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EQUIVARIANT MULTIPLICITIES OF

SIMPLY-LACED TYPE FLAG MINORS

ELIE CASBI

Abstract. Let g be a finite simply-laced type simple Lie algebra. Baumann-
Kamnitzer-Knutson recently defined an algebra morphism D on the coordinate
ring CrNs related to Brion’s equivariant multiplicities via the geometric Sa-
take correspondence. This map is known to take distinguished values on the
elements of the MV basis corresponding to smooth MV cycles, as well as on
the elements of the dual canonical basis corresponding to Kleshchev-Ram’s
strongly homogeneous modules over quiver Hecke algebras. In this paper we
show that when g is of type An or D4, the map D takes similar distinguished

values on the set of all flag minors of CrNs, raising the question of the smooth-
ness of the corresponding MV cycles. We also exhibit certain relations between
the values of D on flag minors belonging to the same standard seed, and we
show that in any ADE type these relations are preserved under cluster muta-
tions from one standard seed to another. The proofs of these results partly rely
on Kang-Kashiwara-Kim-Oh’s monoidal categorification of the cluster struc-
ture of CrNs via representations of quiver Hecke algebras.

Contents

1. Introduction 1049
2. Quiver Hecke algebras and their representations 1054
3. Homogeneous modules over quiver Hecke algebras 1059
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1. Introduction

Let g be a finite simply-laced type simple Lie algebra and let n denote the
nilpotent subalgebra arising from a triangular decomposition of g. We consider
the ring CrN s of regular functions on the algebraic group N associated to n. The
study of good bases of CrN s, as well as its quantized version Aqpnq, has been an
intensively investigated topic since the works of Kashiwara [26] and Lusztig [34] in
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the early 90’s. Kashiwara [26] introduced the notion of crystal as a combinatorial
model describing the structure of the irreducible finite-dimensional representations
of the quantum group Uqpgq associated to g. He defined the lower global basis (resp.
upper global basis) using the crystal structure on U´

q pgq (resp. on the quantum
coordinate ring Aqpnq). Lusztig [34] used certain categories of perverse sheaves on
quiver varieties to define the canonical basis (resp. dual canonical basis) of U´

q pgq

(resp. Aqpnq). Grojnowski-Lusztig [16] and Kashiwara-Saito [28] proved that the
dual canonical basis and the upper global basis coincide. Several other remarkable
bases of CrN s have been discovered since then, such as the dual semicanonical basis
introduced by Lusztig [35] or the MV basis, constructed after the discovery of the
geometric Satake correspondence by Mirković-Vilonen [37].

Berenstein-Zelevinsky [4] observed that the dual canonical basis of CrN s had
interesting multiplicative properties. This was one of the main motivations for the
introduction of cluster algebras by Fomin-Zelevinsky [12]. These are defined as
certain commutative subalgebras of the field of rational functions Qpx1, . . . , xN q

where x1, . . . , xN are algebraically independent variables. They are generated by
certain distinguished generators called cluster variables that are grouped into over-
lapping finite sets of fixed cardinality N called clusters. The monomials involving
variables of the same cluster are called cluster monomials. The cluster variables can
be constructed from the variables x1, . . . , xN by performing an inductive procedure
called mutation. The initial data of this procedure consists in the N independent
variables x1, . . . , xN together with a quiver Q with N vertices and without any loop
or 2-cycle. Such a data is called a seed. For every k P t1, . . . , Nu, one defines a
new variable x1

k entirely determined by the xj and Q, as well as a new quiver Q1
k.

This yields a new seed, given by the variables x1, . . . , xk´1, x
1
k, xk`1, . . . , xN and

the quiver Q1
k. One of the first key points of cluster theory is the involutivity of

this procedure, i.e. mutating this new seed in the same direction k transforms it
back into the initial seed. Thus one can iterate this by applying arbitrary sequences
of mutations. Fomin-Zelevinsky [13] provided a Dynkin-type classification of the
initial quivers Q for which this process produces only a finite number of distinct
seeds.

It was shown by Geiß-Leclerc-Schröer [15] that the coordinate ring CrN s asso-
ciated to a simply-laced finite type Lie algebra g carries the structure of a cluster
algebra. Their work strongly relies on categorification techniques using represen-
tations of preprojective algebras. The mutations arise from the study of certain
T -systems called determinantal identities relating unipotent minors. Geiß-Leclerc-
Schröer also explicitly construct a certain family of seeds called standard seeds
parametrized by the set of reduced expressions of the longest element w0 of the
Weyl group W of g. The cluster variables of the standard seeds are certain special
cases of unipotent minors called flag minors.

After the works of Geiß-Leclerc-Schröer, other categorifications of CrN s were
constructed, but relying on categories of different natures. Unlike the additive
categorification of [15] via representations of preprojective algebras, a new kind
of categorification called monoidal categorification was introduced by Hernandez-
Leclerc [17]. The idea is to identify a given cluster algebra A with the Grothendieck
ring of an artinian monoidal category C via a ring isomorphism required to send the
cluster monomials of A onto classes of simple objects in C. A first class of examples
of such categorifications was provided in [17] for certain unipotent cells of CrN s
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associated with Coxeter elements of W . Concerning CrN s itself, it was proved by
Hernandez-Leclerc [18] that the Grothendieck ring of a certain category of finite-
dimensional representations of quantum affine algebras was isomorphic to CrN s.
A monoidal categorification of CrN s (as well as all its unipotent cells) was then
constructed in a vast series of works due to Kang-Kashiwara-Kim-Oh [22–25, 27]
using the representation theory of quiver Hecke algebras.

Quiver Hecke algebras (or KLR algebras) were introduced by Khovanov-Lauda
[29] and Rouquier [44] in the purpose of categorifying the negative half of the
quantum group Uqpgq. They are a family of Z-graded associative algebras indexed
by Q`. The category R ´ gmod of all graded finite-dimensional representations of
the Rpβq, β P Q` can be given a monoidal structure. Rouquier [44] and Varagnolo-
Vasserot [46] proved that the set of isomorphism classes of simple objects in R ´

gmod is in bijection with the elements of the dual canonical basis of CrN s. In the
case of a finite type Lie algebra g, these simple objects were classified by McNamara
[36] and Kleshchev-Ram [31] in terms of root partitions (or dominant words) using
the combinatorics of good Lyndon words, relying on the works of Leclerc [33].
This parametrization was shown to be compatible with the monoidal structure of
R ´ gmod (see [8]) and turns out to be convenient for studying the determinantal
modules categorifying the flag minors of CrN s. In [8], we used recent results of
Kashiwara-Kim [27] to provide an explicit description in terms of root partitions of
the determinantal modules corresponding to the cluster variables of the standard
seed Si when i P Redpw0q comes from a total ordering of an index set of simple
roots. This description will be useful in the proof of the second main result of this
paper (Theorem 5.10).

Kleshchev-Ram [31] also exhibited a (finite) family of distinguished irreducible
representations called cuspidal representations, satisfying several good properties.
Note that the notion of cuspidality depends on a preliminary choice of total ordering
of an index set of simple roots. The understanding of cuspidal modules was the mo-
tivation for the construction of homogeneous representations over simply-laced type
quiver Hecke algebras by the same authors in [30]. They are a (finite) remarkable
family of simple finite-dimensional modules in R ´ gmod parametrized by the so-
called fully-commutative elements of W . The combinatorics of fully-commutative
elements of Weyl groups is very rich and has been studied for a long time by Proctor
[40, 41], Stembridge [45] and Nakada [39] among others. A subfamily of homoge-
neous modules called strongly homogeneous in the terminology of [30] will be of
particular interest for us. It was already observed by Kleshchev and Ram that
the dimensions of these modules are given by the Peterson-Proctor hook formula.
This formula, introduced in an unpublished work of Peterson-Proctor, was general-
ized by Nakada [39] in a purely combinatorial context as a colored hook formula. It
turns out that these colored hook formulas can be conveniently interpreted in terms
of strongly homogeneous representations over quiver Hecke algebras by using cer-
tain tools developed in the recent work of Baumann-Kamnitzer-Knutson [3]. More
details on the structure of homogeneous representations can be found in [9, 10].

Mirković-Vilonen [37] exhibited a spectacular equivalence between the category
of finite-dimensional representations of a simple simply-connected reductive group
G and certain categories of perverse sheaves on the affine Grassmannian GrG_

associated to the Langlands dual of G. Moreover, the weight subspaces of the
highest weight representations of G are interpreted as cohomology spaces of certain
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sheaves on GrG_ . This is the geometric Satake correspondence. Mirković-Vilonen
introduced certain interesting closed irreducible subvarieties of GrG_ called MV
cycles that give rise to interesting bases of the finite-dimensional irreducible rep-
resentations of G via the geometric Satake correspondence. These bases can be
glued together into a basis of CrN s called the MV basis, indexed by certain MV
cycles called stable. The elements of this basis can also be parametrized in a more
combinatorial way using MV polytopes. Kamnitzer [20,21] gave an explicit descrip-
tion of these polytopes and showed that they carry a crystal structure in the sense
of Kashiwara. These polytopes are known to be the support of certain measures
called Duistermaat-Heckmann measures introduced by Brion-Procesi [6]. Consider-
ing certain Fourier transforms of the DH measures, Baumann-Kamnitzer-Knutson
[3] defined an algebra morphism

D : CrN s ÝÑ Cpα1, . . . , αnq

where α1, . . . , αn are algebraically independent variables representing the simple
roots. One of Baumann-Kamnitzer-Knutson’s main results consists in interpreting
the image under D of an element of the MV basis in terms of certain geometric
invariants of the corresponding MV cycle and used such connection as a key step
for proving a conjecture of Muthiah [38]. These invariants, called equivariant mul-
tiplicities, are general tools introduced by Joseph [19] and Rossman [42] and then
developed by Brion [5]. Given an algebraic variety X together with a torus T acting
on X, we consider the set XT of T -fixed points in X. For any point p P XT and any
T -invariant subvariety Y Ă X, the equivariant multiplicity of Y at p is a rational
function denoted εTp pY q. Brion [5] showed that if p is non-degenerate, then εTp pY q

is always of the form

εTp pY q “
Qp,Y pβ1, . . . , βmq

β1 ¨ ¨ ¨βm
,

where β1, . . . , βm are the weights of the action of T on the tangent space of X at p
andQp,Y is some polynomial. These equivariant multiplicities (and in particular the
polynomials Qp,Y ) are difficult to compute in general. The main general property
is the following:

(1.1) p P Y and Y smooth at p ñ εTp pY q “
1

β1 ¨ ¨ ¨βm
.

Taking X to be the affine Grassmannian and Y a MV cycle, Baumann-Kamnitzer-
Knutson show that the equivariant multiplicity of Y at a certain point of Y coincides
with the image under D of the MV basis element indexed by Y (see [3, Corollary
10.6]). In this situation, the weights involved in the denominator of the previous
equality are always positive roots (seen as linear functions in α1, . . . , αn).

In this paper we will mostly focus on the values of D on the elements of the dual
canonical basis. Indeed, Nakada’s colored hook formula can be straightforwardly
interpreted as follows: if M is a strongly homogeneous module in R ´ gmod and
w is the fully-commutative element of W associated to M via the construction of
Kleshchev-Ram [30], then the evaluation of D on the isomorphism class of M is of
the form

(1.2) DprM sq “
1

ś

βPΦw
`
β
.
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This outlines a remarkable similarity between geometric statements requiring cer-
tain smoothness conditions of MV cycles and algebraic ones requiring the (strong)
homogeneity of certain modules over quiver Hecke algebras. On the other hand, the
study of various examples (for instance when g is of type A3 or D4) suggests the
existence of certain coincidences between (prime) strongly homogeneous modules
and the determinantal modules categorifying flag minors. This provides a motiva-
tion for studying the image under D of all flag minors. We propose Conjecture 1,
suggesting that D surprisingly takes distinguished values similar to (1.1) and (1.2)
on all flag minors of CrN s, although the corresponding objects in R´gmod may not
be strongly homogeneous. In particular, this raises the question of the smoothness
of the MV cycles corresponding to flag minors.

Conjecture 1. Let g be a Lie algebra of finite simply-laced type and let x be a flag
minor in CrN s. Then the evaluation of D on x is of the form

Dpxq “
1

ś

βPΦ`
βnβpxq

,

where nβpxq is a nonnegative integer for every positive root β P Φ`.

The aim of this paper is to prove the following:

Theorem 1. Assume g is of type An, n ě 1 or D4. Then Conjecture 1 holds.
Moreover, for any standard seed Si “ ppx1, . . . , xN q, Qiq of CrN s, the polynomials

Pj :“
`

Dpxjq
˘´1

satisfy the following relations:

PjPj´piq “ βj

ź

lăjăl`piq
il¨ij“´1

Pl.

We refer to Section 3.1 for the precise definitions of the notations j´, l`. The
strategy of the proof is the following: we know that the standard seeds are related
to each other by certain cluster mutations, corresponding to changes of reduced
expressions of w0. Thus one shall first show that the desired statement is preserved
under these cluster mutations, so that it only remains to check it for one particular
standard seed.

We consider two standard seeds Si and Si1
related by a cluster mutation in the

direction k. We denote by x1, . . . , xN the cluster variables of Si and x1
k the new

variable produced by the mutation. We assume that Dpxjq is of the form 1{Pj for

every 1 ď j ď N and we want to show thatDpx1
kq is of the form 1{P 1

k. The first main
result of this paper consists in exhibiting certain relations between the Pj entirely

determined by i implying that Dpx1
kq is of the form 1{P 1

k (where P 1
k is a product of

positive roots) and proving that these relations are preserved under mutation, i.e.
the polynomials P1, . . . , Pk´1, P

1
k, Pk`1, . . . , PN satisfy the corresponding relations

determined by i1.
For any product of positive roots P and any positive root β, we denote by pβ;P q

the multiplicity of β in P .

Theorem 2. Let g be any simply-laced type simple Lie algebra and let i and i1 be
two reduced expressions of w0. Assume that the cluster variables x1, . . . , xN of the
standard seed Si satisfy the following properties:

(A) For every 1 ď j ď N , the rational fraction Dpxjq is of the form 1{Pj where
Pj is a product of positive roots.
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(B) For every 1 ď j ď N one has

PjPj´piq “ βj

ź

lăjăl`piq
il¨ij“´1

Pl.

(C) For every j P Jex and every 1 ď i ď N , one has pβi;Pjq ´ pβi;Pj`piqq ď 1.

Then the cluster variables of Si1
satisfy the analogous properties determined by i1.

The Property (B) is rather strong and has interesting consequences, as explained
in Remarks 5.8 and 6.4. Note that the Property (C) is only relevant in typesDn and
E6, E7, E8 as in type An the polynomials Pj are always square-free. Nonetheless,

it is crucial for proving that Dpx1
kq is of the desired form.

The second main result of this paper is to exhibit one particular standard seed
satisfying the conditions required by the previous Theorem for types An andD4. We
use Kang-Kashiwara-Kim-Oh’s results [25, 27] and more precisely the description
of certain determinantal modules in R ´ gmod in terms of root partitions.

Theorem 3. Assume g is of type An, n ě 1 or D4. Let inat denote the reduced
expression of w0 corresponding to the natural ordering on the vertices of the Dynkin
diagram of g. Then Properties (A), (B) and (C) hold for the standard seed Sinat .

As explained above, Theorem 1 follows by combining Theorems 2 and 3. More-
over, we also get that when g is of type An or D4, the flag minors of any standard
seed of CrN s satisfy Properties (B) and (C).

This paper is organized as follows. We begin with some reminders on quiver
Hecke algebras and their irreducible finite-dimensional representations (Sections 2.1
and 2.2). We also recall the constructions of determinantal modules from the works
of Geiß-Leclerc-Schröer [15] and Kang-Kashiwara-Kim-Oh [25] (Section 2.3). In
Section 3, we gather the main facts on the combinatorics of fully-commutative
elements of Weyl groups. We also explain (Section 3.3) how this combinatorics
is related to the representation theory of quiver Hecke algebras via the works of
Kleshchev-Ram [30]. Section 4 is devoted to the necessary reminders on the the-
ory of Mirković-Vilonen cycles and equivariant multiplicities following [3, 5, 37]. In
Section 5, we state our main results together with some motivations and explana-
tions about the structure of the proofs. Section 6 contains the proof of Theorem 2.
Sections 7 and 8 are respectively devoted to the proofs of Theorem 3 in types An

and D4. We conclude in Section 9 by discussing several evidences suggesting a
cluster-theoretic interpretation of prime strongly homogeneous modules.

2. Quiver Hecke algebras and their representations

We begin with some reminders about the representation theory of quiver Hecke
algebras and in particular its applications to monoidal categorifications of cluster
algebras following the works of Kang-Kashiwara-Kim-Oh [22, 25, 27].

2.1. Quiver Hecke algebras. We fix the notations and recall the main properties
of quiver Hecke algebras.

We will always consider a semisimple Lie algebra g of finite simply-laced type,
with a fixed labeling I “ t1, . . . , nu of the set of vertices of the associated Dynkin
diagram. We let Π “ tαi, i P Iu denote the set of simple roots, Q` :“

À

iPI Nαi,
and Φ` Ă Q` the set of positive roots. We let A “ paijq denote the Cartan matrix
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associated to g and we consider the symmetric bilinear form i, j ÞÑ i ¨ j on ZrIs

defined by i ¨ j :“ ai,j for every i, j P I. This induces a symmetric bilinear form
p¨, ¨q on Q` defined by pαi, αjq “ i ¨ j for any i, j P I. We also let M denote the
set of all finite words over the alphabet I. For any such word j “ pj1, . . . , jrq, the
weight of j is the element of Q` defined as

wtpjq :“
ÿ

iPI

7tk, jk “ iuαi P Q`.

Quiver Hecke algebras are defined as a family tRpβq, β P Q`u of associative k-
algebras indexed by Q` (where k is a fixed algebraically closed field of characteristic
different of 2). For every β :“

ř

i aiαi P Q`, the algebra Rpβq is generated by three
kinds of generators: there are polynomial generators x1, . . . , xr, braiding generators
τ1, . . . , τr´1 (where r :“

ř

i ai) and idempotents epjq, j P Seqpβq where Seqpβq is
the finite subset of M given by

Seqpβq :“ tj P M | wtpjq “ βu.

The idempotent generators commute with the polynomial ones and are orthogonal
to each other in the sense that

epjqepj1
q “ δj,j1epjq.

It is a crucial point that the algebra Rpβq carries a natural Z-grading given by

deg epjq “ 0 deg xkepjq “ 2 deg τlepjq “ ´jl ¨ jl`1

for every j “ pj1, . . . , jrq, r ě 1. Thus one can consider the category Rpβq ´ gmod
of finite dimensional graded Rpβq-modules. We also define

R ´ gmod :“
à

β

Rpβq ´ gmod.

The category R ´ gmod can be endowed with a structure of a monoidal category
via a monoidal product denoted by ˝ and constructed as a parabolic induction.
Therefore the Grothendieck group K0pR ´ gmodq has a ring structure. There is
also a grading shift functor in R ´ gmod which yields a Zrq˘1s-module structure
on K0pR ´ gmodq. The following results are the main properties of quiver Hecke
algebras:

Theorem 2.1 (Khovanov-Lauda [29], Rouquier [44]). There is an isomorphism of
Zrq˘1s-modules

K0pR ´ gmodq
»
ÝÑ Aqpnq.

Theorem 2.2 (Rouquier [44], Varagnolo-Vasserot [46]). The above isomorphism
induces a bijection between the set of classes of simple objects in R´ gmod and the
dual canonical basis of Aqpnq.

2.2. Irreducible finite-dimensional representations. This subsection is de-
voted to some reminders about Kleshchev-Ram’s parametrization of simple finite-
dimensional modules via root partitions (or dominant words) using the combina-
torics of good Lyndon words. We also recall the notions of graded character as well
as the quantum shuffle product formula. These will be useful in Section 8.

For a finite-type simple Lie algebra g, the simple objects in R´ gmod have been
classified by Kleshchev-Ram [31] in terms of root partitions. First fix an arbitrary



1056 ELIE CASBI

total order ă on I. It induces a lexicographic order on M that we still denote by
ă. Any module in R ´ gmod can be decomposed as a direct sum of vector spaces

M “
à

jPSeqpβq

epjq ¨ M.

Thus one can consider maxpMq the maximal element j for ă such that epjq ¨M ‰ 0.
Then one can define the cuspidal representations in R´gmod in the following way:

Proposition 2.3 ([31, Lemma 6.3]). For every positive root β P Φ`, there is a
unique simple module Sβ in Rpβq ´ gmod (up to isomorphism and grading shift)
such that

maxpSβq “ min pmaxpMq | M simple in Rpβq ´ gmodq .

The module Sβ is called the cuspidal representation of weight β. The map

β ÞÝÑ maxpSβq

induces a bijection from Φ` to a finite subset of M denoted GL and whose elements
are called good Lyndon words. The inverse of this bijection is given by

(2.1)
GL ÝÑ Φ`,
j ÞÝÑ wtpjq.

There is an algorithm that allows one to compute inductively the elements of GL
(see [33, Section 4.3]). The main classification result is the following:

Theorem 2.4 (Kleshchev-Ram [31]). There is a bijection between the set of iso-
morphism classes of simple objects (up to grading shift) in R ´ gmod and the set

M :“ tj1 ¨ ¨ ¨ jk | j1, . . . , jk P GL, j1 ě ¨ ¨ ¨ ě jku

given by

μ :“ j1 ¨ ¨ ¨ jk P M ÞÝÑ Lpμq :“ hd pLpj1q ˝ ¨ ¨ ¨ ˝ Lpjkqq

and moreover one has

maxpLpμqq “ μ.

With the previous notations one has in particular Lpjq “ Swtpjq for every j P GL.
The elements of M are called dominant words.

This framework allows one to compute products of modules in R ´ gmod via
the quantum shuffle product formula. First, recall that the graded character of a
module M in Rpβq ´ gmod is by definition a formal sum of words with coefficients
in Zě0rq˘1s given by

chqpMq :“
ÿ

jPSeqpβq

dimqpepjq ¨ Mqj.

Recall also that the quantum shuffle of two words j, j1 is defined as follows: write
j “ pj1, . . . , jrq, j1 “ pjr`1, . . . , jr`sq. Then

j ˝ j1 :“
ÿ

j2Pj�j1

q´εj2 j2,

where

j�j1 :“tpjσ´1p1q, . . . , jσ´1pr`sqq | σPΣr`s, σp1qă¨ ¨ ¨ăσprq, σpr`1qă¨ ¨ ¨ăσpr`squ
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and for every j2 P j� j1, the integer εj2 is defined by

εj2 :“
ÿ

kďrăl
σpkqąσplq

jk ¨ jl for σ such that j2
“ pjσ´1p1q, . . . , jσ´1pr`sqq.

Then one can extend by linearity the quantum shuffle product ˝ to any (finite)
formal sum of words. In particular given two modules M,N in R ´ gmod one can
define chqpMq ˝ chqpNq as

chqpMq ˝ chqpNq “

ÿ

j,j1

epjq¨M‰0
epj1

q¨N‰0

dimqpepjq ¨ Mq dimqpepj1
q ¨ Nq pj ˝ j1

q.

Then one has the quantum shuffle product formula:

Proposition 2.5 ([29, Lemma 2.20]). For every pair of objects M,N in R´gmod,
one has

chqpM ˝ Nq “ chqpMq ˝ chqpNq,

where the symbol ˝ on the left hand side refers to the monoidal product in R´gmod.

2.3. Determinantal modules. In this subsection we make some reminders about
determinantal modules in R ´ gmod following [25], adapting a former construction
due to Geiß-Leclerc-Schröer [15]. These constructions are also valid more generally
in any Cw, w P W but here we will use them only for R ´ gmod “ Cw0

where w0

stands for the longest element of the Weyl group W associated to g.
Geiß-Leclerc-Schröer [15] constructed a family of distinguished seeds for the clus-

ter structures of CrN s. Their construction actually involves the quantum cluster
structures on the quantum coordinate ring Aqpnq but here we will always work in
the classical setting. Geiß-Leclerc-Schröer consider certain elements Dpuλ, vλq of
CrN s called (quantum) unipotent minors parametrized by triples pλ, u, vq consist-
ing of a dominant weight λ and a couple pu, vq of elements of W . These unipotent
minors always belong to the dual canonical basis of CrN s when they are not zero
(see for instance [25, Lemma 9.1.1]). These elements satisfy certain remarkable
relations called determinantal identities (see [15, Proposition 5.4]). Note that such
identities already appear in the work of Fomin-Zelevinsky [11]. A particularly inter-
esting family of determinantal identities is obtained by considering certain special
unipotent minors, obtained by taking λ to be a fundamental weight ωi, i P I to-
gether with Weyl group elements of the form u “ si1 ¨ ¨ ¨ sik and v “ sj1 ¨ ¨ ¨ sjl such
that ik “ jl “ i and ip “ jp if p ď minpk, lq. Geiß-Leclerc-Schröer [15] prove that
the determinantal identities relating these unipotent minors can be interpreted as
exchange relations associated to cluster mutations in CrN s.

Geiß-Leclerc-Schröer construct a family of seeds tSi, i P Redpw0qu in CrN s, called
standard seeds, indexed by the reduced expressions of w0. For each i “ pi1, . . . , iN q P

Redpw0q, the quiver of the seed Si can be constructed from i as explained in Sec-
tion 6. The cluster variables of the seed Si are the unipotent minors

Dpsi1 ¨ ¨ ¨ sikωik , ωikq 1 ď k ď N.

These minors are called (quantum) flag minors. The determinantal identities be-
tween flag minors are crucial in the study of the cluster structure of CrN s. Note
that the rank of this cluster structure (i.e. the number of cluster variables in each
seed of CrN s) is equal to the length of w0 or equivalently to the number of positive
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roots of g. The results of [15] mainly rely on additive categorification techniques
using representations of the preprojective algebra. Kang-Kashiwara-Kim-Oh [25]
adapted this construction to the monoidal setting by lifting the non zero unipotent
minors of CrN s to R ´ gmod via the isomorphism of Theorem 2.1. The modules
obtained this way are unique (up to isomorphism and grading shift) and are called
determinantal modules. As the non zero unipotent minors are always elements of
the dual canonical basis, it follows from Theorem 2.2 that the determinantal mod-
ules are simple. They are also known to be real in the sense of Hernandez-Lelcerc
[17] (see [25, Lemma 10.2.2]).

In particular, for each i “ pi1, . . . , iN q P Redpw0q and for every 1 ď k ď N , we
denote by M i

k the determinantal module defined by (up to isomorphism and shift)

rM i
ks “ Dpsi1 ¨ ¨ ¨ sikωik , ωikq,

where rM s denotes the class of M in K0pR ´ gmodq. One of the main results due
to Kang-Kashiwara-Kim-Oh [25, Theorem 11.2.2] is to prove that the datum the
modules M i

1, . . .M
i
N together with the quiver Qi forms a monoidal seed admitting

successive monoidal mutations in any exchangeable directions (in the sense of [25,
Definitions 6.2.1 and 6.2.3]). This allows them to prove that R´gmod is a monoidal
categorification in the sense of Hernandez-Leclerc [17] of the cluster structure of
CrN s (as well as analogous statements for each of the unipotent cells CrNpwqs, w P

W ).

R ´ gmod

��

Q pM i
1, . . .M

i
N q

�

��

determinantal modules associated to i

CrN s Q pxi
1, . . . , x

i
N q flag minors of the seed Si.

By [25, Proposition 10.2.4], the determinantal modules can be constructed induc-
tively by successive applications of the induction functors categorifying the crystal
structure of the dual canonical basis of CrN s. In [8], we used Kashiwara-Kim’s
results [27] to provide a combinatorial description of the determinantal modules
appearing in the seeds

Si, i corresponding to a total ordering on simple roots.

This description uses Kleshchev-Ram’s parametrization via dominant words re-
called in the previous subsection. Fix a labeling I of the set of simple roots of g
and let ă be any arbitrary order on I. We still denote by ă the induced lexico-
graphic order ă on the set GL of good Lyndon words (see Section 2.1) . It yields
an order on the set of positive roots Φ` via the bijection (2.1). By the results of
Rosso [43] this order turns out to be a convex order (see [33, Proposition 26]). Let
iă denote the corresponding reduced expression of w0 and consider the seed Siă in
CrN s. Note that different orderings on I may give the same seed. Moreover certain
of the seeds Si may not come from any ordering ă.

Example 2.6. Let g be of type A3. Then there are 14 seeds in CrN s, 6 of them
being of the form Si. Among these, 5 of them are of the form Siă .

We write the reduced expression iă of w0 as iă “ pi1, . . . , iN q (with N :“ lpw0q).
The determinantal modules of the seed Siă can be described in terms of dominant
words as follows.
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Theorem 2.7 ([8, Theorem 3.7]). Let px1, . . . , xN q denote the cluster variables of
the seed Siă and let μk P M denote the dominant word such that xk “ rLpμkqs for
every 1 ď k ď N . Write

μk :“ pjN q
cN ¨ ¨ ¨ pj1q

c1 .

Then the tuple pc1, . . . , cN q is given by

cj “

#

1 if j ď k and ij “ ik,

0 otherwise.

3. Homogeneous modules over quiver Hecke algebras

This section is devoted to some reminders about Kleshchev-Ram’s construction
of homogeneous simple modules over quiver Hecke algebras of finite simply-laced
type. These constitute a finite class of simple objects in R´gmod characterized by
their being concentrated in a single degree (which explains the terminology homoge-
neous). They are classified by the rich combinatorics of fully-commutative elements
of Weyl groups. We begin by recalling several known combinatorial properties of
these elements after the works of Peterson-Proctor [40, 41], Stembridge [45] and
Nakada [39].

3.1. Combinatorics of fully-commutative elements of Weyl groups. We
recall known combinatorial facts about several remarkable classes of elements of
Weyl groups, namely the fully-commutative, minuscule and dominant minuscule
elements. Throughout this section W will stand for the Weyl group associated to
a Lie algebra g of finite Dynkin type (but not necessarily simply-laced). We let
tsi, i P Iu denote the set of the simple reflections of W , where I is a finite index set.
We also let P (resp. P_) denote the weight lattice (resp. the coweight lattice) of g.
We denote by αi, i P I (resp. α_

i , i P I) the simple roots (resp. the simple coroots)
and we let x¨, ¨y denote the bilinear form on P_ ˆ P such that xα_

i , αjy “ i ¨ j for
every i, j P I.

Definition 3.1 is due to Stembridge [45] generalizing definitions introduced by
Peterson-Proctor relying on previous works by Proctor [40, 41].

Definition 3.1. An element w P W is said to be fully-commutative if for any
pair pi, jq P I such that i ¨ j ‰ 0, there is no reduced expression of w containing a
subword of the form pi, j, i, j, . . .q of length m, where m is the order of sisj in W .

Note that if an element w P W admits a reduced expression satisfying this
property, then it is also the case for every reduced expression of w. In the case
of a simply-laced Weyl group, the notion of fully-commutative is equivalent to
requiring that no reduced expression of w should contain a subword of braid form
pi, j, iq with i ¨ j “ ´1. In other words, all the reduced expressions of w can be
recovered from one given reduced expression by only performing changes of the
form p. . . , k, l, . . .q Ñ p. . . , l, k, . . .q for k, l P I such that k ¨ l “ 0.

One now defines minuscule and dominant minuscule elements of W .

Definition 3.2. An element w P W is said to be minuscule (resp. dominant
minuscule) if there exists an integral weight λ P P (resp. a dominant integral
weight λ P P`) such that for any reduced expression pj1, . . . , jN q of w, one has

xα_
jk
, sjk`1

¨ ¨ ¨ sjNλy “ 1

for every 1 ď k ď N .
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As before one can replace “for any reduced expression” by “there exists a reduced
expression” in this definition (see [45, Propositions 2.1]). Stembridge [45] gave the
following useful classification of minuscule and dominant minuscule elements of W .
We use the following notation from [15]: if j “ pj1, . . . , jN q is a reduced expression
of an element w P W , then for every 1 ď k ď N we set

k` :“ min ptk ă l ď N | jl “ jku Y tN ` 1uq ,

k´ :“ max ptl ă k ď N | jl “ jku Y t0uq .

In other words k` (resp. k´) is the position in i of the next (resp. previous)
occurrence of the letter ik and one has k` “ N ` 1 (resp. k´ “ 0) if and only if k
is the position of the last (resp. first) occurrence of the letter jk in j.

Theorem 3.3 ([45, Propositions 2.3, 2.5]). Let w P W and fix a reduced expression
pj1, . . . , jN q of w.

‚ The element w is minuscule if and only if for every 1 ď k ď N , one has

k` ď N ñ

ÿ

kălăk`

jk ¨ jl “ ´2.

‚ The element w is dominant minuscule if and only if it is minuscule and in
addition, one has for every 1 ď k ď N ,

k` “ N ` 1 ñ

ÿ

ląk

jk ¨ jl ě ´1.

Remark 3.4.

(1) It is proven by Stembridge [45] that minuscule (and a fortiori dominant
minuscule) elements are fully-commutative.

(2) If g is of type An, n ě 1 then one can show that every fully-commutative
element is in fact minuscule so that these two notions coincide. But in other
types, the notions of fully-commutative, minuscule and dominant minuscule
elements are distinct.

Example 3.5. In type A3, the elements s1s2s3 and s2s1s3s2 are dominant minus-
cule. The element s2s3s1 is minuscule but not dominant minuscule. The element
s3s2s1s2 is not fully-commutative.

In type D4 with 3 being the trivalent node of the Dynkin diagram, the element
s3s1s2s4s3 is fully-commutative but is not minuscule (and a fortiori not dominant
minuscule).

We will respectively denote by FC,Min,Min` the sets of fully-commutative,
minuscule, and dominant minuscule elements of W .

3.2. Colored hook formulas. In this paragraph we present the most remarkable
properties of dominant minuscule elements of Weyl groups, namely the Peterson-
Proctor hook formula as well a generalized version established by Nakada [39] called
colored Peterson-Proctor hook formula.

We still consider the Weyl group W of a finite type Lie algebra g and we fix w
a dominant minuscule element of W . We also let N :“ lpwq denote the length of
w and Redpwq the set of all reduced expressions of w. Peterson-Proctor proved a
formula for the cardinality of Redpwq. We let

Φw
` :“ Φ` X wΦ´
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denote the set of positive roots associated to w. This set is of cardinality lpwq.
The elements of Φw

` are given in the following way: choose a reduced expression
pj1, . . . , jN q of w. Then Φw

` “ tβ1, . . . , βNu with

βk :“ sj1 ¨ ¨ ¨ sjk´1
pαjkq

for every 1 ď k ď N . Recall that this set Φw
` does not depend on any choice of

reduced expression of w and that Φw
` ‰ Φw1

` if w ‰ w1. The Peterson-Proctor hook
formula can be written as follows:

Proposition 3.6 (Peterson-Proctor). Let w be a dominant minuscule element of
W . Then the number of reduced expressions of w is given by

(3.1) 7Redpwq “
lpwq!

ś

βPΦw
`
htpβq

.

Nakada [39] proved a generalisation of this formula. Recall the following nota-
tions from [8, Section 6]: we consider the simple roots α1, . . . , αn of g as indepen-
dent formal variables and for every positive root β “ a1α1 ` ¨ ¨ ¨ ` anαn P Φ` with
a1, . . . , an P Zě0, we consider the rational function

1

β
:“

1

a1α1 ` ¨ ¨ ¨ ` anαn
P Rpα1, . . . , αnq.

Nakada’s colored hook formula can be written as follows:

Theorem 3.7 ([39, Corollary 7.2]). Let w be a dominant minuscule element of W .
Then the following equality holds in Rpα1, . . . , αnq:

(3.2)
ź

βPΦw
`

1

β
“

ÿ

pj1,...,jN qPRedpwq

1

αj1

1

αj1 ` αj2

¨ ¨ ¨
1

αj1 ` αj2 ` ¨ ¨ ¨ ` αjN

.

Specializing all the variables αj to 1 we recover the Peterson-Proctor hook for-
mula (3.1).

3.3. Homogeneous representations in R´gmod. We now recall a construction
due to Kleshchev-Ram [30] of certain distinguished irreducible finite dimensional
representations over quiver Hecke algebras. We assume that g is of finite simply-
laced type. Consider the category R ´ gmod of graded finite dimensional modules
over the quiver Hecke algebras associated to g. One of Kleshchev-Ram’s motivations
was the study of cuspidal modules in R´gmod, i.e. certain simple modules playing
the role of fundamental representations in Lie theory. This led them to introduce
a larger (but still finite) class of simple objects in R ´ gmod, called homogeneous
modules.

Definition 3.8 (Kleshchev-Ram). A module in R ´ gmod is called homogeneous
if it is concentrated in a single degree with respect to the natural grading of quiver
Hecke algebras.

We let Hom denote the set of simple homogeneous modules in R ´ gmod up to
isomorphism and grading shift. The following statement shows that the elements
of Hom are parametrized in a natural way by fully-commutative elements of the
Weyl group of g.
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Theorem 3.9 ([30, Theorem 3.6]). There is a bijection

FC ÝÑ Hom,
w ÞÝÑ Spwq

between the set of fully-commutative elements of W and the set of isomorphism
classes of simple homogeneous modules in R ´ gmod. The homogeneous module
Spwq admits the following decomposition into weight subspaces:

Spwq “
à

pj1,...,jN qPRedpwq

Cepj1, . . . , jN q.

In other words the weight spaces of Spwq are all one-dimensional and they are in
bijection with the set of reduced expressions of w.

The image of Min` via the above bijection is a subfamily of homogeneous mod-
ules called strongly homogeneous modules.

Remark 3.10. It follows from the previous Theorem together with Proposition 3.6
that if w is dominant minuscule, then the strongly homogeneous module Spwq has
dimension

dimSpwq “
lpwq!

ś

βPΦw
`
htpβq

.

Remark 3.11. In type An, the cuspidal modules for arbitrary orderings on Φ` are
always homogeneous. In fact, if M is a simple module of multiplicity-free weight,
i.e. M is a simple Rpβq-module with β P Q` of the form ε1α1 ` ¨ ¨ ¨ ` εnαn with
ε1, . . . , εn P t0, 1un, then M is always homogeneous. In the particular case of the
natural ordering on the vertices of the type An Dynkin diagram, i.e. 1 ă 2 ă ¨ ¨ ¨ ă

n, the cuspidal modules in R ´ gmod turn out to be strongly homogeneous.
In type Dn, the cuspidal modules for the natural ordering are always homoge-

neous (see [31, Section 8.2]).

4. Mirković-Vilonen cycles and equivariant multiplicities

Throughout this section G denotes a semisimple simply-connected group, N the
unipotent radical of a Borel subgroup B of G, and T a maximal torus in B. We let
g, n, b, t denote their respective Lie algebras. We fix a labeling I “ t1, . . . , nu of the
vertices of the Dynkin diagram of g and we let α1, . . . , αn denote the corresponding
simple roots. We also let P denote the weight lattice and W the Weyl group of g.

4.1. Geometric Satake correspondence and MV basis. Here we fix notations
and recall the main features of the geometric Satake correspondence following [3,37].
We also refer to [47] for more details about the geometry of the affine Grassmannian
and the geometric Satake correspondence. Mirković-Vilonen [37] discovered an
intriguing connection between the category of finite-dimensional representations of
a complex reductive algebraic group G on the one hand and a certain category
of perverse sheaves on the affine Grassmannian GrG_ associated to the Langlands
dual of G on the other hand. They exhibited a functor relating these two categories
and proved that it satisfies several remarkable properties. In particular, the weight
spaces of irreducible representations of G can be interpreted as the cohomology
spaces of certain subvarieties of GrG_ whose irreducible components are called
Mirković-Vilonen cycles. One can use these to define an interesting basis of the
algebra CrN s of functions on the unipotent radical N of G called the MV basis. The
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works of Kamnitzer [21], Anderson [1] and Baumann-Kamnitzer [2] show that this
basis carries a natural crystal structure and has a combinatorial parametrization
in terms of MV polytopes.

We consider the algebraically closed field C and we set

O :“ Crrtss and K :“ Cpptqq.

We denote by G_ the Langlands dual of G. The affine Grassmannian GrG_ can be
defined as

GrG_ :“ G_
pKq{G_

pOq.

There is a natural action of T_pCq (T_ is a maximal torus in G_) on GrG_ whose
locus of fixed points is given by a collection tLμ, μ P P u of points inGrG_ indexed by
the weight lattice of G. There is also a G_pOq-action on GrG_ and for a dominant
weight λ P P`, we let GrλG_ denote the orbit of Lλ under this action. The affine
Grassmannian can be decomposed as

GrG_ “

ğ

λPP`

GrλG_ .

Moreover, for every λ P P` one has

GrλG_ “

ď

μPP`

μďλ

GrμG_ ,

where ď is the natural partial ordering on P defined by μ ď λ ô λ ´ μ P Q`

(recall the notation Q` from Section 2.1). Let us now briefly recall the definition of
Mirković-Vilonen cycles. The regular dominant weight ρ :“ p

ř

αPΦ`
αq{2 induces

a homomorphism Cˆ Ñ T_pCq and thus yields a Cˆ-action on GrG_ . The points
Lμ, μ P P are exactly the fixed points of this Cˆ-action. Denoting respectively
Sμ and Sμ

´ the attractive and repulsive sets of Lμ, we have the Bialynicki-Birula
decomposition

GrG_ “

ď

μPP

Sμ
“

ď

μPP

Sμ
´.

For every λ P P` and μ P P , an MV-cycle of type λ and weight μ is by definition
an irreducible component of the closed subvariety of GrG_ given by

GrλG_ X Sμ
´.

One denotes Zpλqμ the set of all MV cycles of type λ and weight μ and

Zpλq :“
ď

μPP

Zpλqμ.

The geometric Satake correspondence [37] implies that the MV cycles carry a lot
of information about the representation theory of G. For instance, the set of fun-

damental classes in H‚pGrλG_ X Sμ
´q of all MV cycles of type λ and weight μ forms

a basis of the subspace Lpλqμ of weight μ in the irreducible representation Lpλq of
G of highest weight λ. In particular one has

dimC Lpλqμ “ 7Zpλqμ.

Gathering these bases together we get that the set

trZs | Z P Zpλqu
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forms a basis of Lpλq called the (upper) MV basis of Lpλq. Then there is a way to
glue these bases for all λ P P` to get a basis of CrN s called the MV basis of CrN s

(see [3, Section 6.1] for more details). This basis is denoted tbZ , Z P Zp8qu where
the parametrizing set Zp8q is given by certain MV cycles called stable MV cycles,
whose weights belong to ´Q`.

4.2. Equivariant multiplicities of MV cycles. In this subsection we recall sev-
eral notions introduced by Baumann-Kamnitzer-Knutson [3]. One of their main
motivations was Muthiah’s conjecture [38] stating the W -equivariance of a certain
map Lpλq ÝÑ Cpα1, . . . , αnq where Lpλq is the irreducible representation of highest
weight λ of G. This map is defined using geometric tools called equivariant multi-
plicities developed by Brion [5] relying on former constructions due to Joseph [19]
and Rossmann [42]. The proof of [3] crucially involves the geometric Satake cor-
respondence together with a formula for Duistermaat-Heckmann measures proved
by Knutson [32].

The notion of equivariant multiplicity of a closed projective scheme has been
introduced by Brion [5]. Given such a scheme X together with an action of a
torus T on X, we let XT denote the set of fixed points of this action and HT

‚ pXq

denote the T -equivariant homology of X. We assume all the fixed points are non-
degenerate, i.e. for each p P XT the weights of the action of T on the tangent space
of X at p are non zero. It follows from Brion’s results [5] that the set of homology
classes of the points in the fixed locus XT actually forms a Cptq-basis of S´1HT

‚ pXq

for a certain multiplicative subset S of HT
‚ pXq (see also [3, Section 9.2]). Therefore

one can decompose the class of X on this basis as

rXs “

ÿ

pPXT

εTp pXqrtpus.

The coefficient εTp pXq P Cptq is called the equivariant multiplicity of X at p. Let us
state an important property of these equivariant multiplicities that can be obtained
as a consequence of [5, Theorem 4.2].

Proposition 4.1 ([5, Theorem 4.2]). Let p P XT non-degenerate and let β1, . . . , βm

denote the weights of the action of T on the tangent space of X at p. Then for any
closed T -invariant subvariety Y Ă X containing p, one has

Y is smooth at p ñ εTp pY q “
1

βi1 ¨ ¨ ¨βir

,

where r :“ dimpY q and βi1 , . . . , βir denote the weights of the action of T on TxY Ă

TxX.

Remark 4.2.

(1) Note that by [5, Theorem 4.2 (iii)] this implication is actually an equivalence
in the special case where Y is X itself.

(2) If Y does not contain p, then εTp pY q “ 0 (see [5, Theorem 4.2 (i)]).
(3) Brion [5] also shows that this notion of equivariant multiplicity actually

coincides with a definition due to Rossmann [42]. More precisely, he proves
that when X is smooth at the point p, Rossmann’s equivariant multiplicity
of Y at p is equal to pβ1 ¨ ¨ ¨βmq ¨ εTp pY q (see [5, Theorem 4.5]).

Baumann-Kamnitzer-Knutson [3] used this notion of equivariant multiplicity in
the study of the MV basis of CrN s via Duistermaat-Heckmann measures. These
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measures were already known to be supported on the MV polytopes. One of the
main results of [3] is to provide a formula allowing to relate these measures to
the equivariant multiplicities of MV cycles. More precisely, with the notations of
Proposition 4.1, we consider X :“ GrG_ the affine Grassmannian associated to
a semisimple algebraic reductive group G, together with the action of the torus
T_pCq. As recalled in the previous section, the set of fixed points of this action
is tLμ, μ P P u. For each μ P P , the point Lμ is known to belong to any MV
cycle of weight μ and it is known that Lμ is non-degenerate. The MV cycles are
closed irreducible subvarieties of GrG_ and are invariant under the action of T_ and
thus will play the role of Y in Proposition 4.1. As the present paper mostly deals
with the simply-laced case, we will make the identification LieT_pCq » LieT pCq

and hence identify the field CpLieT_pCqq with Cpα1, . . . , αnq where α1, . . . , αn are
indeterminates in bijection with the simple roots of G. We refer to [3, Corollary
10.6] for more precise statements.

Let us describe the formulas proved in [3]. It is known (see for instance [14,15])
that the algebra CrN s can be identified with the dual (as a Hopf algebra) of Upnq.
We will denote by p¨, ¨q this duality. Choose a root vector ei P n of weight αi for
each i P I. For any N ě 1 and any N -tuple j “ pj1, . . . , jN q of elements of I, we set
ej :“ ej1 ¨ ¨ ¨ ejN P Upnq. We also define the following rational fraction in α1, . . . , αn

following [3]:

Dj :“
1

αj1pαj1 ` αj2q ¨ ¨ ¨ pαj1 ` ¨ ¨ ¨ ` αjN q
.

Then one defines the following map:

(4.1)
D : CrN s ÝÑ Cpα1, . . . , αnq,

f ÞÝÑ
ř

j Djpf, ejq.

Note that this sum is always finite as Upnq acts locally nilpotently on CrN s. One of
the main results of [3] is that the evaluation of D on an element bZ of the Mirković-
Vilonen basis can be related to a certain equivariant multiplicity of the MV cycle
Z.

Theorem 4.3 ([3, Lemma 8.3, Corollary 10.6]).

(1) The map D is an algebra morphism.
(2) For any μ P ´Q` and any stable MV cycle Z of weight μ, one has

DpbZq “ εT
_

Lμ
pZq.

Combining Theorem 4.3 with Brion’s Proposition 4.1, we get:

Corollary 4.4. Let Z be a stable MV cycle of weight ´ν, ν P Q`. Assume Z is
smooth at the point L´ν . Then one has

DpbZq “
1

βi1 ¨ ¨ ¨βir

,

where βi1 , . . . , βir P Φ` are the weights of the action of T_pCq on the tangent space
of Z at L´ν .

Remark 4.5. Baumann-Kamnitzer-Knutson proved that the map D has the follow-
ing geometric counterpart [3, Proposition 8.4]. For every regular element x in t, the
group N acts simply transitively on the subset x ` n of g. Hence one can consider
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the unique nx P N such that Adnx
pxq “ x ` e. Then the algebra morphism D is

dual to the morphism of varieties given by

treg ÝÑ N,
x ÞÝÑ nx.

Remark 4.6. The morphism D provides a very useful tool to compare various bases
of CrN s. For instance Dranowski-Kamnitzer-Morton-Ferguson [3] show that the
MV basis and the dual semicanonical basis of CrN s are not the same by exhibiting
elements of these bases satisfying some compatibility condition (see [3, Definition
12.1]) but where D nonetheless takes different values.

5. Equivariant multiplicities and determinantal modules in R ´ gmod

This section contains the statements of the main results of this paper. We con-
sider the category R´gmod associated to a simply-laced type Lie algebra g. We be-
gin by proving a formula for the equivariant multiplicities of strongly homogeneous
modules in this category using Nakada’s colored hook formula [39]. We explain why
this provides a natural motivation for the study of equivariant multiplicities of the
determinantal modules categorifying the flag minors in CrN s.

5.1. Equivariant multiplicities and strongly homogeneous modules. In this
subsection we outline a remarkable property of strongly homogeneous modules in
the sense of Kleshchev-Ram [30]: the image of their isomorphism classes under the
morphism D takes a distinguished form that can be viewed as a generalized version
of the Peterson-Proctor hook formula. This property will be useful in Sections 7
and 8.

We consider a Lie algebra g of finite simply-laced type and we let W denote
the corresponding Weyl group. Consider an element of the dual canonical basis of
CrN s. It can be written as the isomorphism class of a simple object M in R´gmod.
Decompose M as the (finite) direct sum of its weight subspaces:

M “
à

j

epjq ¨ M.

Then it follows from the definition of D (see (4.1)) that its evaluation on rM s is
given by

(5.1) DprM sq “

ÿ

j“pj1,...,jrq

dimpepjq ¨ Mq
1

αj1pαj1 ` αj2q ¨ ¨ ¨ pαj1 ` ¨ ¨ ¨ ` αjrq
.

In what follows, we will be using this expression to compute the images under D of
elements of the dual canonical basis. In particular, we can now show that D takes
remarkable values on the classes of strongly homogeneous modules (see Section 3.3).

Proposition 5.1. Let w P Min` Ă W be a dominant minuscule element of W
and let Spwq denote the corresponding strongly homogeneous module in R ´ gmod.
Then one has

DprSpwqsq “

ź

βPΦw
`

1

β
.
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Proof. By Theorem 3.9, all the weight subspaces of Spwq are one-dimensional and
are in bijection with the reduced expressions of w. Hence it follows from Equa-
tion (5.1) that

DprSpwqsq “

ÿ

pj1,...,jN qPRedpwq

1

αj1

1

αj1 ` αj2

¨ ¨ ¨
1

αj1 ` αj2 ` ¨ ¨ ¨ ` αjN

.

This is exactly the right hand side of Nakada’s colored hook formula (3.2) and thus
Theorem 3.7 implies

DprSpwqsq “

ź

βPΦw
`

1

β
. �

Example 5.2 shows that this property fails if one considers simple modules (even
homogeneous ones) that are not strongly homogeneous.

Example 5.2. Consider for instance the simple module Lp231q in type A3 (with
the natural ordering on good Lyndon words). This module is homogeneous and
corresponds to s2s3s1 P W via the bijection of Theorem 3.9. This element is
minuscule but not dominant minuscule. It has two reduced expressions, namely
p2, 3, 1q and p2, 1, 3q, and thus one has

DprSps2s3s1qsq “
1

α2pα2 ` α3qpα1 ` α2 ` α3q
`

1

α2pα1 ` α2qpα1 ` α2 ` α3q

“
α1 ` 2α2 ` α3

α2pα1 ` α2qpα2 ` α3qpα1 ` α2 ` α3q
.

The main motivations for the present work come from the observations that
there seems to be an intimate connection between the set of strongly homogeneous
modules Spwq, w P Min` and the set determinantal modules categorifying the flag
minors of CrN s (see Section 2.3). We will go back to this in the last Section of this
paper.

Example 5.3. Let us detail the type A3 case as an example. There are 6 positive
roots and the cluster algebra CrN s has 14 seeds. There are 3! “ 6 total orderings
on I “ t1, 2, 3u. We can compute the determinantal modules of the corresponding
standard seeds using Theorem 2.7. For instance, the choice of 1 ă 2 ă 3 yields the
following ordering on Φ`:

α1 ă α1 ` α2 ă α1 ` α2 ` α3 ă α2 ă α2 ` α3 ă α3.

The corresponding reduced expression of w0 is i “ p1, 2, 3, 1, 2, 1q and the determi-
nantal modules of the seed Si are given by

Lp1q Lp12q Lp123q Lp21q Lp2312q Lp321q.

Similarly one can repeat this procedure for the other orderings on I. We obtain five
distinct standard seeds. It turns out that this is enough to get all the flag minors.
We can observe that the determinantal modules obtained this way are all strongly
homogeneous and correspond to the following Weyl group elements

s1, s2, s3, s1s2, s2s3, s1s2s3, s3s1s2, s3s2s1, s2s3s1s2.

It is straightforward to check that the homogeneous modules Spwq for w in this
list are exactly the prime strongly homogeneous modules in R ´ gmod (Indeed,
the only dominant minuscule element of S3 that is missing in this list is s3s1,
but Sps3s1q “ Lp31q “ Lp3q ˝ Lp1q is not prime). Thus the determinantal modules
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categorifying the flag minors coincide with the prime strongly homogeneous modules
in this case.

Another interesting case is where g is of typeD4, which will be studied in detail in
Section 8. Although the determinantal modules are not necessarily homogeneous in
this case, it seems that prime strongly homogeneous modules still categorify certain
flag minors. Therefore it is natural to ask the following:

Question 5.4. Could the distinguished value of D be a characteristic of the flag
minors, rather than a specific property of classes of strongly homogeneous modules?

Comparing with the geometric point of view, we know from Corollary 4.4 that the
values of D take a remarkable form on the elements of the MV basis corresponding
to MV cycles satisfying certain smoothness properties. Thus given a MV cycle Z
such that bZ is a flag minor of CrN s, this also raises the question of the smoothness
of Z at Lμ where μ P ´Q` denotes the weight of Z.

5.2. The main results. Motivated by the discussion of the previous Section, we
now state the main results of this paper. They essentially split into two main parts:
one consists in exhibiting several good properties on equivariant multiplicities that
propagate under certain cluster mutations, and the other one consists in checking
that these properties are indeed satisfied for a particular standard seed in CrN s.
Question 5.4 suggests Conjecture 5.5:

Conjecture 5.5. Let g be a Lie algebra of finite simply-laced type and let x be a
flag minor in CrN s. Then the equivariant multiplicity of x is of the form

Dpxq “
1

ś

βPΦ`
βnβpxq

,

where nβpxq is a nonnegative integer for every β P Φ`.

The strategy for proving this conjecture is the following. We know that the
standard seeds of CrN s are related to each other by certain cluster mutations,
each of which corresponds to a change of reduced expression of w0 i.e. there is
k P t1, . . . , Nu such that ik “ p, ik`1 “ q and ik`2 “ p with p ¨ q “ ´1:

i “ p. . . , p, q, p, . . .q � i1 “ p. . . , q, p, q, . . .q,

Si “ ppx1, . . . , xN q, Qiq � Si1
“ ppx1, . . . xk´1, x

1
k, xk`1, . . . , xN q, Qi1

q.

The proof is composed of two steps:

‚ Firstly, we show that the desired result propagates under these cluster mu-
tations. Thus we start by assuming that Dpxjq is of the form 1{Pj for every

1 ď j ď N . We want to show that Dpx1
kq is of the form 1{P 1

k. As D is an

algebra morphism, one can immediately express Dpx1
kq in terms of the Pj .

But then it is not hard to see that Dpx1
kq has no reason to take the desired

form, at least without any further assumptions on the Pj . Therefore, we
consider certain relations between the Pj entirely determined by i implying

that Dpx1
kq is of the form 1{P 1

k. We prove that these relations are pre-
served under mutation, i.e. the polynomials P1, . . . , Pk´1, P

1
k, Pk`1, . . . , PN

satisfy the corresponding relations determined by i1. Thus this procedure
can be iterated to arbitrary sequences of mutations from one standard seed
to another.
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‚ Secondly, we shall exhibit a particular standard seed in CrN s whose cluster
variables xj , j P t1, . . . , Nu have equivariant multiplicities of the form 1{Pj ,
and check that the polynomials Pj satisfy the relations required in the
previous step.

The first main result of this paper consists in proving the first step for all simply-
laced types.

Theorem 5.6. Let g be any simply-laced type simple Lie algebra and let i and i1 be
two reduced expressions of w0 related as above. Assume that the cluster variables
x1, . . . , xN of the standard seed Si satisfy the following properties:

(A) For every 1 ď j ď N , the rational fraction Dpxjq is of the form 1{Pj where
Pj is a product of positive roots.

(B) For every 1 ď j ď N one has

PjPj´piq “ βj

ź

lăjăl`piq
il¨ij“´1

Pl

with P0 :“ 1.
(C) For every j P Jex and every 1 ď i ď N , one has pβi;Pjq ´ pβi;Pj`piqq ď 1.

Then the cluster variables of Si1
satisfy the analogous properties determined by i1.

Remark 5.7. Note that we allow the left hand-side of the inequality (C) to be
negative. Moreover, this inequality is relevant only in types Dn and E6, E7, E8 as
the Pj are always multiplicity-free in type An (for any standard seed).

Remark 5.8. Let us outline a curious consequence of Property (B). The polynomial
Pj´ as well as all the polynomials involved in the right hand side are all of the
form Pl for some l strictly smaller than j. Thus if the Property (B) holds for
the standard seed Si, then for every j, Pj is entirely determined by βj and by
the Pl, l ă j. By a straightforward induction, this implies that the polynomials
P1, . . . , PN are in fact entirely determined by the data of the Pj such that j´ “ 0,
i.e. the positions of the first occurrence in i of each letter of I. These polynomials
are in general easy to compute by hand, as illustrated in Example 5.9. For instance
it follows from [27, Proposition 3.14] that the corresponding determinantal modules
are cuspidal for the convex ordering on Φ` associated to i. In particular when i
comes from a total ordering on I, Theorem 2.7 explicitly provides the good Lyndon
words associated to these modules. In simply-laced types such cuspidal modules
are often well understood (see for example [31, Section 8]). Hence the value of D on
their isomorphism class can be computed using Equation (5.1). Thus Property (B)
provides an algorithm allowing to compute the equivariant multiplicities of all the
flag minors belonging to one standard seed, which was a non-trivial computation a
priori.

Example 5.9. Let us provide an example of a direct computation of Pj for j such
that j´piq “ 0.

Consider g of type D4 and take i “ inat “ p1, 3, 2, 4, 3, 1, 4, 3, 2, 4, 3, 4q as in
Section 8. Consider for instance the first occurrence of the letter 3, i.e. j “ 2.
The determinantal module M inat

2 is the cuspidal module Lp13q (with respect to the
natural ordering). This can be deduced from Theorem 2.7, or can be checked by
hand using for instance [25, Proposition 10.2.4]. This module is one-dimensional
as a vector space (see for instance [31, Section 8.7]) and thus its weight subspace
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decomposition is simply Lp13q “ C ¨v13 with ep13q¨v13 “ v13. Thus it is immediate
to compute its image under D using Equation (5.1) and we get P2 “ α1pα1 ` α3q.

The second main result of this paper is to check the second step for types An

and D4.

Theorem 5.10. Assume g is of type An, n ě 1 or D4. Let inat denote the reduced
expression of w0 corresponding to the natural ordering on the vertices of the Dynkin
diagram of g. Then Properties (A), (B) and (C) hold for the standard seed Sinat .

In particular, this proves Conjecture 5.5 in types An andD4. Section 6 is devoted
to the proof of Theorem 5.6 and Sections 7 and 8 respectively contain the proofs
of Theorem 5.10 in types An and D4.

As we saw in Section 5.1, Property (A) fails for homogeneous modules that
are not strongly homogeneous. Further computations in types An and D4 tend
to suggest that the evaluation of D on cluster variables of CrN s fails to take the
remarkable form of (A) for the cluster variables that are not flag minors (i.e. that
do not appear in any of the standard seeds Si, i P Redpw0q). Therefore, we propose
the following stronger version of Conjecture 5.5.

Conjecture 5.11. Let g be a Lie algebra of finite simply-laced type and let w0 be
the longest element of the associated Weyl group. Then the flag minors are exactly
the cluster variables of CrN s whose image under D are of the form

1
ś

βPΦ`
βnβ

for some family of nonnegative integers pnβqβPΦ` .

In other words, flag minors would essentially be characterized by the distin-
guished form of their equivariant multiplicities. Let us illustrate this by an exam-
ple.

Example 5.12. Consider g “ sl4. As mentioned in Example 5.3, the cluster
structure of CrN s contains 14 seeds. The simple objects of R´gmod corresponding
to the cluster variables are given as follows (with respect to the natural ordering
1 ă 2 ă 3):

Lp1q, Lp2q, Lp3q, Lp12q, Lp21q, Lp23q, Lp32q, Lp312q, Lp231q, Lp123q, Lp321q, Lp2312q.

The three last modules correspond to the frozen variables. Among the unfrozen
cluster variables, the only one that is not a flag minor (i.e. that does not appear in
any standard seed) is rLp231qs, and as we saw in Example 5.2 the rational fraction
DprLp231qsq is not of the form (A).

6. Propagation under cluster mutation

This section is devoted to the proof of Theorem 5.6. Let g be a simple Lie algebra
of finite simply-laced type. We choose a labeling I of the vertices of the Dynkin
diagram of g and we write the associated Cartan datum as

i ¨ i “ 2 and i ¨ j “ ´1 ô i and j are neighbours in the Dynkin diagram of g.

We consider the longest element w0 of the corresponding Weyl group W and we
denote by N the length of w0. We fix a reduced expression i “ pi1, . . . , iN q of w0.
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Let x1, . . . , xN denote the cluster variables and Qi denote the quiver of the stan-
dard seed Si of CrN s. We also let M1, . . . ,MN denote the determinantal modules
corresponding to i i.e. the simple modules in R´ gmod whose isomorphism classes
are x1, . . . , xN in K0pR ´ gmodq » CrN s.

The quiver Qi is defined as follows (see [15, 25]). First recall the following piece
of notations: for any 1 ď j ď N we set

j´piq :“ max ptl, 1 ď l ă j, il “ iju \ t0uq

and

j`piq :“ min ptl, N ě l ą j, il “ iju \ tN ` 1uq .

We outline the dependence on i in order to avoid confusion later in the proof, as we
will be considering two different reduced expressions i and i1. The index set of Qi

is J “ t1, . . . , Nu, which splits into a frozen part Jfrpiq :“ tu P J | u`piq “ N ` 1u

and an unfrozen part Jexpiq :“ JzJfrpiq. The set of arrows of Qi is composed of
two different kinds of arrows:

‚ the ordinary arrows : there is such an arrow from the vertex u to the vertex
v if and only if

iu ¨ iv “ ´1 and u ă v ă u`piq ă v`piq,

‚ the horizontal arrows : for every u P Jexpiq there is an arrow from the vertex
u`piq to the vertex u.

For every j P J we let inpjq (resp. outpjq) denote the set of all indices l such that
there is an arrow from l to j (resp. from j to l) in Qi and inordpjq (resp. outordpjq)
the set of all indices l such that there is an ordinary arrow from l to j (resp. from
j to l) in Qi. We have

inpjq “ inordpjq \ tj`piqu and outpjq “ outordpjq \ tj´piqu.

We now consider another reduced expression i1 of w0 such that i1 is obtained from
i by performing a braid relation in W i.e. there is k P t1, . . . , Nu such that ik “

p, ik`1 “ q, ik`2 “ p with p, q P I such that p ¨ q “ ´1.

i “ pi1, . . . , ik´1, p, q, p, . . .q � i1 “ pi1, . . . , ik´1, q, p, q, . . .q.

We denote by β1
1, . . . , β

1
N the positive roots given by the reduced expression i1 and

x1
1, . . . , x

1
N the cluster variables of the standard seed Si1

. The seeds Si and Si1
are

related by a one-step mutation in the direction k. It is appropriate for our purpose
to be slightly careful with the labeling of the vertices of Qi and Qi1

.
We let s denote the transposition pk`1, k`2q of t1, . . . , Nu i.e. the permutation

that exchanges the indices k ` 1 and k ` 2 and leaves the others fixed. The set of
vertices of the quiver Qi1

is spJq. In other words the vertex labeled k ` 1 in Qi1
is

in fact the vertex labeled k ` 2 in Qi and vice versa. There is an arrow i Ñ j in
Qi1

if and only if there is an arrow spiq Ñ spjq in the quiver obtained from Qi by
the usual mutation process.

Q “ Qi

mutation
����

��
��

��
��

Qi1

Q1

J ÞÑspJq

��
��

��
��

��

We begin with a couple of elementary Lemmas as prerequisites for the proof.
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Lemma 6.1. The positive roots β1
1, . . . , β

1
N are related to the βj as follows:

β1
k “ βk`2 β1

k`1 “ βk`1 β1
k`2 “ βk β1

j “ βj for any j R tk, k ` 1, k ` 2u.

The flag minors x1
1, . . . , x

1
N are given by:

x1
k`1 “ xk`2 x1

k`2 “ xk`1 x1
j “ xj for any j R tk, k ` 1, k ` 2u.

Proof. Recall that βj “ si1 ¨ ¨ ¨ sij´1
αij and similarly for the β1

j with i1. Thus

β1
k “ si1

1
¨ ¨ ¨ si1

k´1
αi1

k
“ si1 ¨ ¨ ¨ sik´1

αq “ si1 ¨ ¨ ¨ sik´1
spsqαp “ βk`2.

One checks the other cases in a similar way.
The flag minor xj can be written as D

`

si1 ¨ ¨ ¨ sijωij , ωij

˘

with the notations of
Section 2.3. Thus one has for instance

x1
k`1 “ D

´

si1
1

¨ ¨ ¨ si1
k`1

ωi1
k`1

, ωi1
k`1

¯

“ D
`

si1 ¨ ¨ ¨ sik´1
sqspωp, ωp

˘

“ D
`

si1 ¨ ¨ ¨ sik´1
spsqspωp, ωp

˘

“ xk`2.

The other cases can be checked in the same way. �
Lemma 6.2. One has

βk ` βk`2 “ βk`1.

Proof. This is a straightforward consequence of the definition of the βj . Indeed,

βk `βk`2 “si1 ¨ ¨ ¨ sik´1
pαp ` spsqpαpqq“si1 ¨ ¨ ¨ sik´1

pαp ` αqq“si1 ¨ ¨ ¨ sik´1
sppαqq,

i.e. βk ` βk`2 “ βk`1. �
The structure of the proof is summarized in Figure 1. Let us briefly explain the

main points. The starting assumption is that for each j P J , the rational function
Dpxjq is of the form 1{Pj where Pj is a product of positive roots. The aim is to

prove that Dpx1
kq is also of the form 1{P 1

k where P 1
k is a product of positive roots.

It is not hard to convince oneself that this has no chance to hold without any
further assumption on the Pj , 1 ď j ď N . Thus the idea is that the Pj shall satisfy

certain relations entirely determined by i implying the desired form for Dpx1
kq.

Moreover these relations must be preserved under mutation i.e. the polynomials
P1, . . . , Pk´1, P

1
k, Pk`1, . . . , PN have to satisfy the analogous relations determined

by i1. Therefore we assume that the following properties are satisfied:

(A) For every 1 ď j ď N , the rational fraction Dpxjq is of the form 1{Pj where
Pj is a product of positive roots.

(B) For every 1 ď j ď N one has

PjPj´piq “ βj

ź

lăjăl`piq
il¨ij“´1

Pl.

(C) For every j P Jexpiq, one has

pβi;Pjq ´ pβi;Pj`piqq ď 1

for every 1 ď i ď N , where we set P0 :“ 1.

We prove that the flag minors of the seed Si1
satisfy the analogous properties

determined by i1 and denoted (A’), (B’) and (C’), as shown in Figure 1.
In what follows we will be using the following notations: for every j P J we set

Pinpjq :“
ź

lPinpjq

Pl Pinordpjq :“
ź

lPinordpjq

Pl,
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AB C

A’

B’ C’

Proposition 6.6
+ Corollary 6.7

Proposition 6.8 Proposition 6.9

Figure 1. Structure of the proof of Theorem 5.6

Poutpjq :“
ź

lPoutpjq

Pl Poutordpjq :“
ź

lPoutordpjq

Pl.

Let us begin with a straightforward consequence of Property (B) that will be useful
throughout the proof.

Lemma 6.3. For every j P Jexpiq, one has

βjPinpjq “ βj`piqPoutpjq.

Proof. We fix j P Jexpiq. In particular j`piq ď N so we can combine Property (B)
at ranks j and j`piq:

PjPj´piq “ βj

ź

lăjăl`piq
il¨ij“´1

Pl and Pj`piqPj “ βj`piq

ź

lăj`piqăl`piq
il¨ij“´1

Pl.

Dividing the first one by the second one we get

Pj´piq

Pj`piq
“ βj

ź

lăjăl`piqăj`piq
il¨ij“´1

Pl

¨

˚

˚

˝

βj`piq

ź

jălăj`piqăl`piq
il¨ij“´1

Pl

˛

‹

‹

‚

´1

“
βjPinordpjq

βj`piqPoutordpjq

.

By definition one has inpjq “ tj`piqu \ inordpjq and outpjq “ tj´piqu \ outordpjq.
Thus we have proven the desired statement. �
Remark 6.4. This statement can be rephrased in a cluster-theoretic way as follows.
Recall Fomin-Zelevinsky’s notation ŷj . They are Laurent monomials in the xi that
can be written in our case as

ŷj :“
ź

iPinpjq

xi

ź

iPoutpjq

x´1
i
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for every j P Jexpiq. The algebra morphism D can be extended to the fraction field
of CrN s so that the evaluation Dpŷjq makes sense. Lemma 6.3 can then be restated
as

Dpŷjq “
βj

βj`piq

for every j P Jexpiq.

We let P̃j denote the polynomial given by Lemma 6.3 i.e.

P̃j :“ βjPinpjq “ βj`piqPoutpjq

for every j P Jexpiq. In the sequel of the proof, we denote by pβ;P q the multiplicity
of β in P for every β P Φ` and P P tP1, . . . , PNu, i.e. the largest positive integer
d such that βd | P . Let us state another useful consequence of Property (B). The
proof is straightforward by induction on j, and does not make use of Property (C).

Lemma 6.5. For every i, j P Jexpiq, one has

i ą j ñ pβi;Pjq “ 0 and pβi;Piq “ 1.

Proof. The proof relies on an induction on j. Consider the case j “ 1 and let h
denote the letter h “ i1. First note that β1 “ αh. The determinantal module
M1 is the cuspidal module Lphq: it is one-dimensional as a C-vector space and its
weight-space decomposition is simply

M1 “ Cvh with ephq ¨ vh “ vh.

Thus Equation (5.1) yields

DpM1q “
1

αh
“

1

β1
.

Equivalently P1 “ β1 and the desired statement holds for j “ 1.
Fix j P t1, . . . , Nu and assume the statement is true for every j1 ă j. If i ą j

then the induction hypothesis implies

pβi;Pj´piqq “ 0 and pβi;Plq “ 0 for every l ă j ă l`piq.

Hence Property (B) implies pβi;Pjq “ 0. If i “ j then we use the induction
hypothesis in the same way but the presence of βj on the right hand side of Property
(B) yields pβj ;Pjq “ 1. �

The following statement is the heart of the proof. The idea is to combine Prop-
erty (B) together with Lemma 6.3 at different indices and then to use Property (C).
This last property plays a crucial role and is a priori not redundant with Properties
(A) and (B).

Proposition 6.6. Let l P t1, . . . , Nu and assume there exists m P t1, . . . , Nu such
that

il ¨ im “ ´1 and m´piq ă l ă m ă l`piq ă m`piq.

Then Pl | P̃l.

The assumptions relating l and m mean that there exists an ordinary arrow from
the vertex l to the vertex m, as well as from the vertex m´piq to the vertex l (if
m´piq ą 0) in the quiver Qi.
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Proof. Proving Pl | P̃l is equivalent to proving that pβi;Plq ď pβi; P̃lq for every
1 ď i ď N . If i ą l then pβi;Plq “ 0 by Lemma 6.5 and thus there is nothing to
prove in this case. Assume i ď l.

We deal with the case i “ l separately. By Lemma 6.5, one has pβl;Plq “ 1.
Hence we have

pβl;Plq “ 1 “ pβl;βlq ď pβl; P̃lq

which is the desired inequality.
From now on we assume i ă l. If pβi;Plq ď pβi;Pl`piqq then pβi;Plq ď pβi; P̃lq as

Pl`piq | P̃l by definition of P̃l. Hence we can assume pβi;Plq ą pβi;Pl`piqq.
Assume pβi;Pinordplqq “ 0. Then applying Lemma 6.3 at j “ l we can write

pβi;Pl`piqq “ pβi;Pl´piqq ` pβi;Poutordplqq “ pβi;Pl´piqq ` pβi;Pmq ` pβi;Rq,

where R is the product of the polynomials attached to the other tails of ordinary
arrows coming out of l in Qi. Now we use Property (B) at j “ m: as i ă l, in
particular i ă m and hence we get

pβi;Pmq “ ´pβi;Pm´piqq `

ÿ

hămăh`piq
ih¨im“´1

pβi;Phq.

By assumption we have il ¨im “ ´1 and l ă m ă l`piq. Hence the previous equation
can be written as

pβi;Pmq “ ´pβi;Pm´piqq ` pβi;Plq ` pβi;Qq,

where Q is the product of the Ph, h ‰ l, ih ¨ im “ ´1, h ă m ă h`piq. Thus we get

pβi;Pl`piqq “ pβi;Pl´piqq ´ pβi;Pm´piqq ` pβi;Plq ` pβi;Qq ` pβi;Rq

which can be rewritten as

pβi;Pm´piqq “ pβi;Pl´piqq ` pβi;Plq ´ pβi;Pl`piqq ` pβi;Qq ` pβi;Rq.

Since we assumed pβi;Plq ą pβi;Pl`piqq, this implies in particular

pβi;Pm´piqq ą pβi;Pl´piqq ` pβi;Qq ` pβi;Rq ě 0.

If m´piq “ 0 then Pm´piq “ 1 so this is a contradiction. If m´piq ą 0, then there
is an ordinary arrow from the vertex m´piq to the vertex l, and hence one has in
particular pβi;Pinordplqq ą 0 which is again a contradiction.

Thus we have proven that pβi;Pinordplqq ą 0. This is where Property (C) is cru-
cially involved. Indeed, Property (C) with the label l yields pβi;Plq´pβi;Pl`piqq ď 1.
Therefore, we have

pβi;Pinordplqq ě 1 ě pβi;Plq ´ pβi;Pl`piqq.

As inordplq \ tl`u “ inplq, this implies pβi;Plq ď pβi;Pinplqq which finishes the
proof. �

As a straightforward application, we can now prove that Property (A) holds for

the seed Si1
.

Corollary 6.7. One has

(A’) Dpx1
kq “

1

P 1
k

with P 1
k product of positive roots given by P 1

k “
P̃k

βk`1Pk
.
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Proof. The exchange relation at the vertex k can be written as

xkx
1
k “

ź

jPinpkq

xj `
ź

jPoutpkq

xj .

Applying the algebra morphism D we get

Dpx1
kq

Pk
“

1

Pinpkq

ˆ

1 `
Pinpkq

Poutpkq

˙

“
1

Pinpkq

ˆ

1 `
βk`2

βk

˙

by Lemma 6.3

“
1

Pinpkq

βk`1

βk
by Lemma 6.2.

Thus we get

Dpx1
kq “

βk`1Pk

P̃k

.

Recall from the beginning of this section that we have ik “ p “ ik`2 and ik`1 “ q
with p ¨ q “ ´1. Hence we can apply Proposition 6.6 with l “ k and m “ k ` 1,
which yields Pk | P̃k. Lemma 6.5 implies pβk`1;Pkq “ 0 and pβk`1;Pk`1q “ 1.
Applying Lemma 6.3 we get

pβk`1;Pinpkqq “ pβk`1;Poutpkqq ě pβk`1;Pk`1q ą 0.

Hence βk`1 | Pinpkq. Finally we have βk`1Pk | P̃k which proves the Corollary. �

For j ‰ k, we have x1
j “ xspjq and hence Property (A) holds with P 1

j :“ Pspjq.
Now we prove that Property (B) propagates under mutation.

Proposition 6.8. Property (B) holds for the seed Si1
i.e. one has

(B’) P 1
jP

1
j´pi1q “ β1

j

ź

lăjăl`pi1
q

i1
l¨i1

j“´1

P 1
l

for every j P J .

Proof. Throughout this proof, we set for every j P J :

Ipjq :“ tl P J | il ¨ ij “ ´1, l ă j ă l`piqu,

I 1
pjq :“ tl P J | i1l ¨ i1j “ ´1, l ă j ă l`pi1qu.

First note that it is sufficient to prove only the desired statement when j P tk, k `

1, k`2u. Indeed, for other values of j, we have P 1
j “ Pj and β1

j “ βj by Lemma 6.1.

As j ‰ k`2 we have j´pi1q ‰ k and hence Lemma 6.1 implies that P 1
j´pi1q “ Pj´piq.

Similarly, as j ‰ k ` 1, one has k R I 1pjq and hence
ś

lPI1pjq
P 1
l “

ś

lPIpjq
Pl. So if

j R tk, k ` 1, k ` 2u then the relations (B) at the index j are exactly the same for i
and i1.

Consider the case j “ k. We let r (resp. s) denote the position of the last
occurrence of the letter p (resp. q) strictly before the position k. In other words
r “ k´piq “ pk`1q´pi1q and s “ pk`1q´piq “ k´pi1q. It is straightforward to check
that

Ipk ` 1q \ pJ X truq “ I 1
pkq \ tku

(recall that J :“ t1, . . . , Nu). Indeed if l is such that il ‰ p then l P I 1pkq if and
only if l P Ipk ` 1q. If il “ p, then l P I 1pkq if and only if r ‰ 0 and l “ r; on the
other hand l P Ipk ` 1q if and only if l “ k.
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As all the indices in I 1pkq are strictly smaller than k, one has P 1
l “ Pl for every

l P I 1pkq. Thus we have
ź

lPIpk`1q

Pl “
Pk

Pr

ź

lPI1pkq

Pl “
Pk

Pr

ź

lPI1pkq

P 1
l

(recall that Pr “ 1 if r “ 0). Now we can write

P 1
kP

1
k´pi1q “ P 1

kPs “ Ps
βk`2Pk`1Pr

βk`1Pk
by Equation (A’).

Using Property (B) at the index k ` 1 we get

Pk`1Ps “ βk`1

ź

lPIpk`1q

Pl

and thus

P 1
kP

1
k´pi1q “ βk`2

Pr

Pk

ź

lPIpk`1q

Pl “ βk`2

ź

lPI1pkq

P 1
l “ β1

k

ź

lPI1pkq

P 1
l

using Lemma 6.1. This is the desired equality.
Now consider the case j “ k ` 1. Similarly we have

I 1
pk ` 1q \ pJ X tsuq “ Ipkq \ tku.

By Property (B) at the index k, we can write

P 1
k`1P

1
pk`1q´pi1q “ Pk`2Pr “

Pk`2

Pk
βk

ź

lPIpkq

Pl

and thus

P 1
k`1P

1
pk`1q´pi1q “βk

Pk`2

Pk

Ps

P 1
k

ź

lPI1pk`1q

P 1
l “βk

Pk`2Ps

Pk

βk`1Pk

βkPk`2Ps

ź

lPI1pk`1q

P 1
l by (A’).

This simplifies as

P 1
k`1P

1
pk`1q´pi1q “ βk`1

ź

lPI1pk`1q

P 1
l

which is the desired equality as βk`1 “ β1
k`1 by Lemma 6.1.

The remaining case to consider is j “ k ` 2. We have

I 1
pk ` 2q \ tku “ Ipk ` 1q \ tk ` 1u

and all the indices in I 1pk ` 2q other than k ` 1 are strictly smaller than k. Thus
we have

ź

lPI1pk`2q

P 1
l “ P 1

k`1

ź

lPI1pk`2qztk`1u

Pl “
P 1
k`1

Pk

ź

lPIpk`1q

Pl “
Pk`2

Pk

ź

lPIpk`1q

Pl.

Thus we have

P 1
k`2P

1
pk`2q´pi1q “ Pk`1P

1
k “ Pk`1

βkPk`2Ps

βk`1Pk
“ βk`1

ź

lPIpk`1q

Pl
βkPk`2

βk`1Pk

using Property (B) at k ` 1. This yields

P 1
k`2P

1
pk`2q´pi1q “ βk

ź

lPI1pk`2q

P 1
l “ β1

k`2

ź

lPI1pk`2q

P 1
l

using Lemma 6.1. This finishes the proof. �
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Finally we prove that Property (C) propagates under mutation. The key argu-
ments are provided by Lemma 6.3 and Lemma 6.5.

Proposition 6.9. Property (C) holds for the seed Si1
i.e. one has

(C’) pβ1
i;P

1
jq ´ pβ1

i;P
1
j`pi1qq ď 1

for every 1 ď i ď N and j P Jexpi1q.

Proof. First note that Jexpi1q “ Jexpiq. Note also that there is nothing to prove if
j R tr, s, k, k ` 1, k ` 2u. Moreover P 1

k`1 “ Pk`2 and pk ` 1q`pi1q “ pk ` 2q`piq.
Thus there is nothing to prove either for j “ k ` 1 and similarly for j “ k ` 2. We
now focus on the cases j “ r, j “ s and j “ k.

Consider the case j “ r. One has

pβ1
i;P

1
rq ´ pβ1

i;P
1
r`pi1qq “ pβ1

i;Prq ´ pβ1
i;P

1
k`1q “ pβ1

i;Prq ´ pβ1
i;Pk`2q.

Lemma 6.5 implies that pβi;Prq “ 0 for every i ą r. Thus pβ1
i;Prq “ 0 for every

i ą r and the desired inequality holds. If i “ r then again Lemma 6.5 implies
pβi;Prq “ 1 and the conclusion is the same as βr “ β1

r. Assume i ă r. By
Lemma 6.3, we have βkPk`2Ps “ βk`2PrPk`1. This yields

pβ1
i;Prq ´ pβ1

i;Pk`2q “ pβi;Prq ´ pβi;Pk`2q “ pβi;Psq ´ pβi;Pk`1q

“ pβi;Psq ´ pβi;Ps`piqq.

The desired inequality follows from Property (C) at j “ s.
Consider the case j “ s. One has

pβ1
i;P

1
sq ´ pβ1

i;P
1
s`pi1qq “ pβ1

i;Psq ´ pβ1
i;P

1
kq.

Lemma 6.5 implies that pβi;Psq “ 0 for every i ą s. Thus pβ1
i;Psq “ 0 for every

i ą s and the desired inequality holds. If i “ s then again Lemma 6.5 implies
pβi;Psq “ 1 and the conclusion is the same as β1

s “ βs. Assume i ă s. Then we
have

pβ1
i;Psq ´ pβ1

i;P
1
kq “ pβi;Psq ´ pβi;P

1
kq “ pβi;Psq ´ pβi;PsPk`2q ` pβi;Pkq

“ pβi;Pkq ´ pβi;Pk`2q “ pβi;Pkq ´ pβi;Pk`piqq.

Thus we can conclude using Property (C) at j “ k.
Consider the case j “ k. One has

pβ1
i;P

1
kq ´ pβ1

i;P
1
k`pi1qq “ pβ1

i;P
1
kq ´ pβ1

i;P
1
k`2q “ pβ1

i;P
1
kq ´ pβ1

i;Pk`1q.

Proposition 6.8 implies that Equation (B’) holds for the seed Si1
and in particular

we can apply Lemma 6.5 for Si1
(recall that the statement of Lemma 6.5 is proved

using only Properties (A) and (B)). Therefore pβ1
i;P

1
kq “ 0 if i ą k and pβ1

k;P
1
kq “

pβk`2;P
1
kq “ 1. As before we can focus on the case i ă k. In particular β1

i “ βi.
Thus we have

pβ1
i;P

1
kq ´ pβ1

i;Pk`1q “ pβi;P
1
kq ´ pβi;Pk`1q “ pβi;PrPk`1q ´ pβi;Pkq ´ pβi;Pk`1q

“ pβi;Prq ´ pβi;Pkq “ pβi;Prq ´ pβi;Pr`piqq

and the Property (C) at j “ r allows us to conclude. This proves that Property (C’)
holds. �
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7. Initial seed in type An

In this section we prove Theorem 5.10 in the case g “ sln`1 where n ě 1 is fixed.
We denote by I “ t1, . . . , nu the index set of the simple roots and we consider the
natural order on I given by 1 ă 2 ă ¨ ¨ ¨ ă n. As explained in Section 2.3, this
yields a convex order on the set Φ` of positive roots, corresponding to the reduced
expression of w0 given by

inat :“ p1, 2, . . . , n, 1, 2, . . . , n ´ 1, . . . , 1, 2, 1q.

The aim of this section is to check that the standard seed Sinat satisfies Properties
(A), (B) and (C). We use Kang-Kashiwara-Kim-Oh’s monoidal categorification of
the cluster structure of CrN s via representations of quiver Hecke algebras. More
precisely, the cluster variables of Sinat are categorified by certain determinantal
modules in R´ gmod. These were explicitly described in [7] in terms of Kleshchev-
Ram’s dominant words. Let us briefly remind the necessary setting.

The set GL of good Lyndon words is given by

GL “ tpi, i ` 1, . . . , jq | i, j P I, i ď ju.

Recall that this set is totally ordered with respect to the lexicographic order in-
duced by the chosen order on I. The dominant words parametrizing the simple
objects in R ´ gmod according to Kleshchev-Ram’s classification (see Section 2.1)
are concatenations of elements of GL in the decreasing order. Dominant words thus
coincide with Zelevinsky’s multisegments in this case. For any dominant word, we
denote by Lpμq the unique (up to isomorphism and grading shift) simple module
associated to μ.

For every i ď j, we will use the notation ri; js for the positive root αi ` ¨ ¨ ¨ `αj .
The integer j ´ i ` 1 is called the height of this positive root. For each 1 ď r ď n
the occurrences of r in inat correspond to positive roots of height r. More precisely,
for every 1 ď k ď n the kth occurrence of r in inat corresponds to the positive root
rk; r ` k ´ 1s. Equivalently for every i ď j, ri; js is the positive root corresponding
to the ith occurrence of j ´ i ` 1 in inat.

Now consider the standard seed Sinat of CrN s; let x1, . . . , xN denote its cluster
variables and M1, . . . ,MN denote the corresponding determinantal modules in R´

gmod. The dominant words associated to M1, . . . ,MN were computed in [7] and
are given as follows.

Proposition 7.1 ([7, Theorem 6.1]). For every 1 ď r ď n and 1 ď k ď n ´ r ` 1
the determinantal module corresponding to the kth occurrence of r in inat is

L prk; r ` k ´ 1srk ´ 1; r ` k ´ 2s ¨ ¨ ¨ r1; rsq .

For every 0 ď r ď n and 0 ď k ď n ´ r ` 1 we set

P rk, rs :“
ź

1ďlďkďmďr`k´1

rl;ms.

Note that P rk, rs “ 1 if k “ 0 or r “ 0. We begin by proving that the standard
seed Sinat satisfies Property (A). More precisely, we show that if j is the position
of the kth occurrence of the letter r in inat, then Pj “ P rk, rs.
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Lemma 7.2. For any 1 ď r ď n and 1 ď k ď n ´ r ` 1, the determinantal module
L prk; r ` k ´ 1s ¨ ¨ ¨ r1; rsq is strongly homogeneous and one has

D pL prk; r ` k ´ 1s ¨ ¨ ¨ r1; rsqq “
1

P rk, rs
.

In particular the standard seed Sinat satisfies Property (A).

Proof. Let wrk, rs denote the element of W given by

wrk, rs :“ sksk`1 ¨ ¨ ¨ sr`k´1sk´1sk ¨ ¨ ¨ sr`k´2 ¨ ¨ ¨ s1s2 ¨ ¨ ¨ sr.

It is immediate to check that for any 1 ď j ď n, there is exactly one occurrence of
each neighbour of j between two consecutive occurrences of j in the word pk, k `

1, . . . , r ` k ´ 1, k ´ 1, k, . . . , r ` k ´ 2, . . . , 1, 2, . . . rq. Moreover the last occurrence
of j is either strictly inside the last segment (if 1 ď j ă r) and in this case there is
exactly one occurrence of a neighbour of j (namely j`1) after this occurrence, or it
is the last letter of one of the segments (if j ě r) in which case there is exactly one
occurrence of j´1 and no occurrence of j`1 after this occurrence. Therefore there
cannot be any subword of the form sisjsi with i ¨ j “ ´1 in any reduced expression
of wrk, rs (i.e. wrk, rs is fully-commutative in the sense of Definition 3.1) and the
chosen reduced expression is reduced. Moreover using Stembridge’s results [45]
(see Theorem 3.3) we conclude that wrk, rs is dominant minuscule. Hence by the
construction of Kleshchev-Ram [30] (see Theorem 3.9) the determinantal module
L prk; r ` k ´ 1s ¨ ¨ ¨ r1; rsq is strongly homogeneous.

By Proposition 5.1, we have

D pL prk; r ` k ´ 1s ¨ ¨ ¨ r1; rsqq “

ź

βPΦ
wrk,rs
`

1

β
.

We prove by induction on k that for any r ě 1,

Φ
wrk,rs

` “ trl;ms, 1 ď l ď k ď m ď r ` k ´ 1u.

If k “ 1 then for any r ě 1 one has

Φ
wr1,rs

` “ Φs1s2¨¨¨sr
` “ tα1, α1 ` α2, . . . , α1 ` ¨ ¨ ¨ ` αru “ tr1;ms, 1 ď m ď ru

which is the desired equality for k “ 1. Assume the result holds at rank k ´ 1. It is
straightforward to check that for every l,m such that 1 ď l ď k´1 ď m ď r`k´2,
we have

sksk`1 ¨ ¨ ¨ sr`k´1prl;msq “ rl;m ` 1s.

Applying the induction hypothesis, this implies

sksk`1 ¨ ¨ ¨ sr`k´1

´

Φ
wrk´1,rs

`

¯

“ trl;m ` 1s, 1 ď l ď k ´ 1 ď m ď r ` k ´ 2u.

Thus we get

Φ
wrk,rs

` “ trks, rk; k ` 1s, . . . , rk; r ` k ´ 1su \ sksk`1 ¨ ¨ ¨ sr`k´1

´

Φ
wrk´1,rs

`

¯

“ trk;ms, k ď m ď r ` k ´ 1u \ trl;m ` 1s, 1 ď l ď k ´ 1 ď m ď r ` k ´ 2u

“ trk;ms, k ď m ď r ` k ´ 1u \ trl;ms, 1 ď l ď k ´ 1 ă m ď r ` k ´ 1u

“ trl;ms, 1 ď l ď k ď m ď r ` k ´ 1u.

This finishes the proof. �
Corollary 7.3. The standard seed Sinat satisfies Property (C).
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Proof. It follows from the previous Lemma that the multiplicity of any positive root
in any of the polynomials Pj , 1 ď j ď N is always equal to 0 or 1. In particular the
Property (C) is trivially satisfied. �

Now we check that Property (B) is also satisfied. For each j P t1, . . . , Nu, the
polynomials involved in the right hand-side of Property (B) at the label j correspond
to the last occurrences in inat of each neighbour of ij (strictly) before the position
j. Thus if ij :“ r, we have to consider the last occurrences of r`1 and r´1 before
j.

Lemma 7.4. The standard seed Sinat satisfies Property (B).

Proof. Fix 1 ď r ď n and 1 ď k ď n ´ r ` 1 and let j P t1, . . . , Nu denote the
position of the k-th occurrence of r in inat. By definition j´ corresponds to the
pk ´ 1q-th occurrence of r. Hence by Proposition 7.1 together with Lemma 7.2, we
have Pj “ P rk, rs and Pj´ “ P rk ´ 1, rs (note that j´ “ 0 if and only if k “ 1 and
in this case we have P0 “ P r0, rs “ 1). It is not hard to see that if r ď n ´ 1 then
the letter r ` 1 has appeared exactly k ´ 1 times before j in inat as it only appears
in the subwords of inat of the form s, . . . , 1 with s ą r. Hence the last occurrence
of r` 1 before j in inat corresponds to the k´ 1th occurrence of r` 1 in inat. Thus
by Proposition 7.1 the associated determinantal module is

L prk ´ 1; r ` k ´ 1srk ´ 2; r ` k ´ 2s ¨ ¨ ¨ r1; r ` 1sq .

Similarly one can check that if r ě 2 then the letter r ´ 1 appears exactly k times
before j in inat. Therefore the last occurrence of r ´ 1 before j corresponds to the
k occurrence of r´1 and Proposition 7.1 implies that the associated determinantal
module is

L prk; r ` k ´ 2srk ´ 1; r ` k ´ 3s ¨ ¨ ¨ r1; r ´ 1sq .

We can now rewrite Property (B) at the label j as

PjPj´ “ rk; r ` k ´ 1sP rk, r ´ 1sP rk ´ 1, r ` 1s

for any 1 ď r ď n and 1 ď k ď n ´ r ` 1. We have

PjPj´ “ P rk, rsP rk ´ 1, rs

“

ź

1ďlďkďmďr`k´1

rl;ms

ź

1ďlďk´1ďmďr`k´2

rl;ms

“

˜

ź

1ďlďk

rl; r ` k ´ 1s

ź

1ďlďkďmďr`k´2

rl;ms

¸

¨

˝

˜

ź

1ďlďk´1

rl; r ` k ´ 1s

¸´1
ź

1ďlďk´1ďmďr`k´1

rl;ms

˛

‚

“ rk; r ` k ´ 1s
ź

1ďlďkďmďr`k´2

rl;ms
ź

1ďlďk´1ďmďr`k´1

rl;ms

“ rk; r ` k ´ 1sP rk, r ´ 1sP rk ´ 1, r ` 1s.

This proves that Property (B) is satisfied. �
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8. Initial seed in type D4

This section is devoted to the proof of Theorem 5.10 when g is of type D4. In this
case, determinantal modules are not necessarily homogeneous. Hence we cannot
always use the results of [30,39] to compute the images under D of the flag minors.
Therefore, the most difficult part is to prove that Property (A) is satisfied for a
certain standard seed. Properties (B) and (C) will then be rather straightforward
to check.

We fix the natural ordering on the set of vertices of its Dynkin diagram as in
[31, Section 8.7], i.e. 1 ă 2 ă 3 ă 4 with 3 being the trivalent node. There are
twelve positive roots and hence also twelve cluster variables in every seed, with
four frozen variables and eight unfrozen variables. The good Lyndon words (as
well as the corresponding cuspidal representations in R ´ gmod) can be found in
[31, Section 8.7] or can be directly computed using the algorithm described by
Leclerc [33, Section 4.3]. Let us arrange them in the increasing order:

GL “ t1 ă 13 ă 132 ă 134 ă 1342 ă 13423 ă 2 ă 23 ă 234 ă 3 ă 34 ă 4u.

Thus the corresponding convex order on the set of positive roots is given by

Φ` “ tα1 ăα1 ` α3 ăα1 ` α3 ` α2 ăα1 ` α3 ` α4 ăα1 ` α2 ` α3 ` α4

ăα1 ` 2α3 ` α2 ` α4 ăα2 ăα2 ` α3 ăα2 ` α3 ` α4 ăα3 ăα3 ` α4 ăα4u.

The corresponding reduced expression of w0 is inat “ p1, 3, 2, 4, 3, 1, 4, 3, 2, 4, 3, 4q.
Using Theorem 2.7, we find the following dominant words for the determinantal
modules of the seed Sinat :

1, 13, 132, 134, 134213, 134231, 2134, 23134213, 234132, 32134, 3423134213, 432134.

Among these determinantal modules, those whose dominant words are 134231,
234132, 3423134213 and 432134 correspond to the frozen variables in CrN s. Three
of them turn out to be strongly homogeneous but one of them is not homogeneous,
namely Lp3423134213q. From now on we denote this module by M .

8.1. Computation of a graded character. In this subsection we determine
the whole graded character of M , as an intermediate step for the computation
of DprM sq.

As the isomorphism class of M is a frozen variable, it follows from the monoidal
categorification results of Kang-Kashiwara-Kim-Oh [25] that M q-commutes with
every simple module in R´ gmod. In particular, it commutes with all the cuspidal
representations in R ´ gmod. This strong property constrains the form of the
graded character of this module. Actually, it is sufficient to use the fact that
M q-commutes with the four cuspidal modules corresponding to the simple roots
αi, i P t1, . . . , 4u. First one needs to determine the homogeneous degrees of the
renormalized R-matrices rM,Lpiq for every i P t1, . . . , 4u. We denote these degrees
by Λ pM,Lpiqq and Λ pLpiq,Mq following [25]. The commuting of M and Lpiq yields
an isomorphism of graded modules

(8.1) M ˝ Lpiq » qΛpLpiq,MqLpiq ˝ M

for every i P I.

Lemma 8.1. Let M :“ Lp3423134213q. Then one has

Λ pM,Lpiqq “ Λ pLpiq,Mq “ 0
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for every 1 ď i ď 4,

Proof. We let β :“ wtpMq “ 2 pα1 ` α2 ` 2α3 ` α4q. It follows from the definition
of ΛpM,Nq (see [22, 25]) that if N P Rpγq ´ gmod with γ P Q` then

ΛpM,Nq “ ´pβ, γq ` 2pβ, γqn ´ 2sM,N ,

where sM,N is the largest non-negative integer s such that the image of RM,Nz
is

contained in zspNz ˝Mq. First consider i P t1, 2, 4u. Then one has pαi,wtpMqq “ 0.
Moreover, both sLpiq,M and sM,Lpiq are always smaller than or equal to the number
of occurrences of i in 3423134213 which is by definition pαi,wtpMqqn. Hence one
has

Λ pM,Lpiqq ě 0 and Λ pLpiq,Mq ě 0.

By [25, Lemma 3.2.3], the commuting of M and Lpiq exactly means that the sum
of these two quantities has to be zero. Hence one has sLpiq,M “ sM,Lpiq “ 0 and

Λ pM,Lpiqq “ Λ pLpiq,Mq “ 0.

For i “ 3 one can perform computations of sM,Lpiq and sLpiq,M in the following
way (analogous to [7, Section 6D]; see also [7, Corollary 6.6] and [7, Remark 6.7]).
Recall that M “ hd pLp34q ˝ Lp23q ˝ Lp1342q ˝ Lp13qq. Choose non zero vectors
v34, v23, v1342, v13 respectively generating the four cuspidal modules involved in the
brackets. Similarly choose v3 a generating vector of Lp3qz :“ CrzsbCLp3q on which
the actions of the generators of the quiver Hecke algebras are given (for example)
in [25, Section 2.2]. The integer s :“ sM,Lp3q is given by the valuation of the
polynomial

pτ1px1 ´x2q `1qτ2τ3pτ4px4 ´x5q `1qτ5pτ6px6 ´x7q `1qτ7τ8τ9pτ10px10 ´x11q `1q ¨v,

where v :“ v34 b v23 b v1342 b v13 b v3. Looking at the characters of the mod-
ules Lp34q, Lp23q, Lp1342q, Lp13q recalled above, we see that τ9 (resp. τ5, τ3) acts
trivially on v13 (resp. v1342, v23) because the weight 31 (resp. 3142, 32) does not
appear in the character of Lp13q (resp. Lp1342q, Lp23q). Hence the above quantity
is equal to

´z3pτ1px1 ´ x2q ` 1qτ2 ¨ ¨ ¨ τ10 ¨ v “ pz4τ1 ¨ ¨ ¨ τ10 ´ z3τ2 ¨ ¨ ¨ τ10q ¨ v.

Therefore we have s “ 3 i.e. ΛpM,Lp3qq “ 0 and hence ΛpLp3q,Mq “ 0 as well by
what precedes. �

Writing the q-commutation relations with every Lpiq and looking at the coeffi-
cients in front of every weight in these relations, one can compute the whole graded
character of M .

Proposition 8.2. The graded character of the frozen variable Lp3423134213q is
given by:

‚ The following weights appear with q-dimension 1:

3t2, 4u313t1, 2, 4u3 3t1, 4u323t1, 2, 4u3 3t2, 1u343t1, 2, 4u3

3t1, 2, 4u313t2, 4u3 3t1, 2, 4u323t1, 4u3 3t1, 2, 4u343t2, 1u3.

‚ The following weights appear with q-dimension q ` q´1:

3t2, 4u3113t2, 4u3 3t2, 1u3443t2, 1u3 3t1, 4u3223t1, 4u3 3t1, 2, 4u33t1, 2, 4u3.

In this statement, the notation t1, 2, 4u means any of the six permutations of 1, 2
and 4. Similarly t1, 4u means any of the words 14 or 41.
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Proof. As above we set M :“ Lp3423134213q. By definition, one has

M “ hd pLp34q ˝ Lp23q ˝ Lp1342q ˝ Lp13qq ,

where Lp34q, Lp23q, Lp1342q, Lp13q are the cuspidal representations corresponding
respectively to the positive roots α3 ` α4, α2 ` α3, α1 ` α2 ` α3 ` α4, α1 ` α3 for
the natural ordering of the type D4 Dynkin diagram. The graded characters of
these four modules are known from Kleshchev-Ram [31, Section 8.7]. They are
respectively given by p34q, p23q, p1342q ` p1324q, p13q. In particular the weights
appearing in the graded character of M are either of the form p34q � p23q �
p1342q � p13q or of the form p34q � p23q � p1324q � p13q (Recall the notation �
from Section 2.2). We write

chqpMq “

ÿ

j

Pjpqqj

with Pjpqq P Zě0rq˘1s for every j. The graded character of the cuspidal module
Lpiq is simply piq for every i P I. Thus for each i P I the graded isomorphisms (8.1)
can be written in terms of quantum shuffle products of graded characters as

(8.2) piq ˝ chqpMq “ chqpMq ˝ piq

as the degrees of each of the corresponding R-matrix is zero by the previous lemma.
We now show how these four equations strongly constrain the weights of chqpMq

as well as their coefficients in Zě0rq˘1s.

All the weights of M begin with 3. First, the first letter of a weight of M is
necessarily the first letter of one of the words 34, 23, 1342, 1324, 13 and in particular
it cannot be 4. If j is a weight of M beginning with 2, we write j “ 2.j1. Consider
Equation (8.2) for i “ 2. The word 2.2.j1 appears on both hand sides and can
only come from the shuffle of p2q with j as there is no shuffle of 34, 23, 1342, 13
(or 34, 23, 1324, 13) beginning with 2, 2. Hence the quantum shuffle formula (see
Proposition 2.5) yields

p1 ` q´2
qP2.j1 pqq “ p1 ` q2qP2.j1 pqq,

i.e. Pjpqq “ 0.
If j is a weight of M beginning with 1, we write j “ 1.j1. Let us first prove that

j1 cannot begin with 1. Assume so and write j1 “ 1.j2 and thus j “ 1.1.j2. Consider
Equation (8.2) for i “ 1. The word 1.1.1.j2 appears on both hand sides and can
only come from the shuffle of p1q with j as there is no shuffle of 34, 23, 1342, 13 (or
34, 23, 1324, 13) beginning with 1, 1, 1. Hence the quantum shuffle product formula
yields

p1 ` q´2
` q´4

qP1.1.j2 pqq “ p1 ` q2 ` q4qP1.1.j2 pqq,

i.e. Pjpqq “ 0. This proves that j1 does not begin with 1, i.e. there are no weights
of M beginning with 1, 1. Hence applying the same argument as for i “ 2 yields
Pjpqq “ P1.j1 pqq “ 0.

There are at least two letters between the first two occurrences of 3.
Assume j is a weight ofM of the form 3, j, 3.j1 (with j ‰ 3). Consider Equation (8.2)
for i “ 3. The word 3, j, 3, 3.j1 appears on both hand sides and can only come from
the shuffle of p3q with 3, j, 3.j1 “ j as there is no shuffle of 34, 23, 1342, 13 (or



EQUIVARIANT MULTIPLICITIES OF FLAG MINORS 1085

34, 23, 1324, 13) beginning with 3, j, 3, 3 and we have just proved that there are no
weights of M beginning with j. Hence the quantum shuffle product formula yields

pq´1
` q´3

qPjpqq “ pq ` q´1
qPjpqq,

i.e. Pjpqq “ 0.

There is at most one occurrence of each letter 1, 2, 4 between the first
two occurrences of 3. We begin by showing that if j is a weight of M of the
form 3.k.i, i.l with i ‰ 3 and k not containing 3 then Pjpqq “ 0. Indeed consider
Equation (8.2) for i. The word 3.k.i, i, i.l appears on both hand sides and can only
come from the shuffle of piq with 3.k.i, i.l “ j. The quantum shuffle formula yields

pq ` q´1
` q´3

qPjpqq “ pq3 ` q ` q´1
qPjpqq

which proves Pjpqq “ 0 in this case.
Now assume j is a weight of M of the form 3.j1.3.j2 where j1 contains two oc-

currences of a letter i P t1, 2, 4u and does not contain 3; as there are exactly two
occurrences of every letter 1, 2, 4 and four occurrences of 3 in any weight of M (in
particular in j), it follows that j2 does not contain any occurrence of this letter i
and contains two occurrences of 3. Write j1 “ k1.i.k2.ik3 with k1,k2,k3 containing
neither i nor 3 and consider Equation (8.2) for i. The word 3.k1.i.k2.i, i.k3.3.j

2

appears on both hand sides and can only come from the shuffle of piq with j as
we have just proved that there are no weights of M of the form 3.k1.k2.i, i.k3.3.j

2.
Hence the quantum shuffle formula yields

pq´1
` q´3

qPjpqq “ pq3 ` qqPjpqq,

i.e. Pjpqq “ 0.
This proves that the weights ofM begin either with 3t1, 2u3 or 3t1, 4u3 or 3t2, 4u3

or 3t1, 2, 4u3. The exact same arguments can be applied in a symmetric way to
successively prove that

(1) All the weights of M end with 3.
(2) There are at least two letters between the last two occurrences of 3.
(3) There is at most one occurrence of each letter 1, 2, 4 between the last two

occurrences of 3.

Therefore we can write any weight j of M as

w “ 3.k1.3.k2.3.k3.3

with u1 and u3 either of the form t1, 2u or t1, 4u or t2, 4u or t1, 2, 4u and u2 is a
word containing at most two letters (necessarily 1, 2 or 4).

If k2 contains a letter i P t1, 2, 4u, then k1 and k3 are either of the form
t1, 2, 4u or tj, ku with j, k ‰ i. Assume k2 contains i and for example k1 of the
form ti, ju (j ‰ i). Then i does not appear in k3 as there are only two occurrences
of i in j. As k2 is of length at most 2, i is necessarily the first or the last letter
of k2 (or both if k2 contains only i). Assume for example k2 begins with i and
consider Equation (8.2) for i. The word 3.k1.3.i.k2.3.k3.3 appears on both hand
sides and as there is no weight of M with only one single letter between the first
two occurrences of 3, the quantum shuffle formula yields

p1 ` q´2
qPjpqq “ pq2 ` 1qPjpqq
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and thus Pjpqq “ 0 which proves the desired statement. It follows in particular that
k2 cannot be composed of two distinct letters (in that case, both k1 and k3 could
be only of the form t1, 2, 4u but then j would contain three occurrences of a letter
1, 2 or 4). It is then straightforward that the only remaining possible weights are
the ones listed in the statement of Proposition 8.2.

To finish the proof of Proposition 8.2, it remains to compute the values of Pjpqq

for every weight j in this list. The starting point is that by [31, Theorem 7.2 (ii)],
we know that the weight space of M corresponding to the highest weight has q-
dimension 1. From this we can deduce the q-dimensions of all the other weight
spaces of M .

For every distinct i, j P t1, 2, 4u, one has P3,i,j,3.j1 pqq “ P3,j,i,3.j1 pqq for any
j1. By what precedes, there is no weight of M of the form 3, i, j, i, 3.j1. Hence
considering Equation (8.2) for i, the word 3, i, j, i, 3.j1 appears on both hand sides
only as a shuffle of i with 3, i, j, 3.j1 or 3, j, i, 3.j1. We get

q´1P3,i,j,3.j1 pqq ` qP3,j,i,3.j1 “ qP3,i,j,3.j1 pqq ` q´1P3,j,i,3.j1 pqq

which is the desired statement. Using similar arguments one can also show that for
every permutation σ of the set t1, 2, 4u one has

P3,1,2,4,3.j1 pqq “ P3,σp1q,σp2q,σp4q,3.j1 pqq

for any j1. The symmetric statements are also valid i.e.

(1) For every distinct i, jPt1, 2, 4u, one has Pj2.3,i,j,3pqq“Pj2.3,j,i,3pqq for any j2.
(2) For every permutation σ of t1, 2, 4u one has

Pj2.3,1,2,4,3pqq “ Pj2.3,σp1q,σp2q,σp4q,3pqq for any j2.

In particular applying this with the highest weight 3423134213 we get that all
the weights of the form 3t2, 4u313t1, 2, 4u3 are of q-dimension 1. Then one can
apply Equation (8.2) for 1 and look for words of the form 3t2, 4u3113t1, 2, 4u3. The
quantum shuffle formula yields

pq2 ` 1qP3t2,4u313t1,2,4u3pqq ` q´1P3t2,4u3113t2,4u3pqq

“ p1 ` q´2
qP3t2,4u313t1,2,4u3pqq ` qP3t2,4u3113t2,4u3pqq.

Knowing that P3t2,4u313t1,2,4u3pqq “ 1, this implies

P3t2,4u3113t2,4u3pqq “ q ` q´1.

Then looking for words of the form 3t1, 2, 4u3113t2, 4u3 in Equation (8.2) for 1 and
applying the quantum shuffle formula, we get

P3t1,2,4u313t2,4u3pqq “ 1.

Then considering Equation (8.2) for 3, one can look for words of the form

3t1, 2, 4u3313t2, 4u3

and we obtain

P3t1,2,4u331t2,4u3 “ q ` q´1.

The nodes 1, 2 and 4 play symmetric roles, one can then use Equation (8.2) for 2
and then 4 to deduce the q-dimensions of the remaining weight spaces listed in the
statement of Proposition 8.2. This finishes the proof. �
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8.2. Computations on equivariant multiplicities. We can now finish the proof
of Theorem 5.10 in type D4. We let x1, . . . , x12 denote the flag minors of the seed
Sinat and M1, . . . ,M12 the corresponding determinantal modules in R´gmod. The
dominant words μ1, . . . , μ12 associated to M1, . . . ,M12 were listed at the beginning
of this Section. Using Theorem 3.3, it is straightforward to check that the words
μi, i R t5, 8, 11u are reduced expressions of dominant minuscule elements of W .
Therefore the corresponding modules are strongly homogeneous and Proposition 5.1
implies that Dpxiq is of the form 1{Pi if i R t5, 8, 11u. Thus it remains to check
that it is also the case for x5, x8 and x11.

Evaluating at q “ 1 the graded dimensions given in Proposition 8.2, we can use
Equation (5.1) to deduce the equivariant multiplicity of rM s “ x11. This is done
using the formal calculation software SAGE.

Corollary 8.3. The equivariant multiplicity of the frozen variable

x11 “ rLp3423134213qs P CrN s

is given by:

1
´

ś

JĂt1,2,4u

´

α3 `
ř

jPJ αj

¯¯

pα1 ` α2 ` 2α3 ` α4q2
.

Using similar arguments, one can also compute the equivariant multiplicities of
the two remaining flag minors whose corresponding determinantal modules are not
homogeneous, namely x5 “ rLp134213qs and x8 “ rLp23134213qs.

Lemma 8.4. The equivariant multiplicity of x5 “ rLp134213qs P CrN s is given by:

1

α1
2pα1 ` α3qpα1 ` α2 ` α3qpα1 ` α4 ` α3qpα1 ` α2 ` α3 ` α4q

.

The equivariant multiplicity of x8 “ rLp23134213qs P CrN s is given by:

1

α1α2pα1 ` α3qpα2 ` α3qpα1 ` α2 ` α3q2pα1 ` α2 ` α3 ` α4qpα1 ` α2 ` 2α3 ` α4q
.

This proves that the standard seed Sinat satisfies the Property (A). The polyno-
mials Pj , 1 ď j ď 12 are given by:

P1 “α1 P2 “α1pα1`α3q,

P3 “α1pα1`α3qpα1`α2`α3q P4 “α1pα1`α3qpα1`α3`α4q,

P5 “α1
2
pα1`α3qpα1`α2`α3qpα1`α4`α3qpα1`α2`α3`α4q,

P6 “α1pα1`α3qpα1`α3`α4qpα1`α2`α3qpα1`α2`α3`α4qpα1`α2`2α3`α4q,

P7 “α2α1pα1`α2`α3qpα1`α2`α3`α4q,

P8 “α1α2pα1`α3qpα2`α3qpα1`α2`α3q
2
pα1`α2`α3`α4qpα1`α2`2α3`α4q,

P9 “α2pα2`α3qpα2`α3`α4qpα1`α2`α3qpα1`α2`α3`α4qpα1`α2`2α3`α4q,

P10 “α3pα2`α3qpα1`α3qpα1`α2`α3qpα1`α2`2α3`α4q,

P11 “

¨

˝

ź

JĂt1,2,4u

˜

α3`

ÿ

jPJ

αj

¸

˛

‚pα1`α2`2α3`α4q
2,

P12 “α4pα3`α4qpα2`α3`α4qpα1`α3`α4qpα1`α2`α3`α4qpα1`α2`2α3`α4q.
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Let us now write down the equalities required by the Property (B). For example,
let us detail the cases of j “ 6 and j “ 8.

The positive root β6 is α1 ` α2 ` 2α3 ` α4. Moreover, i6 “ 1, 6´ “ 1 and
6` “ N ` 1 “ 13 as there is no occurrence of the letter 1 after the position 6. The
node 1 is monovalent in the Dynkin diagram of type D4 and its only neighbour
is 3. The last occurrence of 3 in inat before the position 6 is in position 5. Thus
Property (B) can be written as

P6P1 “ pα1 ` α2 ` 2α3 ` α4qP5.

The positive root β8 is α2 ` α3. Moreover, i8 “ 3, 8´ “ 5 and 8` “ 11. The node
3 is the trivalent node. The last occurrences before the position 8 of each of its
neighbours are thus 3 (for the node 2), 6 (for the node 1) and 7 (for the node 4).
Hence the Property (B) can be written as

P8P5 “ pα2 ` α3qP2P6P7.

The other equalities can be obtained in the same way and are listed below:

P1 “ α1 P2 “ pα1 ` α3qP1 P3 “ pα1 ` α2 ` α3qP2,

P4 “ pα1 ` α3 ` α4qP2 P5P2 “ pα1 ` α2 ` α3 ` α4qP1P3P4,

P6P1 “ pα1 ` α2 ` 2α3 ` α4qP5 P7P4 “ α2P5,

P8P5 “ pα2 ` α3qP2P6P7 P9P3 “ pα2 ` α3 ` α4qP8,

P10P7 “ α3P8 P11P8 “ pα3 ` α4qP6P9P10 P12P10 “ α4P11.

These equalities are straightforward to check by hand using the explicit values of
the Pj , 1 ď j ď 12.

Unlike the case where g is of type An, the Property (C) is here non trivial a
priori. For instance, the positive root α1 appears with multiplicity 2 in P5. The
required inequality is thus guaranteed by the fact that α1 also divides P5` “ P8

(with multiplicity 1). Similarly, one has pα1 ` α2 ` α3;P8q “ 2 and the inequality
(C) follows from the fact that pα1 ` α2 ` α3;P8` q “ pα1 ` α2 ` α3;P11q “ 1.

Finally, we have proven that the standard seed Sinat satisfies the Properties (A),
(B) and (C).

9. Cluster theory of homogeneous modules

In this conclusive section, we discuss various evidences of the connections between
the determinantal modules categorifying the flag minors of CrN s and the (prime)
strongly homogeneous modules of R ´ gmod in the sense of Kleshchev-Ram [30].
This leads us to propose a conjectural criterion of primeness of the homogeneous
module Spwq (w P W ).

Recall from Section 3.1 the subsets FC,Min,Min` of W . We will consider
certain subsets of these sets, by intersecting them with the set of strict elements of
W defined as follows.

Definition 9.1. An element w P W is said to be strict if for every reduced expres-
sion j “ pj1, . . . , jlq P Redpwq, one has

@1 ď r ă l, D1 ď p ď r ă q ď l, jp ¨ jq ‰ 0.
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In other words, there is no gap in any reduced expression of w. We let W0 denote
the set of all strict elements of W and we set

FC0 :“ W0 X FC, Min0 :“ W0 X Min, Min`
0 :“ W0 X Min`.

As we saw in Example 5.3, the determinantal modules whose classes in CrN s are
flag minors coincide with the prime strongly homogeneous when g “ sl4. We also
noticed that the list of Weyl group elements parametrizing these modules is exactly
Min`zts3s1u. Thus it is immediate that this list is in fact the list of elements of
Min`

0 . The same observation can be checked for g “ sl5. We propose the following:

Conjecture 9.2. Let g be of type An. The set of cluster variables of the seeds Siă

(ă running over all the possible orderings on I) is exactly the set of isomorphism
classes of the strongly homogeneous modules Spwq, w P Min`

0 .

As we saw in Section 8, the determinantal modules corresponding to flag minors
are not necessarily homogeneous when g is of type D4. However, it is not hard
in this case to list the strict dominant minuscule elements of W . We obtain the
following:

s1 s2 s3 s4

s1s3 s3s1 s2s3 s3s2 s4s3 s3s4

s1s2s3 s1s3s2 s4s2s3 s4s3s2 s2s3s1 s2s3s4 s1s3s4 s4s3s1 s1s4s3

s3s1s2s3 s3s1s4s3 s3s2s2s3 s4s2s1s3 s4s2s3s1 s1s2s3s4 s1s4s3s2

s3s1s2s3s4 s3s1s4s3s2 s3s2s4s3s1

s4s3s1s2s3s4 s2s3s1s4s3s2 s1s3s2s4s3s1.

Using Theorem 2.7, one can compute the determinantal modules corresponding
to the cluster variables of the seed Si, i coming from a total ordering on I. Unlike
the type An case though, this is not sufficient to get all the homogeneous modules
Spwq, w P Min`

0 . Nonetheless, it is not hard to compute the determinantal modules
of the remaining standard seeds by performing certain well-chosen mutations as in
Section 6. Then one can observe that for w in the list above, the isomorphism class
of the homogeneous module Spwq is always a flag minor. We propose Conjecture
9.3:

Conjecture 9.3. Let g be a simple Lie algebra of (finite) simply-laced type. Then
for any w P Min`

0 , the class of Spwq is a flag minor in CrN s.

Remark 9.4. Note that the assumption that w is dominant minuscule is crucial.
Indeed, consider for instance g of type D4 and w :“ s3s1s2s4s3 (3 is the trivalent
node). Then w is fully-commutative but not dominant minuscule. On the other
hand, one can show that the homogeneous module Spwq is not real. In particular
by the results of [25] it is not a cluster monomial and a fortiori not a determinantal
module.

This conjecture would imply the following primeness criterion for strongly ho-
mogeneous modules:

Conjecture 9.5. The prime strongly homogeneous modules in R´gmod are exactly
the modules of the form Spwq, w P Min`

0 .

Lemma 9.6. Conjecture 9.3 implies Conjecture 9.5.
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Proof. Conjecture 9.3 would imply that if w P Min`
0 , then Spwq is prime (as it

categorifies a cluster variable). But conversely, it is easy to check that if w is not
strict, then the module Spwq can be decomposed as a convolution product of two
simple modules, and thus it is not prime. Thus it would imply Conjecture 9.5. �
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de Jussieu-Paris Rive Gauche, UMR 7586, F-75013 Paris, France

Email address: elie.casbi@imj-prg.fr

https://www.ams.org/mathscinet-getitem?mr=4261167
https://www.ams.org/mathscinet-getitem?mr=2493972
https://www.ams.org/mathscinet-getitem?mr=1676724
https://www.ams.org/mathscinet-getitem?mr=1674686
https://www.ams.org/mathscinet-getitem?mr=1021516
https://www.ams.org/mathscinet-getitem?mr=2908731
https://www.ams.org/mathscinet-getitem?mr=1805477
https://www.ams.org/mathscinet-getitem?mr=2837011
https://www.ams.org/mathscinet-getitem?mr=3752460

