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THE DEPENDENCE ON PARAMETERS OF THE

INVERSE FUNCTOR TO THE K-FINITE FUNCTOR

NOLAN R. WALLACH

Abstract. An interpretation of the Casselman-Wallach Theorem is that the
K-finite functor is an isomorphism of categories from the category of finitely
generated, admissible smooth Fréchet modules of moderate growth to the cat-
egory of Harish-Chandra modules for a real reductive group, G (here K is a
maximal compact subgroup of G). In this paper we study the dependence of
the inverse functor to the K-finite functor on parameters. Our main result
implies that holomorphic dependence implies holomorphic dependence. The
work uses results from the excellent thesis of van der Noort. Also a remarkable

family of universal Harish-Chandra modules, developed in this paper, plays a
key role.

Introduction

The Casselman-Wallach (C-W) Theorem implies that the K-finite functor is
an isomorphism of categories from the category of finitely generated, admissible
smooth Fréchet modules of moderate growth to the category of Harish-Chandra
modules for a real reductive group, G (hereK is a maximal compact subgroup of G).
This variant will be explained in detail in Section 2 since the usual interpretation is
that the C-W theorem is an equivalence of categories. A description of the inverse
functor, V → V , to the K-finite functor is described therein. In this paper we
study the dependence of this functor on parameters. Our main result implies that
holomorphic dependence implies holomorphic dependence (see Theorem 9.2 and
Appendices D and F for the pertinent definitions). This work rests on the excellent
thesis of Vincent van der Noort [VdN] which contains several remarkable theorems
including his finiteness theorem that is given a slightly simplified proof in Appendix
E. In his thesis van der Noort proved a version of the main theorem of this paper
for one complex dimensional parameter spaces (see [VdN, Chapter 6]). In the final
section (6.5) he laid out a scheme to prove that two holomorphic families of Fréchet
completions of moderate growth yielding the same holomorphic family of Harish-
Chandra modules are equal. This equality is a consequence of our main theorem.
In addition to van der Noort’s results our technique involves the study of a class
of standard modules in the Harish-Chandra category with remarkable properties.
Which for lack of a name we call J-modules. In particular, they are free modules
for the universal enveloping algebra of a maximal unipotent subgroup of G. Also,
every Harish-Chandra module has a resolution by these modules.

The technical general results not specific to the main results of this paper are
the content of the many appendices which take up more space than the body of
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the paper. Hopefully this separation will help the reader see the flow of the proof
of the main theorem which is quite intricate (we give a brief sketch of it in the next
paragraph). For example, the reader could, on first reading, skip the proofs in the
appendices. Among the appendices there are results that are of interest beyond
this paper. For example, Appendix A gives a proof that the C∞ vectors relative
to G of a finitely generated, admissible Hilbert representation are the same as the
C∞ vectors relative to K (see Proposition A.2).

0.1. The organization of the paper and a sketch of the proof of the main
theorem. The first section sets up the notation and the class of groups that will
be studied in this paper. The second gives a natural description of the so-called
Casselman-Wallach globalization of a Harish-Chandra module, V , for a real re-
ductive group (see Sections 1 and 2 for pertinent definitions). This construction
defines T : V → V̄ a functor from the category of Harish–Chandra modules to the
category of admissible, smooth Fréchet representations of moderate growth which
is inverse to the K-finite functor (see Theorem 2.2 and the paragraph following its
statement). The aim of the paper is to show that applying T to a holomorphic
family of Harish-Chandra modules yields a holomorphic family of smooth Fréchet
representations of moderate growth. To implement the goal I first construct and
study the analytic and algebraic properties of the class of Harish-Chandra modules,
alluded to above as J-modules. This occupies the next 5 sections of the paper. I
show that if one has an analytic family of Harish-Chandra modules (see Appendix
D) and if U is an open set with compact closure in the parameter space there is a
family of J-modules over U mapping surjectively onto the restriction of the family
to U . The next step is to locally (in the parameter) globalize a continuous family of
J-modules to a continuous family of Hilbert representations satisfying a technical
condition (smoothable) that implies that the corresponding family of C∞-vectors
defines a continuous family of smooth Fréchet representations of locally uniform (in
the parameter) moderate growth . This introduction of families of Hilbert modules
is basically because of the functorial properties of continuous Hilbert families in
Appendix G that I could not prove directly for Fréchet families. The last stage is
to start with a holomorphic family of Harish–Chandra modules and use the Hilbert
modules corresponding to the resolving J-modules and the results of Appendix G
to find an open covering of the parameter space and a Hilbert globalization of the
family satisfying the smoothability condition over each element of the covering.
This yields a family of Fréchet globalizations of local uniform moderate growth on
each element of the covering. Proposition F.2 implies that on each of these sets
T applied to the family gives a locally continuous family of smooth Fréchet rep-
resentations. Theorem F.5 implies that this family is locally holomorphic. Our
construction of T implies that the corresponding local families of smooth Fréchet
representations agree on the intersection of their parameters and thus applying T
yields a holomorphic family which completes the proof.

1. Notation

Throughout this paper G will denote a real reductive group in the sense of
[RRG, 2.1.1] or [BW, 0.3.1] (that is, a finite covering group of an open subgroup
of the real points, GR, of a reductive algebraic group, G, defined over R). For the
main theorem we will need G to be of inner type (that is Ad(G) ⊂ Ad(Go

C
) where

Go
C
is the identity component of GC) . Let K be a maximal compact subgroup
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of G. Throughout the paper, if H is a Lie group over R then its (real) Lie algebra
will be denoted ho (i.e. lower case fractur h sub-o) and its complexification denoted
h. Let θ denote the Cartan involution of G (and of go) corresponding to K. Set
ko = Lie(K), t = to ⊗ C and po = {X ∈ g|θX = −X}. Fix a symmetric Ad(G)-
invariant bilinear form, B, on go such that B|ko is negative definite and B|po

is
positive definite. Let u1, . . . , un be a basis of g and let v1, . . . , vn be defined by
B(ui, vj) = δij and set C =

∑n
i=1 uivi (the corresponding Casimir operator). Let

CK be the Casimir operator for k corresponding to B|k.

Let, as usual, K̂ denote the set of equivalence classes of irreducible continuous
representations of K. If V is a K-module then set V (γ) equal to the sum of all

irreducible K-subrepresentations of V in the class of γ ∈ K̂. As is usual, we say
that a K-module is admissible if

V =
⊕
γ∈K̂

V (γ)

and dimV (γ) < ∞ for all γ ∈ K̂.
We denote by H(g,K) the category of Harish-Chandra modules, that is, the

finitely generated, admissible, (g,K)-modules. We also denote by HF(G) the cat-
egory of admissible finitely generated smooth Fréchet representations of moderate
growth. This means that an object in HF(G) is a pair (π, V ) with V a Fréchet
space and π a homomorphism of G into the group of continuous bijections of V
such that the following 3 conditions are satisfied

(1) The map G× V → V given by g, v �→ π(g)v is continuous and is C∞ in G.
(2) Let ‖. . . ‖ be a norm on G (see Appendix C). If p is a continuous seminorm

on V then there exists q a continuous seminorm on V and r such that p(π(g)v) ≤
‖g‖r q(v) for all v ∈ V .

(3) The representation of g , dπ, on the K-finite vectors of V , VK , defines an
object in H(g,K).

2. The isomorphism of categories

One version of the C-W Theorem (see [RRG, Theorem 11.6.7]) is

Theorem 2.1. If (π, V ), (μ,W ) ∈ HF(G) and L : (dπ, VK) → (dσ,WK) is a
morphism in H(g,K) then L extends to a morphism in HF(G) with closed image
that is a topological summand.

Let (π, V )∈H(g,K); then aK-invariant Hermitian inner product on V, 〈. . . , . . . 〉,
will be called G-integrable if there exists a strongly continuous action, σ, of G on
the Hilbert space completion of V , H〈,〉, relative to 〈. . . , . . . 〉, such that the (g,K)-

module of K-finite C∞ vectors, (dσ,
(
H〈,〉

)∞
K

) = (π, V ). The subquotient theorem

implies that there exists at least one G-integrable inner product on V . Let I(π, V )
be the set of integrable K-invariant inner products on V . If 〈. . . , . . . 〉 ∈ I(π, V )

then
(
H〈....,... 〉

)∞ ∈ HF(G).
Theorem 2.1 implies that if 〈. . . , . . . 〉i ∈ I(V ), i = 1, 2 then(

H〈...,... 〉1
)∞

=
(
H〈...,... 〉2

)∞
.

In particular this implies that the norm v �→ ‖v‖2 is continuous on
(
H〈...,... 〉1

)∞
.

Proposition A.2 implies that there exists constants B and l such that

‖v‖2 ≤ B
∥∥dσ1(1 + CK)iv

∥∥
1
.
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Note that if 〈. . . , . . . 〉 ∈ I(V ) then the K-invariant inner product 〈v, w〉1 =〈
π(1 + Ck)

lv, w
〉
is also in I(V ). This allows us to define an inverse to the K-

finite functor. Set

V = {{vγ} ∈
∏
γ∈K̂

V (γ)|
∑
γ∈K̂

〈vγ , vγ〉2 < ∞, ∀ 〈. . . , . . . 〉 ∈ I(V )}.

Noting (as above) that this space is equal to
(
H〈,〉

)∞
for any 〈. . . , . . . 〉 ∈ I(V ) the

space V endowed with the topology given by the norms
{
‖. . . ‖〈...,..〉

}
〈...,..〉∈I(V )

is

an object in HF(V ) with V K = V .
Since V = V̄K = ⊕γ∈K̂V (γ) ⊂

∏
γ∈K̂ V (γ) we have

Theorem 2.2. The functor V → VK from HF(G) to H(g,K) is an isomorphism
of categories with inverse functor Z → Z.

The key aspect of this result for the purposes of this paper is that if Z ∈ HF(G)

and if for each γ ∈ K̂ the γ-isotypic component of Z is denoted Z(γ) then Z is a

subspace of
∏

γ∈K̂ Z(γ) as is ZK = ⊕γ∈K̂V (γ) and (ZK) = Z.

In [BK] they introduced the notion of “F–space”, which is a Fréchet space that
has a continuous norm. Using the argument in the proof of Lemma 2.A.2.1 in
[RRG] one sees that a strongly continuous representation of a real reductive group
on an F-space is of moderate growth. Also the results above imply that if V is an
admissible, smooth Fréchet module of moderate growth then V is an F–space.

The rest of this paper will be devoted to the study of the dependence of this
functor on parameters. For this we will use a class of universal modules with
remarkable properties related to ones in [RRG, Section 11.3] and in [HOW].

3. The subalgebra D of Z(g)

Throughout the rest of this paper G will be a real reductive group of inner type
(see Section 1). We keep the notation of the previous section. Also fix a symmetric
Ad(G)-invariant bilinear form on go such that if θ is the Cartan involution relative
to K then 〈X,Y 〉 = −B(θX, Y ) defines an inner product on go. Let p be the
projection of g onto p = po ⊗ C corresponding to go = ko ⊕ po. Extend p to a
homomorphism of S(g) onto S(p). Then p is the projection corresponding to

S(g) = S(p)⊕ S(g)k.

In [HOW, Theorem 2.3] we found homogeneous elements w1, . . . , wl of S(g)
G, with

w1 = C, satisfying the following two properties:

(1) p(w1), . . . , p(wl) are algebraically independent.
(2) There exists a finite dimensional homogeneous subspace E of S(p)K such

that the map C[p(w1), . . . , p(wl)] ⊗ E → S(p)K given by multiplication is an iso-
morphism.

In [H] Helgason proved that the only simple Lie algebras over R for which E �= C1
are of type E. Here is the list and the dimensions of the corresponding spaces E (cf.
Proposition 2.1 in [HOW]): the two real rank two real forms of E6 with dimE = 2,
the real rank 3 real form of E7 where dimE = 2 and the real rank 4 real form of
E8 where dimE = 4.
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Let H denote the space of harmonic elements of S(p), that is, the orthogonal

complement to the ideal S(p) (S(p)p)K in S(p) relative to the Hermitian extension
of B|po

. Then the Kostant-Rallis theorem [KR] implies that the map

H⊗ S(p)K → S(p)

given by multiplication is a linear bijection. This and (2) easily imply

Lemma 3.1. The map

H⊗ E ⊗ C[w1, . . . , wl]⊗ S(k) → S(g)

given by multiplication is a linear bijection.

Let ao be a maximal abelian subspace of po and let (as usual)

W = W (a) = {s ∈ GL(a)|s = Ad(k)|a, k ∈ K}.
Let h ∈ ao be such that ao = {X ∈ po|[h,X] = 0}. If λ ∈ R then set gλo = {X ∈
go|[h,X] = λX}. Set no= ⊕λ>0g

λ
o and n̄o= θno= ⊕λ>0g

−λ
o . Then

p = p(n)⊕ a

and p(n) is the orthogonal complement to a in p relative to B. Let q be the
projection of p onto a corresponding to this decomposition. Then the Chevalley
restriction theorem implies that

q : S(p)K → S(a)W

is an isomorphism of algebras. Also, as above, if H is the orthogonal complement

to (S(a)a)
W

S(a) in S(a). Then the map

S(a)W ⊗H → S(a)

given by multiplication is a linear bijection. Putting these observations together
the map

S(n)⊗S(a)W ⊗H ⊗ S(k) → S(g)

given by multiplication is a linear bijection. We also note that the map

C[w1, . . . , wl]⊗ E → S(a)W

given by
w ⊗ e �→ q(p(w))q(e)

is a linear bijection. This in turn implies

Lemma 3.2. The map

S(n)⊗C[w1, . . . , wl]⊗ E ⊗H ⊗ S(k) → S(g)

given by multiplication is a linear bijection.

Let symm denote the symmetrization map from S(g) to U(g); then symm is a
linear bijection and symm ◦ Ad(g) = Ad(g) ◦ symm if g ∈ G. Let Z(g) = U(g)G

denote the center of U(g). Set zi = symm(wi) and

D = C[z1, . . . , zl].

Note that if Sj(g) =
∑

k≤j S
j(g) and if U j(g) ⊂ U j+1(g) is the standard filtration

of U(gC) then
symm(Sj(g)) = U j(g).

The above and standard arguments ([HOW, Theorem 2.5 and Lemma 5.2]) imply
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Theorem 3.3. Let the notation be as above. Then

(1) The map
H⊗ E ⊗D⊗ U(k) → U(g)

given by
h⊗ e⊗D ⊗ k �→ symm(h)symm(e)Dk

is a linear bijection.
(2) The map

U(n)⊗ E ⊗H ⊗D⊗U(k) → U(g)

given by
n⊗ e⊗ h⊗D ⊗ k �→ nsymm(e)symm(h)Dk

is a linear bijection.

4. A class of admissible finitely generated (g,K)-modules

Retain the notation in the preceding section. Note that Theorem 3.3 implies
that the subalgebra DU(k) of U(g) is isomorphic with the tensor product algebra
D⊗U(k) and that U(g) is free as a right DU(k)-module under multiplication. If R
is a DU(k)-module then set

J(R) = U(g)⊗DU(k) R.

Recall that H(g,K) denotes the Harish–Chandra category of admissible finitely
generated (g,K)-modules. Let R be a finite dimensional continuous K-module that
is also a D-module such that the actions commute; then K acts on J(R) as follows:

k · (g ⊗ r) = Ad(k)g ⊗ kr, k ∈ K, g ∈ U(g), r ∈ R.

As a K-module
J(R) ∼= H⊗ E ⊗R

with K acting trivially on E. Note that J(R) ∈ H(g,K) since the multiplicities
of K-types in H are finite and J(R) is clearly finitely generated as a U(g)-module.
Let W (D,K) be the category of finite dimensional (D,K)-modules with K acting
continuously and such that the action of D and K commute.

Lemma 4.1. R→J(R) defines an exact faithful functor from the category W (D,K)
to H(g,K).

Proof. This is a consequence of the freeness of U(g) as a module for DU(k) under
right multiplication. �

If V ∈ H(g,K) then V (γ) is invariant under the action of Z(g) hence under the
action of D.

By definition, if V ∈ H(g,K) there is a finite subset F ⊂ K̂ such that

U(g)
∑
γ∈F

V (γ).

Set R =
∑

γ∈F V (γ) ∈ W (D,K). One has a canonical (g,K)-module surjection

J(R) → V given by g ⊗ r �→ gr. A submodule of an element of H(g,K) is in
H(g,K) so

Proposition 4.2. If V ∈ H(g,K) then there exists a sequence of elements Rj ∈
W (g,K) and an exact sequence in H(g,K)

· · · → J(Rk) → . . . . → J(R2) → J(R1) → J(R0) → V → 0.
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Notice that this exact sequence is a free resolution of V as a U(n)-module.
Let β : D → C be an algebra homomorphism. Let H(g,K)β be the full subcat-

egory of H(g,K) consisting of modules V such that if z ∈ D then it acts by β(z)I.
The next result is an aside that will not be used in the rest of this paper and is a
simple consequence of the definition of projective object.

Lemma 4.3. Let R be a finite dimensional continuous K-module and let D act
on F by z �→ β(z)I with β ∈ HomD(D,C) yielding an object R ∈ W (D,K). Then
J(R) is projective in H(g,K)β.

5. The objects in W (D,K)

If R ∈ W (D,K) then R has a K-isotypic decomposition R = ⊕γ∈K̂R(γ). Only

a finite number of the R(γ) are non-zero. If D ∈ D then DR(γ) ⊂ R(γ) for all

γ ∈ K̂. If χ : D → C is an algebra homomorphism then we set Rχ = {v ∈
R|(D − χ(D))kv = 0, for some k > 0}. Then setting ch(D) equal to the set of all
algebra homomorphisms of D to C we have the decomposition

R =
⊕

γ∈K̂,χ∈ch(D)

Rχ(γ).

Fix a K-module (τγ , Fγ) ∈ γ. Then Rχ(γ) is isomorphic with

HomK(Vγ , Rχ)⊗ Fγ

with K acting on Fγ and D acting on HomK(Vγ , R).
If R is an irreducible object in W (D,K) then Schur’s lemma implies that D acts

by a homomorphism χ : D → C and R is irreducible as a K-module. Set Vγ,χ,

equal to the module with D acting by χ and K acting by an element of γ.
Let χ be such a homomorphism then χ(zi) = λi ∈ C. Thus it is parametrized

by (λ1 . . . ., λl) ∈ Cl. We will use the notation βλ for the homomorphism such that
βλ(zi) = λi.

Definition 5.1. Let X be an analytic manifold. An analytic family in W (D,K)
over X is a pair (μ, V ) of a finite dimensional continuous K-module, V , and a
μ : X × D → End(V ) such that D �→ μ(x,D) is a representation of D on V and
x �→ μ(x,D) is analytic for all D ∈ D.

6. Parabolically induced families

Let A and N be the connected subgroups of G with Lie(A) = ao and Lie(N) =
no. Let M be the centralizer of a in K. Set Q = MAN ; then Q is a minimal
parabolic subgroup of G.

Definition 6.1. An analytic family of finite dimensional Q-modules over a real
analytic manifold X is a pair (σ, S) with S a finite dimensional continuous M -
module and a real analytic map σ : X × Q → GL(S) such that x �→ σ(x, q) is
analytic and σ(x, ·) = σx is a representation of Q.

Let (σ, S) be a continuous finite dimensional representation of Q. Set I∞(σ|M )
equal to the space of all smooth functions f : K → S satisfying f(mk) = σ(m)f(k)
for m ∈ M,k ∈ K. Define an action πσ of G on I∞(σ|M ) as follows: if f ∈ I∞(σ|M )
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then extend f to G by fσ(qk) = σ(q)f(k); then, since K ∩ Q = M and QK = G,
fσ is C∞ on G. Set πσ(g)f(k) = fσ(kg). Also set

πσ(Y )f(k) =
d

dt
fσ(k exp tY )|t=0

for Y ∈ go and k ∈ K, f ∈ I∞(σ|M ). Let I(σ|M ) be the space of all right K finite
elements of I∞(σ|M ).

Put an M -invariant inner product, 〈. . . , . . . 〉 on S. If f, h ∈ I∞(σ|M ) then set

(f, h) =

∫
K

〈f(k), h(k)〉 dk

with dk normalized invariant measure on K. The following observation is standard.

Proposition 6.2. Let (σ, S) be an analytic family of finite dimensional representa-
tions of Q over the analytic manifold X. Set λ(x, y) = πσx

(y) for x ∈ X, y ∈ U(gC).
If μ is the common value of σx|M , then (λ, I(μ)) is an analytic family (see Appendix
D) of objects in H(g,K) over X.

Proposition 6.3. Let (σ, S) be an analytic family of Q-modules based on Z. Set
σ(m) equal to the common value of σz(m) for m ∈ M and H equal to the unitarily
induced representation of σ from M to K. Then z → (πσz

, H) is a continuous
family of Hilbert representations over Z (see Definition B.1) that is smoothable in
the sense of Definition F.3.

Proof. Let f ∈ I∞(σ) that is

f(mk) = σ(m)f(k),m ∈ M,k ∈ K.

Recall that
fσx

(g) = fσx
(namk) = σx(nam)f(k)

for g = namk, n ∈ N, a ∈ A,m ∈ M,k ∈ K. Let {n1.n2, . . . .}, {a1, a2, . . . } be
respectively bases of U(n) and U(a) compatible with the standard filtration of
U(g). Let Y1, . . . , Yn be a basis of ko such that B(Yi, Yj) = −δij . The monomials

Y I = Y i1
1 · · ·Y in

n form a basis of U(k). If u ∈ U(g) and if f ∈ H∞ then

dπσz
(u)f(k) = L(Ad(k−1)uT )fσz

(k)

with L the left action of U(g) on C∞(G,S) and u �→ uT is the standard anti-
involution of U(g) defined by 1 �→ 1 and X �→ −X for X ∈ g. Also

Ad(k−1)uT =
∑
i,j,I

ai,j,I(k)niajY
I

finite sum with the set of indices such that ai,j,I(k) �= 0 depending only on the level
of u in the standard filtration of U(g). Thus

dπσz
(u)f(k) =

∑
ai,j,I(k)dσz(niaj)

(
L(Y I)f

)
(k)

=
∑

ai,j,I(k)dσz(niaj)
(
Ad(k)−1

(
Y I

)T
f
)
(k).

Writing

Ad(k)−1
(
Y I

)T
=

∑
|J|≤|I|

bJ,I(k)Y
J ,

we have
dπσz

(u)f(k) =
∑

i,j,I,J

bJ,I(k)ai,j,I(k)dσz(niaj)Y
Jf(k).
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Since the sum is finite, all of the indices are bounded. Let ω be a compact subset
of Z then for each fixed J∑

i,j,I

|bJ,I(k)ai,j,I(k)| ‖dσz(niaj)‖ ≤ C1
u,ω,J , k ∈ K, z ∈ ω.

Thus

‖dπσz
(u)f‖2 ≤

∑
C1

u,ω,LC
1
u,ω,J

〈
Y Lf, Y Jf

〉
≤ Cu,ω

∥∥(1 + CK)lf
∥∥2

with l the maximum of the |J | for the multi-indices that appear in the formulas
above. �

7. Analytic families of J-modules

Notation will be as in the previous section. Throughout this section analytic
will mean complex analytic in the context of a complex analytic manifold and real
analytic in the context of a real analytic manifold.

Proposition 7.1. Let X be a real analytic or complex manifold. Let (λ,R) be a
family of objects in W (D,K) over X and define Rx ∈ W (D,K) to be the module
with action λ(x, ·). Let

V = H⊗ E ⊗R

(K acts by the tensor product action with its action on E trivial) and let Tx : V →
J(Rx) be given by Tx(h⊗e⊗r) = αx(symm(h)e)(1⊗r) with αx the action of U(gC)
on J(Rx). If λ(x, y) = T−1

x αx(y)Tx then (λ, V ) is an analytic family of objects in
H(g,K) based on X.

Proof. Let {hi} be a basis of H such that for each i there exists γ ∈ K̂ such that
hi ∈ H(γ), let {ej} be a basis of E, let {rm} be a basis of R and let {Y1, . . . , Yn}
be a basis of k. If y ∈ U(gC) then

ysymm(hi)ejz
LY J =

∑
i1,j1,J1,L1

bi1j1L1J1,ijLK(y)symm(hi1)ej1z
L1Y J1 .

Thus

T−1
x αx(y)Tx(hi ⊗ ej ⊗ rk) =

∑
bi1j1L1J1,ij00(y)hi1 ⊗ ej1 ⊗

(
λx(z

L1)Y J1rk
)
.

The proposition follows. �

Theorem 3.3 implies

Lemma 7.2. Let R ∈ W (D,K); then

J(R)/nk+1J(R) ∼=
(
U(n)/nk+1U(n)

)
⊗ E ⊗H ⊗R|M

as an (n,M)-module with n acting by left multiplication on U(n)/nk+1U(n) and triv-
ially R, M acting trivially on E⊗H, and m∈M acting by Ad(m) on U(n)/nk+1U(n)
and by the restriction of the action of K on R .

Let (μ,R) be an analytic family of objects in W (D,K) over X. Let Rx, x ∈ X
be the object in W (D,K) with K acting only on R and D acting by μx = μ(x, ·).
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Proposition 7.3. Let px,k : J(Rx) →
(
U(n)/nk+1U(n)

)
⊗ E ⊗H ⊗ R|M be given

by the projection of J(Rx) onto J(R)/nk+1J(R) composed with the canonical iso-
morphism of J(R)/nk+1J(R) with

(
U(n)/nk+1U(n)

)
⊗ E ⊗ H ⊗ R. If v ∈ J(Rx)

and u ∈ U(gC) then the map
x �→ px,k(uv)

is analytic from X to
(
U(n)/nk+1U(n)

)
⊗E ⊗H ⊗R|M . In particular, if pk is the

canonical projection of U(n)⊗ E ⊗H ⊗R|M onto(
U(n)/nk+1U(n)

)
⊗ E ⊗H ⊗R|M ,

then define σk,x(q)pk(v) = px,k(qv), q ∈ Lie(Q) since
(
U(n)/nk+1U(n)

)
⊗E⊗H⊗R

is finite dimensional and AN is simply connected; this action integrates to a Q-
module structure so

(σk,
(
U(n)/nk+1U(n)

)
⊗ E ⊗H ⊗R)

is an analytic family of finite dimensional Q-modules.

Proof. Let x1, x2, . . . , xr be a linearly independent set in U(n) that projects to a
basis in U(n)/nk+1U(n) and let xr+1, . . . be a basis of nk+1U(n). Theorem 3.3 im-
plies that if Y1, . . . , Yn is a basis of k and h1, . . . , hr is a basis for symm(E)symm(H)
then if J is a multi-index of size n and I is a multi-index of size then the set of
elements

xlz
IhmY J

is a basis of U(gC)( z
I = zi11 · · · zill ). This implies that if u ∈ U(gC) then

uxsz
IhtY

J =
∑

s1,I1.t1,J1

as1J1t1L1,sItJ (u)X
J1zL1hi1Y

J1 .

If we take a basis v1, . . . , vd of R then the elements XJhi⊗vj form a basis of J(Vx).
Thus, if u ∈ U(gC) then

uxsht ⊗ vj =
∑

as1I1t1J1,s,0,t,0(u)xs1z
I1ht1Y

J1 ⊗ vju

=
∑

as1I1t1J1,s,0,t,0(u)xsht ⊗ μx(z
I1)Y J1vj .

Now apply pk,x getting the image of∑
s1≤r

as1I1t1J1,s,0,t,0(u)xsht ⊗
(
μx(z

I1)Y J1vj
)
.

The proposition follows from this formula. �
Let (as above) ps denote the natural surjection

ps : J(R) → J(R)/ns+1J(R).

Let σs,R denote the family σs defined above. If k ∈ K, v ∈ J(R), define Ss,R(v)(k) =
ps,R(kv); then Ss,R(v)∈I(σs,R|M ) and it is easily seen that Ss,R∈HomH(g,K)(J(R),
(πσs,R

, I(σs,R|M )). Combining the above results we have

Theorem 7.4. Let (μ,R) be an analytic (resp. continuous) family in W (D,K)
based on the manifold X. Let (λ, V ) be the analytic family (as in Proposition
7.1) corresponding to x → J((μx, R)). Then recalling that V = H⊗E ⊗ R define
Ts(x)(h ⊗ e ⊗ r) = Ss,Rx

(symm(h)e ⊗ r). Then Ts defines a homomorphism of
the analytic family (λ, V ) to (ξ, I(σs,Rx,|M )) (in the sense of Definition D.3) with
ξ(x, y) = πσs,Rx

(y) and σs,Rx
is defined as above.
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We will use the notation J(R) for the analytic family associated with x →
J((μx, R)).

8. Imbeddings of J-modules and their Hilbert family completions

Let X be a connected real or complex analytic manifold and let (μ,R) be an
analytic family of objects in W (D,K) based on X. We maintain the notation of
the previous section. The purpose of this section is to prove

Theorem 8.1. Let the representation of Q, σk,x, on

Wk =
(
U(n)/nk+1U(n)

)
⊗ E ⊗H ⊗R|M

be as in Proposition 7.3 and let Tk(x) be the analytic family as in Theorem 7.4. If
ω is a compact subset of X then there exists kω such that if x ∈ ω then Tk(x) is
injective for k ≥ kω.

Proof. This is a slight extension of a result in [HOW]. Given k, then (σk,x,Wk)

as a composition series Wk,x = W 1
k,x ⊃ W 2

k,x ⊃ · · · ⊃ W r
k,x ⊃ W r+1

k,x = {0} and

each W i
k,x/W

i+1
k,x is isomorphic with the representation (λj,νj

, Hλj
) with (λj , Hj)

an irreducible representation of M and νj ∈ a∗
C
and λj,ν(man) = aν+ρλj(m) with

m ∈ M,a ∈ A and n ∈ N . Also note that there is a natural Q-module exact
sequence

0 →
(
n
k+1U(n)/n

k+2
U(n)

)
⊗ E ⊗H ⊗ R|M → Wk+1,x → Wk,x → 0.

We may assume that the composition series is consistent with this exact sequence.
This implies that the νj that appear in Wk/Wk+1 are of the form μ+α1+ · · ·+αk+1

with αi a restricted positive root (i.e. a weight of a on n).
Now consider the corresponding exact sequence of (g,K)-modules.

(∗)0 → I(ηk,x) → I(σk+1,x) → I(σk,x) → 0.

The (g,K)-modules I(σν) with σ an irreducible representation of M with Harish-
Chandra parameter Λσ (for Lie(M)C) and ν ∈ a∗

C
have infinitesimal character with

Harish-Chandra parameter Λσ + ν. We are finally ready to prove the theorem with
notation as in Appendix E.

Let Cω be the compact set ∪x∈ωch(J(Rx)). Let Cω = ∪kω
i=1(Λi + Di) with Di

compact in a∗
C

and kω < ∞. Assume that the result is false for ω. Then for
each j there exists k ≥ j and x such that kerTk(x) �= 0 but kerTk+1(x) = 0.
Label the Harish -Chandra parameters that appear in I(σo,x), Λ1 + ν1, . . . ,Λs + νs
with Λi ∈ Lie(T )∗ and νi ∈ a∗

C
(recall that we have fixed a maximal torus of

M). The above observations imply that ch(J(Rx)) contains an element of the form
Λ+νik +βk with βk a sum of k positive roots, Λ ∈ Lie(T )∗ and 1 ≤ ik ≤ s. We now
have our contradiction νik + βk ∈ ∪Di which is compact. But the set of νik + βk is
unbounded. �

Theorem 8.2. Let U ⊂ Z be open with compact closure. There exists a contin-
uous family (π,H) of Hilbert representations of G (see Definition B.1) based on
U such that the continuous family of (g,K)-modules (dπ,H∞

K ) is isomorphic with
the analytic family z �→ J(Lz) of objects in H(g,K) based on U (thought of as a
continuous family). Furthermore, the family (π,H) is smoothable (see Definition
F.3).
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Proof. Let γ ∈ K̂ then Theorem 3.3(2) implies

dim J(Lz)(γ) = dimE dim γ dimHomK(Vγ ,H⊗ L)

for every z ∈ Z. In particular it is independent of z. Theorem 8.1 implies that
there exists k such that for each u ∈ U the map

Tk,Lu
: J(Lu) → I(σk,Lu

)

is injective. Note that the space of K-finite vectors in I(σk,Lu
) is the K-finite in-

duced representation IndKM (σk,L|M ) and hence independent of u. Let (H1, 〈. . . , . . . 〉)
be the Hilbert space completion of IndKM (σk,L|M ) corresponding to unitary induc-
tion from M to K. This gives a smoothable analytic family of Hilbert representa-
tions of G (Proposition 6.3), μz. Proposition G.3 now implies the result. �

9. The main theorem

Recall that G is a real reductive group of inner type.

Theorem 9.1. Let (π, V ) be an analytic family of objects in H(g,K) based on the
analytic manifold X. Let xo ∈ X; then there exists U , an open neighborhood of
xo in X, and a smoothable, continuous family of Hilbert representations (μU , HU )
such that the family (dμU , (HU )

∞
K ) is isomorphic with (π|U , V ) (as a continuous

family).

Proof. Let U1 be an open neighborhood of xo in X with compact closure. Then
Theorem E.6 implies that there exists F 0

U1
⊂ K̂ a finite subset such that

πx(U(gC))
∑
γ∈F 0

U

V (γ) = V.

Let R0 =
∑

γ∈FU
V (γ). R0 is invariant under the action πx(D) for all x ∈ X. This

implies that (
(
π|U

)
|D, R0) defines an analytic family of objects in W (D,K) based

on U1. Let J(R0) be the corresponding J-family. Then we have the surjective
analytic homomorphism of families

T0

J(R0) → V|U → 0

with T0(x) mapping J(R0
x) onto V for all x ∈ U1. Let (σ, (H0, (. . . , . . . ))) be the

smoothable, continuous family of Hilbert representations based on U1 corresponding
to J(R0) as in Theorem 8.2. Let U be an open neighborhood of xo contained in U1

such that U is contractible. The theorem now follows from Proposition G.4. �

The main result is

Theorem 9.2. Let T denote the inverse functor to the K-finite functor and let
(π, V ) be a holomorphic family of objects in H(g,K) based on the connected complex
manifold X. Then if x, y ∈ X, T (πx, V ) = T (πy, V ) as subspaces of

∏
γ∈K̂ V (γ)

and if T (πxV ) = (λx,W ) then (λ,W ) is a holomorphic family of smooth Fréchet
representations based on X.

Proof. The above theorem implies that there is an open covering, {Uα}, of X
and for each α a continuous family of smoothable, admissible Hilbert represen-
tations based on Uα, (σα, Hα), such that ((dσα)x, (Hα)K) = (πx, V ), x ∈ Uα.
Proposition F.2 combined with Theorem F.5 implies that (σα, H

∞
α ) (here H∞

α is
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the space of C∞ vectors with respect to K) is a holomorphic family of smooth
Fréchet representations of G based on Uα. The isomorphism of categories immedi-
ately implies that if x ∈ Uα ∩ Uβ then H∞

α = H∞
β as subsets of

∏
γ∈K̂ V (γ) and

(σα)x (g)|H∞
α

= (σβ(g))x |H∞
β

for all g ∈ G. Thus we can define W = H∞
α the

common value for all α (since X is connected) and if x ∈ X then σx(g) = (σα)x (g)
for α such that x ∈ Uα. �

This (and its proof) can be interpreted in the following way:

Corollary 9.3. Let T be the inverse functor to the K-finite functor HF(G) →
H(g,K) and let (π, V ) be a holomorphic family of objects in H(g,K) over the
connected complex manifold X. If T ((πx, V )) = (λx, Vx) then

(1) For all x, y ∈ X,Vx = Vy as subspaces of
∏

γ∈K̂ V (γ) and as Fréchet spaces.

Set V equal to the common value.
(2) The map x, g, v �−→ λx(g)v is continuous from X ×G× V to V̄ , linear in v

and C∞ in g and holomorphic in x.

Using the results in Appendix G and the observation that if V is an admissible
smooth, Fréchet module of moderate growth then the topology of V is given by
norms corresponding to continuous inner products one has

Corollary 9.4. If (π, V ) and (σ,W ) are holomorphic families of admissible, smooth
Fréchet modules over the complex manifold X and if T : (π, V ) → (σ,W ) is a
holomorphic family of homomorphisms of families (see Definition D.3) then image
of T (i.e.

x �→ (σx|Tx(V ), Tx(V )))

and the kernel of T (i.e.

x �→ (πx| kerTx
, kerTx))

is a holomorphic family of admissible, smooth Fréchet modules over X.

Appendix A. G-C∞
vectors and K-C∞

vectors

Let G be a real reductive group with a fixed maximal compact subgroup K
and let θ be the corresponding Cartan involution. Fix a symmetric bilinear form
B on Lie(G) such that 〈X,Y 〉 = −B(θX, Y ) is positive definite. Let C and CK

be the Casimir operators of G and K respectively corresponding to B and we set
Δ = C−2CK . We observe that Δ =

∑
X2

i for X1, . . . , Xm an orthonormal basis of
Lie(G) relative to 〈. . . , . . . 〉. As a left invariant operator on G, Δ is an elliptic and
invariant underK. Let (π,H) be a Hilbert representation ofG and set V = (H∞)K .
Let Z be the completion of V relative to the seminorms ql(v) =

∥∥Δlv
∥∥ , l = 0, 1, 2,

. . . . Then since q0 = ‖. . . ‖, Z can be looked upon as a subspace of H. Also H∞

is the completion of V using the seminorms sx(v) = ‖xv‖ with x ∈ U(g). Thus
Z ⊃ H∞.

Lemma A.1. Z = H∞. Furthermore, the topology on H∞ is given by the semi-
norms ql.

Proof. We note that the second assertion is a direct consequence of the closed graph
theorem (cf. [T]) and the first assertion. We will now prove the first assertion. Let
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v ∈ Z ⊂ H. We must prove that v ∈ H∞. Let vj ∈ V be a sequence converging to
v in the topology of Z. Let w ∈ H; then for all j

Δk(π(g)vj , w) = (π(g)Δkvj , w).

Set pk(v) =
∑k

j=0 qk(v). Noting that pl(Δ
kv) + pk−1(v) = pl+k(v) and pl(v) ≤

pl+1(v), we see that for fixed k the sequence {Δkvj}j converges to uk in Z.
We assert that the function g �→ (π(g)v, w) is C∞. Since w ∈ H is arbitrary

this would imply that the map g �→ π(g)v is weakly C∞. But a weakly C∞ map of
a finite dimensional manifold into a Hilbert space is strongly C∞(cf. [G2]). This
is exactly the statement that v is a C∞ vector. We now prove the assertion. We
first show that if we look upon the continuous function h(g) = (π(g)v, w) as a
distribution on G (using the Haar measure on G) then in the distribution sense

Δkh(g) = (π(g)uk, w).

Indeed, let f ∈ C∞
c (G); then∫
G

h(g)Δkf(g)dg = lim
j→∞

∫
G

(π(g)vj , w)Δ
kf(g)dg =

lim
j→∞

∫
G

Δk(π(g)vj , w)f(g)dg = lim
j→∞

∫
G

(π(g)Δkvj , w)f(g)dg =∫
G

(π(g)uk, w)f(g)dg

as asserted. Since Δ is elliptic, local Sobolev theory (cf. [T, Chapter 6]) implies
that h ∈ C∞(G). �

Proposition A.2. If (π,H) is an admissible Hilbert representation of G such that
there exists a polynomial

f(x) = xm −
m−1∑
j=0

cjx
j

with f(C) = 0 on H∞ then the topology of H∞ is given by the semi-norms pl(v) =∥∥(I + CK)lv
∥∥ , l = 0, 1, 2, . . . . That is, the K − C∞ vectors, H∞K are the same

as the G− C∞ vectors, H∞.

Proof. This result will be proved by induction on m. If m = 1 then C acts by
c = c0 on H∞. Note that Δ = C − 2CK . So if v ∈ H∞

∥∥Δkv
∥∥ =

∥∥∥∥∥∥
k∑

j=0

(−2)j
(
k

j

)
Ck−jCj

Kv

∥∥∥∥∥∥ ≤

k∑
j=0

(2)j
(
k

j

)
|c|k−j

∥∥∥Cj
Kv

∥∥∥ ≤
k∑

j=0

(2)j
(
k

j

)
|c|k−j

∥∥(1 + CK)jv
∥∥ .

Now assume the result if the degree is m − 1 ≥ 1. Let Hω denote the space
of analytic vectors in H∞. The K-finite vectors V = HK are contained in Hω

since H is admissible. If c ∈ C and Vc = {v ∈ V |Cv = cv} �= 0 then let H1

be the Hilbert space completion of Vc; then H1 is G-invariant, (H1)K = Vc and
(H/H1)K = HK/Vc. Fix c such that Vc �= 0. The first part of the proof implies
that the seminorms pl define the topology on H∞

1 . The correspondence U → U∞ is
an exact functor from the category of strongly continuous Hilbert representations
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of G to the category of smooth Fréchet modules [W, Proposition 4.4.1.11, p. 260].
Setting

g(x) =
f(x)

x− c
,

we have g(C) is zero on (H/H1)
∞

(since it is 0 on V/Vc). Thus we have the
commutative diagram

0 → H∞
1 → H∞ → (H/H1)

∞ → 0
↓ ↓ ↓

0 → H∞K
1 → H∞K → (H/H1)

∞K → 0

with the right-most and left-most vertical arrows isomorphisms. This implies that
the middle vertical arrow is also an isomorphism completing the induction. �

Corollary A.3. If (π,H) is an admissible finitely generated Hilbert representation
of G then the K-C∞ vectors are the same as the G-C∞ vectors.

Proof. There exists a finite subset F ⊂ K̂ such that U(g)
∑

γ∈F H(γ) = HK .

Clearly, C
∑

γ∈F H(γ) ⊂
∑

γ∈F H(γ). Let p(x) be the minimal polynomial of

C|
∑

γ∈F H(γ). Then p(C) = 0 on HK and hence on H∞. �

Appendix B. Hilbert families

Let G be a locally compact topological group and let X be a locally compact
metric space. All Hilbert spaces in this appendix (indeed, in this paper) will be
separable.

Definition B.1. A continuous family of Hilbert representations of G over X is
a pair (σ,H) with H a Hilbert space and σ : X × G → GL(H) (the continuous
invertible operators on H with the strong operator topology) a continuous map
such that σx(g) = σ(x, g) defines a representation of G for every x ∈ G.

Lemma B.2 is Lemma 1.1.3 in [RRG] taking into account dependence on param-
eters. The proof is essentially the same using the local compactness of X.

Lemma B.2. Let X be a locally compact metric space and let H be a Hilbert space.
Assume that for each x ∈ X, πx : G → GL(H) (bounded invertible operators) such
that

(1) If ω ⊂ X and Ω ⊂ G are compact subsets of X and of G respectively then
there exists a constant Cω,Ω such that ‖πx(g)‖ ≤ Cω,Ω for x ∈ ω, g ∈ Ω.

(2) The map x, g → 〈πx(g)v, w〉 is continuous for all v, w ∈ H.

Then (π,H) is a continuous family of representations of G based on X and
conversely if (π,H) is a continuous family of Hilbert representations then (1) and
(2) are satisfied.

An immediate corollary is

Corollary B.3. Let (π,H) be an admissible, continuous family of Hilbert repre-
sentations of G based on the locally compact metric space X. Set for each x ∈ X,
π̂x(g) = πx(g

−1)∗; then (π̂, H) is a continuous, admissible family of Hilbert repre-
sentations of G based on X.
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Appendix C. Norms

Let ‖g‖ be a norm on G, that is, a continuous function from G to R>0 (the
positive real numbers) such that

(1) ‖k1gk2‖ = ‖g‖ , k1, k2 ∈ K, g ∈ G,
(2) ‖xy‖ ≤ ‖x‖ ‖y‖ , x, y ∈ G,
(3) The sets ‖g‖ ≤ r < ∞ are compact.
(4) If X ∈ p then if t ≥ 0 then log ‖exp tX‖ = t log ‖expX‖.
If (σ, V ) is a finite dimensional representation of G with compact kernel. Assume

that 〈. . . , . . . 〉 is an inner product on V that is K-invariant and is such that the
elements σ(exp(X)) are self adjoint for X ∈ po. If ‖σ(g)‖is the operator norm of
σ(g) then ‖g‖ = ‖σ(g)‖ is a norm on G. Taking the representation on V ⊕ V given
by [

σ(g)
σ(g−1)∗

]
,

then we may (and will) assume in addition

(5) ‖g‖ =
∥∥g−1

∥∥.
Note that (5) implies that ‖g‖ ≥ 1.
Using the same proof as Lemma 2.A.2.1 in [RRG] (which we give for the sake of

completeness) one can prove

Lemma C.1. If (π,H) is a continuous family of Hilbert representations over ω a
compact metric space then there exist constants Cω, rω such that

‖πx(g)‖ ≤ Cω ‖g‖rω .

Proof. Let
B1 = {g ∈ G| ‖g‖ ≤ 1}.

If v ∈ H and (x, g) ∈ ω × B1 then sup ‖πx(g)v‖ < ∞ by strong continuity. The
principle of uniform boundedness (cf. [RS, III.9, p. 81]) implies that there exists a
constant, R, such that ‖πx(g)‖ ≤ R for (x, g) ∈ ω×B1. Let r = logR. In particular
if k ∈ K then

‖πx(kg)‖ ≤ ‖πx(k)‖ ‖πx(g)‖ ≤ R ‖πx(g)‖ .
Also,

‖πx(g)‖ =
∥∥πx(k

−1)πx(kg)
∥∥ ≤ R ‖πx(kg)‖ .

Thus for all k ∈ K, g ∈ G

R−1 ‖πx(g)‖ ≤ ‖πx(kg)‖ ≤ R ‖πx(g)‖ .
Let X ∈ p, X �= 0 and let j be such that

j < log ‖expX‖ ≤ j + 1,

then

log ‖πx(expX)‖ ≤ log

∥∥∥∥πx(exp(
X

j + 1
)

∥∥∥∥j+1

≤ r(j + 1) ≤ r + r log ‖expX‖ .

Thus
‖πx (expX)‖ ≤ R ‖expX‖r , X ∈ p.

If g ∈ G then g = k expX with k ∈ K and X ∈ p so

‖πx(g)‖ = ‖πx(k expX)‖ ≤ R2 ‖expX‖r = R2 ‖g‖r .
Take Cω = R2 and rω = r. �
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Appendix D. Continuous and analytic families of (g,K) modules

Let G be a reductive group with fixed maximal compact subgroup, K. In this
section X will denote a connected, paracompact real analytic or complex manifold.

Definition D.1. If V is a vector space over C then a continuous, real analytic
or holomorphic function from X to V is a map f : X → V such that for each
x ∈ X there exists U , an open neighborhood of x in X such that the following two
conditions are satisfied:

(1) dim spanC{f(x)|x ∈ U} < ∞.
(2) f : U → spanC{f(x)|x ∈ U} is respectively continuous, real analytic or

holomorphic.

Definition D.2. A holomorphic, analytic or continuous family of admissible (g,K)-
modules over X is a pair, (μ, V ), of an admissible (k,K)-module, V , and

μ : X × U(g) → End(V )

such that x �→ μ(x, y)v is respectively holomorphic, analytic or continuous for all
y ∈ U(g), v ∈ V and if we set μx(y) = μ(x, y) for y ∈ U(g) then (μx, V ) is an
admissible (g,K)-module. It will be called a family of objects in H(g,K) over X if
each (μx, V ) is finitely generated.

Definition D.3. If (λ, V ) and (μ,W ) are analytic or continuous families of objects
in H(g,K) over X then a homomorphism of the family (λ, V ) to (μ,W ) is a map

T : X → HomC(V,W )

such that

(1) x �→ T (x)v is an analytic or continuous map of X to W for all v ∈ V .
(2) T (x) ∈ HomH(g,K)(Vx,Wx) with Vx = (λx, V ),Wx = (μx,W ).

Lemma D.4. Let (π,H) be a continuous family of admissible Hilbert representa-
tions of G over X and denote by dπx the action of g on H∞

K (the K-finite C∞-
vectors). Then (dπ,HK) is a continuous family of admissible (g,K)-modules based
on X.

Proof. If γ ∈ K̂ then we will use the notation C∞
c (γ;G) for the space of all f ∈

C∞
c (G) such that

d(γ)

∫
K

χγ(k)f(k
−1g)dk = f(g), g ∈ G

with χγ the character of γ. Then

H(γ) = πx(C
∞
c (γ;G))H.

We also note that if Y ∈ g, f ∈ C∞
c (γ;G) and v ∈ H then

dπx(Y )πx(f)v = πx(Y f)v

with Y f the usual action of Y ∈ g on C∞(G) as a left invariant vector field (that
is differentiate on the right). Thus, if v ∈ HK and y ∈ U(gC) then the map

x �−→ dπx(y)v

is continuous. �
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Appendix E. Some results of Vincent van der Noort

Throughout this section Z will denote a connected real or complex analytic
manifold. We will use the terminology analytic to mean complex analytic or real
analytic depending on the context.

We continue the notation of the previous sections. In particular G is a real
reductive group of inner type.

We denote (as is usual) the standard filtration of U(g) by

· · · ⊂ U j(g) ⊂ U j+1(g) ⊂ . . ..

Let V be an admissible (Lie(K),K) module. We note that if E ⊂ V is a finite

dimensional K-invariant subspace of V then there exists a finite subset Fj,E ⊂ K̂
such that

U j(g)⊗ E ∼=
∑

γ∈Fj,E

mγ,jVγ .

If v ∈ V we denote by Ev the span of Kv in V .
The purpose of this section is to prove a theorem of van der Noort which first

appeared in his thesis [VdN]. We include the details only because he is not expected
to publish it. In his thesis he studied the holomorphic case. Our exposition follows
his original line.

Fix a maximal torus, T , of M ; then ho = Lie(T )⊕a is a Cartan subalgebra of go.
As usual, set h equal to the complexification of ho. We parametrize the homomor-
phisms of Z(g) to C by χΛ for Λ ∈ h∗ using the Harish–Chandra parametrization.

Since M is compact we endow M̂ with the discrete topology. Note that if C is a
compact subset (sorry of the over use of C, the Casimir operator will not appear in

this section) of M̂ × a∗
C
then there exist a finite number of elements ξ1, . . . , ξr ∈ M̂

and compact subsets, Dj , of a
∗
C
such that

C = ∪r
j=1ξj ×Dj .

If ξ ∈ M̂ and ν ∈ a∗
C
then set σξ,ν(man) = ξ(m)aν+ρ (ρ(H) = 1

2 tr(adH|Lie(N))),
H ∈ a), aν = exp(ν(H)) a = exp(H), ξ is taken to be a representative of the
class ξ. Hξ,ν is I(σξ.ν) which equals as a K-module Hξ = IndKM (ξ ). If f ∈ Hξ set
fν(nak) = aν+ρf(k), n ∈ N, a ∈ A, k ∈ K. AP̄ (ν) is the corresponding Kunze-Stein
intertwining operator (cf. [W1, 8.10.18. p. 241]).

Proposition E.1. Let ξ ∈ M̂ and let Ω ⊂ a∗
C
be compact. There exists a finite set

F ⊂ K̂ such that πξ,ν(U(g))
(∑

γ∈F Hξ(γ)
)
= Hξ for all ν ∈ Ω.

The proof of this result will use the following

Lemma E.2. If νo ∈ a∗
C
, ξ ∈ M̂ then there exists an open neighborhood of νo, Uνo

,

and a finite subset F = Fνo
of K̂ such that πξ,ν(U(g))

(∑
γ∈F Hξ(γ)

)
= Hξ for all

ν ∈ Uνo
.

Proof. If γ ∈ K̂ fix Wγ ∈ γ. If Re(ν, α) > 0 for all α ∈ Φ+ and if γ ∈ K̂ and
AP (ν)H

ξ(γ) �= 0 then πξ,ν(U(g))
(
Hξ(γ)

)
= Hξ (cf. [RRG, Theorem 5.4.1 (1)]).

Fix such a γν (which always exists since the operator AP (ν) �= 0); take Fν = {γν}
and Uν an open neighborhood of ν such that AP (μ)H

ξ(γν) �= 0 for μ ∈ U . Let
ν ∈ a∗

C
be arbitrary. There exists a positive integer, k, such that Re(ν + kρ, α) > 0

for all α ∈ Φ+ and such that kρ is the highest weight of a finite dimensional spherical
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representation, V kρ, of G relative to a. The lowest weight of V kρ relative to a is

−kρ and M acts trivially on that weight space; thus Hξ,ν+kρ
K ⊗ V kρ has Hξ,ν

K as
a quotient representation (see [W1, 8.5.14,15]). Take Fν to be the set of K-types
that occur in both Wγν+kρ

⊗ V kρ and Hξ and Uν = Uν+kρ − kρ. �

We now prove the proposition. By the lemma above for each ν ∈ Ω there exist
Fν and Uν as in the statement of the lemma. The Uν form an open covering of Ω
which is assumed to be compact. Thus there exist a finite number ν1, . . . , νr ∈ Ω
such that

Ω ⊂ ∪r
i=1Uνi

.

Take F = ∪r
i−1Fνi

. This proves the proposition.

Lemma E.3. Let χξ,ν denote the infinitesimal character of πξ,ν . If C is a compact
subset of h∗ then

{(ξ, ν) ∈ {M̂ × a∗C|χξ,ν = χΛ,Λ ∈ C}
is compact.

Proof. Fix a system of positive roots for (M0, T ) (M0 the identity component of
M). If λξ is the highest weight of ξ relative to this system of positive roots and if
ρM is the half sum of these positive roots then χξ,ν = χΛ with Λ = λξ + ρM + ν.
This implies the lemma. �

The following result is the reason for the assumption of analyticity.

Lemma E.4. Let (π, V ) be an analytic family of admissible (g,K) modules over Z.
Assume that there exists z0 ∈ Z such that (πzo , V ) is finitely generated. If T ∈ Z(g)
then there exist analytic functions a0,T , . . . , an−1,T on Z such that if

fT (z, x) = xn +
n−1∑
j=0

aj,T (z)x
j

for z ∈ Z then fT (z, πz(T )) = 0 for all z ∈ Z.

Proof. Let F be a finite subset of K̂ such that πz0(U(g))
∑

γ∈F V (γ) = V . Let L =∑
γ∈F V (γ). Then we define the functions aj the by the formula

f(z, x) = det (xI − πz(T )|L) = xn +

n−1∑
j=0

aj(z)x
j .

The Cayley-Hamilton theorem implies that h(z) = Tn +
∑n−1

j=0 aj(z)T
j ∈ Z(g)

vanishes on L. Let γ ∈ K̂; then there exist x1, . . . , xr ∈ U(g) and v1, . . . , vr ∈ L
such that {πz0(xi)vi}ri=1 is a basis of V (γ). Let Pγ be the projection onto the
γ-isotypic component of V . Thus

(Pγπz(x1)v1) ∧ (Pγπz(x2)v2) ∧ · · · ∧ (Pγπz(xr)vr) ∈ ∧rV (γ)

(a one dimensional space) is non–zero for z = z0. This implies that there exists an
open neighborhood, U , of z0 in Ω such that

Pγπz(x1)v1, Pγπz(x2)v2, . . . , Pγπz(xr)vr

is a basis of V (γ) for z ∈ U . Since

h(z)Pγπz(xi)vi = Pγπz(xi)h(z)vi = 0,
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we have h(z)V (γ) = 0 for z ∈ U . The connectedness of Z and the analyticity imply
that h(z)V (γ) = 0 for z ∈ Z. Thus since γ is arbitrary h(z) = 0 for all z ∈ Z. This
proves the Lemma. �

If V is a (g,K)-module then set ch(V ) equal to the set of Λ ∈ h∗ such that there
exists v ∈ V with Tv = χΛ(T )v for all T ∈ Z(g).

Corollary E.5. Keep the notation and assumptions of the previous lemma, If ω ⊂
Z is compact then there exists a compact subset Cω of h∗ such that ch(πz, V ) ⊂ Cω

for all z ∈ ω.

Proof. Let T1, . . . , Tm be a generating set for Z(g) and let fj(z, x) = fTj
(z, x) be

the function in the previous lemma corresponding to Tj . Then

fj(z, x) = xnj +

nj−1∑
i=0

aj,i(z)x
j

with aj,i analytic in Z. If χΛ ∈ ch(πz, V ) then

|χΛ(Tj)| ≤ max
0≤i<nj

|aj,i(z)|+ 1

(cf. [RRG, 7.A.1.3]). If L ⊂ Z is compact then there exists a constant r < ∞ such
that |aj,i(z)| ≤ r for all i, j and z ∈ L. This implies the corollary. �
Theorem E.6. Let (π, V ) be an analytic family of admissible (g,K) modules over
Z. Assume that there exists z0 ∈ Z such that (πz0 , V ) is finitely generated. If ω is

a compact subset of Z then there exists Sω ⊂ K̂ a finite subset such that if y ∈ ω
then

πy(U(g))

⎛⎝ ∑
γ∈Sω

V (γ)

⎞⎠ = V .

Proof. Let Cω as in the above corollary for ω. Let

X = {(ξ, ν) ∈ M̂ × a∗C|χξ,ν = χΛ,Λ ∈ Cω}.
X is compact so there exist ξ1, . . . , ξr ∈ M̂ and D1, . . . , Dr, compact subsets of a∗

C
,

such that X = ∪jξj ×Dj . Let Sj ⊂ K̂ be the finite set corresponding to ξj ×Dj

in Proposition E.1. Set Sω = ∪Sj . Let L1 ⊂ L2 ⊂ · · · ⊂ Lj ⊂ . . . be an exhaustion
of the K-types of V with each Lj finite.

We will use the notation Vy for the (g,K)-module (πy, V ). Let y ∈ C. Set

Wj = πy(U(g))
(∑

γ∈Lj
V (γ)

)
; then Wj ⊂ Wj+1 and ∪Wj = V . Each Wj is

finitely generated and admissible, hence of finite length. Therefore Vy has a finite
composition series

0 = V 0
y ⊂ V 1

y ⊂ · · · ⊂ V N
y

or a countably infinite composition series

0 = V 0
y ⊂ V 1

y ⊂ · · · ⊂ V n
y ⊂ V n+1

y ⊂ . . .

with V i
y/V

i−1
y irreducible. Thus by the dual form of the subrepresentation theorem

there exists for each i, ξi ∈ M̂ and νi ∈ a∗
C

so that V i
y/V

i−1
y is a quotient of

(πξi,νi
, Hξi,νi). Observe that (ξi, νi) ∈ X. Thus V i

y/V
i−1
y (γi) �= 0 for some γi ∈ Sω.

Let L be a quotient module of Vy. Then L = Vy/U with U a submodule of Vy.
There must be an i such that V i

y/
(
V i−1
y ∩ U

)
�= 0. Let i be minimal subject to this
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condition. Then V i−1
y ⊂ U . Thus V i

y/V
i−1
y is a submodule of L. Hence L(γ) �= 0

for some γ ∈ Sω. This implies that

πy(U(g))

( ∑
λ∈Sω

V (λ)

)
= V .

Indeed, we have shown that(
Vy/πy(U(g))

( ∑
λ∈Sω

V (λ)

))
(γ) = 0, γ ∈ Sω.

�

Corollary E.7. (To the proof) Let (π, V ) be an analytic family of finitely generated
admissible (g,K) modules over Z . Let W ⊂ Z be compact . Let for each z ∈ W ,

Uz be a (g,K)-submodule of Vz. Then there exists a finite subset FW ⊂ K̂ such
that

πz(U(g))

⎛⎝ ∑
γ∈FW

Uz(γ)

⎞⎠ = Uz.

Proof. In the proof of the theorem above all that was used was that the set of
possible infinitesimal characters is compact. �

Appendix F. Continuous and holomorphic families

of smooth Fréchet representations

Let G be a reductive group with fixed maximal compact subgroup, K. Let
F(G) denote the category of smooth Fréchet representations (here, as usual, smooth
means that the map g �→ π(g)v is C∞).

Definition F.1. A continuous family of objects in F(G) over a metric space X is
a pair (π, V ) of a Fréchet space V and a continuous map

π : X ×G → End(V )

(here End(V ) is the algebra of continuous operators on V with the strong topology)
such that for each x ∈ X, if πx(g) = π(x, g) then (πx, V ) ∈ F(G). We will say that
the family has local uniform moderate growth if for each ω a compact subset of X
and each continuous seminorm on V, p, there exists a continuous seminorm qω on
V and rω such that if v ∈ V then

p(πx(g)v) ≤ qω(v) ‖g‖rω .

Proposition F.2. If (π,H) is a continuous family of Hilbert representations over
the analytic manifold X such that the representations πx|K are the same for all
x ∈ X (we denote this common value by π(k)) and the representations (dπx, H

∞
K )

form an analytic family of objects in H(g,K), then

(1) The space of C∞ vectors in H with respect to πx is equal to the space of C∞

vectors of the representation (π,H). of K.
(2) Assume that for each, ω ⊂ X, compact, and u ∈ U(g) there exist constants

Cω,υ, nω,u such that

‖dπy(u)v‖ ≤ Cω,u ‖dπ(1 + CK)nω,uv‖
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for v ∈ H∞. Then x �→ (πx, H
∞) is a continuous family of smooth Fréchet repre-

sentations of local uniform moderate growth.

Proof. (1) follows from Lemma E.4 and Proposition A.2.
We now prove (2) To prove the continuity assertion we need to show that if l > 0

and xo ∈ X then

lim
x→xo

∥∥dπ(1 + CK)l(πx(g)− πxo
(g))v

∥∥ = 0.

Let λγ be the eigenvalue of CK on V (γ). Recall that if v ∈ H∞ =
∑

γ vγ with

vγ ∈ H(γ) and for each r there exists a constant Cr,v such that

‖vγ‖ ≤ Cv,r(1 + λγ)
−r.

As is well known ∑
γ∈K̂

(1 + λγ)
−r < ∞

if r > dimT
2 with T is a maximal torus of K. Fix l > 0 and xo in X. Let F ⊂ K̂; if

u ∈ H∞ set u(F ) =
∑

γ∈F uγ . If F
c = K̂ − F , then u = u(F ) + u(F c). If u ∈ H∞

then
dπ(1 + CK)lπx(g)u = πx(g)dπx(Ad(g)−1(1 + CK)l)u.

Let z1, . . . , zdl
be a basis of U2l(g). Then

Ad(g)−1(1 + CK)l =
∑

ai(g)zi

with ai real analytic on G. Thus

dπ(1 + CK)lπx(g)v = πx(g)
∑

ai(g)dπx(zi)u.

Note that there exists C1,m such that |ai(g)| ≤ C1 ‖g‖m for all i. Now fix xo ∈ X
and fix U a neighborhood of xo with compact closure. Then (Lemma C.1)

‖πx(g)u‖ ≤ C2 ‖g‖m1 ‖u‖ , x ∈ U, u ∈ H.

Let v ∈ H∞. Let for N > 0, FN = {γ ∈ K̂|λγ ≤ N}; then FN is a finite set. Let

r = dimT
2 + 1. Set n = maxi nui,ω with ω the closure of U and C3 = maxCui,ω. If

x ∈ U ∥∥dπ(1 + CK)l(πx(g)− πxo
(g))v(F c

N )
∥∥2

≤ 2d2lC
2
2C

2
1C

2
3 ‖g‖

m+m1
∑
γ /∈FN

(1 + λγ)
2l+2n ‖vγ‖2 .

Also
‖vγ‖ ≤ Cv,m(1 + λγ)

−m,

so ∑
γ /∈FN

(1 + λγ)
2l+2n ‖vγ‖2 ≤ Cv,m

∑
γ /∈FN

(1 + λγ)
2l−m.

Choose m = 2l + r + 2n+ s with s ≥ 1. Then∑
γ /∈FN

(1 + λγ)
2l+2n ‖vγ‖2 ≤ N−sCv,m

∑
γ /∈FN

(1 + λγ)
−r ≤ N−sCv,m

∑
γ /∈K̂

(1 + λγ)
−r.

We therefore have (C4 = Cv,m

∑
γ /∈K̂(1 + λγ)

−r)∥∥dπ(1 + CK)l(πx(g)− πxo
(g))v(F c

N )
∥∥2 ≤ 2d2lC

2
2C

2
1C

2
3 ‖g‖

m+m1 C4N
−s.
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Let ε > 0 be and let ω1 be a compact subset of G. Choose N so that

2d2lC
2
2C

2
1C

2
3 ‖g‖

m+m1 C4N
−s <

ε2

4

for g ∈ ω1. Now if x ∈ U then∥∥dπ(1 + CK)l(πx(g)− πxo
(g))v

∥∥
≤

∥∥dπ(1+CK)l(πx(g)− πxo
(g))v(FN)

∥∥+∥∥dπ(1+CK)l(πx(g)− πxo
(g))v(F c

N)
∥∥

<
∥∥dπ(1 + CK)l(πx(g)− πxo

(g))v(FN )
∥∥+

ε

2
.

The function of x,
∥∥dπ(1 + CK)l(πx(g)− πxo

(g))v(FN )
∥∥2 is by our assumption real

analytic in x, g and equal to 0 at x = xo. Hence there exists a neighborhood, W ,
of xo in U such that if g ∈ ω1 and x ∈ W then∥∥dπ(1 + CK)l(πx(g)− πxo

(g))v(FN )
∥∥2 <

ε2

4
.

This completes the proof of continuity. We leave the condition of uniform moderated
growth to the reader (what is needed is in the above argument). �

Definition F.3. A continuous family of Hilbert representations of G, (π,H), over
X will be called smoothable if for each compact subset ω ⊂ X, u ∈ U(g) there
exists Cω,u, nω,u such that

‖dπy(u)v‖ ≤ Cω,u ‖dπ(1 + CK)nω,uv‖
for y ∈ ω, v ∈ H∞.

Definition F.4. A holomorphic family of objects in F(G) over the complex mani-
fold X is a continuous family (π, V ) such that the map x �−→ πx(g)v is holomorphic
from X to V for all g ∈ G, v ∈ V .

Theorem F.5. If (π, V ) is a continuous family of smooth Fréchet representations
over the complex manifold X such that (dπ, VK) is a holomorphic family of objects
in H(g,K) then (π, V ) is a holomorphic family of objects in F(G) over X.

We will use Lemma F.6 in the proof.

Lemma F.6. Let X be a complex n-manifold, G be connected and let

f : X ×G → C

be continuous and real analytic in G. If zf(x, e) is holomorphic in x ∈ X for all
z ∈ U(g) (here z is acting as left invariant differential operators on the G the second
factor) then f is holomorphic in X.

Proof. Let x ∈ X and let z1, . . . , zn be local coordinates on an open neighborhood,
U , of x in X such that if ψ = (z1, . . . , zn) then ψ(x) = 0 and ψ(U) ⊃ D

n
with D

(resp. D) the (resp. closed) unit disk in C. For simplicity we may assume that
X = ψ(U). Define for z ∈ D

h(z, g) =
1

(2πi)n

∫
(S1)n

f(u, g)∏
(ui − zi)

du1 · · · dun.

Then h(z, g) is holomorphic in z on D. By our assumption uh(z, e) = uf(z, e) for
u ∈ U(g), z ∈ D. Since f is analytic in G and G is connected h = f on D. �
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We will now prove the theorem. Let λ ∈ V ′. If v ∈ VK then the function

f(x, g) = λ(πx(g)v)

on X ×G is continuous and real analytic in G. Now

uf(x, e) = λ(dπx(u)v)

which is holomorphic in x. Thus if v ∈ VK then

x �→ λ(πx(g)v)

is holomorphic in x. Let x ∈ X and U,ψ, etc. be as in the previous lemma. Set

h(z, v) =
1

(2πi)n

∫
(S1)n

λ(πu(g)v)∏
(ui − zi)

du1 · · · dun

for v ∈ V, z ∈ Dn. Then h(z, v) is holomorphic in z and continuous in v. Further-
more, the first part of this proof showed that h(z, v) = λ(πz(g)v) if v ∈ VK . Since
VK is dense in V this implies that

z �→ λ(πz(g)v)

is holomorphic in z. Grothendieck [G1] has shown that a weakly holomorphic map
of a complex manifold to a Fréchet space is strongly holomorphic thus completing
the proof.

Appendix G. Functorial properties of Hilbert families

In this section we will analyze Hilbert globalizations of subfamilies and quotient
families of Harish-Chandra modules.

Lemma G.1. Let (τ, V ) be a finite dimensional continuous representation of K
and let X be a metric space. If u ∈ X let 〈. . . , . . . 〉u be an inner product on V
such that τ (k) acts unitarily with respect to 〈. . . , . . . 〉u for k ∈ K and such that
the map u �−→ 〈v, w〉u is continuous (resp. real analytic) for all v, w ∈ V . Then
there exists, for each u an ordered orthonormal basis of V , e1(u), . . . , en(u) such
that the map u �−→ ei(u) is continuous (resp. real analytic) and the matrix of
τ (k) with respect to e1(u), . . . , en(u) is independent of u. Furthermore, if X is a
compact, contractible metric space and (σ.W ) is a finite dimensional continuous
representation of K and u �−→ B(u) ∈ HomK(V,W ) is continuous and surjective
for u ∈ X then e1(u), . . . , er(u) with r = dimV − dimW can be taken in kerB(u).

Proof. Fix an inner product, (. . . , . . . ), on V such that τ is unitary. Then there
exists a positive definite Hermitian operator (with respect to (. . . , . . . )), A(u), such
that 〈v, w〉u = (A(u)v, w), v, w ∈ V and A(u) is continuous (resp. real analytic) in
u and satisfying

τ (k)−1A(u)τ (k) = A(u), u ∈ X, k ∈ K.

Set S(u) = A(u)
1
2 ; then 〈v, w〉u = (S(u)v, S(u)w). Thus if T (u) = S(u)−

1
2 then

τ (k)T (u) = T (u)τ (k), k ∈ K,u �−→ T (u) is continuous (resp. real analytic) and

〈T (u)v, T (u)w〉u = (v, w) , v, w ∈ V.

Let e1, . . . , en be an (ordered) orthonormal basis of V with respect to (. . . , . . . );
then e1(u) = T (u)e1, . . . , en(u) = T (u)en is an orthonormal basis of V with respect
to 〈. . . , . . . 〉u. If τ (k)ei =

∑
kjiej then

τ (k)ei(u) = τ (k)T (u)ei = T (u)τ (k)ei =
∑

kjiT (u)ej .
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To prove the second assertion note that u → kerB(u) is a K-vector bundle over
X (see Lemma G.2). Since X is compact and contractible the bundle is a trivial
K-vector bundle [A, Lemma 1.6.4]. Thus there is a representation (μ, Z) of K and a
continuous map u �−→ L(u) ∈ HomK(Z, V ) such that L(u)Z = kerB(u) and L(u)
is injective. Notice that B(u) : (kerB(u))⊥ → W is a K-module isomorphism.
Now pull back the inner product 〈...,...〉u to Z using L(u) getting a K-invariant
inner product, (. . . , , , , )u, on Z and push the restriction of the inner product to
W using B(u) getting a K-invariant inner product (. . . , . . . )1u on W . Now apply
the first part of the lemma to get an orthonormal basis f1(u), . . . , fr(u) of Z with
respect to (. . . , . . . )u and an orthonormal basis fr+1(u), . . . , fn(u) (n = dimV )
with respect to (. . . , . . . )1u such that the matrices of the action of K with respect
to each of these bases is constant. Take ei(u) = L(u)fi(u) for i = 1, . . . , r and

ei(u) =
(
B(u)|

kerB(u)⊥

)−1

fi(u) for i = r + 1, . . . , n. �

Lemma G.2. Let V and W be finite dimensional, continuous K-modules and
assume that for x ∈ X, B(x) ∈ HomK(V,W ) is surjective and the map x �→ B(x)
is continuous. Then x �→ kerB(x) is a K-vector bundle over X.

Proof. Let xo ∈ X; we must show that there is a neighborhood U1 of xo and for
all u ∈ U1 a K-module isomorphism T (u) of kerB(xo) onto kerB(u) such that the
map u �→ T (u) is continuous from U1 to HomK(kerB(xo), V ). To that end, let
M ⊂ V be a K-invariant subspace of V such that B(xo) is a K-isomorphism of M
onto W . Then there exists U ⊂ X an open neighborhood of xo such that B(u)|M is

invertible for u ∈ U . Set S(u) =
(
B(u)|M

)−1
on B(u)M = W = B(u)V for u ∈ U .

If v ∈ kerB(x0) and if u ∈ U then

B(u)v = B(u)S(u)B(u)v

so

B(u)(I − S(u)B(u))v = 0.

Thus I −S(u)B(u) maps kerB(xo) to kerB(u) for u ∈ U . This map is the identity
for u = xo, so it is a K-isomorphism for u ∈ U1 ⊂ U with U1 open in U . �

Proposition G.3. If (σ, V ) is a continuous family of admissible (g,K)-modules
over a metric space X, if (μ,H) is a smoothable (see Definition F.3) continuous
family of admissible Hilbert representations of G based on X and if

T : (σ, V ) → (dμ,HK)

is a continuous family of injective (g,K)-module homomorphisms then there exists
(λ,W ) a smoothable continuous family of Hilbert representations of G based on
X such that (dλ,W∞

K ) and (σ, V ) are isomorphic as continuous families and a
continuous family of injections of (λ,W ) into (μ,H).

Proof. If x ∈ X then set 〈. . . , . . . 〉x = T ∗
x 〈. . . , . . . 〉 (where 〈. . . , . . . 〉 is the inner

product on H). If γ ∈ K̂, x ∈ X let eγ1 (x), . . . , e
γ
nγ

(x) be the orthonormal basis

as in Lemma G.1 corresponding to the restriction of 〈. . . , . . . 〉x to V (γ) . Then

{eγi (x)}i,γ∈K̂V
with K̂V = {γ ∈ K̂|V (γ) �= 0} is an orthonormal basis of V . Set

fγ
i (x) = Tx(e

γ
i (x)),
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then {fγ
i (x)} is an orthonormal basis of TxV for x ∈ X. If v ∈ H then set

Pγ(x)v =

nγ∑
i=1

〈v, fγ
i (x)〉 f

γ
i (x).

Note that the map
x �→ Pγ(x)

is strongly continuous from X to HomK(H,H(γ)) (the continuous K homomor-
phisms). Define

P (x)v =
∑

Pγ(x)v.

Then P (x) is the orthogonal projection of H onto the closure of TxV in H. Thus
in particular ‖P (x)‖ = 1. We assert that

x �→ P (x)

is strongly continuous from X to the bounded operators on H. To this end, let

v ∈ H be a unit vector and xo ∈ X. Let ε > 0 be given and let F ⊂ K̂ be such
that ∥∥∥∥∥∥

∑
γ /∈F

v(γ)

∥∥∥∥∥∥ <
ε

4
,

then since
P (x)

∑
γ∈F

v(γ) =
∑
γ∈F

Pγ(x)v(γ),

there exists an open neighborhood, U , of xo in X such that∥∥∥∥∥∥(P (x)− P (xo))
∑
γ∈F

v(γ)

∥∥∥∥∥∥ <
ε

2
.

Thus

‖(P (x)− P (xo)) v‖ ≤

∥∥∥∥∥∥(P (x)− P (xo))
∑
γ∈F

v(γ)

∥∥∥∥∥∥+

∥∥∥∥∥∥(P (x)− P (xo))
∑
γ /∈F

v(γ)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥(P (x)− P (xo))
∑
γ∈F

v(γ)

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥
∑
γ /∈F

v(γ)

∥∥∥∥∥∥ < ε.

Let νx(g) be the action of G on P (x)H. Define L(x, y) : P (y)H → P (x)H

L(x, y)fγ
i (y) = fγ

i (x).

Then L(x, y) is a unitary operator and a K-module equivalence. Furthermore,

x, y �→ L(x, y)P (y)

is strongly continuous (use a slight modification of the argument for the strong
continuity of P (x)). Fix xo ∈ X and set W = P (xo)H and

λx(g) = L(xo, x)νx(g)L(x, xo).

To complete the proof we need to show that (μ,W ) is smoothable. Let ω be a
compact subset of X and u ∈ U(g); then there exist Cω and nω such that if
v ∈ H∞ then the definition of smoothable says

‖dμx(u)v‖ ≤ Cω ‖dμx(1 + CK)nωv‖ .
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Now, if v ∈ W∞ then v = Pxo
w with w ∈ H∞. So

‖dλx(u)v‖ = ‖L(xo, x)dνx(u)L(x, xo)Px0
w‖

= ‖dνx(u)L(x, xo)Px0
w‖ ≤ Cω ‖dνx(1 + CK)nωL(x, xo)Px0

w‖
= Cω ‖L(xo, x)dνx(1 + CK)nωL(x, xo)Px0

w‖
= Cω ‖dλx(1 + CK)nωPx0

w‖ .
�

Using similar methods we have

Proposition G.4. If (σ, V ) is a continuous family of admissible (g,K)-modules
over a compact contractible metric space X, if (μ,H) is a continuous, smoothable
family of admissible Hilbert representations of G based on X and if

T : (dμ,HK) → (σ, V )

is a continuous family of surjective (g,K)-module homomorphisms then there exists
(λ,W ) a smoothable, continuous family of Hilbert representations of G based on
X such that (dλ,W∞

K ) and (σ, V ) are isomorphic as continuous families and a
continuous family of surjections of (μ,H) onto (λ,W ). Furthermore, if (μ,H) is
smoothable then so is (λ,W ).

Proof. The proof follows the same lines as the previous theorem. Let for each
x ∈ X,

Bγ(x) = Tx|H(γ).

Let rγ = dimV (γ),mγ = dimH(γ). Then Lemma G.1 implies that for each x ∈ X
there exists an orthonormal basis ofH(γ), {eγi (x)} with respect to the inner product,
〈. . . , . . . 〉 on H such that {eγi (x)}i>rγ is a basis of kerBγ(x) and x �→ eiγ(x) is

continuous. Let fγ
i (x) = Bγ(x)e

γ
i (x) and for each x ∈ X define an inner product,

〈. . . , . . . 〉x on V by declaring that {fγ
i (x)} is an orthonormal basis. Set

Pγ(v) =

rγ∑
i=1

〈v, eγi (x)〉 e
γ
i (x)

and P (x) =
∑

Pγ(x). Essentially the same argument as in the proof of the pre-
ceding theorem shows that map x �→ P (x) is strongly continuous. Also, Tx :
P (x)HK → V is unitary relative to 〈. . . , . . . 〉x and an equivalence of representa-
tions of K. Let H1,x be the closure in H of kerTx for x ∈ X. Then, as a Hilbert
space, under TxH/H1,x

∼= P (x)H. Since kerTx consists of analytic vectors H1,x is
G-invariant. This defines a Hilbert representation, γx, on P (x)H. Which in turn
defines a Hilbert representation, νx, of G on the Hilbert space completion of V ,
Zx. Let L(x, y) : Zy → Zx be defined by L(x, y)fγ

i (y) = fγ
i (x). Then L(x, y)

defines a unitary K-isomorphism of (νy|K , Zy) with (νx|K , Zx). Fix xo in X and
let W = Zxo

and λx(g) = L(xo, x)νx(g)L(x, xo). As in the preceding theorem, we
have defined a Hilbert family globalizing (σ.V ).

We now assume that (μ,H) is smoothable. If v ∈ PxH
∞ then

dμx(u)v = dγx(u)v + (I − Px)dμx(u)v.

Thus, if ω is a compact subset of X then

‖dγx(u)v‖ ≤ ‖dμx(u)v‖
≤ Cu,ω

∥∥dμx(1 + CK)lv
∥∥ = Cu,ω

∥∥dγx(1 + CK)lv
∥∥ .
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Let M(x, y) : P (x)H → P (y)H be given by

M(x, y)eγi (y) = eγi (x).

Fix xo ∈ X. Then the family can be defined as δx(g) = M(xo, x)γx(g)M(x, xo)v
for v ∈ P (xo)H. Setting W = P (xo)H then (δ, U) is an isomorphic continuous
family to (λ,W ). We show that this family is smoothable; let u ∈ U(g). Then if
v ∈ U and ω is a compact subset of X then

‖dδx(u)v‖ = ‖M(xo, x)dγx(u)M(x, xo)v‖ = ‖dγx(u)M(x, xo)v‖
≤ Cυ,ω

∥∥dγx(1 + CK)lM(x, xo)v
∥∥ = Cu,ω

∥∥M(xo, x)dγx(1 + CK)lM(x, xo)v
∥∥

= Cu,ω

∥∥dδx((1 + CK)lv
∥∥ .

�
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