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CHARACTERS OF IRREDUCIBLE UNITARY

REPRESENTATIONS OF U(n, n+ 1)

VIA DOUBLE LIFTING FROM U(1)

ALLAN MERINO

Abstract. In this paper, we obtained character formulas of irreducible uni-
tary representations of U(n, n + 1) by using Howe’s correspondence and the
Cauchy–Harish-Chandra integral. The representations of U(n, n + 1) we are
dealing with are obtained from a double lifting of a representation of U(1) via
the dual pairs (U(1),U(1, 1)) and (U(1, 1),U(n, n+ 1)).

1. Introduction

For a finite dimensional representation (Π,V) of a group G, one can associate a
function ΘΠ on G given by

ΘΠ : G � g → tr(Π(g)) ∈ C.

The function ΘΠ is the character of the representation (Π,V), and it determines
entirely the representation. Obviously, if we remove the assumption that V is
finite dimensional, the map ΘΠ does not necessarily makes sense in general. In
[9, Section 5], Harish-Chandra extended the concept of character for a particular
class of representations of a real reductive Lie group. More precisely, he proved that
for a quasi-simple representation (Π,H ) (see [10, Section 10]) of a real reductive
Lie group G, the operator Π(ψ), ψ ∈ C∞

c (G), given by

Π(ψ) =

∫
G

ψ(g)Π(g)dg,

is a trace class operator and the corresponding map

ΘΠ : C∞
c (G) � ψ → tr(Π(ψ)) ∈ C

is a distribution; ΘΠ is usually called the distribution character of Π. Moreover,
Harish-Chandra proved (see [12, Theorem 2]) that there exists a locally integrable
function ΘΠ on G, analytic on Greg (where Greg is the set of regular points of G,
see [12, Section 3]), such that

ΘΠ(ψ) =

∫
G

ΘΠ(g)ψ(g)dg, (ψ ∈ C ∞
c (G)) .
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The locally integrable function ΘΠ is the character of Π. In few cases, the value of
the character ΘΠ is well-known. For example (the following list is not exhaustive):

(1) G compact (H. Weyl),
(2) (Π,H ) a discrete series representation:

(a) Harish-Chandra (see [11]) established a formula for ΘΠ on the compact
Cartan subgroup T of G,

(b) Hecht (see [13]) determined the value of ΘΠ on every Cartan subgroup
of G for holomorphic discrete series representation,

(3) (Π,H ) an irreducible principal series representation (see [21, Proposi-
tion 10.18]).

(4) (Π,H ) irreducible unitary highest weight module (Enright [8, Corollary
2.3], see also [26]).

The goal of this paper is to explain how to use Howe’s correspondence and the
Cauchy–Harish-Chandra integral introduced by T. Przebinda to get explicit values
of characters for some particular irreducible unitary non-highest weight modules of
U(n, n+ 1) starting from a representation of U(1). Our method is as follows. Let

(G,G′) = (U(1),U(p, q)), p, q ≥ 1, be a dual pair in Sp(2(p+ q),R), S̃p(2(p+ q),R)
be the corresponding metaplectic group (see Equation (1)), ω1

p,q be the metaplectic

representation of S̃p(2(p+ q),R) (see Theorem 2.2), G̃ and G̃′ be the preimages of

G and G′ in S̃p(2(p+ q),R) and Π be a representation of U(1). We denote by θ1p,q
the map coming from Howe’s duality theorem (see Equation (3))

θ1p,q : R(Ũ(1), ω1
p,q) → R(Ũ(p, q), ω1

p,q),

where R(Ũ(1), ω1
p,q) and R(Ũ(p, q), ω1

p,q) are defined in Notation 3.4. By assump-

tion on p and q, Π′ := θ1p,q(Π) is a non-zero irreducible unitary highest weight

module of Ũ(p, q). In Appendix A, we computed the value of the character ΘΠ′ of

Π′ on every Cartan subgroup of Ũ(p, q). A similar result was obtained in [27] for
p = q = 1.

We now consider the dual pair (G′,Gn) = (U(p, q),U(n, n + 1)) in Sp(2(p +

q)(2n + 1),R). As before, we denote by S̃p(2(p + q)(2n + 1),R) the metaplectic

group of Sp(2(p+ q)(2n+1),R), ωp,q
n,n+1 the metaplectic representation of S̃p(2(p+

q)(2n+ 1),R) and

θp,qn,n+1 : R(Ũ(p, q), ωp,q
n,n+1) → R(Ũ(n, n+ 1), ωp,q

n,n+1)

the map obtained from Howe’s correspondence (see Equation (3)). Using a result
of Kudla (see [23] or [36]), it follows that Πn := θp,qn,n+1(Π

′) �= 0 for every n ≥ 2,

i.e. Πn ∈ R(Ũ(n, n+1), ωp,q
n,n+1). Note that by using [25], it follows that Πn

1 = Πn,
where Πn

1 is usually called the “big theta” and is defined in Section 3.
As explained in [34] (see also Remark 4.5), by using that Π′ is unitary, we get

that if p+q ≤ n, the distribution character ΘΠn of Πn can be obtained by using the
Cauchy–Harish-Chandra integral (see Section 4). More precisely, because Πn

1 = Πn,
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we get from Equation (4), Theorem 5.6 and Equation (5) that:

ΘΠn(ψ) =

min(p,q)+1∑
i=1

∫
H̃

′
i

ΘΠ′(h̃′
i)
∣∣∣det(Id−Ad(h̃′

i)
−1)g′/h′

i

∣∣∣ 12 Chch̃′
i
(ψ)dh̃′

i,(
ψ ∈ C ∞

c (G̃n)
)
,

where H′
1, . . . ,H

′
min(p,q)+1 is a maximal set of non-conjugate Cartan subgroups of

G′ and Chch̃′
i
is a family of distributions on G̃n parametrized by regular elements

on the different Cartan subgroups of G̃′ as recalled in Section 4.
In this paper, we compute explicitly the value of ΘΠn on every Cartan subgroup

of G̃n for p = q = 1. We keep the notations of Appendix B and parametrize the
n+ 1 Cartan subgroups of Gn by subsets S0 = {∅} , S1, . . . , Sn of strongly orthog-
onal imaginary roots of gn (see also [35, Section 2]) and let Hn(S0), . . . ,Hn(Sn) be
the corresponding Cartan subgroups of Gn and Hn,S0

, . . . ,Hn,Sn
be the diagonal

subgroups of GL(2n+ 1,C) given, for 0 ≤ k ≤ n, by Hn,Sk
= c(Sk)

−1Hn(Sk)c(Sk),
where c(Sk) is the Cayley transform defined in Equation (26).

In Theorem 6.5, we explain how to go from the distribution character ΘΠn to
the locally integrable function ΘΠn by using results of Bernon and Przebinda from
[3] and [2] (see also Section 5). In Theorem 6.12, we computed the value of ΘΠn of
the different Cartan subgroups of Gn and get for every k ∈ [|0, n|],

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1) =

C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ã
∑

j∈K(h)∪Ak
i∈J(h)∪Bk

hn
i h

n+m
j Ωi,j(h) + δk,0 B e−(m+1) sgn(X2n+1)X2n+1Σ(h) if m ≥ 1,

Ã
∑

i,j∈J(h)∪Bt
i�=j

hn
i h

n
jΩi,j(h) + δk,0 B e−(m+1) sgn(X2n+1)X2n+1Σ(h) if m = 0,

Ã
∑

i∈K(h)∪Ak
j∈J(h)∪Bk

hn+m
i hn

jΩi,j(h) + δk,0 B e(m−1) sgn(X2n+1)X2n+1Σ(h) if m ≤−1,

where C is a constant, m is the highest weight of Π (see Notation A.1), Ȟn,Sk
is

a double cover of Hn,Sk
defined in Equation (5), p̌ : Ȟn,Sk

→ H̃n,Sk
is defined in

Section 5, h is the element of Hn,Sk
given, as in Equation (19), by

h = (h1, . . . , h2n+1)

= diag(eiX1−X2n+1 , . . . , eiXk−X2n+2−k , eiXk+1 , . . . ,

eiX2n+1−k , eiXk+X2n+2−k , . . . , eiX1+X2n+1),

where Xj ∈ R, Ωi,j , 1 ≤ i �= j ≤ 2n+ 1, and Σ are the functions on Hreg
n,Sk

given by

Ωi,j(h) =

∏2n+1
d=1
d�=i,j

hd∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
,

Σ(h) =
sgn(X2n+1)e

imX1
∣∣e(2n−2)X2n+1

∣∣ (1− e−2X2n+1
)∣∣∣∏2n

d=2

(
1− h1h

−1
d

)∏2n
d=2

(
1− hdh

−1
2n+1

)∣∣∣ |1− e−2X2n+1 |2
,
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K(h) and J(h) are the subsets of {1, . . . , k} defined by

J(h) = {j ∈ {1, . . . , k}, sgn(X2n+2−j) = 1},
K(h) = {j ∈ {1, . . . , k}, sgn(X2n+2−j) = −1},

Ak and Bk are the subsets of {1, . . . , 2n+ 1} given by

Ak = {k + 1, . . . , n} , Bk = {n+ 1, . . . , 2n+ 1− k} ,

sgn is the sign-function on R∗ given by

sgn(X) =

{
1 if X > 0

−1 if X < 0
, (X ∈ R∗),

and Ã and B are constants defined in Theorems 6.5 and 6.12. As explained in
Lemma 6.14, the denominator

2n∏
d=2

(
1− h1h

−1
d

) 2n∏
d=2

(
1− hdh

−1
2n+1

)
is real and its sign is constant on every Weyl chamber.

Note that the representation Πn is irreducible and unitary (see Remark 5.11)
but neither a highest weight module (see Proposition D.6) nor a discrete series rep-
resentation (see Remark 5.11). In particular, its character ΘΠn cannot be obtained
by using Enright’s formula (see [8, Corollary 2.3]) or [26].

Our formula for the character is Weyl denominator free. The method we used
in this paper gives a general procedure to give characters of non-highest weight
representations by starting from a highest weight representation of a compact group.
In particular, proving Conjecture 4.4 could make our method more general, by
removing the assumption of stable range for the second lifting.

The paper is organised as follows. In Section 2, we recall a construction of the
metaplectic representation given by Aubert and Przebinda in [1]. The goal is to
define the embedding T of the metaplectic group into the set of tempered distri-
butions on the symplectic space W (see Equation (2)) which is crucial in the con-
struction of the Cauchy–Harish-Chandra integral. After recalling Harish-Chandra’s
character theory and Howe’s correspondence in Section 3, we define in Section 4
the Cauchy–Harish-Chandra integral and explain a conjecture of Przebinda on the
transfer of characters in the theta correspondence (see Conjecture 4.4). In Section
5, we summarize the results of [3] and [2] on how to compute the Cauchy–Harish-
Chandra integral on the different Cartan subgroups, and we adapt the results to
unitary groups, which are the ones we consider in this paper, and make the compu-
tations for ΘΠn in Section 6 (see Theorems 6.5 and 6.12). The document contains
four appendices: in Appendix A, we make computations for Π′ for the dual pair
(G,G′) = (U(1),U(p, q)) on every Cartan subgroup of G′, in Appendix B, we recall
how to parametrize the Cartan subgroups of U(p, q) by using strongly orthogonal
roots (see also [35, Section 2]), in Appendix C, we define a character ε appearing
in the formulas for the Cauchy–Harish-Chandra integrals and prove a lemma for ε
useful in the proof of Lemma 6.8 and in Appendix D, we recall the concept of wave
front set of a representation and prove that the representations Πn we are dealing
with in Section 6 are not highest weight modules.
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2. Metaplectic representation

Let χ be the character of R given by χ(t) = e2iπt and let W be a finite dimensional
vector over R endowed with a non-degenerate, skew-symmetric, bilinear form 〈·, ·〉.
We denote by Sp(W) the corresponding group of isometries, i.e.

Sp(W) = {g ∈ GL(W), 〈g(w1), g(w2)〉 = 〈w1, w2〉, (∀w1, w2 ∈ W)} ,

and by sp(W) its Lie algebra given by:

sp(W) = {X ∈ End(W), 〈X(w1), w2〉+ 〈w1, X(w2)〉 = 0, (∀w1, w2 ∈ W)} .

We first start by recalling the construction of the metaplectic group S̃p(W): it is
a connected two-fold cover of Sp(W). We use the formalism of [1]. Let J be a
compatible positive complex structure on W, i.e. an element of the Lie algebra
sp(W) satisfying J2 = − IdW and such that the symmetric form 〈J ·, ·〉 is positive
definite. For every element g ∈ Sp(W ), we denote by Jg the element of End(W)

given by Jg = J−1(g − 1). One can easily check that the restriction of Jg to Jg(W)

is invertible and let S̃p(W) be the subset of Sp(W)× C× defined by

(1) S̃p(W) =
{
g̃ = (g, ξ) ∈ Sp(W)× C×, ξ2 = idimR(W) det(Jg)

−1
Jg(W)

}
,

where det(Jg)Jg(W) denotes the determinant of the endomorphism Jg restricted to

Jg(W). On S̃p(W), we define a multiplication by:

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2 C(g1, g2)),
(
g1, g2 ∈ Sp(W), ξ1, ξ2 ∈ C×) ,

where C : Sp(W)× Sp(W) → C× is a cocycle defined in [1, Proposition 4.13]. Let
Θ be the map defined by:

Θ : S̃p(W) � g̃ = (g, ξ) → ξ ∈ C×.

One can check easily that S̃p(W) is a connected two-fold cover of Sp(W), where

the covering map π : S̃p(W) → Sp(W) is given by π((g, ξ)) = g.
For every g ∈ End(W), we denote by c(g) the Cayley transform of g defined by:

c(g) : (g − 1)W � (g − 1)w → (g + 1)w +Ker(g − 1) ∈ W /Ker(g − 1).

We denote by S(W) the Schwartz space of W and by S∗(W) the corresponding

space of tempered distributions. We define the map t : S̃p(W) → S∗(W) by t(g) =
χc(g)μ(g−1)W, where χc(g) is the function on (g − 1)W given by

χc(g)(w) : (g − 1)W → χ

(
1

4
〈c(g)w,w〉

)
, (w ∈ (g − 1)W) ,

and μ(g−1)W is the Lebesgue measure on (g − 1)W such that the volume of the
unit cube with respect to the bilinear form 〈J ·, ·〉 is 1. More precisely,

t(g)φ =

∫
(g−1)W

χc(g)(w)φ(w)dμ(g−1)W(w), (φ ∈ S(W)) .

We define the map T : S̃p(W) → S∗(W) given by

(2) T(g̃) = Θ(g̃)t(g),
(
g̃ ∈ S̃p(W), g = π(g̃)

)
.
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Remark 2.1. Let g̃1, g̃2 ∈ S̃p(W). The question of the relation between the distri-
butions T(g̃1),T(g̃2) and T(g̃1g̃2) arises naturally. In order to explain this link, we
need to recall the notion of twisted convolution.

For two functions φ1, φ2 ∈ S(W), we define φ1�φ2 the function on W given by

φ1�φ2(w) =

∫
W

φ1(u)φ2(w − u)χ

(
1

2
〈u,w〉

)
dμW(u), (w ∈ W) .

One can easily check that φ1�φ2 ∈ S(W). We extend � to some tempered distribu-
tions on W. In fact, for every g ∈ Sp(W ), the twisted convolution

t(g)�φ(w) =

∫
(g−1)W

χc(g)(u)φ(w − u)χ

(
1

2
〈u,w〉

)
dμW(u), (w ∈ W, φ ∈ S(W)) ,

is still a Schwartz function and the map:

S(W) � φ → t(g)�φ ∈ S(W)

is well-defined and continuous (see [1, Proposition 4.11]). Similarly, T(g̃)�φ ∈ S(W)

for every g̃ ∈ S̃p(W) and φ ∈ S(W). In particular, it makes sense to consider

T(g̃1)� (T(g̃2)�φ) for every g̃1, g̃2 ∈ S̃p(W) and φ ∈ S(W) and one can prove that
T(g̃1)�(T(g̃2)�φ) = T(g̃1g̃2)�φ.

Let W = X⊕Y be a complete polarization of the space W and we denote by dx,
dy the Lebesgue measures on X and Y respectively such that dμW = dxdy. Using
the Weyl transform K , we have a natural isomorphism between the spaces S(W)
and S(X×X) given by

K : S(W)�φ → K (φ)(x1, x2)=

∫
Y

φ(x1−x2+y)χ

(
1

2
〈y, x1 + x2〉

)
dy∈S(X×X),

which extends to an isomorphism on the corresponding spaces of distributions.
Similarly, every tempered distribution on X×X can be identified to an element
of Hom(S(X), S∗(X)) using the Schwartz Kernel Theorem (see [1, Equation 146]).

The corresponding isomorphism will be denoted by Op and let ω : S̃p(W) →
Hom(S(X), S∗(X)) be the map given by

ω = Op ◦K ◦ T .

As proved in [1, Section 4], we get that for every g̃ ∈ S̃p(W) and v ∈ S(X),

ω(g̃)v ∈ S(X) and that ω(g̃h̃) = ω(g̃) ◦ ω(h̃) for every g̃, h̃ ∈ S̃p(W). The operator
ω(g̃) ∈ Hom(S(X), S(X)) can be extended to L2(X) by

ω(g̃)φ = lim
‖φ−v‖2→0

v∈S(X)

ω(g̃)v,
(
φ ∈ L2(X)

)
.

Theorem 2.2. For every φ ∈ L2(X), the map

S̃p(W) � g̃ �→ ω(g̃)φ ∈ L2(X)

is well-defined and continuous. Moreover, ω(g̃) ∈ U(L2(X)), i.e. ω is a faithful

unitary representation of S̃p(W), and for every ψ ∈ C ∞
c (S̃p(W)), we get:∫

S̃p(W)

Θ(g̃)ψ(g̃)dg̃ = tr

∫
S̃p(W)

ψ(g̃)ω(g̃)dg̃,

where dg̃ is a Haar measure on S̃p(W).
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Remark 2.3.

(1) Let Spc(W) be the subset of Sp(W) given by

Spc(W) = {g ∈ Sp(W), det(g − 1) �= 0} .

This is the domain of the Cayley transform. We will denote by S̃p
c
(W) the

preimage of Spc(W) in S̃p(W).
For every g ∈ Spc(W), c(g) ∈ sp(W). We denote by spc(W) the subspace

of sp(W) defined by c(Spc(W)). Obviously, c2(g) = g. It defines a bijective

map c : spc(W) → Spc(W). Fix an element −̃1 in π−1({−1}). In particular,

there exists a unique map c̃ : spc(W) → S̃p
c
(W) such that c = π ◦ c̃ and

c̃(0) = −̃1.

Moreover, for every ψ ∈ Sp(W) whose support is included in S̃p
c
(W),

we get: ∫
S̃p(W)

ψ(g̃)dg̃ =

∫
sp(W)

ψ(c̃(X))jsp(W)(X)dX,

where jsp(W)(X) = | det(1 − X)|r, where r = 2 dimR(sp(W))
dimR(W) (see [31, Sec-

tion 3]).

(2) For every ψ ∈ C ∞
c (S̃p(W)), we can consider the following distribution on

W ∫
S̃p(W)

ψ(g̃) T(g̃)dg̃.

This distribution is in fact given by a Schwartz function. Indeed, let’s first

assume that the support of ψ is included in S̃p
c
(W). For every φ ∈ S(W),

we get:(∫
S̃p(W )

ψ(g̃) T(g̃)dg̃

)
(φ) =

∫
S̃p(W )

ψ(g̃) T(g̃)φdg̃

=

∫
S̃p(W)

ψ(g̃)

∫
W

Θ(g̃)χc(g)(w)φ(w)dwdg̃

=

∫
sp(W)

∫
W

ψ(c̃(X))Θ(c̃(X))χX(w)jsp(W)(X)φ(w)dwdX

=

∫
W

(∫
sp(W)

Φψ(X)χ(τsp(W)(w)(X))dX

)
φ(w)dw

=

∫
W

F (Φψ) ◦ τsp(W)(w)φ(w)dw,

where Φψ(X) = ψ(c̃(X))Θ(c̃(X))jsp(W)(X), X ∈ sp(W), is smooth and
compactly supported function on sp(W) such that supp(Φψ) ⊆ spc(W),
F (Φψ) is the Fourier transform of Φψ and τsp(W) : W → sp(W)∗ is the
moment map defined by

τsp(W)(w)(X) = 〈X(w), w〉, (w ∈ W, X ∈ sp(W)).

In particular, F (Φψ) ◦ τsp(W) is a Schwarz function on W .
We can remove the assumption on the support of ψ by using the previous

result. Indeed, the Zariski topology on Sp(W ) is noetherian. In particular,
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as explained in [1, Equation 141], there exists g1, . . . , gm ∈ Sp(W )c such
that

S̃p(W ) =

m⋃
i=1

g̃iS̃p
c
(W ).

Let ψ ∈ C ∞
c (S̃p(W )). We can find functions ψ1, . . . , ψm ∈ C∞

c (S̃p
c
(W ))

such that in an open neighbourhood of supp(ψ) we get

1 =
m∑
i=1

ψi(g̃i
−1g̃)

for every g̃ ∈ S̃p(W ). Then∫
S̃p(W )

ψ(g̃) T(g̃)dg̃ =

m∑
i=1

∫
S̃p(W )

ψi(g̃i
−1g̃)ψ(g̃) T(g̃)dg̃

=
m∑
i=1

∫
S̃p(W )

ψi(g̃)ψ(g̃ig̃) T(g̃ig̃)dg̃ =
m∑
i=1

T(g̃i)�

(∫
S̃p(W )

ψi(g̃)ψ(g̃ig̃) T(g̃)dg̃

)
.

The result follows from Remark 2.1.

3. Character theory and Howe’s correspondence

Let G be a real connected reductive Lie group, g = Lie(G) its Lie algebra and
gC = g ⊗R C its complexification. We denote by U (gC) the enveloping algebra
of g (see [22, Chapter 3.1]), Z(U (gC)) its center and D(G) the set of differential
operators on G and by DG(G) the set of left-invariant differential operators on G.

As explained in [14, Chapter 2], DG(G) is isomorphic to U (gC). Let D
G
G(G) be the

set of bi-invariant differential operators on G (which is isomorphic to Z(U (gC)),
see [14]), D ′(G) be the set of distributions on G and D ′(G)G the set of G-invariant
distributions.

Definition 3.1. We say that T ∈ D ′(G) is an eigendistribution if there exists

χT : DG
G(G) → C a homomorphism of algebras such that D(T ) = χT (D)T for every

D ∈ DG
G(G).

We will denote by Eig(G) the set of eigendistributions on G.

Theorem 3.2 (Harish-Chandra, [9]). For every G-invariant eigendistribution T
on G, there exists a locally integrable function fT on G, analytic on Greg, such that
T = TfT , i.e. for every function ψ ∈ C∞

c (G),

T (ψ) =

∫
G

fT (g)ψ(g)dg,

where dg is a Haar measure on G.

Let (Π,H ) be an irreducible quasi-simple representation (see [10, Section 10]).
As explained in [9], the map

ΘΠ : C∞
c (G) � ψ → tr(Π(ψ)) ∈ C

is well-defined and is a distribution (in the sense of Laurent Schwartz). In particu-
lar, by assumption on Π, it follows from Theorem 3.2 that there exists ΘΠ ∈ L 1

loc(G)
such that

ΘΠ(ψ) =

∫
G

ΘΠ(g)ψ(g)dg

for every ψ ∈ C ∞
c (G). The function ΘΠ is called the character of Π.
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We now recall Howe’s duality theorem and how it can be studied through char-
acters. Let W be a finite dimensional vector space over R endowed with a non-
degenerate, skew-symmetric, bilinear form 〈·, ·〉. As in Section 2, we denote by

Sp(W) the group of isometries of (W, 〈·, ·〉), by (S̃p(W ), π) the metaplectic cover of
Sp(W) (see Equation (1)), by (ω,H ) the corresponding Weil representation (see
Theorem 2.2) and by (ω∞,H ∞) the corresponding smooth representation (see
[37, Chapter 0]).

A dual pair in Sp(W) is a pair of subgroups (G,G′) of Sp(W) which are mutually
centralizer in Sp(W ). The dual pair is called irreducible if we cannot find any
orthogonal decomposition W = W1 ⊕W2 where both spaces W1 and W2 are G ·G′-
invariant, and called reductive if the actions of G and G′ on W are both reductive.
The set of irreducible reductive dual pairs in Sp(W) had been classified by Howe
in [17].

Remark 3.3. In this paper, we will focus our attention on a dual pair consisting
of two unitary groups. More precisely, let V and V′ be two complex vector spaces
endowed with a hermitian form (·, ·) and skew-hermitian form (·, ·)′ respectively.
We denote by U(V) and U(V′) the corresponding group of isometries and by W
the complex vector space given by W = V⊗C V′. The space W can naturally be
seen as a real vector space, and to avoid any confusion, we will denote by WR

the corresponding real vector space. The skew-hermitian form b = (·, ·) ⊗ (·, ·)′
on W defines a skew-symmetric form 〈·, ·〉 on WR by 〈·, ·〉 = Im(b). In particular,
(U(V),U(V′)) is a dual pair in Sp(WR, 〈·, ·〉).

If we denote by (p, q) and (r, s) the signatures of (·, ·) and (·, ·)′ respectively, we
get that (U(p, q),U(r, s)) form a dual pair in Sp(2(p+ q)(r + s),R).

Notation 3.4. For a subgroup H of Sp(W), we denote by H̃ = π−1(H) the preimage

of H in S̃p(W) and let R(H̃, ω) be the set of equivalence classes of irreducible

admissible representations of G̃ which are infinitesimally equivalent to a quotient

of H ∞ by a closed ω∞(H̃)-invariant subspace.

Theorem 3.5 (R. Howe, [19]). For every reductive dual pair (G,G′) of Sp(W), we

get a bijection between R(G̃, ω) and R(G̃′, ω), whose graph is R(G̃ · G̃′, ω).

More precisely, if Π ∈ R(G̃, ω), we denote by N(Π) the intersection of all the

closed G̃-invariant subspaces N such that Π ≈ H ∞/N . Then, the space H (Π) =

H ∞/N(Π) is a G̃ · G̃′-module; more precisely, H (Π) = Π⊗Π′
1, where Π′

1 is a G̃′-
module, not irreducible in general, but Howe’s duality theorem says that there exists

a unique irreducible quotient Π′ of Π′
1 with Π′ ∈ R(G̃′, ω) and Π⊗Π′ ∈ R(G̃·G̃′, ω).

We will denote by

(3) θ : R(G̃, ω) → R(G̃′, ω)

the corresponding bijection.

Remark 3.6. If G is compact, the situation turns out to be slightly easier. The

action of G̃ on H ∞ can be decomposed as

H ∞ =
⊕

(Π,HΠ)∈R(G̃,ω)

H (Π),
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where H (Π) is the closure of
{
T (HΠ), T ∈ HomG̃(HΠ,H ∞) �= {0}

}
and R(G̃, ω)

is the set of representations (Π,VΠ) of G̃ such that HomG̃(VΠ, ω
∞) �= {0}. Obvi-

ously, G̃′ acts on H (Π) and we get that H (Π) = Π⊗Π′ where Π′ is an irreducible

unitary representation of G̃′.

4. Cauchy Harish-Chandra integral and transfer

of invariant eigendistributions

We start this section by recalling the construction of the Cauchy–Harish-Chandra
integral introduced in [33, Section 2].

Let (G,G′) be an irreducible reductive dual pair in Sp(W) and T : S̃p(W) →
S∗(W) the map defined in Equation (2). Let H1, . . . ,Hn be a maximal set of
non-conjugate Cartan subgroups of G and let Hi = TiAi be the decomposition
of Hi as in [38, Section 2.3.6], where Ti is maximal compact in Hi. For every
1 ≤ i ≤ n, we denote by A′

i the subgroup of Sp(W) given by A′
i = CSp(W)(Ai)

and let A′′
i = CSp(W)(A

′
i). As recalled in [33, Section 1], there exists an open

and dense subset WA
′′
i
⊆ W, which is A

′′

i -invariant and such that A
′′

i \WA
′′
i
is a

manifold, endowed with a measure dw such that for every φ ∈ C ∞
c (W) such that

supp(φ) ⊆ WA
′′
i
, ∫

W
A
′′
i

φ(w)dw =

∫
A

′′
i \W

A
′′
i

∫
A

′′
i

φ(aw)dadw.

For every ψ ∈ C ∞
c (Ã

′
i), we denote by Chc(ψ) the following integral:

Chc(ψ) =

∫
A

′′
i \W

A
′′
i

T(ψ)(w)dw.

According to Remark 2.3, the previous integral is well-defined and as proved in

[33, Lemma 2.9], the corresponding map Chc : C ∞
c (Ã

′
i) → C defines a distribution

on Ã
′
i.

Remark 4.1. We say few words about the dual pair (A′
i,A

′′
i ) and the space WA′′

i
.

Let V0,i be the subspace of V on which Ai acts trivially and V1,i = V⊥
0,i. The

restriction of (·, ·) to V1,i is non-degenerate and even dimensional. In particular,
there exists a complete polarization of V1,i of the form V1,i = Xi ⊕Yi, where both
spaces Xi and Yi are Hi-invariant.

By looking at the action of Ai on V1,i, we get:

Xi = X1
i ⊕ . . .⊕Xk

i , Yi = Y1
i ⊕ . . .⊕Yk

i ,

where all the spaces Xj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ k, are Ai-invariant and mutually

non-equivalent. In particular,

W = Hom(V,V′) = Hom(V0,i,V
′)⊕Hom(V1,i,V

′)

= Hom(V0,i,V
′)⊕

k⊕
j=1

(
Hom(Xj

i ,V
′)⊕Hom(Yj

i ,V
′)
)
.
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To simplify the notations, we denote by Wi
j the subspace of W given by

Hom(Xj
i ,V

′)⊕Hom(Yj
i ,V

′) and W0,i = Hom(V0,i,V
′). One can easily check that:

A′
i = Sp(W0,i)×GL(Hom(X1

i ,V
′)R)× . . .×GL(Hom(Xk

i ,V
′)R)

and

A′′
i = O(1)×GL(1,R)× . . .×GL(1,R).

Moreover,

WA′′
i
= (W0,i \{0})× W̃1,i × . . .× W̃n,i,

where W̃j,i =
{
(x, y) ∈ Hom(Xj

i ,V
′)⊕Hom(Yj

i ,V
′), x �= 0, y �= 0

}
, 1 ≤ j ≤ k.

For every h̃i ∈ H̃i, we denote by τh̃i
the map:

τh̃i
: G̃′ � g̃′ → h̃ig̃

′ ∈ Ã
′
i.

As proved in [33], for every h̃i ∈ H̃i

reg
, the pull-back τ∗

h̃i
(Chc) of Chc via τh̃i

(see

[16, Theorem 8.2.4]) is a well-defined distribution on G̃′.

For every h̃i ∈ H̃i

reg
, we denote by Chch̃i

:= τ∗
h̃i
(Chc) the corresponding distri-

bution on G̃′.

Notation 4.2. For every reductive group G, we denote by I(G) the space of orbital
integrals on G as in [4, Section 3], endowed with a natural topology defined in
[4, Section 3.3]. We denote by JG the map JG : C∞

c (G) → C ∞(Greg)G given
as follows: for every γ ∈ Greg, there exists a unique, up to conjugation, Cartan
subgroup H(γ) of G such that γ ∈ H(γ), and for every ψ ∈ C∞

c (G), we define
JG(ψ)(γ) by:

JG(ψ)(γ) =
∣∣det(Id−Ad(γ−1))g/h(γ)

∣∣ 12 ∫
G /H(γ)

ψ(gγg−1)dg.

As proved in [4, Theorem 3.2.1], the map

JG : C ∞
c (G) → I(G)

is well-defined and surjective. We denote by I(G)∗ the set of continuous linear forms
on I(G) and let JtG : I(G)∗ → D ′(G) be the transpose of JG. In [4, Theorem 3.2.1],
Bouaziz proved that the map

JtG : I(G)∗ → D ′(G)G

is bijective.
We now apply these results to construct a map Chc∗, transferring the invariant

distributions for a given dual pair (G,G′). Let (G,G′) be an irreducible dual pair

in Sp(W ) such that rk(G) ≤ rk(G′). For every function ψ ∈ C ∞
c (G̃′), we denote by

C̃hc(ψ) the G̃-invariant function on G̃
reg

given by:

C̃hc(ψ)(h̃i) = Chch̃i
(ψ), (h̃i ∈ H̃i

reg
).

As proved in [3], the corresponding map

C̃hc : C∞
c (G̃′) → I(G̃)
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is well-defined and continuous and factors through I(G̃′), i.e.

C̃hc : I(G̃′) → I(G̃)

and the corresponding map is continuous. In particular, we get a map

Chc∗ : D ′(G̃)G̃ � T → Jt
G̃′ ◦C̃hc

t
◦ (Jt

G̃
)−1(T ) ∈ D ′(G̃′)G̃

′
.

Theorem 4.3. The map Chc∗ sends Eig(G̃)G̃ into Eig(G̃′)G̃
′
. Moreover, if Θ is

a distribution on G̃ given by a locally integrable function Θ on G̃, we get for every

ψ ∈ C∞
c (G̃′) that:

(4) Chc∗(Θ)(ψ)=

n∑
i=1

1

|W (Hi)|

∫
H̃i

reg
Θ(h̃i)| det(1−Ad(h̃−1

i ))g/hi
|Chc(ψ)(h̃i)dh̃i,

where H1, . . . ,Hn is a maximal set of non-conjugate Cartan subgroups of G.

In [33], T. Przebinda conjectured that the correspondence of characters in the
theta correspondence should be obtained via Chc∗. More precisely,

Conjecture 4.4. Let G1 and G′
1 be the Zariski identity components of G and

G′ respectively. Let Π ∈ R(G̃, ω) satisfying ΘΠ|
G̃\G̃1

= 0 if G = O(V), where

V is an even dimensional vector space over R or C. Then, up to a constant,

Chc∗(ΘΠ) = ΘΠ′
1
on G̃′

1.

Remark 4.5. The conjecture is known to be true in few cases:

(1) G compact,

(2) (G,G′) in the stable range and Π a unitary representation of G̃ (see [34]),
(3) (G,G′) = (U(p, q),U(r, s)), with p + q = r + s and Π a discrete series

representation of G̃ (see [28]).

5. Explicit formulas of Chc for unitary groups

In this section, we quickly explain how to compute explicitly the Cauchy–Harish-
Chandra integral on the different Cartan subgroups. Because our paper will only
concern characters of some unitary groups, we will adapt the results of [3] and [2]
in this context, but similar results can be obtained for other dual pairs.

Let V = Cp+q and V′ = Cr+s be two complex vector spaces endowed with non-
degenerate bilinear forms (·, ·) and (·, ·)′ respectively, with (·, ·) hermitian and (·, ·)′
skew-hermitian, and let (p, q) (resp. (r, s)) be the signature of (·, ·) (resp. (·, ·)′).
We assume that p + q ≤ r + s. Let BV = {f1, . . . , fn}, n = p + q (resp. BV′ =
{f ′

1, . . . , f
′
n′}, n′ = r+s) be a basis of V (resp. V′) such that Mat ((·, ·) ,BV) = Idp,q

(resp. Mat
(
(·, ·)′ ,BV′

)
= i Idr,s). Let G and G′ be the corresponding groups of

isometries, i.e.

G = G(V, (·, ·)) ≈
{
g ∈ GL(n,C), gt Idp,q g = Idp,q

}
,

G′ = G(V′, (·, ·)′) ≈
{
g ∈ GL(n′,C), gt Idr,s g = Idr,s

}
,

where ≈ is a Lie group isomorphism.
Let K = U(p)×U(q) and K′ = U(r)×U(s) be the maximal compact subgroups

of G and G′ respectively and let H and H′ be the diagonal Cartan subgroups of
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K and K′ respectively. By looking at the action of H on the space V, we get a
decomposition of V of the form:

V = V1 ⊕ . . .⊕Vn,

where the spaces Va given by Va = Cifa are irreducible H-modules. We denote by
J the element of h such that J = i IdV and let Jj = iEj,j . Similarly, we write

V′ = V′
1 ⊕ . . .⊕V′

n′ ,

with V′
b = Cif ′

b, J
′ the element of h′ given by J′ = i IdV′ and J′j = iEj,j . Let

W = HomC(V
′,V) endowed with the symplectic form 〈·, ·〉 given by:

〈w1, w2〉 = trC/R(w
∗
2w1), (w1, w2 ∈ W),

where w∗
2 is the element of HomC(V,V′) satisfying:

(w∗
2(v), v

′)
′
= (v, w2(v

′)) , (v ∈ V, v′ ∈ V′).

The space W can be seen as a complex vector space by

iw = J ◦w, (w ∈ W).

We define a double cover G̃LC(W) of the complex group GLC(W) by:

G̃LC(W) =
{
g̃ = (g, ξ) ∈ GLC(W)× C×, ξ2 = det(g)

}
.

Because p+ q ≤ r+ s, we get a natural embedding of hC into h′
C
and we denote by

Z′ = G′h the centralizer of h in G′.

Notation 5.1. We denote by Δ (resp. Δ(k)) the root system corresponding to
(gC, hC) (resp. (kC, hC)), by Ψ (resp. Ψ(k)) a system of positive roots of Δ (resp.
Δ(k)) and let Φ = −Ψ (resp. Φ(k) = −Ψ(k)) the set of negative roots.

Let ei be the linear form on hC = Cp+q given by ei(λ1, . . . , λp+q) = λi. As
explained in [22, Chapter 2], we know that:

Δ = {±(ei − ej), 1 ≤ i < j ≤ p+ q} , Ψ = {ei − ej , 1 ≤ i < j ≤ p+ q} ,
and

Δ(k) = {±(ei − ej), 1 ≤ i < j ≤ p} ∪ {±(ei − ej), p+ 1 ≤ i < j ≤ p+ q} ,
Ψ(k) = Ψ ∩Δ(k).

We define Δ′,Δ′(k),Ψ′,Ψ′(k),Φ′,Φ′(k) similarly and denote by e′i, 1 ≤ i ≤ r+s, the
linear form on h′

C
= Cr+s given by ei(λ1, . . . , λr+s) = λi.

Let H′
C be the complexification of H′ in GLC(W). In particular, H′

C is isomorphic
to

h′C/

⎧⎨⎩
n′∑
j=1

2πxj Jj , xj ∈ Z

⎫⎬⎭ .

We denote by Ȟ
′
C the connected two-fold cover of H′

C isomorphic to

(5) h
′
C/

⎧⎨⎩
n′∑
j=1

2πxj J
′
j ,

n′∑
j=1

xj ∈ 2Z, xj ∈ Z

⎫⎬⎭ .

We will denote by p : Ȟ
′
C → H′

C the covering map. One can easily check that

ρ′ = 1
2

∑
α∈Ψ′ α is analytic integral on Ȟ

′
C. As explained in [33, Section 2], we
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construct a map p̌ : Ȟ
′
C → H̃

′
C which is bijective (but not an isomorphism of

covering of H′
C in general).

As explained in Appendix B, every Cartan subgroup of G′ can be parametrized
by a subset S ⊆ Ψ′ st

n consisting of non-compact strongly orthogonal roots. We
denote by H′(S) the corresponding Cartan subgroup and by H′

S the subgroup of H′
C

as in Appendix B. Let S ⊆ Ψ′ st
n and Ȟ

′
S the preimage of the Cartan subgroup H′

S

in Ȟ
′
C (see Appendix B). For every ϕ ∈ C∞

c (G̃′), we denote by HSϕ the function

of Ȟ
′
S defined, for ȟ′ ∈ Ȟ

′
S, by:

HSϕ(ȟ
′)

= εΨ′
S,R

(ȟ′)ȟ′ 12
∑

α∈Ψ′ α
∏
α∈Ψ′

(1−ȟ′−α)

∫
G′ /H′(S)

ϕ(g′c(S)p̌(ȟ′)c(S)−1g′−1)dg′ H′(S),

where Ψ′
S,R is the subset of Ψ′ consisting of real roots for H′

S and εΨ′
S,R

is the

function defined on Ȟ
′ reg
S by

εΨ′
S,R

(ȟ′) = sign

⎛⎝ ∏
α∈Ψ′

S,R

(1− ȟ′−α)

⎞⎠ .

We denote by ΔΨ′(ȟ′) the quantity

ΔΨ′(ȟ′) = ȟ′ 12
∑

α∈Ψ′ α
∏
α∈Ψ′

(1− ȟ′−α), (ȟ′ ∈ Ȟ
′
S),

and by ΔΦ′ the function on Ȟ
′ reg
S given by ΔΦ′(ȟ′) = ȟ′ 12

∑
α∈Φ′ α

∏
α∈Φ′(1− ȟ′−α).

Remark 5.2. For every ȟ′ ∈ Ȟ
′ reg
S , ΔΦ′(ȟ′)ΔΨ′(ȟ′) =

∏
α∈Ψ′+(1− ȟ′α)(1− ȟ′−α) =∏

α∈Ψ′+(1− ȟ′α)(1− ȟ′α). We denote by |ΔG′(ȟ′)|2 = ΔΦ′(ȟ′)ΔΨ′(ȟ′).

Proposition 5.3 (Weyl’s integration formula). For every ϕ ∈ C ∞
c (G̃′), we get:

(6)

∫
G̃′

ϕ(g̃′)dg̃′ =
∑

S∈Ψ′ st
n

mS

∫
Ȟ

′
S

εΨ′
S,R

(ȟ′)ΔΦ′(ȟ′)HSϕ(ȟ
′)dȟ′,

where mS are complex numbers. Here, the subsets S of Ψ′ st
n are defined up to

equivalence (see Remark B.2).

Proof. See [3, Section 2, Page 3830]. �

Remark 5.4. One can easily see that for every S ⊆ Ψ′ st
n and ϕ ∈ C ∞

c (G̃′) such that

supp(ϕ) ⊆ G̃′ · H̃′(S)reg, Equation (6) can be written as follows:∫
G̃′

ϕ(g̃′)dg̃′ = mS

∫
Ȟ

′
S

εΨ′
S,R

(ȟ′)ΔΦ′(ȟ′)HSϕ(ȟ
′)dȟ′.

Let Wh be the set of elements of W commuting with h.

Remark 5.5. One can easily check that the space Wh is given by

Wh =

n∑
i=1

HomC(V
′
i,Vi).
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For every S ⊆ Ψ′ st
n , we denote by S the subset of {1, . . . , r + s} given by

S =
{
j, ∃α ∈ S such that α(J′j) �= 0

}
.

Let σ ∈ Sn′ and S ⊆ Ψ′ st
n , we denote by Γσ,S the subset of h′ defined as

Γσ,S =
{
Y ∈ h

′, 〈Y ·, ·〉σWh ∩
∑

j /∈S Hom(V′
j ,V) > 0

}
,

and let Eσ,S = exp(iΓσ,S) be the corresponding subset of H′
C, where exp : h′

C
→ H′

C

is the exponential map.

Theorem 5.6. For every ȟ ∈ Ȟ = Ȟ∅ and ϕ ∈ C (G̃′), we get:

det
k
2 (ȟ)WhΔΨ(ȟ)

∫
G̃′

Θ(p̌(ȟ)g̃′)ϕ(g̃′)dg̃′

=
∑

σ∈W (H′
C
)

∑
S⊆Ψ′ st

n

MS(σ) lim
r∈Eσ,S

r→1

∫
Ȟ

′
S

det−
k
2 (σ−1(ȟ′))WhΔΦ′(Z′)(σ

−1(ȟ′))

det(1− p(ȟ)rp(ȟ′))σWh

εΦ′
S,R

(ȟ′)HS(ϕ)(ȟ
′)dȟ′,

where MS(σ) =
(−1)uαε(σ)mS

|W (Z′
C,H

′
C)|

, u is a positive integer defined in [3, Section 2],

α ∈ {1,−1} depends only on the choice of the positive roots Ψ and Ψ′ (see [3,
Proposition 2.1]) and k ∈ {0,−1} is defined by

k =

{
−1 if n′ − n ∈ 2Z

0 otherwise
.

Theorem 5.6 tells us how to compute Chch̃ for an element h̃ in the compact

Cartan H̃ = H̃(∅). Using [2], it follows that the value of Chc on the other Cartan
subgroups can be computed explicitly by knowing how to do it for the compact
Cartan.

From now on, we assume that p ≤ q, r ≤ s and p ≤ r.

Notation 5.7. For every t ∈ [|1, p|], we denote by St and S′t the subsets of Ψst
n and

Ψ′ st
n respectively given by

St = {e1 − ep+1, . . . , et − ep+t} , S′t =
{
e′1 − e′r+1, . . . , e

′
t − e′r+t

}
,

where the linear forms ek, e
′
h have been introduced in Notation 5.1.

For every t ∈ [|0, p|], we denote by H(St) and H′(St) the Cartan subgroups of G
and G′ respectively and let H(St) = T(St) A(St) (resp. H′(St) = T′(St) A

′(St)) be
the decompositions of H(St) (resp. H

′(St)) as in [38, Section 2.3.6].
As in Remark 4.1, we denote by V0,t the subspace of V on which A(St) acts

trivially, by V1,t the orthogonal complement of V0,t in V and by V1,t = Xt ⊕Yt

a complete polarization of V1,t. Because p ≤ r, we have a natural embedding of

V1,t into V′ such that Xt ⊕Yt is a complete polarization with respect to (·, ·)′.
We denote by Ut the orthogonal complement of V1,t in V′; in particular, we get a
natural embedding:

GL(Xt)×G(Ut) ⊆ G′ = U(r, s).
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We denote by T1(St) the maximal subgroup of T(St) which acts trivially on V0,t

and let T2(St) be the subgroup of T(St) such that T(St) = T1(St) × T2(St) with
T2(St) ⊆ G(V0,t). In particular,

(7) H(St) = T1(St)×A(St)× T2(St).

Similarly, we get a decomposition of H′(S′t) of the form:

H′(S′t) = T′
1(S

′
t)×A′(S′t)× T′

2(S
′
t).

Remark 5.8. One can easily see that for every 0 ≤ j < i ≤ r, we get:

H′(S′i) = T′
1(S

′
j)×A′(S′j)×H′(S̃

′
i−j),

where S̃
′
i−j = S′i \ S′j and H′(S̃

′
i−j) is the Cartan subgroup of U(r − j, s− j) whose

split part has dimension i− j. In particular,

(8) H′
S′
i
= T′

1,S′
j
×A′

S′
j
×H′

S̃
′
i−j

.

Let η(St) and η′(S′t) be the nilpotent Lie subalgebras of u(p, q) and u(r, s) re-
spectively given by

η(S′t) = Hom(Xt,V0,t)⊕Hom(Xt,Yt) ∩ u(p, q),

η′(S′t) = Hom(Ut,Xt)⊕Hom(Xt,Yt) ∩ u(r, s).

We will denote by W0,t the subspace of W defined by Hom(Ut,V0,t) and by P(St)
and P′(S′t) the parabolic subgroups of G and G′ respectively whose Levi factors
L(St) and L′(S′t) are given by

L(St) = GL(Xt)×G(V0,t), L′(S′t) = GL(Xt)×G(Ut),

and by N(St) := exp(η(St)) and N′(S′t) := exp(η′(S′t)) the unipotent radicals of
P(St) and P′(S′t) respectively.

Remark 5.9. One can easily check that the forms on V0,t and Ut have signature
(p− t, q − t) and (r − t, s− t) respectively.

As proved in [2, Theorem 0.9], for every h̃ = t̃1ãt̃2 ∈ H̃(St)
reg (using the decom-

position of H(St) given in Equation (7)) and ϕ ∈ C ∞
c (G̃′), we get:

(9) | det(Ad(h̃)− Id)η(St)|Chch̃(ϕ) = Ct dSt
(h̃)ε(t̃1ã)∫

GL(Xt)/T1(St)×A(St)

∫
G̃(Ut)

ε(t̃1ãỹ) ChcW0,t(t̃2ỹ) d
′
St
(gt̃1ãg

−1ỹ)

ϕK̃′

Ñ′(St)
(gt̃1ãg

−1ỹ)dỹdg,

where Ct is the constant defined given by

(10) Ct =

(
2t(2(p+q+r+s)−4t+1)

(r + s)t

)(
r + s− 2t

r + s

) p+q−2t
2

1

μ(K′ ∩L′(S′t))2
t(r+s−2t)

,

ε is the character defined in [2, Lemma 6.3], dSt
: L̃(St) → R and d′S′

t
: L̃′(S′t) → R

are given by

dSt
(l̃) = | det(Ad(l̃)η(St))|

1
2 , d′S′

t
(l̃′) = | det(Ad(l̃′)η′(St))|

1
2 ,(

l̃ ∈ L̃(St), l̃
′ ∈ L̃′(S′t)

)
,
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and ϕK̃′

Ñ′(S′
t)
is the Harish-Chandra transform of ϕ, i.e. the function on L̃′(S′t) defined

by:

ϕK̃′

Ñ′(S′
t)
(l̃′) =

∫
Ñ′(S′

t)

∫
K̃′

ϕ(k̃l̃′ñk̃−1)dk̃dñ,
(
l̃′ ∈ L̃′(S′t)

)
.

Let’s explain the method we will use in the next section to get character formulas
of representations of U(n, n+1) by using the Cauchy–Harish-Chandra in the stable
range.

Let (G,G′) = (U(p),U(r, s)) be a dual pair in Sp(2p(r + s),R). To avoid any
confusions, we will denote by ωp

r,s the metaplectic representation of Sp(2p(r+s),R)

and by θpr,s : R(Ũ(p), ωp
r,s) → R(Ũ(r, s), ωp

r,s) the map defined in Equation (3).

Let Π ∈ R(Ũ(p), ωp
r,s). In this case, as explained in Remark 3.6, we get that Π′ =

Π′
1 and the corresponding representation Π′ is an irreducible unitary representation

of Ũ(r, s) (and Π′ ∈ R(Ũ(r, s)), ωp
r,s). In particular, Theorem 5.6 tells us how to

compute ΘΠ′ on every Cartan subgroup of Ũ(r, s) (see Appendix A for p = 1).
For every n ≥ 0, we denote by Gn the unitary group corresponding to a her-

mitian form of signature (n, n + p), i.e. Gn = U(n, p + n), by ωr,s
n,n+p the meta-

plectic representation of S̃p(Wn), where Wn = (Cr+s ⊗C C2n+p)R and by θr,sn,n+p :

R(Ũ(r, s), ωr,s
n,n+p) → R(Ũ(n, n+ p), ωr,s

n,n+p) the map as in (3).

Remark 5.10. As explained in [29, Section 1.2], for the dual pair (U(a, b),U(c, d))

in Sp(2(a+ b)(c+d),R), the double cover Ũ(a, b) ⊆ S̃p(2(a+ b)(c+d),R) of U(a, b)

is isomorphic to the detc−d-cover, i.e.{
(g, ξ) ∈ U(a, b)× C∗, ξ2 = det(g)c−d

}
.

In particular, it follows that the double covers Ũ(p, q) ⊆ S̃p(2p(r + s),R) and

Ũ(p, q) ⊆ S̃p(Wn) are isomorphic.

Using Kudla’s persistence principle (see [23] (p-adic case) or [36, Page 944], where
the authors mentioned, without proof, that Kudla’s persistence principle in the real
case is still valid and follows easily from their results), we know that the represen-

tation Π′ ∈ R(Ũ(r, s), ωp
r,s) satisfies θ

n,p+n
r,s (Π′) �= {0}, i.e. Π′ ∈ R(Ũ(r, s), ωr,s

n,n+p).

We denote by Πn
1 the corresponding representation of G̃n as in Section 3, by

Πn ∈ R(Ũ(n, n+ p), ωr,s
n,n+p) its unique irreducible quotient, and by ΘΠn

1
and ΘΠn

the characters of Πn
1 and Πn respectively.

Using Theorems 3.2 and 4.3, we know that the G̃n-invariant eigendistribution

Θ′
n,Π′ := Chc∗(ΘΠ′) is given by a locally integrable function Θ′

n,Π′ on G̃n, analytic

on G̃n

reg
. Note that an explicit value of Θ′

n,Π′ on every Cartan subgroup of G̃n can

be obtained using Equation (4), Theorem 5.6 and Equation (5).
According to [25], if n ≥ r + s, we get that Πn

1 = Πn because Π′ is unitary and
by Remark 4.5, it follows that Θ′

n,Π′ = ΘΠn .
In the next section, we are going to make ΘΠn explicit for p = r = s = 1.

Remark 5.11. Let p = r = s = 1 and n ≥ 2. Since the pair (U(1, 1),U(n, n + 1))
is in the stable range, it follows from [24] that the representations Πn are unitary.
Moreover, one can see that the representations Πn are not in the discrete series of

G̃n by using Paul’s paper [30] on the first occurrence for unitary groups. Indeed,
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if we assume that Πn is a discrete series representation, its first non-trivial lift will
be Π′, which is impossible by using [30, Proposition 3.4].

Finally, as explained in Proposition D.6, the representations Πn are not highest
weight modules. In particular, the character ΘΠn of Πn cannot be obtained by
using Enright’s formula [8, Corollary 2.3].

6. Character formulas for some representations of U(n, n+ 1)

We first start with the dual pair (G,G′) = (U(1),U(1, 1)) in Sp(4,R). Because

the set of irreducible genuine representations of Ũ(1) is isomorphic to Z, the cor-

responding representation of R(Ũ(1), ω1
1,1) will be denoted by Πm,m ∈ Z and let

Π′
m be the corresponding representation of G̃′. Moreover, as explained in Section

5, for n ≥ 2, the lift Πn = θ1,1n,n+1(Π
′
m) of Π′

m on G̃n is non-zero and its character

ΘΠn is, up to a constant, equal to Chc∗(ΘΠ′
m
). In this section, we are going to give

an explicit formula for ΘΠn on every Cartan subgroup of G̃n.

Remark 6.1. We denote by g, g′ and gn the Lie algebras of G,G′ and Gn respectively.
The Lie algebra g′ is given by

g
′ =

{(
a b
b̄ d

)
, a, d ∈ iR, b ∈ C

}
= R

(
i 0
0 i

)
⊕ R

(
i 0
0 −i

)
⊕ R

(
0 1
1 0

)
⊕ R

(
0 i
−i 0

)
,

and the two Cartan subgroups of G′, up to conjugation, are of the form

(11) H′ = H′(S′0) = {diag(h1, h2), h1, h2 ∈ U(1)} ,

H′(S′1) = exp

(
R

(
i 0
0 i

)
⊕ R

(
0 1
1 0

))
=

{(
eiθ ch(X) sh(X)
sh(X) eiθ ch(X)

)
, θ,X ∈ R

}
,

where S′0 = {∅} and S′1 = {e1 − e2} (see Appendix B). We denote by (V′, (·, ·)) the
skew-hermitian form corresponding to G′ and by (Vn, (·, ·)n) the hermitian form

corresponding to Gn. Let BV′ = {f ′
1, f

′
2} be a basis of V′ such that MatB′ (·, ·)′ =

i Id1,1. We have the following complete polarization of V′

V′ = X′
1 ⊕Y′

1, X′
1 = C(f ′

1 + f ′
2), Y′

1 = C(f ′
1 − f ′

2),

where both X′
1 and Y′

1 are H′
2-invariant. Let BVn = {fn

1 , . . . , f
n
2n+1} be a basis of

Vn such that MatBVn
(·, ·)n = Idn,n+1.

We consider the embedding of V′ onto Vn sending f ′
1 onto fn

1 and f ′
2 onto fn

2n+1.

Obviously, X′
1 ⊕Y′

1 is a complete polarization of V′ ⊆ Vn with respect to (·, ·)n.
We consider the subspace U1 of Vn given by

Vn = V′ ⊕U1, U1 = V′⊥,

where V′⊥ is the orthogonal complement of V′ in Vn with respect to (·, ·)n.
Let G(U1) be the group of isometries corresponding to the hermitian space

(U1, (·, ·)n|U1
). Note that G(U1) ≈ U(n− 1, n).

As explained in Appendix B, for every 0 ≤ k ≤ n and Sk = {e1−e2n+1, . . . , ek−
e2n+2−k}, we denote by Hn(Sk) the Cartan subgroup of Gn whose split part is of
dimension k and by Hn,Sk

the subgroup of Hn(∅)C = {h = diag(h1, . . . , h2n+1), hi ∈
C} given by Hn,Sk

= c(Sk) Hn(Sk)c(Sk)
−1, where c(Sk) is the Cayley transform
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corresponding to Sk (see Appendix B). We denote by Pn(S1) the parabolic subgroup
of Gn whose Levi factor Ln(S1) is given by Ln(S1) = GL(X1)×G(U1).

Lemma 6.2. We get GL(X′
1) = H′(S′1).

Proof. The Lie algebra of GL(X′
1) is the set of matrices A =

(
a b
c d

)
of g′ such

that:

(12) A

(
1
1

)
=

(
α
α

)
, A

(
1
−1

)
=

(
β
−β

)
, (α, β ∈ C).

We first assume that A ∈ End(V′) satisfies the conditions of Equation (12). Then,
we get: {

a+ b = α,

c+ d = α,

{
a− b = β,

c− d = −β.

In particular, a+b = c+d and a−b = −c+d. Then, a = d and b = c. In particular,
if A ∈ g′, we get that a ∈ iR and b ∈ R. In particular,

GL(X′
1) = exp

(
R

(
i 0
0 i

)
⊕ R

(
0 1
1 0

))
= exp(h′(S′1)) = H′(S′1). �

In this section, we are going to determine the value of the character ΘΠn on the
n+ 1 different Cartan subgroups of Gn.

Notation 6.3. We denote by Δn the set of roots corresponding to (gn, hn), where
Hn = Hn(∅) is the compact Cartan of Gn, by Ψn a set of positive roots of Δn, by
Φn = −Ψn, by Ψst

n (n) = {eb − e2n+2−b, 1 ≤ b ≤ n} the corresponding set of strongly
orthogonal roots of Ψn and by Zn the subgroup of Gn defined by Zn = Gh

′

n , where
h′ = Lie(H′) is the Lie algebra of H′ seen as a subspace of hn.

We denote by η′(S′1) the subspace of g′ defined by Hom(X′
1,Y

′
1) ∩ g′ and by

ηn(S1) the subspace of gn = Lie(Gn) given by Hom(X′
1,U1)⊕Hom(X′

1,Y
′
1) ∩ gn.

Remark 6.4. As explained in Remark 5.8, we get for every k ≥ 1 that

Hn(Sk) = T1(S1)×A(S1)×Hn−1(S̃k−1),

where S̃k−1 = Sk \ {e1 − e2n+1} and Hn−1(S̃k−1) is a Cartan subgroup of G(U1)
whose split part is of dimension k − 1. As in Equation (8), we get:

(13) Hn,Sk
= T1,S1

×AS1
×Hn−1,S̃k−1

,

and we denote by Ť1,S1
, ǍS1

and Ȟn−1,S̃k−1
the preimages of T1,S1

,AS1
and

Hn−1,S̃k−1
respectively via the map p̌ : Ȟn,Sk

→ Hn,Sk
.

Using Equation (13), every element h ∈ Hn,Sk
can be written as h = tah1 (where,

by convention, t = a = Id and h = h1 if k = 0). In particular, if ȟ ∈ p−1({h}),
h = tah1 ∈ Hn,Sk

, there exists ť ∈ p−1({t}), ǎ ∈ p−1({a}) and ȟ1 ∈ p−1({h1}) such
that ȟ = ťǎȟ1. Note that the decomposition of ȟ as ȟ = ťǎȟ1 is not unique.
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Theorem 6.5. For every k ∈ [|0, n|] and ȟ = ťǎȟ1 ∈ Ȟn,Sk
as in Remark 6.4, we

get, up to a constant, that:

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1)

= A
∑

σ∈W (HC
n)

ε(σ)
ΔΦ(Zn)(σ

−1(ȟ))

ΔΦn
(ȟ)

lim
r∈Eσ,Sk

r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′))ΔΨ′(ȟ′)

det(1− p(ȟ′)rp(ȟ))σWh

dȟ′ + δk,0 B

ΘΠ′
m
(c(S1)p̌(ťǎ)c(S1)−1)|ΔΨ′(ťǎ)|2dS′

1
(c(S1)p̌(ťǎ)c(S1)

−1) d′S1
(c(Sk)p̌(ťǎȟ1)c(Sk)

−1)

ε((̃−1)c(S̃k−1)p̌(ȟ1)c(S̃k−1)−1)−1| det(Ad(c(S1)p̌(ťǎ)c(S1)−1)−1 − 1)|η′(S1)
|

D(c(Sk)p̌(ȟ)c(Sk)
−1)|ΔG(U1)(ȟ)|2

D1(c(Sk)p̌(ȟ)c(Sk)−1)|ΔGn(ȟ)|2
,

where δk,0 =

{
0 if k = 0

1 otherwise
, D and D1 are functions on H̃n(Sk), 1 ≤ k ≤ n,

given, for h̃ ∈ H̃n(St), by

D1(h̃) = | det(Id−Ad(h̃)−1)ln(S1)/hn(S1)|
1
2 , D(h̃) = | det(Id−Ad(h̃)−1)gn/hn(S1)|

1
2 ,

and where A and B are constants given by

A =
(−1)u

2(2n− 1)!
, B =

24n+3(2n− 1)mS̃k−1

2(2n+ 1)2mSk

.

Remark 6.6.

(1) In Theorem 6.5, the value of the character ΘΠn is given up to a con-
stant. As conjectured in [33] and proved in [34], this constant is equal

to χΠ′
m
(−̃1)Θ(−̃1), where χΠ′

m
is the central character of Π′

m and −̃1 is in

the preimage of −1 in S̃p(2(2n+ 1),R) (see [33, Page 301]).
(2) As mentioned in Remark 6.4, the decomposition of ȟ as ȟ = ťǎȟ1 is not

unique. But one can see that it doesn’t affect the formula given in Theorem
6.5. Assume for example that ȟ = ťǎȟ1 = ť1ǎȟ2, where p̌−1({t}) =

{
ť, ť1
}
,

p̌−1({h}) =
{
ȟ1, ȟ2

}
. One can see that

ΘΠ′
m
(c(S1)p̌(ťǎ)c(S1)

−1) = −ΘΠ′
m
(c(S1)p̌(ť1ǎ)c(S1)

−1),

ε((̃−1)c(S̃k−1)p̌(ȟ1)c(S̃k−1)
−1) = −ε((̃−1)c(S̃k−1)p̌(ȟ2)c(S̃k−1)

−1),

and the other factors are not affected.

Before proving Theorem 6.5, we recall a lemma concerning orbital integrals.

Lemma 6.7. For every k ≥ 1, h̃ ∈ H̃n(St)
reg and ψ ∈ C∞

c (G̃n), we get:∫
Gn /Hn(Sk)

ψ(gh̃g−1)dg = Cn,1

D1(h̃)

D(h̃)

∫
L1(S1)/Hn(Sk)

ψK̃n

Ñn(S1)
(mh̃m−1)dm,

where Kn is the maximal compact subgroup of Gn, Nn(S1) = exp(ηn(S1)) and Cn,1

is the constant given by

Cn,1 =
1

μ(Kn ∩Ln(S1))
√
2
dimR(ηn(S1))

=
1

μ(Kn ∩Ln(S1))
√
2
4n−1.
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Proof. We see easily that for k ≥ 1, Hn(Sk) is a Cartan subgroup of Ln(S1), and
then the result follows from [2, Corollary A.4]. �

Proof of Theorem 6.5. Fix k ∈ [|0, n|] and ψ ∈ C∞
c (G̃n) such that supp(ψ) ⊆

G̃n · H̃n(Sk). Using Remark 5.4, it follows that:

ΘΠn(ψ) =

∫
G̃n

ΘΠn(g̃)ψ(g̃)dg̃

= mSk

∫
Ȟn,Sk

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1)εΨn,Sk,R

(ȟ)ΔΦ(n)(ȟ)HSk
ψ(ȟ)dȟ

= mSk

∫
Ȟn,Sk

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1)|ΔGn(ȟ)|2∫

Gn /Hn(Sk)

ψ(gc(Sk)p̌(ȟ)c(Sk)
−1g−1)dgdȟ.

(14)

According to Remark 4.5, the global character ΘΠn of Πn is given by

ΘΠn(ψ) =
1

2

∫
H̃′

ΘΠ′
m
(h̃′

0)| det(Id−Ad(h̃′
0)

−1)g′/h′ |Chch̃′
0
(ψ)dh̃′

0

+
1

2

∫
H̃′(S′

1)

ΘΠ′
m
(h̃′

1)| det(Id−Ad(h̃′
1)

−1)g′/h′(S′
1)
|Chch̃′

1
(ψ)dh̃′

1,

where H′,H′(S1) are the two Cartan subgroups of G′ (up to conjugation) defined

in Equation (11). Using that supp(ψ) ⊆ G̃n · H̃n(Sk), we get from Theorem 5.6 and
[3, Equation 8] that:

∫
H̃′

ΘΠ′
m
(h̃′

0)| det(Id−Ad(h̃′
0)

−1)g′/h′ |Chch̃′
0
(ψ)dh̃′

0

=

∫
H̃′

∫
G̃n

ΘΠ′
m
(h̃′

0)| det(Id−Ad(h̃′
0)

−1)g′/h′ |2Θ((̃−1)g̃h̃′
0)ψ(g̃)dg̃dh̃

′
0

=

∫
Ȟ

′
ΘΠ′

m
(p̌(ȟ′

0))ΔΨ′(ȟ′
0)

(
ΔΨ′(ȟ′

0)

∫
G̃n

Θ(p̌(ȟ′
0)g̃)ψ(g̃)dg̃

)
dȟ′

0

=
∑

σ∈W (HC
n)

MSk
(σ) lim

r∈Eσ,Sk
r→1

∫
Ȟ

′
ΘΠ′

m
(p̌(ȟ′

0))ΔΨ′(ȟ′
0)

∫
Ȟ

reg
n,Sk

ΔΨn
(ȟ)ΔΦ(Zn)(σ

−1(ȟ))

det(1− p(ȟ′
0)rp(ȟ))σWh′∫

Gn /Hn(Sk)

ψ(gc(Sk)p̌(ȟ)c(Sk)
−1g−1)dgdȟ′

0.

(15)
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Similarly, by using Equation (5), we get:

(16)

∫
H̃′(S′

1)

ΘΠ′
m
(h̃′

1)| det(Id−Ad(h̃′
1)

−1)g′/h′(S′
1)
|2 Chch̃′

1
(ψ)dh̃′

1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if S = ∅
C1

∫
H̃′(S′

1)

ΘΠ′
m
(h̃′

1)| det(Id−Ad(h̃′
1)

−1)g′/h′(S′
1)

|
| det(Ad(h̃′

1))|η′(S′
1)
| 12

| det(Ad(h̃′
1)− 1)|η′(S′1)

|

∫
G̃(U1)

| det(h̃′
1ũ)|ηn(S1)

| 12 ε((̃−1)ũ)

ψK̃n

Ñn(S1)
(h̃′

1ũ)dũdh̃
′
1

otherwise

where the constant C1 defined in Equation (10) is given by

C1 =
24n+3(2n− 1)

(2n+ 1)2
Cn,1,

and Cn,1 is defined in Lemma 6.7. Note that in this case the formula (5) is slightly
simplified because W0,k = {0}, i.e. ChcW0,k

= 1.
In particular, the theorem follows for k = 0, i.e. S0 = {∅}. From now on, we

assume that k ≥ 1, i.e. without loss of generality that e1−e2n+1 ∈ Sk. In this case,
using Remark 5.8, we get:

Hn(Sk) = T1(S1)×A(S1)×Hn−1(S̃k−1).

The Cartan subgroup Hn(Sk) is included in the Levi Ln(S1) = GL(X′
1)×G(U1) of

Pn(S1). In particular, using Lemma 6.7, Equation (15) can be written as:

∑
σ∈W (HC

n)

MSk
(σ) Cn,1 lim

r∈Eσ,Sk
r→1

∫
Ȟ

′
ΘΠ′

m
(p̌(ȟ′

0))ΔΨ′(ȟ′
0)

∫
Ȟ

reg
n,Sk

ΔΨn
(ȟ)ΔΦ(Zn)(σ

−1(ȟ))

det(1− p(ȟ′
0)rp(ȟ))σWh

D1(c(Sk)p̌(ȟ)c(Sk)
−1)

D(c(Sk)p̌(ȟ)c(Sk)−1)∫
Ln(S1)/Hn(Sk)

ψK̃n

Ñn(S1)
(gc(Sk)p̌(ȟ)c(Sk)

−1g−1)dgdȟdȟ′
0.

Similarly, Equation (16) is equal to

(17) C1 mS̃k−1

∫
Ť′

1,S1

∫
Ǎ′

S1

ΘΠ′
m
(c(S1)p̌(ť′ǎ′)c(S1)−1)

|det(Id−Ad(c(S1)p̌(ť
′ǎ′)c(S1)

−1)−1)g′/h′(S1)|
|det(Ad(c(S1)p̌(ť

′ǎ′)c(S1)
−1))|η′(S1)

| 12

|det(Ad(c(S1)p̌(ť′ǎ′)c(S1)−1)− Id)|η′(S1)
|∫

Ȟ
n−1,S̃k−1

∫
G(U1)/Hn−1(S̃k−1)

|ΔG(U1)(ȟ)|
2

|det(c(S1)p̌(ť
′ǎ′)c(S1)

−1gc(S̃k−1)p̌(ȟ)c(S̃k−1)
−1g−1)|ηn(S1)

|
1
2 ε((̃−1)c(S̃k−1)p̌(ȟ)c(S̃k−1)

−1)

ψK̃n

Ñn(S1)
(c(S1)p̌(ť

′ǎ′)c(S1)
−1gc(S̃t−1)p̌(ȟ)c(S̃t−1)

−1g−1)dgdȟdǎ′dť′,
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where S̃k−1 = Sk \{e1 − e2n+1}. From (14), we get:
(18)

ΘΠn(ψ) = mSk
Cn,1

∫
Ȟ

′
n,Sk

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1)|ΔGn

(ȟ)|2
D1(c(Sk)p̌(ȟ)c(Sk)

−1)

D(c(Sk)p̌(ȟ)c(Sk)−1)

∫
Ln(S1)/Hn(Sk)

ψ(gc(Sk)p̌(ȟ)c(Sk)
−1g−1)dgdȟ

and using that:

Ln(S1)/Hn(Sk) = GL(X1)/(T1(S1)×A(S1))×G(U1)/Hn−1(S̃k−1)

= G(U1)/Hn−1(S̃k−1),

it follows from Equations (15), (17) and (18) that for every ȟ = ťǎȟ1 ∈ Ȟn,Sk
=

Ť1,S1
× ǍS1 × ȞS̃k−1

,

mSk
Cn,1 ΘΠn(c(Sk)p̌(ȟ)c(Sk)

−1)|ΔGn
(ȟ)|2

D1(c(Sk)p̌(ȟ)c(Sk)
−1)

D(c(Sk)p̌(ȟ)c(Sk)−1)

=
Cn,1(−1)umSk

2(2n− 1)!

ΔΨn
(ȟ)D1(c(Sk)p̌(ȟ)c(Sk)

−1)

D(c(Sk)p̌(ȟ)c(Sk)−1)

∑
σ∈W (HC

n)

ε(σ)ΔΦ(Zn)(σ
−1(ȟ))

lim
r∈Eσ,Sk

r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′

0))ΔΨ′(ȟ′
0)

det(1− p(ȟ′
0)rp(ȟ))σWh

dȟ′
0 +

mS̃k−1
C1

2

ΘΠ′
m
(c(S1)p̌(ťǎ)c(S1)−1)|ΔΨ′(ťǎ)|2 dS′

1
(c(S1)p̌(ťǎ)c(S1)

−1) d′S1
(c(Sk)p̌(ťǎȟ1)c(Sk)

−1)

| det(Ad(c(S1)p̌(ť′ǎ′)c(S1)−1)− Id)|η′(S1)
|

ε((̃−1)c(S̃k−1)p̌(ȟ1)c(S̃k−1)))|ΔG(U1)(ȟ)|2,

and the result follows. �

Lemma 6.8. For every g̃ ∈ G̃n, ε(g̃) = ±1.

Proof. The space X′
1 ⊗C Vn ⊕Y′

1 ⊗C Vn is a complete polarization of V′ ⊗C Vn. In

particular, X̃′ = (X′
1 ⊗Vn)R is a maximal isotropic subspace of W = (V′ ⊗C Vn)R.

According to Equation (28), the character ε is defined on GL(X̃′)c by the follow-
ing formula:

ε(g̃) =
Θ(g̃)

|Θ(g̃)|,
(
g ∈ GL(X̃′)c

)
.

In particular, using Equation (29), for every g̃ ∈ G̃
c

n, we get:

ε(g̃) =
det

X̃′(g̃)
− 1

2

| det
X̃′(g̃)

− 1
2 |

= ±
| detX′(g)|−1

| detX′(g)|−1
.

Using the fact that | detX′(g)| = 1, it follows that ε(g̃) = ±1. �
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As explained in Appendix B (see Equation (27)), for every 0 ≤ k ≤ n and
St = {e1 − e2n+2−1, . . . , ek − e2n+2−k},

(19) Hn,Sk
= {diag(eiX1−X2n+1 , . . . , eiXk−X2n+2−k , eiXk+1 , . . . , eiX2n+1−k ,

eiXk+X2n+2−k , . . . , eiX1+X2n+1), Xj ∈ R}.
In particular, using Remark 6.4, we get that h can be written as h = tah1, where

(20) t = diag(eiX1 , 1, . . . , 1︸ ︷︷ ︸
2n−1

, eiX1), a = diag(e−X2n+1 , 1, . . . , 1︸ ︷︷ ︸
2n−1

, eX2n+1)

and

(21) h1 = diag(1, eiX2−X2n , . . . , eiXk−X2n+2−k , eiXk+1 , . . . ,

eiX2n+1−k , eiXk+X2n+2−k , . . . , eiX2+X2n , 1).

We get Φ(Zn) = {ei − ej , 2 ≤ i < j ≤ 2n}. In particular, for every σ ∈ S2n+1 and

ȟ ∈ Ȟn(Sk), we get:

ΔΦ(Zn)(σ
−1(ȟ))

ΔΦ(n)(ȟ)
=

∏
2≤i<j≤2n

(
h

1
2

σ(j)h
− 1

2

σ(i) − h
− 1

2

σ(j)h
1
2

σ(i)

)
∏

1≤i<j≤2n+1

(
h

1
2

i h
− 1

2

j − h
− 1

2

i h
1
2

j

)
= ε(σ)

hn
σ(1)h

n
σ(2n+1)

∏2n+1
i=1

i�=σ(1),σ(2n+1)

hi∏2n+1
j=1

j �=σ(1)

(
hσ(1) − hj

)∏2n+1
j=1

j �=σ(1),σ(2n+1)

(
hσ(2n+1) − hj

).
(22)

Remark 6.9. Let ˇexp : hn,Sk
→ Ȟn,Sk

be the exponential map (lift of the usual
exponential exp : hn,Sk

→ Hn,Sk
). Let ei, 1 ≤ i ≤ 2n + 1 be the linear forms on

C2n+1 defined in Notation 5.1. Using (20) and (21), for every element ȟ = ˇexp(X)
with X given by

X = (X1 −X2n+1, iX2 −X2n, . . . , iXk −X2n+2−k,

iXk+1, . . . , iX2n+1−k, iXk +X2n+2−k),

we get ȟ
ei−ej

2 = e
ei−ej

2 (X) = e
ei(X)

2 e−
ej (X)

2 := h
1
2
i h

− 1
2

j . This is how the square root

in Equation (22) was defined.

Up to a sign, the quotient
ΔΦ(Zn)(σ

−1(ȟ))

ΔΦ(n)(ȟ)
is “uniquely” determined by σ(1) and

σ(2n+1). For σ ∈ S2n+1 and i, j ∈ {1, . . . , 2n+1} such that σ(1) = i, σ(2n+1) = j,
we denote by Δ(i, j, ȟ) the following quantity:

Δ(i, j, ȟ) = ε(σ)
ΔΦ(Zn)(σ

−1(ȟ))

ΔΦ(n)(ȟ)
=

hn
i h

n
j

∏2n+1
k=1
k �=i,j

hk∏2n+1
k=1
k �=i

(hi − hk)
∏2n+1

l=1
l �=i,j

(hj − hl)
.

Lemma 6.10. Let b ∈ Z and a ∈ C∗ \ S1. Then,

1

2iπ

∫
S1

zb

z − a
dz =

⎧⎪⎨⎪⎩
ab if k ≥ 0 and |a| < 1,

−ab if k < 0 and |a| > 1,

0 otherwise.
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We denote by C2 the constant (−1)u

(p+q−2)! .

Notation 6.11. For an element h ∈ Hreg
n,Sk

as in Equation (19), we denote by J(h)

and K(h) the subsets of {1, . . . , k} given by

J(h) = {j ∈ {1, . . . , k}, sgn(X2n+2−j) = 1},
K(h) = {j ∈ {1, . . . , k}, sgn(X2n+2−j) = −1},

where sgn(X) is defined for every X ∈ R∗ by

sgn(X) =

{
1 if X > 0

−1 if X < 0
.

To simplify the notations, we will denote by (h1, . . . , h2n+1) the components of h.
Finally, we denote by Ak and Bk the subsets of {1, . . . , 2n+ 1} given by

Ak = {k + 1, . . . , n} , Bk = {n+ 1, . . . , 2n+ 1− k} .

Theorem 6.12. For every 0 ≤ k ≤ n, the value of ΘΠn on H̃n(Sk)
reg is given by

(23) ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1) =

C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ã
∑

j∈K(h)∪Ak
i∈J(h)∪Bk

hn
i h

n+m
j Ωi,j(h)+δk,0B e−(m+1) sgn(X2n+1)X2n+1Σ(h) if m ≥ 1,

Ã
∑

i,j∈J(h)∪Bk
i�=j

hn
i h

n
jΩi,j(h) + δk,0 B e−(m+1) sgn(X2n+1)X2n+1Σ(h) if m = 0,

Ã
∑

i∈K(h)∪Ak
j∈J(h)∪Bk

hn+m
i hn

jΩi,j(h) + δk,0 B e(m−1) sgn(X2n+1)X2n+1Σ(h) if m ≤ −1,

where Ωi,j , 1 ≤ i �= j ≤ 2n+ 1, and Σ are the functions on Hreg
n,Sk

given by

Ωi,j(h) =

∏2n+1
d=1
d�=i,j

hd∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
,

Σ(h) =
sgn(X2n+1)e

imX1
∣∣e(2n−2)X2n+1

∣∣ (1− e−2X2n+1
)∣∣∣∏2n

d=2

(
1− h1h

−1
d

)∏2n
d=2

(
1− hdh

−1
2n+1

)∣∣∣ |1− e−2X2n+1 |2
,

and where ȟ ∈ Ȟn,Sk
is as in Equation (19), Ã =

2A

(2n− 1)!
and C is the constant

given in Remark 6.6.

Proof. Let h = tah1 ∈ Hn,Sk
. We denote by (h1, . . . , h2n+1) the components of h.

In particular,

hc =

⎧⎪⎨⎪⎩
eiXc−X2n+2−c if 1 ≤ c ≤ k

eiXc if k + 1 ≤ c ≤ 2n+ 1− k

eiX2n+2−c+Xc if 2n+ 2− k ≤ c ≤ 2n+ 1

.

We denote by Δn(l) := Δn(ln(S1)) the set of roots of ln(S1) and let Ψn(l) :=
Δn(l) ∩Ψn. One can easily check that

Ψn(l) = {ei − ej , 2 ≤ i < j ≤ 2n} .
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Similarly, let Ψn(ηn(S1)) = {e1 − ed, 2 ≤ d ≤ 2n+ 1} ∪ {ed − e2n+1, 2 ≤ d ≤ 2n}
the roots of ηn(S1). Then,

D(c(Sk)p̌(ȟ)c(Sk)
−1)

D1(c(Sk)p̌(ȟ)c(Sk)−1)
=

∣∣det(Id−Ad(c(Sk)p̌(ȟ)c(Sk)
−1)−1)gn/hn(Sk)

∣∣ 12∣∣det(Id−Ad(c(Sk)p̌(ȟ)c(Sk)−1)−1)ln(S1)/hn(Sk)

∣∣ 12
= dS1(c(Sk)p̌(ȟ)c(Sk)

−1)−2

∏
α∈Ψn(l)

∣∣1− ȟα
∣∣∏

α∈Ψn

∣∣1− ȟα
∣∣

= dS1(c(Sk)p̌(ȟ)c(Sk)
−1)−2

∏
α∈Ψn(ηn(S1))

∣∣1− ȟα
∣∣

= dS1
(c(Sk)p̌(ȟ)c(Sk)

−1)−2
∣∣1− h1h

−1
2n+1

∣∣ 2n∏
d=2

∣∣1− h1h
−1
d

∣∣ 2n∏
d=2

∣∣1− hdh
−1
2n+1

∣∣ .
Moreover,∣∣ΔG(ȟ)

∣∣2∣∣ΔG(U1)(ȟ)
∣∣2 =

∏
α∈Ψn

∣∣1− ȟα
∣∣2∏

α∈Ψ(g(U1))

∣∣1− ȟα
∣∣2

=
∣∣1− h1h

−1
2n+1

∣∣2 2n∏
d=2

∣∣1− h1h
−1
d

∣∣2 2n∏
d=2

∣∣1− hdh
−1
2n+1

∣∣2 .
In particular,

D(c(Sk)p̌(ȟ)c(Sk)
−1)
∣∣ΔG(U1)(ȟ)

∣∣2
D1(c(Sk)p̌(ȟ)c(Sk)−1)

∣∣ΔG(ȟ)
∣∣2

= dS1(c(Sk)p̌(ȟ)c(Sk)
−1)−2

∣∣1− e−2X2n+1
∣∣−1

∣∣∣∣∣
2n∏
d=2

(
1− h1h

−1
d

) 2n∏
d=2

(
1− hdh

−1
2n+1

)∣∣∣∣∣
−1

.

Similarly, ∣∣ΔΨ′(ťǎ)
∣∣2 =

∣∣1− h1h
−1
2n+1

∣∣2 =
∣∣1− e−2X2n+1

∣∣2
and it follows from Remark A.5 that

ΘΠ′
m
(c(S1)p̌(ťǎ)c(S1)

−1) = ±2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sgn(X2n+1)
e−imX1em sgn(X2n+1)X2n+1

eX2n+1 − e−X2n+1

if m ≤ −1

sgn(X2n+1)
e−imX1e−m sgn(X2n+1)X2n+1

eX2n+1 − e−X2n+1

if m ≥ 0

,

i.e. ∣∣ΔΨ′(ťǎ)
∣∣2 ΘΠ′

m
(c(S1)p̌(ťǎ)c(S1)−1)

= ±2

{
sgn(X2n+1)e

imX1e(m−1) sgn(X2n+1)X2n+1(1− e−2X2n+1) if m ≤ −1

sgn(X2n+1)e
imX1e−(m+1) sgn(X2n+1)X2n+1(1− e−2X2n+1) if m ≥ 0

.

Finally, using that∣∣det(Ad(c(S1)p̌(ťǎ) c(S1)
−1)−1 − 1)|η′(S1)

∣∣∣
= |1− e−2X2n+1 |, dS′

1
(c(S1)p̌(ťǎ)c(S1)

−1)

=
∣∣e−X2n+1

∣∣ ,
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and

d′S1
(c(Sk)p̌(ȟ)c(Sk)

−1) =

∣∣∣∣∣∣
2n+1∏
j=2

(
eiX1−X2n+1h−1

j

) 2n∏
j=2

(
hje

−iX1−X2n+1
)∣∣∣∣∣∣

1
2

=
∣∣∣e−(2n−1)X2n+1

∣∣∣ ,
we get the second member of Equation (23).

We now look at the first member of Equation (23). One can easily check that

for every σ ∈ S2n+1, w = w1,1 E1,1 +w2n+1,2 E2n+1,2 ∈ Wh
′
and y ∈ hn such that

y = (y1, . . . , y2n+1) = (iX1, . . . , iX2n+1), we get:

〈yσ(w), σ(w)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xσ(1)|w1,1|2 +Xσ(2n+1)|w2n+1,2|2
if σ(1), σ(2n+ 1) ∈ {1, . . . , n},

−Xσ(1)|w1,1|2 −Xσ(2n+1)|w2n+1,2|2
if σ(1), σ(2n+ 1) ∈ {n+ 1, . . . , 2n+ 1} ,

Xσ(1)|w1,1|2 −Xσ(2n+1)|w2n+1,2|2

if σ(1) ∈ {1, . . . , n} and σ(2n+ 1) ∈ {n+ 1, . . . , 2n+ 1} ,
−Xσ(1)|w1,1|2 +Xσ(2n+1)|w2n+1,2|2
if σ(1) ∈ {n+ 1, . . . , 2n+ 1} and σ(2n+ 1) ∈ {1, . . . , n}

(see the proof of Proposition A.3 for an easier computation) and then

Γσ,Sk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hn

if {σ(1), σ(2n+ 1)} ⊆ Sk{
y = (y1, . . . , y2n+1) ∈ hn, Xσ(2n+1) > 0

}
if σ(1) ∈ Sk and σ(2n+ 1) ∈ Ak{

y = (y1, . . . , y2n+1) ∈ hn, Xσ(2n+1) < 0
}

if σ(1) ∈ Sk and σ(2n+ 1) ∈ Bk{
y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) > 0

}
if σ(2n+ 1) ∈ Sk and σ(1) ∈ Ak{

y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) < 0
}

if σ(2n+ 1) ∈ Sk and σ(1) ∈ Bk{
y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) > 0, Xσ(2n+1) > 0

}
if σ(1), σ(2n+ 1) ∈ Ak{

y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) > 0, Xσ(2n+1) < 0
}

if σ(1) ∈ Ak, σ(2n+ 1) ∈ Bk{
y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) < 0, Xσ(2n+1) > 0

}
if σ(2n+ 1) ∈ Ak, σ(1) ∈ Bk{

y = (y1, . . . , y2n+1) ∈ hn, Xσ(1) < 0, Xσ(2n+1) < 0
}

if σ(1), σ(2n+ 1) ∈ Bk .
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Let ȟ ∈ Ȟn(Sk) and h = p(ȟ) = (h1, . . . , h2n+1) as in Notation 6.11. Assume
that m ≥ 1. Using Corollary A.4, we get that

ΘΠ′
k
(p̌(ȟ′

0))ΔΨ′(ȟ′
0) = h

′ 12
1 h

′ 12
2

h′−m
2

h′
2 − h′

1

h
′− 1

2
1 h

′− 1
2

2 (h′
1 − h′

2) = −h′−m
2 ,

(h′
0 = diag(h′

1, h
′
2)).

By keeping the normalizations of [27, Section 5] and identifying H′ with S1 × S1,
we get:

∑
σ∈W (HC

n)

ε(σ)
ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)
lim

r∈Eσ,Sk
r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′

0))Δ(p̌(ȟ′
0))

det(1− p(ȟ′
0)rp(ȟ))σWh

dȟ′
0

= 2
∑

σ∈W (HC
n)

ε(σ)
ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)

lim
r∈Eσ,Sk

r→1

∫
H′

− h′m
2

(1− h′
1(rh)

−1
σ(1))(1− h′

2(rh)
−1
σ(2n+1))

dh′
1dh

′
2,

where dȟ′
0 and dh′

1dh
′
2 are the normalized Haar measures on Ȟ

′
and H′ respectively.

Using that

dh′
1dh

′
2 =

dz1dz2

(2iπ)2z1z2
,

we get:

∑
σ∈W (HC

n)

ε(σ)
ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)
lim

r∈Eσ,Sk
r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′

0))Δ(p̌(ȟ′
0))

det(1− p(ȟ′
0)rp(ȟ))σWh

dȟ′
0

=
−2

(2iπ)2

∑
σ∈S2n+1

ε(σ)
hσ(1)hσ(2n+1)ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)

lim
r∈Eσ,Sk

r→1

∫
S1

z−1
1 dz1

z1 − rhσ(1)

∫
S1

zm−1
2 dz2

z2 − rhσ(2n+1)

=
−2

(2iπ)2(2n− 1)!

∑
1≤i �=j≤2n+1

hihjΔ(i, j, ȟ) lim
r∈Eσ,Sk

r→1

∫
S1

z−1
1 dz1

z1 − rhi

∫
S1

zm−1
2 dz2

z2 − rhj

=
2

(2n− 1)!

∑
i∈J(h)∪Bk

∑
j∈K(h)∪Ak

hihjΔ(i, j, ȟ)h−1
i hm−1

j

=
2

(2n− 1)!

∑
i∈J(h)∪Bk

∑
j∈K(h)∪Ak

hn
i h

n+m
j

∏2n+1
d=1
d�=i,j

hd∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
.
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Similarly, if m = 0, we get:

∑
σ∈W (HC

n)

ε(σ)
ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)
lim

r∈Eσ,Sk
r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′

0))ΔΨ′(ȟ′
0)

det(1− p(ȟ′
0)p(ȟ))σWh

dȟ′
1

=
2

(2iπ)2(2n− 1)!

∑
1≤i �=j≤2n+1

hihjΔ(i, j, ȟ) lim
r∈Eσ,Sk

r→1

∫
S1

z−1
1 dz1

z1 − rhi

∫
S1

z−1
2 dz2

z2 − rhj

=
2

(2n− 1)!

∑
i,j∈J(h)∪Bk

i�=j

hihjΔ(i, j, ȟ)h−1
i h−1

j

=
1

(2n− 1)!

∑
i,j∈J(h)∪Bk

i�=j

hn
i h

n
j

∏2n+1
d=1
d�=i,j

hd∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
.

Finally, if m ≤ −1, it follows from Corollary A.4 that:

ΘΠ′
m
(p̌(ȟ′

0))Δ(p̌(ȟ′
0)) = h

′ 12
1 h

′ 12
2

h′−m
1

h′
2 − h′

1

h
′− 1

2
1 h

′− 1
2

2 (h′
1 − h′

2) = h′−m
1 ,

(h′
0 = (h′

1, h
′
2)) .

Then,

∑
σ∈W (HC

n)

ε(σ)
ΔΦ(Zn)(σ(ȟ))

ΔΦ(n)(ȟ)
lim

r∈Eσ,Sk
r→1

∫
Ȟ

′

ΘΠ′
m
(p̌(ȟ′

0))Δ(ȟ′
0)

det(1− p(ȟ′
0)p(ȟ))σWh

dȟ′
0

=
2

(2iπ)2

∑
σ∈S2n+1

ε(σ)
hσ(1)hσ(2n+1)ΔΦ(Z(n))(σ(ȟ))

ΔΦ(n)(ȟ)

lim
r∈Eσ,Sk

r→1

∫
S1

zm−1
1 dz1

z1 − rhσ(1)

∫
S1

z−1
2 dz2

z2 − rhσ(2n+1)

=
2

(2n− 1)!

∑
i∈K(h)∪Ak

∑
j∈J(h)∪Bk

hihjΔ(i, j, ȟ)hk−1
i h−1

j

=
2

(2n− 1)!

∑
i∈K(h)∪Ak

∑
j∈J(h)∪Bk

hn+m
i hn

j

∏2n+1
d=1
d�=i,j

hd∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
,

and the theorem follows. �
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Remark 6.13. From Theorem 6.12, it follows that the value of ΘΠn
on the compact

Cartan Hn is given, up to a constant, by

ΘΠn(c(Sk)p̌(ȟ)c(Sk)
−1)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
j∈K(h)∪Ak
i∈J(h)∪Bk

hn
i h

n+m
j Ωi,j(h) if m ≥ 1,∑

i,j∈J(h)∪Bk
i�=j

hn
i h

n
jΩi,j(h) if m = 0,∑

i∈K(h)∪Ak
j∈J(h)∪Bk

hn+m
i hn

jΩi,j(h) if m ≤ −1,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1

∑2n+1
i=n+1

hλi,j∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
if m ≥ 1,

∑2n+1
i,j=n+1

i�=j

hλi,j∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
if m = 0,

∑n
i=1

∑2n+1
j=n+1

hτi,jλi,j∏2n+1
d=1
d�=i

(hi − hd)
∏2n+1

d=1
d�=i,j

(hj − hd)
if m ≤ −1,

where λi,j is the linear form given by λi,j = nei + (n+m)ej +
∑2n+1

d=1
d�=i,j

ed and τi,j is

the permutation (i, j).

We finish this section with a Lemma concerning the formulas we got in Theorem
6.12.

Lemma 6.14. For every h ∈ Hn,Sk
,
∏2n

d=2

(
1− h1h

−1
d

)∏2n
d=2

(
1− hdh

−1
2n+1

)
∈ R,

and its sign is constant on every Weyl chamber.

Proof. This result was obtained in [27, Lemma 6.9] for k = 1. We prove this lemma
for k = 2 (the proof of the general statement is similar). Assume that k = 2. We
get:

2n∏
d=2

(
1− h1h

−1
d

) 2n∏
d=2

(
1− hdh

−1
2n+1

)
= (1− h1h

−1
2 )(1− h1h

−1
2n )(1− h2h

−1
2n+1)(1− h2nh

−1
2n+1)(

2n−1∏
d=3

(
1− h1h

−1
d

) (
1− hdh

−1
2n+1

))
.

Firstly,(
2n−1∏
j=3

(
1− h1h

−1
j

) (
1− hjh

−1
2n+1

))

=

2n−1∏
j=3

(
1− eiX1−X2n+1e−iXj

) (
1− eiXje−iX1−X2n+1

)
=

2n−1∏
j=3

∣∣1− eiX1−X2n+1e−iXj
∣∣2 .
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Moreover,

(1− h1h
−1
2n )(1− h2nh

−1
2n+1)

= (1− eiX1−X2n+1e−iX2+X2n)(1− eiX2+X2ne−iX1−X2n+1)

= 1− 2 cos(X1 −X2)e
X2n−X2n+1 + e2(X2n−X2n+1)

and

(1− h2h
−1
2n+1)(1− h1h

−1
2n )

= (1− eiX2−X2ne−iX1+X2n+1)(1− eiX1+X2n+1e−iX2−X2n)

= 1− 2 cos(X2 −X1)e
X2n+1−X2n+1 + e2(X2n+1−X2n),

so the lemma follows. �

Appendix A. The dual pair (G = U(1),G′ = U(p, q))

In [27, Proposition 6.4], the author gave explicit formulas for the value of the

character ΘΠ′ on the compact Cartan H̃′ = H̃′(∅) of G̃
′
. Moreover, for p = q = 1,

he computed the character ΘΠ′ on H̃
′
(S1), where H

′(S1) is the non-compact Cartan

subgroup of Ũ(1, 1) as in Equation (11). In this section, we recover the results
proved in [27] using the results of Section 5 and get formulas for ΘΠ′ on every

Cartan subgroup of G̃′.
By keeping the notations of Section 5, we get V = C with the hermitian form

(·, ·) given by

(u, v) = uv, (u, v ∈ V),

V′ = Mn′,1(C), where n′ = p+ q, with the skew-hermitian form (·, ·)′ given by:

(u, v) = vti Idp,q u,

and W = V⊗C V′ the symplectic space defined by

〈w,w′〉 = Re(tr(w′∗w)) = Im(w′t Idp,q w).

Similarly,

H = G = U(1) = {h ∈ C, |h| = 1} , J1 = i, h = R J1,

and the group GLC(W) is given by:

GLC(W) =
{
g ∈ GL(W), J′1 g = g J′1

}
= G′

C,

G̃LC(W) =
{
g̃ = (g, ξ), g ∈ GLC(W), det(g) = ξ2

}
.

Using that V′ = V′
1 ⊕ . . .⊕V′

n′ , with V′
j = CEj,1, and the embedding

hC � λ → (λ, 0, . . . , 0) ∈ h′C,

we get that

Wh = {w = (w1,1, 0, 0, . . . , 0), w1,1 ∈ C} ,

Z′ = G′h =

{
g′ ∈ G′, g′ =

(
λ 0
0 X

)
, λ ∈ U(1), X ∈ GL(n′ − 1,C)

}
.
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In particular, Φ′(Z′) = {±(ei − ej), 2 ≤ i < j ≤ n′}, where ej is the form defined in

Notation 5.1. For every ȟ′ ∈ Ȟ
′
C, with h′ = (h′

1, . . . , h
′
n′), we get:

ΔΦ′(ȟ′) =
∏
α>0

(ȟ′α2 − ȟ′−α
2 ) =

∏
1≤i<j≤n′

(h
′ 12
i h

′− 1
2

j − h
′− 1

2
i h

′ 12
j )

=

n′∏
i=1

h
′−n′−1

2

i

∏
1≤i<j≤n′

(h′
i − h′

j),

and for every σ ∈ Sn′ ,

ΔΦ′(Z′)(σ(ȟ′)) =
n′∏
i=2

h
′−n′−2

2

σ(i)

∏
2≤i<j≤n′

(h′
σ(i) − h′

σ(j))

= ε(σ)
n′∏
i=1

i�=σ(1)

h
′−n′−2

2

i

∏
1≤i<j≤n′

i,j �=σ(1)

(h′
i − h′

j).

In particular,

ΔΦ′(Z′)(σ(ȟ′))

ΔΦ′(ȟ′)
= ε(σ)

h
′n

′−1
2

σ(1)

∏n′

i=1
i�=σ(1)

h
′ 12
i∏n′

i=1
i�=σ(1)

(h′
σ(1) − h′

i)
= ε(σ)

h
′n

′−2
2

σ(1)

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=σ(1)

(h′
σ(1) − h′

i)
, (ȟ′ ∈ Ȟ

′
C).

Notation A.1. As in Section 6, because the set of genuine representations of Ũ(1) is

isomorphic to Z, we will denote by Πm,m ∈ Z, the representations of R(Ũ(1), ω).

Using [20], we get that Πm(h̃) = ±hm+ q−p
2 . We will denote by Π′

m the correspond-

ing representation of Ũ(p, q) and by ΘΠ′
m

its character.

Proposition A.2. For every S ⊆ Ψ′ st
n (see Appendix B), the value of the character

ΘΠ′
m

on H̃′(S)reg is given by the following formula:

ΔΦ′(ȟ′)ΘΠ′
m
(c(S)p̌(ȟ′)c(S)−1) =∑

σ∈W (H′
C
)

(−1)uε(σ)

|W (Z′
C,H

′
C)|

ΔΦ′(Z′)(σ
−1(ȟ′)) det−

k
2 (σ−1(ȟ′))Wh

lim
r∈Eσ,S

r→1

∫
Ǔ(1)

ΘΠm
(p̌(ȟ)) det−

k
2 (ȟ)

det(1− p(ȟ)rp(ȟ′))σWh

dȟ

for every ȟ′ ∈ Ȟ
′ reg
S .

Proof. Let ψ ∈ C ∞
c (G̃′) such that supp(ψ) ⊆ G̃′ · H̃

′
(S), we get:

ΘΠ′
m
(ψ) = tr(PΠm

◦ ω(ψ)) =
∫
G̃′

(∫
Ũ(1)

ΘΠm
(g̃)Θ(g̃g̃′)dg̃

)
ψ(g̃′)dg̃′

=

∫
G̃′

(∫
Ǔ(1)

ΘΠm
(p̌(ȟ))Θ(p̌(ȟ)g̃′)dȟ

)
ψ(g̃′)dg̃′,

where PΠm
: H → H (Πm) is the projection onto the Πm-isotypic component

given by PΠm
= ω(ΘΠm

) (see [38, Section 1.4.6]), i.e. as a generalized function
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on G̃′,

ΘΠ′
m
(g̃′) =

∫
Ǔ(1)

ΘΠm
(p̌(ȟ))Θ(p̌(ȟ)g̃′)dg̃, (g̃′ ∈ G̃′).

Using Remark 5.4, we get:

ΘΠ′
m
(ψ) =

∫
G̃′

ΘΠ′
m
(g̃′)ψ(g̃′)dg̃′ = mS

∫
Ȟ

′
S

εΨ′
S,R

(ȟ′)ΔΦ′(ȟ′)HS(ΘΠ′
m
ψ)(ȟ′)dȟ′

= mS

∫
Ȟ

′
S

εΨ′
S,R

(ȟ′)ΔΦ′(ȟ′)ΘΠ′
m
(c(S)p̌(ȟ′)c(S)−1)HSψ(ȟ

′)dȟ′.

(24)

Using Theorem 5.6, Equation (24) can be written as:

ΘΠ′
m
(ψ) =

∫
Ǔ(1)

ΘΠm
(p̌(ȟ))

∫
G̃′

Θ(p̌(ȟ)g̃′)ψ(g̃′)dg̃′dȟ

=

∫
Ǔ(1)

ΘΠm
(p̌(ȟ)) det−

k
2 (ȟ)

(
det

k
2 (ȟ)

∫
G̃′

Θ(p̌(ȟ)g̃′)ψ(g̃′)dg̃′
)
dȟ

=

∫
Ǔ(1)

ΘΠm
(p̌(ȟ)) det−

k
2 (ȟ)

∑
σ∈W (H′

C
)

MS(σ)

lim
r∈Eσ,S

r→1

∫
Ȟ

′
S

det−
k
2 (σ−1(ȟ′))WhΔΦ′(Z′)(σ

−1(ȟ′))

det(1− p(ȟ)rp(ȟ′))σWh

εΨ′
S,R

(ȟ′)HS(ψ)(ȟ
′)dȟ′dȟ

=

∫
Ȟ

′
S

εΨ′
S,R

(ȟ′)
∑

σ∈W (H′
C
)

MS(σ)ΔΦ′(Z′)(σ
−1(ȟ′)) det−

k
2 (σ−1(ȟ′))Wh

lim
r∈Eσ,S

r→1

∫
Ǔ(1)

ΘΠm
(p̌(ȟ)) det−

k
2 (ȟ)

det(1− p(ȟ)rp(ȟ′))σWh

dȟHS(ψ)(ȟ
′)dȟ′.

(25)

The result follows by comparing Equations (24) and (25). �

Without loss of generality, we assume that p ≤ q and keep the notations of
Appendix B (see Equation (27)). In particular, for every h′ ∈ H′

St
, 0 ≤ t ≤ p, h′ is

of the form

h′ = (h′
1, . . . , h

′
n′)

= diag(eiX1−Xp+1 , . . . , eiXt−Xp+t , eiXt+1 , . . . , eiXp ,

eiX1+Xp+1 , . . . , eiXt+Xp+t , eiXp+t+1 , . . . , eiXp+q ),

where Xj ∈ R and St = {e1 − ep+1, . . . , et − ep+t}.
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Proposition A.3. The value of the character ΘΠ′
m

is given, for every ȟ′ ∈ Ȟ
′
St
,

0 ≤ t ≤ p, by the formula:

ΘΠ′
m
(c(St)p̌(ȟ

′)c(St)
−1) = ±2C2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑t

j=1
j∈J(h′)

h′−m+p−1
j

(∏n′

i=1 h
′ 12
i

)
∏n′

i=1
i�=j

(h′
j − h′

i)
−
∑t

j=1
j∈K(h′)

h′−m+p−1
p+j

(∏n′

i=1 h
′ 12
i

)
∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

−
∑p

i=t+1

h′−m+p−1
i

(∏n′

j=1 h
′ 12
j

)
∏n′

j=1
j �=i

(h′
i − h′

j)
if m ≤ αp

q

∑t
j=1

j∈K(h′)

h′−m+p−1
j

(∏n′

i=1 h
′ 12
i

)
∏n′

i=1
i�=j

(h′
j − h′

i)
+
∑t

j=1
j∈K(h′)

h′−m+p−1
p+j

(∏n′

i=1 h
′ 12
i

)
∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

+
∑p+q

j=p+t+1

h′−m+p−1
j

(∏n′

i=1 h
′ 12
i

)
∏n′

i=1
j �=i

(h′
j − h′

i)
otherwise

where αp
q = −1− q−p

2 , C = 1
(p+q−1)! , h

′ = (h′
1, . . . , h

′
n′) and K(h′), J(h′) are given

by:

J(h′)={j ∈ {1, . . . , t}, sgn(Xp+j) = 1},K(h′)={j ∈ {1, . . . , t}, sgn(Xp+j) = −1}.

To make the equation shorter, we will denote by C the constant C = (−1)u

(p+q−1)! .

Proof. We start by determining the space Eσ,∅ for σ ∈ Sn′ . For every w = w1,1 E1,1

and y′ = (y′1, . . . , y
′
n′) ∈ h′ with y′j = iX ′

j , X
′
j ∈ R, we get:

〈y′σ(w), σ(w)〉 = 〈y′(w1,1 Eσ(1),1), w1,1 Eσ(1),1〉 = 〈(w1,1y
′
σ(1) Eσ(1),1), w1,1 Eσ(1),1〉

= Im(w1,1 E1,σ(1) Idp,q w1,1y
′
σ(1) Eσ(1),1)

=

{
|w1,1|2 Im(y′σ(1) E1,σ(1) Eσ(1),1) if 1 ≤ σ(1) ≤ p,

−|w1,1|2 Im(y′σ(1) E1,σ(1) Eσ(1),1) if p+ 1 ≤ σ(1) ≤ p+ q,

=

{
X ′

σ(1)|w1,1|2 if 1 ≤ σ(1) ≤ p,

−X ′
σ(1)|w1,1|2 if p+ 1 ≤ σ(1) ≤ p+ q.

In particular,

Γσ,∅ =

⎧⎨⎩
{
y′ ∈ h′, X ′

σ(1) > 0
}

if 1 ≤ σ(1) ≤ p,{
y′ ∈ h′, X ′

σ(1) < 0
}

if p+ 1 ≤ σ(1) ≤ n′
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and then

Eσ,∅ = exp(iΓσ,∅) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
h′ ∈ H′

C, h
′ = (e−X′

1 , . . . , e−X′
n′ ), X ′

σ(1) > 0
}

if 1 ≤ σ(1) ≤ p,{
h′ ∈ H′

C, h
′ = (e−X′

1 , . . . , e−X′
n′ ), X ′

σ(1) < 0
}

if p+ 1 < σ(1) ≤ n′.

More generally, for every σ ∈ Sn, we get:

Γσ,St
=

⎧⎪⎪⎨⎪⎪⎩
h′ if σ(1) ∈ St,{
y ∈ h′, X ′

σ(1) > 0
}

if σ(1) ∈ {t+ 1, . . . , p} ,{
y ∈ h′, X ′

σ(1) < 0
}

if σ(1) ∈ {p+ t+ 1, . . . , n} .

In particular,

Eσ,S = exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
h′ ∈ H′

C, h = diag(e−X′
1 , . . . , e−X′

n), X ′
i ∈ R

}
if σ(1) ∈ St,{

h′ ∈ H′
C, h

′ = diag(e−X′
1 , . . . , e−X′

n), X ′
i ∈ R, X ′

σ(1) > 0
}

if σ(1) ∈ {t+ 1, . . . , p} ,{
h′ ∈ H′

C, h = diag(e−X′
1 , . . . , e−X′

n), X ′
i ∈ R, X ′

σ(1) < 0
}

if σ(1) ∈ {p+ t+ 1, . . . , n} .

Because the space Eσ,St
only depends on σ(1), we will denote this space by Ei,St

for a σ ∈ Sn′ such that σ(1) = i.
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We first assume that n′ is even, i.e. k = 0. Then, according to Proposition A.2
and that det(1− p(ȟ)rp(ȟ′))σWh = 1− h(rh′)−1

σ(1), we get (up to a constant):

ΘΠ′(c(St)p(ȟ
′)c(St)

−1)

= C
∑

σ∈Sn′

ε(σ)
ΔΦ′(Z′)(σ

−1(ȟ′))

ΔΦ′(ȟ′)
lim
r→1

r∈Eσ,S

∫
Ǔ(1)

ΘΠm (p̌(ȟ))

1− h(rh′)−1
σ(1)

dȟ

= C2
t∑

j=1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
i�=j

(h′
j − h′

i)

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

1− he−iX1+Xp+1
dȟ

+C2
t∑

j=1

h
′n

′−2
2

p+j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

1− he−iXj−Xp+j
dȟ

+C2
p∑

j=t+1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1

0<r<1

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

1− h(rh′
j)

−1
dȟ

+C2
n′∑

j=p+t+1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1
r>1

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

1− h(rh′
i)

−1
dȟ

= −C2
t∑

j=1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
i�=j

(h′
j − h′

i)

1

e−iXj+Xp+j

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

h− eiXj−Xp+j
dȟ

− C2
t∑

j=1

h
′n

′−2
2

p+j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

1

e−iXj−Xp+j

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

h− eiXj+Xp+j
dȟ

− C2
p∑

j=t+1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1

0<r<1

h′
i

∫
Ǔ(1)

ΘΠm(p̌(ȟ))

h− rh′
j

dȟ

− C2
n′∑

j=p+t+1

h
′n

′−2
2

j

(∏n′

i=1 h
′ 1
2

i

)
∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1
r>1

h′
i

∫
Ǔ(1)

ΘΠm (p̌(ȟ))

h− rh′
j

dȟ

= −2C2

2iπ

t∑
j=1

h
′n

′−2
2

j

∏n′

i=1 h
′ 1
2

i∏n′
i=1
i�=j

(h′
j − h′

i)

1

e−iXj+Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj−Xp+j
dz

− 2C2

2iπ

t∑
j=1

h
′n

′−2
2

p+j

∏n′

i=1 h
′ 1
2

i∏n′
i=1

i�=p+j

(h′
p+j − h′

i)

1

e−iXj−Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj+Xp+j
dz

− 2C2

2iπ

p∑
j=t+1

h
′n

′−2
2

j

∏n′

i=1 h
′ 1
2

i∏n′
i=1
j �=i

(h′
j − h′

j)
lim
r→1

0<r<1

h′
i

∫
U(1)

z−m−1− q−p
2

z − rh′
j

dz

− 2C2

2iπ

n′∑
j=p+t+1

h
′n

′−2
2

j

∏n′

i=1 h
′ 1
2

i∏n′
i=1
j �=i

(h′
j − h′

i)
lim
r→1
r>1

h′
i

∫
U(1)

z−m−1− q−p
2

z − rh′
j

dz
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If −m− 1− q−p
2 ≥ 0, i.e. m ≤ −1− q−p

2 . Then, according to Lemma 6.10, we get:

ΘΠ′
m
(c(St)p(ȟ

′)c(St)
−1)

= −2C2

2iπ

t∑
j=1

j∈J(h′)

h
′n

′−2
2

j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=j

(h′
j − h′

i)

1

e−iXj+Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj−Xp+j
dz

− 2C2

2iπ

t∑
j=1

j∈K(h′)

h
′n

′−2
2

p+j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

1

e−iXj−Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj+Xp+j
dz

− 2C2

2iπ

p∑
j=t+1

h
′n

′−2
2

j

∏n′

i=1 h
′ 12
i∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1

0<r<1

h′
i

∫
U(1)

z−m−1− q−p
2

z − rh′
i

dz

= −2C2
t∑

j=1
j∈J(h′)

h′−m+p−1
j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=j

(h′
j − h′

i)
− 2C2

t∑
j=1

j∈K(h′)

h′−m+p−1
p+j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

− 2C2
p∑

j=t+1

h′−m+p−1
j

∏n′

i=1 h
′ 12
i∏n′

i=1
j �=i

(h′
j − h′

i)
.

Similarly, if m > −1− q−p
2 , we get:

ΘΠ′(c(St)p(ȟ
′)c(St)

−1)

= −2C2

2iπ

t∑
j=1

j∈K(h′)

h
′n

′−2
2

j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=j

(h′
j − h′

i)

1

e−iXj+Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj−Xp+j
dz

− 2C2

2iπ

t∑
j=1

j∈J(h′)

h
′n

′−2
2

p+j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

1

e−iXj−Xp+j

∫
U(1)

z−m−1− q−p
2

z − eiXj+Xp+j
dz

− 2C2

2iπ

n′∑
j=p+t+1

h
′n

′−2
2

j

∏n′

i=1 h
′ 12
i∏n′

i=1
j �=i

(h′
j − h′

i)
lim
r→1
r>1

h′
i

∫
U(1)

z−m−1− q−p
2

z − rh′
j

dz

= 2C2
t∑

j=1
j∈J(h′)

h′−m+p−1
j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=j

(h′
j − h′

i)
+ 2C2

t∑
j=1

j∈K(h′)

h′−m+p−1
p+j

∏n′

i=1 h
′ 12
i∏n′

i=1
i�=p+j

(h′
p+j − h′

i)

+ 2C2
n′∑

j=p+t+1

h′−m+p−1
j

∏n′

i=1 h
′ 12
i∏n′

i=1
j �=i

(h′
j − h′

i)
.

The computations are similar if n′ is odd. �
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Corollary A.4. The value of ΘΠ′
m

on H̃
′
= p̌(Ȟ

′
∅) is given, up to a constant, by:

ΘΠ′
m
(p̌(ȟ′)) = ±2C2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏n′

i=1 h
′
i

1
2
∑p

i=1

h′
i
−m+p−1∏

j �=i(h
′
i − h′

j)
if m ≤ −1− q−p

2 ,

−
∏n′

i=1 h
′ 12
i

∑n′

i=p+1

h′
i
−m+p−1∏

j �=i(h
′
i − h′

j)
otherwise ,

where C ∈ R.

This result was obtained in [27, Section 6].

Remark A.5. Assume that p = 1, q = 1. Then,

ΘΠ′
m
(h̃′) = 2±

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(eiθ−X)−m

eX − e−X
if m ≤ −1 and X > 0

−
(eiθ+X)−m

eX − e−X
if m ≤ −1 and X < 0

(eiθ+X)−m

eX − e−X
if m ≥ 0 and X > 0

−
(eiθ−X)−m

eX − e−X
if m ≥ 0 and X < 0

,

where h′ =

(
eiθ ch(X) sh(X)
sh(X) eiθ ch(X)

)
. We recover the results of [27, Section 7].

Appendix B. Cartan subgroups for unitary groups

It is well-known that the number of non-conjugated Cartan subgroups of G =
U(p, q), up to equivalence, is min(p, q) + 1 (see [15]). We recall in this appendix
how Cartan subgroups can be parametrised using strongly orthogonal roots (see
[35, Section 2]).

Let K = U(p) × U(q) be the maximal compact subgroup of G and H be the
(diagonal) compact Cartan subgroup of K. We denote by h, k and g the Lie algebras
of H, K and G respectively and hC, kC and gC their complexifications.

We denote by Δ = Δ(gC, hC) the set of roots, by Δc := Δc(kC, hC) the set of
compact roots and by Δn = Δ \ Δc the set of non-compact roots. Similarly, we
denote by Ψ a set of positive roots of Δ and let Ψc and Ψn the subsets of Ψ given
by Ψc = Δc ∩Ψ and Ψn = Δn ∩Ψ. In particular,

gC =
⊕
α∈Δ

gC,α,

where gC,α = {X ∈ gC, [H,X] = α(H)X,H ∈ hC}.

Notation B.1.

(1) For every α ∈ Δ, we fix Xα ∈ gC,α, Yα ∈ gC,−α and Hα ∈ ih such that:

[Hα, Xα] = 2Xα, [Hα, Yα] = −2Yα, [Xα, Yα] = Hα, Hα = −Hα = H−α,

and such that Xα = −Yα if α ∈ Δc and Xα = Yα if α ∈ Δn.
(2) We say that α, β ∈ Δ are strongly orthogonal if α �= ±β and α ± β /∈ Δ.

We denote by Ψst
n a maximal family of strongly orthogonal roots of Ψn (i.e.

a subset of Ψn such that every pair α, β ∈ Ψst
n is strongly orthogonal).
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For every α ∈ Ψst
n , we denote by c(α) the element of GL(p+ q,C) given by:

c(α) = exp
(π
4
(Yα −Xα)

)
.

For every subset S of Ψst
n , we denote by c(S) the element of GL(p+ q,C) defined by

(26) c(S) =
∏
α∈S

c(α),

and let

h(S) = g ∩Ad(c(S))(hC).

We denote by H(S) the analytic subgroup of G whose Lie algebra is h(S). Then,
H(S) is a Cartan subgroup of G and one can prove that all the Cartan subgroups
are of this form (up to conjugation).

For every S ⊆ Ψst
n , we will denote by HS the subgroup of HC given by:

HS = c(S)−1H(S)c(S),

where HC = {diag(λ1, . . . , λp+q), λi ∈ C}.
Without loss of generality, we assume that p ≤ q. The set of roots Δ is given

by Δ = {±(ei − ej), 1 ≤ i < j ≤ p+ q}, where ei is the linear form on hC = Cp+q

given by

ei(λ1, . . . , λp+q) = λi.

In this case,

Δc = {±(ei − ej), 1 ≤ i < j ≤ p} ∪ {±(ei − ej), p+ 1 ≤ i < j ≤ p+ q} ,

Δn = {±(ei − ej), 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q} ,

and the set Ψst
n can be chosen as {et − ep+t, 1 ≤ t ≤ p}. In particular, H(∅) = H

and if St = {e1 − ep+1, . . . , et − ep+t}, 1 ≤ t ≤ p, we get:

H(St) = exp
( p⊕

j=t+1

iREj,j ⊕
p+q⊕

j=p+t+1

iREj,j ⊕
t⊕

j=1

iR(Ej,j +Ep+j,p+j)

⊕
t⊕

j=1

R(Ej,p+j +Ep+j,j)
)
,

and the corresponding group HSt is given by

(27)
{
diag(eiX1−Xp+1 , . . . , eiXt−Xp+t , eiXt+1 , . . . , eiXp ,

eiX1+Xp+1 , . . . , eiXt+Xp+t , eiXp+t+1 , . . . , eiXp+q ), Xj ∈ R
}
.

Remark B.2. As explained in [35, Proposition 2.16], two Cartan subalgebras h(S1)
and h(S2), with S1, S2 ⊆ Ψst

n , are conjugate if and only if there exists an element of
σ ∈ W sending S1 ∪(− S1) onto S2 ∪(− S2).
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Appendix C. The character ε

Let (W, 〈·, ·〉) be a real symplectic space, Sp(W) the corresponding group of

isometries and S̃p(W) its metaplectic cover as in Equation (1).
Let W = X⊕Y be a complete polarization of W. We denote by Z the subgroup

of Sp(W) preserving both X and Y. In particular, we get that

Z =

{(
g 0
0 (g−1)t

)
, g ∈ GL(X)

}
≈ GL(X).

We define a double cover G̃L(X) of GL(X) by

G̃L(X) =
{
(g, η) ∈ GL(X)× C×, η2 = det(g)

}
, G̃L(X) � (g, η) → g ∈ GL(X).

As recalled in [2, Section 6], the restriction map

Z � g → g|X ∈ GL(X)

lifts to a group isomorphism

Z̃ � g̃ → (g|X , η) ∈ G̃L(X),

where η = η(g̃) is defined on Zc =
{
g̃ ∈ Z̃, det(g − 1)W �= 0

}
by the following

formula:

η(g̃) =
Θ(g̃)

|Θ(g̃)|| det(g|X)|
1
2 .

We denote by ε the function on Z̃ given by:

ε : Z̃ � g̃ → ε(g̃) =
η(g̃)

|η(g̃)| ∈ C.

One can easily prove that ε is a character of Z̃ with values in the set {±1,±i} such
that

(28) ε(g̃) =
Θ(g̃)

|Θ(g̃)|,
(
g̃ ∈ Z̃c

)
.

Lemma C.1. For every g̃ ∈ Z̃c, we get:

Θ(g̃)2 = det(g|X )−1 det

(
1

2
(c(g|X ) + 1)

)2

.

Proof. Then, for every g̃ ∈ Z̃c, we get:

Θ(g̃)2 = det(i(g − 1))−1 = (−1)
dimR(W )

2 det(g|X − 1)−1 det(g|Y − 1)−1

= det(g|X − 1)−1 det(1− g|Y )
−1 = det(g|X − 1)−1 det(1− g−1

|X )−1

= det(g|X − 1)−1 det(1− g−1
|X )−1 = det(g|X ) det(g|X − 1)−2.

We have:

1

2

(
c(g|X ) + 1

)
=

1

2

(
(g|X + 1)(g|X − 1)−1 + 1

)
=

1

2

(
(g|X + 1)(g|X − 1)−1 + (g|X − 1)(g|X − 1)−1

)
= g|X (g|X − 1)−1.
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Then,

Θ(g̃)2 = det(g|X ) det(g|X − 1)−2 =
(
det(g|X ) det(g|X − 1)−1

)2
det(g|X )−1

= det(g|X )−1 det

(
1

2
(c(g|X ) + 1)

)2

.

�

We define by det
− 1

2

X (g̃) the following quantity:

det
− 1

2

X (g̃) = Θ(g̃)

∣∣∣∣det(1

2
(c(g|X ) + 1)

)∣∣∣∣−1

.

In particular, for every g̃ ∈ Z̃c, we get:

(29) ε(g̃) =
Θ(g̃)

|Θ(g̃)| =
det

− 1
2

X (g̃)

| det−
1
2

X (g̃)|
,

(
g̃ ∈ Z̃c

)
.

Appendix D. The representations Πn
are not highest weight modules

D.1. Wave front set of a representation. The main reference here is [18] (for
more results concerning distributions, one can also check [16, Chapter 8]). Let G
be a real reductive Lie group and (ρ,H ) be a unitary representation of G. We
denote by J(H ) the set of trace class operators on H .

We denote by trρ : J(H ) → Cb(G) the map given by

trρ(T )(g) := tr(ρ(g)(T )), (g ∈ G, T ∈ J(H )),

where Cb(G) is the set of bounded functions on G. For every T ∈ J(H ), one can
easily see that trρ(T ) defines a distribution on G, where

trρ(T )(ψ) =

∫
G

ψ(g) trρ(T )(g)dg, (ψ ∈ C ∞
c (G)).

In particular, we can consider the wave front set WF(trρ(T )) of the distribution
trρ(T ). The wave front set WF(trρ(T )) is a closed set of the cotangent bundle T∗ G
of G that we will identify with G×g∗.

Definition D.1. The wave front set WF(ρ) of the representation ρ is defined as
the closure of the union of WF(trρ(T )) as T varies over J(H ).

One can easily verify that WF(ρ) is invariant under left and right invariant
translations of G on T∗(G). As explained in [18, Section 1], a bi-invariant set in
T∗ G = G×g∗ is identified with G×X, where X ⊆ g∗ is an Ad∗(G)-invariant set.
In particular, we associate to WF(ρ) an Ad∗(G)-invariant subset WF◦(ρ) of g∗,
which determines WF(ρ).

We denote by Θρ the character of the representation ρ and by WF(Θρ) its wave
front set. As before, one can easily see that WF(Θρ) is invariant under left and right
translations of G on T∗ G, and we associate to WF(Θρ) a closed Ad∗(G)-invariant
set WF◦(Θρ) of g

∗. As proved in [18, Theorem 1.8],

WF◦(Θρ) = WF◦(ρ).
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Remark D.2. The group G is reductive. We can find a non-degenerate invariant
form on g and then identify the G-orbits on g with the G-orbits on g∗.

We denote by N the nilpotent set in g. As proved in [18, Proposition 2.4], if ρ
is an irreducible unitary representation of G, then

WF◦(ρ) ⊆ N .

D.2. Wave front set of a highest weight module. Let (G,G′) be an irreducible
reductive dual pair in Sp(W) and g = Lie(G) and g′ = Lie(G′) the Lie algebras of
G and G′ respectively. We know that W = HomD(V

′,V) (where D is a division
algebra over R) and g ⊆ EndD(V), g′ ⊆ EndD(V

′) (see [17]). We denote by (·, ·)
and (·, ·)′ the D-hermitian and D-skew-hermitian forms on V and V′ respectively.

For every w ∈ HomD(V
′,V), we denote by w∗ the unique element of HomD(V,V′)

satisfying

(w(v′), v) = (v′, w∗(v))
′
, (v ∈ V, v′ ∈ V′).

We denote by τg : W → g and τg′ : W → g′ the unnormalized (moment) maps
given by

τg(w) = ww∗, τg′(w) = w∗w, (w ∈ W).

Lemma D.3. Let w ∈ W such that τg(w) = 0. Then τg′(w)2 = 0.

Proof. Assume that τg(w) = ww∗ = 0. Then

τg′(w) = (w∗w)(w∗w) = w∗(ww∗)w = w∗τg(w)w = 0.

�

Lemma D.4. Assume that G is compact. Then WF◦(Π′)2 =
{
X2, X ∈ WF◦(Π′)

}
= {0}.

Proof. As explained in [32, Theorem 6.11], we get WF◦(Π′) = τg′(τ−1
g {0}). The

result follows from Lemma D.3. �

Lemma D.5. Let k ∈ Z+ and Π′ be a highest weight representation of Ũ(p, q),

where Ũ(p, q) is the det
k
2 -cover of U(p, q), i.e.

Ũ(p, q) =
{
(g, ξ) ∈ U(p, q)× C∗, ξ2 = detk(g)

}
.

Then WF(Π′)2 = {0}.

Proof. By using [7], there exists n ∈ Z+ such that n− k ∈ 2Z and a representation

Π of Ũ(n) (where Ũ(n) is the det
p−q
2 -cover of U(n)) such that Π′ = θnp,q(Π). The

lemma follows from Lemma D.4. �

We now use the notations of Section 6. Let (G′,Gn) = (U(1, 1),U(n, n + 1))

be the dual pair of Sp(Wn), with Wn = (C2 ⊗C C2n+1)R, and Πn = θ1,1n,n+1(Π
′).

We denote by g′ and gn the Lie algebras of G′ and Gn respectively. Similarly, let
τg′ : Wn → g′ and τgn

: Wn → gn the unnormalized moment maps.

Proposition D.6. The representations Πn constructed in Section 6 are not highest

weight modules of Ũ(n, n+ 1).
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Proof. By using Lemma D.5, the theorem follows if we prove that WF◦(Πn) �= {0}.
As proved in [34, Theorem 2], we have WF◦(Πn) = τgn

(τ−1
g′ (WF◦(Π′))). Let O be

the G′-nilpotent orbit such that O = WF◦(Π′). As explained in [32], τgn
(τ−1

g′ (O)) =

On, where On is a unique nilpotent Gn-orbit and WF◦(Πn) = On.
The moment maps τg′ and τgn

can be extended canonically to the complex-
ifications and let OC (resp. On,C) be the corresponding GL(2,C)-orbit (resp.
GL(2n+1,C)). The correspondence of orbits in the stable range has been studied in
[6]. As explained in [5], nilpotent orbits can be parametrized by partitions. Clearly,
the partition corresponding to OC is (2) and it follows from [6, Theorem 4.2] that
the partition corresponding to On,C is (3, 1, . . . , 1︸ ︷︷ ︸

2n−2

).

In particular, one can easily see that for any X ∈ On,C, X
2 �= 0 and it follows

that On contain elements X1 such that X2
1 �= 0, so WF◦(Πn)2 �= {0}. �
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lish summary), Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 573–609. MR1296557
[5] David H. Collingwood andWilliamM. McGovern,Nilpotent orbits in semisimple Lie algebras,

Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
MR1251060
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