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UNIPOTENT REPRESENTATIONS ATTACHED

TO THE PRINCIPAL NILPOTENT ORBIT

LUCAS MASON-BROWN

Abstract. In this paper, we construct and classify the special unipotent rep-
resentations of a real reductive group attached to the principal nilpotent orbit.
We give formulas for the K-types, associated varieties, and Langlands param-
eters of all such representations.

1. Introduction

Let G be the real points of a connected reductive algebraic group. In [1], Adams,
Barbasch, and Vogan, following ideas of Arthur ([6],[7]), defined a finite set of
irreducible representations of G, called special unipotent representations. These
representations are conjectured to possess an array of interesting properties (see
[1, Chp 1]), including:

(1) They are conjectured to be unitary.
(2) They are conjectured to appear in spaces of automorphic forms.
(3) They are conjectured to generate (through various types of induction) all

irreducible unitary representations of G of integral infinitesimal character.

These representations are naturally indexed by special nilpotent orbits for the com-
plexification of G. For example, the trivial representation of G is a unipotent repre-
sentation attached to the nilpotent orbit {0}. If G is quasi-split, then the spherical

principal series representation IndGB C is a unipotent representation attached to the
principal nilpotent orbit (there are no other easy examples).

There is no known classification of special unipotent representations. However,
properties (1)–(3) above suggest that obtaining one may be an essential ingredient
in the classification of the irreducible unitary representations of G. In this paper, we
will classify the special unipotent representations attached to the principal nilpotent
orbit. In fact, we will give two different constructions of such representations:

(1) from (certain) characters of (certain) Borel subgroups using the Beilinson-
Bernstein construction.

(2) from (approximately) spherical principal series representations of θ-stable
parabolic subalgebras using cohomological induction.

The precise statement is given in Corollary 3.6.5. Each construction has its advan-
tages. Construction (1) leads to a simple description of the Langlands parameters
of principal unipotent representations (this is done in Section 4). Construction
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(2) leads to simple formulas for the associated varieties and K-multiplicities of the
representations in question (this is done in Section 3.7).

2. Preliminaries

Choose a maximal compact subgroup K ⊂ G and let θ be the corresponding
Cartan involution of G. Denote the (real) Lie algebras of K and G by k0 and g0,
respectively. There is a Cartan decomposition

g0 = k0 ⊕ p0.

Denote the complexifications of K and G by K and G, respectively. Denote the
complexifications of k0, g0, and p0 by suppressing the subscripts. Let σ be the real
form of G corresponding to G. If h ⊂ g is a Cartan subalgebra and o is an h-
module, write Δ(o, h) for the multi-set of h-weights on o. If o is finite-dimensional,
let ρ(o) := 1

2

∑
Δ(o, h) ∈ h∗.

2.1. Special unipotent representations. Let G∨ be the Langlands dual of G.
Let Ng ⊂ g and Ng∨ ⊂ g∨ be the (complex) nilpotent cones. The nilpotent orbits
for G and G∨ are related by Barbasch-Vogan duality (see [8]). This is a map

d : {nilpotent orbits O∨ ⊂ Ng∨} → {nilpotent orbits O ⊂ Ng}.

A nilpotent orbit O ⊂ Ng is special if it lies in the image of d.
Every nilpotent G∨-orbit O∨ ⊂ Ng∨ gives rise to an infinitesimal character λO∨

for U(g) as follows. Let h ⊂ g be a Cartan subalgebra and let h∨ ⊂ g∨. There is
a natural identification h∨ � h∗. Choose an element e∨ ∈ O∨ and an sl(2)-triple
(e∨, f∨, h∨). Conjugating by G∨ if necessary, we can arrange so that h∨ ∈ h∨ � h∗.
Put

λO∨ :=
1

2
h∨ ∈ h

∨ � h
∗.

This element is well-defined modulo the action of the Weyl group and therefore
defines an infinitesimal character for U(g) by means of the Harish-Chandra isomor-
phism.

Definition 2.1.1. Suppose O ⊂ Ng is a special nilpotent G-orbit. A unipotent
infinitesimal character attached to O is one of the form λO∨ for d(O∨) = O. Denote

the set of all such λO∨ by UnipZO(G).

If I ⊂ U(g) is a two-sided ideal, let AV(I) ⊂ g∗ denote the associated variety
of I. For notational convenience, we will regard AV(I) as a subset of g (using, for
example, any G-invariant identification g � g∗). If I is primitive, then AV(I) is
the closure of a single nilpotent orbit O ⊂ Ng (see [12, Thm 3.10]).

Definition 2.1.2. Suppose O ⊂ Ng is a special nilpotent G-orbit. A unipotent
ideal attached to O is a primitive ideal I ⊂ U(g) such that

(i) The infinitesimal character of I belongs to UnipZO(G).
(ii) AV(I) = O.

Denote the set of such ideals by UnipIO(G). A unipotent representation attached to

O is an irreducible (g,K)-module X such that AnnU(g)(X) ∈ UnipIO(G). Denote

the set of (isomorphism classes of) such representations by UnipRO(G).
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If O ⊂ Ng is the principal nilpotent orbit, then d−1(O) consists of a single nilpo-

tent G∨-orbit, {0}, and so UnipOZ (G) = {0}. Hence, a unipotent ideal attached to
O is a primitive ideal I ⊂ U(g) of infinitesimal character 0 and AV(I) = N . A prin-
cipal unipotent representation is an irreducible (g,K)-module which is annihilated
by such an ideal.

2.2. Parabolic induction. Let M(g,K) be the abelian category of finite-length
Harish-Chandra modules and let K(g,K) be its Grothendieck group. If λ ∈ h∗,
write Mλ(g,K) ⊂ M(g,K) (resp. Kλ(g,K) ⊂ K(g,K)) for the subcategory (resp.
subgroup) of infinitesimal character λ. Let Ng,θ = Ng ∩ p. If X ∈ M(g,K), let
AV(X) ⊂ Ng,θ denote the associated variety of X. By [19, Thm 8.4], there is an
equality

AV(Ann(X)) = GAV(X).

Our notation for parabolic induction is as follows. Let q ⊂ g be a parabolic subal-
gebra with Levi decomposition q = l⊕ u (always, we will assume that l is θ-stable).
Write Q and L for the connected subgroups corresponding to q and l, respectively.
Parabolic induction is a left-exact functor (see [13, Chp 2])

(2.2.1) I
(g,K)
(l,L∩K) : M(l,L ∩K) → M(g,K).

This functor induces a homomorphism on the corresponding Grothendieck groups
(2.2.2)

I(l, q, ·) : K(l,L ∩K) → K(g,K) I(l, q, [W ]) :=
∑
i

(−1)i[RiI
(g,K)
(l,L∩K)W ].

If W ∈ M(l,L ∩ K) has infinitesimal character λ ∈ h∗, then RiI
(g,K)
(l,L∩K)W has

infinitesimal character λ + ρ(u), for every i ≥ 0. Thus, I(l, q, ·) restricts to a
homomorphism

I(l, q, ·) : Kλ(l,L ∩K) → Kλ+ρ(u)(g,K).

We will give particular attention to two special cases.
Real parabolic induction: Assume q is σ-stable. Then Q := Qσ is a real par-

abolic subgroup. If W is the Harish-Chandra module of a representation V of L,
then

I
(g,K)
(l,L∩K)W � Harish-Chandra module of IndGQ (V ⊗ |ρ(u)|) ,

where IndGQ is the usual (analytically-defined) functor of parabolic induction (see

[13, Sec 11.2] for a more detailed statement and proof). In particular, I
(g,K)
l,L∩K) is

exact and takes nonzero (l,L ∩K)-modules to nonzero (g,K)-modules.
Cohomological induction: Assume q is θ-stable and suppose W is an irreducible

(l,L ∩K)-module in the weakly good range. This means W has infinitesimal char-
acter λ ∈ h∗ for λ satisfying

(2.2.3) Re〈λ+ ρ(u), α∨〉 ≥ 0 ∀α ∈ Δ(u, h)

Then there is an integer t ∈ Z≥0 (depending only on q) such that

(2.2.4) RiI
(g,K)
(l,L∩K)W =

{
irreducible or 0 i = t

0 i 
= t
.

See [13, Thm 0.50] for a proof. If RtI
(g,K)
(l,L∩K)W 
= 0, then

(2.2.5) AV(RtI
(g,K)
(l,L∩K)W ) = K(u ∩ p+AV(W )) ⊆ Ng,θ.
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This final fact is well-known to the experts. The proof is a standard argument
involving characteristic varieties of D-modules on the flag variety (see e.g. [17, Prop
5.4]).

3. Classification of principal unipotent representations

3.1. Beilinson-Bernstein parameters.

Definition 3.1.1. A Beilinson-Bernstein parameter for G of infinitesimal character
0 is a K-conjugacy class of triples (h, b, χ) consisting of

(i) a θ-stable Cartan subalgebra h = t⊕ a ⊂ g,
(ii) a Borel subalgebra b = h⊕ n ⊂ g, and
(iii) a one-dimensional (h,T)-module χ such that dχ+ ρ(n) = 0.

Denote the K-conjugacy class of (h, b, χ) by [h, b, χ] and denote the set of such
classes by BB0(G).

Remark 3.1.2. It is well-known that BB0(G) is finite; see e.g. [21, Thms 1,2].

Fix a parameter [h, b, χ] ∈ BB0(G). Replacing h by a K-conjugate if necessary,
we can (and will) arrange so that h is σ-stable. Thus, H := ZG(h) ⊂ G is a
Cartan subgroup and (h,T)-modules are in bijection with continuous characters of
H. Suppose α ∈ Δ(g, h) is a real root. Let {E,F,D} denote the standard basis of
sl2(C) (with D semisimple), and fix a Lie algebra embedding φα : sl2(R) → g0 such
that

(3.1.3) φα(E) ∈ gα φα(F ) = −θ(φα(E)) φα(D) = α∨.

Since G is algebraic, this embedding integrates to a Lie group homomorphism

Φα : SL2(R) → G.

Define the element

mα := Φα

(
−1 0
0 −1

)
∈ T.

Note that mα is independent of φα and m2
α = 1. Thus, χ(mα) = ±1. We say

that α is even or odd accordingly. We will impose various special conditions on
Beilinson-Bernstein parameters.

Definition 3.1.4. Let [h, b, χ] ∈ BB0(G). We say that [h, b, χ] is

(i) large if every imaginary simple root is noncompact.
(ii) small if every imaginary simple root is compact.
(iii) type Z if for every complex simple root α

θ(α) ∈ Δ+(g, h).

(iv) type L if for every complex simple root α

θ(α) ∈ −Δ+(g, h).

(v) totally even if every simple real root α is even for χ.

Given a parameter [h, b, χ] ∈ BB0(G), there are two naturally defined standard
parabolic subalgebras qZ , qL ⊆ g. The first, qZ , is the standard parabolic corre-
sponding to the positive real roots

(3.1.5) lZ := h⊕
⊕
α∈ΔR

gα uZ :=
⊕

α∈Δ+\ΔR

gα qZ := l⊕ u.
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The second, qL, corresponds to the positive imaginary roots

(3.1.6) lL := h⊕
⊕

α∈ΔiR

gα uL :=
⊕

α∈Δ+\ΔiR

gα qL := l⊕ u.

The following is elementary. The proof is left to the reader.

Proposition 3.1.7. In the setting described above

(i) qZ is θ-stable if and only if Δ+(g, h) is type Z.
(ii) qL is σ-stable (i.e. real) if and only if Δ+(g, h) is type L.

Definition 3.1.8. A principal unipotent parameter is a Beilinson-Bernstein pa-
rameter [h, b, χ] ∈ BB0(G) which is

(i) large (cf. Definition 3.1.4(i)),
(ii) type Z (cf. Definition 3.1.4(iii)), and
(iii) totally even (cf. Definition 3.1.4(v)).

Denote the set of such parameters by BB∗
0(G).

3.2. Cayley transforms. Fix a parameter [h, b, χ] ∈ BB0(G) and an odd real root
α ∈ Δ(g, h). Following [20], we will define two new parametrs c±α [h, b, χ] ∈ BB0(G)
called the Cayley transforms of [h, b, χ].

Fix an embedding φα : sl2(R) ↪→ g0 of the form described in (3.1.3). Consider
the ‘compact’ basis of sl2(C)

Ec =
1

2

(
1 −i
−i −1

)
Fc =

1

2

(
1 i
i −1

)
Dc =

(
0 i
−i 0

)
.

Define a θ-stable Cartan subalgebra hα0 of g0

t
α
0 := t0 ⊕ iRφα(Dc) a

α
0 := kerα ∩ a0 h

α
0 := t

α
0 ⊕ a

α
0 .

Let Hα be the corresponding Cartan subgroup of G

Tα := ZK(tα0 ) A := exp(aα0 ) Hα := TαAα.

Write c±α : g → g for the Cayley transforms corresponding to α

c±α := exp(ad(
±iπ

4
φα(E + F ))).

By construction, c±αh = hα.
Define two characters τ±1 of SO2(R) by

(3.2.1) dτ±1

(
0 1
−1 0

)
= ±i.

Since φα is injective kerΦα ⊆ {±1}. Since α is odd, Φα(−1) = mα 
= 1 and hence
Φα is injective. Define characters c±αχ of the product group Φα(SO2(R))× Tα

1 by
the formulas

c±αχ(Φα(g), t) = τ±1(g)χ(t).

The multiplication map

Φα(SO2(R))× Tα
1 → Tα

is surjective with kernel {(1, 1), (mα,mα)} (see [18, Lem 8.3.13]). Since α is odd,

c±αχ(mα,mα) = (−1)2 = 1,
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and therefore both characters c±αχ descend to characters of Tα. We can regard
these characters as one-dimensional (hα,Tα)-modules by

dc±α (t+ a) = dc±α (t) + χ(a) t ∈ t
α, a ∈ a

α ⊂ a.

The Cayley transforms of [h, b, χ] are the parameters

c±α [h, b, χ] := [hα, c±α b, χ
±
αχ] ∈ BB0(G).

We will have reason to consider the following function on BB0(G)

(3.2.2) d : BB0(G) → Z≥0 d[h, b, χ] := dim(b ∩ k).

The following is elementary. Its proof is left to the reader.

Lemma 3.2.3. Let [h, b, χ] ∈ BB0(G) and let α be an odd simple real root. Then

d(c±α [h, b, χ]) = d[h, b, χ] + 1.

3.3. Cross actions. Fix a parameter [h, b, χ] ∈ BB0(G) and a simple root α ∈
Δ+(g, h). Following [20], we will define a new parameter sα[h, b, χ] called the cross
action of [h, b, χ]. Let sα ∈ W be the simple reflection corresponding to α. Let
sαb ⊂ g be the Borel subalgebra corresponding to the positive system

sαΔ
+(g, h) = Δ+(g, h) ∪ {−α} \ {α}.

The cross action of α on [h, b, χ⊗ α] is the parameter

sα[h, b, χ] := [h, sαb, χ⊗ α] ∈ BB0(G).

Analogous to Lemma 3.2.3, we have the following elementary result. Its proof is
left to the reader.

Lemma 3.3.1. Let [h, b, χ] ∈ BB0(G) and let α ∈ Δ+(g, h) be a complex simple
root.

(i) If θ(α) ∈ −Δ+(g, h), then

d(sα[h, b, χ]) = d[h, b, χ] + 1.

(ii) If θ(α) ∈ Δ+(g, h), then

d(sα[h, b, χ]) = d[h, b, χ]− 1.

3.4. Parabolic induction of Beilinson-Bernstein parameters. If (h, b, χ) is
a triple as in Definition 3.1.1, then I(h, b, χ) is a virtual finite-length (g,K)-module
of infinitesimal character 0. The assignment (h, b, χ) �→ I(h, b, χ) is constant on
K-conjugacy classes and thus induces a function

I : BB0(G) → K0(g,K).

This function can be described in a different way using the Beilinson-Bernstein
construction. Below, we will summarize the main ideas and consequences (for more
details and proofs, we refer the reader to [10] or [11, Chp 11]).

Let B = {b ⊂ g} be the flag variety for G. Consider the the sheaf of twisted dif-
ferential operators D−ρ on B corresponding to the functional −ρ ∈ h∗, and consider
the abelian category M(D−ρ,K) of K-equivariant quasi-coherent D−ρ-modules on
B. The irreducible objects in this category are parameterized by BB0(G). The
correspondence is as follows. Fix a parameter [h, b, χ] ∈ BB0(G). The Borel
subalgebra b determines a K-orbit Z = K · b ⊂ B. Denote the locally-closed
embedding by j : Z ⊂ B. On the K-orbit Z, there is a sheaf of TDOs DZ

−ρ ob-
tained by restricting D−ρ along Z ⊂ B, and the one-dimensional (h,T)-module
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χ determines an irreducible object Lχ ∈ M(DZ
−ρ,K). There is a left-exact func-

tor j! : M(DZ
−ρ,K) → M(D−ρ,K) called the exceptional pushforward. The object

j!Lχ ∈ M(D−ρ,K) contains a unique irreducible subobject. This defines a bijection

BB0(G)
∼−→ {irreducibles in M(D−ρ,K)}

[h, b, χ] �→ unique irreducible subobject in j!Lχ.

The G-action on B induces an algebra homomorphism

φ : U(g) → Γ(B,D−ρ).

This map is surjective with kernel equal to the two-sided ideal generated by the
kernel of the infinitesimal character corresponding to 0. If M ∈ M(D−ρ,K), then
Γ(B,M) can be regarded (using φ) as a finite-length (g,K)-module of infinitesimal
character 0. This defines a functor

Γ : M(D−ρ,K) → M0(g,K).

Since 0 ∈ h∗ is integrally dominant, Γ is reasonably well-behaved. The following
result is well-known. A proof can be found in [11, Cor 11.2.6].

Theorem 3.4.1. Γ is an exact functor, and there is a bijection

Γ : {irreducibles M∈M(D−ρ,K) with Γ(M) 
=0} ∼−→ {irreducibles M ∈ M0(g,K)}.

The classes I[h, b, χ] and Γ(B, j!Lχ) are known to (essentially) coincide. The
following is a special case of the Duality Theorem of Hecht, Milicic, Schmid, and
Wolf (see [10, Thm 4.3]).

Theorem 3.4.2. Suppose [h, b, χ] ∈ BB0(G). Then

[Γ(B, j!Lχ)] = ±I[h, b, χ] ∈ K0(g,K).

Corollary 3.4.3. Let [h1, b1, χ1], [h2, b2, χ2] ∈ BB0(G). Suppose I[h1, b1, χ1] and
I[h2, b2, χ2] are nonzero and irreducible, and that

I[h1, b1, χ1] = ±I[h2, b2, χ2].

Then [h1, b1, χ1] = [h2, b2, χ2].

We conclude this section by examining the behavior of the function I : BB0(G) →
K0(g,K) under Cayley transforms and cross actions. The following result is an
immediate consequence of the Transfer Theorem of Knapp and Vogan (see [13, Thm
11.87]).

Theorem 3.4.4. Suppose α ∈ Δ+(g, h) is a complex simple root. Then

I[h, b, χ] = −I(sα[h, b, χ]).

For Cayley transforms, the situation is more subtle. The image of T under α is
a compact subgroup of R×, and hence a subgroup of {±1}.

Definition 3.4.5 ([18], Def 8.3.4). We say that α is type 1 (resp. type 2) if
α(T ) = {1} (resp. α(T ) = {±1}).

We will prove the following result.
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Theorem 3.4.6. Let [h, b, χ] ∈ BB0(G) and let α ∈ Δ+(g, H) be an odd simple
real root. Then

(i) If α is type 1,

I[h, b, χ] = −I(c+α [h, b, χ])− I(c−α [h, b, χ]).

(ii) If α is type 2,

I[h, b, χ] = −I(c+α [h, b, χ]) = −I(c−α [h, b, χ]).

To simplify the notation, let

Gs := SL2(R) Ks := SO2(R) Hs := {
(
t 0
0 t−1

)
} T s := {±Id}.

Let τ±1 be the characters of Ks defined in (3.2.1). Let bs ⊂ gs be the Borel sub-
algebra of upper triangular matrices, and let bsc(±) ⊂ gs be the Borel subalgebras
containing ks. Arrange the signs so that

dτ1 = −ρ(nsc(+)) dτ−1 = −ρ(nsc(−)).

Consider the Levi subgroup Lα := ZG(kerα), and the Borel subalgebras

b
lα := b ∩ lα ⊃ h b

lα
c (±) = c±α b ∩ lα ⊃ cαh.

Since Φα(G
s) centralizes kerα, there is an isogeny

rα : Gs × kerα → Lα rα(g, h) = Φα(g)h

with kernel {(1, 1), (−1,mα)}. Consider the subgroups

Lα := rα(G
s × kerα) ⊆ Lα H := rα(H

s × kerα) ⊆ H

T := rα(T
s × kerα) ⊆ T H

α
:= rα(K

s × kerα) ⊂ Hα.

If α is type 1, then these inclusions are equalities. If α is type 2, then they are
index 2 subgroups (see [18, Lem 8.3.13]). As an easy consequence, we obtain the
following structural fact.

Lemma 3.4.7. If α is type 1, then blαc (±) are non-conjugate under Lα. If α is
type 2, then for any element t ∈ T with α(t) = −1, Ad(t) acts by inversion on
Φα(K

s) and interchanges blαc (±).

Proposition 3.4.8. Let [h, b, χ] ∈ BB0(G) and let α ∈ Δ+(g, H) be an odd real
simple root. Then

(i) If α is type 1, there is an equality in K(lα,Lα ∩K)

I[h, blα , χ] = −I[hα, blαc (+), c+αχ]− I[hα, blαc (−), c−αχ],

and the terms on the right are irreducible.
(ii) If α is type 2, there are equalities in K(lα,Lα ∩K)

I[h, blα , χ] = −I[hα, blαc (+), c+αχ] = −I[hα, blαc (−), c−αχ],

and all terms are irreducible.

Proof. First, assume α is type 1. Consider the pullback r∗αχ of χ along rα : Hs ×
kerα → H. This character has the form

r∗αχ = τ ⊗ χ|kerα
for some character τ of Hs. Since α is odd, τ (−1) = −1, and since dχ = −ρ(n),

dτ (D) = dχ(α∨) = −ρ(n)(α∨) = −1.
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Hence, τ is the character

τ : Hs → R
× τ (

(
t 0
0 t−1

)
= t−1.

For Gs, there is a well-known decomposition (of the non-spherical principal series
of infinitesimal character 0 into two limit of discrete series)

I[hs, bs, τ ] = −I[ks, bsc(+), τ1]− I[ks, bsc(−), τ−1].

Hence I[hs × kerα, bs ⊕ kerα, r∗αχ] decomposes into irreducible classes

I[hs × kerα, bs ⊕ kerα, r∗αχ]

= I[hs, bs, τ ]⊗ χ|kerα
= − (I[ks, bsc(+), τ1] + I[ks, bsc(−), τ−1])⊗ χ|kerα
= −I[ks × kerα, bsc(+)⊕ kerα, τ1 ⊗ χ]− I[ks × kerα, bsc(−)⊕ kerα, τ−1 ⊗ χ]

= −I[ks × kerα, bsc(+)⊕ kerα, r∗αc
+
αχ]− I[ks × kerα, bsc(−)⊕ kerα, r∗αc

−
αχ].

Since α is type 1, rα is surjective. Hence, I and r∗α commute. Moving r∗α past I in
the equation above, we get

r∗αI[h, b
lα , χ] = −r∗αI[h

α, blαc (+), c+αχ]− r∗αI[h
α, blαc (−), c−αχ],

which implies

I[h, blα , χ] = −I[hα, blαc (+), c+αχ]− I[hα, blαc (−), c−αχ],

proving part (i) of the proposition.
Now suppose α is type 2. By the argument above, there is a decomposition in

K(lα, Lα ∩K)

(3.4.9) I[h, blα , χ] = −I[hα, blαc (+), c+αχ]− I[hα, blαc (−), c−αχ].

Let ε be the (unique) nontrivial one-dimensional (h, T )-module with trivial restric-

tion to (h, T ). Then I
(h,T )

(h,T )
χ � χ⊕ (χ⊗ ε) and (3.4.9) becomes

(3.4.10) I[h, blα , χ] + I[h, blα , χ⊗ ε] = −I[hα, blαc (+), c+αχ]− I[hα, blαc (−), c−αχ].

By Lemma 3.4.7, the two-element quotient group (Lα ∩ K)/(Lα ∩ K) exchanges
the terms on the right. Hence by Clifford theory, they are isomorphic. If we apply

the (exact) functor I
(lα,Lα∩K)

(lα,Lα∩K)
to both sides of (3.4.10), we obtain a decomposition

in K(lα, Lα ∩K)

I[h, blα , χ] + I[h, blα , χ⊗ ε] = −I[hα, blαc (+), c+αχ]− I[hα, blαc (−), c−αχ].

Since all terms are irreducible, this implies

I[h, blα , χ] = I[h, blα , χ⊗ ε] = −I[hα, blαc (+), c+αχ] = −I[hα, blαc (−), c−αχ],

which proves part (ii) of the proposition. �

We are now prepared to prove Theorem 3.4.6.

Proof of Theorem 3.4.6. Recall the parabolic subalgebra qZ = lZ ⊕ uZ defined in
(3.1.5). Note that α is an odd simple root for the positive system Δ+(lZ , h). Let
pα = lα ⊕ uα ⊂ l be the corresponding minimal parabolic. By definition

b = blα ⊕ uα ⊕ uZ c±α b = blαc (±)⊕ uα ⊕ uZ .
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Suppose α is type 1. By Proposition 3.4.8 and the transitivity of induction

I[h, b, χ]

= I[lZ , qZ , I[Lα, pα, I[h, b
lα , χ]]])

= −I[lZ , qZ , I[lα, pα, I[h
α, blαc (+), c+αχ]]]−I[lZ , qZ , I[lα, pα, I[h

α, blαc (−), c−αχ]]]
= −I[hα, c+αb, c

+
αχ]− I[hα, c−α b, c

−
αχ]

= −I(c+α [h, b, χ])− I(c−α [h, b, χ]).

If α is type 2, we obtain

I[h, b, χ] = I[lZ , qZ , I[lα, pα, I[h, b
lα , χ]]]

= −I[lZ , qZ , I[lα, pα, I[h
α, blαc (±), c±αχ]]

= −I[hα, c±α b, c
±
αχ]

= −I(c±α [h, b, χ]).

�

3.5. Zuckerman parameters. In this section, we define our second set of param-
eters for principal unipotent representations.

Definition 3.5.1. A Zuckerman parameter of infinitesimal character 0 is a K-
conjugacy class of triples (l, q, χ#) consisting of

(i) a θ-stable Levi subalgebra l ⊂ g, split modulo center,
(ii) a θ-stable parabolic subalgebra q ⊂ g containing l as a Levi subalgebra,

and
(iii) a one-dimensional (l,L ∩K)-module χ# satisfying dχ# = −ρ(u).

Denote the K-conjugacy class of (l, q, χ#) by [l, q, χ#] and denote the set of all such
conjugacy classes by Z0(G). A Zuckerman parameter is unipotent if it satisfies the
additional condition:

(iv) u ∩ p+Nl,θ contains a principal nilpotent element of g.

Write Z∗
0(G) for the set of all such parameters.

One can show that Z∗
0(G) 
= ∅ if and only if G is quasi-split. In fact, we have the

following more precise result, which is proved analogously to [3, Prop A.7].

Proposition 3.5.2. Let q ⊂ g be a θ-stable parabolic subalgebra. Choose a θ-stable
Levi decomposition

q = l⊕ u.

The following are equivalent:

(i) g0 is quasi-split and the K-saturation of u∩p+Nl,θ has the same dimension
as Ng,θ.

(ii) u ∩ p+Nl,θ contains a principal nilpotent element of g.
(iii) There is a maximally compact θ-stable Cartan subalgebra hcomp ⊂ l and a

large, type Z system Δ+(g, hc), compatible with q.
(iv) There is a maximally split θ-stable Cartan subalgebra hsplit ⊂ l and a large,

type Z system Δ+(g, hs), compatible with q.
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Suppose L is a quasi-split real reductive group and B ⊂ L is real Borel sub-
group. Let S0(L) be the Harish-Chandra module of the spherical principal series
representation of L of infinitesimal character 0

S0(L) := Harish-Chandra module of IndLBC.

By [14, Thm 1], S0(L) is irreducible and

(3.5.3) S0(L) �K C[Nl,θ].

This implies (see e.g. [5, Cor 6.4]) that AV(S0(L)) = Nl,θ. Thus, [S0(L)] ∈
UnipRO(L). If (l, q, χ

#) is a triple as in Definition 3.5.1, define

Ĩ(l, q, χ#) := I(l, q, χ# ⊗ S0(L)) ∈ K0(g,K).

The assignment (l, q, χ#) �→ Ĩ(l, q, χ#) is constant on K-conjugacy classes and thus
induces a function

Ĩ : Z0(G) → K0(g,K).

Next, we define a function Z : BB∗
0(G) → Z0(G) which commutes with I and Ĩ.

This requires a lemma.

Lemma 3.5.4 ([2], Lemma 16.1.4). Let H ⊂ G be a θ-stable Cartan subgroup. A
character χ of H is an extremal weight of an irreducible, finite-dimensional repre-
sentation of G if and only if

(i) 〈dχ, α∨〉 ∈ Z for every root α ∈ Δ(g, h), and

(ii) χ(mα) = (−1)〈dχ,α
∨〉 for every real root α ∈ Δ(g, h)

Suppose [h, b, χ] ∈ BB∗
0(G). Form the parabolic subalgebra qZ = lZ ⊕ uZ ⊂ g

as in (3.1.5). By Definition 3.1.8(iii), every simple real root α ∈ Δ+(g, h) is even
for χ. Hence, every real root is even for χ (see [18, Cor 4.3.20]). Define a second
character of H by

χZ := χ⊗ |ρ(n ∩ l
Z)|.

Since |ρ(n∩ lZ)| takes positive values on H, every real root is even for χZ . Further-
more

(3.5.5) dχZ = −ρ(n) + ρ(n ∩ l
Z) = −ρ(uZ).

Thus, 〈dχZ , α∨〉 = 0 for every root α ∈ Δ(lZ , h). Hence by Lemma 3.5.4, χZ is
an extremal weight of an irreducible finite-dimensional representation of LZ . By
(3.5.5), this representation is a character. We will (somewhat abusively) denote
this character (and its Harish-Chandra module) by χZ .

It is easy to see that [lZ , qZ , χZ ] ∈ Z∗
0(G); condition (i) is immediate since all

roots Δ(lZ , h) are real. Condition (ii) follows from Definition 3.1.8(ii) and Propo-
sition 3.1.7. Condition (iii) follows from (3.5.5). Condition (iv) is a consequence of
Definition 3.1.8(i) and Proposition 3.5.2. Now define

Z : BB∗
0(G) → Z∗

0(G) Z[h, b, χ] = [lZ , qZ , χZ ].

Proposition 3.5.6. The function Z : BB∗
0(G) → Z∗

0(G) is surjective and the
following diagram commutes

BB∗
0(G) Z∗

0(G)

K0(g,K)

Z

I
˜I
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Proof. Suppose [l, q, χ#] ∈ Z∗
0(G). By Proposition 3.5.2, there is a maximally split

θ-stable Cartan subalgebra h ⊂ l and large, type Z system Δ+(g, h), compatible
with q. Let b be the corresponding Borel subalgebra of g. Define a character χ of
H by

χ := χ#|H ⊗ |ρ(n ∩ l)|−1.

Then [h, b, χ] ∈ BB∗
0(G) (conditions (i) and (ii) are automatic. Condition (iii) fol-

lows from Lemma 3.5.4). Furthermore Z[h, b, χ] = [l, q, χ#]. Hence, Z is surjective
onto Z∗

0(G). .
Now suppose [h, b, χ] ∈ BB∗

0(G). Let BL ⊂ LZ be the real Borel subgroup
corresponding to lZ ∩ b. There is an identification

I
(lZ ,LZ∩K)

(lZ∩b,T )
χ � Harish-Chandra module of IndL

Z

BLχZ .

Since χZ extends to a character of LZ

IndL
Z

BLχZ � χZ ⊗ IndL
Z

BLC = χZ ⊗ S0(L
Z).

Now use the transitivity of induction to deduce

I[h, b, χ] = I[lZ , qZ , I[h, bl, χ]]

= I[lZ , qZ , χZ ⊗ S0(L
Z)]

= Ĩ[lZ , qZ , χZ ].

�
3.6. Main results.

Proposition 3.6.1. Let [h, b, χ] ∈ BB0(G). Then I[h, b, χ] 
= 0 if and only if
[h, b, χ] is large (cf. Definition 3.1.4).

Proof. We begin by making several simplifications. First, note that every parameter
[h, b, χ] ∈ BB0(G) can be made to be type L through a sequence of cross actions
through complex simple roots α satisfying θ(α) ∈ −Δ+(g, h) (this is proved by an
easy induction on the number of such simple roots). By Theorem 3.4.4, I[h, b, χ] is
preserved (up to signs) under this chosen sequence of cross actions. Thus, we can
assume that [h, b, χ] is type L. Next, form the parabolic subalgebra qL = lL⊕uL ⊂ g

as in (3.1.6). By Proposition 3.1.7, qL is σ-stable. By the transitivity of induction
I[h, b, χ] = I[lL, qL, I[h, lL ∩ b, χ]]. Note that

〈dχ+ ρ(n ∩ l
L), α∨〉 = 〈−ρ(uL), α∨〉 = 0 ∀α ∈ Δ+(lL, h).

Thus by (2.2.4), the inner module I[h, lL ∩ b, χ] is either irreducible or 0. Since qL

is σ-stable, I[lL, qL, ·] takes nonzero values on irreducible classes. Thus, replacing
g with lL if necessary, we can assume Δ(g, h) has only imaginary roots.

Now, assume I[h, b, χ] = 0. Choose a positive system for Δ(k, t) compatible with
b. If −ρ(n) + 2ρ(n ∩ p) is dominant for Δ+(k, t), then by examination of lowest
K-types (see [13, Thm 10.44]), I[h, b, χ] 
= 0, a contradiction. Hence, there is a
simple compact root α ∈ Δ+(k, t) with

0 > 〈−ρ(n) + 2ρ(n ∩ p), α∨〉
= 〈ρ(n)− 2ρ(n ∩ k), α∨〉
= 〈ρ(n), α∨〉 − 2〈ρ(n ∩ k), α∨〉
= 〈ρ(n), α∨〉 − 2.
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Since 〈ρ(n), α∨〉 is an integer, this forces 〈ρ(n), α∨〉 ≤ 1, and hence 〈ρ(n), α∨〉 = 1,
which implies that α is simple for Δ+(g, h).

Conversely, if there is a compact simple root, then I[h, b, χ] = 0 by a character
identity of Schmid ([16], Thm 1). �

Proposition 3.6.2. Let [l, q, χ#] ∈ Z∗
0(G). Then there is a nonzero irreducible

(g,K)-module X of infinitesimal character 0 and a sign ε[l, q, χ] ∈ {±1} such that

ε[l, q, χ]Ĩ[l, q, χ#] = [X]. Furthermore

(i) AV(X) = K(u ∩ p+Nl,θ).
(ii) AV(Ann(X))) = N .

In particular, ε[l, q, χ]Ĩ [l, q, χ#] ∈ UnipRO(G).

Proof. Note that S0(L) is an irreducible (l,L∩K)-module in the weakly good range
(cf. (2.2.3)). Hence by (2.2.4) there is an integer t ∈ Z≥0 such that

RiI
(g,K)
(l,L∩K)S0(L)⊗ χ# =

{
irreducible or 0 i = t

0 i 
= t

Let X := RtI
(g,K)
(l,L∩K)S0(L) ⊗ χ#. By Proposition 3.5.6, there is a parameter

[h, b, χ] ∈ BB∗
0(G) such that Ĩ(l, q, χ#) = I(h, b, χ). Hence by Proposition 3.6.1,

(−1)t[X] = Ĩ(l, q, χ#) 
= 0.
Condition (i) follows from the well-known formula for the associated variety of a

nonzero cohomologically induced module in the weakly good range, see (2.2.5). For
any X ∈ M(g,K), AV(Ann(X)) coincides with the G-saturation of AV(X). Now
(ii) follows from (i) and Definition 3.5.1(iv). �

Let Irrep0(G) ⊂ K(g,K) be the set of (isomorphism classes of) nonzero irre-
ducible (g,K)-modules of infinitesimal character 0. By Proposition 3.6.2, there is
a function

Ĩε : Z
∗
0(G) → Irrep0(G) Ĩε[l, q, χ

#] := ε[l, q, χ#]Ĩ[l, q, χ#]

Similarly, define

Iε : BB
∗
0(G) → Irrep0(G) Iε[h, b, χ] := ε[lZ , qZ , χZ ]I[h, b, χ] = Ĩε[l

Z , qZ , χZ ].

Proposition 3.6.3. The function Iε : BB
∗
0(G) → Irrep0(G) is a bijection.

Proof. Injectivity is an immediate consequence of Corollary 3.4.3. It remains to
show that Iε is surjective. Suppose X ∈ Irrep0(G) and choose a minimal parabolic
Qmin = LminUmin ⊂ G. By the Casselman subrepresentation theorem, there is an
irreducible finite-dimensional representation V of Lmin such that

X ⊆ I
(g,K)
(lmin,Lmin∩K)

V.

Since X has infinitesimal character 0, V has infinitesimal character −ρ(u). Since V
is finite-dimensional, this means that −ρ(u) is nonsingular. Hence, lmin is a Cartan
subalgebra (say h′ := lmin), qmin is a Borel subalgebra (say b′ := qmin), and V is a
character (say χ′ := V ).

Consider the set of all parameters S ⊂ BB0(G) be which can be obtained from
[h′, b′, χ′] through the following operations:

(1) Cayley transforms through odd simple real roots, and
(2) cross actions through complex simple roots α satisfying θ(α) ∈ −Δ+(g, h).
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Consider the set D of all subsets Ω ⊂ S such that

(i) every parameter [h, b, χ] ∈ Ω has I[h, b, χ] 
= 0, and
(ii) there is a decomposition I[h′, b′, χ′] =

∑
[h,b,χ]∈Ω ±I[h, b, χ] (for some col-

lection of signs).

Note that D is nonempty, since {[h′, b′, χ′]} ∈ D. Define the function

d̃ : D → Z≥0 d̃(Ω) :=
∑

[h,b,χ]∈Ω

d[h, b, χ],

where d is defined as in (3.2.2). If Ω1,Ω2 ∈ D, write Ω1 ≤ Ω2 if every parameter
in Ω2 can be obtained from some parameter in Ω1 through operations (1) and (2).

By Lemmas 3.2.3 and 3.3.1, d̃ is strictly increasing with respect to ≤. Hence, ≤
defines a partial order on D. Since D is finite, there is a maximal element Ω∗ ∈ D.

By definition, there is a decomposition

(3.6.4) I[h′, b′, χ′] =
∑

[h,b,χ]∈Ω∗

±I[h, b, χ].

If [h, b, χ] ∈ Ω∗, then [h, b, χ] is large by Proposition 3.6.1. It is type Z and totally
even by the maximality of Ω∗. Thus, [h, b, χ] ∈ BB∗

0(G) and hence Iε[h, b, χ] ∈
Irrep0(G). Since [X] is an irreducible summand in I[h′, b′, χ′], this means that
[X] = Iε[h, b, χ] for some [h, b, χ] ∈ Ω∗. �

Our main result is now an immediate consequence of Propositions 3.5.6, 3.6.2,
and 3.6.3.

Corollary 3.6.5. The inclusion UnipRO(G) ⊆ Irrep0(G) is an equality, and there
is a commutative triangle of bijections

BB∗
0(G) Z∗

0(G)

UnipRO(G)

Z

Iε
˜Iε

3.7. K-multiplicities of principal unipotent representations. Let [l, q, χ#] ∈
Z∗
0(G). Choose a maximal torus t ⊂ k and a positive system Δ+(k, t) compatible

with q. Consider the dot-action of Wk on t∗:

w · (λ) = w(λ+ ρk)− ρk.

If λ ∈ t∗, there is at most one element w ∈ Wk such that w · λ is dominant
for Δ+(k, t). Write wλ for this element (if it exists) and 
(wλ) for its length. If
λ is integral (for Δ(k, t)) and dominant (for Δ+(k, t)), write V (λ) for the unique
irreducible K-representation with highest weight λ (if λ is not integral or dominant,
put V (λ) = 0). Consider the multiset of t-weights

Λ(l, q, χ#) := Δ(2ρ(u ∩ p)− ρ(u)⊗ C[Nl,θ]⊗ S[u ∩ p], t).

The following result is an easy consequence of the Blattner formula and Kostant’s
formula for the K-structure of S0(L) (cf. 3.5.3).

Proposition 3.7.1. Let [l, q, χ#] ∈ Z∗
0(G). Then

I[l, q, χ#] �K

∑
λ∈Λ(l,q,χ#)

(−1)	(w0)+	(wλ)[V (wλ · λ)].
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4. Langlands parameters of principal unipotent representations

We begin by reviewing the Langlands classification of irreducible representations
of real reductive groups, as formulated in [1]. For details and proofs, we refer the
reader to [1, Sec 4–5] or [4, Sec 2–3]. Let G be a complex connected reductive
algebraic group and form the corresponding based root datum

Φ(G) = (X∗, X∗,Δ,Δ∨,∨,Π,Π∨)

(these symbols denote, respectively: the character lattice, the co-character lattice,
the roots, the co-roots, the bijection between them, the simple roots, and the
simple co-roots. This seven-tuple appears to depend on a choice of maximal torus
and Borel. Up to canonical isomorphism, it does not). Let Aut(G) be the group
of (algebraic group) automorphisms of G and let Int(G) ⊂ Aut(G) be the normal
subgroup of inner automorphisms. Two automorphisms θ, θ′ ∈ Aut(G) are inner
if they are in the same (left) Int(G)-coset. There is a canonical map Aut(G) →
Aut(Φ(G)), inducing a short exact sequence

(4.0.1) 1 → Int(G) → Aut(G) → Aut(Φ(G)) → 1.

Hence, the inner classes in Aut(G) are parameterized by automorphisms of Φ(G).
Now fix a pinning (h, b, {Xα}) of G (by this we mean a Cartan h, a Borel b ⊃ h,

and a set {Xα} ⊂ b of simple root vectors). For each δ ∈ Aut(Φ(G)), there is
a unique automorphism θ0 ∈ Aut(G) in the inner class of δ which preserves the
chosen pinning

dθ0(h) = h dθ0(b) = b dθ0{Xα} = {Xα}.
This automorphism is called the distinguished automorphism in the inner class of
δ, and the assignment δ �→ θ0 defines a splitting of (4.0.1).

The dual group G∨ comes equipped with a canonical isomorphism of based
root data Φ(G∨) � Φ(G)∨ and hence a canonical isomorphism of groups (called
tranpose)

t : Aut(Φ(G)) � Aut(Φ(G∨)).

For what follows, we will fix both a pinning (h∨, b∨, {Xα∨}) ofG∨ and an involution
δ ∈ Aut(Φ(G)). Let w0 ∈ W (G) be the longest element of the Weyl group. Note
that w2

0 = 1 and w0(Π) = −Π. Hence −w0 can be regarded as an involution of
Φ(G∨) (and as such, it commutes with every element of Aut(Φ(G∨))). We will
consider the involution δ∨ := −w0δ

t ∈ Aut(Φ(G∨)). As explained in the previous
paragraph, there is a unique distinguished involution θ∨0 ∈ Aut(G∨) in the inner
class of δ∨.

The L-group of G (with respect to δ) is the semi-direct product

GL := G∨
� {1, θ∨0 }.

The Weil group of R is the Lie group defined by

WR := 〈C×, j〉 jzj−1 = z, j2 = −1.

Definition 4.0.2 ([15], see also [9], Sec 8.2). A Langlands parameter for G is a
G∨-conjugacy class of continuous homomorphisms φ : WR → GL such that

(i) φ(C×) consists of semisimple elements.
(ii) φ(j) ∈ G∨θ∨0 .

Denote the G∨-conjugacy class of φ by [φ], and denote the set of Langlands pa-
rameters for G by Π(G).
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Now let G be a real form of G. Assume that the Cartan involution θ ∈ Aut(G)
is in the inner class of δ.

Theorem 4.0.3 (Langlands [15]). There is a natural map

ϕ : Irrep(G) → Π(G).

The fibers of this map are called L-packets in Irrep(G). If G is quasi-split, then this
map is surjective (i.e. all L-packets are non-empty).

The construction of ϕ is quite technical—we will not repeat it here. A good
overview can be found in [9, Sec 11]. We will use only the following observation,
which is a trivial consequence of the construction.

Proposition 4.0.4. ϕ(Irrep0(G)) = {[φ] ∈ Π(G) | φ(C×) = {1}}.

Denote the set of parameters appearing in Proposition 4.0.4 by Π0(G). If X ∈
Irrep0(G) is constructed from a Beilinson-Bernstein parameter [h, b, χ] (cf. Section
3.4), then there is an explicit formula in [3, Sec 3] for the Langlands parameter of
X in terms of h,b, and χ. By Corollary 3.6.5, every X ∈ Irrep0(G) is constructed
from a uniquely defined [h, b, χ] ∈ BB∗

0(G). If we apply the Adams-Vogan formula
to the subset BB∗

0(G) ⊂ BB0(G), we obtain Proposition 4.0.5.

Proposition 4.0.5. An element y ∈ NG∨θ∨
0
(H∨) is called principal unipotent if

(i) y2 = 1 (hence, Ad(y) defines an involution of G∨ which preserves H∨).
(ii) b∨ is small for Ad(y) (see Definition 3.1.4(ii)).
(iii) b∨ is type L for Ad(y) (see Definition 3.1.4(iii)).

There is a natural bijection

{principal unipotent elements y ∈ NG∨θ∨
0
(H∨)}/H∨ � Π0(G).

Under this correpondence, y ∈ NG∨θ∨
0
(H∨) maps to the Langlands parameter [φ] ∈

Π0(G) defined by φ(j) = y.

Specializing Proposition 4.0.5 to the case when G is split (and hence θ∨0 = id),
we obtain what appears to be a novel set of representatives for conjugacy classes of
order-2 elements in a complex connected reductive algebraic group.

Corollary 4.0.6. There is a natural bijection

{y ∈ N(H∨) | y2 = 1, b∨ is small and type L for Ad(y)}/H∨

� {y ∈ G∨ | y2 = 1}/G∨.
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