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SPLITTING FIELDS OF REAL IRREDUCIBLE

REPRESENTATIONS OF FINITE GROUPS

DMITRII V. PASECHNIK

Abstract. We show that any irreducible representation ρ of a finite group G
of exponent n, realisable over R, is realisable over the field E := Q(ζn) ∩ R

of real cyclotomic numbers of order n, and describe an algorithmic procedure
transforming a realisation of ρ over Q(ζn) to one over E.

1. Introduction

Let G be a finite group of exponent n. A celebrated result by R. Brauer
states that any complex irreducible character χ ∈ Irr(G) of G is afforded by an
F -representation ρχ : G → GLd(F ), where F = Q(ζn), the field of cyclotomic num-

bers of order n (here ζn := e
2πi
n ), see [10, (10.3)]. Let E := Q(ζn) ∩ R ⊂ F be the

maximal real subfield of F . The first result of this note is as follows.

Theorem 1.1. Let χ be an irreducible real-valued character of G of degree d := χ(1)
with Frobenius-Schur indicator ν2(χ) = 1. Then E is a splitting field of χ, i.e. χ
is afforded by an E-representation ρ, and the Schur index mE(χ) equals 1.

Our proof of Theorem 1.1 invokes Serre’s induction theorem for real characters
[13], [2, Theorem 73.18], and then follows the line of proof of Brauer’s theorem
[10, (10.3)]. It is surprising that it has not appeared anywhere, at least as far as
we know.

Remark 1.2. Independently and simultaneously, Robert Guralnick and Gabriel
Navarro proved Theorem 1.1 by a similar method, although not using [13].

Recall that the Frobenius-Schur indicator ν2(χ) :=
1
|G|

∑
g∈G χ(g2) is an invari-

ant classifying complex representations ofG into three different types, see [10, (4.5)].
Namely, ν2(χ) = 0 if χ is not real-valued, and ν2(χ) = −1 if χ is real-valued, but is
not afforded by a real-valued representation; ν2(χ) = 1 if and only if χ is afforded
by a real-valued representation.

For a number fieldK ⊇ Q, the Schur index mK(χ) is an invariant of χ controlling
the possibility to realise ρχ over K, see e.g. [3, Sect. 41] and [10, Chapter 10].
Namely, let S ⊇ K be a splitting field of χ. Then

mK(χ) := min
K⊆M⊆S

ρχ realisable over M

[M : K(χ)],

where we denoted by [M : K(χ)] the degree of M as a field extension over K(χ),
the field extension of K generated by the values of χ. In particular, the claim of
Theorem 1.1 amounts to stating that mE(χ) = 1.
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Apart from theoretical significance, the question of finding a splitting field is rele-
vant in group theory algorithms. Standard algorithms such as J. Dixon’s algorithm
[5] for constructing complex, and real, irreducible representations (one implementa-
tion in the computer algebra system GAP [7] of it is described in [4]) do induction
from 1-dimensional representations of subgroups of G, which are defined over F .
One advantage of working over E instead is that the degree of E is half of the
degree of F .

In particular for applications, e.g. in extremal combinatorics, in physics, etc. it
is often necessary to reduce a representation to a direct sum of real irreducibles, and
exact methods for this process benefit from explicit knowledge of the irreducibles,
using well known formulas from [14, Sect. 2.7], as implemented in our GAP package
RepnDecomp [9].

Our second result amounts to the algorithmic counterpart of Theorem 1.1, that
is, to a procedure to compute, for a representation ρ : G → GLd(F ) realisable
over reals, an explicit matrix Q ∈ GLd(F ) such that Q−1ρ(G)Q ⊂ GLd(E), i.e. Q
transforms ρ to an E-representation.

Theorem 1.3. Let ρ : G → GLd(F ) be a representation of G realisable over R.

Then P ∈ SLd(F ) such that Pρ(g) = ρ(g)P for any g ∈ G, and PP = I, can be

explicitly computed from the ρ(G)-invariant forms. Let ξ ∈ F ∗ s.t. − ξ
ξ is not an

eigenvalue of P , and Q := ξP + ξI. Then Q ∈ GLd(F ) and Q−1ρ(G)Q ⊂ GLd(E).

The only part of Theorem 1.3 which uses Theorem 1.1 is the claim that P can
be chosen so that PP = I. Algorithmically, one computes P s.t. PP = μI for
0 < μ ∈ E, and then has to solve the norm equation

(1.1) xx = μ, for x ∈ F .

Theorem 1.1 implies that (1.1) is always solvable. Several parts of the proof of
Theorem 1.3 are contained in [8] and [6], although our approach is more explicit,
and for odd d we provide an explicit solution (Lemma 3.4), not involving solving
(1.1), which is a nontrivial number-theoretic problem.

2. Proof of Theorem 1.1

Our main tool is Serre’s induction theorem [2, (73.18)].

Theorem 2.1 (Serre). The character χ of a real representation of G is a Z-linear
combination

(2.1) χ =
∑
φ

aφ Ind
G
H(φ)

of real-valued induced characters IndGH(φ), with H ≤ G, and φ a character of H.
Further, φ is either linear and takes values ±1, or φ = λ+ λ for a linear character
λ of H, or φ is dihedral. �

A diherdal character φ of a group H is a degree 2 irreducible character of H s.t.
H/ kerφ ∼= D2m, dihedral group of order 2m.

Note that by [10, (10.2.f)] mE(χ) divides mQ(χ) ≤ 2, where the latter inequality
holds by the Brauer-Speiser Theorem [10, p. 171]. Therefore it suffices to show that
mE(χ) = 2 is not possible in our situation.
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Let θ be a character of an E-representation of G. Then by [10, (10.2.c)] mE(χ) |
[θ, χ]. Here [, ] is the usual scalar product of characters [θ, χ] = 1

G

∑
g∈G θ(g)χ(g),

cf. [10, (2.16)]. As χ is irreducible, [χ, χ] = 1, thus (2.1) implies

(2.2) 1 = [χ, χ] =
∑
φ

aφ[Ind
G
H(φ), χ].

If every IndGH(φ) is an E-representation, then mE(χ) = 2 is not possible, as other-
wise an even integer on the right hand side of (2.2) equals 1.

It remains to see that every IndGH(φ) is an E-representation.
This is trivially the case for linear φ, and so we are left with the dihedral case

and the case φ = λ+ λ. To simplify the rest of the proof, we use [10, (10.9)] which
says that if a prime p divides mE(χ) then the Sylow p-subgroups of G are not
elementary abelian. For p = 2 this means that 4 | n, i.e. i :=

√
−1 ∈ F .

Lemma 2.2. Let H ≤ G, with G of exponent n, 4 | n, and φ a character of
H, either φ = λ + λ with λ linear, or φ dihedral. Then φ is afforded by an E-
representation.

Proof. Note that E = Q(ζn + ζ−1
n ) and 2 cos 2π

n = ζn + ζ−1
n . As 4 | n, it can be

shown that sin 2π
n ∈ E in this case (in general this is not true).

In the case φ = λ+ λ we have H/ kerφ a cyclic group C of order m dividing n,

C ∼= 〈ζm〉. We have Zm :=

(
cos 2π

m − sin 2π
m

sin 2π
m cos 2π

m

)
∈ SL2(E), and

ρφ : C → SL2(E)

ζkm �→ Zk
m, 0 ≤ k < m

is the desired E-representation of C with character φ.
For dihedral φ we have H/ kerφ a dihedral group D = 〈a, b | 1 = am = b2 =

(ab)2〉 of order 2m dividing n, with normal cyclic subgroup C of order m, so that
the restriction φC = λ + λ is as in the previous case, and φD−C = 0. We have

Zm ∈ SL2(E) as in the previous case, and R0 :=

(
1 0
0 −1

)
∈ GL2(E) satisfying

R0ZmR0 = Z−1
m and

ρφ : D → GL2(E)

akb� �→ Zk
mR�

0, 0 ≤ k < m, 0 ≤ 
 ≤ 1,

is the desired E-representation of D with character φ. �

This completes the proof of Theorem 1.1. The last step, i.e. the proof of
Lemma 2.2, could also be accomplished in a less explicit way, by invoking the
construction of Theorem 1.3; the matrix P mapping ρφ to its conjugate can be

chosen to be equal to P =

(
0 1
1 0

)
, satisfying the only condition, PP = I. In par-

ticular this approach allows to prove a more general version of Lemma 2.2 which
does not require 4 | n.

3. Proof of Theorem 1.3

The case n = 2 is trivial, and we will assume n ≥ 3 in what follows.
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Recall that in general, χ has values in F , while a real-valued character has
values in E. Whenever χ is E-valued, the image ρ(G) of G under a representation
ρ := ρχ affording χ leaves invariant a unique, up to scalar multiplication, non-zero
G-invariant form M . It is a classical result due to Frobenius and Schur that if
M is symmetric then χ is afforded by a real representation ρ, and ν2(χ) = 1, cf.
[10, (4.19)].

Without loss of generality, χ(1) > 1. Indeed, if χ(1) = 1 then ρ is the same as
χ, and we are done.

The proof of Frobenius-Schur in [10, (4.19)] starts with the elementary fact that if

Q is a transformation making ρ real then Q−1ρQ = Q−1ρQ, thus QQ−1ρ = ρQQ−1,
and P := QQ−1 transforms ρ to ρ, i.e. P−1ρP = ρ. Such a P ∈ GLd(C) must exist
irrespective of the existence of Q, as the characters of ρ and ρ are equal, although
we can give an explicit construction P = Σ−1M , with M as above, and Σ the
matrix of a positive definite Hermitian ρ(G)-invariant form.

Lemma 3.1. Let χ be a real-valued character of G, and ρ = ρχ an F -representation

affording χ. Then P := Σ−1M ∈ GLd(F ) satisfies Pρ(g) = ρ(g)P for all g ∈ G.

Proof. As χ is real, ρ leaves invariant a non-zero G-invariant bilinear form M , i.e.
g�Mg = M for all g ∈ ρ, cf. e.g. [10, (4.14)]. As M can be found in the trivial sub-
representation of the tensor square of ρ, M ∈ Md(F ). As well, detM �= 0, as the
kernel of M would give rise to a sub-representation of ρ, contradicting irreducibility
of ρ.

Let Σ :=
∑

h∈ρ(G) h
�h – note that Σ is a Hermitian positive definite matrix, in

particular detΣ > 0, and g�Σg = Σ for any g ∈ ρ(G).
Choose P := Σ−1M . Let’s check that P−1ρP = ρ (we use detM �= 0 here). Let

g ∈ ρ(G). Then, as (gΣ−1g�)−1 = (g�)−1Σg−1 = Σ,

Σ−1Mg = gΣ−1g�Mg = gΣ−1M,

as required. �

Now we have the equation

(3.1) PQ = Q, detQ �= 0

implying PPQ = PQ = Q, i.e. PP = I. The latter is an extra restriction, in the
sense that our procedure does not guarantee that P computed as in Lemma 3.1
satisfies PP = I. In general, one will need to solve (1.1) and multiply P by the
inverse of a solution. However, (1.1) will always be solvable by Theorem 1.1.

Lemma 3.2. Let P ∈ GLd(F ) such that Pg = gP for any g ∈ ρ(G). Then
PP = μI for some μ ∈ E.

Proof. Note that Pg = gP . Thus PPg = PgP = gPP . Thus PP lies in the
centraliser of an irreducible representation ρ. Hence, by Schur’s Lemma, PP = μI,
for some μ ∈ F .

It remains to show that μ ∈ E. Using Lemma 3.1, and recalling that Σ and

Σ−1 are Hermitian positive definite, i.e. Σ−1 = UU
�
, and M = M�, we have

μI = PP = Σ−1MΣ−1M , i.e.

μΣ = MΣ−1M = MUU
�
M = MUU�M = (MU)(MU)� = μΣ

�
= μΣ,

implying μ = μ. �
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It remains to solve (3.1) so that Q has entries in the splitting field of ρ. Note
that the solution of (3.1) in [10, Ch. 4] assumes that ρ is unitary; i.e. Σ = I; so
in this case P� = P , and an explicit formula for Q is provided – which however
does not work for us, as it involves square roots of eigenvalues of P . Fortunately,
in [8, Prop. 1.3], there is an algorithmic proof of existence of the required solution
of (3.1). In [loc. cit.] it is done for finite fields (and in bigger generality, for a
field automorphism σ of finite order, referring to this result as a generalisation of
Hilbert’s Theorem 90 ), and in [6] it was noted that it works for number fields as
well. One can also find there an easier observation, that for a randomly chosen
Y ∈ Md(F ) setting Q = Y +PY produces a solution to (3.1) with high probability.
Here is an easy to prove variation of this claim.

Lemma 3.3. Let P, Y ∈ Md(F ) and PP = I. Then Q := Y + PY satisfies
PQ = Q. Choosing Y = ξP , with ξ �= 0 and −ξ/ξ not being an eigenvalue of P we
have that Q ∈ Md(F ) satisfies (3.1).

Proof. Note that PQ = PY + PPY = Y + PY = Q, as claimed. The claimed
choice of ξ is possible as F is dense in C. Further, with Q = ξP +ξPP = ξ(P + ξ

ξ
I)

we see that Qv = 0 holds for a non-zero vector v if and only if Pv = − ξ

ξ
v, which is

not possible by the choice of ξ. �

To complete the proof of Theorem 1.3 is suffices to observe that Q−1ρ(g)Q ∈
Md(E) for any g ∈ G.

One can solve (1.1) in the case of odd d without resorting to number-theoretic
tools.

Lemma 3.4. Let d = 2k + 1. Then, (1.1) for μ in PP = μI is solved by x =
μ−k detP .

Proof. Let λ := detP . Then det(PP ) = λλ = λλ = det(μI) = μ2k+1. Thus

μ = μ = λ
μk

λ
μk . Replacing P with P ′ = μk

λ P we see that P ′P ′ = I. �

4. Related work and remarks

The paper [6] studies a closely related algorithmic question of minimising the
degree of the number field needed to write down a complex representation. It is
known that such a field need not be cyclotomic. On the other hand, computer
algebra systems designed for computing in groups, such as GAP [7] and Magma [1],
typically use cyclotomic fields for computation with characteristic zero representa-
tions of finite groups. In particular, this work came as an analysis of a question
[11] posed on the GAP discussion forum.

Lemma 3.1 and its proof are essentially a refinement of an argument from the
proof of [14, Thm. 31]. Lemmata 3.4 and 3.3 appear to be novel, as well as Theo-
rem 1.1.
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