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BRANCHING OF METAPLECTIC REPRESENTATION

OF Sp(2,R) UNDER ITS PRINCIPAL SL(2,R)-SUBGROUP

GENKAI ZHANG

Abstract. We study the branching problem of the metaplectic representa-
tion of Sp(2,R) under its principle subgroup SL(2,R). We find the complete
decomposition.

Introduction

The problem of finding the branching rule of a unitary representation (Λ,G) of a
semisimple Lie group G under a subgroup H is of fundamental interests in represen-
tation theory. In the present paper we shall study this problem for the metaplectic
representation Λ of the symplectic group G = Sp(2,R) under its principal subgroup
SL(2,R).

The metaplectic representation forG = Sp(2,R) can be realized on the Fock space
F(C2) and the Lie algebra g acts as differential operators with quadratic polynomial
coefficients. We use the classical approach by finding the spectra of the Casimir
operator C. To find the continuous spectrum we compute the action of the Casimir
element on some orthogonal basis of weight vectors of SO(2) ⊂ SL(2,R) of a fixed
weight. We prove that Casimir element is unitary equivalent to the coordinate
multiplication operator on certain hypergeometric orthogonal polynomials, more
precisely the continuous dual Hahn polynomials, and it determines the continuous
spectrum of C.

To find the discrete components we solve the equation of highest or lowest weight
vectors for sl(2,C)-actions in the Fock space. We prove that lowest weight repre-
sentations of SL(2,R) will not appear in (Λ,G) and we find all highest weight
representations.

For the even part of the metaplectic representation this decomposition can also be
treated using the Berezin transform [20]; see Remark 3.8. The connection between
hypergeometric orthogonal polynomials and branching problems has been observed
in the earlier works [19,21], it was proved that density for orthogonality is precisely
the product of Harish-Chandra c-function and the symbol of the Berezin transform.

We remark that if we transfer our results in the Schrödinger L2(R2)-realization,
we have essentially found the spectrum of some partial differential operators of de-
gree four involving squares of harmonic oscillator of the form α(A∂, ∂) + β(Bx,x)
with non-positive definite symmetric matrices A and B, and this might be of inde-
pendent interests.
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Finally we mention very briefly our motivation, related known results and some
perspective questions. Firstly the exact appearance of SL(2,R) ⊂ G = Sp(2,R) and
the corresponding branching problem can be used to study the induced representa-
tion of the group G2 from its Heisenberg parabolic subgroup [7]; in [8] we shall study
the non-compact realization of induced represenations for Hermitian Lie groups us-
ing the related branching of metaplectic representation, the compact picture being
studied in [22]. Next this kind of branching problem can be formulated for any
real split simple Lie group G. Indeed up to conjugation there is a unique principal
subalgebra sl(2,R) (and it might have more than one principal sl(2,R)-subgroups);
see [14]. For general G = Sp(n,R) we can use covariant differentiations to produce
some discrete components, but the results are not complete as for G = Sp(2,R)
and will not be present here; see e.g. [3, 12, 16] for related study and references. It
is also tempting but challenging to study the branching problems for the minimal
representations of G under SL(2,R), even for groups of lower rank such as SL(3,R)
and G2. The principal SL(2,R)-subgroups in split real Lie groups correspond to
certain nilpotent orbits [2]. On the other hand general nilpotent orbits of real Lie
groups are closely related SL(2,R)-subgroups. One might ask if there is a gen-
eral theory about the branching under SL(2,R) of representations of G related to
the corresponding nilpotent orbits. Next the branching of metaplectic representa-
tions under dual pairs, namely the dual correspondence, has been under intensive
study and has found many applications; for the dual pair SL(2,R) × O(p, q) in
Sp(p+ q,R) there is some detailed study of Plancherel formula by Howe [10] using
the results of Repka [17] on tensor products of representations of SL(2,R); how-
ever our result here seems can not be deduced from [17]. From a classical analytic
point of view explicit decompositions under SL(2,R) provide methods to discover
new orthogonal polynomials and spectral decomposition of higher order self-adjoint
operators. Finally the appearance of certain specific SL(2,R) in Sp(n,R) and hy-
perbolic discs in locally symmetric spaces or Teichmüller space is of importance in
higher Teichmüller theory [1].

The paper is organized as follows. In Section 1 we recall the realization of the
metaplectic representation of Sp(n,R) on the Fock space. We find the explicit
description of the principal SL(2,R)-subgroup in Sp(n,R) and its action on the
metaplectic representation in Section 2. The complete decomposition of the meta-
plectic representation of Sp(2,R) is done in Section 3.

1. Preliminaries

We recall some known facts on metaplectic representations of G = Sp(n,R).

1.1. The group G = Sp(n,R). The symplectic group G = Sp(n,R) has usually two
different realizations, as the group of biholomorphic transformations of the Siegel
upper half space or the bounded symmetric domain. We shall use the latter one,
which is sometimes denoted by G = Sp(n,R)c. See [4–6, 15].

Let Sp(n,C) be the group of complex 2n × 2n-matrices preserving the standard
complex symplectic form Ω(z,w) = z1wn+1 +⋯ + znw2n − zn+1w1 −⋯ − z2nwn. Let
U(n,n) be the indefinite unitary group on C

2n preserving the Hermitian form
⟨z,w⟩n,n = z1w1 + ⋯ + znwn − ⋯ − z2nw2n of signature (n,n). Let G = Sp(n,R) ∶=
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U(n,n) ∩ Sp(n,C). Elements in G will be represented as 2 × 2-block matrices

(1.1) g = [a b
b̄ ā

] ,

where a, b are complex n×n-matrices. Let K ≃ U(n) be the subgroup of block diag-
onal matrices g = diag(a, ā), with a ∈ U(n), U(n) being in its standard realization.
Then K is the maximal subgroup of G, and to save notation we identify diag(a, ā)
with a.

The Cartan decomposition is g = k + p with k = u(n), p = Ms
n(C) = {B ∈

Mn(C);B = Bt}; more precisely

k = {diag(A,−At),A ∈ u(n)} ,(1.2)

p = {ξB = [
0 B
B̄ 0

] ;B = Bt ∈Mn(C)} ,(1.3)

in the above matrix realization.

1.2. Metaplectic representation. Let F = F(Cn) be the Fock space of entire
functions f ∈ O(Cn) on C

n such that

∥f∥2 = ∫
Cn
∣f(z)∣2e−π∣z∣

2

dz < ∞,

where dz is the Lebesgue measure. The monomials {zα = zα1

1 ⋯zαn
n } form an or-

thogonal basis with norm square

(1.4) ∥zα∥2 = 1

πα1+⋯+αn
(α1!)⋯(αn!),

and F has reproducing kernel eπ(z,w̄), namely

(1.5) f(z) = ⟨f, eπ(⋅,z̄)⟩ = ∫ f(w)eπ(z,w̄)e−π∣w∣
2

dw, f ∈ F , z ∈ Cn,

where (z,w) = ∑ zjwj is the C-bilinear form.
The metaplectic representation (Λ,F ,Mp(n,R)) is a unitary representation of

the double cover of G = Sp(n,R) on the Fock space F , and is explicitly given by
[6, Theorem 4.37],

Λ(g)f(z)

= det−
1
2 (a)∫ exp{π

2
[(b̄a−1z, z) + 2(a−1z, w̄) − (a−1bw̄, w̄)]}f(w)e−π∣w∣

2

dw,

for g as in (1.1). In particular the group U(n) acts as

Λ(a)f(z) = det−
1
2 (a)f(a−1z), a ∈ U(n).

The space F = F+ ⊕F− is sum of the subspaces of even and odd functions, with
Λ = Λ+ ⊕Λ− a sum of two irreducible representations.

Lemma 1.1. The Lie algebra action of sp(n,C) on F is given as follows

Λ(X)f = − 1

2π
(B∂, ∂)f, Λ(Y )f = π

2
(Bz, z)f,

Λ(Z)f(z) = − trD
2

f(z) − (∂Dzf)(z),
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for

X =XB = [
0 B
0 0

] , Y = YB = [
0 0

B 0
] , B = Bt,

Z = ZD = [
D 0
0 −Dt] , D ∈ gl(n).

Proof. Let ξB be as in (1.3) and perform the differentiation d
dt

of the action exp(tξB)
∈ G at t = 0,

Λ(ξB)f(z) = ∫
π

2
[(Bz, z) − (Bw̄, w̄)] eπ(z,w̄)f(w)e−π∣w∣

2

dw.

The integration of the first term is
π

2
(Bz, z)f(z)

by the reproducing kernel formula (1.5). Differentiating the formula (1.5) by
(B∂, ∂) we find

(B∂, ∂)f(z) = π2 ∫ (Bw̄, w̄)eπ(z,w̄)f(w)e−π∣w∣
2

dw.

Thus the second integration above is

−π
2

1

π2
(B∂, ∂)f(z) = − 1

2π
(B∂, ∂)f(z).

Taking the complex linear and conjugate linear parts in B we get the first two
formulas. The last formula is a straightforward computation. �

1.3. Unitary representations of SU(1, 1) and their realizations. Let G0 ∶=
SU(1, 1) be the group of 2 × 2-matrices preserving the Hermitian form ⟨z,w⟩1,1 =
z1w̄1 − z2w̄2 with determinant 1. We fix the maximal subgroup

(1.6) L = U(1) = {uθ = [
eiθ 0
0 e−iθ

]} ⊂ G0.

We fix also the Lie algebra elements

(1.7) h = [1 0
0 −1] , e+ = [0 1

0 0
] , e− = [0 0

1 0
] , e = e+ + e−

forming the standard basis of sl(2,C). Let

C = e+e− + e−e+ + 1

2
h2 = 2e+e− − h + 1

2
h2

be the Casimir element.
Recall [9, Theorem 1.3] that any unitary irreducible representation σ of SU(1, 1)

is one of the following

(1) Spherical principal or complementary series σiλ,+ with all weights of h being
even integers; the eigenvalue of Casimir C is −1

2
−λ2 for λ ∈ R+ or λ ∈ (0, 1

2
).

(2) Non-spherical principal series σiλ,−; for λ ∈ R+ with all weights of h are odd
integers; the eigenvalue of Casimir C is − 1

2
− λ2 for λ ∈ R+.

(3) Highest weight representations σ−ν with negative integral weights −ν, ν ≥ 1;
the eigenvalue of Casimir C is 1

2
ν2 − ν.

(4) Lowest weight representations σν with positive integral weights ν, ν ≥ 1;
the eigenvalue of Casimir C is 1

2
ν2 − ν.
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The non-integral highest or lowest weights ν correspond representations of the
universal covering of SU(1, 1), which will not concern us here.

1.4. Continuous dual Hahn polynomials and spectra of multiplication op-
erators. We recall the orthogonality relation of continuous dual Hahn polynomials.
They are special cases of Wilson hypergeometric polynomials [13], and will be used
in Section 3 to find the spectra of Casimir element.

Proposition 1.2 ([13, pp. 196-199]). Let a ≥ 0, b > 0, c > 0, μ = μa,b,c be the measure

dμa,b,c(x) =
1

2π

1

Γ(a + b)Γ(a + c)Γ(b + c) ∣
Γ(a + ix)Γ(b + ix)Γ(c + ix)

Γ(2ix) ∣
2

dx

on R
+ = [0,∞) and L2(R+, μ) the corresponding L2-space. Let

ωm(x2) = ωm;a,b,c(x2) = 3F2(−m,a + ix, a − ix;a + b, a + c, 1), m = 0, 1, . . . ,
be the continuous dual Hahn polynomials. Then {ωm(x2)} form an orthogonal basis
of L2(R+, μ),

⟨ωm, ωl⟩ =
m!(b + c)m

(a + b)m(a + c)m
δm,l,

where

(a)m = a(a + 1)⋯(a +m − 1)
is the Pochhammer symbol. The multiplication operator by −x2 has the following
3-term recursion on the basis,

−x2ωm(x2) = Amωm+1(x2) − (Am +Cm − a2)ωm(x2) +Cmωm−1(x2),
where

Am = (m + a + b)(m + a + c), Cm =m(m + b + c − 1).
In particular the spectrum of the multiplication x2 on L2(R+, μ) is the positive half
line R

+ = [0,∞).

We shall need rescaled Wilson polynomials ω̃m(x2) ∶= ω̃m((x3 )
2). The factor of

3 in our case is closely related to our imbedding of SL(2,R) in Sp(2,R) via triple
symmetric tensor product S3

R
2 = R4. We denote the corresponding measure by

dμ̃(x) = dμa,b,c(
x

3
).

Corollary 1.3. Let a ≥ 0, b > 0, c > 0, Am, Cm be as above. The polynomials ω̃m(x2)
form an orthogonal basis, L2(R+, μ̃),

(1.8) ∥ω̃m∥2 =
m!(b + c)m

(a + b)m(a + c)m
,

and satisfy the following recurrence relation

(1.9) − 1

32
(x2+d)ω̃m(x2) = Amω̃m+1(x2)−(Am+Cm−a2+

d

32
)ω̃m(x2)+Cmω̃m−1(x2),

for any d ∈ R.

The introduction of d is purely for practical convenience for identifying the spec-
trum of some abstract operator with the multiplication operator x2 + d in Section
3.



BRANCHING OF METAPLECTIC REPRESENTATION OF Sp(2,R) 503

2. The group homomorphism ι ∶ G0 = SU(1, 1) → G
and the restriction of representations of G to G0

We find the explicit realization of the principal G0 = SU(1, 1) (= SL(2,R))
subgroup in the symplectic group G and find explicit formulas for pull-back of the
metaplectic representation to G0.

2.1. The homomorphism ι ∶ G0 → G. The defining action of SL(2,C) on C
2

preserves the complex symplectic form dz1 ∧ dz2. Its symmetric power represen-
tation ι ∶ SL(2,C) → SL(2n,C) on S2n−1

C
2 = C

2n preserves the symplectic form
S2n−1(dz1 ∧ dz2). This defines a group homomorphism ι ∶ SL(2,C) → Sp(n,C).

It is immediate that ι(G0), G0 = SU(1, 1), preserves also the Hermitian form
⟨⋅, ⋅⟩n,n = S2n−1⟨⋅, ⋅⟩1,1 of signature (n,n). Thus we have the group homomorphism

(2.1) ι ∶ G0 = SU(1, 1) → U(n,n) ∩ Sp(n,C) = Sp(n,R) = G.

We can find explicitly the image of ι of SU(1, 1) and of the Lie algebra sl(2,C).
Let m = 2n − 1 and realize V = Sm

C
2 as the space homogeneous polynomials

f(x, y) degree of m on C
2, g ∈ GL(2,C) ∶ f(x, y) ↦ f((x, y)g). The space V is

equipped with the dual of Hermitian form S2n−1⟨⋅, ⋅⟩1,1 and dual of the symplectic
form S2n−1(dx ∧ dy), namely Ω(p, q) = (∂x1

∂y2
− ∂y1

∂x2
)m(p(x1, y1)q(x2, y2)). We

fix an ⟨⋅, ⋅⟩n,n-orthonormal and Ω(⋅, ⋅)-symplectic basis of V ,

pk =
√
( m

2(k − 1))x
m−2(k−1)y2(k−1) =

√
( m

2(n − k) + 1)x
m−2(k−1)y2(k−1),

qk =
√
( m

2(k − 1))y
m−2(k−1)x2(k−1) =

√
( m

2(n − k) + 1)y
m−2(k−1)x2(k−1),

1 ≤ k ≤ n;
namely they satisfy

⟨pk, pj⟩n,n = −⟨qk, qj⟩n,n = δkj , Ω(pk, pj) = Ω(qk, qj) = 0,
Ω(pk, qj) = δkj , 1 ≤ k, j ≤ n.

Proposition 2.1. Let kθ be the diagonal matrix

kθ = diag(e(2n−1)iθ, e(2n−1−4)iθ,⋯, e−(2n−3)iθ).
Then ι(uθ) = kθ and the Lie algebra gC-elements

H ∶= ι(h),E± ∶= ι(e±),E = ι(e) = E+ +E−

are given by

H = [D 0
0 −D] , E+ = [0 B

C 0
] , E− = (E+)t, E = [ 0 B +C

B +C 0
]

where

D = diag(2n − 1, 2n − 5,⋯,−(2n − 3)),
B is skew diagonal and symmetric and C lower skew diagonal and symmetric,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 β1

0 . . . β2 0
⋮ ⋰ ⋮ ⋮
βn . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0
0 . . . 0 γ2
⋮ ⋮ ⋰ ⋮
0 γn 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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with

βk =
√
(2k − 1)(2(n − k) + 1), 1 ≤ k ≤ n, γk = 2

√
(k − 1)(n − k + 1), 2 ≤ k ≤ n;

that is B = (bjk), C = (cjk) with

bjk = βkδj,n−k+1, cjk = γkδj,n−k+2, 1 ≤ k, j ≤ n

in term of the Kronecker symbol δpq.

Proof. The action of kθ = ι(uθ) is diagonal and is found immediately, so is H = ι(h).

Performing d
dt
∣t=0 on the action ι(exp(te+)) = ι([1 t

0 1
]) ∶ f(x, y) ↦ f(x, tx + y) we

find

E+p1 = 0,

E+pk = π(e+)pk = (2k − 2)
√
( m

2(k − 1))x
m−2(k−1)+1y2(k−1)−1

=
(2k − 2)

√
( m
2(k−1))√

( m
2(k−1)−1)

qn−(k−2)

= 2
√
(k − 1)(n − k + 1)qn−(k−2)

for k ≥ 2, and

E+qk =
√
(2k − 1)(m − 2k + 2)pn−k+1, 1 ≤ k ≤ n.

The element E− = π(ι(e−)) = (E+)t by our choice of the basis. �

We remark that the homomorphism of SL(2,C) into Sp(n,C) realizes also
SL(2,R) as a subgroup in a different real form Sp(n,R) in Sp(n,C), and it is
the principle SL(2,R)-subgroup of G = Sp(n,R); see [14] for the general study of
principle SL(2,R)-subgroup in real split groups. This specific case of SL(2,R) in
G = Sp(n,R) is also of interests in topology [1].

2.2. The induced action of Lie algebra of sl(2) on F for n = 2. We shall
find polynomials p that are annihilated by the differential operator (B∂, ∂), and we
shall call them (B∂, ∂)-harmonic, i.e.

(2.2) B(∂, ∂)p(z) = 0.

When n = 2 the matrices kθ,B,C,D are of the form

(2.3) kθ = diag(e3iθ, e−iθ), B = [
0

√
3√

3 0
] , C = [0 0

0 2
] , D = diag(3,−1).

This combined with Lemma 1.1 gives the explicit form for the action Λ ○ ι of sl(2).
With some abuse of notation we denote it also by Λ, and we find
(2.4)

Λ(H) = −1−(3z1∂1−z2∂2), Λ(E+) = −π−1
√
3∂1∂2+πz22 , Λ(E−) = −π−1∂2

2+π
√
3z1z2.
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We can also prove independently that this defines a representation of sl(2) on the
Fock space without using the metaplectic representation. Indeed we have for any
f ,

[Λ(E+),Λ(E−)]f = [−π−1
√
3∂1∂2 + πz22 ,−π−1∂2

2 + π
√
3z1z2]f

= −3[∂1∂2, z1z2]f − [z22 , ∂2
2]f

= −3(z1∂1f + z2∂2f + f) + 2f + 4z2∂2f = −3z1∂1f + z2∂2f − f
= Λ(H)f,

[Λ(H),Λ(E+)]f = [−3z1∂1 + z2∂2,−π−1
√
3∂1∂2 + πz22]f

= π−13
√
3[z1∂1, ∂1∂2]f − π−1

√
3[z2∂2, ∂1∂2] + π[z2∂2, z22]

= −π−13
√
3∂1∂2f + π−1

√
3∂1∂2f + 2πz22f = −π−12

√
3∂1∂2f + 2πz22f

= 2(−π−1
√
3∂1∂2f + πz22) = 2Λ(E+)f,

and

[Λ(H),Λ(E−)]f = [−3z1∂1 + z2∂2,−π−1∂2
2 + π

√
3z1z2]f

= −3π
√
3[z1∂1, z1z2]f − π−1[z2∂2, ∂2

2]f + π
√
3[z2∂2, z1z2]f

= −3π
√
3z1z2f + 2π−1∂2

2f + π
√
3z1z2f = −2Λ(E−)f.

Remark 2.2. It was pointed out to me by the anonymous referee that sp(2,R) has
two principal nilpotent orbits under the adjoint action of Sp(2,R). In terms of the
simple roots {ε1−ε, 2ε2} for the Lie algebra sp(2,R), the complex principal nilpotent
orbit is determined, up to scalars, by the element H = 2ε1 + (ε1 + ε2) = 3ε1 + ε2 in
a standard sl(2)-triple {H,E±}, namely the diagonal matrix diag(3, 1,−3, 1). The
nilpotent element E+ has two possible forms,

E+ ∶ q1 → p2 → q2 → p1 → 0, E+ ∶ p1 → q2 → p2 → q1 → 0.

Our principal sl(2,R) subalgebra is conjugated to the first one; the two nilpotent
matrices are conjugated by a matrix exchanging the symplectic forms Ω and −Ω.

3. The complete decomposition for (Λ,Mp(2,R)) under SU(1, 1)
3.1. Orthogonal basis for U(1)-weight vectors. Let n = 2. We shall find or-
thogonal polynomials in F = F(C2) of a fixed U(1) = ι(U(1))-weight. Let P ⊂ F
be the polynomial space. All weights refer to the metaplectic representations under
U(1) unless otherwise explicitly stated.

Denote

(3.1) I(z) = π2

3
√
3
z1z

3
2 .

(The coefficient is chosen to simplify the expression for the solutions of the equation
(3.8).) Then I generates all invariants in the polynomial space P of the defining
action of ι(U(1)). Recall (α)m = α(α + 1)⋯(α +m − 1), the Pochhammer symbol.

The orthogonal basis vectors {zm1

1 zm2

2 } of F are weight vectors of U(1) of weights
−1 − 3m1 +m2, and modulo 3 they are of the form μ = −3k − 1,−3k,−3k + 1. We
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denote F∣μ
U(1) the subspace of all weight vectors of weight μ. Then if k ≥ 0 we have

F∣−3k−1U(1) =
⊕
∑
l≥0

C(I l(z)zk1 ),(3.2)

F∣−3kU(1) =
⊕
∑
l≥0

C(I l(z)zk1 z2),(3.3)

and

(3.4) F∣−3k+1U(1) =
⊕
∑
l≥0

C(I l(z)zk1z22);

if k < 0 we then replace zk1 by z−3k2 in the above formulas.
We compute the norm of weight vectors.

Lemma 3.1. The square norms ∥Imzk1 ∥2F and ∥Imzk2 ∥2F are given by

∥Imzk1 ∥2 =
1

πk
(m!)2(m + 1)k(

2

3
)m(

1

3
)m,

∥Imzk2 ∥2 =
1

πk
(m!)2(3m + 1)k(

2

3
)m(

1

3
)m.

Proof. Using (1.4) we see that

∥Imzk1 ∥2 = (
π2

3
√
3
)2m∥zm+k1 z3m2 ∥2

= π4m

33m
1

π4m+k (m + k)!(3m)!

= π4m

33m
1

π4m+km!(m + 1)k(3m)!.

Now

(3m)! = (3m)(3m − 1)(3m − 2)⋯3 ⋅ 2 ⋅ 1

= 33mm(m − 1

3
)(m − 2

3
)⋯1 ⋅ 2

3
⋅ 1
3

= 33mm!(2
3
)m(

1

3
)m,

and this proves the first formula.
Similarly ∥Imzk2 ∥2F is

π4m

33m
1

π4m+km!(3m + k)! = 1

πk

1

33m
m!(3m + 1)k(3m)!

with (3m)! being computed as above. �

3.2. Irreducible decomposition of (Λ, Sp(n,R)). Our main result is the follow-
ing

Theorem 3.2. The decomposition of (Λ,F ,Mp(2,R)) under SU(1, 1) is given by
(3.5)

(Λ,Mp(2,R))∣SU(1,1) ≅ ∫
∞

0
σiλ,+dμ̃ 1

2 ,
1
6 ,

5
6
(λ) ⊕ ∫

∞

0
σiλ,−dμ̃0, 13 ,

2
3
(λ) ⊕

∞
⊕
k=1

σ−3k−1,

where μ̃a,b,c is the orthogonality measure for the continuous dual Hahn polynomials
in Corollary 1.3.
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Remark 3.3. The measure μ̃a,b,c can be written as ∣cl(λ)∣−2b(λ)−1 where cl(λ) is the
Harish-Chandra c-function for line bundles with parameter l [18] and b(λ) is the
symbol of a Berezin transform [20]. We can follow the method of Berezin transform
to study the decomposition above, however it requires different realization of the
metaplectic representation and it is less effective in finding the discrete components;
see Remark 3.8.

We shall find the spectral decomposition of the Casimir element C on F . We

have ι(C) = E+E− +E−E+ + H2

2
as element in the enveloping algebra of sp(n,C),

and

Λ(ι(C)) = Λ(E+)Λ(E−) +Λ(E−)Λ(E+) + Λ(H)2
2

as operator on F . To ease notation we write it just as C. The decomposition is
done in several steps.

By general abstract theory the operator C has a well-defined self-adjoint exten-
sion on F and on any subspace F∣kU(1) of fixed weight k.

Lemma 3.4. The Casimir element −C on F−1∣U(1) has continuous spectrum [ 12 ,∞).

Proof. The Casimir operator C = E+E− + E−E+ + H2

2
= 2E+E− −H + H2

2
acts on

any element f ∈ P∣−1U(1) of weight −1, Λ(H)f = −f , as

Cf = 2Λ(E+)Λ(E−)f + f + 1

2
f = 2Λ(E+)Λ(E−)f + 3

2
f.

The subspace F∣−1U(1) has an orthogonal basis Wm(z) = Im(z)
( 13 )m(

2
3 )m

with

(3.6) ∥Wm∥2 =
1

π

(m!)2

( 1
3
)m( 23)m

by Lemma 3.1. We compute the action of Λ(E+)Λ(E−) on {Wm}. We have,

πΛ(E−) = −∂2
2 + π2

√
3z1z2, and by straightforward computations,

πΛ(E−)Im(z) = (−∂2
2 + π2

√
3z1z2)(

π2

3
√
3
z1z

3
2)

m

= −(3m)(3m − 1)Im(z)z−22 + 32Im+1(z)z−22

= −32m(m − 1

3
)Imz−22 + 32Im+1(z)z−22 .

(3.7)
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Acting by πΛ(E+) = −
√
3∂1∂2 + π2z22 we find, writing I(z)m = I(z)Im−1(z) =

π2z1z
3
2

3
√
3

Im−1, that

π2Λ(E+)Λ(E−)Im

= −
√
3∂1∂2 (−32m(m −

1

3
)Imz−22 + 32Im+1(z)z−22 )

+ π2z22 (−32m(m −
1

3
)Imz−22 + 32Im+1(z)z−22 )

= −
√
3(−33m(m − 1

3
)m(m − 2

3
) π2

3
√
3
Im−1 + 33(m + 1)(m + 1

3
) π2

3
√
3
Im)

+ π232 (−m(m − 1

3
)Im + Im+1)

= 32π2(αmIm+1 + βmIm + γmIm−1)
with the leading coefficient αm = 1, the last coefficient

γm =m2(m − 1

3
)(m − 2

3
)

and the middle

βm = −(m + 1)(m +
1

3
) −m(m − 1

3
) = −(2m +m + 1

3
).

Thus

1

32
Λ(E+)Λ(E−)Im = Im+1 − (2m2 +m + 1

3
)Im +m2(m − 1

3
)(m − 2

3
)Im−1.

Writing in terms of Wm(z) = Im(z)
( 13 )m(

2
3 )m

and using ( 1
3
)k+1( 23)k+1 = (

1
3
)k( 23)k(k +

1
3
)(k + 2

3
) for k =m,m + 1, this becomes

1

32
π(E+)π(E−)Wm = (m +

1

3
)(m + 2

3
)Wm+1 − (2m2 +m + 1

3
)Wm +m2Wm−1.

This is exact the same recursion relation as (1.9) for the continuous dual Hahn
polynomials for

a = 0, b = 1

3
, c = 2

3
, d = 1;

moreover square norms (3.6) and (1.8) are same. In other words, Wm → ω̃m is a
unitary operator intertwining −Λ(E+)Λ(E−) with the multiplication operator by
1+x2 on the space L2(R+, μ̃). Thus −Λ(E+)Λ(E−) has continuous spectrum [1,∞).
But −Cf = −2Λ(E+)Λ(E−)f − 3

2
f so −C has spectrum [ 1

2
,∞). This finishes the

proof. �

Note that the recursion formula (3.7) can also be obtained by just finding the
leading term 32Im+1z−22 and by using the unitarity of Λ.

Lemma 3.5. The Casimir element −C on F0∣U(1) has continuous spectrum [ 12 ,∞).

Proof. This is proved by similar computations as the above lemma. We consider
the action of C on P0∣U(1) ⊂ F0∣U(1), the subspace of polynomials f of weight 0. If

f ∈ P∣0U(1) then Λ(H)f = 0 and

Cf = 2Λ(E+)Λ(E−)f.
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The space F∣0U(1) has an orthogonal basis given by the polynomials Wm(z) =
Im(z)z2
( 23 )m(

4
3 )m

, with square norms computed in Lemma 3.1,

∥Wm∥2 =
1

π

(m!)2

( 2
3
)m( 43)m

.

We compute the action of C on Imz2 and find

1

32
Λ(E+)Λ(E−)(Imz2)

= Im+1(z)z2 − (2m2 + 2m + 2

3
)(Imz2) +m2(m − 1

3
)(m + 1

3
)(Im−1z2).

Written in terms of Wm this is

1

32
Λ(E+)Λ(E−)Wm = (

2

3
+m)(4

3
+m)Wm+1 − (2m2 + 2m + 2

3
)Wm +m2Wm−1.

This is the same recursion formula for continuous Hahn polynomials in for

a = 1

2
, b = 1

6
, c = 5

6
, d = 1

4
,

and it follows that the Λ(E+)Λ(E−) with the multiplication operator by −(d+x2) =
−( 1

4
+ x2) on L2(R+, μ̃). This gives the spectrum of Λ(E+)Λ(E−) and the Casimir

element as claimed. �

We study then the appearance of lowest or highest weight representations.

Lemma 3.6. There exists no lowest weight unitary representation of SU(1, 1) in
(Λ,F). The only highest weight unitary representations of SU(1, 1) in (Λ,F) are
of the form σ−3k−1, k > 0, and they all appear of multiplicity one.

Proof. Let f be a lowest weight vector, i.e., f is a weight vector and Λ(E−)f = 0.
Now

E− = (E+)t = [ 0 C
B 0

]

with B and C as in (2.3). Thus the lowest weight vector condition for f becomes

− 1
π
(∂2

2f)(z) + π
√
3z1z2f = 0.

Then the lowest degree term f0 of f satisfies ∂2fo = 0 and must be of the form
f0 = zk1 or f0 = zk1z2 up to non-zero constants. But these vectors have negative
weights under Λ(H) and any unitary lowest weight irreducible representation of
su(1, 1) has positive lowest weight, consequently lowest weight representations do
not appear.

Next we shall find all highest weight vectors in the space F . So let σν be an
irreducible representation for the Lie algebra su(1, 1) appearing in Λ with highest
weight vector f of weight −ν, ν > 0.

Expand f as sum of homogeneous polynomials

f =
∞
∑
m=0

pm+k,
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with pm+k of homogeneity m+k and k being the lowest degree. The highest weight
condition Λ(E+)f = 0 becomes

(3.8)
1

2π
(B∂, ∂)f = π

2
(Cz, z)f,

i.e.
1

2π
(B∂, ∂)pm+k =

π

2
(Cz, z)pm+k−4,m = 0, 1, . . . .

Thus pm+k−4 determines pm+k up to B-harmonic polynomials of degreem+k. Hence
the sum ∑∞l=0 pk+4l in f satisfies the equation (3.8) and it starts with the lowest
degree pk of f . But since we are finding all solutions we can assume f = ∑∞l=0 pk+4l.
To ease notation we write this as f = ∑∞l=0 fl, fl = pk+4l.

We have then

(3.9)

√
3

π2
∂1∂2fl+1 = z22fl, l = 0, 1,⋯,

and the leading term f0 satisfies ∂1∂2f0 = 0. So f0 = zk1 , k ≥ 0 or f0 = zk2 , k > 0.
If f0 = zk2 then Λ(H)f0 = (−1 + k)f0, it is of nonnegative weight −1 + k and this

contradicts our assumption that f is of negative weight, so this case is excluded.
Let f0 = zk1 , k ≥ 0. The weight of f is ν = −1 − 3k. We claim that f is uniquely

solved by

(3.10) f(z) = k!zk1
∞
∑
l=0

I(z)l
l!(l + k)! .

Now the action of U(1) ∶= ι(U(1)) on the space of Pm of homogeneous polyno-
mials of degree m is multiplicity free for any m. Thus that fl is of weight −k − 1
and of degree k + 4l implies that

fl = alI(z)lzk1 .

Note that
√
3

π2
∂1∂2(I(z)l+1zk1 ) =

√
3

π2
( π2

3
√
3
)l+1∂1∂2(zl+k+11 z

3(l+1)
2 )

=
√
3

π2
( π2

3
√
3
)l+1(l + k + 1)3(l + 1)(zl+k1 z3l+22 )

= ( π2

3
√
3
z1z

3
2)l(l + k + 1)(l + 1)z22

= (l + k + 1)(l + 1)z22I(z)l.

The recursive relation (3.9) becomes

al+1 =
1

(l + k + 1)(l + 1)al

and is solved by

al =
k!

l!(k + l)!
This proves our claim.
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Finally we prove that f ∈ F if k > 0. The square norm of f is

(k!)2∑
l

1

(l!2((k + l)!)2 ∥I
lzk1 ∥2 = ∑

l

1

l!2((k + l)!)2 (l!)(l + k)!(
2

3
)l(

1

3
)l

= ∑
l

(l + k)!( 2
3
)l( 13)l

l!((k + l)!)2

= k!∑
l

( 2
3
)l( 13)l

(1)l(k + l)!

= k! Γ(k + 1)
Γ( 2

3
)Γ( 1

3
) ∑l

Γ( 2
3
+ l)Γ( 1

3
+ l)

Γ(l + 1)Γ(k + l + 1)

≍ ∑
l

1

lk+1

which is convergent iff k ≥ 1. Here we have used the known fact that

Γ(a + l)
Γ(b + l) ≍

1

lb−a
.

This finished the proof. �
We can now prove Theorem 3.2.

Proof. It follows from Lemmas 3.4, 3.5 and 3.6 that right-hand side in (3.5) are
subrepresentation of (Λ,F , SU(1, 1)). We have to prove that it gives full decom-
position. The proof relies on some general and abstract arguments. Let D ⊂ F the
the subspace of SU(1, 1)-smooth vectors in F and Dμ ⊂ Fμ be the subspace of all
vectors of weight μ = −3k − 1,−3k,−3k + 1. The decomposition of F is obtained by
the spectral decomposition of the Casimir operator C on Dμ and its self-adjoint
extension. The operator E− has KerE−∣D = 0, and all elements in KerE+∣D are
found in Lemma 3.6. Moreover the space KerE+∣D generates the discrete series
representation σ−3k−1 in F . Let μ = −6k − 1, k > 0. The operator (E+)3k defines an
injective operator Dμ ∩ (Ker(E+)3k)⊥ → D−1 ⊂ F−1 and it intertwines the Casimir
operator. The Casimir operator C on F−1 has only continuous spectrum and thus it
has only continuous spectrum on Fμ ∩(Ker(E+)3k)⊥. Similar considerations apply
to the subspaces Fμ of all weights. This give the spectral decomposition of C on
Fμ and then on F , the spectral measure being given in Lemma 3.4 and 3.5. This
completes the proof. �

The even part (Mp(2,R),Λ+,F+) of the metaplectic representation consists of
even holomorphic functions, the corresponding discrete components correspond to
the the highest weight vector (3.10) with k = 2l even. We have thus

Corollary 3.7. The discrete components appearing in the restriction of the even
part of the metaplectic representation (Λ+,F+,Mp(2,R)) to SU(1, 1) are precisely
the highest weight representations of weights −6l − 1, l ≥ 1.
Remark 3.8. The continuous part of the decomposition of the even part (as holo-
morphic functions) of the metaplectic representation Λ+ can also be found using
its realization as reproducing kernel space. We give a very brief description. The
representation Λ+ can be realize [11] on the Siegel bounded symmetric domain
D = G/K = Sp(2,R)/U(2) as a Hilbert space H of holomorphic function with re-

producing kernel det(1 − zw̄)− 1
2 . It is a subspace of holomorphic sections of a line
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bundle over the Siegel domain Sp(2,R)/U(2). Consider the the hyperbolic disc
Δ = SU(1, 1)/U(1) = {z ∈ C; ∣z∣ < 1} and the Hilbert space L2(D, (1− ∣z∣2)−1dm(z))
with the natural G0 = SU(1, 1) action as

g ∈ G0 ∶ f(z) → f((az + b)(cz + d))(cz + d)−1.

This is also the L2-space of the half-bundle C(dz) 1
2 of the cotangent bundle. The

pull-back of ι, (2.1),

R = ι∗ ∶ D ⊂ H → L2(D, (1 − ∣z∣2)−1dm(z))

defines an intertwining map R from a dense subspace of H to

L2(Δ, (1 − ∣z∣2)−1dm(z)).

The operator RR∗ is a Berezin transform on Δ and its spectral symbol can be com-
puted using the method in [20]. However the restriction map R here is not injective
and it will produce only the continuous part, and other discrete components can be
constructed using covariant differentiation; this requires rather subtle and detailed
computations.

It is interesting to notice that the solution (3.10) for k = 0 still defines a holo-
morphic function, which is a highest weight vector but not in the Fock space. This
can also be explained by another fundamental fact about the Hardy space of holo-
morphic functions on the unit disc. This space (L2(Δ, (1 − ∣z∣2)−1dm(z)),G0) has
no discrete component. However the Hardy on the unit disc is invariant under the
same action but it is not a subspace L2(D, (1−∣z∣2)−1dm(z)). So the solution (3.10)
plays the role of a Hardy space function whereas the restriction of the reproducing
kernel space to D plays the role of L2(D, (1 − ∣z∣2)−1dm(z)).

We observe that the proof of Lemmas 3.4 and 3.5 actually also provides general-
ized eigenfunctions for the Casimir operator as a sum of bi-orthogonal polynomials

Ψx(z) =
∞
∑
m=0

em(z)ẽm(x2)

where em(z) = Wm(z)
∥Wm∥ , ẽm = ω̃m(x2)

∥ω̃m∥ . It is easy to prove that this series is con-

vergent point-wise for all x ∈ R and z ∈ C2. We have not been able to compute
the sum. There exist several formulas [13, pp. 196-199] for generating functions

∑m cmω̃m(x2)tm of the polynomials cmω̃m(x2) however they are not related to the
eigenfunctions Ψx(z).

It might be possible to find all discrete components for (Λ,F ,Mp(n,R)) for
general n ≥ 3 by refining the techniques in Lemma 3.6. It would also be an interest-
ing problem to study the branching problems of minimal representations for other
split real simple Lie groups, such as quaternionic representations of G2, under its
principal SL(2,R)-subgroup.
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