IM ), we obtain from the Bruhat decomposition (9) an induced function

(29) μUP
: WM −→ qZ≥0 .

As KM contains representatives of W0,M , it follows that μUP
is constant on the

double cosets with respect to W0,M .
The analogous map μUP

: WM (1) → qZ≥0 is obtained from (29) by inflation. It
is clear that all results in this section are still true if we replace WM by WM (1).

Our goal in this section will be to study the properties of the function μUP
.

Lemma 3.10. Let λ ∈ Λ and w0 ∈ W0,M . Then

μUP
(eλw0) =

∏
α∈Σ+�ΣM

〈α,ν(λ)〉>0

∣∣U(α,0)/U(α,〈α,ν(λ)〉)
∣∣.

Proof. Let m ∈ Z be a representative of λ ∈ Λ. Then the multiplication map
induces an m-equivariant bijection IUP

∼=
∏

α∈Σ+�ΣM
U(α,0), and we compute

(IUP
)(m) = IUP

∩m−1IUP
m ∼=

∏
α∈Σ+�ΣM

U(α,0) ∩m−1U(α,0)m

=
∏

α∈Σ+�ΣM
〈α,ν(λ)〉≤0

U(α,0) ×
∏

α∈Σ+�ΣM
〈α,ν(λ)〉>0

U(α,〈α,ν(λ)〉).
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But then

μUP
(eλw0) = μUP

(eλ) = [IUP
: (IUP

)(m)] =
∏

α∈Σ+�ΣM

〈α,ν(λ)〉>0

∣∣U(α,0)/U(α,〈α,ν(λ)〉)
∣∣. �

Definition. Given (α, k) ∈ Σaff = Σ× Z, we put (cf. (11))

q(α, k) := q(H(α,k)) =
∣∣U(α,k)/U(α,k+1)

∣∣ ∈ qZ>0 .

Notice that q(α, k) = q
(
w · (α, k)

)
by (6). In particular, q(α, k) = q(−α, k) (take

w = sα) and q(α, k) = q(α, k + 〈α, ν(λ)〉) (take w = e−λ ∈ Λ).

3.4.1. The opposite parabolic. Let Pop be the parabolic subgroup opposite P with
Levi M and unipotent radical UPop . Writing IUPop = I ∩ UP op , we define

μUPop (g) := [IUPop : (IUPop )(g)], for g ∈ P .

It is constant on double cosets with respect to KM , hence restricts to a function
μUPop : WM → qZ≥0 . Proposition 3.11 explains how μUPop is related with μUP

.

Proposition 3.11. μUPop (w) = μUP
(w−1) for all w ∈ WM .

Proof. We may assume w = eλ ∈ Λ. Lemma 3.10 implies

μUP
(−λ) =

∏
α∈Σ+�ΣM

〈α,ν(−λ)〉>0

〈α,ν(−λ)〉−1∏
k=0

q(α, k).

A similar argument shows

μUPop (λ) =
∏

α∈(−Σ+)�ΣM

〈α,ν(λ)〉>0

∣∣U(α,1)/U(α,〈α,ν(λ)〉+1)

∣∣ = ∏
α∈(−Σ+)�ΣM

〈α,ν(λ)〉>0

〈α,ν(λ)〉∏
k=1

q(α, k).

Using 〈−α, ν(−λ)〉 = 〈α, ν(λ)〉, q(−α, k) = q(α, k), and q(α, 0) = q(α, 〈α, ν(λ)〉),
we obtain μUP

(−λ) = μUPop (λ). �

3.4.2. Changing the parabolic subgroup. Let Q = LUQ be a parabolic subgroup
of G with M ⊆ L. Then P ∩ L is a parabolic subgroup of L with Levi M and
unipotent radical UP ∩ L.

Proposition 3.12. μUP
(w) = μUP∩L(w) · μUQ

(w) for all w ∈ WM .

Proof. It suffices to prove the assertion for w ∈ Λ. Using Lemma 3.10 we obtain

μUP
(w) =

∏
α∈Σ+�ΣM

〈α,ν(w)〉>0

∣∣U(α,0)/U(α,〈α,ν(w)〉)
∣∣

=
∏

α∈Σ+
L�ΣM

〈α,ν(w)〉>0

∣∣U(α,0)/U(α,〈α,ν(w)〉)
∣∣ · ∏

α∈Σ+�ΣL

〈α,ν(w)〉>0

∣∣U(α,0)/U(α,〈α,ν(w)〉)
∣∣

= μUP∩L(w) · μUQ
(w). �
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3.4.3. Relating μUP
with the structure of WM . The fact that μUP

can be defined
on WM may seem rather coincidental. There is, however, a strong relationship
between the two. To begin with, the function

(30) δM : M −→ Q×, m �−→ μUP
(m)/μUP

(m−1)

is easily seen to be a group homomorphism by showing δM (m) = [mIUP
m−1 : IUP

]
(generalized index; see [Vig96, I.2.7] for various properties), and this clearly induces
a group homomorphism δM : WM → Q×. One can say more:

Lemma 3.13. δM is trivial on W aff , hence factors through a character ΩM → Q×.

Proof. Given s ∈ Saff , we have s = s−1. As δM is a group homomorphism taking
only positive values, this implies δM (s) = 1. As W aff is generated by Saff , the
assertion follows. �

Thus, μUP
carries (at least some) information about the group structure of WM .

Our main result in this section shows that μUP
measures the deviation between the

length functions  on W and M on WM , and that it is monotone with respect to
the Bruhat order ≤M on WM .

Proposition 3.14. Let v, w ∈ WM . Then:

(a) qw = μUP
(w)μUP

(w−1) · qM,w;
(b) μUP

(v) ≤ μUP
(w) whenever v ≤M w.

Before we give the proof, we deduce a simple corollary:

Corollary 3.15. μUP
(vw) ≤ μUP

(v)μUP
(w) and qv,w =

μUP
(v)μUP

(w)

μUP
(vw) · qM,v,w for

all v, w ∈ WM .

Proof. As δM : WM → Q× is a group homomorphism, we have
μUP

(v)μUP
(w)

μUP
(vw) =

μUP
(v−1)μUP

(w−1)

μUP
(w−1v−1) . Hence, Proposition 3.14.(a) implies

q2v,w =
qvqw
qvw

=
μUP

(v)μUP
(v−1) · μUP

(w)μUP
(w−1)

μUP
(vw)μUP

(w−1v−1)
· qM,v · qM,w

qM,vw

=

(
μUP

(v) · μUP
(w)

μUP
(vw)

· qM,v,w

)2

.

Taking the (positive) square root implies the second assertion. Since HM,w =
Hw∩HM for all w ∈ W (see (12) for the definition of Hw), we have HM,v∩vHM,w ⊆
Hv ∩ vHw. Therefore qM,v,w divides qv,w, and the first assertion follows from the
second. �

Proof of Proposition 3.14.

(a) Under the inclusion HM ⊆ H we have

HM =
{
H(α,k) ∈ H

∣∣ (α, k) ∈ Σaff
M

}
.

Take w = eλw0, with λ ∈ Λ and w0 ∈ W0,M . By [Vig16, Lemma 5.6
and Proposition 5.9, 2)] (using w0(Σ

+ � ΣM ) = Σ+ � ΣM ) there is a
decomposition

Hw = H+
w � H−

w � HM,w,
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where

H
+
w :=

{
H(α,k)

∣∣∣∣ α ∈ Σ+ � ΣM with 〈α, ν(λ)〉 > 0
and k ∈ {−〈α, ν(λ)〉, . . . ,−1}

}
and

H−
w :=

{
H(α,k)

∣∣∣∣ α ∈ Σ+ � ΣM with 〈α, ν(λ)〉 < 0
and k ∈ {0, . . . ,−〈α, ν(λ)〉 − 1}

}
.

Thanks to Lemma 3.10 we compute

∏
H∈H

−
w

q(H) =
∏

α∈Σ+�ΣM

〈α,ν(λ)〉<0

−〈α,ν(λ)〉−1∏
k=0

q(α, k) = μUP
(−λ) = μUP

(w−1).

Likewise, a short computation reveals
∏

H∈H
+
w
q(H) = μUP

(w) keeping in

mind q(α, k) = q(α, k+〈α, ν(λ)〉). Taking everything together, the assertion
follows from (12) applied to both qw and qM,w.

(b) Let v, w ∈ WM with v ≤M w. By definition of the Bruhat order, e.g.,
[BB06, Definition 2.1.1], there exists a chain v = v0, v1, . . . , vk = w in WM

with viv
−1
i−1 ∈ S(HM ) ( ⇐⇒ v−1

i−1vi ∈ S(HM )) and M (vi−1) < M (vi) for
all 1 ≤ i ≤ k.

We are therefore reduced to the case w = tv and M (v) < M (w) for
some t ∈ S(HM ). In fact, by [BB06, Theorem 2.2.6], we may even assume
M (w) = M (v) + 1.

Step 1. We show μUP
(tw)μUP

(
(tw)−1

)
≤ μUP

(w)μUP
(w−1). The hy-

pothesis M (tw) = M (w) − 1 implies Ht ∈ HM,w � HM,tw. But since
HM,w′ = Hw′∩HM , for all w′ ∈ WM , we also haveHt ∈ Hw�Htw. Let Γw be
a minimal gallery in A connecting C and wC. Denote (H1, H2, . . . , H�(w))
the sequence of hyperplanes crossed by Γw. Then Ht = Hi for some
1 ≤ i ≤ (w). By folding Γw along Ht and deleting the repeated chamber
we obtain a gallery Γtw of length (w) − 1 in A connecting C and twC,
given by crossing the hyperplanes

(H1, . . . , Hi−1, tHi+1, . . . , tH�(w)).

Of course, Γtw crosses all hyperplanes in Htw at least once. Applying (a)
twice, we compute

μUP
(w)μUP

(w−1)qM,w = qw =

�(w)∏
j=1

q(Hj)

=

i−1∏
j=1

q(Hj) ·
�(w)∏

j=i+1

q(tHj) · q(Ht)

≥ qtw · q(Ht)

= μUP
(tw)μUP

(
(tw)−1

)
· qM,tw · q(Ht).

Since M (w) = M (tw) + 1, we have qM,w = qM,tw · q(Ht), finishing the
proof of Step 1.
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Step 2. We show μUP
(tw) ≤ μUP

(w). By Lemma 3.13 we have δM (tw) =
δM (w). Hence,

μUP
(tw)2 = μUP

(tw)μUP

(
(tw)−1

)
· δM (tw)

≤ μUP
(w)μUP

(w−1) · δM (w) = μUP
(w)2

using Step 1. Taking square roots, the assertion follows. �
3.5. Positive elements. We collect here some results on positive elements in the
Levi subgroup M which will become important for the definition of parabolic in-
duction. The results in this section are not new, but we will give new proofs of two
results obtained by Abe in [Abe16]

Definition. An elementm ∈ M is calledM -positive (or just positive if no confusion
arises) if μUP

(m) = 1. The monoid of positive elements is denoted M+ (or even
M+,G if we want to stress that M is considered as a Levi subgroup in G). Notice
that KM ⊆ M+.

The elements in the monoid M− := (M+)−1 are called M -negative (or negative).

Remark. In view of μUPop (m−1) = μUP
(m) (Proposition 3.11), m being positive is

equivalent to
mIUP

m−1 ⊆ IUP
and IUPop ⊆ mIUPopm

−1,

where IUPop = I ∩ UP op . This recovers the classical definition, cf. [BK98, (6.5)] or
[Vig98, II.4].

Definition. (a) An element w ∈ WM (or in WM (1)) is called M -positive (or
positive) if μUP

(w) = 1. The monoid of positive elements in WM is denoted
WM+ .

The elements in WM− := (WM+)−1 are called M -negative (or negative).
(b) An element λ ∈ Λ (or in Λ(1)) is called strictly M -positive (or strictly

positive) if there exists a central element a ∈ M with λ = aZ0 (or λ = aZ1)
and if

〈α, ν(λ)〉 < 0 for all α ∈ Σ+ � ΣM .

(c) A central element a ∈ M is called strictly M -positive (or strictly positive)
if aZ0 ∈ Λ is.

Remark. (a) If λ ∈ Λ is strictly positive, then 〈α, ν(λ)〉 = 0 for all α ∈ ΣM ,
because λ = aZ0 for some element a in the center ofM . The strictly positive
elements are contained in ΛM+ := Λ ∩WM+ (e.g., by Lemma 3.10).

(b) An element λ ∈ Λ is strictly positive if and only if it lies in the image of
a strongly positive element a in the sense of [BK98, (6.16)]. In particular,
[BK98, (6.14)], strictly positive elements exist. Moreover, given any m ∈ M
we have anm ∈ M+ for n � 0.

(c) The Bruhat decomposition of M (9) induces bijections WM+
∼=IM\M+/IM

and WM+(1) ∼= I1,M\M+/I1,M [OV18, Remark 2.11(2)].
(d) We have WM+

∼= ΛM+ �W0,M and [Vig15, Lemma 2.2]

ΛM+ =
{
λ ∈ Λ

∣∣ 〈α, ν(λ)〉 ≤ 0 for all α ∈ Σ+ � ΣM

}
.

It follows that if λ ∈ Λ (or in Λ(1)) is strictly positive, then for all w ∈ WM

(or in WM (1)) there exists n � 0 with enλw ∈ WM+ (or in WM+(1)).

Finally, we give new proofs of two useful lemmas due to Abe. They will not be
needed in the rest of the paper.
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Corollary 3.16 ([Abe16, Lemma 4.5]). Let either v, w ∈ WM+ or v, w ∈ WM− .
Then we have qv,w = qM,v,w and, in particular,

M (v) + M (w)− M (vw) = (v) + (w)− (vw).

Proof. If v, w ∈ WM+ then Corollary 3.15 yields qv,w = qM,v,w (and also vw ∈
WM+). If, on the other hand, v, w ∈ WM− then v−1, w−1, (vw)−1 ∈ WM+ and
μUP

(vw) = μUP
(v) ·μUP

(w), because (30) is a group homomorphism. Again, Corol-
lary 3.15 implies qv,w = qM,v,w.

Notice that qv,w = qM,v,w implies Hv ∩ vHw = HM,v ∩ vHM,w. Hence, the second
assertion follows from (vw) = (v) + (w)− 2 · |Hv ∩ vHw|, [Vig16, Remark 4.18],
and a similar formula for M (vw). �

Corollary 3.17 ([Abe16, Lemma 4.1]). Let w ∈ WM+ (resp. w ∈ WM−) and
v ∈ WM with v ≤M w. Then v ∈ WM+ (resp. v ∈ WM−).

Proof. Replacing w by w−1 if necessary, we may assume w ∈ WM+ . Then Propo-
sition 3.14.(b) implies v ∈ WM+ . �

4. Parabolic induction

4.1. Reminder on abstract Hecke algebras. We recall briefly the basics of
Hecke algebras. A thorough introduction with complete proofs can be found in
[AZ95, Chapter 3, §1.2].

Let X be a topological group and S ⊆ X a submonoid containing a compact
open subgroup Γ. Then S acts on the right on the free Z-module on the set of right
cosets Γ\S

Z[Γ\S] :=
⊕

Γg∈Γ\S
Z.(Γg).

The Z-module of Γ-invariants

H(Γ, S) = Z[Γ\S]Γ = {t ∈ Z[Γ\S] | tγ = t for all γ ∈ Γ}

is free. The element

Tg := TS
g :=

∑
Γh

(Γh) ∈ H(Γ, S),

where the sum ranges over all right cosets contained in the double coset ΓgΓ,
depends only on ΓgΓ. Moreover, (Tg)ΓgΓ∈Γ\S/Γ forms a Z-basis of H(Γ, S).

The isomorphism

EndS
(
Z[Γ\S]

) ∼=−→ H(Γ, S), T �−→ T
(
(Γ)
)

endows H(Γ, S) with the structure of an associative ring with unit T1. Concretely,
given elements t =

∑
i ai · (Γgi) and t′ =

∑
j a

′
j · (Γg′j) in H(Γ, S), one has

(31) t · t′ =
∑
i,j

aia
′
j · (Γgig′j) ∈ H(Γ, S).

Given a commutative unital ring R, the R-algebra

HR(Γ, S) := R⊗H(Γ, S)

is called the Hecke algebra over R associated with (Γ, S).
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4.2. Parabolic induction. Let P = MUP be a parabolic F -subgroup of G. Re-
call the pro-p Iwahori subgroup I1 of G. Then I1,M = I1 ∩ M is a pro-p Iwahori
subgroup of M [HR09, Lemma 4.1.1]. Fix a commutative unital ring R. The
algebras

HR(G) := HR(I1, G) and HR(M) := HR(I1,M ,M)

are the usual pro-p Iwahori–Hecke R-algebras [Vig16, (1)] of G and M , respectively.
We write Tw := Tg whenever w ∈ W (1) corresponds to I1gI1 under (9); a similar
convention applies to HR(M). Then (Tw)w∈W (1) and (TM

w )w∈WM (1) are R-bases of
HR(G) and HR(M), respectively.

Definition. The R-algebra HR(P ) := HR(I1 ∩ P, P ) is called the parabolic pro-p
Iwahori–Hecke R-algebra.

The main goal of this section will be to construct two R-algebra morphisms

HR(P )

HR(M) HR(G).

ΘP
M ΞP

G

Pulling back along ΘP
M and extending scalars along ΞP

G then defines a functor

(32) Mod -HR(M) −→ Mod -HR(G), m �−→ m⊗HR(P ) HR(G)

from the category of rightHR(M)-modules to the category of rightHR(G)-modules.
We then go on to prove that (32) is naturally isomorphic to the parabolic induction
functor studied in [OV18, (4.2)] and [Vig15].

4.2.1. The positive subalgebra. Recall the monoid M+ of M -positive elements. The
algebra

HR(M
+) := HR(I1,M ,M+)

is called the positive subalgebra of HR(M). (The fact that it is indeed a subalgebra
of HR(M) is clear from the explicit definition of the multiplication.)

We collect two well-known and fundamental properties of HR(M
+).

Proposition 4.1 ([Vig98, II.5]). Consider the injective R-linear map

ξ : HR(M) −→ HR(G), TM
m �−→ Tm.

The restriction ξ+ := ξ
∣∣
HR(M+)

respects the product.

Remark. Proposition 4.1 relies solely on the Iwahori decomposition of I1, i.e., we
could replace I1 by any compact open subgroup Γ satisfying Γ = (Γ ∩ UP op) ·
(Γ ∩ M) · (Γ ∩ UP ). However, Proposition 4.1 fails for groups like K that do not
admit an Iwahori decomposition.

Proposition 4.2 ([Vig98, II.6]). The following assertions are equivalent:

(a) ξ+ : HR(M
+) → HR(G) extends to a morphism ξ̃+ : HR(M) → HR(G) of

R-algebras.
(b) There exists a strictly positive element a ∈ M such that Ta is invertible in

HR(G).

If one of the assertions holds then Ta is invertible for all strictly positive elements

a ∈ M and ξ̃+ is unique.
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Proof. If a ∈ M is strictly positive then TM
a is central and invertible in HR(M).

Since (TM
a )n · TM

m = TM
anm ∈ HR(M

+), for any m ∈ M and n � 0, it follows
that HR(M) is the localization of HR(M

+) at TM
a . The proposition is a formal

consequence of this fact. �

4.2.2. The morphism ΘP
M . Let Γ ⊆ P be a compact open subgroup satisfying Γ =

ΓMΓUP
, where ΓM = Γ ∩ M and ΓUP

= Γ ∩ UP . For example, Γ could be the
intersection of P with one of the groupsK, I, I1. Recall the notation gM := prM (g),
where prM : P → M is the projection.

Proposition 4.3. The R-linear map

ΘP
M := ΘP

M,R : HR(Γ, P ) −→ HR(ΓM ,M),

TP
g �−→ νM (g)μUP

(g) · TM
gM

is a homomorphism of R-algebras.

Proof. The projection prM : P → M induces an R-linear map ϑ : R[Γ\P ] →
R[ΓM\M ], given explicitly by (Γg) �→ (ΓMgM ). Since prM (Γ) ⊆ ΓM and ϑ is
right P -linear if we let P act by inflation on R[ΓM\M ], it follows that ϑ maps
HR(Γ, P ) = R[Γ\P ]Γ into HR(ΓM ,M) = R[ΓM\M ]ΓM . By restriction we obtain
an R-linear map θ : HR(Γ, P ) → HR(ΓM ,M). It is obvious from the explicit de-
scription of multiplication (31) that θ respects the product. Therefore, it remains
to prove θ = ΘP

M . Let g ∈ P . By Proposition 3.1 we have

TP
g =

μM (gM )∑
i=1

νM (g)∑
j=1

μUP
(g)∑

s=1

(Γgushjmi)

in R[Γ\P ], for certain us ∈ ΓUP
, hj ∈ (ΓM )(gM ), and mi ∈ ΓM with ΓM =⊔μM (gM )

i=1 (ΓM )(gM )mi. Since gMhj ∈ ΓMgM , by definition of hj , we obtain

θ(TP
g ) =

∑
i,j,s

(ΓMgMhjmi) =
∑
i,j,s

(ΓMgMmi) = νM (g)μUP
(g) · TM

gM ,

where the last equality uses ΓMgMΓM =
⊔μM (gM )

i=1 ΓMgMmi, cf. [AZ95, Chapter 3,
Lemma 1.2]. Hence, θ and ΘP

M coincide. �

For the next two consequences we assume ΓUP
= IUP

.

Corollary 4.4. The system (μUP
(m)TM

m )m, where m runs through a system of
representatives of ΓM\M/ΓM with μUP

(m) �= 0 in R, generates Im(ΘP
M,R) over R.

If R is p-torsionfree, then it is an R-basis.

Proof. Notice that νM (m) = 1 whenever m ∈ M . Moreover, we have μUP
(g) ≥

μUP
(gM ), for all g ∈ P , by Proposition 3.4. The assertion now follows from Propo-

sition 4.3. �

Corollary 4.5. The algebra HR(ΓM ,M+) is contained in Im(ΘP
M ) with equality

whenever qR = 0.

Proof. Since ΓM normalizes ΓUP
= IUP

, we have ΓM ⊆ M+ and HR(ΓM ,M+) is
defined. Keeping in mind that μUP

takes values in qZ≥0 , the assertion follows from
Corollary 4.4. �
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4.2.3. The morphism ΞP
G. Lacking a good reference, we formulate Vignéras’ “fun-

damental lemma”, a proof of which appears in [Vig05, Lemma 13] (or [Vig06, 1.2])
for F -split G, and which for general G is known to the experts.

Lemma 4.6 (Fundamental Lemma). Let v, w ∈ W (1). Then

qv,w · T−1
v Tvw − Tw ∈

⊕
w′<w

Z.Tw′ in HZ(G),

where < denotes the Bruhat order in W (1).

Proof. Let o be the orientation of (A ,H) (cf. [Vig16, 5.2]) which places C in the
negative half-space of each hyperplane H ∈ H. Then Eo(w) = Tw in the notation
of [Vig16, Definition 5.22]. Computing inside HZ[p−1](G), we have

qv,wT
−1
v Tvw = qv,wEo(v)

−1Eo(vw) = Eo•v(w) ∈ HZ(G),

by [Vig16, Theorem 5.25], and the assertion follows from [Vig16, Corollary 5.26]. �

Proposition 4.7. Assume that R is p-torsionfree. Then ξ+ : HR(M
+) → HR(G)

(see Proposition 4.1) extends uniquely to an injective R-algebra morphism

ξ̃+ : Im(ΘP
M ) −→ HR(G),

and Im(ΘP
M ) is the maximal subalgebra of HR(M) with this property.

Definition. For arbitrary R we obtain an R-algebra morphism

ΞP
G := ΞP

G,R := idR ⊗
(
ξ̃+ ◦ΘP

M,Z

)
: HR(P ) −→ HR(G).

Proof of Proposition 4.7. We view HR(M) (resp. HR(G)) as a subalgebra of
HR[p−1](M) (resp. HR[p−1](G)), which is possible by our assumption on R. Let

a ∈ M+ be a strictly positive element. Then Ta is invertible in HR[p−1](G) by

[Vig16, Proposition 4.13 1)]. By Proposition 4.2 the map ξ+ extends uniquely to
an R[p−1]-algebra morphism

ξ̃+ : HR[p−1](M) −→ HR[p−1](G).

Explicitly, it is given as follows: let m ∈ M , and choose n ∈ Z>0 such that anm is
M -positive. Then

(33) ξ̃+
(
TM
m

)
= T−n

a · ξ+
(
TM
anm

)
= T−n

a Tanm.

It suffices to prove the following:

Claim. The preimage of HR(G) under ξ̃+ coincides with Im(ΘP
M ).

The claim implies the assertion of the proposition: given any extension ξ′ : A →
HR(G) of ξ+ : HR(M

+) → HR(G), we have ξ′ = ξ̃+
∣∣
A by the uniqueness of ξ̃+,

and then A ⊆ Im(ΘP
M ) by the claim.

We now prove the claim. By Corollary 4.4 the family (μUP
(w)TM

w )w∈WM (1) is

an R-basis of Im(ΘP
M ). As a is strictly positive, so is the element λ := aZ1 ∈ Λ(1).

Given any w ∈ WM (1), there exists n ∈ Z>0 such that enλw ∈ WM+(1). Now,
Corollary 3.15 shows

qnλ,w =
μUP

(nλ)μUP
(w)

μUP
(enλw)

· qM,nλ,w = μUP
(w).
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The second equality uses qM,nλ · qM,w = qM,enλw, that means, qM,nλ,w = 1, which
holds because a lies in the center of M . By Lemma 4.6 we have

ξ̃+
(
μUP

(w)TM
w

)
= μUP

(w) · T−n
λ Tenλw = qnλ,w · T−1

nλ · Tenλw

= Tw +
∑
w′<w

cw′Tw′ ∈ HR(G),(34)

for certain cw′ ∈ Z, viewed as elements of R. This shows that ξ̃+ is injective and

that Im(ΘP
M ) is contained in (ξ̃+)−1(HR(G)).

Conversely, let T =
∑k

i=1 xi · TM
wi

∈ HR[p−1](M) with xi ∈ R[p−1] � {0} and

ξ̃+(T ) ∈ HR(G). We prove T ∈ Im(ΘP
M ) by induction on k. The case k = 0 is

trivial. Assume k > 0. Rearranging if necessary, we may assume that wk ∈ WM (1)
is maximal among {w1, . . . , wk} with respect to the Bruhat order in W (1). Let

n ∈ Z>0 with enλwi ∈ WM+(1) for all i. Then TM
nλ · T =

∑k
i=1 xi · TM

enλwi
lies in

HR[p−1](M
+), and hence

ξ̃+(T ) =
k∑

i=1

xi · T−1
nλ Tenλwi

=
k∑

i=1

xiq
−1
nλ,wi

·
(
Twi

+
∑

w′
i<wi

cw′
i
Tw′

i

)
∈ HR(G).

Again, we have qnλ,wi
= μUP

(wi). Hence, maximality of wk implies xk∈R.μUP
(wk),

whence xkTwk
∈ Im(ΘP

M ). By the induction hypothesis we have T − xkT
M
wk

∈
Im(ΘP

M ). We conclude T ∈ Im(ΘP
M ), finishing the proof. �

We note the following useful consequence of the proof of Proposition 4.7.

Corollary 4.8. Let a ∈ M be strictly positive and g ∈ P arbitrary. Then

Tan · ΞP
G(T

P
g ) = νM (g)μUP

(g) · TangM , in HR(G)

whenever n ∈ Z>0 is such that angM ∈ M+.

Proof. The assertion follows by extension of scalars from the case R = Z. Thus, it
suffices to prove

Tan · ξ̃+
(
ΘP

M,Z(T
P
g )
)
= νM (g)μUP

(g) · TangM , in HZ(G),

where the computation takes place in HZ[p−1](G). But this is clear from (33) and

the fact that ΘP
M,Z(T

P
g ) = νM (g)μUP

(g) · TM
gM . �

4.2.4. Equivalence of parabolic inductions. Having constructed two morphisms
ΘP

M : HR(P ) → HR(M) and ΞP
G : HR(P ) → HR(G), we obtain a functor

(35) Mod -HR(M) −→ Mod -HR(G), m �−→ m⊗HR(P ) HR(G)

from the category of right HR(M)-modules to the category of right HR(G)-modules
by viewing m via ΘP

M as a right HR(P )-module and then extending scalars along
ΞP
G. There is also the parabolic induction, due to [OV18, (4.2)],

(36) Mod -HR(M) −→ Mod -HR(G), m �−→ m⊗HR(M+) HR(G),

given by viewing m as a right HR(M
+)-module and extending scalars along the

R-algebra morphism ξ+ : HR(M
+) → HR(G) (Proposition 4.1). Theorem 4.9 is an

easy consequence of the construction of ΞP
G.

Theorem 4.9. The functors (35) and (36) are canonically isomorphic.
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Proof. Let n be a right HR(G)-module and let

ρ : m×HR(G) −→ n

be an R-bilinear map satisfying ρ(m,TT ′) = ρ(m,T )T ′ for all m ∈ m and T, T ′ ∈
HR(G). The assertion of the theorem is then tantamount with the equivalence of
the following two properties:

(i) ρ(mTM , T ) = ρ
(
m, ξ+(TM )T

)
for all m ∈ m, TM ∈ HR(M

+), and T ∈
HR(G).

(ii) ρ
(
mΘP

M (TP ), T
)
= ρ

(
m,ΞP

G(T
P )T

)
for all m ∈ m, TP ∈ HR(P ), and

T ∈ HR(G).

Given m ∈ M+, we have ΘP
M (TP

m) = TM
m and ΞP

G(T
P
m) = ξ+(TM

m ). Thus, (ii)
implies (i).

Conversely, assume (i) and fix a strictly positive element a ∈ M . Let g ∈ P and
choose n ∈ Z>0 such that angM ∈ M+. Then

ρ
(
m ·ΘP

M (TP
g ), T

)
= ρ
(
m · νM (g)μUP

(g) · TM
gM , T

)
= ρ
(
m · (TM

an )−1 · νM (g)μUP
(g)TM

angM
, T
)

= ρ
(
m · (TM

an )−1, νM (g)μUP
(g)TangM · T

)
(by (i))

= ρ
(
m · (TM

an )−1, Tan · ΞP
G(T

P
g ) · T

)
(by Corollary 4.8)

= ρ
(
m,ΞP

G(T
P
g ) · T

)
(by (i))

keeping in mind ξ+(TM
m ) = Tm, for all m ∈ M+. Hence, (i) implies (ii). �

5. Transitivity of parabolic induction

We observe that only a proper quotient of the parabolic pro-p Iwahori–Hecke
algebra HR(P ) affects the parabolic induction functor: both morphisms ΘP

M and
ΞP
G factor through

R ⊗ Im(ΘP
M,Z).

This suggests to study this algebra.

5.1. Definitions and compatibilities.

Definition. We put HR(M,G) := R⊗ Im(ΘP
M,Z). Given w ∈ WM (1), we define

τM,G
w := 1⊗ μUP

(w)TM
w ∈ HR(M,G).

From Corollary 4.4 it follows that
(
τM,G
w

)
w∈WM (1)

is an R-basis of HR(M,G).

Finally, write

θM,G
M : HR(M,G) −→ HR(M), and

ξGG,M : HR(M,G) −→ HR(G)

for the maps induced by ΘP
M and ΞP

G, respectively.

Remark. (a) Although not explicit in the notation, the algebra HR(M,G) de-
pends on P. However, in our context M and P determine each other so
that no confusion will arise.

(b) Notice that HR(G,G) = HR(G).
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(c) The computation (34) actually shows

(37) ξGG,M

(
τM,G
w

)
= Tw +

∑
w′<w

cw′Tw′ ∈ HR(G),

for all w ∈ WM (1). In particular, ξGG,M is injective.

Lemma 5.1. Let v, w ∈ WM (1) with qv,w = 1. Then τM,G
v · τM,G

w = τM,G
vw .

Proof. We may assume R = Z. Corollary 3.15 shows μUP
(v) · μUP

(w) = μUP
(vw)

and qM,v,w = 1. Hence, τM,G
v · τM,G

w = μUP
(v)μUP

(w) · TM
v TM

w = μUP
(vw) · TM

vw =
τM,G
vw . �

5.1.1. The morphisms θL,G
M .

Lemma 5.2. Let M ⊆ L be Levi subgroups in G. The map

θL,G
M : HR(M,G) −→ HR(M,L), τM,G

w �−→ μUPL
(w) · τM,L

w

is a morphism of R-algebras. Given another Levi subgroup L′ containing L, the
diagram

HR(M,G) HR(M,L′)

HR(M,L)

θL′,G
M

θL,G
M

θL,L′
M

commutes, i.e., θL,G
M = θL,L′

M ◦ θL
′,G

M .

Proof. We may assume R = Z. By Proposition 3.12 we compute

τM,G
w = μUP

(w)TM
w = μUPL

(w) · μUP∩L(w)T
M
w = μUPL

(w) · τM,L
w ,

for all w ∈ WM (1). Hence, θL,G
M is the inclusion map and, in particular, a morphism

of Z-algebras. If L′ is another Levi subgroup containing L, then(
θL,L′

M ◦ θL
′,G

M

)(
τM,G
w

)
= θL,L′

M

(
μUP

L′
(w)τM,L′

w

)
= μUP

L′
(w)μUPL

∩L′(w) · τM,L
w

= μUPL
(w) · τM,L

w = θL,G
M

(
τM,G
w

)
,

for all w ∈ WM (1), again by Proposition 3.12. �
Proposition 5.3. Let M ⊆ L be Levi subgroups in G. Let λ ∈ Λ(1) be a strictly
L-positive element. Then

HR(M,L) ∼= HR(M,G)
[
(τM,G

λ )−1
]

and θL,G
M : HR(M,G) → HR(M,L) is the localization morphism.

Proof. Notice that τM,G
λ lies in the center of HR(M,G), since λ is lifted by a central

element in L (and hence in M). Also θL,G
M (τM,G

nλ ) = τM,L
nλ is central and invertible

in HR(M,L) for each n ∈ Z>0. Hence, θL,G
M induces a well-defined R-algebra

morphism

θ̃L,G
M : HR(M,G)

[
(τM,G

λ )−1
]
−→ HR(M,L).

It suffices to construct an R-linear inverse. Let w ∈ WM (1). Choose n ∈ Z>0 such
that enλw ∈ WL+(1). As nλ is lifted by a central element of L, we have qL,nλ,w = 1.
Hence, Lemma 5.1 shows

(38) τM,L
w = τM,L

−nλ · τM,L
nλ · τM,L

w = τM,L
−nλ · τM,L

enλw
= τM,L

−nλ · θL,G
M

(
τM,G
enλw

)
.
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Hence, we obtain an R-linear map

γ : HR(M,L) −→ HR(M,G)
[
(τM,G

λ )−1
]
, τM,L

w �−→
τM,G
enλw

τM,G
nλ

,

which does not depend on the choice of n. By (38) we have θ̃L,G
M ◦ γ = idHR(M,L).

Conversely, let w ∈ WM (1) and n ∈ Z>0. Take m ∈ Z>0 with emλw ∈ WL+(1).
As mλ is lifted by a central element in L, we have μUP∩L(e

mλw) = μUP∩L(w).
Applying Proposition 3.12 twice, we compute

μUPL
(w) · μUP

(emλw) = μUPL
(w) · μUP∩L(e

mλw) · μUPL
(emλw)

= μUPL
(w) · μUP∩L(w) = μUP

(w).

This shows τM,G
mλ · τM,G

w = μUPL
(w) · τM,G

emλw
. Now,

(γ ◦ θ̃L,G
M )

(
τM,G
w

τM,G
nλ

)
= γ
(
τM,L
−nλ · θL,G

M (τM,G
w )

)
= μUPL

(w) · γ
(
τM,L
−nλ · τM,L

w

)
= μUPL

(w) · γ
(
τM,L
e−nλw

)
=

μUPL
(w) · τM,G

emλw

τM,G
(n+m)λ

=
τM,G
mλ · τM,G

w

τM,G
mλ · τM,G

nλ

=
τM,G
w

τM,G
nλ

.

Hence, γ ◦ θ̃L,G
M = idHR(M,G)[(τM,G

λ )−1] finishing the proof. �

5.1.2. The morphisms ξGL,M .

Lemma 5.4. Let M ⊆ L be Levi subgroups in G. There exists a unique R-algebra
morphism

ξGL,M : HR(M,G) −→ HR(L,G)

which is natural in R and satisfies the following property: for all Levi subgroups
M ⊆ L ⊆ L′ in G, the diagram

(39)

HR(M,G) HR(L,G)

HR(M,L′) HR(L,L
′)

ξGL,M

θL′,G
M θL′,G

L

ξL
′

L,M

commutes, i.e., θL
′,G

L ◦ ξGL,M = ξL
′

L,M ◦ θL
′,G

M . Moreover, ξGL,M is injective.

Proof. We first construct a unique morphism ξGL,M , natural in R, making the dia-
gram

(40)

HR(M,G) HR(L,G)

HR(M,L) HR(L)

θL,G
M

ξGL,M

θL,G
L

ξLL,M

commutative. Afterwards, we check injectivity and that (39) commutes.
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Step 1. We prove unique existence provided R is p-torsionfree. In this case, θL,G
M

and θL,G
L are the canonical inclusions, hence uniqueness is clear. We have to show

that ξLL,M maps HR(M,G) into HR(L,G). Let w ∈ WM (1). Recall that by (37)
we have

ξLL,M

(
τM,L
w

)
= TL

w +
∑

w′<Lw

cw′TL
w′ in HR(L),

where <L denotes the Bruhat order in WL(1). By Proposition 3.14.(b) we have
μUPL

(w′) ≤ μUPL
(w) for all w′ ∈ WL(1) with w′ <L w. We deduce that

ξLL,M

(
τM,G
w

)
= μUPL

(w) · ξLL,M

(
τM,L
w

)
= μUPL

(w)TL
w +

∑
w′<Lw

cw′μUPL
(w)TL

w′

= τL,G
w +

∑
w′<Lw

c′w′τ
L,G
w′

lies in HR(L,G). This proves existence of an embedding ξGL,M : HR(M,G) →
HR(L,G) making (40) commutative.

Step 2. We prove unique existence for general R. Existence follows from Step 1 by
extension of scalars from Z to R. (If R is p-torsionfree this construction coincides
with the one in Step 1 by the uniqueness assertion.) We have to prove uniqueness
for general R. Take a surjection f : R′ � R for some p-torsionfree ring R′ (e.g., the
large polynomial ring Z[Xr | r ∈ R]). By naturality of the diagram

HR′(M,G) HR′(L,G)

HR(M,G) HR(L,G)

f⊗id

ξGL,M

f⊗id

ξGL,M

it follows that ξGL,M is uniquely determined by the naturality requirement.

Step 3. Injectivity of ξGL,M . By construction we have

ξGL,M

(
τM,G
w

)
= τL,G

w +
∑

w′<Lw

c′w′τ
L,G
w′ , for all w ∈ WM (1),

for certain c′w′ ∈ R. In particular, ξGL,M is injective.

Step 4. Commutativity of (39). By naturality we may assume R = Z. The outer
and lower square in

HZ(M,G) HZ(L,G)

HZ(M,L′) HZ(L,L
′)

HZ(M,L) HZ(L)

θL,G
M

θL′,G
M

ξGL,M

θL′,G
L

θL,G
L

θL,L′
M

ξL
′

L,M

θL,L′
L

ξLL,M

commute by construction. By Lemma 5.2, and since θL,L′

L is injective, the upper
square commutes.

�
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Lemma 5.5. Let M ⊆ L ⊆ L′ be Levi subgroups in G. Then the diagram

HR(M,G) HR(L,G)

HR(L
′, G)

ξGL,M

ξG
L′,M

ξG
L′,L

commutes, i.e., ξGL′,M = ξGL′,L ◦ ξGL,M .

Proof. By naturality it suffices to prove the assertion for R = Z. By naturality,
and since HZ(M

′, G) ⊆ HZ[p−1](M
′, G) = HZ[p−1](M

′) for all Levi subgroups M′

in G, we may even assume R = Z[p−1]. Hence, we need to prove commutativity of

HZ[p−1](M) HZ[p−1](L)

HZ[p−1](L
′).

ξLL,M

ξL
′

L′,M

ξL
′

L′,L

(Notice that ξGL,M = ξLL,M for all Levi subgroups M ⊆ L in G whenever p is

invertible, because then θL,G
M and θL,G

L are the identity morphisms in (40).)
Let w ∈ WM (1) and take a strictly M -positive element λ ∈ Λ(1). Let n ∈ Z>0

with enλw ∈ WM+(1). Then both nλ and enλw are M+,L-, M+,L′
-, and L+,L′

-
positive. Hence,

ξLL,M (TM
w ) = (TL

nλ)
−1 · TL

enλw, ξL
′

L′,M (TM
w ) = (TL′

nλ)
−1 · TL′

enλw,

ξL
′

L′,L(T
L
nλ) = TL′

nλ, ξL
′

L′,L(T
L
enλw) = TL′

enλw.

Therefore, we compute(
ξL

′

L′,L ◦ ξLL,M

)(
TM
w

)
= ξL

′

L′,L

(
(TL

nλ)
−1 · TL

enλw

)
= (TL′

nλ)
−1 · TL′

enλw = ξL
′

L′,M (TM
w ). �

5.2. Transitivity of parabolic induction.

Proposition 5.6. Let M ⊆ L ⊆ L′ be Levi subgroups in G. The canonical map

HR(M,L′)⊗HR(M,G) HR(L,G) −→ HR(L,L
′),(41)

x⊗ y �−→ ξL
′

L,M (x) · θL
′,G

L (y)

is an isomorphism of HR(M,L′)-HR(L,G)-bimodules.1

Proof. The map is well-defined, since (39) commutes, and preserves the bimod-
ule structure by definition. Let λ ∈ Λ(1) be a strictly L′-positive element. By
Proposition 5.3 the map (41) identifies with the canonical map

HR(M,G)
[
(τM,G

λ )−1
]
⊗HR(M,G) HR(L,G) −→ HR(L,G)

[
(τL,G

λ )−1
]
,

which is clearly an R-linear isomorphism. �

1The maps HR(M,G) → HR(M,L′) and HR(M,G) → HR(L,G) are the obvious ones, namely

θL
′,G

M and ξGL,M , respectively. Likewise, the bimodule structure is the obvious one.



PRO-p IWAHORI–HECKE ALGEBRA 841

Theorem 5.7. Let L ⊆ L′ and M ⊆ M′ ⊆ M′′ be Levi subgroups in G with
M ⊆ L and M′ ⊆ L′. Then the canonical map

HR(M,L) ⊗
HR(M,G)

HR(M
′′, G) −→ HR(M,L) ⊗

HR(M,L′)
HR(M

′, L′) ⊗
HR(M ′,G)

HR(M
′′, G),

x⊗ y �−→ x⊗ 1⊗ y

is an isomorphism of HR(M,L)-HR(M
′′, G)-bimodules.

Proof. There are natural isomorphisms

HR(M,L) ⊗
HR(M,G)

HR(M
′′, G)

∼= HR(M,L) ⊗
HR(M,L′)

HR(M,L′) ⊗
HR(M,G)

HR(M
′, G) ⊗

HR(M ′,G)
HR(M

′′, G)

∼= HR(M,L) ⊗
HR(M,L′)

HR(M
′, L′) ⊗

HR(M ′,G)
HR(M

′′, G),

the second isomorphism being given by Proposition 5.6. The composite sends x⊗
y �→ x⊗ 1⊗ y. �

As an application we give another proof of the transitivity of parabolic induction,
which is originally due to Vignéras [Vig15, Proposition 4.3].

Corollary 5.8. Let M ⊆ L be Levi subgroups in G. Let m be a right HR(M)-
module. Then there is a natural isomorphism of right HR(G)-modules

m⊗HR(M+,L) HR(L)⊗HR(L+) HR(G) ∼= m⊗HR(M+) HR(G).

Proof. Since there is a natural right HR(G)-linear isomorphism

m⊗HR(M+) HR(G) ∼= m⊗HR(M) HR(M)⊗HR(M+) HR(G)

(and similarly with (M+, G) replaced by (M+,L, L)), we are reduced to proving
the assertion for m = HR(M). Now, by Theorems 4.9 and 5.7 there are HR(M)-
HR(G)-bimodule isomorphisms

HR(M)⊗HR(M+) HR(G) ∼= HR(M)⊗HR(M,G) HR(G)

∼= HR(M)⊗HR(M,L) HR(L)⊗HR(L,G) HR(G)

∼= HR(M)⊗HR(M+,L) HR(L)⊗HR(L+) HR(G). �

5.3. Alcove walk bases and a filtration. We finish by describing a natural Z≥0-
filtration on the R-algebra HR(M,G) coming from μUP

: WM (1) → Z≥0. To do this
we need to describe alcove walk bases for HR(M,G).

Definition. Let o be an orientation of (AM ,HM ) [Vig16, 5.2]. Let (Eo(w))w∈WM (1)

be the associated alcove walk basis in HZ(M) [Vig16, Definition 5.22]. We define

EM,G
o (w) := 1⊗ μUP

(w) · Eo(w) ∈ HR(M,G), for all w ∈ WM (1).

Remark. The element EM,G
o (w) is indeed well-defined: since Eo(w) = TM

w +∑
w′<Mw cw′TM

w′ , for certain cw′ ∈ Z, [Vig16, Corollary 5.26] and by Proposi-

tion 3.14.(b), we even have

(42) EM,G
o (w) = τM,G

w +
∑

w′<Mw

c′w′ · τM,G
w′ ∈ HR(M,G),

where c′w′ is the image of
μUP

(w)

μUP
(w′) ·cw′ in R. Hence, (EM,G

o (w))w∈WM (1) is an R-basis

of HR(M,G).
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Lemma 5.9. Let o be an orientation of (AM ,HM ). Let v, w ∈ WM (1). Then

EM,G
o (v) · EM,G

o•v (w) = qv,w · EM,G
o (vw).

Proof. We may assume R = Z. Then Eo(v) ·Eo•v(w) = qM,v,w ·Eo(vw) by [Vig16,
Theorem 5.25]. Corollary 3.15 shows

EM,G
o (v) · EM,G

o•v (w) =
μUP

(v)μUP
(w)

μUP
(vw)

· qM,v,wE
M,G
o (vw) = qv,w · EM,G

o (vw). �

Definition. A Z≥0-filtration of an R-algebra A is a family (FiA)i∈Z≥0
of R-

submodules satisfying

− FiA ⊆ Fi+1A for all i ≥ 0;
− FiA · FjA ⊆ Fi+jA for all i, j ≥ 0;
− 1 ∈ F0A;
− A = ∪i≥0FiA.

Proposition 5.10. The free R-submodules FM,G
n of HR(M,G) generated by

{τM,G
w } w∈WM (1),

μUP
(w)≤qn

define a Z≥0-filtration on HR(M,G).

Moreover, FM,G
0

∼= HR(M
+) via θM,G

M .

Proof. The only thing that is not immediately clear is FM,G
i · FM,G

j ⊆ FM,G
i+j , for

i, j ≥ 0. Given any orientation o of (AM ,HM ), the set
{
EM,G

o (w)
}

w∈WM (1)
μUP

(w)≤qn
is an

R-basis of FM,G
n by (42) and Proposition 3.14.(b). Hence, the claim follows from

Lemma 5.9 and Corollary 3.15. �
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[Vig96] Marie-France Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec
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