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CHARACTERS OF IRREDUCIBLE UNITARY
REPRESENTATIONS OF U(n,n+ 1)
VIA DOUBLE LIFTING FROM U(1)

ALLAN MERINO

ABSTRACT. In this paper, we obtained character formulas of irreducible uni-
tary representations of U(n,n + 1) by using Howe’s correspondence and the
Cauchy—Harish-Chandra integral. The representations of U(n,n + 1) we are
dealing with are obtained from a double lifting of a representation of U(1) via
the dual pairs (U(1),U(1,1)) and (U(1,1), U(n,n + 1)).

1. INTRODUCTION

For a finite dimensional representation (II, V) of a group G, one can associate a
function O on G given by

On: G >3 g —tr(li(g)) € C.

The function Oy is the character of the representation (I, V), and it determines
entirely the representation. Obviously, if we remove the assumption that V is
finite dimensional, the map O does not necessarily makes sense in general. In
[9, Section 5], Harish-Chandra extended the concept of character for a particular
class of representations of a real reductive Lie group. More precisely, he proved that
for a quasi-simple representation (II,.7#) (see [I0, Section 10]) of a real reductive
Lie group G, the operator II(¢)), ¢ € €°(G), given by

1) = [ v,
is a trace class operator and the corresponding map
On:6(G) > ¢ — tr(ll(y)) e C

is a distribution; Oy is usually called the distribution character of II. Moreover,
Harish-Chandra proved (see [I2, Theorem 2]) that there exists a locally integrable
function O on G, analytic on G™® (where G™® is the set of regular points of G,
see [12, Section 3]), such that

On(y) = /G Onlo)b(g)dy, (€ CX(Q)).
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The locally integrable function Oy is the character of II. In few cases, the value of
the character Ory is well-known. For example (the following list is not exhaustive):

(1) G compact (H. Weyl),
(2) (II, 5#) a discrete series representation:
(a) Harish-Chandra (see [I1]) established a formula for ©r on the compact
Cartan subgroup T of G,
(b) Hecht (see [13]) determined the value of O on every Cartan subgroup
of G for holomorphic discrete series representation,
(3) (I, .5#) an irreducible principal series representation (see [2I, Proposi-
tion 10.18]).
(4) (II, ##) irreducible unitary highest weight module (Enright [8] Corollary
2.3], see also [26]).

The goal of this paper is to explain how to use Howe’s correspondence and the
Cauchy—Harish-Chandra integral introduced by T. Przebinda to get explicit values
of characters for some particular irreducible unitary non-highest weight modules of
U(n,n + 1) starting from a representation of U(1). Our method is as follows. Let
(G,G') = (U(1),U(p,q)),p,q = 1, be a dual pair in Sp(2(p +¢),R), Sp(2(p + ), R)
be the corresponding metaplectic group (see Equation (), wéyq be the metaplectic

representation of §f)(2(p +¢),R) (see Theorem [2.7)), G and G’ be the preimages of
G and G’ in Sp(2(p + ¢), R) and II be a representation of U(1). We denote by 6, ,
the map coming from Howe’s duality theorem (see Equation (B])

0L, Z(U1),wl ) — Z(U(p,q),w),),

p,q ’ P

where Z(U(1),w? ) and Z(U(p, q),w? ) are defined in Notation B4 By assump-

tion on p and q,p’(l]_[’ = 9;’q(H) is apﬁ%n-zero irreducible unitary highest weight
module of [NI(p, q). In Appendix [Al we computed the value of the character O of
IT" on every Cartan subgroup of [NI(p, q). A similar result was obtained in [27] for
=q=1.

g V\(/Je now consider the dual pair (G',G,) = (U(p,q),U(n,n + 1)) in Sp(2(p +
@)(2n + 1),R). As before, we denote by Sp(2(p + ¢)(2n + 1),R) the metaplectic
group of Sp(2(p+¢)(2n+1),R), wl'? | the metaplectic representation of é?)(?(p +
q)(2n + 1), R) and

Or 1 s Z(U(p,q),wihy) = Z(Un,n+1),wrt )

n)

the map obtained from Howe’s correspondence (see Equation (). Using a result
of Kudla (see [23] or [36]), it follows that II" := 9£:‘3L+1(H’) # 0 for every n > 2,
ie. II" € Z(U(n,n+ 1),wp? . 1). Note that by using [25], it follows that II} = 117,
where II7 is usually called the “big theta” and is defined in Section [3

As explained in [34] (see also Remark [LH]), by using that I’ is unitary, we get
that if p+¢q < n, the distribution character O~ of II" can be obtained by using the
Cauchy—Harish-Chandra integral (see Sectiond]). More precisely, because I} = II",
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we get from Equation (@), Theorem and Equation (B]) that:

min(p,q)+

@Hn (’(/J) == Z / @H/ h/

) |det(Id — Ad(R}) ™) g | * Chez, (¥)d,

(vee=Gn).

where H},...,H.

min(p,q)+1 1S @ maximal set of non-conjugate Cartan subgroups of

G’ and Chc;, is a family of distributions on Gy, parametrized by regular elements

on the different Cartan subgroups of G’ as recalled in Section El

In this paper, we compute explicitly the value of O~ on every Cartan subgroup
of G, for p = ¢ = 1. We keep the notations of Appendix [Bl and parametrize the
n 4+ 1 Cartan subgroups of G,, by subsets Sg = {0},Ss,...,S, of strongly orthog-
onal imaginary roots of g, (see also [35, Section 2]) and let H,(Sp), ..., Hn(S,) be
the corresponding Cartan subgroups of G, and H,g,,...,Hy,s, be the diagonal
subgroups of GL(2n + 1, C) given, for 0 < k <n, by H,, s, = ¢(S) ™" Hn(Sk)c(Sk),
where ¢(Sy) is the Cayley transform defined in Equation (286]).

In Theorem [6.5] we explain how to go from the distribution character Opm» to
the locally integrable function O~ by using results of Bernon and Przebinda from
[B] and [2] (see also Section[l). In Theorem [6.12] we computed the value of ©pn of
the different Cartan subgroups of G,, and get for every k € [|0, n|],

O (¢(Sk)p(h)e(Sk) ™) =
A crempun, MRS (0) + 8o Be (D sen(Xene) X B(h) i m > 1,

i€ J(h)UBy,

C ‘Xzi,jeJ(h)uBt h?h?ﬂ@j(h) + 0B e~ (m+1) sgn(Xoni1)Xon 41 »(h) if m =0,
i

A D e K(h)UAL h?+mh?9i,j(h) + 0p 0 Belm—Dsen(Xont 1) Xoniayy(p) - if m <1,

j€J(h)UBy

where C is a constant, m is the highest weight of I (see Notation [A1]), H, s, is

a double cover of H,, g, defined in Equation (), p : H, Sk Hn s, is defined in
Section [0 & is the element of H,, g, given, as in Equation (I9), by

h = (hi,..., hany1)

1X1—Xont1 eiXk*X’szrsz eiXk+1
s , U

= diag(e
eiX2n+1—k,eiXk+X2n,+2—k7 . eiX1+in+1)’

where X; € R, Q; 5,1 <i# j <2n+1, and X are the functions on H,'§ ~given by

2n+1 h
d

Qi’j(h) = 2n+1 d¢l J 2n+1 ’
d=1 (hi —ha) [T4=y (hj — ha)
d#i d#i,j
sgn(X2 +1) imX1 ’6(271—2)X2n+1‘ (1 _ 6_2X2"+1)

TR e

%(h) =
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K (h) and J(h) are the subsets of {1,...,k} defined by
J(h) ={j €{L,... .k}, sgn(Xonio_;) = 1},
K(h)={j €{1,...,k} sgn(Xonta—;) = -1},
Aj, and By, are the subsets of {1,...,2n + 1} given by
Ap={k+1,...,n}, Br={n+1,....2n+1—k},
sgn is the sign-function on R* given by

1 if X >0

. : (X eRY),
-1 ifX<O0

sgn(X) = {

and A and B are constants defined in Theorems and [6.121 As explained in
Lemma [6.14], the denominator

2n 2n
[T (1= nahg?) TT (1= hansyy)
d=2 d=2

is real and its sign is constant on every Weyl chamber.

Note that the representation II" is irreducible and unitary (see Remark [E.1T])
but neither a highest weight module (see Proposition [D.6)) nor a discrete series rep-
resentation (see Remark [B.TT]). In particular, its character ©pn cannot be obtained
by using Enright’s formula (see [8, Corollary 2.3]) or [26].

Our formula for the character is Weyl denominator free. The method we used
in this paper gives a general procedure to give characters of non-highest weight
representations by starting from a highest weight representation of a compact group.
In particular, proving Conjecture [£4] could make our method more general, by
removing the assumption of stable range for the second lifting.

The paper is organised as follows. In Section 2l we recall a construction of the
metaplectic representation given by Aubert and Przebinda in [I]. The goal is to
define the embedding T of the metaplectic group into the set of tempered distri-
butions on the symplectic space W (see Equation (2)) which is crucial in the con-
struction of the Cauchy—Harish-Chandra integral. After recalling Harish-Chandra’s
character theory and Howe’s correspondence in Section [3] we define in Section @
the Cauchy-Harish-Chandra integral and explain a conjecture of Przebinda on the
transfer of characters in the theta correspondence (see Conjecture 44]). In Section
B we summarize the results of [3] and [2] on how to compute the Cauchy—Harish-
Chandra integral on the different Cartan subgroups, and we adapt the results to
unitary groups, which are the ones we consider in this paper, and make the compu-
tations for ©pn in Section [l (see Theorems and [612). The document contains
four appendices: in Appendix [Al we make computations for II’ for the dual pair
(G,G") = (U(1),U(p, q)) on every Cartan subgroup of G’, in Appendix Bl we recall
how to parametrize the Cartan subgroups of U(p, ¢) by using strongly orthogonal
roots (see also [35 Section 2]), in Appendix [C| we define a character € appearing
in the formulas for the Cauchy-Harish-Chandra integrals and prove a lemma for e
useful in the proof of Lemma [6.8 and in Appendix[D] we recall the concept of wave
front set of a representation and prove that the representations II" we are dealing
with in Section [6] are not highest weight modules.
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2. METAPLECTIC REPRESENTATION

Let x be the character of R given by x(t) = €2 and let W be a finite dimensional
vector over R endowed with a non-degenerate, skew-symmetric, bilinear form (-, -).
We denote by Sp(W) the corresponding group of isometries, i.e.

Sp(W) = {g € GL(W), (g(w1), g(w2)) = (w1, w2), (Vwy, wz € W)},
and by sp(W) its Lie algebra given by:
sp(W) = {X € End(W), (X (w1),wsa) + (w1, X(w2)) =0, (Vwy,ws € W)}.

We first start by recalling the construction of the metaplectic group %(W) it is
a connected two-fold cover of Sp(W). We use the formalism of [I]. Let J be a
compatible positive complex structure on W, i.e. an element of the Lie algebra
sp(W) satisfying J* = — Idw and such that the symmetric form (J-,-) is positive
definite. For every element g € Sp(W), we denote by J, the element of End(W)
given by J, = J7!(g — 1). One can easily check that the restriction of J, to J,(W)
is invertible and let Sp(W) be the subset of Sp(W) x C* defined by

(1) SpW) = {3 = (9.€) € Sp(W) x C*, & = i W det(J,) 7y }

where det(J g)Jg(w) denotes the determinant of the endomorphism J, restricted to

Jg(W). On Sp(W), we define a multiplication by:

(91,61)(92,62) = (9192,6162 Clg1, g2)), (91,92 € Sp(W), &1,& € C¥),

where C : Sp(W) x Sp(W) — C* is a cocycle defined in [Il Proposition 4.13]. Let
O be the map defined by:

0 :Sp(W) > § = (g,6) = £ € C .

One can check easily that %(W) is a connected two-fold cover of Sp(W), where
the covering map = : Sp(W) — Sp(W) is given by 7((g,&)) = g.
For every g € End(W), we denote by ¢(g) the Cayley transform of g defined by:

c(g):(g—1)W>3(g—1Dw—= (g+ Dw+Ker(g—1) ¢ W/ Ker(g — 1).

We denote by S(W) the Schwartz space of W and by S*(W) the corresponding
space of tempered distributions. We define the map ¢ : Sp(W) — S*(W) by t(g) =
Xe(g)H(g—1) W, Where x.(gy is the function on (g — 1) W given by

(@) 6= )W > x (Jlelww)) . welg-Dw),

and py—1)w is the Lebesgue measure on (g — 1) W such that the volume of the
unit cube with respect to the bilinear form (J-,-) is 1. More precisely,

t(g)¢ = Xe(g) (w)(b(w)d,u(g—l)W(w)’ (¢ S S(W)) :
(g-HwW

We define the map T : Sp(W) — S*(W) given by

@) T(G) = 0@H),  (3€Sp(W),0=7(3)).
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Remark 2.1. Let §1,g2 € §};(W) The question of the relation between the distri-
butions T(g1), T(g2) and T(g1§2) arises naturally. In order to explain this link, we
need to recall the notion of twisted convolution.

For two functions ¢1, ¢2 € S(W), we define ¢1¢2 the function on W given by

oustal) = [ ortwr( - wx (Gluw) ) diwl). (e W),

One can easily check that ¢1f¢s € S(W). We extend fj to some tempered distribu-
tions on W. In fact, for every g € Sp(W), the twisted convolution

Ho)rotw) = [

(9-1H)W

is still a Schwartz function and the map:
S(W) 3 ¢ = t(g)1g € S(W)

is well-defined and continuous (see [Il, Proposition 4.11]). Similarly, T(g)i¢ € S(W)
for every g € Sp(W) and ¢ € S(W). In particular, it makes sense to consider

T(g1)b (T(g2)te) for every gi,g2 € Sp(W) and ¢ € S(W) and one can prove that
T(91)8(T(g2)8¢) = T(g192)b9.

Let W =X @Y be a complete polarization of the space W and we denote by dzx,
dy the Lebesgue measures on X and Y respectively such that duw = dxdy. Using
the Weyl transform %, we have a natural isomorphism between the spaces S(W)
and S(X x X) given by

et ()0t = 0 () ) dive (), (1€ W,0 € S(OW)),

2

which extends to an isomorphism on the corresponding spaces of distributions.
Similarly, every tempered distribution on X x X can be identified to an element
of Hom(S(X), S*(X)) using the Schwartz Kernel Theorem (see [I, Equation 146]).
The corresponding isomorphism will be denoted by Op and let w : é?)(W) —
Hom(S(X),S*(X)) be the map given by

w=0po# oT.

H :S(W)a¢ — %(¢)(x1,x2):/\/¢(x1—x2+y)x (l<y,x1 —|—x2>> dyeS(X x X),

As proved in [I, Section 4], we get that for every § € Sp(W) and v € S(X),

w(§)v € S(X) and that w(jh) = w(§) o w(h) for every §, h € Sp(W). The operator
w(§) € Hom(S(X),S(X)) can be extended to L?(X) by

w@é= lim w@v,  ($€LiX)).
vES(X)

Theorem 2.2. For every ¢ € L*(X), the map
Sp(W) 3 § = w(g)é € L*(X)

is well-defined and continuous. Moreover, w(g) € U(L*(X)), i.e. w is a faithful
unitary representation of Sp(W), and for every ¥ € €°(Sp(W)), we get:

[ e@u@ds=u [ u@u@a
S

p(W) Sp(W)

where dg is a Haar measure on Sp(W).
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Remark 2.3.

(1)

Let Sp®(W) be the subset of Sp(W) given by
Sp*(W) = {g € Sp(W), det(g — 1) # 0} .

This is the domain of the Cayley transform. We will denote by é;)C(W) the
preimage of Sp“(W) in Sp(W).

For every g € Sp“(W), c(g) € sp(W). We denote by sp¢(W) the subspace
of sp(W) defined by ¢(Sp®(W)). Obviously, ¢?(g) = g. It defines a bijective

map c : 5p¢(W) — Sp®(W). Fix an element —1 in 7~ ({—1}). In particular,
there exists a unique map ¢ : sp*(W) — SBC(W) such that ¢ = mo ¢ and
&(0) = —1.

Moreover, for every 1 € Sp(W) whose support is included in é\f)c(VV)7
we get:

Lo w@da= [ ) (X)X,
Sp(W) sp(W)
where jopow)(X) = |det(1 — X)|", where r = %ﬁ(%\)}m (see [3I, Sec-
tion 3]).
For every ¢ € ‘Kfo(gf)(W)), we can consider the following distribution on
W

[ w@1@ads

Sp(W)

This distribution is in fact given by a Schwartz function. Indeed, let’s first
assume that the support of ¢ is included in éY)C(W) For every ¢ € S(W),
we get:

( /N w<§>T(§)d§> (6) = /N $(5) T(5)édg
S S

p(W) p(W)

:/~ w(g)/ O(9) Xe(g) (w)$(w) dwdg
5 w

p(W)

- / / P(EX)O(EX )y x (1) fapcw (X)) dwd X
sp(W)J W

- / ( / %(X)X(Tsmvv)(W)(X))dX) $(w)duw
W\ Jsp(W)

- / F(®y) 0 Tape) (w)b(w)duw,
W

where ®,(X) = ¥(&(X))O(&(X))jspw)(X), X € sp(W), is smooth and
compactly supported function on sp(W) such that supp(®,) C sp®(W),
Z(®,) is the Fourier transform of ®, and 7o,w) : W — sp(W)* is the
moment map defined by

Tapw) (W) (X) = (X (w),w),  (we W, X csp(W)).

In particular, .F (®y) o Top(w) is a Schwarz function on W.
We can remove the assumption on the support of ¢ by using the previous
result. Indeed, the Zariski topology on Sp(W) is noetherian. In particular,
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as explained in [II Equation 141], there exists g1,...,gm € Sp(W)¢ such
that ~ mo
w) =JagSp (W)
i=1

Let ¢ € €°(Sp(W)). We can find functions 1, ..., %, € €<(Sp (W))
such that in an open neighbourhood of supp(¢)) we get

1= Zwi(gz_l
for every § € Sp(W). Then
a 3)dg = 9)6(5) T(3)dg
/Sp(W) ;

(W)

- i(9)0(9:9) T(g:g)dg = 2 T(ds J(9)0(3:9) T(3)d | -
;;L%m”w(mwmg> (9ig)dg Z; @)h(é%mqw<mw@g) @)g>
The result follows from Remark 211

3. CHARACTER THEORY AND HOWE’S CORRESPONDENCE

Let G be a real connected reductive Lie group, g = Lie(G) its Lie algebra and
gc = g ®g C its complexification. We denote by % (gc) the enveloping algebra
of g (see [22, Chapter 3.1]), Z(% (gc)) its center and D(G) the set of differential
operators on G and by Dg(G) the set of left-invariant differential operators on G.
As explained in [T4, Chapter 2], D (G) is isomorphic to % (gc). Let DS(G) be the
set of bi-invariant differential operators on G (which is isomorphic to Z(% (gc)),
see [14]), 2'(G) be the set of distributions on G and 2’(G)© the set of G-invariant
distributions.

Definition 3.1. We say that T € 2'(G) is an eigendistribution if there exists
xr : DS(G) — C a homomorphism of algebras such that D(T") = x7(D)T for every
D € DE(Q).

We will denote by Eig(G) the set of eigendistributions on G.

Theorem 3.2 (Harish-Chandra, [9]). For every G-invariant eigendistribution T
on G, there exists a locally integrable function fr on G, analytic on G**®, such that
T =Ty,, i.e. for every function ¢ € €°(G),

/ fr(g)v(g)dg,

Let (IT, 5#) be an irreducible quasi-simple representation (see [I0, Section 10]).
As explained in [9], the map

On:62(G) >y — tr(ll(y)) e C

is well-defined and is a distribution (in the sense of Laurent Schwartz). In particu-
lar, by assumption on IL, it follows from Theorem 3.2 that there exists O € 4! _(G)

such that
on(v) = [ enlo)i(a)ds
for every ¢ € €2°(G). The function ©py is called the character of II.

where dg is a Haar measure on G.
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We now recall Howe’s duality theorem and how it can be studied through char-
acters. Let W be a finite dimensional vector space over R endowed with a non-
degenerate, skew-symmetric, bilinear form (-,-). As in Section 2] we denote by
Sp(W) the group of isometries of (W, (-,-)), by (Sp(W), ) the metaplectic cover of
Sp(W) (see Equation (dl)), by (w,#) the corresponding Weil representation (see
Theorem 22)) and by (w™,#>°) the corresponding smooth representation (see
[37, Chapter 0]).

A dual pair in Sp(W) is a pair of subgroups (G, G’) of Sp(W) which are mutually
centralizer in Sp(W). The dual pair is called irreducible if we cannot find any
orthogonal decomposition W = W1 @ Wy where both spaces W; and Wy are G - G'-
invariant, and called reductive if the actions of G and G’ on W are both reductive.
The set of irreducible reductive dual pairs in Sp(W) had been classified by Howe
in [I7].

Remark 3.3. In this paper, we will focus our attention on a dual pair consisting
of two unitary groups. More precisely, let V and V' be two complex vector spaces
endowed with a hermitian form (-,-) and skew-hermitian form (-,-)" respectively.
We denote by U(V) and U(V’) the corresponding group of isometries and by W
the complex vector space given by W = V®¢ V'. The space W can naturally be
seen as a real vector space, and to avoid any confusion, we will denote by Wg
the corresponding real vector space. The skew-hermitian form b = (-,-) ® (-,-)’
on W defines a skew-symmetric form (-, -) on Wg by (-,) = Im(b). In particular,
(U(V),U(V")) is a dual pair in Sp(Wg, (-, -)).

If we denote by (p,q) and (r,s) the signatures of (-,-) and (-,-)" respectively, we
get that (U(p, q), U(r,s)) form a dual pair in Sp(2(p + q)(r + s),R).

Notation 3.4. For a subgroup H of Sp(W), we denote by H = 7~ (H) the preimage
of H in gﬁ(W) and let ,@(ﬁ,w) be the set of equivalence classes of irreducible
admissible representations of G which are infinitesimally equivalent to a quotient
of > by a closed w™ (H)-invariant subspace.

Theorem 3.5 (R. Howe, [19]). For every reductive dual pair (G,G') of Sp(W), we
get a bijection between %’((N},w) and Z(G',w), whose graph is %(é -G w).

More precisely, if I € %Z(G,w), we denote by N(II) the intersection of all the
closed G-invariant subspaces .4 such that II ~ #°° /.4 . Then, the space . (II) =
2> /N(1I) is a G - G'-module; more precisely, 2(I1) = Il @ 1T}, where II} is a G'-
module, not irreducible in general, but Howe’s duality theorem says that there exists
a unique irreducible quotient II' of IT} with II" € 2(G’, w) and IRI' € Z(G-C, w).

We will denote by

(3) 0: %(G,w) — R ,w)
the corresponding bijection.

Remark 3.6. If G is compact, the situation turns out to be slightly easier. The
action of G on J7°° can be decomposed as

(T1,5#41) €% (G w)
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where 2 (I1) is the closure of {T'(#), T € Homg (41, #°°) # {0}} and %’((N},w)
is the set of representations (II, Vi) of G such that Homg & (Vi w*) # {0}. Obvi-
ously, G’ acts on A (IT) and we get that #(II) = IIQII" where II' is an irreducible

unitary representation of G’.

4. CAucHY HARISH-CHANDRA INTEGRAL AND TRANSFER
OF INVARIANT EIGENDISTRIBUTIONS

We start this section by recalling the construction of the Cauchy—Harish-Chandra
integral introduced in [33] Section 2].

Let (G,G’) be an irreducible reductive dual pair in Sp(W) and T : §f)(W) —
S*(W) the map defined in Equation (). Let Hy,...,H, be a maximal set of
non-conjugate Cartan subgroups of G and let H; = T; A; be the decomposition
of H; as in [38, Section 2.3.6], where T; is maximal compact in H;. For every
1 < i < n, we denote by A’ the subgroup of Sp(W) given by A = Cspw) (Ai)
and let A} = Cgpw)(A]). As recalled in [33, Section 1], there exists an open
and dense subset W ,» C W, which is A "-invariant and such that A \W,» is a

manifold, endowed with a measure dw such that for every ¢ € €>°(W) such that
supp(¢) € W,

/ P(w)dw :/ ¢(aw)dadw.
N AI\W, . JAY

For every ¢ € ‘500( »), we denote by Chc(v)) the following integral:

Che(w) = [ | o T e

According to Remark 2.3l the previous integral is Well—deﬁned and as proved in
133, Lemma 2.9], the corresponding map Che : €°(A;) — C defines a distribution
on A,

Remark 4.1. We say few words about the dual pair (A}, A”) and the space War.

Let Vy,; be the subspace of V on which A, acts trivially and V;; = V(J)‘J-. The
restriction of (-,-) to Vi, is non-degenerate and even dimensional. In particular,
there exists a complete polarization of Vi ; of the form V;; = X; ¢ Y;, where both
spaces X; and Y; are H;-invariant.

By looking at the action of A; on V ;, we get:

X, =X;o...0Xr, Y, =Y;0...0Y

where all the spaces X{ 1 < i< n,1 <j <k, are Aj-invariant and mutually
non-equivalent. In particular,

W = Hom(V,V’) = Hom(Vo i, V') @ Hom(Vy 4, V')

= Hom(Vy;, V') @ @ (Hom ) ® Hom(YJ V/)>
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To simplify the notations, we denote by W; the subspace of W given by
Hom(X?, V') @ Hom(Y?, V') and W ; = Hom(V, V'). One can easily check that:

A’ = Sp(Wo.;) x GL(Hom(X!, V/)g) x ... x GL(Hom(X¥, V/)z)
and

A7 =0(1) x GL(1,R) x ... x GL(1,R).
Moreover,

War = (Wo,i \{0}) x WM X ..o X Wm—,

where W“ = {(x,y) € Hom(X{,V') @ Hom(Y{,V/),x #0,y # O}, 1<j <k
For every h; € E, we denote by 77 the map:
T, :&Bg'—)ﬁif]’EAN;.
As proved in [33], for every h; € Ereg, the pull-back Tgi(ChC) of Che via 73, (see

[16, Theorem 8.2.4]) is a well-defined distribution on G’.
~ ~Zre,
For every h; € H; g, we denote by Chc;“ = TZ_ (Chc) the corresponding distri-

bution on G'.

Notation 4.2. For every reductive group G, we denote by Z(G) the space of orbital
integrals on G as in [4, Section 3|, endowed with a natural topology defined in
[4, Section 3.3]. We denote by Jg the map Jg : €°(G) — €°(G*®)Y given
as follows: for every v € G™®, there exists a unique, up to conjugation, Cartan
subgroup H(y) of G such that v € H(v), and for every ¢ € €°(G), we define

Ja(¥)(v) by:

Ja()(y) = |det(Id — Ad(v™1))g/p ()|

N

/ V(gyg~')dg.
G /H(y)

As proved in [4, Theorem 3.2.1], the map
Jo : € (G) = Z(G)

is well-defined and surjective. We denote by Z(G)* the set of continuous linear forms
on Z(G) and let J5 : Z(G)* — 2'(G) be the transpose of Jg. In [4, Theorem 3.2.1],
Bouaziz proved that the map

J6 (G = 2/(Q)©
is bijective.
We now apply these results to construct a map Chc*, transferring the invariant
distributions for a given dual pair (G,G’). Let (G,G’) be an irreducible dual pair

in Sp(W) such that rk(G) < rk(G’). For every function v € €>°(G’), we denote by
Che(t)) the G-invariant function on G given by:

— - ~ —~reg
Che(¥)(h;) = Che;, (¢), (h; € H; 7).

As proved in [3], the corresponding map

Che : €2(G') — Z(G)
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is well-defined and continuous and factors through 7 (E?), ie.
Y

Che : Z(G') — Z(G)
and the corresponding map is continuous. In particular, we get a map
* ~“\G it — NG
Che” : 7'(G)% 5 T — J&, oChe o (J5)"H(T) € 2'(G)7".

Theorem 4.3. The map Chc* sends Eig(é)é into Eig(G/)&. Moreover, if © is
a distribution on G given by a locally integrable function © on G, we get for every

P € €°(G) that:

n 1 ~ ~ ~ ~
4) Chc” =) — ; 1—Ad(h;? | Ch )dh;
(4) Che*(©)(v) ; ] e Q) A8 = AR g | Chc(w) (i),
where Hy, ..., H, is a maximal set of non-conjugate Cartan subgroups of G.

In [33], T. Przebinda conjectured that the correspondence of characters in the
theta correspondence should be obtained via Chc*. More precisely,

Conjecture 4.4. Let Gy and G} be the Zariski identity components of G and

G’ respectively. Let I € #(G,w) satisfying @Hla\a =04 G = O(V), where
1

V is an even dimensional vector space over R or C. Then, up to a constant,

Che™(On) = Oy on 6}71

Remark 4.5. The conjecture is known to be true in few cases:
(1) G compact,
(2) (G,G’) in the stable range and II a unitary representation of G (see [34]),
(3) (G,G") = (U(p,q),U(r,s)), with p+¢q = r + s and II a discrete series

representation of G (see [2§]).

5. EXPLICIT FORMULAS OF Chc FOR UNITARY GROUPS

In this section, we quickly explain how to compute explicitly the Cauchy-Harish-
Chandra integral on the different Cartan subgroups. Because our paper will only
concern characters of some unitary groups, we will adapt the results of [3] and [2]
in this context, but similar results can be obtained for other dual pairs.

Let V = CP*¢ and V' = C"™** be two complex vector spaces endowed with non-
degenerate bilinear forms (-,-) and (-, -)" respectively, with (-, -) hermitian and (-, -)’
skew-hermitian, and let (p,q) (resp. (r,s)) be the signature of (-,-) (resp. (-,-)").
We assume that p+q < r+s. Let By = {f1,..., fu}, n = p+q (vesp. By =
{fl,..., f.,},n =r+s) beabasis of V (resp. V') such that Mat ((-,-), %v) = Id, 4
(resp. Mat ((, -)/,%V/) = ild, ;). Let G and G’ be the corresponding groups of
isometries, i.e.

G=G(V,(-) = {g€GL(n,C),g'Idp .9 =1dp 4},
GI = G(V/a (', )/) ~ {g € GL(TL/, (C)agt Idr,sg = Idr,s} )
where = is a Lie group isomorphism.

Let K = U(p) x U(q) and K" = U(r) x U(s) be the maximal compact subgroups
of G and G’ respectively and let H and H' be the diagonal Cartan subgroups of
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K and K’ respectively. By looking at the action of H on the space V, we get a
decomposition of V of the form:

V=Vi®...8V,,

where the spaces V, given by V, = Cif, are irreducible H-modules. We denote by
J the element of b such that J =ildy and let J; = ¢E; ;. Similarly, we write

Vi=Vie...aV,,
with Vi, = Cif;, J' the element of b’ given by J' = iIdys and J; = iE; ;. Let
W = Homg(V’, V) endowed with the symplectic form (-, -) given by:
(w1, we) = tre/r(wawr), (w1, wy € W),
where w} is the element of Home(V, V') satisfying:
(w3 (v),v) = (v,wa2(v')),  (vEV,v' €V).
The space W can be seen as a complex vector space by
iw=Jow, (w e W).

We define a double cover évLC(W) of the complex group GLc(W) by:

GLe(W) = {3 = (9,€) € GLe(W) x C*, &% = det(g) } .

Because p + ¢ < 7+ s, we get a natural embedding of hc into b and we denote by
Z' = G'"Y the centralizer of h in G'.

Notation 5.1. We denote by A (resp. A(E)) the root system corresponding to
(gc, be) (resp. (tc,be)), by U (resp. ¥(£)) a system of positive roots of A (resp.
A(¥)) and let ® = —¥ (resp. ®(¥) = —U(t)) the set of negative roots.

Let e; be the linear form on he = CPT? given by e;(A1,..., A\ptrq) = Ai. As
explained in [22, Chapter 2], we know that:

A={*(e;—e),1<i<j<p+q}, U={e—ej,1<i<j<p+q},
and
Al) = {*(e; —e;),1<i<j<plU{*(e; —e;),p+1<i<j<p+q},
U(t) =T NA(®R).
We define A’ A'(¢), ¥/, U'(£), &', &'(¢) similarly and denote by e},1 < i < r+s, the
linear form on b = C"** given by €;(A1,..., Arts) = \iv

Let H: be the complexification of H in GL¢(W). In particular, Hg is isomorphic
to

/

n
f)(lc/ ZQTFIJ‘J]‘,I]'EZ

j=1
We denote by I:Ifc the connected two-fold cover of H: isomorphic to
(5) be/ ZQWUCJ‘J;—,Z% €2Z,x; €L
Jj=1 j=1

We will denote by p : I:Ifc — HE the coy;ering map. One can easily check that
p = £> ,cq @ is analytic integral on Hg. As explained in [33, Section 2], we
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construct a map p : I:Ifc — IA-iZC which is bijective (but not an isomorphism of
covering of H¢. in general).

As explained in Appendix Bl every Cartan subgroup of G’ can be parametrized
by a subset S C W/5' consisting of non-compact strongly orthogonal roots. We
denote by H'(S) the corresponding Cartan subgroup and by H§ the subgroup of Hg

as in Appendix [Bl Let S C W/5* and Hs the preimage of the Cartan subgroup H

in HC (see Appendix [B)). For every ¢ € €>°(G '), we denote by J#p the function
of Hs defined, for i’ € HS, by:

Hsp(l)
= ey, R(h’)h’% Yacwr @ H (1—]3'_")/ o(g'c(S)p(R)e(S)"tg'~1)dg' H'(S),
’ ey G’ /H/(S)
where Wgp is the subset of W' consisting of real roots for Hg and gy, is the

function defined on chg by

Eq}é,R(iL/) = sign H (1—h'"~%)

a€Vg
We denote by Ay (h') the quantity
Ay (h)=REZeew e TT (1= R72), (K € Hg),
acv’
and by Ag the function on Hy * given by Ag/(h/) = h'2 Tacw @ [Toco (1—A79).
Remark 5.2. For every &' € Hg ~, Ag/ (W) Aw/(R') = [[eqrs (1= )1 —RA~2) =
[Tocor (1 —R®)(1— k). We denote by [Ac/ (F)[? = Ags () Ay (B).

/reg

Proposition 5.3 (Weyl’s integration formula). For every ¢ € €>°(G’), we get:
©  [e = 3 ms [ cun (1030 ) Ao

SE\I/IS‘:
where mg are compler numbers. Here, the subsets S of W/5 are defined up to
equivalence (see Remark [B.2]).

Proof. See [3 Section 2, Page 3830]. O

Remark 5.4. One can easily see that for every S C W/5% and ¢ € €°°(G’) such that
supp(p) € G’ - H'(S)*8, Equation (@) can be written as follows:

| eldhag =ms [ o (0) e (1) 000
i H 3

S

Let WY be the set of elements of W commuting with b.

Remark 5.5. One can easily check that the space W is given by

wWh = ZHomc(Vz \%
=1
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For every S C W5t we denote by S the subset of {1,...,r + s} given by
S = {j, 3 €S such that a(J}) # 0} .
Let 0 € ., and S C U/5*, we denote by I', s the subset of b’ defined as
Ios = {Y € b/a <Y'7 '>UW” N> ¢ Hom(V4,V) > 0} >

and let E, s = exp(il', ) be the corresponding subset of Hg., where exp : he — He
is the exponential map.

Theorem 5.6. For every h € H=THy and ¢ € ‘5(,(?), we get:

det (R)wo Aw(h) | O@B(R)F)p(g)dg

G/
5 7 -
det™ 2 (=Y (K N “1(jy
- Z Z Ms(o) lim et 2 (0" ( ))YV" <Iil(Z)(U (W)
o€ (Hp) SCU;e* "By i det(1 — p(h)rp(h')) g wo

cay (W) () (R)dY,

(=) “ae(o)mg

W (Z¢, He)
a € {1,—1} depends only on the choice of the positive roots ¥ and ¥’ (see [3|
Proposition 2.1]) and k € {0, —1} is defined by

k—{_l ifn’—neQZ'

where Mg(o) = , u is a positive integer defined in [3, Section 2],

0 otherwise

Theorem tells us how to compute Chcj, for an element h in the compact
Cartan H = H()). Using [2], it follows that the value of Chc on the other Cartan
subgroups can be computed explicitly by knowing how to do it for the compact
Cartan.

From now on, we assume that p < ¢,r < s and p <r.

Notation 5.7. For every t € [|1,p]], we denote by S; and S, the subsets of US' and
U’/st respectively given by

!/ / !/ !/ /
St ={e1 —ept1,..., € —€pyi}, Sy ={el—eri1.... €t —e€nii},
where the linear forms ey, ), have been introduced in Notation [5.11

For every t € [|0, p|], we denote by H(S;) and H'(S;) the Cartan subgroups of G
and G’ respectively and let H(S;) = T(S;) A(S:) (resp. H'(S;) = T'(S;) A’(S:)) be
the decompositions of H(S;) (resp. H'(S;)) as in [38] Section 2.3.6].

As in Remark Bl we denote by Vo the subspace of V on which A(S;) acts
trivially, by Vi, the orthogonal complement of Vg, in V and by Vi = X; @Y,
a complete polarization of Vi ;. Because p < r, we have a natural embedding of
Vi, into V' such that X; @Y, is a complete polarization with respect to (-, ~)'.
We denote by U; the orthogonal complement of V;,; in V'; in particular, we get a
natural embedding:

GL(X;) x G(Uy) € G' = U(r, s).
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We denote by T4 (S;) the maximal subgroup of T(S;) which acts trivially on Vg,
and let To(S;) be the subgroup of T(S;) such that T(S;) = T1(S¢) x Ta(S;) with
T2(S:) € G(Vo,). In particular,

(7) H(St) = Tl(St) X A(St) X TQ(St)
Similarly, we get a decomposition of H'(S}) of the form:
H'(8;) = T(84) x A’(S}) x T5(S}).-
Remark 5.8. One can easily see that for every 0 < j < i <7, we get:
H'(S) = T4(S)) x A'(S)) x H'(S,._,),
where AS/;j =S;\S] and H’(giﬂ-) is the Cartan subgroup of U(r — j,s — j) whose
split part has dimension ¢ — j. In particular,

imj
Let 7n(S;) and 7/(S};) be the nilpotent Lie subalgebras of u(p,q) and u(r, s) re-
spectively given by
77(82) = HOHI(Xt, VO,t) S HOHl(Xt, Yt) N u(p7 Q)a
7' (S;) = Hom(Uy, X;) @ Hom(Xy, Yy) Nu(r, s).
We will denote by Wy, the subspace of W defined by Hom(U,, V) and by P(S;)

and P’(S}) the parabolic subgroups of G and G’ respectively whose Levi factors
L(S:) and L'(S}) are given by

L(S;) = GL(X;) x G(Vo,), L'(S}) = GL(X;) x G(Uy),

and by N(S;) := exp(n(S;)) and N'(S}) := exp(n/(S;)) the unipotent radicals of
P(S;) and P’(S}) respectively.

Remark 5.9. One can easily check that the forms on Vo, and U, have signature
(p—t,q—t) and (r —t, s — t) respectively.

As proved in [2, Theorem 0.9], for every h = i,aty € ﬁ(St)reg (using the decom-
position of H(S;) given in Equation (@) and ¢ € €>°(G’), we get:

(9) | det(Ad(R) — 1d),s,)| Chey () = C ds, (R)e(Fr)

/ [ eliag) Chiew, (1) &, (shag 9
GL(X:)/ T1(Se) X A(Sy) JG(UY)

(s, rag 9)ddy,
where C; is the constant defined given by

pt+q—2t

0 o 2t(2(p+q+r+s)—4t+l) r4s— 92t 2 1
(10) G = (r+s)t r+s w(K'NL'(Sy))2t(r+s-2t)7

¢ is the character defined in [2, Lemma 6.3], dg, : L(S;) — R and d'S; : I:’(S;) - R
are given by

ds, () = | det(Ad(D)ys))2,  dé (1) = | det(Ad(I)(s,)) |2,
(ie L(S),l" € I?(SQ)) :
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is the Harish-Chandra transform of ¢, i.e. the function on IN/(S;) defined

K T3~ o1 ral
N //(S)// (kU'ak~Y)dkdn, (z eL(St)).

Let’s explain the method we will use in the next section to get character formulas
of representations of U(n,n+1) by using the Cauchy—Harish-Chandra in the stable
range.

Let (G,G") = (U(p),U(r,s)) be a dual pair in Sp(2p(r + s),R). To avoid any
confusions, we will denote by w? ; the metaplectic representation of Sp(2p(r+s), R)
and by 0F _ : %(f}(p),wfﬁs) — #(U(r, s),wk ;) the map defined in Equation ().

LetIT € %’(6(1)), w? ;). In this case, as explained in Remark[3.6] we get that II' =
IT} and the corresponding representation IT’ is an irreducible unitary representation
of U(r,s) (and II' € 2(U(r, s)),w? ). In particular, Theorem tells us how to
compute O on every Cartan subgroup of 6(7", s) (see Appendix [A] for p = 1).

For every n > 0, we denote by G, the unitary group corresponding to a her-
mitian form of signature (n,n + p), i.e. G, = U(n,p +n), by w,7,,, the meta-
plectic representation of §f)(Wn), where W,, = (C""* ®¢ C?"*?)g and by 0,
A(U(r,5),w,, 00p) = Z(U(n,n + ), w54 p) the map as in (3).

and cp%
by:

(%)

nn+p:

Remark 5.10. As explained in [29] Section 1.2], for the dual pair (U(a,b), U
in Sp(2(a+b)(c+d),R), the double cover U(a,b) C Sp(2(a+b)(c+d),R) o
is isomorphic to the detc_d—cover ie.

{(g.€) € U(a,b) x C*, &% = det(g)* 4} .

(¢,d))
f U(a,b)

In particular, it follows that the double covers U(p,q) Cc Sp(2p(7‘ + s),R) and
U(p,q) C Sp(W,,) are isomorphic.

Using Kudla’s persistence principle (see [23] (p-adic case) or [36, Page 944], where
the authors mentioned, without proof, that Kudla’s persistence principle in the real
case is still valid and follows easily from their results), we know that the represen-
tation IT" € 2(U(r, 5),wk ) satisfies 0P+ (I1) # {0}, i.e. II' € 2 (U(r, 8), W np)
We denote by IIf the corresponding representation of é; as in Section B by
" e %’( (n,n+p),w, 54, its unique irreducible quotient, and by Oy and Or»
the characters of IIT" and II" respectively.

Using Theorems and £.3] we know that the é;-invariant eigendistribution
O}, 17 := Che™(Or) is given by a locally integrable function ©, 1, on G, analytic

on (f}\;reg. Note that an explicit value of @;LH, on every Cartan subgroup of (f}\; can
be obtained using Equation (), Theorem and Equation ().

According to [25], if n > r + s, we get that II}' = II" because II’ is unitary and
by Remark L5 it follows that ©;, 1, = Or».

In the next section, we are going to make O explicit for p=r =s=1.

Remark 5.11. Let p =1 = s =1 and n > 2. Since the pair (U(1,1),U(n,n + 1))
is in the stable range, it follows from [24] that the representations II" are unitary.
Moreover, one can see that the representations II" are not in the discrete series of
G,, by using Paul’s paper [30] on the first occurrence for unitary groups. Indeed,
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if we assume that II" is a discrete series representation, its first non-trivial lift will
be II’, which is impossible by using [30), Proposition 3.4].

Finally, as explained in Proposition [D.6], the representations II" are not highest
weight modules. In particular, the character ©p» of II"™ cannot be obtained by
using Enright’s formula [8, Corollary 2.3].

6. CHARACTER FORMULAS FOR SOME REPRESENTATIONS OF U(n,n + 1)

We first start with the dual pair (G,G’) = (U(1),U(1,1)) in Sp(4,R). Because

the set of irreducible genuine representations of U(1) is isomorphic to Z, the cor-
responding representation of Z(U(1),wi ;) will be denoted by IL,,,m € Z and let
II’, be the corresponding representation of G'. Moreover, as explained in Section
B for n > 2, the lift II" = 9711”11“(1_[;,1) of IT}, on G,, is non-zero and its character
O is, up to a constant, equal to Chc”™ (O ). In this section, we are going to give

an explicit formula for O~ on every Cartan subgroup of é;

Remark 6.1. We denote by g, g’ and g,, the Lie algebras of G, G’ and G,, respectively.
The Lie algebra g’ is given by

;L a b .
g—{(b d>,a,d€zR,b€C}

i 0 i 0 0 1 0 1
-®(5 er(y L)er(l o)er( o).

and the two Cartan subgroups of G’, up to conjugation, are of the form

(11) H' = H'(S)) = {diag(h1, h2), h1, he € U(1)},

e O B R (G SRR

where S, = {0} and S} = {e; — e2} (see Appendix [B]). We denote by (V', (-,-)) the
skew-hermitian form corresponding to G’ and by (V,, (-,+),,) the hermitian form
corresponding to G,,. Let %y, = {f!, f4} be a basis of V' such that Matg (-,-) =
i1d; 1. We have the following complete polarization of V'

where both X} and Y} are Hj-invariant. Let By, = {f{",..., f4,41} be a basis of
Vi, such that Matg,, (-,-), = Idnny1.
We consider the embedding of V' onto V,, sending f{ onto f{* and f} onto f2, ;.

Obviously, X7 @Y/ is a complete polarization of V' C V,, with respect to (-,-)
We consider the subspace Uy of V,, given by

V.=V @U, U1:V/J—a

where V'* is the orthogonal complement of V/ in V,, with respect to ()
Let G(U;) be the group of isometries corresponding to the hermitian space
(U1, (,+),,.. ). Note that G(Uy) =~ U(n — 1,n).

As explained in Appendix[Bl for every 0 < k < n and Sj, = {e1 —e€ani1,---, €k —
€ont2—k}, we denote by H,(Sy) the Cartan subgroup of G,, whose split part is of
dimension k and by H,, s, the subgroup of H,,(0)c = {h = diag(h1, ..., hant1),hi €
C} given by H, s, = ¢(Sk)Hn(Sk)c(Sk) ™1, where ¢(Sy) is the Cayley transform

o

ne

nly,
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corresponding to S, (see Appendix[B]). We denote by P,,(S;) the parabolic subgroup
of G,, whose Levi factor L, (S1) is given by L, (S1) = GL(X;) x G(Uy).

Lemma 6.2. We get GL(X]) = H'(S)).

Proof. The Lie algebra of GL(X}) is the set of matrices A = <(cl Z) of g’ such

that:

@ Q)= 4(2)-() weo

We first assume that A € End(V’) satisfies the conditions of Equation ([I2)). Then,

we get:

a+b =aq, a—b =24,

c+d =a, c—d =-0.
In particular, a+b = c+d and a—b = —c+d. Then, a = d and b = c. In particular,
if Ae g, we get that a € iR and b € R. In particular,

GMXD—mm(R<é0>@R<O;D)—emw%$D—HK$) 0

In this section, we are going to determine the value of the character O~ on the
n + 1 different Cartan subgroups of G,,.

Notation 6.3. We denote by A,, the set of roots corresponding to (g, bh,), where
H, = H,(0) is the compact Cartan of G,, by ¥,, a set of positive roots of A,, by
&, = -V, by U'(n) = {e, — e2n12_p,1 < b < n} the corresponding set of strongly
orthogonal roots of ¥,, and by Z,, the subgroup of G,, defined by Z G , where
b’ = Lie(H') is the Lie algebra of H' seen as a subspace of b,,.

We denote by 7/(S}) the subspace of g’ defined by Hom(X/,Y}) N g’ and by
nn(S1) the subspace of g,, = Lie(G,,) given by Hom(X], U;) @ Hom(X},Y]) N gp.

Remark 6.4. As explained in Remark (5.8 we get for every k > 1 that
H,,(Sk) = T1(S1) x A(S1) X Hy—1(Sk—1),

where Sp_1 = S\ {e1 — eans1} and H,_1(Sp_1) is a Cartan subgroup of G(Uy)
whose split part is of dimension k£ — 1. As in Equation (&), we get:

(13) Hys, = Tis, x Ag, X anl,gk_l’

and we denote by T1,51> Asl and H
H

180y the preimages of Ty g,,As, and

1.8 respectively via the map p : Hn,Sk —H,g,-

Using Equation (I3]), every element h € H,, g, can be written as h = tah; (where,
by convention, ¢t = a = Id and h = hy if k = 0). In particular, if h € p~'({n}),
h = tahy € H,, g, , there exists £ € p~1({t}),a € p~ ({a}) and hy € p~'({h1}) such

that h = {ah,. Note that the decomposition of i as h = fah; is not unique.
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Theorem 6.5. For every k € [|0,n|] and h = {ah, € H, s, as in Remark 6.4}, we
get, up to a constant, that:

Orre (c(Sk)p(h)e(Sk) ™)

_ Aoz (0 (h) . O, (p(h')) A (1)
B VIR v a0 N N e e

dh' + 650 B
cew (HS)

@H’m(/(f’i) p(ta)c(S1) Y| Ay (fa)[*ds; (e(S1)p(ta)e(Sy) ) d
e((—=1)e(Se—1)p(h1)e(Se—1) 1) ~| det(Ad(c(S1 )

s, (c(Sk)p(tahy)c(Sk)™)
Sl)_l)_l _

{ )C( 1)‘71’(51)|
D(c(Sk)p(h)e(Sk) ™M) Agu,) (h) 2
Dy (e(Sk)p(h)e(Sk)~)|Ag, (A)[?
il — _
where 0o = 0 i O , D and Dy are functions on H,(Sg), 1 < k < n
’ 1 otherwise

given, for h € ﬁn(St), by
= = 1 = = 1
Dy (k) = | det(Id — Ad(h) "), (s,)/6,.(s1) |75 D(h) = | det(Id — Ad(h) ™ Y)g., /s, |2

and where A and B are constants given by
(=1)v 23 (2n — )mg,
2(2n — 1)  2(2n+1)2msg,

Remark 6.6.

(1) In Theorem [G.5 the value of the character Opn is given up to a con-
stant. As conjectured in [33] and proved in [34], this constant is equal
to XH%(—Nl)@(:/l), where X1/ is the central character of 1T}, and —1isin
the preimage of —1 in §f)( 2(2n+1),R) (see [33| Page 301]).

(2) As mentioned in Remark [6.4] the decomposition of h as h = {ah, is not
unique. But one can see that it doesn’t affect the formula given in Theorem
Assume for example that i = fahy = f1ahy, where p~({t}) = {f, fl},
p~t({h}) = {h1,h2}. One can see that

O, (e(S1)p(ta)c(S1) ™) = —Om, (e(S1)p(f1a)e(S1) ™),
(= D)e(Sk-1)p(R)eSr-1)"") = —e((—1)eBr-1)p(ha)e(Sk-1) ),

and the other factors are not affected.

Before proving Theorem [65 we recall a lemma concerning orbital integrals.

Lemma 6.7. For every k > 1, h € H,,(S;)*8 and 1 € €>°(G,), we get:

- D, (h) © N
(ghg™1)dg = Cnx / WK (mbm=dm,
/Gn/Hn(Sk) D(h) L1(S1)/ Hn(Sk) N, (S1)

where K,, is the mazimal compact subgroup of G, Np(S1) = exp(n,(S1)) and Cp 1
is the constant given by

1 1

Cnl - m An—1°
(K A Lo (S T (AL (S))vE

s
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Proof. We see easily that for k > 1, H,(Sy) is a Cartan subgroup of L, (S1), and
then the result follows from [2] Corollary A.4]. O

Proof of Theorem 65, Fix k € [|0,n]] and ¢ € €>(G,) such that supp(y)) C
G, - H,(Sg). Using Remark 541 it follows that:

(14)

@Hn / @Hn

=mg, /H O (C(Sk)p(h)c(sk)_1)5‘I’n,sk,m (h) A (ny (h) H, (h)dh

n,Sp

— s, / O (e(SK)p(h)e(S) V)| A, ()2
H

n,Sg

/ Pge(S)ph)e(34) g~ g
G /Hn(sk)
According to Remark [0 the global character O of II" is given by

1 - . .
O (1) = 5 | O, ()| et(1d ~ Ad(i) ™) | Che, ()

1 - . .
+§/ﬁ7(8/)@H;n(h/lﬂdet(ld—Ad(h/l) 1)9’/h’(S’1)|Chcﬁ’1(dj)dh/b

where H', H'(S;) are the two Cartan subgroups of G’ (up to conjugation) defined

in Equation (I). Using that supp(¢)) € Gy, - H,,(Sy), we get from Theorem 5.6 and
[B, Equation 8] that:

(15)
[ ()l det(1d = Ad(h) ) | Chey, ()

= [ [ ®m )l det(1d — Adig) )y PO T)g0)va)dtEy

= [ O G Rwr ) (80t [ 0p(h)00)d5)
H G

. ‘ »
= D Ms(o) lim | O, (p(h)Aw (hy) / A, (h)Ae,)(o ()

cew (HE) r€losi Ja s det(L — p(h)rp(h)), wer

/ Plge(SK)p(R)e(S) g~ )dgdhl.
G / Hn(sk)
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Similarly, by using Equation (@], we get:

06) [ O Bl det(1d — Ad(H) sy * i () =
0 if S=0
cl/ﬁv/(S/)@mﬂ(ﬁg)detad—Ad(ﬁ’l)1)9,“,,(5,1)
| |det<Ad<”>>n(s/ |%
|det(Ad(RS) -
¢N ( L) di dh’

| / o et o [Be((CTya)  otherwise
1

/(S/

where the constant C; defined in Equation (I0) is given by

24n+3(2n — 1)

Cl = ch,h

and C,, ; is defined in Lemma[671 Note that in this case the formula () is slightly
simplified because Wy , = {0}, i.e. Chew,, = 1.

In particular, the theorem follows for k = 0, i.e. Sq = {0}. From now on, we
assume that k > 1, i.e. without loss of generality that e; —e2,4+1 € Si. In this case,
using Remark (.8, we get:

Hn(Sk) = Tl(Sl) X A(Sl) X Hn—l(gk—l)-

The Cartan subgroup H,,(Sy) is included in the Levi L, (S;) = GL(X}) x G(Uy) of
P, (S1). In particular, using Lemma [67] Equation (I3 can be written as:

> Mg, (0)Cpy lim O, (5(hy)Awr (hp)

r€Eqs s 5
sew (HS) ry F Y H

/ Ay, (B)Agz,) (0 (h)) Di(c(Sk)p(h)e(Sk) ™)
g, det(L — p(hg)rp(h)) g wo D(e(Sk)p(h)e(Sk) )

/ wf‘ (9e(Sk)p(h)c(Sk)~tg~)dgdhdhy,.
L (S1)/ Ha(Sp) SV

Similarly, Equation (If) is equal to

a7 cims, , |, O, (c(S)PE@)e(S1) )

X/
1,81 /A8,

G G L Ny |2
OO der(Ad(e(SDp(Fa)e(S) 1) — 1d),, o |

[ e
H 15, , /CGWU1)/Ho1(Sk-1)

1,8

| det(e(SO)p(F'a)e(S1) " ge(Sk-)B(R)eGr-1) g7, 6 |2 e(—DeGron)p(R)e(Se-1) ™)
YR ) ((SOBEE )e(S1) ge(Sem)p(R)e(Sim) g™ ) dgdhdal dF

| det(Id — Ad(e(S1)p(f'a’)e(S1) ™)~
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where gk,l =Sk \{e1 — eant1}. From ([d), we get:
(18)

Onr () =ms, Cna [ O (c(Sk)p (R)e(Sk)™HAg, (h)]?

Hn,Sk

/ Vlge(S)p(h)e(Sy) g )gah
(S1)/ Hn(Sk)
and using that:
L, (S1)/ Hn(Sk) = GL(X1)/(T1(S1) % A(S1)) X G(Uy)/Hp—1(Sk—1)
= G(U1)/Hn-1(Sk-1),

it follows from Equations (I5), (I7) and (8) that for every h = fah, € H, s, =

Tl S X AS1 X HSk N

ms, Cn1 O (c(Sk)p(h)e(Sk) )| Ag, (h)]

_ Caa(=1)"ms, Ay, (h) Di(c
2(2n — 1) D(c(Sk)

SN
/-\
v
o
—~
wn
ES
S~—
|
—
S~—
q
<
]
EG)

w [ OmOEIAE 5O
B i det(1—p(g)rp(R) wo

O, (c(S1)p(ta)c(S1) ~H|Aw (fa) | ds; (c(Syp(fa)e(S1) ™) dg, (c(S)p(fah)e(Sk) )
| det(Ad(c(S1)p(F'a)e(S1) ) = 1d)|, o |

e((—1)eBr-1)p(hn)eGr-1))) [ Aawn (AP,

and the result follows. O

Lemma 6.8. For every j € G, e(g) = £1.

Proof. The space X'l Rc Va EBY’1 ®c V,, is a complete polarization of V' ®c V,,. In
particular, X" = (X] ® V,,)r is a maximal isotropic subspace of W = (V' ®¢ V).
According to Equation (28]), the character ¢ is defined on GL(X')¢ by the follow-

ing formula:

0= g (secLY).

In particular, using Equation (29), for every g € é:, we get:
o detg(9) 2

s(g) 1,
|dets (g) 2

Using the fact that | detx/(g)| = 1, it follows that e(g) = £1. O

| detx:(g)| !
| detx: (g)|~1
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As explained in Appendix [Bl (see Equation (27))), for every 0 < k¥ < n and
St ={e1 —eant2-1,---, €k — €2nt2- k),

: iX1—X iXp—X _ i Xk i X _
(19) Hpg, = {diag(eiX1—Xamr1  iXi—Xaniaor oiXir | ciXaniiok,

i Xg+Xonto2— 1 X1+Xon
Xt Xonpak | iXitXanin) ¥ e R},

In particular, using Remark [6.4] we get that h can be written as h = tah;, where

(20) t= diag(eZXI ’ 17 tct) 17 ele)a a = dia‘g(e_X2”+la ]-; ey ]-a 6X2n+1)
N~——
n—1 2n—1
and
(21) hy = diag(l, elX?fXQ", . ,eixk*inJrsz’erkJrl, o
iXont1-k HiXk+Xont2— iXo+Xon
etr2nt1 k76 k 2n+2 k’.“’e 2 2’1).

We get &(Zy,) = {e; —e;,2 <i < j<2n}. In particular, for every o € 5,41 and
h € H,(Sk), we get:

1 _1 _1 1
Aoz (o (h) _ Hacicjcan (himha(?) - ha@)h;(w)
1 1 _ 1 1 1
Aam(h) [Ticicj<on+i (hi2 h;* —h, 2h;)
(22) 2n+1
hoylgonsy I oy i
— £(0) =53 . +;¢v<1),o<2n+1> .
1720 (hoy = h) IT" 520 (Pogantn) — By)
j#o(1) j#o(1),0(2n+1)

Remark 6.9. Let exp : b, s, — H,s, be the exponential map (lift of the usual
exponential exp : b, s, — Hy,g,). Let e;,1 <4 < 2n+ 1 be the linear forms on
C?"+1 defined in Notation 51l Using (20) and (Z)), for every element i = exp(X)
with X given by

X = (X1 — Xony1,1 X0 — Xop, oo, 1 X — Xopyo—i,
iXkt1y e i X1k 1Xp + Xongo—k),

v e;—e; e;—e; e; (X) e (X)
weget h—z =e 2 X)) =7 e '—hh

in Equation ([22]) was defined.

A ~L(h
M is “uniquely” determined by o (1) and
A@(n)(h)

o(2n+1). Foro € Sa,41andi,j € {1,...,2n+1} such that o(1) =4,0(2n+1) =
we denote by A(3, j, h) the following quantity:

_1
; 2+ This is how the square root

Up to a sign, the quotient

hih? A hy

Ag(z, )(‘771(71)) o
A(i,§,h) = e(o) e = z .
Ag(n)(h) e (h = ) T (hy = )
k#i 1#£4,j
Lemma 6.10. Let b€ Z and a € C*\ S'. Then,
] b a’ if k>0 and |a| <1,
— dz=<¢—a® ifk <0 andla| > 1,

0 otherwise.
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(=n*

We denote by Cs the constant ey

Notation 6.11. For an element h € H;'§ as in Equation (%), we denote by J(h)
and K(h) the subsets of {1,...,k} given by

J(h)={j e{1,...,k},sgn(Xopta_;) =1},
K(h) = {] c {1, .. .,k},sgn(X2n+2_j) = —1},
where sgn(X) is defined for every X € R* by

1 if X >0
X)= i
sgn(X) {—1 it X <0
To simplify the notations, we will denote by (hq, ..., ha,+1) the components of h.

Finally, we denote by Ay and By the subsets of {1,...,2n + 1} given by
Ap={k+1,...,n}, Br={n+1,....2n+1—k}.

Theorem 6.12. For every 0 < k < n, the value of O on ﬁn(Sk)reg is given by

(23) O (c(Sk)p(R)e(Sk) ™) =
A e kmuag BERSTTQ 5 (h) 40,0 Bem (M senXene )Xo 9 if m > 1,
i€J(h)UBy,
C A Zi,jEJ(h)UBk h:lh;lﬂl,j(h) + 61@,0 Be—(m+1)sgn(Xoni1)Xon i1 E(h) me =0,

i
A ZieK(h)UAk therh?QL](h) + 5k,0 B e(mfl)Sgn(X2n+1)X2n+1E(h) me < _1’
JEJ(R)UBy,
where ;5,1 <i# j <2n+1, and ¥ are the functions on Hl;zgsk given by
2n+1
=1 Nd

Qi ;(h) = i) ,
) S (hi = ha) T2 (hy — ha)
d#i d#i,j

Sgn(X2n+1)eimX1 ’e(zn—2)X2"+1‘ (1 _ 6_2X2"+1)

T (- g ) T, (1 hahgl )| 1= e

(h)

S ~ 2A
and where h € H,, g, is as in Equation (I9), A = 2n=1) and C is the constant
n—1)!
given in Remark [6.6]

Proof. Let h = tahy € H,, g,. We denote by (h,...,hapt1) the components of h.
In particular,

eXemXomz—e f 1 <<k
he = { etXe ifk+1<ce<2n+1-k
eXontz—etXe  ifop 42 k<e<2n+41

We denote by A, () := A,([,,(S1)) the set of roots of [,(S1) and let ¥, (I) :=
A, () N¥,. One can easily check that

U, () ={e; —e;,2<i<j<2n}.
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Similarly, let U, (n,(S1)) = {e1 —eq,2 <d<2n+1} U {eq — e2n41,2 < d < 2n}
the roots of 7,,(S1). Then,

D(c(Sk)p (if) c(Sk)™h) _ ‘det(ld—Ad(C(Sk)ﬁ(ﬁ)C(Sk)_1)_1)gn/hn(sk)‘%
D1 (e(Sk)p(h)e(Sk) 1) |det (Id — Ad(c(Sk)P(R)e(Sk) ™) D1, (51)/bm (S0) |
Hoze\I/n ‘1 - ;La‘

N|=

= ds, (e(S)p(R)e(Sk) 1) 2

ozE\I/ |1 - ha|
= ds, (c(Sk)p(h)e(Sk) ™) 2 H 11— ha’
ae‘l’n(nn(sl))
5 2n 2n
= ds, (c(Se)p(R)e(Sk) ™) 72 |1 = hahg | [T 11 = Pahg ' T] 11 = hahonia]-
d=2 d=2
Moreover,
[Ac(®)]’ acw, |1 - h'ﬂ
v 2
| Acuy) (h)] Haelll(g(Ul)) 1= hel”
2n 2n
=1~ hahyt P T = bk T L — bbb |
d=2 d=2
In particular,
. 2
D(c(Sk)p(h)c(Sk |AG(U1)( )
Dy (c(Sk)p(h )c k)1 |Ac(h |
5 = 2n 2n -1
= ds, (c(Sk)p(R)e(Sk) ™) 21 — e X | (1 = hahg ) T (1 = hahiyss)
d=2 d=2
Similarly,
|Ags(fa)|? = [1 = hahgly | = [1 = e X

and it follows from Remark [A.5] that

efile em sgn(Xont1)Xont1

sgn(Xopi1) eX2nt1 _ o Xoni1
o B fm< -1
O, (c(S1)p(Fa)e(S1) ) = +2 =i X g=msgn(Xan ) Xanir
sgn(Xont1)

eXont1 — g—Xont1
ifm>0

i.e.

| Ay (i) |” O, (c(S1)p(fa)e(S1)—1)

Sgn(X2n+1)eimX1 E(WL71) Sgn(X2n+1)X2n+1(1 _ 672X2n+1) if m S _1
= 42 Sgn(X2n+1)€imX1 6_(m+1) sgn(Xon4+1)Xont1 (]_ _ 6_2X2"+1) i m Z 0 .

Finally, using that
|det (Ad(c(S1)p(fa) e(S1)™H) ™ = 1)),
= [1—e 2 1] dg (e(S1)p(fa)e(S1) ™)

— |6*X2n+1|

3
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and

D=

2n+1 2n
ds, (c(Su)p(h)e(Sk) ™) = | TT (e *emengt) T (nyem ¥ Xemen)
j=2 j=2

_ | ,—(2n—-1)X>2,
—’e( )2+17

we get the second member of Equation (23]).

We now look at the first member of Equation (23]). One can easily check that
for every 0 € Sopt1, w = w11 E11 +wanq1,2Bony10 € WY and y € b, such that
Yy = (yl; e ,y2n+1) = (in, . ,Z.Xgn+1), we get:

Xo(1)|’w1,1|2 + Xa-(2n+1)|w2n+1,2|2
ifo(l),0(2n+1) € {1,...,n},
_)(U(l)|’w1,1‘2 - XU(2n+1)|w2n+1,2|2
ifo(1),02n+1)e{n+1,...,2n+1},
Xo)lwi1? = Xo@nt1)lwans1,2|?
ifo(l)e{l,...,n} ando(2n+1)e{n+1,...,2n+1},
—Xo)lwia* + Xo@nt1) [Wong1,2]?
ifo(l)e{n+1,....2n4+1} and o(2n+1) € {1,...,n}

(yo(w),o(w)) =

(see the proof of Proposition [A.3] for an easier computation) and then

bn
if {o(1),0(2n+1)} C Sy
{y = (yh ce. 7y2n+1) S h?’u Xcr(2n+1) > 0}
if o(1) € Sp and o(2n+1) € Ay,
{y = (yla cee 7y2n+1) € hn7XO'(2’ﬂ+l) < O}
if (1) € S and o(2n + 1) € By,
{y= (..., v2041) € bn, Xo(1) > 0}
if o(2n+1) € S and o(1) € Ay
{y = (yla e 7y2n+1) S bn?XO'(l) < 0}
if o(2n +1) € Sy and o(1) € By,
{y = (yla s 7y2n+1) € bnaXa'(l) > 07X0(2n+1) > O}
ifo(1),0(2n+1) € Ay
{y = (yla s 7y2n+1) S bnaXO'(l) > 07X0(2n+1) < O}
if o(l) € Ag,0(2n+ 1) € By,
{v= (1, y2041) € bu, Xo(1) < 0, Xp(2n41) > 0}
1f0(2n+ 1) S Ak,O'(].) € By
{y = (yh cee 7y2n+1) S h?’u Xcr(l) < 07X0(2n+1) < O}
if 0(1),0(2n+1) € By

Los, =
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Let h € H,(S) and h = p(h) = (hi,...,ha,s1) as in Notation Assume
that m > 1. Using Corollary [A4] we get that

I—m
@H/ (ﬁ(h/))A /(iL/) — h/%h/% Lh/_%h/_%(h/ _ hl) _ _hlfm
ke 0 v 0 1 %2 h/2_h/1 1 2 1 2 2 ’
(ho = diag(h}, hy)).

By keeping the normalizations of [27, Section 5] and identifying H" with S' x S*,
we get:

o Baye) O, (DA,
2 A re:%fk/ det(1 = plg)rp())ws
2 (o (R)
=2 EU4V
UEWZ(HE) ( ) A<I>(n)(h)
. —h” Ak I,
e Juw (L= BR))(0 = Wolrh) ))

where dhj, and dh)dh)y, are the normalized Haar measures on " and H' respectively.
Using that

dz1 dZQ

dh'dhl, = —————
P2 (2im) 221 20

S cfrml) y, [ CwGEIAGE)
—oW) PV _ A
ceW (HY) Aq)(") (h) re€los, Ju' det(l - ( ) (h))a'W"
-2 ho(yho(@n+1)Daz,) (0 (h))
_ TR Z e(0) (1)"a( X ) ﬁ( o
0ES ant1 <I>(n)( )
i zfldzl / mfleQ
im
TEEC, s stz = rhe(1y Jst 22 = The2ni1)
_9 o zfldzl Z;nileQ
= hih; A 1
(2i7T) (277, — 1) Z J (17]’ )relg.nsk gl 21 — Th /Sl Z9 — ’I“hj

1<i#j<2n+1 r—1

: c - TV —1pm—1

" i€J(h)UBy jEK (h)UA
2n+1
h?hy"'—m n+ ha

9 d#u
(2n —1)! iesmus, jekmoa, Llas (hi = ha) ITq—y (hj — ha)

d#i,j
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Similarly, if m = 0, we get:

. / Oy, (5(hp))Aw (h)
Te,%isk o’ det(l —p(hB)P(h))aWb

zlldzl/ 2y tdz
S

1 29 —’I”hj

dhy

S Aﬂzn)(o(;&»

seW (HS) A (h

92 .
- hih;AG, 5, k) lim
(2im)2(2n — 1)! 19‘75;2714-1 7 rerEjisk gt 21 —rh;

2 .. 5 _ _
=G 2 hhAG s RRH
" i,j€J(h)UBg

i

nin TT2n+1
nehe T ha

_ 1 d£1,j
_(2n—1)!..z 200 by — ha) [T (hy — ha)
wweiggum Hagp (s = b gy (05 =ha)

Finally, if m < —1, it follows from Corollary [A4] that:
i N /% /% hllim /—% /—% / I I—m
O, (5(ho))A(P(ho)) = hi* hy® 77——7hy 2hy *(hy —hy) = hy™,

hy =My
(ho = (I, h3)).-

Then,

Apz,)(0(h) O, (9(hp))A(Ry) -,
3 5(0)7)%153% /H / hz (%

oW (HE) Afb(n)(h det(1 — p(hy)p(h)), wo
2 B 1y ho (2n41) Aoz (0 (B
= oo T (o) et 51) @;LZ( ) (a(h))
i 0ES ant1 <I>(n)( )
) z{"_ldzl / 2’2_le2
lim
TGEU'IS’“ gt 21 — Tha(l) gl 22 — Th0(2n+1)

2 ikl —
"ieK(h)UA jEJ(h)UBy
n+miyn 2n+1
9 hiJF hj jl;L hq
J— 7
- (-1 2 2 o (hi = ha) T2y (hy — ha)’

1€K (h)UA j€J(h)UBy a(l;} L(ii;,lj

and the theorem follows. O
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Remark 6.13. From Theorem [6.12] it follows that the value of Oy, on the compact
Cartan H,, is given, up to a constant, by

Orrn (e(Sk)p(h)e(Sk) )

ZjGK(h)UAk h?h;‘lerQi,j(h) if m>1,
i€ J(h)UBy,

= Zi,jetl;(#hJ)UBk hi' b€ 5 (h) if m =0,

D icK (h)UAL h?+mh?9i,j(h) it m < —1,

j€J(h)UBy

P
S — . itm>1,
7=1 +1 Zz-il(hl hd) 2 +1 (hj _ hd)

d#i ;ﬁ J

I
2n+1 .
_ o ifm=0
P T (e~ ha) TE s — ) ’
d#i d#i, J
R Mg

27‘;1 ZQ'ZJrl 1

’ I (e — ha) T (B — ha)

d#i d#i,j

ifm < -1,

where ), ; is the linear form given by A; ; = ne; + (n+m)e; + > dn+11 eq and 7; ; is

d#1i,j5

the permutation (¢, 7).

We finish this section with a Lemma concerning the formulas we got in Theorem
0.12

Lemma 6.14. For every h € H, g, , d o (1= hihy ) d t,(1— hdh;nlﬂ) € R,
and its sign is constant on every Weyl chamber.

Proof. This result was obtained in [27, Lemma 6.9] for k = 1. We prove this lemma
for k = 2 (the proof of the general statement is similar). Assume that k = 2. We
get:

2n 2n
H (1 o hlhgl) (1 - hth_nl—i-l)
d=2 d=2
= (1= hihy ") (1 = hahg )(1 = hohgty 1) (1 = honha,q)
2n—1
< H L—hihg (1 - hdh2n+1)>
d=3
Firstly,
2n—1
( IT (0= mhyt) (1= hjihg) >
j=3
2n—1
— H (1 _ eiX1*X2n+1ef’L'Xj) (1 _ einefin—XQn_'_l)
j=3
2n—1

H ’1 _ eiX1—X2n+1e—'in ‘2 )
Jj=3
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Moreover,

(1- h1h2_n1)(1 - h2nh2_nl+1)
_ (1 _ eixl—X27L+1e—iX2+X2n)(1 _ eiX2+X2ne—iX1—X2n+1)

-1 2COS(X1 _ X2)6X277,7X2n+1 4 62(X2n*X2n+1)

and
(1= hahsyy1) (1 = huhy,)
— (1 — X2 Xan g =iXa+Xons1) (] oiXi+Xans1 o=iXa=Xan)
=1—2cos(Xa — X;)eXemtrXansr p o2(Xani1=Xan)
so the lemma follows. |

APPENDIX A. THE DUAL PAIR (G = U(1),G' = U(p, q))

In [27, Proposition 6.4], the author gave exp11c1t formulas for the value of the
character O on the compact Cartan H/ /((Z)) of G Moreover, for p = q = 1,

he computed the character O on ﬁI(S1), where H'(S;) is the non-compact Cartan

subgroup of INJ(l, 1) as in Equation (II). In this section, we recover the results
proved in [27] using the results of Section Bl and get formulas for O on every

Cartan subgroup of G'.
By keeping the notations of Section B, we get V. = C with the hermitian form
(+,-) given by
(u,v) = uv, (u,v € V),
V' =M, 1(C), where n’ = p + ¢, with the skew-hermitian form (-, ) given by:
(u,v) =v"i1d, 4 u
and W = V ®c V' the symplectic space defined by
(w,w")y = Re(tr(w™*w)) = Im(wt Id, , w).
Similarly,
H=G=U(1)={heC,|hl =1}, Ji =1, h=RJy,
and the group GL¢(W) is given by:
GLc(W) = {g € GL(W), Jig=gJ1} = Gg,
GLc(W) = {g = (9,€),9 € GLe(W), det(g) = £} .
Using that V' =V &...® V], with Vj = CE;j ., and the embeddlng
hc 2 X — (A\,0,...,0) € b,

we get that
Wb = {U) = (’le,0,0,...,O), wi,1 € (C},

7 =@a" = {g' €eG ¢ = <8\ )0(> AEU(1), X € GL(n'—l,(C)}.
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In particular, ®'(Z') = {&(e; — e]) 2 <i < j<n'}, where e; is the form defined in
Notation 51l For every A’ € H(C, with b/ = (h},...,hl,), we get:

) /!

Aqy(h/) = H(El% h _%) H (hz§hj_§ _ h;_%h;%)

a>0 1<i<j<n/

1<i<j<n’
and for every o € %,
n’ ,
- j_n =2
Aozy(o) =TTho0 > TI (e —hoi)

=2 2<i<j<n/

n’ y_n'=2 —2
S e

i=l 1<i<j<n’

i,j#0 (1)

In particular,

w|>—4

= root
) 1) Ha;ﬁo‘(l) _ (U) ha(12) H?:l hi2
Agr () I (h;u) — hi) 1" (hlg(l) = hi)

i#o(1) i#o(1)

(W € Hy).

Notation A.1. As in Section[6 because the set of genuine representations of I~J(1) is
isomorphic to Z, we will denote by IL,,, m € Z, the representations of 2(U(1),w).
Using [20], we get that IT,,,(h) = +£h™+*3". We will denote by II/,, the correspond-
ing representation of I~J(p, q) and by Oy, its character.

Proposi‘Eivon A.2. For every S C W5t (see Appendiz [Bl), the value of the character
O, on H'(S) 8 is given by the following formula:

Ag: (RO, (c(S)p(h)e(S)7") =

(=1)“e(o) I ks,
WA@(Z/)(U Y(h)) det™Z (oM (R'))we
oW (HL) c 2 C

mdet Q(h) di
r€Ees Ju(1) det(1 — p(h)rp(R)) 5w

v ./
for every b/ € Hg "o

—~ o~/

Proof. Let ¢ € %‘X’(G ) such that supp(v) C G'- H (S), we get:

O, (¥) = (P, ow(v)) = /~< en,,n(g)e(ag’)da) 0(7)ag’

- [ ( N enm@(m)@@(h)g’)dh) g

where &, H# — H(Il,,) is the projection onto the II,,-isotypic component
given by Zn, = w(Orr,, ) (see [38, Section 1.4.6]), i.e. as a generalized function
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on G/,
Om, (@)= [ Ou,Bh)ewh)i)ds, (§ G

Using Remark 5.4l we get:

(24)
O, (¥) = [ Om, (§)¥(7)di = ms /H ewy (B Aar (R) A5 (O, ) (R db!

/ m
G s

= ms [ ewy () A0 (H) 0, ()5 e(S) ™) A ().

S

Using Theorem 5.6l Equation (24) can be written as:

det ™ (o (W))wo Aar(zry (0 (1))
TEETS H’S det(l —p(il)?”p(il/))gwh

e (B 6) ()

:/, E\P’S,R(il/) Z MS(U)Aqw(Z’)(U_l(iLI))det*%(a_l(h/))wh
Hg ceW (HL)

. On,, (p(h)) det” (h)

r€Bos Jua) det(l = p(R)rp(h')) g wo

dh A () (R )dh/ .

The result follows by comparing Equations (24]) and (25]). O

Without loss of generality, we assume that p < g and keep the notations of
Appendix [Bl (see Equation (27))). In particular, for every h' € H/S,,’ 0<t<p, his
of the form

/ / li
h - ( IEERER] hn’)
= diag(e™1Xpt1 X XKpwe 1Ko o

Xt Xorn et X et Xppe piXpren | eiXota)

where X; e Rand S; = {e1 —e€pi1,...,6 — €pit}.
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Proposition A.3. The value of the character O s given, for every n e I:Ilst,
0 <t <p, by the formula:

Om, (c(St)ﬁ(iL’)c(St)_l) =+20C?

2
j o
if m < o

>
o I, (W =B

+ Z§i2+t+1 7 otherwise
B v (h =R,
iy (0 =
where o) = -1 - 45F, C = m, B =(hi,....hl,) and K(}'), J(K') are given

by:

J(W)={j e {L,... . t},sen(Xpy;) = 1}, K(W)={j € {L,... . t},sgn(Xpy;) = —1}.

To make the equation shorter, we will denote by C the constant C = %.

Proof. We start by determining the space E, ¢ for o € #,s. For every w = wy,1 E11
and ¥’ = (y1,...,¥,) € with ¢y} =X}, X! € R, we get:

(y'o(w),o(w)) = (y'(w1,1 Ex1).1), w11 Eo)1) = (W1,1951) Eo).1), w11 Eo(1)1)
= Im(w1 1 E1,0(1) Idp,q w1951y Bo(1).1)
_ w11 P Im(y, 1y E100) Eo1),1) if 1 <o(l) <p,

—[wy 1 |? Im(y, 1) B o) Eoy,1)  ifp+1<o(l)<p+y,

_ X<I;(1)|w1,1‘2 if 1 <o(1) <p,
Xy lwal? ifp+1<o(l) <pta

In particular,

r y’Gb',Xé(1)>O if 1 <o(1) <p,
o0 = .
y’€h’,X;(1)<0 ifp+1<o(l)<n
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and then

{h/ EHp W = (e M,...,e X)X} ) >0
if1<o(1) <

{h’ EHE W = (e ,...,e X)X} ) <0
ifp+l<o(l)<n

—

Em@ = exp(ira,@) =

\H_/’@

More generally, for every o € .7, we get:

b’ if o(1) € Sy,
Tys, =4V EN. X,y >0 ifo(l)ef{t+1,....p},
th',X;(1)<O ifo(l)e{p+t+1,...,n}.

In particular,

{h' € H, h = diag(eX4,...,eX0), X! € R}
if o(1) € Sy,
{h’ € Hp ' = diag(e™,...,e” %), X/ € R, X ;) > 0}

E, s = exp
1fa()e{t+1...,p},
{h’eH(’C,hzdiag(e_Xiw-, "), X[ €R X <0}
ifo(l) e {p+t+1,....n}.

Because the space E, g, only depends on (1), we will denote this space by E; g,
for a o € %, such that o(1) = i.
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We first assume tvhat 7”5’ is even, i.e. kK =0. Then, according to Proposition
and that det(1 — p(h)rp(h))yws =1 — h(rh’ )0(1), we get (up to a constant):
O (c(St)p(h)e(S) ™)

_ e i) | 1 ()
_C Z E( ) Aq)/(}vl’) }-)11 /U(l) 1— ( )0(11) h

r€Eq g

Om,, (p(h .
= : / (00,
j=1 H:L:l(h; — h;) U(l) 1 — he **1 p+1
i# ]
h/"/T*2 <Hn/ h/%)
. 02 t p+J i=1"% / @Hm (ﬁ(h)) dh

ST (B —hy) Joay L= he™™ ™%t

i£p+j

n'/—2 , ,1
K.z nop'2 _
TN (H,_l i ) y O, (5(h)
™ (b, —h o1 Jooy 1— h(rh%)—1
j=t+1 Hi‘:1( i 1) R s SR AVIE) J

oy h— et Xi=Xptj

h
—C2Zt:h; : H?_lh.i> 1 / On, (1) .
)

1 / O, (B(h))
: : ~dh,

, h,n/2_2 (H”/ %)
" J i=1 @ B
_ 2 Z / nm dh
. ; U1 — j

a—p

2 t 2 n 2 7'm 1—5+F
_ 2 C h] =1 hz 2 dZ
21m “4 - n’ (h’ 7 h’ e—iX; +Xpﬂ Uy £ — i Xj—Xptj
j= l l@:

/72 1
t = - Cm_1_4=p
20t WA I el
_ = - z
2im j=1 Hn;fl (R, p+i h/) e X Xpd u@) 2~ e Xt Xpts
i#Ep+j

n'—2

’ 1
2C* ¢ D
lim

a=p

—m—1—
et S h'-/ Z—dz
N n’ K ’
2 j=t+1 i= 1(h/ —h}) o7k u@ T 7nhj

-2
YR Yl § (A Zomois gt
Z j i=1'%" ..
LU Hi;l_(hj —hj) n3d U@y AT
G

7
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If -m—1-9%522>0,ie. m < —1— %2, Then, according to Lemma .10, we get:

O, (c(Se)p(h')e(S1) ™)

1L a—p
R | AL el
= , . z
2im =TI (B — by et Jy) 2 — e
q€a(nfy
’
ynl=2 , 1 a—p
2C? zt: s 1Lz bi? 1 2l d
- . . z
2im H"' L ( ;Jrj_h;)e*ZXJ*XPH vq) z — e Xit Xt
i= Ji=

. z_m_l_%
- — — lim h;/ —dz
2 j; i (B = Ry) od u@ AT rh;

1 ’ 1
3 t I—m+p—1 N '3
[li=ih

- 20 3 ety Byl
J=1 ITisy (R = B = 1oy (B —BY)

JET(R) i jEK/) P

D h/,7m+p71 Hn' h
)

’
i

SR Y
)

(S

/
i

-9 CQ J , =1
j:zt;rl [Ti=, (R = B

J#i

Similarly, if m > —1 — 552, we get:

3 —m—1-9zP
e SR A U NS
= — - - z
; n’ / / —i X+ Xpyj _ ot X —Xp4j
2 = Hz*l(h‘j _ h‘z) e it Jyy 2 — €T A
JEK (h') 7]
2t = n' 113 Cm_1_4=P
_2C Z hpyy i 1 / Z 2 d=
n’ / / —1X X + _ i Xi+X +j
0w 7 H i1 (hp+j _ hz)e iTArH Jyy 2 — €T
jeI(h!) i#p+j
2 h’n2 I h’% —m—1-9P
20 R A T A d
2 Z W ) el Z—rhl
j=ptt+1 Hi:l( 5 z) r>1 U(1) J
i#i
t /I—m—+p—1 n’ /% t I—m4p—1 7 n’ /%
— 2 hj Hz‘:l h; 2 h‘p+j Hi:l hi
=2C P —— —+2 C - - ;
j=1 Hi:l(hj - hi) =1 H i=1 ( p+i hz’)

= J ) )
JjeJ(n’) iF#] JEK () i#p+j

! I—m+p—1 yn’
+20? i hy 7 i
o TI0 -

e

The computations are similar if n’ is odd. (Il
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Corollary A.4. The value of O on ﬁ/ = p(I:I;)) is given, up to a constant, by:
, 1 h/'_m+p_1
H?:l h;? ?:1 : / /
O, (3(i)) = +2¢? stz )
/ 1 ’ .
T i
VI i T )

ifm < —-1—- 452,
otherwise ,

where C € R.
This result was obtained in [27, Section 6].

Remark A.5. Assume that p =1, ¢ = 1. Then,

(ewa)fm )
m 1fm§—1andX>O
(eie—i-X)—m
@H;n(h’) =24 (el%+)(_)gm s
B ifm>0and X >0
) > 0and X <0
TX _—x Htm=zUand A <

e ch(X)  sh(X)

! __
where 2 = < Sh(X)  ef ch(X)

). We recover the results of [27), Section 7].

APPENDIX B. CARTAN SUBGROUPS FOR UNITARY GROUPS

It is well-known that the number of non-conjugated Cartan subgroups of G =
U(p, q), up to equivalence, is min(p,q) + 1 (see [15]). We recall in this appendix
how Cartan subgroups can be parametrised using strongly orthogonal roots (see
[35, Section 2]).

Let K = U(p) x U(g) be the maximal compact subgroup of G and H be the
(diagonal) compact Cartan subgroup of K. We denote by h, € and g the Lie algebras
of H, K and G respectively and ¢, tc and gc their complexifications.

We denote by A = A(gc, he) the set of roots, by A, := A.(fc, hc) the set of
compact roots and by A, = A\ A, the set of non-compact roots. Similarly, we
denote by W a set of positive roots of A and let ¥, and ¥,, the subsets of ¥ given
by ¥.=A.NV¥ and ¥,, = A,, N V. In particular,

gc = @ 9C,a)
aEA
where gc.o = {X € gc, [H, X] = a(H)X, H € hc}.
Notation B.1.
(1) For every a € A, we fix X, € g0, Yo € 9c,—a and H, € ih such that:
[HouXa] :2Xa> [HomYoc] = _2Ya7 [chya] :Hou H_a: —-H, :Hfom

and such that X, = -Y, ifa € A, and X, =Y, if a € A,,.

(2) We say that a, 8 € A are strongly orthogonal if « # £8 and o + 8 ¢ A.
We denote by 5! a maximal family of strongly orthogonal roots of ¥, (i.e.
a subset of ¥,, such that every pair o, 8 € ¥ is strongly orthogonal).
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For every o € US| we denote by c(c) the element of GL(p + ¢, C) given by:

™

(Yo - Xa)) .

c(a) = exp (
For every subset S of ¥5', we denote by ¢(S) the element of GL(p+ ¢, C) defined by
(26) e(S) = [ ele),
a€s
and let
h(S) = g N Ad(c(S))(be)-

We denote by H(S) the analytic subgroup of G whose Lie algebra is h(S). Then,
H(S) is a Cartan subgroup of G and one can prove that all the Cartan subgroups
are of this form (up to conjugation).

For every S C Us' we will denote by Hg the subgroup of He given by:

where He = {diag(A1, ..., Aptq), N € C}.

Without loss of generality, we assume that p < q. The set of roots A is given
by A = {£(e; —¢;j),1 <i<j<p+q}, where ¢; is the linear form on he = CPH4
given by

ei()\l, .. .,)\erq) = )\z

In this case,

Ac={*(ei —¢j),1 <i<j<pyU{£(e; —¢;)p+1<i<j<p+q},

Ay, ={f(ei—e;), 1 <i<pp+1<j<p+yq},

and the set ¥5' can be chosen as {e; — ey, 1 < ¢t < p}. In particular, H(0) = H

and if S; = {e1 —ept1,..., et —epye}, 1 <t < p, we get:
p p+q t
H(S;) = exp ( P RE;;&6 @ RE;; @@ iRE;; +Epijprs)
j=t+1 J=pttt1 j=1

t
® PRE; 4y, + EPHJ)) :

Jj=1
and the corresponding group Hg, is given by
(27) { diag(e!X17Xor1 et XX oiXenr o piXe
e Xt Ko et X Kot o Xpenr e Xera) X € R}.

Remark B.2. As explained in [35 Proposition 2.16], two Cartan subalgebras §(S)
and b(Sz2), with S1,Ss C U5t are conjugate if and only if there exists an element of
o € W sending S;U(—S1) onto So U(—Sa).
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APPENDIX C. THE CHARACTER ¢

Let (W,(-,-)) be a real symplectic space, Sp(W) the corresponding group of

isometries and Sp(W) its metaplectic cover as in Equation ().
Let W =X®Y be a complete polarization of W. We denote by Z the subgroup
of Sp(W) preserving both X and Y. In particular, we get that

7 — {(g (gol)t> g€ GL(X)} ~ GL(X).

We define a double cover GL(X) of GL(X) by
GL(X) = {(g.1) € GL(X) x C*,* = det(g)},  GL(X) 3 (g.1) = g € GL(X).
As recalled in [2] Section 6], the restriction map
73> g— g, € GL(X)
lifts to a group isomorphism
73§ (gx.1) € GLX),
where 1 = 7(g) is defined on Z° = {g €z, det(g — Dw # 0} by the following

formula:

o(9)

n(g) = —==| det(g 3,
(@) = o0y et
We denote by e the function on 7 given by:
. . ng)
€:23§—¢(g) =—-€C.
n(9)l

One can easily prove that ¢ is a character of Z with values in the set {+£1, £i} such
that
o)

(28) “0) = o) (Gez).

Lemma C.1. For every g € vaC, we get:
1 2
0(7)* = det(g), )" det <§(c(gx) + 1)) .

Proof. Then, for every g € ?, we get:

dimg

- . _ W) _ _
0(9)* = det(i(g — 1))~ = (=1)" = det(g), —1)7" det(g, —1)7"
= det(g), — 1)~ det(1 — g)y) " " =det(g, — 1) det(1 - gl_xl)*1
= det(g, — 1) " det(1 — g‘;l)_1 = det(g|, ) det(g, —1)7 %

‘We have:

%(C(glx)+1) = ((g\x +1)(glx _1)_1+1)

N =N =

((9x +D(gx =D+ (96 = Do = D7) = g1 (g =D
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Then,
- _ 122 _
@(9)2 = det(g, ) det(g;, — 1) 2= (det(g‘x)det(gh -1) 1) det(g|) !

2
= det(g), )" det <%(C(g|x) + 1)> .

We define by det;(% (g) the following quantity:

X -1
dety *(9) = ©(9)

det (%(C(gx) + 1))

In particular, for every g € ZE, we get:

e | dety’(3) .
(29) e(g) = oG |det;(%(g)|’ (gEZ )

APPENDIX D. THE REPRESENTATIONS II" ARE NOT HIGHEST WEIGHT MODULES

D.1. Wave front set of a representation. The main reference here is [I8] (for
more results concerning distributions, one can also check [16, Chapter 8]). Let G
be a real reductive Lie group and (p,.##°) be a unitary representation of G. We
denote by J(.#) the set of trace class operators on JZ.

We denote by tr, : J() — C,(G) the map given by

trp(T)(9) = tr(p(9)(T)), (9 € G, T €J(H)),

where Cp,(G) is the set of bounded functions on G. For every T € J(4¢), one can
easily see that tr,(T") defines a distribution on G, where

b, (T) (1) = /G b() e (T)(g)dg, (4 € E(C)).

In particular, we can consider the wave front set WF(tr,(1")) of the distribution
tr, (7). The wave front set WF(tr,(T")) is a closed set of the cotangent bundle T* G
of G that we will identify with G xg*.

Definition D.1. The wave front set WF(p) of the representation p is defined as
the closure of the union of WF(tr,(7')) as T varies over J(J¢).

One can easily verify that WF(p) is invariant under left and right invariant
translations of G on T*(G). As explained in [I8] Section 1], a bi-invariant set in
T* G = G xg* is identified with G x X, where X C g* is an Ad"(G)-invariant set.
In particular, we associate to WF(p) an Ad*(G)-invariant subset WF°(p) of g*,
which determines WF(p).

We denote by ©, the character of the representation p and by WF(©,) its wave
front set. As before, one can easily see that WF(©,) is invariant under left and right
translations of G on T* G, and we associate to WF(6,) a closed Ad"(G)-invariant
set WE°(O,) of g*. As proved in [I8, Theorem 1.8],

WE®(8,) = WF°(p).
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Remark D.2. The group G is reductive. We can find a non-degenerate invariant
form on g and then identify the G-orbits on g with the G-orbits on g*.

We denote by .4 the nilpotent set in g. As proved in [I8, Proposition 2.4], if p
is an irreducible unitary representation of G, then

WF°(p) C A

D.2. Wave front set of a highest weight module. Let (G, G’) be an irreducible
reductive dual pair in Sp(W) and g = Lie(G) and g’ = Lie(G’) the Lie algebras of
G and G’ respectively. We know that W = Homp(V’, V) (where D is a division
algebra over R) and g C Endp(V), ¢’ C Endp(V’) (see [I7]). We denote by (-,-)
and (-,-)" the D-hermitian and D-skew-hermitian forms on V and V' respectively.

For every w € Homp(V’, V), we denote by w* the unique element of Homp(V, V)
satisfying

(w('),v) = (v, w*(v)), (veV,v eV).

We denote by 75 : W — g and 7y : W — ¢’ the unnormalized (moment) maps
given by

Tg(w) = ww*, Ty (W) = ww, (w e W).
Lemma D.3. Let w € W such that T4(w) = 0. Then 74 (w)? = 0.
Proof. Assume that 74(w) = ww* = 0. Then
Ty (W) = (ww)(w*w) = w* (ww*)w = w rg(w)w = 0.

]

Lemma D.4. Assume that G is compact. Then WF°(II')? = {X?, X € WF°(I') }
= {0}.

Proof. As explained in [32, Theorem 6.11], we get WF°(II') = 74 (7, '{0}). The
result follows from Lemma [D.3] O

Lemma D.5. Let k € Z1 and I be a highest weight representation of I~J(p,q),
where U(p, q) is the det? -cover of U(p, q), i.e.

U(p,0) = {(9.€) € Ulp,q) x €, €2 = det(g) } .
Then WF(I1')? = {0}.

Proof. By using [7], there exists n € Z1 such that n — k € 2Z and a representation

IT of U(n) (where U(n) is the det =" -cover of U(n)) such that IT' = 05 ,(I). The
lemma follows from Lemma [D.4 O

We now use the notations of Section [fl Let (G',G,) = (U(1,1),U(n,n + 1))
be the dual pair of Sp(W,,), with W,, = (C? ®@c C*"*1)g, and II" = 9711’;1+1(H').
We denote by g’ and g,, the Lie algebras of G’ and G,, respectively. Similarly, let
Ty : Wy, — ¢’ and 74, : W,, — g,, the unnormalized moment maps.

Proposition D.6. The representations II"™ constructed in Section [6l are not highest
weight modules of U(n,n + 1).
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Proof. By using Lemma[D.5] the theorem follows if we prove that WF°(I1") # {0}.
As proved in [34, Theorem 2], we have WF°(II") = 74, (Tgl(WFO(H’))). Let & be
the G'-nilpotent orbit such that & = WF°(IT'). As explained in [32], 7, (7, (€)) =
0, where 0, is a unique nilpotent G,-orbit and WF®° (Im") = 0,

The moment maps 74 and 7y, can be extended canonically to the complex-
ifications and let ¢ (resp. O, c) be the corresponding GL(2,C)-orbit (resp.
GL(2n+1,C)). The correspondence of orbits in the stable range has been studied in
[6]. As explained in [5], nilpotent orbits can be parametrized by partitions. Clearly,
the partition corresponding to O¢ is (2) and it follows from [6l Theorem 4.2] that

the partition corresponding to &, ¢ is (3,1,...,1).
——
2n—2
In particular, one can easily see that for any X € 0, ¢, X% # 0 and it follows
that &, contain elements X; such that X7 # 0, so WF°(I1")? # {0}. O
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