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REPRESENTATIONS OF 2-TRANSITIVE
LOCALLY COMPACT GROUPS

ROBERT A. BEKES

ABSTRACT. We show that noncompact representations of 2-transitive locally
compact groups are irreducible.

INTRODUCTION

Let G be a locally compact group acting on a topological space X such that the
map G X X — X is continuous. Then there exists a Radon measure y on X such
that the action of G on X can be extended to a continuous unitary representation
of G on the Hilbert space La(X, ). See Folland [5].

The action of G is transitive if for z and y in X there exists g in G such that
gxr =y. The action of G is 2-transitive if for x1 # x5 and y; # ys in X there exists
g in G such that gz; = y; and gz = yo.

Assume that G acts 2-transitively on X. If G is finite, using Burnside’s Lemma,
the unitary representation of G on X splits into two subrepresentations, the iden-
tity representation and an irreducible representation orthogonal to the identity
representation; see Serre [6, Section 2.3, problem 2.6]. For infinite discrete G and
X, Chernoff [2] showed that the unitary representation of G on X is irreducible.
The purpose of this paper is to show that for noncompact G and X the unitary
representation of G on X is irreducible.

1. NONCOMPACT G AND X
In this section we prove Theorem [Tt

Theorem 1. Let G be a noncompact nondiscrete locally compact and o-compact
topological transformation group acting faithfully and 2-transitively on a locally com-
pact noncompact not totally disconnected space X. Then the unitary representation
of G on the Hilbert space Lo(X, p) is irreducible.

Throughout this section G and X satisfy the hypothesis of Theorem [ and all
group operations are written multiplicatively.

Let H be the stabilizer of a point o € X. Then H acts transitively on X \ {o}.
By Theorem C in Kramer [5], X carries the structure of a finite dimensional vector
space, with basepoint o = 0. The group H is a matrix group, acting transitively on
the set of nonzero vectors. The group G is then the semi-direct product G = H x X,
in its natural action on X.
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Let f be a continuous function X with compact support and let h € H. Define

w(h)f on X by m(h)f(z) = \/p(h) ' f(h~ ) where p(h) is the absolute value
of the determinant of h acting on X. Then m(h) can be extended to a unitary
operator on the Hilbert space Lo(X, ) and the map h — 7(h) to a continuous
unitary representation of H on La(X, it). See Folland [4] Section 6.1, pg. 154]. Since
G = H x X we can extend p to all of G by p(hx) = p(h) and so p(g192) = p(91)p(92)
for g1,92 € G. The unitary representation 7 can then be extended to all of G' by

m(9)f(x) = /p(g)~1f(g ')

Lemma 1. Let x1 # xo in X. Then there exist x3, x4, ...and § > 0 such that the
x; are all distinct and for i # j there exists g € G with gx; = 1, gx; = 2, and
plg) <.

Proof. Let 7 be the unitary representation of G on Lo(X, 1) defined above. Since
G is 2-transitive, there exists a g, such that g, = =1 and g,z1 = z2. Let
6 = p(g,)- Suppose we have x1, 2, 3, ..., @, such that for ¢ # j there is
g € G with gz; = x1, gx; = 2, and p(g) < ¢. Choose z,4+1 as follows: For each
1 < i < nlet H; be the stabilizer of x;. Since G is 2-transitive, X = {gz, | g € H;}.
Let A = {gz,]|p(g) > 1}. Then A has nonempty interior and so u(A) > 0.
Therefore also u(A\ {z1,...2n}) > 0. Choose x,41 € A\ {z1,...2,}. Then for
each 1 < i < n there exists g; such that z,41 = ¢;2n, ¢;2; = z;, and p(g;) > 1.
So gi Ywpi1 = Tn, gi tw; = x;, and p(g;) > 1. Therefore p(g;~!) = p(g;)~* < 1.

By the choice of x1, x2, x3, ..., x,, there exists ¢’ such that ¢'z,, = xs, ¢'z; = 1,
and p(g’) < 8. Then setting g = ¢'g;~! we get grn,i1 = x2, gr; = 1, and
0(9) = p(g'g:™") = p(g")p(gi~ ') < 6. Therefore the set 1, T2, T3, - .., Tn, Tni1
has the desired property. (|

Proof of Theorem [l Let { , ) be the inner product on Lao(X, ). Let U be a
measurable set in X with compact closure. Then p(U) < oo. Let x1 and x5 be
such that x1U ~ z1 + U and 23U ~ x5 + U are disjoint. Using Lemma [Il we get
distinct x1, 2, x3, ...in X and § > 0 such that for ¢ # j there exists g;; € G
with g;jz; = 21, gijx; = x2 and p(g;5) < 6. Therefore g;;(z;U) = (gijx:)U = 21U,
9ij(x;U) = (9ij2;)U = 22U, and so {z;U} is a sequence of disjoint subsets.

For any subset W of X let &y denote the characteristic function of W. Let
fn = Z?:l ci€z,u with ¢; > 0. Since X acts transitively on itself, there exists
v; € X such that v;z; = x1. Since p = 1 on X, p(a;U) = p(z1U). Therefore
(fn, fn) = >, ci?u(z1U). Let T be a positive intertwining operator for the action
m of G on X. Then

<T€%‘U7 £$ZU> = <7T(’Ui)T£GCiU7 Tr(vi)gﬂﬁiU>
= <T£v71z,1Ua£v7¢z,¢U>
= (T¢e,v,8,0)

and for i # j,

<T§in7 fsz> <7T(gij)T§in7 7T(gij)gatj U>
9i5) T 00+ Egi2,0)

(
(gij)_1<T§I1U7 §I2U>-

p
p
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Therefore

n

(T, fn) = Zcz (T¢v:6u0) + ZC’LC] T, &a;u )

i=1 i#£]

(1) n
= X (T&,v. &) + Y cicip(gi) (Téa,vs &anur)-
i=1 i#j
Since T is positive (T¢,, v, &x,u) 18 real.
If (T, u,&x,u) > 0, from () we get

(T fns fn) 2 Zcicj p(gij)71<T§x1Ua€sz>
i#j

v

Z CiCj(S_l <T€w1U7 §x2U>
| i#7

Now let ¢; =  and f = 377, ¢;&,u. Then since Y ;o; ¢;? < oo we have f €
Lo(X, p) and limy, 0o (T fr, fr) = (T'f, f) < co. Since Y .0, ¢; = o0, letting n — oo
in @) we must have (T, v, &z,u) = 0.

If (T¢:,u,&x,u) <0, from () we get

ZC’L T§z1U>§9L’2U>

(T fr, fn) = Zcz‘2<T§x1U7§le> + Z cicip(gij) " Téwv. nnu)

=1 i£]
(3) < Z C; T§I1U7 leU + Z Czcj T§z1U7 5:1:2U>
i=1 i#]

foan £x1U>

2
Z ‘| ZC’L T&wan£x2U>

1=1

H'M:

As above, let ¢; = % Then Y 2, ¢;? < 00, >0y ¢; = 00, and limy, oo (T fr, frn) =
(Tf,f) < oco. So with (T¢,,v,&.,vu) < 0, letting n — oo in ([B) we must have
(T¢s,U,&zu) = 0. Therefore if p(U) < oo, (T¢s,v,&xov) = 0 when 21U and xU
are disjoint.

Since X is homeomorphic with R™, there is a sequence {Uy}72 ; of subsets of X
with p(Uy) — 0 such that each Uy is the disjoint union of Uiy and a translate of
Uj+1 and finite linear combinations of characteristic functions of disjoint translates
of Uy, k > 1, are dense in Lo(X, p).

Now suppose W = U U 2U where 0 < pu(U) < oo and U and aU are disjoint.
Then by the above argument, (T¢y,&v) = (T¢wv, u) = 0. There exists v in X
such that v(2U) = U. Since p =1 on X, we also get

(T¢ov, &av) = (T(0) T, T(0)60u) = (Téuuy; o)) = (Tév, Ev)-
Let

A=W
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Then

N (T¢v, &v) + (T, Sav) <T€U75U>.

2u(U) )
So for any such decomposition, A is independent of U and W and so (T¢w,{w) =

Méw, &w) and (T¢u, &u) = Méu, &v). Therefore (T'¢y, ,{u,) = MEu,, uy) for all
k and so T'= AI. It then follows that the representation 7 is irreducible. O

By Theorem [I the noncompact representations of the 2-transitive groups clas-
sified by Tits in [7] are all irreducible. For a complete classification see Kramer
[5, Theorem 5.14 and 6.17].

Examples. Let G be the ax + b group acting on R by z — ax + b where a # 0.
If 21 # 22 and y; # yo the system [2 ﬂ {Z] = B;] has a solution. Therefore
the action of G is 2-transitive on R, see Conrad [3, example 4.3]. By Theorem [I
the unitary representation of G on Lo(R, 1) is irreducible. This result also follows
from the representation theory of semi-direct products, see Folland [4l, Section 6.7,
pg. 189].

Some examples from Kramer [5, Theorem 5.14 and 6.17] of groups acting 2-
transitively and hence irreducibly on X = R", are G = SO(n) - Ry¢ x R™ and
G = SL,(R) x R™ with n > 3, and G = Sp(n) - C* x R"” and G = Sp,,,(R) x R"
with n > 2.

The argument in the proof of Theorem [ simplifies for infinite discrete groups
acting on an infinite discrete set X. To prove irreducibility, start by selecting
distinct 1, x2, ...in X and replacing x;U by the singleton {z;} and W with
{zi,x1}. This case is proved in Chernoff [2].

For example let G be the group of permutations on Z that move only a finite
number of integers. Then G acts 2-transitively and so the unitary representation
of G on l3(Z, p) is irreducible.

2. CoMPACT X

Suppose G is a locally compact group acting 2-transitively on a compact topo-
logical space X. Let 7 be the unitary representation of G on the Hilbert space
Lo(X, ). Unlike the situation for finite groups, m restricted to the orthogonal
compliment of the constant functions in Ly(X, ) may not be irreducible as the
following example illustrates.

Example. Let G = SLy(R) and X = RP*, the real projective line. Then it is
shown in Conrad [3, Theorem 4.21] that the action of G on X is 2-transitive. It
follows from Casselman [Il page 16] that X = G/B where B is the Borel subgroup
of G and the representation on X is, via normalized induction, Indg 5;1/ % where

t x
oo 41
the orthogonal complement of the projection onto the space of constant functions
on X splits into two infinite dimensional subrepresentations.

If G is compact, let H be the stabilizer of a point 0 € X. Then H is also compact.
But H acts transitively on the open set X\{o}, so X\{o} is clopen. Therefore {o}
is open and so X is discrete and hence finite.

] = t2. By Casselman [I, Proposition 8.7] with s = —1, m = 1, and n = 0,
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