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INTERTWINING MAPS BETWEEN p-ADIC PRINCIPAL SERIES

OF p-ADIC GROUPS

DUBRAVKA BAN AND JOSEPH HUNDLEY

Abstract. In this paper we study p-adic principal series representation of a p-
adic group G as a module over the maximal compact subgroup G0. We show
that there are no non-trivial G0-intertwining maps between principal series
representations attached to characters whose restrictions to the torus of G0

are distinct, and there are no non-scalar endomorphisms of a fixed principal
series representation. This is surprising when compared with another result
which we prove: that a principal series representation may contain infinitely
many closed G0-invariant subspaces. As for the proof, we work mainly in the
setting of Iwasawa modules, and deduce results about G0-representations by
duality.

1. Introduction

In this paper we study intertwining maps between p-adic principal series repre-
sentations of compact p-adic groups.

We take L a p-adic field and K a finite extension of L, and denote by oL and
oK their rings of integers. We take G to be the L points of a split connected
reductive Z-group G. Let G0 = G(oL). We equip G with a choice of Borel P,
having unipotent radical U and split maximal torus T ⊂ P. Let P = P(L) and
P0 = P(oL), and U0 = U(oL). Let B be the standard Iwahori subgroup of G0. If
χ0 : P0 → o×K is a continuous character, trivial on U0, we let

IndG0

P0
(χ−1

0 ) = {f : G0 → K continuous | f(gp) = χ0(p)f(g) ∀p ∈ P0, g ∈ G0},

where G0 acts on the left by g · f(h) = f(g−1h). These are the principal series
representations which we study.

Our approach is based on the duality theory of Schneider and Teitelbaum [11].
LetK[[G0]] be the Iwasawa algebra ofG0 (see section 3 for the definition ofK[[G0]]).
The character χ0 extends uniquely to a continuous character of K[[P0]]. Let
K(χ0) denote the corresponding one dimensional K[[P0]]-module, and let M (χ0) =
K[[G0]]⊗K[[P0]] K

(χ0).

The space IndG0

P0
(χ−1

0 ) is a Banach space, with continuous G-action. Its contin-

uous dual is isomorphic to M (χ0). Since M (χ0) is generated as a K[[G0]]-module

by a single element 1⊗ 1, it follows that IndG0

P0
(χ−1

0 ) is an admissible Banach space
representation [11, Lemma 3.4].
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Given two continuous characters χ1 and χ2 of P0, we want to describe the space of
continuous G0-intertwining operators HomG0

(IndG0

P0
(χ−1

1 ), IndG0

P0
(χ−1

2 )). By duality
[11, Theorem 3.5], this is equivalent to describing the space of K[[G0]]-linear maps
HomK[[G0]](M

(χ1),M (χ2)).
Our main result is the following (Corollary 10.2):

Theorem 1.1. For any two continuous characters χ1 and χ2 of P0, we have

HomK[[G0]](M
(χ1),M (χ2)) =

{
0 if χ1 �= χ2,

K · id if χ1 = χ2.

This was partially known in the case G0 = GL2(Zp): Proposition 4.5 from [11]

states that HomK[[GL2(Zp)]](M
(χ1),M (χ2)) = 0 if χ1 �= χ2. The first step in our

proof generalizes the argument in section 4 of [11]. The Bruhat decomposition of
G gives rise to a decomposition of M (χ) as a direct sum of K[[B]]-modules indexed
by the elements of the Weyl group.

By duality, Theorem 1.1 implies the following (Corollary 10.3):

Corollary 1.2. For any two continuous characters χ1 and χ2 of P0, we have

HomG0
(IndG0

P0
(χ1), Ind

G0

P0
(χ2)) =

{
0 if χ1 �= χ2,

K · id if χ1 = χ2.

An analogous result for principal series representations of G was proved by Pe-
ter Schneider in an unpublished note. Suppose χ : P → K× is a continuous
character, and set χ0 = χ|P0

. Note that restriction to G0 gives an isomorphism

IndGP (χ) → IndG0

P0
(χ0). The G-representation IndGP (χ), however, differs significantly

from the G0-representation IndG0

P0
(χ0). For example, we know from [14] that in the

case of G = GL2, the GL2(Zp)-representation IndG0

P0
(χ0) can have infinitely many

finite dimensional subrepresentations, while the GL2(Qp)-representation IndGP (χ),
if reducible, has a unique irreducible subrepresentation. With this in mind, the re-
sult of Corollary 1.2 for G0 seems surprising. Examples of IndG0

P0
(χ0) with infinitely

many finite dimensional subrepresentations for a general group G are constructed
in the Appendix.

The structure of the paper is as follows. In section 2, we introduce some notation.

In section 3, we give a projective limit realization of M
(χ0)
0 = oK [[G0]]⊗oK [[P0]]o

(χ0)
K .

In section 4, we introduce a decomposition M (χ0) =
⊕

w∈W M
(χ0)
w into components

M
(χ0)
w indexed by the Weyl group W of G. In section 5 we describe M

(χ0)
w as a

tensor product, thus obtaining a K[[B]]-module decomposition

M (χ0) ∼=
⊕
w∈W

K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ0),

where Pw,±
1
2

= B ∩ wP0w
−1 (Corollary 5.3). This decomposition generalizes the

decomposition Mχ
∼= Nχ⊕N−

wχ for G0 = GL2(Zp) which appears on p. 376 of [11].
The next step is to prove that

HomK[[P0]](K
(χ1),M (χ2)

w ) = 0

for all w other than the identity. In fact, what we prove in Proposition 8.1 is a more

general statement which allows us, in corollary 8.2, to show that HomK[[B]](M
(χ1)
w ,
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M
(χ2)
v ) �= 0 implies w = v– a result which seems interesting in its own right.

Sections 6 and 7 are devoted to technical preliminaries that are required to prove
the results in section 8.

Sections 9 and 10 contain the proof of the main result.

2. Notation

Let L be a finite extension of Qp. Let G be the group of L-points of a split
connected reductive L-group GL. The group GL is determined, up to an L-
isomorphism, by its root datum [13, Theorems 16.3.2 and 16.3.3]. On the other
hand, there exists a split connected reductive Z-group GZ with the same root da-
tum [5, Théorème 1.1, Exposé XXV]. Denote by (GZ)L the corresponding L-group.
Then (GZ)L is isomorphic to GL. Hence, we may assume that G = G(L), where
G is a split connected reductive Z-group.

We take P a Borel subgroup and T ⊂ P a maximal torus, and denote the
unipotent radical of P by U. The unipotent radical of the opposite parabolic is
denoted U−. We write Φ for the roots of T in G and Φ+ (resp. Φ−) for the set
of positive (resp. negative) roots determined by the choice of P. For each α ∈ Φ
the root subgroup attached to α is denoted Uα. For each root α of g one defines a
morphism xα from the additive Z-group Ga to Uα.

We denote by oL the ring of integers of L and by pL its unique maximal ideal.
Let qL be the cardinality of the residue field of L.

For each algebraic subgroup H of G we let H = H(L) and H0 = H(oL). We
write prn for the canonical map oL → oL/p

n
L and also for the induced map H0 →

H(oL/p
n
L) for any H. The kernel of prn in H0 is denoted Hn. Finally, H(oL/pL) is

denoted H̄. Let B = pr−1
1 (P̄ ) be the standard Iwahori subgroup.

We denote the Weyl group of G relative to T by W. For each w ∈ W we select
a representative ẇ ∈ G(Z).

We work with p-adic representations; their coefficient field is a finite extension
K of L. Then we have oK , pK , and qK defined similarly as above. Let | | = | |K
be the absolute value on K given by |�K | = q−1

K , where �K is a uniformizer of K.
If X is a set, 1X denotes the characteristic function of X.

2.1. Some unipotent subgroups of G0. For w ∈ W , let V ±
w = ẇU−ẇ−1. Note

that V ±
w is the product of all the root subgroups Uα attached to roots α such that

wα < 0. We define

U−
w, 12

= ẇ−1Bẇ ∩ U−
0 = (ẇ−1U0ẇ ∩ U−

0 )(ẇ−1U−
1 ẇ ∩ U−

0 ),

V ±
w, 12

= ẇU−
w, 12

ẇ−1 = (U0 ∩ ẇU−ẇ−1)(U−
1 ∩ ẇU−ẇ−1),

V w,±
1
2

= B ∩ ẇU0ẇ
−1 = (U0 ∩ ẇU0ẇ

−1)(U−
1 ∩ ẇU0ẇ

−1).

Then V ±
w,1 ⊂ V ±

w, 12
⊂ V ±

w,0. The subscript 1
2 indicates that V ±

w, 12
is a mixture of

Uα,1’s and Uα,0’s, while the superscript ±1 indicates that some roots α are positive
and some are negative.

From [1, Section 4.1],
∐

w∈W ẇU−
w, 12

is a set of coset representatives of G0/P0.

In particular, BẇB = ẇU−
w, 12

P0 = V ±
w, 12

ẇP0 and we have the disjoint union decom-

position

G0 =
∐

w∈W

ẇU−
w, 12

P0 =
∐

w∈W

V ±
w, 12

ẇP0.
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3. Projective limit realization of M
(χ)
0

3.1. Iwasawa algebra. Define

oK [[G0]] = lim←−
N

oK [G0/N ] and K[[G0]] = K ⊗oK oK [[G0]],

where N runs through all open normal subgroups of G0. We equip oK [[G0]] with
the projective limit topology and K[[G0]] with the corresponding locally convex
topology [11]. As a projective limit of compact rings, oK [[G0]] is compact.

Since {Gn | n ∈ N} is a neighborhood basis of the identity consisting of open
normal subgroups of G0, we have oK [[G0]] = lim←−n∈N

oK [G0/Gn]. The projective

limit lim←−n∈N
oK [G0/Gn] can be realized as a subspace of the topological space∏

n∈N oK [G0/Gn] and we have natural projections ϕn : oK [[G0]] → oK [G0/Gn].
For μ ∈ oK [[G0]], set μn = ϕn(μ). Then we identify

μ = (μn)
∞
n=1 ∈

∏
n∈N

oK [G0/Gn].

The surjections oK [G0] → oK [G0/Gn] induce in the limit the injective ring ho-
momorphism

oK [G0] → oK [[G0]]

[11, Section 2]. We use this homomorphism to identify oK [G0] with its image in
oK [[G0]].

3.2. Canonical pairing. Let C(G0,K) be the space of continuous K-valued func-
tions on G0. We equip C(G0,K) with the Banach space topology induced by the
sup norm. We denote by C∞(G0,K) the subspace of C(G0,K) consisting of smooth
(i.e., locally constant) functions. Then C∞(G0,K) is dense in C(G0,K). This fol-
lows from Example 3.D on page 47 in [15], noticing that, by compactness of G0,
the continuous functions on G0 are bounded.

Let Dc(G0,K) be the continuous dual of C(G0,K). We have the canonical
pairing 〈 , 〉 : Dc(G0,K)× C(G0,K) → K given by

〈μ, h〉 = μ(h).

The Iwasawa algebra K[[G0]] can be identified with Dc(G0,K) by identifying g ∈
G0 with the Dirac distribution δg [12, Section 2]. This gives us the canonical pairing
〈 , 〉 : K[[G0]]× C(G0,K) → K.

We can describe the pairing explicitly (see Section 12 in [10]). Let μ ∈ oK [[G0]]
and h ∈ C(G0,K). Write μ = (μn)

∞
n=1, where μn ∈ oK [G0/Gn]. On the other hand,

h can be uniformly approximated by a sequence {hn}∞n=1 of smooth functions such
that hn is right Gn-invariant. If g1Gn = g2Gn, then δg1(hn) = δg2(hn). It follows
that we have a well-defined pairing 〈μn, hn〉. More specifically, if {g1, . . . , gs} is a
set of representatives of G0/Gn, we can write

μn = a1g1Gn + · · ·+ asgsGn and hn = b11g1Gn
+ · · ·+ bs1gsGn

,

where ai ∈ oK and bi ∈ K for all i. Then

〈μn, hn〉 = a1b1 + · · ·+ asbs.

It can be shown that {〈μn, hn〉}∞n=1 is a Cauchy sequence whose limit is independent
of the choice of {hn}∞n=1. Then

〈μ, h〉 = lim
n→∞

〈μn, hn〉.
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Observe that hn ∈ C(G0,K), so we can apply the above formula to evaluate 〈μ, hn〉.
It is easy to show that 〈μ, hn〉 = 〈μn, hn〉.

3.3. Extending characters of P0 to oK [[P0]]. Let χ : P0 → o×K be a contin-
uous character. By Lemma 2.1 and Corollary 2.2 of [11], it extends uniquely to
a continuous homomorphism of oK -modules χ : oK [[P0]] → oK and a continuous
homomorphism of K-algebras χ : K[[P0]] → K. The extension is achieved by
〈ν, χ〉, where 〈 , 〉 : K[[P0]] × C(P0,K) → K is the canonical pairing described in
section 3.2. Hence, for ν ∈ K[[P0]] we have

χ(ν) = 〈ν, χ〉.

We denote by o
(χ)
K (respectively, K(χ)) the corresponding one dimensional oK [[P0]]-

module (respectively, K[[P0]]-module).

3.4. Module M
(χ)
0 . From now on, χ is a continuous character χ : P0 → o×K which

is trivial on U0. Equivalently, χ is a continuous character χ : T0 → o×K which we
extend trivially to U0. Define

M
(χ)
0 = oK [[G0]]⊗oK [[P0]] o

(χ)
K .

As a quotient of the compact ring oK [[G0]], M
(χ)
0 is a compact oK [[G0]]-module.

In Proposition 3.3, we give a realization of M
(χ)
0 as the projective limit over

n ∈ N of tensor products oK [G0/Gn]⊗oK [P0]o
(χ)
K . We start by proving two technical

lemmas about those tensor products. We follow the convention that p0K = oK and
p∞K = 0.

Lemma 3.1. Let χ : P0 → o×K be a continuous character and let n ∈ N. Define
m(χ, n) = sup{m ∈ N ∪ {0} | χ(p) ∈ 1 + pmK for all p ∈ Pn}.

(i) In oK [G0/Gn]⊗oK [P0] o
(χ)
K , for any ξ ∈ oK [G0/Gn] and any b ∈ p

m(χ,n)
K we

have

ξ ⊗ b = 0.

(ii) The oK-module oK [G0/Gn]⊗oK [P0] o
(χ)
K is isomorphic to⊕

w∈W

oK/p
m(χ,n)
K [U−

w, 12
/U−

n ],

where U−
w, 12

is as in section 2.1.

Note that m(χ, n) = ∞ if and only if χ|Pn
= 1. In any case, limn→∞ m(χ, n) =

∞ by continuity of χ.

Proof. (i) If m(χ, n) = ∞, then there is nothing to prove.
Assume m(χ, n) < ∞. For any p ∈ Pn and any ξ ∈ oK [G0/Gn], we have ξ = ξp,

and hence

ξ ⊗ (1− χ(p)) = (ξ ⊗ 1)− (ξ ⊗ χ(p)) = (ξ ⊗ 1)− (ξp⊗ 1) = 0.

Now, take p0 ∈ Pn such that ordK(χ(p0)− 1) = m(χ, n). Then any b ∈ p
m(χ,n)
K can

be written as b = b0(1− χ(p0)) for some b0 ∈ oK . It follows

ξ ⊗ b = ξ ⊗ b0(1− χ(p0)) = b0(ξ ⊗ (1− χ(p0))) = 0.
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(ii) We first recall the disjoint union decomposition G0 =
∐

w∈W ẇU−
w, 12

P0. De-

fine

hw : oK [U−
w, 12

/U−
n ] → oK [G0/Gn]⊗oK [P0] o

(χ)
K

μ �→ ẇμ⊗ 1.

Then
⊕

w hw :
⊕

w oK [U−
w, 12

/U−
n ] → oK [G0/Gn] ⊗oK [P0] o

(χ)
K is easily seen to be

surjective.

Next, we want to realize oK [G0/Gn]⊗oK [P0] o
(χ)
K as the dual of a suitable space

of functions. We consider the oK -module

i(χ, n) := {f : G0/Gn → oK/p
m(χ,n)
K | f(gp) = prm(χ,n) χ(p)f(g),

for g ∈ G0/Gn and p ∈ P0/Pn},

where prm(χ,n) is the canonical projection oK → oK/p
m(χ,n)
K . The mapping

(g, a) �→ λg,a, where λg,a(f) = af(g), a ∈ oK , g ∈ G0/Gn, f ∈ i(χ, n)

extends to a surjective middle linear map from oK [G0/Gn]× oK to the oK-module

i(χ, n)∗ := HomoK (i(χ, n), oK/p
m(χ,n)
K ).

This middle linear map then induces a linear map oK [G0/Gn] ⊗oK [P0/Pn] o
(χ)
K →

i(χ, n)∗. It is then easy to see that the kernel of the map from
⊕

w woK [U−
w, 12

/U−
n ]

into the i(χ, n)∗ is
⊕

w wp
m(χ,n)
K [U−

w, 12
/U−

n ]. �

Lemma 3.2. Let μ ∈ oK [[G0]] and ν ∈ oK [[P0]]. Write μ = (μn)
∞
n=1 and ν =

(νn)
∞
n=1 as in section 3.1. Then μnνn ⊗ a = μn ⊗χ(ν)a in oK [G0/Gn]⊗oK [P0] o

(χ)
K .

Proof. Let {cn}∞n=1 be a sequence of functions as in section 3.2: each cn : P0 → oK
is right Pn-invariant and χ = limn→∞ cn.

Let us make a reasonable and explicit choice of {cn}∞n=1. For each n, we select
cn : P0 → oK which is constant on cosets of Pn, such that inside each coset there
is at least one point p0, where cn(p0) = χ(p0).

Now, let m(χ, n) be the maximal integer such that χ(Pn) ⊂ 1 + p
m(χ,n)
K . If

p1Pn = p2Pn, then χ(p1)− χ(p2) ∈ p
m(χ,n)
K . It follows

cn(p)− χ(p) ∈ p
m(χ,n)
K , for all p ∈ P0.

Consequently, 〈ξ, cn − χ〉 ∈ p
m(χ,n)
K for all ξ ∈ oK [[P0]].

Let {p1, . . . , ps} be a set of coset representatives of P0/Pn consisting of points
satisfying cn(pi) = χ(pi) for all i. (By our construction of cn, such points exist.)
Then we can write νn = a1p1Pn + · · ·+ aspsPn, where ai ∈ oK . Define

η = a1p1 + · · ·+ asps.

This is an element of oK [P0] ⊂ oK [[P0]] such that ηn = νn. Since

χ(η) = a1χ(p1) + · · ·+ asχ(ps) = a1cn(p1) + · · ·+ ascn(ps) = 〈η, cn〉,

it follows

χ(η) = 〈η, cn〉 = 〈ηn, cn〉 = 〈νn, cn〉 = 〈ν, cn〉 ∈ χ(ν) + p
m(χ,n)
K .



INTERTWINING MAPS 981

Now, in oK [G0/Gn]⊗oK [P0] o
(χ)
K , we have

μnνn ⊗ a = μnηn ⊗ a = μn ⊗ χ(η)a.

To show that the above expression is equal to μn ⊗ χ(ν)a, we observe that χ(η)−
χ(ν) ∈ p

m(χ,n)
K , and apply Lemma 3.1(i). �

Proposition 3.3. Let χ : P0 → o×K be a continuous character trivial on U0. Then

M
(χ)
0

∼= lim←−
n∈N

(
oK [G0/Gn]⊗oK [P0] o

(χ)
K

)
.

Proof. As explained in section 3.1, any μ ∈ oK [[G0]] can be written as μ = (μn)
∞
n=1,

where μn ∈ oK [G0/Gn]. For each n ∈ N, we define a map

ψn : oK [[G0]]× o
(χ)
K → oK [G0/Gn]⊗oK [P0] o

(χ)
K

(μ, a) �→ μn ⊗ a.

It follows from Lemma 3.2 that ψn is oK [[P0]]-middle linear. Hence, it gives rise to
a linear map

Ψn : oK [[G0]]⊗oK [[P0]] o
(χ)
K → oK [G0/Gn]⊗oK [P0] o

(χ)
K .

Now, {Ψn}n∈N is a family of compatible continuous linear maps from

oK [[G0]]⊗oK [[P0]] o
(χ)
K

to the inverse system {oK [G0/Gn] ⊗oK [P0] o
(χ)
K }n∈N. By the universal property of

projective limits, there exists a continuous linear map

Ψ : M
(χ)
0 = oK [[G0]]⊗oK [[P0]] o

(χ)
K → lim←−

n∈N

(
oK [G0/Gn]⊗oK [P0] o

(χ)
K

)
.

This map is surjective because M
(χ)
0 = oK [[G0]] ⊗oK [[P0]] o

(χ)
K is compact and Ψn

are surjective [8, Corollary 1.1.6].
For injectivity, we first recall from [1, Corollary 6.3] that

⊕
w K[[U−

w, 12
]] maps

isomorphically onto K[[G0]]⊗K[[P0]]K
(χ). From the embedding oK [[G0]] ↪→ K[[G0]]

we obtain an isomorphism

f :
⊕
w∈W

oK [[U−
w, 12

]]
∼−→ oK [[G0]]⊗oK [[P0]] o

(χ)
K ,

where the restriction fw of f to oK [[U−
w, 12

]] is given by fw : μ �→ ẇμ⊗ 1. Note that

f =
⊕

w fw.
For every w ∈ W, we have the following commutative diagram

oK [[U−
w, 12

]]
hw−→ lim←−n∈N

(
oK/p

m(χ,n)
K [U−

w, 12
/U−

n ]
)

fw ↓ ↓ gw

oK [[G0]]⊗oK [[P0]] o
(χ)
K

Ψ−→ lim←−n∈N

(
oK [G0/Gn]⊗oK [P0] o

(χ)
K

)
.

The map hw is built from the natural projections oK [[U−
w, 1

2

]]→oK/p
m(χ,n)
K [U−

w, 1
2

/U−
n ],

using the universal property of projective limits. The map gw is defined as follows.
We know from the proof of Lemma 3.1(ii) that the maps gn,w : oK/p

m(χ,n)
K [U−

w, 1
2

/U−
n ]

→ oK [G0/Gn] ⊗oK [P0] o
(χ)
K , given by gn,w : μ �→ ẇμ ⊗ 1, are injective, and that

gn =
⊕

w gn,w is an isomorphism of oK -modules. Define gw = lim←−n
gn,w. Then
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gw is injective. Thus, we reduce our proof to proving the injectivity of hw, for all
w ∈ W .

Suppose η is a nonzero element of oK [[U−
w, 12

]] and write η = (ηn)
∞
n=1, where

ηn ∈ oK [U−
w, 12

/U−
n ]. Then for each n we have

ηn =
∑

u∈U−
w, 1

2

/U−
n

cuu

and for some n0, u0 cu0 �= 0. Then for all n ≥ n0 there exists u ∈ U−
w, 12

/U−
n such

that |cu| ≥ |cu0
|. Then for all n sufficiently large we will have cu0

/∈ p
m(n,χ)
K , and

hence the image of ηn in oK/p
m(χ,n)
K [U−

w, 12
/U−

n ] is nonzero. �

4. The space M (χ)
and its decomposition

The continuous principal series representation

IndG0

P0
(χ−1) = {f ∈ C(G0,K) | f(gp) = χ(p)f(g) for all p ∈ P0, g ∈ G0}

is a closed subspace of the Banach space C(G0,K), so it is itself a Banach space.
Its continuous dual is isomorphic to

M (χ) = K[[G0]]⊗K[[P0]] K
(χ).

We have the canonical pairing 〈 , 〉 : M (χ)×IndG0

P0
(χ−1) → K. There is no confusion

in using the same notation as for the pairing 〈 , 〉 : K[[G0]] × C(G0,K) → K for
the following reason. For μ ∈ K[[G0]], we denote its image in M (χ) by [μ]. As

explained in [1, Section 6], if f ∈ IndG0

P0
(χ−1) and μ ∈ K[[G0]], then 〈μ, f〉 depends

only on [μ] and it is equal to 〈[μ], f〉.
The principal series representation IndG0

P0
(χ−1) decomposes as

IndG0

P0
(χ−1) =

⊕
w∈W

IndG0

P0
(χ−1)w,

where IndG0

P0
(χ−1)w := {f ∈ IndG0

P0
(χ−1) : supp(f) ⊂ BẇB = V ±

w, 12
ẇP0} [1, Section

6.1]. Define M
(χ)
w = {[μ] ∈ M (χ) : 〈[μ], f〉 = 0, f ∈ IndG0

P0
(χ−1)w′ , w′ �= w}. This is

a closed subspace of M (χ). Since each subspace IndG0

P0
(χ−1)w′ is B-invariant, M

(χ)
w

is also B-invariant, and therefore it is a K[[B]]-module. Then, as in [1, Section 6.1],
we have the K[[B]]-module decomposition

M (χ) =
⊕
w∈W

M (χ)
w .

Lemma 4.1 is Corollary 6.3 from [1] (as already mentioned in the proof of Propo-
sition 3.3). We briefly review its proof, to introduce notation needed in the rest of
the paper. Let U−

w, 12
and V ±

w, 12
be as in section 2.1.

Lemma 4.1. As K[[V ±
w, 12

]]-modules, M
(χ)
w

∼= K[[V ±
w, 12

]].

Proof. As shown in [1, Corollary 6.3] the subspace

ẇK[[U−
w, 12

]] = K[[V ±
w, 12

]]ẇ
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maps isomorphically onto M
(χ)
w . Clearly, the map sending η ∈ K[[V ±

w, 12
]] to ηẇ ∈

K[[G0]] is a K[[V ±
w, 12

]]-intertwining map.

Explicitly, M
(χ)
w is identified with the dual of IndG0

P0
(χ−1

0 )w. Each element of this
space is of the form

fh(vẇp) = h(v)χ(p)

for some unique h ∈ C(V ±
w, 12

,K). Clearly, the map h → fh commutes with left

inverse translation by elements of V ±
w, 12

. �

The space M
(χ)
w is a K[[B]]-module, and so the isomorphism from Lemma 4.1

induces a K[[B]]-module structure on K[[V ±
w, 12

]]. The action of T0 can be de-

scribed explicitly. Let A : T0 → Aut(C(V ±
w, 12

,K)) be the action by conjugation:

[A(t).h](v) = h(t−1vt). Then
t · fh = wχ(t)−1fA(t).h,

where the action t · fh is by left inverse translation, and wχ(t) = χ(w−1tw). In
particular, the induced action of T0 on Aut(C(V ±

w, 12
,K)) is given by

[Aχ(t).h](v) = wχ(t)−1h(t−1vt).

The induced action on K[[V ±
w, 12

]] is given by

〈Aχ(t).μ, h〉 = 〈μ,Aχ(t
−1).h〉, μ ∈ K[[V ±

w, 12
]], h ∈ C(V ±

w, 12
,K), t ∈ T0.

Combined with the action of K[[V ±
w, 12

]] on itself by left translation, this action

of T0 makes K[[V ±
w, 12

]] into a K[[Q±
w, 12

]]-module, where

Q±
w, 12

= T0V
±
w, 12

= B ∩ wP−
0 w−1.

Write K[[V ±
w, 12

]](wχ) for this K[[Q±
w, 12

]]-module structure on K[[V ±
w, 12

]]. Then we

have proved Lemma 4.2:

Lemma 4.2. As K[[Q±
w, 12

]]-modules, M
(χ)
w

∼= K[[V ±
w, 12

]](wχ).

5. An alternate description of M
(χ)
w

Recall the space IndG0

P0
(χ−1)w = {f ∈ IndG0

P0
(χ−1) | supp(f) ⊂ BẇB}, and its

dual M
(χ)
w . The purpose of this section is to give a realization of M

(χ)
w as a tensor

product, analogous to the realization of M (χ) itself as K[[G0]]⊗K[[P0]] K
(χ0).

We will prove that IndG0

P0
(χ−1)w is isomorphic as a B-module to a representation

induced from B∩ ẇP0ẇ
−1, and obtain the corresponding tensor product expression

for M
(χ)
w . Both results depend on the fact that multiplication is a homeomorphism

V ±
w, 12

× (B ∩ ẇP0ẇ
−1) → B.

To prepare for the proof, we introduce the following technical result.

Lemma 5.1. Let F be any field. Let Φ+ = S1

∐
S2 be any partition of the positive

roots into two disjoint sets. Take any numbering of S1 as {β1, . . . , βn} and any
numbering of S2 as {γ1, . . . , γm}. Then(

(b1, . . . , bn), t, (c1, . . . , cm)
)
�→ xβ1

(b1) . . . xβn
(bn) · t · xγ1

(c1) . . . xγm
(cm)

is a bijection Fn × T (F )× Fm → P (F ).
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Proof. By §14.4 of [2] multiplying root subgroups gives an isomorphism of varieties∏
α Uα → U, for any ordering of the roots. That is

((b1, . . . , bn), (c1, . . . , cn)) → xβ1
(b1) . . . xβn

(bn)xγ1
(c1) . . . xγm

(cm)

is a bijection Fn×Fm → U(F ). On the other hand, P = TU, and we can conjugate
t ∈ T (F ) to the middle. �

Define

Pw,±
1
2

= B ∩ ẇP0ẇ
−1 = T0(U0 ∩ ẇU0ẇ

−1)(U−
1 ∩ ẇU0ẇ

−1).

Lemma 5.2.

(1) Multiplication induces a homeomorphism V ±
w, 12

× Pw,±
1
2

→ B.

(2) As representations of B,

IndG0

P0
(χ−1)w ∼= IndB

Pw,±
1
2

wχ−1.

(3) As a K[[B]]-module,

M (χ)
w

∼= K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ).

Proof. (1) Write P̄ for P0/P1 = P(oL/pL) = B/G1. Define T̄ , Ū and Ūα for
each root α similarly. Given b ∈ B let b̄ be the image in P̄ . We factor it as
ū1t̄ū2, where ū1 ∈

∏
α>0, w−1α<0 Uα(oL/pL) and ū2 ∈

∏
α>0, w−1α>0 Uα(oL/pL).

Choosing representatives in Uα(oL), and T (oL) we obtain u1, u2 and t such that
g1 := u−1

1 bu−1
2 t−1 ∈ G1 ⊂ B. Now using the Iwahori factorization of B we can

write ẇ−1g1ẇ as v1v2 with v1 ∈ U−
1 and v2 ∈ P1 = T1U1. Put v′i = ẇviẇ

−1.
Then g1 = v′1v

′
2 with v′1 ∈ ẇU−

1 ẇ−1 and v′2 ∈ T1ẇU1ẇ
−1. Now b = u1v

′
1v

′
2tu2, and

u1v
′
1 ∈ V ±

w, 12
and v′2tu2 ∈ Pw,±

1
2

.

(2) For each f in (IndG0

P0
χ−1)w, define T.f : B → K by T.f(b) = f(bẇ). Then T

is clearly injective. Moreover, if f ∈ IndG0

P0
χ−1, b ∈ B and p ∈ Pw,±

1
2

, then T.f(bp) =

f(bpẇ) = f(bẇẇ−1pẇ) = χ(ẇ−1pẇ)f(bẇ), because ẇ−1pẇ ∈ P0 by definition of

Pw,±
1
2

. But this is equal to wχ(p)T.f(b), which proves that T.f ∈ IndB
Pw,±

1
2

(wχ−1).

From the homeomorphism V ±
w, 12

× Pw,±
1
2

→ B, we deduce that IndB
Pw,±

1
2

(wχ−1) is

isomorphic to C(V ±
w, 12

,K) as a vector space (and even a V ±
w, 12

-module). Concretely,

every element of IndB
Pw,±

1
2

(wχ−1) is given by

f(vp) = h(v)χ(p), (v ∈ V ±
w, 12

, p ∈ Pw,±
1
2

),

for some h ∈ C(V ±
w, 12

,K). From this, it easily follows that T is surjective.

(3) It follows readily from the definitions that 〈μπ, f〉 = wχ(π)〈μ, f〉 for all

μ ∈ K[[B]], π ∈ K[[Pw,±
1
2

]], and f ∈ IndB
Pw,±

1
2

(wχ−1). It follows that the map

(μ, a) → aμ
∣∣∣
IndB

P
w,±
1
2

(wχ−1)
is a middle-linear map from K[[B]] ×K(wχ) to the dual

of IndB
Pw,±

1
2

(wχ−1), and hence gives rise to a map from K[[B]] ⊗K[[Pw,±
1
2

]] K
(wχ) to

this dual.
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Since IndB
Pw,±

1
2

(wχ−1) ∼= C(V ±
w, 12

,K), it follows that K[[V ±
w, 12

]] maps isomorphi-

cally onto the dual, and from this it follows that the map from K[[B]] ⊗K[[Pw,±
1
2

]]

K(wχ) is surjective.
The same reasoning used in [1, Corollary 6.3] to show that ẇK[[U−

w, 12
]] surjects

onto M
(χ)
w may be used here to prove that K[[V ±

w, 12
]] surjects onto K[[B]]⊗K[[Pw,±

1
2

]]

K(wχ). Since the map from K[[V ±
w, 12

]] to the dual of IndB
Pw,±

1
2

(wχ−1) is an isomor-

phism, the map from K[[B]]⊗K[[Pw,±
1
2

]]K
(wχ) onto the dual of IndB

Pw,±
1
2

(wχ−1) must

be injective, which completes the proof. �

Corollary 5.3. As a K[[B]]-module,

M (χ) ∼=
⊕
w∈W

K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ).

6. Invariant distributions on vector groups

Let χ1, χ2 : T0 → o×L be continuous characters. In this section we establish some
technical results which will be used in the proof that

HomK[[P0]](K
(χ1),M (χ2)

w ) �= 0 =⇒ w = e,

and

HomK[[B]](M
(χ1)
w ,M (χ2)

v ) �= 0 =⇒ w = v.

The key point is that the only invariant distribution on a group isomorphic to
several copies of Zp is the trivial one. If N is an abelian unipotent group, this
applies to the groups Nk, k ∈ N. These are the “vector groups” of the title.

Lemma 6.1. Suppose V ∼= orL for some positive integer r and that μ ∈ K[[V ]]
satisfies

v · μ = μ, ∀v ∈ V.

Then μ = 0. That is, the space K[[V ]]V of V -invariant distributions on V is 0.

Proof. Let V0 = V and for n = 1, 2, 3 . . . let Vn be the image of the r-copies of

pnL under an isomorphism orL → V. So, [Vm : Vn] = q
r(n−m)
L for any nonnegative

integers m,n with m < n. Now, there is a constant c such that |μ(f)| ≤ c for
all f ∈ C(V, oK). This follows from the fact that μ = aμ0 for some a ∈ K and
μ0 ∈ oK [[G0]], and |μ0(f)| ≤ 1 for all f ∈ C(V, oK). Then

|μ(1Vm
)| = |qr(n−m)

L μ(1Vn
)| ≤ c|qr(n−m)

L |

for all n,m. Since c|qr(n−m)
L | → 0 as n → ∞ for each fixed m, we deduce that

μ(1Vm
) = 0 for all m. But the space spanned by translates of these functions is

C∞(V,K) and, as observed in section 3.2, it is dense in C(V,K). �

Corollary 6.2. Take V as in Lemma 6.1. Regard K as a K[[V ]] module with
trivial action. Then

HomK[[V ]](K,K[[V ]]) = 0.

Proof. The image of any element of HomK[[V ]](K,K[[V ]]) is an element of K[[V ]]V .
�
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7. “Partially invariant” distributions on unipotent groups

Lemma 7.1. Let V0 ⊂ G0 be a subgroup. Let V1 be a closed subgroup of V0 which
is isomorphic to orL for some r, and V2 a closed subset of V0 such that multiplication
is a homeomorphism V1 × V2 → V0. Then

K[[V0]]
V1 = 0, and hence HomK[[V1]](K,K[[V0]]) = 0.

Proof. Since multiplication is a homeomorphism V1×V2 → V0, we have an injective
map C(V1,K) × C(V2,K) ↪→ C(V0,K). For each fixed nonzero h ∈ C(V2,K) we
get an injective map ih : C(V1,K) ↪→ C(V0,K). Explicitly

ih.f(uv) = f(u)h(v), (u ∈ V1, v ∈ V2).

Assume that μ ∈ K[[V0]] is a V1-invariant element. Then μ ◦ ih is an invariant
element of K[[V1]]. Thus μ◦ ih = 0, by Lemma 6.1. But this means that μ vanishes
on ih.f for all f and all h. That is μ vanishes on the image of C(V1,K)×C(V2,K)
in C(V0,K). But the span of this image is dense, so μ must vanish identically. �

8. Key application of theorem on partially invariant distributions

Proposition 8.1. Suppose χ, ξ : T0 → o×K are continuous characters (we allow
χ = ξ). If w, v ∈ W , w �= v, then

HomK[[Pw,±
1
2

]](K
(wχ),M (ξ)

v ) = 0.

Proof. With V w,±
1
2

as in section 2.1, we have Pw,±
1
2

= T0V
w,±
1
2

. We select a root γ

such that w−1γ > 0 and v−1γ < 0, and define

ε =

{
0, if γ > 0,

1, if γ < 0.

Then Uγ,ε ⊂ V w,±
1
2

∩ V ±
v, 1

2

. Clearly Hom
K[[P

w,±
1
2

]]
(K(wχ),M

(ξ)
v )⊂HomK[[Uγ,ε]](K,M

(ξ)
v ).

But M
(ξ)
v

∼= K[[V ±
v, 12

]] as a K[[V ±
v, 12

]] and hence as a K[[Uγ,ε]]-module, and it follows

from Lemma 7.1 that HomK[[Uγ,ε]](K,K[[V ±
v, 12

]]) = 0. �

Corollary 8.2. Suppose χ, ξ : T0 → o×K are continuous characters (we allow χ =
ξ). If w, v ∈ W , w �= v, then

HomK[[B]](M
(χ)
w ,M (ξ)

v ) = 0.

Proof. Since M
(χ)
w

∼= K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ),

HomK[[B]](M
(χ)
w ,M (ξ)

v ) ∼= HomK[[B]](K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ),M (ξ)

v ).

We can regard K[[B]] as a bimodule with K[[B]] acting on the left and K[[Pw,±
1
2

]]

acting on the right, and apply adjoint associativity (see [9, Theorem 2.11]). It
follows that

HomK[[B]](K[[B]]⊗K[[Pw,±
1
2

]] K
(wχ),M (ξ)

v )

∼= HomK[[Pw,±
1
2

]](K
(wχ),HomK[[B]](K[[B]],M (ξ)

v )).
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And HomK[[B]](K[[B]],M
(ξ)
v ) has the structure of a left K[[Pw,±

1
2

]]-module isomor-

phic to M
(ξ)
v by theorems 1.15 and 1.16 of [9], so

HomK[[Pw,±
1
2

]](K
(wχ),HomK[[B]](K[[B]],M (ξ)

v )) ∼= HomK[[Pw,±
1
2

]](K
(wχ),M (ξ)

v ),

which is zero by Proposition 8.1. �

9. T0-equivariant distributions on unipotent groups

Let V be a T-stable unipotent Z-subgroup of G. The natural action of T on V
by conjugation induces actions of T0 on Vn/Vm for all positive integers m,n with
m > n.

To describe T0-equivariant distributions on V , we will consider their canonical
pairing with characteristic functions of the form 1u0Vn

. Fix n > 0 and u0 ∈ V0

such that u0 /∈ Vn. We will further decompose 1u0Vn
as the sum of characteristic

functions of the form 1uVm
, for m > n. To simplify notation, we define, for m > n,

Qm = Qu0,n
m = {u0vVm | v ∈ Vn}.

This is a subset of the quotient group V0/Vm.

Lemma 9.1. The set u0Vn = {u0v | v ∈ Vn} is preserved under the action of Tn.
Consequently, the set Qm is also preserved under the action of Tn.

Proof. From the hypothesis that V is T-stable, we deduce that there is a set S of
roots such that taking any fixed order on the elements of S and multiplying in that
order gives an isomorphism of Z-schemes

∏
α∈S Uα → V (cf. [6, §1.7, p. 159]).

In particular, we get a homeomorpishm
∏

α∈S Uα(oL) → V (oL), which induces a
bijection

∏
α∈S Uα(oL/p

n
L) → V (oL/p

n
L), for each n, from which we deduce that the

preimage of Vn in
∏

α∈S Uα is
∏

α∈S Uα,n.
Hence, we can write u0 as

u0 =
∏
α∈S

xα(rα),

where rα ∈ oL. Let t ∈ Tn. For each root α ∈ S

txα(rα)t
−1 = xα(rαt

α) = xα(rα)xα(rα(t
α − 1)).

But tα ≡ 1 (mod pnL), so xα(rα(t
α − 1)) ∈ Vn. �

Given ū ∈ Qm, we denote by OrbTn
(ū) its orbit under the action of Tn. Then

OrbTn
(ū) ⊂ Qm ⊂ V0/Vm is a finite set and we denote its cardinality by |OrbTn

(ū)|.

Lemma 9.2. Let V be a T-stable unipotent Z-subgroup of G. Take u0 ∈ V0 and
n > 0 such that u0 /∈ Vn. Then

lim
m→∞

min
ū∈Qm

ordp(|OrbTn
(ū)|) = ∞,

where ordp is the p-adic valuation on Z.

Proof. Let ū = u0vVm ∈ Qm and write u0v =
∏

α∈S xα(uα). Denote by StabTn
(ū)

the stabilizer of ū in Tn. Let t ∈ Tn. We may then note that

t · ū = t

(∏
α∈S

xα(uα)

)
t−1Vm =

∏
α∈S

txα(uα)t
−1Vm =

∏
α∈S

xα(t
αuα)Vm,
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and hence

t · ū = ū ⇐⇒
∏
α∈S

xα(t
αuα)Vm =

∏
α∈S

xα(uα)Vm

⇐⇒ (tα − 1)uα ∈ p
m
L , for all α ∈ S.

It follows

StabTn
(ū) = {t ∈ Tn | ordL(tα − 1) ≥ m− ordL(uα), for all α ∈ S}.

Of course, uα’s can be zero for some roots α. In this case ordL(uα) = ∞ and the
condition becomes vacuous. However, the requirement that u0 /∈ Vn implies that
for any u ∈ u0Vn there will be at least one root α0 such that ordL(uα0

) < n.
Form > n+ordL(uα0

), the condition ordL(t
α0−1) ≥ m−ordL(uα0

) determines a

subgroup of Tn of index q
m−ordL(uα0

)−n

L . Indeed α0 is a homomorphism Tn → 1+pnL.

The condition ordL(t
α0−1) ≥ m−ordL(uα0

) is equivalent to tα0 ∈ 1+p
m−ordL(uα0

)

L .

If m−ordL(uα0
) > n, then 1+p

m−ordL(uα0
)

L is a subgroup of index q
m−ordL(uα0

)−n

L

in 1 + pnL and {t ∈ Tn : tα0 ∈ 1 + p
m−ordL(uα0

)

L } is a subgroup of the same index
in Tn. The actual stabilizer StabTn

(ū) is then a subgroup of this subgroup, and its

index is a multiple of q
m−ordL(uα0

)−n

L . Hence,

ordp(|OrbTn
(ū)|) ≥ (m− ordL(uα0

)− n) ordp(qL),

which tends to ∞ with m. �

The action of T0 on V0 (by conjugation) induces the action of T0 on C(V0,K)
given by t · h(u) = h(t−1ut). Then we define an action of T0 on K[[V0]] by

〈t · μ, h〉 = 〈μ, t−1 · h〉

for μ ∈ K[[V0]], t ∈ T0, and h ∈ C(V0,K).

Lemma 9.3. Let μ be a nonzero element of K[[V0]]. Suppose there exists a char-
acter ξ of T0 such that t · μ = ξ(t)μ for all t ∈ T0. Then ξ is trivial and μ = c · 1
for some scalar c.

Proof. Take a nonzero μ ∈ K[[V0]] and assume that 〈μ, t−1 · h〉 = ξ(t)〈μ, h〉 for all
t ∈ T0.

Suppose first that ξ is not smooth and consider the characteristic function 1vVn
,

for some v ∈ V0 and some n ∈ N. Then there exists t ∈ Tn such that ξ(t) �= 1.
Notice that t−1 · 1vVn

= 1vVn
. This follows from Lemma 9.1 if v /∈ Vn and it holds

trivially if v ∈ Vn. Then

〈μ, t−1 · 1vVn
〉 = 〈μ, 1vVn

〉 = ξ(t)〈μ, 1vVn
〉

implies 〈μ, 1vVn
〉 = 0. This condition forces 〈μ, h〉 = 0 for all smooth h, and then

for all h. Thus we are reduced to the case when ξ is smooth.
To treat the case when ξ is smooth, we will show that 〈μ, 1u0Vn

〉 = 0 for any
u0 ∈ V0 and positive integer n such that u0Vn does not contain the identity.

There exists n0 such that the restriction of ξ to Tn0
is trivial. Fix u0 and n as

above and assume n ≥ n0. For m > n,

1u0Vn
=

∑
ū∈Qm

1ū.
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Hence
〈μ, 1u0Vn

〉 =
∑

ū∈Qm

〈μ, 1ū〉.

Now, let Tn act on V0/Vm. We know from Lemma 9.1 that Qm is preserved under
this action. Write [Tn \Qm] for a set of representatives of the distinct orbits in Qm.
Then

〈μ, 1u0Vn
〉 =

∑
ū∈[Tn\Qm]

∑
t·ū∈OrbTn (ū)

〈μ, t · 1ū〉

=
∑

ū∈[Tn\Qm]

|OrbTn
(ū)|〈μ, 1ū〉

because 〈μ, t · 1ū〉 = ξ(t−1)〈μ, 1ū〉 = 〈μ, 1ū〉 for any t ∈ Tn. But minū∈Qm
〈μ, 1ū〉 is

bounded independently of m by ‖μ‖, and
lim

m→∞
min
ū∈Qm

ordp(|OrbTn
(ū)|) = ∞,

by Lemma 9.2. It follows that 〈μ, 1u0Vn
〉 = 0, for any u0 ∈ V0 and positive integer

n such that u0Vn does not contain the identity.
Thus μ is supported at the identity, so it is c · 1 for some c. It now follows easily

that ξ is trivial. �

Corollary 9.4. Let ξ : T0 → o×K be a continuous character. Let ϕ : K → K[[V0]]
be the map defined by ϕ(a) = a · 1. Then

HomK[[T0]](K
(ξ),K[[V0]]) =

{
K · ϕ, ξ is trivial,

0, otherwise.

(Here K[[T0]] acts on K[[V0]] as in Lemma 9.3.)

Proof. Take ψ ∈ HomK[[T0]](K
(ξ),K[[V0]]) and set μ = ψ(1). Then for any t ∈ T0,

t · μ = ψ(t · 1) = ξ(t)ψ(1) = ξ(t)μ.

By Lemma 9.3, if ξ �= 1, then μ = 0, while for ξ = 1 we have μ = c · 1 for some
scalar c. �

Corollary 9.5. Suppose χ1, χ2 : T0 → o×K are continuous characters. Let ϕ : K →
K[[V0]] be the map defined by ϕ(a) = a · 1, and let K[[V0]]

(χ2) denote the space
K[[V0]] equipped with an action of K[[T0]] such that

〈t · μ, h〉 = χ2(t)〈μ, t−1h〉 t ∈ T0, μ ∈ K[[V0]], h ∈ C(V0,K).

Then

HomK[[T0]](K
(χ1),K[[V0]]

(χ2)) =

{
K · ϕ, χ1 = χ2,

0, otherwise.

Proof. Write A for the action of T0 on K[[V0]] in Lemma 9.3 and Aχ2
for the action

of T0 on K[[V0]]
(χ2). Then Aχ2

(t).μ = χ2(t)A(t).μ. Hence, if

ψ ∈ HomK[[T0]](K
(χ1χ

−1
2 ),K[[V0]])

then
χ1χ

−1
2 (t)ψ(x) = ψ(χ1χ

−1
2 (t).x) = A(t).ψ(x),

whence
χ1(t)ψ(x) = χ2(t)A(t).ψ(x) = Aχ2

(t).ψ(x).
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So, ψ is also in HomK[[T0]](K
(χ1),K[[V0]]

(χ2)). A similar argument shows contain-
ment in the other direction. �

10. Main result

Theorem 10.1. For any two continuous characters χ1 and χ2 of T0, we have

HomK[[P0]](K
(χ1),M (χ2)) =

{
0 if χ1 �= χ2,

K · ϕ if χ1 = χ2,

where ϕ : K → M (χ2) sends a ∈ K to a · 1 in M (χ2).

Proof. Since M (χ2) =
⊕

v∈W M
(χ2)
v , as a K[[B]]-module and hence as a K[[P0]]

module, we obtain

HomK[[P0]](K
(χ1),M (χ2)) =

⊕
v∈W

HomK[[P0]](K
(χ1),M (χ2)

v ).

We apply Proposition 8.1, taking w to be the identity element of W, which we
denote e. Then Pw,±

1
2

= P0, and from Proposition 8.1 we deduce that

HomK[[P0]](K
(χ1),M (χ2)

v ) = 0, ∀v �= e.

Thus HomK[[P0]](K
(χ1),M (χ2)) = HomK[[P0]](K

(χ1),M
(χ2)
e ). Now, by Lemma 4.2,

M
(χ2)
e is isomorphic to K[[U−

1 ]], as a K[[Q±
e, 12

]]-module and in particular as a

K[[T0]]-module. And, by Corollary 9.5,

HomK[[T0]](K
(χ1),K[[U−

1 ]]χ2) =

{
K · ϕ, χ1 = χ2,

0, otherwise.

One readily confirms that ϕ is a K[[P0]]-module map, and this completes the proof.
�

Corollary 10.2. For any two continuous characters χ1 and χ2 of P0, we have

HomK[[G0]](M
(χ1),M (χ2)) =

{
0 if χ1 �= χ2,

K · id if χ1 = χ2.

Proof. Similarly to the proof of Corollary 8.2, using adjoint associativity from [9,
Theorem 2.11], we have

HomK[[G0]](M
(χ1),M (χ2)) = HomK[[G0]](K[[G0]]⊗K[[P0]] K

(χ1),M (χ2))

∼= HomK[[P0]](K
(χ1),HomK[[G0]](K[[G0]],M

(χ2)))

∼= HomK[[P0]](K
(χ1),M (χ2)).

The statement now follows from Theorem 10.1. �

Since M (χ) is the dual of IndG0

P0
(χ−1), we obtain the following result.

Corollary 10.3. For any two continuous characters χ1 and χ2 of P0, we have

HomG0
(IndG0

P0
(χ1), Ind

G0

P0
(χ2)) =

{
0 if χ1 �= χ2,

K · id if χ1 = χ2.
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Appendix: Finite dimensional G0-invariant subspaces

In this section we discuss finite dimensional G0-invariant subspaces of the rep-
resentations V = IndGP (χ

−1).
We begin by recalling the notion of a Qp-rational representation from [3]. Such

a representation is obtained by viewing G as a subgroup of ResL/Qp
G(K), and

restricting a K-rational representation of ResL/Qp
G to G. Note that the group

ResL/Qp
G splits over K and ResL/Qp

G(K) is isomorphic to the product of several
copies of G(K), indexed by the embeddings σ : L → K. The induced embedding of
G into

∏
σ G(K) maps g to the element whose σ component is σ(g) for each σ.

This construction works for any reductive group, and by applying it to our torus,
we obtain a notion of Qp-rational character. We say that a ∈ X(T) (the rational
characters of T) is dominant if 〈a, α∨

i 〉 ≥ 0 for each simple root αi. Here 〈 , 〉 is
the canonical pairing X(T)×X∨(T) → Z. Our choice of Borel for G determines
a Borel for ResL/Qp

G and hence a notion of “dominant” for K-rational characters
of the K-split maximal torus ResL/Qp

T of ResL/Qp
G. We say that a Qp-rational

character of T is dominant if the underlying K-rational character of ResL/Qp
T is

dominant. Explicitly, we may think of a K-rational character of T̃ := ResL/Qp
T

as a tuple (aσ)σ:L→K of rational characters of T indexed by σ : L → K, and it is
dominant if each component aσ is so, and induces a map T → K× that maps t ∈ T
to

∏
σ:L→K σ(aσ(t)).

For a dominant K-rational character a of T̃ we have the corresponding finite
dimensional algebraically induced representation of ResL/Qp

G(K). Restricting to
G we obtain a Qp-rational representation of G. It is realized explicitly as follows.
We have noted that a may be identified with a tuple (aσ)σ:L→K , where aσ ∈ X(T)
is dominant for each σ. Then for each σ we obtain the algebraic induced space
AIGP a−1

σ and our Qp-rational representation is the span of all functions of the form
f(g) =

∏
σ:L→K σ(fσ(g)), where fσ ∈ AIGP aσ for each σ. If χalg is the Qp-rational

character of T induced by a then the Qp-rational representation thus obtained is a

finite dimensional invariant subspace of IndGP (χ
−1
alg) and we denote it IndGP (χ

−1
alg)alg.

Suppose χ = χalgχsm, where χsm is smooth and χalg is Qp-rational. Suppose in

addition that χalg is dominant. Let U = IndGP (χ
−1
sm)sm be the subspace of smooth

elements in IndGP (χ
−1
sm). Any element of IndGP (χ

−1
sm) is a sum over w ∈ W of elements

fh, where h ∈ C(V ±
w, 12

,K) and fh is defined as in the proof of Lemma 4.1. If h is

smooth, then fh is also smooth, by smoothness of χsm. Since C
∞(V ±

w, 12
,K) is dense

in C(V ±
w, 12

,K), it follows that U is dense in IndGP (χ
−1
sm).1

Let W = IndGP (χ
−1
alg)alg. The representation W is finite dimensional and irre-

ducible. We consider the locally algebraic representation U ⊗K W . There is a
natural map

U ⊗K W → V,

given by pointwise multiplication of functions. We claim that this map is injective.
In the case when χalg is L-algebraic, this follows from [7], using exactness of the
functor FG

P for the split group G. We prove it in general for χalg Qp-rational. We

1There is an intermediate space of locally analytic vectors U ⊂ IndGP (χ−1
sm)an ⊂ IndGP (χ−1

sm).

Then U is closed in IndGP (χ−1
sm)an, under an appropriate topology, and both spaces are dense in

IndGP (χ−1
sm) with respect to the Banach space topology [12, Section 3].
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may identify G with ResL/Qp
G(Qp). Then the elements of W are polynomials with

coefficients in K and the elements of U are locally constant. Given a finite linear
combination

n∑
i=1

ciuiwi, ci ∈ K, ui ∈ U, wi ∈ W,

we may choose n such that ui ∈ UGn for all n. Since each element of UGn may
be expressed as a K-linear combination of elements supported on a single P0, Gn-
double coset, we may assume each ui is such an element and then after collecting
like terms we may assume that they are all distinct. But then if

n∑
i=1

ciuiwi = 0

we may deduce that each of the polynomial-functions wi vanishes identically on the
double coset supporting ui. Since each of these double cosets is an open subset of
G we deduce that each wi is the zero polynomial, so that

∑n
i=1 ciui ⊗wi is zero in

U ⊗K W. Hence, we can identify U ⊗K W with a subspace of V .
Now, we consider the corresponding G0-representations. The algebraic repre-

sentation W remains irreducible when restricted to G0. Then U decomposes as a
countable direct sum of finite dimensional representations ρ with finite multiplicities

U ∼=
⊕
ρ

m(ρ)ρ.

Then V contains

U ⊗K W ∼=
⊕
ρ

m(ρ)(ρ⊗K W ).

Note that every subspace ρ ⊗K W is finite-dimensional, and hence closed in V .
Alternatively, we can use Corollary 4.2.9 of [4] to show that U ⊗K W decomposes
as a direct sum of irreducible finite-dimensional representations. In conclusion,
the G0-representation V contains countably many finite-dimensional topologically
irreducible subrepresentations. Still, by Lemma 10.3, HomG0

(V, V ) = K · id.
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