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Abstract. Let G be a connected and simply connected nilpotent Lie group,
K an analytic subgroup of G and π an irreducible unitary representation of G
whose coadjoint orbit of G is denoted by Ω(π). Let U (g) be the enveloping
algebra of gC, g designating the Lie algebra of G. We consider the algebra

Dπ(G)K � (U (g)/ ker(π))K of the K-invariant elements of U (g)/ ker(π). It
turns out that this algebra is commutative if and only if the restriction π|K
of π to K has finite multiplicities (cf. Baklouti and Fujiwara [J. Math. Pures
Appl. (9) 83 (2004), pp. 137-161]). In this article we suppose this eventuality
and we provide a proof of the polynomial conjecture asserting that Dπ(G)K

is isomorphic to the algebra C[Ω(π)]K of K-invariant polynomial functions on
Ω(π). The conjecture was partially solved in our previous works (Baklouti,
Fujiwara, and Ludwig [Bull. Sci. Math. 129 (2005), pp. 187-209]; J. Lie
Theory 29 (2019), pp. 311-341).

1. Introduction

Let G = exp g be a connected and simply connected nilpotent Lie group with
Lie algebra g and K = exp k an analytic subgroup of G. We denote by g∗ (resp. k∗)
the dual vector space of g (resp. k). Then, G (resp. K) acts on g∗ (resp. k∗) by the
coadjoint action whose orbit space realizes by the orbit method [8], [12], [21] the

unitary dual Ĝ (resp. K̂) of G (resp. K). We denote by θG : g∗ → Ĝ the Kirillov

map and by Ω(π) = ΩG(π) = θ−1
G (π) the coadjoint orbit of G associated to π ∈ Ĝ.

Although we use the notation � for the unitary equivalence, we often identify an
irreducible unitary representation with its equivalence class.

We know in the nilpotent case the branching laws of induced and restricted
representations ([15], [16]). Let p : g∗ → k∗ be the restriction mapping. For π ∈ Ĝ,
we consider a finite measure μπ on g∗ equivalent to the canonical measure on the
orbit ΩG(π) which is regarded as a measure on g∗. Put νπ = (θK◦p)∗(μπ). The
restriction π|K of π to K is disintegrated as:

π|K �
∫ ⊕

K̂

mπ
σσdνπ(σ),
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where the multiplicities mπ
σ are obtained as the number of the K-orbits contained

in ΩG(π) ∩ p−1(ΩK(σ)) (cf. [11] and [17]).
In other respects, it is well known ([2], [10], [11]) that in these situations the

multiplicities are either uniformly bounded almost everywhere or equal to the in-
finity almost everywhere. According to these two eventualities, we say that the
representation π|K has either finite or infinite multiplicities.

We denote by U (g) the enveloping algebra of gC and let ker(π) be the primitive
ideal of U (g) associated to π. We introduce the algebra

Uπ(g)
k = {A ∈ U (g); [A, k] ⊂ ker(π)}

and its image

Dπ(G)K ∼= Uπ(g)
k/ ker(π) ∼= (U (g)/ ker(π))

K
,

where the last member designates the quotient algebra of K-invariant elements.
The algebra Dπ(G)K was the object of our three previous works [4], [5] and [6].
In particular, we proved [5] that our algebra Dπ(G)K is commutative if and only
if the restricted representation π|K has finite multiplicities (cf. [19]). We then
substantiated in [6] Conjecture 1.1 (cf. [17]):

Conjecture 1.1 (cf. [17]). Let G be a connected and simply connected nilpotent Lie

group, K an analytic subgroup of G. Let π ∈ Ĝ be a unitary and irreducible repre-
sentation of G such that π|K is of finite multiplicities. Then the algebra Dπ(G)K

is isomorphic to the algebra C[Ω(π)]K of the K-invariant polynomial functions on
Ω(π).

We positively proved Conjecture 1.1 in many settings, especially when K is a
normal subgroup of G or where the orbit Ω(π) is flat in [6] and further, the case
where K is abelian or where Ω(π) admits a normal polarizing subgroup [7]. The
aim of the present paper is to provide a proof of Conjecure 1.1.

The outline of the paper is as follows: We introduce in the next section some
backgrounds about the algebra Dπ(G)K and some algebraic tools to describe its
generators in term of the enveloping algebra of gC. This makes use of Pedersen’s
construction of the kernel ker(π), π being the Kirillov’s model associated to Ω(π)
(cf. [21]). Section 3 is devoted to prepare the ingredients to prove the main result,
mainly an algorithm which allows to define a rational function PW on Ω(π), for a
given W ∈ Uπ(g)

k. Sections 4 and 5 are devoted to prove Conjecture 1.1.

2. Backgrounds

2.1. Let G be a connected and simply connected nilpotent Lie group. We consider
a unipotent representation of G on a real vector space V of finite dimension. Let
v ∈ V be an invariant vector by the action of G, i.e. g · v = v for all g ∈ G.
Put for x ∈ V arbitrarily fixed, Lx = {x + tv; t ∈ R}, the straight line passing
through x and having the direction of v. Then, there are two possibilities: either
Lx ∩ G·x = Lx or Lx ∩ G·x = {x}. According to these two possibilities, we shall
say that the orbit G·x is either saturated or non-saturated in the direction Rv. We
shall utilize in what follows this fact applied to the coadjoint representation of G
(or a subgroup K of G), where the invariant vector v will be a linear form which
vanishes on an ideal g′ of codimension 1 of g. In this situation, we shall say that
the orbit in question is either saturated or non-saturated with respect to g′.
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2.2. Let

(1) {0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g

be a Jordan-Hölder sequence of g, i.e. an increasing sequence of ideals of g such
that dim(gj) = j, j = 0, . . . , n. Let {Y1, . . . , Yn} be a Jordan-Hölder basis of g,
associated to this Jordan-Hölder sequence, and {Y ∗

1 , . . . , Y
∗
n } the basis of g∗ such

that Y ∗
i (Yj) = δi,j , 1 ≤ i, j ≤ n. Let pi : g∗ → g∗i be the canonical projection

which intertwines the actions of G on g∗ and g∗i . For � ∈ g∗, we put ei(�) =
dimG·pi(�), e(�) = (e1(�), . . . , en(�)) and E = {e(�), � ∈ g∗}. For e ∈ E , we define
the G-invariant layer Ue = {� ∈ g∗ : e(�) = e}. Putting e0 = 0, we define also

S(e) = {i : ei = 1 + ei−1}, g
∗
S = R− vect{Y ∗

i : i ∈ S(e)}
T (e) = {i : ei = ei−1}, g

∗
T = R− vect{Y ∗

i : i ∈ T (e)}.
Then we have g∗ = g∗S ⊕ g∗T . There exists an order among the elements of E =

{e(1) > · · · > e(k)} in such a manner that Ue(1) and ∪j≤iUe(j) are Zariski open
sets of g∗ for every i. In this way all the layers Ue are semi-algebraic set, i.e.
difference of two Zariski open sets of g∗. Let Ue be an arbitrary layer, we write
S(e) = {j1 < · · · < jr} where r designates the dimension of the G-orbits in Ue.
Then there exist some functions Re

j : Ue × Rr → R, j = 1, . . . , n such that:

(a) For f ∈ Ue fixed, x = (x1, . . . , xr) �→ Re
j(f, x) : Rr → R is a polynomial

function in x and the coefficients are G-invariant functions on Ue;
(b) Re

j(f, x) = xk for j = jk ∈ S(e), f ∈ Ue;
(c) If jk ≤ j < jk+1, then Re

j(f, x) depends only on x1, . . . , xk;
(d) For any f ∈ Ue, the coadjoint orbit G·f is given by:

G·f = {
n∑

j=1

Re
j(f, x)Y

∗
j ;x ∈ Rr},

(see [22]).

Let rej (f) be the image in U (g) by the symmetrization of the element

Re
j(f,−iYj1 , . . . ,−iY jr

)

in the symmetric algebra S(g) of gC, namely, we replace the variable xk in Re
j(f, x)

by −iXjk . Notice in particular that rejk(f) = −iYjk . Let Ve be the subspace of S(g)
spanned by the elements of the form Y α1

j1
· · ·Y αr

jr
, α1, . . . , αr ∈ N, and let Fe be

the image in U (g) of Ve by the symmetrization. On the other hand, let Ee be the
subspace of U (g) spanned by the elements of the form Y α1

j1
· · ·Y αr

jr
, α1, . . . , αr ∈ N.

If S(e) = ∅, we put Ve = Fe = Ee = C·1. Pedersen proved that the primitive ideal

ker(π), where π ∈ Ĝ such that f ∈ Ω(π) is generated by the elements

ue
j(f) = Yj − irej (f), j ∈ T (e)

and that

U (g) = ker(π)⊕ Ee = ker(π)⊕ Fe

(see Theorem 2.1.1 and Theorem 2.2.1 in [22]). In the same way, the actions of π
on Ee and Fe are faithful (see Lemma 2.2.12 and Lemma 2.2.13 in [22]). In this
way, identifying Ee and Fe à U (g)/ ker(π) and abusing notations, we have

Dπ(G)K � EK
e � FK

e � C[Yj1 , . . . , Yjr ]
K .

These isomorphisms are simply isomorphisms of vector spaces.
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2.3. In [13], Corwin and Greenleaf showed that Pedersen’s construction of the kernel
ker(π�), where π� designates the Kirillov’s model [21] which represents the class
θG(�), for � ∈ Ue leads to construct e-central elements (cf. Theorem 3.1 in [13]).
These are elements A of the enveloping algebra U (g) such that the operators π�(A)
are scalars for � ∈ Ue. Then π�′(A) = π�(A) for all �′ ∈ G · �. More precisely, let
Ue ⊂ g∗ be one of the layers constructed above. Then there exists a Zariski open
set Z ⊂ g∗ such that Z ∩ Ue is non-empty G-invariant and for all j ∈ T (e) there
exists an e-central element Aj ∈ U (gj) on Z ∩ Ue, i.e. the operators π�(Aj) are
scalars for all � ∈ Z ∩ Ue with the following properties:

(1) Aj = PjYj +Qj , where Pj , Qj are in U (gj−1).
(2) Pj is e-central on Z ∩ Ue and does not belong to ker(π�).

(3) π�(Aj)=φj(�)Id for �∈Z∩Ue, where φj(�)= p̃j(�̃)�(Yj)+ q̃j(�̃), p̃j and q̃j be-
ing non-singular rational functions on Z∩Ue depending only on (�(Y1), . . . , �(Yj−1)).

While the rational function p̃j(�̃) is G-invariant and never vanishes on Z ∩ Ue.
Moreover, we easily see that the system {Aj ; j ∈ T (e)} of these e-central elements
separates the orbits in Z ∩ Ue.

Having given the construction of Aj , Corwin-Greenleaf [13] remarked the follow-
ing: Dropping out the Zariski open set Z∩Ue from Ue, we notice that, Ue\Z being
G-invariant and semi-algebraic, the parametrization of the orbits in Ue is carried
out and retains all its properties on this sub-layer in Ue. We are able to repeat
the whole process starting from Ue\Z. Since Ue is semi-algebraic, the ascendent
chain condition for the ideals in C[g∗] assures that the process terminates after
a finite number of steps. So, patching the pieces together, we may suppose that
Z∩Ue = Ue.

Let ρ be a unitary representation of G. We denote by Hρ, H ∞
ρ and H −∞

ρ

respectively the space of ρ, that of its differentiable vectors and the anti-dual of
H ∞

ρ (cf. [9] and [23]). For a ∈ H ±∞
ρ and b ∈ H ∓∞

ρ , we denote by 〈a, b〉 the image

of b by a, so that 〈a, b〉 = 〈b, a〉. Being given a subgroup H of G and its unitary
character χ, put(

H −∞
ρ

)H,χ
=

{
a ∈ H −∞

ρ ; ρ(h)a = χ(h)a, ∀h ∈ H
}
.

3. First preparations to the proof of Conjecture 1.1

3.1. Recall once again our situation. Let G = exp g be a connected and simply
connected nilpotent Lie group with Lie algebra g, K = exp k an analytic subgroup
of G and π an irreducible unitary representation of G whose coadjoint orbit is
denoted by Ω(π). For � ∈ Ω(π), we designate by b[�|k] a polarization of k at
�|k ∈ k∗. We know [5] that π|K has finite multiplicities if and only if b[�|k] + g(�) is
a Lagrangian subspace for the bilinear form B� : (X,Y ) �→ �([X,Y ]), at μπ-almost
all � in Ω(π).

At the flag of ideals (1) of g, let I = {i1 < · · · < id} where d = dim k be the set
of indices 1 ≤ i ≤ n such that k ∩ gi �= k ∩ gi−1 and put

J = {j1 < · · · < jq} = {1, 2, . . . , n} \ I

with q = dim(g/k). Putting kd = k and kd+r = k + gjr for 1 ≤ r ≤ q, we obtain a
sequence of subalgebras of g:

(2) k = kd ⊂ kd+1 ⊂ · · · ⊂ kn−1 ⊂ kn = g, dim (kr/kr−1) = 1.
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Furthermore, considering ks = k ∩ gis (1 ≤ s ≤ d), we get a flag of ideals of k:

(3) {0} = k0 ⊂ k1 ⊂ · · · ⊂ kd−1 ⊂ kd = k, dim ks = s.

3.2. Let � ∈ Ω(π). Taking there a real polarization b[�] of g, we realize π as

π = indGB[�]χ� with B[�] = exp(b[�]) and χ� is the unitary character of B[�] whose

differential is i�|b[�]. On the other hand, by means of the flag (3), we construct [8]
the Vergne polarization b[�|k] of k at �|k ∈ k∗. Put B[�|k] = exp(b[�|k]). It is easy to
verify [6] that the formula

(4) 〈aK� , ϕ〉 = 〈a�, ϕ〉 =
∫
B[�|k]/(B[�|k]∩B[�])

ϕ(b)χ�(b)dḃ (∀ϕ ∈ H ∞
π ) ,

dḃ designating an invariant measure on the homogeneous space B[�|k]/(B[�|k]∩B[�]),

gives us a semi-invariant generalized vector a� in (H −∞
π )

B[�|k],χ� .
Suppose that π|K has finite multiplicities. This would say as in the case of the

monomial representations, that b[�|k] + g(�) is a Lagrangian subspace of g for B�

at almost all � ∈ Ω(π) with respect to the invariant measure. Then, it results μπ-
almost everywhere in Ω(π) that a� is an eigen vector for all the elements of Dπ(G)K

acting on H −∞
π by continuity. This also means that for every W ∈ Uπ(g)

k we have

W · a� := π(W )a� = λ�(W )a�

with a certain scalar λ�(W ) (cf. [6]). Remark that this scalar λ�(W ) does not
depend on the choice of the polarization b[�] and of the flag (3) (cf. [15], Proposition
3).

Further, we also have the

Theorem 1 ([6], Theorem 3.4). Suppose that π|K has finite multiplicities. The
homomorphism Uπ(g)

k � W �→ PW : � �→ λ�(W ) defines an imbedding of Dπ(G)K

into the field C(Ω(π))K of rational K-invariant functions on Ω(π).

We can say even more. Aligning the two sequences (2) and (3), we have a
sequence of subalgebras of g:

(5) {0} = k0 ⊂ k1 ⊂ · · · ⊂ kd = k ⊂ · · · ⊂ kn−1 ⊂ kn = g.

Relatively to this sequence, let us extract again a vector Xk ∈ kk \ kk−1 and put
�k = �(Xk) for 1 ≤ k ≤ n. Consider the action of K on the sequence (5) and define
two sets SK , TK of jump and non-jump indices. Namely, we denote by eKj (�) the

dimension of the K-orbit of �|kj ∈ k∗j for every 1 ≤ j ≤ n. Then we agree eK0 (�) = 0.

For each index j, the same possibility of the alternative eKj (�) = eKj−1(�) + 1 or

eKj (�) = eKj−1(�) happens μπ-almost everywhere on Ω(π). We denote by SK the set
of the indices 1 ≤ j ≤ n which verify the first eventuality and by TK that of indices
of the second eventuality. Put Uπ(kj)

k = Uπ(g)
k ∩ U (kj). Theorem 2 is proved in

[5].

Theorem 2. We keep the same notations and hypotheses. Then:

(1) If j ∈ SK , then Uπ(kj)
k = Uπ(kj−1)

k + U (kj) (U (kj−1) ∩ ker(π)).
(2) If j ∈ TK , then Uπ(kj)

k �= Uπ(kj−1)
k + U (kj) (U (kj−1) ∩ ker(π)) and there

exists Wj ∈ Uπ(kj)
k having the form Wj = aXj+b (a, b ∈ U (kj−1)), a ∈ Uπ(kj−1)

k

with π(a) �= 0.
(3) For j ∈ TK and � ∈ Ω(π), PWj

(�) = ϕj(�)�j + ψj(�), where ϕj(�), ψj(�) are
two rational functions of �1, . . . , �j−1.
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As a direct consequence of this result, we obtain as in [6]:

Proposition 1.

(1) Let A be an element of Uπ(km)k for 1 ≤ m ≤ n satisfying π(A) �= 0. Then
there exists two non-zero polynomials βA and γA of the elements {Wj ; j ∈ TK , j ≤
m} such that βAA ≡ γA modulo ker(π).

(2) The functions
{
PWj

(�); j ∈ TK

}
rationally generate the field C (Ω(π))

K
.

3.3. On the coordinates of the coadjoint orbit. As in Section 2, we start from
the flag of ideals (1) of g to parameterize the orbit Ω = Ω(π) and denote there by
SΩ and TΩ respectively the sets of jump and non-jump indices. Let {Y1, . . . , Yn}
be a Malcev basis adapted to the flag (1), �j = �(Yj) (1 ≤ j ≤ n) for � ∈ Ω,
SΩ = {s1 < · · · < sr}, r = dimΩ and xk = �sk for 1 ≤ k ≤ r. Describe as in
Section 2 the orbit Ω by the polynomial relations

(6) �j = Fj(x1, . . . , xk), sk < j < sk+1,

where x = (x1, . . . , xr) runs through Rr. In these circumstances the rational func-
tions on Ω are nothing but the rational functions of the variables (x1, . . . , xr).

For 1 ≤ k ≤ r, let I(k) be the set of the K-invariant polynomial functions on Ω,
which depend only on the variables {xi; i ≤ k}. The arguments developed in the
pages 60–61 of [24] make us see that every R in C(Ω)K verifying

∂R

∂xk
�= 0 and

∂R

∂xi
= 0 (i > k)

is written in the form P/Q, where P and Q belong to I(k). Therefore, the existence
of such an element R means that I(k−1) is strictly contained in I(k). Next, let
Q =

∑m
i=0 Qix

i
k (m > 0) be an element of I(k)\I(k−1), where Qi (0 ≤ i ≤ m)

designate polynomials of (x1, . . . , xk−1) verifying Qm �= 0. We then confirm that
Qm and mQmxk +Qm−1 are K-invariant polynomials.

4. Proof of Conjecture 1.1: First part

We keep all our notations. We first define the following:

Definition 1.

(1) We say that W ∈ Uπ(g)
k is K-diagonal, if

π(W )a� = PW (�)a�

for a certain scalar PW (�) ∈ C independent of the polarizations chosen to describe
the distribution a� and � �→ PW (�) extends to a rational function on Ω.

(2) Let U be the set of K-diagonal elements of Uπ(g)
k. Let

(7) Θ : U � W �→ PW

Remark 1.
(1) From ([1], Theorem 4.1), anyK-diagonal element of U (g) belongs to Uπ(g)

k.
(2) Definition 1 is posed independently from the fact that π|K has finite multi-

plicities or not. In the case of finiteness, any element of Uπ(g)
k is K-diagonal (cf.

Theorem 1).

Next, we can easily adapt the arguments of ([6], Lemma 3.2) to prove the fol-
lowing:
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Lemma 1. Let W ∈ U (g) be K-diagonal. Then PW is identically zero if and only
if W ∈ ker(π).

Proof. If W ∈ ker(π), PW (�) ≡ 0 because a� ∈ H −∞
π . Suppose that PW (�) = 0

almost everywhere on Ω and let us prove that W ∈ ker(π) by induction on dimG.
Let p : g∗ → (kn−1)

∗ be the restriction mapping and Kn−1 = exp(kn−1). If Ω is
non-saturated with respect to kn−1, there exists in ker(π) an element A having the
form A = Xn+V with a certain V ∈ U (kn−1). Making use of A to kill from W the
part which is found outside of U (kn−1), we can suppose that W ∈ U (kn−1). Since
p(Ω) is a Kn−1-orbit, the induction hypothesis gives us immediately the desired
result.

Suppose now that Ω is saturated with respect to kn−1. This implies that W

belongs to U (kn−1). The restriction π|Kn−1
is disintegrated as π|Kn−1

�
∫ ⊕
R

πtdt
into a one parameter family {πt}t∈R of irreducible unitary representations of Kn−1

and accordingly the restriction p(Ω) = Ω|kn−1
is decomposed as p(Ω) = �t∈Rωt,

where ωt is the coadjoint orbit of Kn−1 associated to πt. Then, the induction
hypothesis says that W belongs to ker(πt) for almost all t ∈ R and hence W ∈
ker(π). �

The first step to prove Conjecture 1.1 consists in proving Theorem 3:

Theorem 3. Let π ∈ Ĝ and let W ∈ U (g) be K-diagonal. The function PW

extends to a K-invariant polynomial function on Ω.

The proof of Theorem 3 will be achieved through different steps. Let us start
with the following:

4.1. A preliminary inductive proof. In order to prove Theorem 3, we proceed
by induction on δ(G,K) = dimG + dimG/K. For small δ(G,K), G turns out
to be abelian and the answer is immediate. Consider the flag of algebras (5) of g
and for the sake of simplicity of notation, denote g′ = kn−1 which contains k. Put
G′ = exp g′ and suppose that Theorem 3 holds for G′.

4.1.1. Case where the ideal g′ is of non-saturation. Suppose that the orbit Ω is non-
saturated with respect to g′, namely that n ∈ TΩ. Then the projection pr : g∗ → g′∗

turns out to be a K-equivariant homeomorphism between Ω and ω = pr(Ω) which
is a G′-orbit. Hence, C[Ω]K ∼= C[ω]K . On the other hand, π′ = π|G′ is irreducible
and there exists in ker(π) an element W ′ having the form W ′ = Xn + A with
A ∈ U (g′) which allows us to identify Dπ(G)K with Dπ′(G′)K . Since ω is the
coadjoint orbit of G′ associated to π′ and since a� = a�|g′ , the induction hypothesis

proves Theorem 3 in this case.

4.1.2. Case where the ideal g′ is of saturation. Suppose now that Ω is saturated
with respect to g′, namely that n ∈ SΩ. We have Lemma 2:

Lemma 2 ([2], [6, Lemma 4.1]). There exists one and only one index 2 ≤ j ≤ n−1

belonging to SΩ and b ∈ U (gj−1) such that Yj + b ∈ Uπ(gj)
g
′
.

Likewise, if j = si (1 ≤ i ≤ r−1), there exists a G′-invariant polynomial function

(8) α = xi + ϕ(x1, . . . , xi−1)
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on Ω, which separates the G′-orbits wα = {� ∈ Ω : α(�) = α} contained in pr(Ω).
This means that pr(Ω) =

∐
α∈R

ωα, the disjoint union of G′-orbits ωα. Accordingly,

(9) π|G′ �
∫ ⊕

R

παdα

with πα = θG′(ωα) for all α ∈ R.
Since the orbit Ω is saturated with respect to g′, for any � ∈ Ω there exists

then a polarization b[�] at � contained in g′, which is also a polarization at �|g′ .
Furthermore we can suppose that W ∈ U (g′), since π(W )a� = PW (�)a�, � ∈ Ω, and

π� = indGG′ π�|g′ . It follows then from the definition of a�, � ∈ Ω, that

PG
W (�) = PG′

W (�|g′), � ∈ Ω,

where the index G (resp. G′
) indicates the action of W on a� (resp. on a�|g′). We

apply the induction hypothesis to W and G′. Then it follows that the function PW ,
which is rational on Ω restricts to the G′-orbits ωα, α ∈ R, as a polynomial function.
Let � be a point of Ω, for each real number t, let α be such that Ad∗(exp tXn)� ∈ ωα,
then:

PW (Ad∗(exp(tXn)g
′)�) = PW (α, g′) =

A(α, g′)

B(α, g′)
, g′ ∈ G′,

for two polynomial functions A,B. Since PW |ωα
is polynomial, we have that B

is independent of the variable g′ and so PW is given by a polynomial function A
devided by a polynomial function in α.

The following consequence is then immediate.

Corollary 1. Suppose that k is contained in an ideal of codimension 2. Then for
every K-diagonal W ∈ Uπ(g)

k, the function � �→ PW (�) is polynomial.

Proof. Let hj , j = 1, 2 be two distinct ideals of codimension 1 containing k. Accord-
ingly to Subsection 4.1.1, we can assume that the orbit Ω is satured with respect
to hj , j = 1, 2. We fix the flag (1) such that gn−2 = h1 ∩ h2, and gn−1 = h1, thus,
if w is the Gn−2-orbit of l|gn−2, the set of jump indices are SΩ = Sw ∪ {n− 1, n},
or SΩ = Sw ∪ {i, k, n − 1, n}. In the first case, we have n − 1 = si, n = si+1, by
(8), there is a H1-invariant polynomial function α1 = xi + ϕ1(x1, ...xi−1) separat-
ing the H1-orbits, and replacing h1 by h2 in the flag (1), there is a H2-invariant
polynomial function α2 = xi+1 + ϕ2(x1, ...xi−1) separating the H2-orbits. More-
over, for any complex numbers cj , there is no common divisor for α1 + c1 and
α2 + c2. In the second case, suppose the jump indices for the H1-orbit w1 of l|h1
are Sw ∪ {i, n− 1}, with i = si1 , and by (8), there is a Gn−2-invariant polynomial
function β1 = xi1 + ϕ1(x1, ...xi1−1) separating the Gn−2-orbits in the H1-orbit w1.
Suppose Xn be in h2 \ h1, and k = si2 , by (8) there is α2 = xi2 + ϕ2(x1, ...xi2−1)
separating the H2-orbits in Ω. Fix Xn such that α2(exp (tXn)l) = t for each l in Ω
such that α2(l) = 0. Finally put: α1(exp (tXn)l) = β1(l|h1) or

α1(xi) = (e−α2(xi)ad
∗(Xn)β1)(xi) =

∑
m

(−α2(xi))
m

m!
β1((ad

∗(Xn))
m(xi)).
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The function α2, polynomial on Ω is H1-invariant and separates the H1 orbits in
Ω. Moreover, since for any complex numbers c1 and c2,

α1 + c1 = ec2ad
∗(Xn)β1 + c1 +

∑
m>0

(−α2 − c2)
m

m!
ec2ad

∗(Xn)β1((ad
∗(Xn))

m·),

and ec2ad
∗(Xn)β1 = xi1 + ψ(x1, . . . , xi1−1), there is no common divisor for α1 + c1

and α2 + c2. In both cases, applying the induction hypothesis to Wand Hj , we
can write PW as a quotient of a polynomial function Aj by a function Bj(αj),

polynomial in αj . Thus: PW = A1

B1(α1)
= A2

B2(α2)
, and

B2(α2)A1 = B1(α1)A2.

Since α1 + c1 and α2 + c2 have no common divisor, PW itself is a polynomial
function. �

On the other hand, let W ∈ Uπ(kv)
k. If v ≤ d, W belongs to Uπ(k)

k and the

operator σ(W ) is a scalar for almost all σ ∈ K̂ with respect to the measure νπ used
in the irreducible decomposition of π|K . Then, we can apply Theorem 2.1.1 in [19]
to get:

Proposition 2. For any W ∈ Uπ(k)
k, the function � �→ PW (�) is polynomial on

Ω.

4.2. Proof of Theorem 3. As usual, we can assume that the center z of g has
dimension 1, that π(= π�) is not 0 on z and that z ⊂ k. Also according to 4.1.1, we
can assume that for every subalgebra g′ of codimension one containing k, that Ω is
saturated with respect to g′. In particular a polarization b[�] with B[�] = exp(b[�])
of � can always be found in g′ and W ∈ U (g′).

We make now a further induction on j0, the smallest index j ∈ {1, . . . , n}, such
that W ∈ U (kj0). If j0 ≤ d, then W is an e-central element of Corwin-Greenleaf
for the projection of Ω on k∗ and hence the function PW (�) is polynomial as in
Proposition 2. We can therefore assume that j0 ≥ d+ 1.

Let now l = kd+1 and L = exp l. If the generic L-orbits in Ω|l are non-saturated
with respect to k, there exists a ν = aXd+1 + b, a, b ∈ U (k) which is e-central for
Ω|l. Applying W, ν to the Penney distribution a�(� ∈ Ω), we see that they commute
modulo ker(π) and so W is also L-invariant. If we use the Penney distributions
aL� (as in formula (4)) and if b[�|l] ∩ b[�] = b[�|k] ∩ b[�], we see that for some
S ∈ (l(�|l) ∩ ker(�)) \ k, we have for any ϕ ∈ H ∞

π :

〈W · aL� , ϕ〉 =

∫
B[�|l]/(B[�|l]∩B[�])

π(W ∗)ϕ(b)χ�(b)dḃ

=

∫
R

∫
B[�|k]/(B[�|k]∩B[�])

π(W ∗)ϕ(exp(sS)b)χ�(exp(sS)b)dḃds

=

∫
R

∫
B[�|k]/(B[�|k]∩B[�])

π(W ∗)(π(exp(−sS))ϕ)(b)χ�(exp b)dḃds

=

∫
R

PK
W (�|k)

∫
B[�|l]/(B[�|l]∩B[�])

ϕ(exp(sS)b)χ�(exp b)dḃds

= PK
W (�)〈aL� , ϕ〉.



A PROOF OF THE POLYNOMIAL CONJECTURE FOR RESTRICTIONS 625

Therefore W is L-diagonal. Since δ(G,L) < δ(G,K), the induction hypothesis
implies that PK

W = PL
W is polynomial.

Recall now that we are in the situation where the orbit Ω is saturated with
respect to kn−1. There exists then by Lemma 2, a unique index 2 ≤ r0 ≤ n − 1
belonging to SΩ and b ∈ U (gr0−1) such that

κ = Yr0 + b ∈ Uπ(gr0)
g
′

(10)

and [Xn, κ] �= 0 mod ker(π). The polynomial function Pκ on Ω|kn−1
then separates

the Kn−1-orbits ωy, y ∈ R and, as we have seen in 4.1.2, W belongs to U (kn−1) and

PW can be written as A
B for a polynomial function A on Ω divided by a polynomial

B in the variable Pκ.
Let now g̃ be another ideal of g of codimension 1. If k ⊂ g̃, then Theorem 3 holds

by Corollary 1. Hence we assume that k �⊂ g̃. Let us treat first the case where Ω is

not saturated with respect to g̃. Write g = RX̃ + g̃ and G̃ = exp g̃. We can again

assume as in 4.1.1 that W ∈ U (g̃). Let k̃ = k ∩ g̃ and K̃ = exp k̃. If b[�|k] ⊂ g̃

almost everywhere on Ω, then a� = a�|g̃ and the induction hypothesis tells us that

PW (�) is a polynomial function on the G̃-orbit Ω̃ = p̃(Ω), where p̃ : g∗ → (g̃)∗ is
the restriction map. Hence PW is also a polynomial function on Ω.

If b[�|k] �⊂ g̃ for almost all � ∈ Ω, let us write b[�|k] = RX̃(�) + b[�̃|̃
k
], where

�̃ = p̃(�). We remark that we can take b[�̃|̃
k
] to be the Vergne polarisation at

�̃|̃
k
∈ (̃k)∗ built from a Jordan-Hölder sequence S ∩ g̃ of g̃, S denoting the flag (1)

of g. As W is K-invariant, we see that

〈W ·a�, ϕ〉 =
∫
R

〈W ·a
˜�, ϕ(exp(tX̃(�))·)〉dt (� ∈ Ω)

for ϕ ∈ H ∞
π . We identify H −∞

π with H −∞
π̃ . Fixing a generic � ∈ Ω and taking a

Malcev basis in g relative to b[�], which contains a Malcev basis in b[�|k] relative to
b[�|k] ∩ b[�], we identify the space Hπ of π with Rm,m = dim(g/b[�]). Since

B[�|k]/(B[�|k] ∩B[�]) � B[�|k]B[�]/B[�] = exp(RX̃(�))B[�̃|̃
k
]B[�]/B[�],

we finally get the following two eventualities: either

B[�|k]/(B[�|k] ∩B[�]) � B[�̃|̃
k
]/(B[�̃|̃

k
] ∩B[�̃])

or

B[�|k]/(B[�|k] ∩B[�]) � exp(RX̃(�))B[�̃|̃
k
]B[�]/B[�]

� exp(RX̃(�))×B[�̃|̃
k
]/(B[�̃|̃

k
] ∩B[�̃]).

In the first case, the distribution a� associated to π can be identified with the
generalized vector a

˜� of π̃ = π|
˜G. In the second case, for ϕ ∈ H ∞

π satisfying

ϕ(exp(tX̃(�))g̃) = φ(t)ψ(g̃), t ∈ R, g̃ ∈ G̃,

with φ ∈ Cc(R), ψ ∈ H ∞
π̃ , the k-invariance of W implies that

〈W ·a�, ϕ〉 = (

∫
R

φ(t)eit�(X̃(�))dt)〈W ·a
˜�, ψ〉

= PW (�)(

∫
R

φ(t)eit�(X̃(�))dt)〈a
˜�, ψ〉.



626 ALI BAKLOUTI, HIDENORI FUJIWARA, AND JEAN LUDWIG

In both cases we see that W ·a
˜� = PW (�)a

˜�. According to the induction hypothesis

PW (�) = PW (�̃) is a polynomial function on Ω̃ and hence also on Ω.
We can now assume, as we have seen before, that Ω is saturated with respect

to g̃, that for generic � ∈ Ω, the L-orbits of �|l are saturated with respect to k and
that k �⊂ g̃.

Recall again k̃ := k ∩ g̃. If W ∈ U (g̃), then the last computation tells us that

W · a ˜K
�|g̃

= PW (�|g̃)a
˜K
�|g̃

.

Since δ(G̃, K̃) < δ(G,K), by the induction hypothesis, PW (�|g̃) is a polynomial on

the G̃-orbit of �̃.
Suppose that Pκ(�) �= 0 and ad∗(Xn)Pκ = 1. Let κ̃1 = Yr̃0 +Ũ , Ũ ∈ U (gr̃0−1) be

the e-central element of Corwin-Greenleaf in U (g̃) associated to kn−1∩g̃ and G̃-orbit

of �̃ as in (10). Then as in the proof of Corollary 1, we conclude that the denominator
of the rational function PW is a polynomial in Pκ̃1

(Ad∗(exp (−Pκ(�)Xn))�). Since
the denominator is also a polynomial in Pκ(�), it follows that PW is in fact a
polynomial function.

Therefore we can finally assume that W is not contained in U (g̃). This means

that b[�|k] �⊂ k̃ for generic � ∈ Ω. This being assumed, we suppose that the denom-
inator of the rational function PW (�) is not trivial. We are brought to the case

where this denominator is equal to Pκ−c(�) for some c ∈ C. Take X̃ in k. In these
circumstances, there exists in U (k) an element

(11) σ = āX̃ + b̄, ā, b̄ ∈ U (̃k)

which is e-central for Ω|k. If W is of degree m relatively to X̃ with the dominant

term wmX̃m, wm ∈ U (g̃), we saw in Subsection 3.3 that wm and ā are k-invariant.
Then, applying ā and wm to a�(� ∈ Ω), we see that they commute each other
modulo ker(π). Thus,

(12) W1 = āmW − wmσm

is of degree inferior to m relatively to X̃. Repeating this process, we build an

element W̃ ∈ U (g̃) such that P
˜W
(�) is a polynomial function on Ω. This means

that α is a factor of ā.
Recall that j0 is the smallest index such that W ∈ U (kj0) modulo ker(π). We

now prove the following:

Lemma 3. There exists a K-diagonal element

ν = βXj0 + γ, β, γ ∈ U (kj0−1),

in Uπ(kj0)
k such that Pν(�) extends to a polynomial function on Ω and such that β

is not divisible by α modulo ker(π).

Proof. We proceed by induction on dim k. Let first dim k = 1, namely k is abelian.
At each point � ∈ Ω, the Penney’s distribution a� is nothing but the Dirac measure
at the unit element of G. Put b = ∩�∈Ωb[�], which is an ideal of g. Then, the
existence of W allows us to take Xj0 in b. This being done, ν = Xj0 suits us.
Suppose now that dim k > 1. Let us repeat the above construction of the element

W̃ ∈ Uπ(g̃)
k such that P

˜W
(�) = P̃

˜W
(�̃) extends to a polynomial function on Ω.

Here, �̃ = �|g̃ and P̃ designates the object obtained from the pair (a
˜�, k̃).
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In the first step of construction, if wm �∈ U (̃kj0−1), then we put W ′ = wm which

belongs to Uπ(g̃)
k but not in U (̃kj0−1), where k̃j0−1 = kj0−1 ∩ g̃. Otherwise, the

element W1 defined in equation (12) does not belong to U (kj0−1), and we replace

W by W1, and continue the construction of W̃ . At the end of this process, we get

an element W ′ in Uπ(g̃)
k but not in U (̃kj0−1).

Hence, by the induction hypothesis, there exists a K̃-diagonal element

ν̃ = ãXj0 + b̃, ã, b̃ ∈ U (̃kj0−1),

in Uπ (̃kj0)
˜k such that P̃ν̃(�̃) extends to a polynomial function on Ω and that ã is not

divisible by α modulo ker(π). Since σ is e-central for Ω|k, it gives us the polynomial

function Pσ(�) when it is applied to Penney’s distributions for k̃. It follows that

[σ, ν̃] ∈ ker(π). Thus, ν̃ turns out to be k-invariant and Pν̃(�) = P̃ν̃(�̃). �

We continue the proof of Theorem 3. Let us write

(13) W =
r∑

j=0

wjX
j
j0
, wj ∈ U (kj0−1)(0 ≤ j ≤ r).

We go now to engage a double induction on the index j0 > d and on the degree r
of Xj0 in the expression of W . As wr is k-invariant, it follows from the induction
hypothesis that wr·a� = Pwr

(�)a� for � ∈ Ω with a function Pwr
(�) which extends

into a polynomial function on Ω. Next, in the expression (13), let us suppose our
assertion established for the elements whose degree relative to Xj0 is inferior or
equal to r − 1. We see that

W̃ = βrW − wrν
r

is of degree inferior to r relative to Xj0 and hence P
˜W
(�) is a polynomial function

on Ω. One deduces from this that PW (�) is polynomial because β is not divisible
by α.

�

Corollary 2. Suppose that π|K has finite multiplicities. Then the rational function
� �→ PW (�) = Θ(W )(�) extends to a polynomial function on Ω, where Θ is defined
as in equation (7) .

5. Proof of Conjecture 1.1: Second part

Recall first the flag of subalgebras (2), where k = kd, j0 ≥ d + 1 the smallest
index such that W ∈ U (kj0) and α as given in equation (8). Let us first prove the
following result, which could be regarded as a substitute to Lemma 3. Repeating
this process, we get the element ν̃ in Lemma 3.

Proposition 3. Let m ≤ d such that the generic Km-orbits in Ω|km are saturated
with respect to km−1. Write km = RXm + km−1 for some Xm ∈ km \ km−1 and let

τm = a′mXkm
+ b′m, a′m, b′m ∈ U (kkm−1)

be an e-central element for Ω|km−1
which is not e-central for Ω|km with the index

km as small as possible. Then:

(1) τm and [Xm, τm] can be choosen in a way that they are not divisible by α
modulo ker(π).
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(2) Suppose that h′m = km + gj0−1 is strictly included in hm = km + gj0 and
there exists Wm ∈ Uπ(hm)km such that Wm �∈ Uπ(h

′
m)km , which gives us a rational

function on Ω when it is applied to Penney’s distributions for km, then there exists
an element

νm = amXj0 + bm, am, bm ∈ U (h′m),

where gj0 = RXj0 +gj0−1, which is km-invariant and gives us a polynomial function
on Ω when it is applied to Penney’s distributions for km and such that am is not
divisible by α modulo ker(π).

Proof. Let us proceed by induction on dim k. The claim is trivial when dim k ≤ 3.
We prove both the assertions at the same time in case of saturation. Let 4 ≤ m ≤ d
and suppose that the generic orbits by Km = exp(km) in Ω|km are saturated with
respect to km−1. Let

τm = a′mXkm
+ b′m, a′m, b′m ∈ U (kkm−1)

be a e-central element for Ω|km−1
which is not e-central for Ω|km and which is not

divisible by α. Choose the index km as small as possible.
Replacing k by km, Lemma 3 gives us the element τm = a′mXkm

+ b′m, with
a′m, b′m ∈ U (kkm−1) and a′m is not divisible by α modulo ker(π). Now [Xm, τm] is
by construction in U (kkm−1), thus it is not divisible by α modulo ker(π).

This being done, suppose that there exists Wm ∈ Uπ(hm)km\Uπ(h
′
m), where

hm = km + gj0 , which gives us a rational function on Ω when it is applied to
Penney’s distributions for km and let us build the element νm with the properties
cited in the proposition.

By the saturation argument, we see that Wm ∈ U (hm−1) and that the Penney’s
distributions for km are the same as those for km−1. Therefore, by the induction
hypothesis, there exists a Km−1-diagonal element

νm−1 = am−1Xj0 + bm−1, am−1, bm−1 ∈ U (h′m−1)

in U (hm−1) which gives us a polynomial function on Ω when it is applied to Pen-
ney’s distributions for km−1 and such that am−1 is not divisible by α. If νm−1

is km-invariant, it is qualified as our desired νm. Suppose that νm−1 is not km-
invariant and retake the construction of our ν introduced in [7]. For a sufficiently
large integer v ∈ N, we consider

ψ = νm−1 + F (τm),

where F (t) is a polynomial in one variable t of degree 2v. For k ∈ N, put

ψ0 = ψ, ψk = (ad(Xm))k(ψ).

Remark that [Xm, [Xm, τm]] ∈ ker(π). Therefore, if v is sufficiently large, then

ψ2v �∈ ker(π), ψ2v+1 ∈ ker(π).

We now build an element of U (hm−1)
km by the formula

νm =(ψ0ψ2v + ψ2vψ0)− (ψ1ψ2v−1 + ψ2v−1ψ1) + · · ·
+ (−1)v−2(ψv−2ψv+2 + ψv+2ψv−2)

+ (−1)v−1(ψv−1ψv+1 + ψv+1ψv−1) + (−1)vψ2
v .
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Remark once again the fact that v is sufficiently large. This assures that νm is
of degree 1 with respect to Xj0 . Moreover, [Xm, νm−1] applied to a� gives us a
polynomial function on Ω. Indeed, we see by definition that

P[Xm,νm−1](�) =
d

dt
Pνm−1

(exp(tXm) · �)
∣∣
t=0

, � ∈ Ω.

It follows that νm·a� = Pνm
(�)a� for generic � ∈ Ω with a polynomial function

Pνm
(�) on Ω.

Finally, since, for any k, (ad(Xn))
kF (τm) belongs to U (h′m), we can choose the

polynomial F such that νm = amXj0 + bm, am, bm ∈ U (h′m) and am not divisible
by α modulo ker(π). Indeed, let

F (t) = λ0 + λ1t+ · · ·+ λ2v−1t
2v−1 + λ2vt

2v, λj ∈ C (0 ≤ j ≤ 2v).

Suppose that (ad(Xm))k(am−1) (0 ≤ k ≤ n0) are not divisible by α modulo ker(π),
but that (ad(Xm))n0+1(am−1) and hence all the elements (ad(Xm))k(am−1), k ≥
n0 + 1 are divisible by α modulo ker(π).

Considering the λj as variables, and supposing that for any choice of these vari-
ables, the coefficient am of Xj0 in νm is divisible by α modulo ker(π), thus for any
j, the coefficient of λjXj0 of νm is divisible by α modulo ker(π). Remark now that
the terms λ2v−n0

Xj0 in νm appear only in the sum:∑
k≥n0

(−1)k(ψkψ2v−k + ψ2v−kψk) ≡ 2
∑
k≥n0

(−1)kψ2v−kψk (mod ker(π))

and they are modulo ker(π):( ∑
k≥n0

ck(adXm)2v−k(τm
2v−n0)(adXm)kam−1

)
λ2v−n0

Xj0 ,

where ck is a numerical constant. Each term in this sum is divisible by α except
the first one, by definition of n0. This proves that there is a polynomial F such
that the conditions of the proposition hold for νm.

Now, suppose that the generic Km-orbits in Ω|km are non-saturated with respect
to km−1. Then, there exists an element

σm = cmXm + dm, cm, dm ∈ U (km−1)

which is e-central for Ω|km . If

Wm = vrX
r
m + vr−1X

r−1
m + · · ·+ v1Xm + v0, vj ∈ U (hm−1)(0 ≤ j ≤ r)

with vr �∈ ker(π)(r > 0), W ′
m = crmWm−σr

mvr is km-invariant and of degree smaller
or equal to r− 1 relative to Xm because vr, cm are also km-invariant and commute
each other modulo ker(π). Repeating these manipulations if necessary, we arrive
to a km-invariant element Wm−1 ∈ U (hm−1) which gives us a rational function
on Ω when it is applied to Penney’s distributions. From the induction hypothesis
there exists a km−1-invariant element νm−1 which satisfies the required conditions as
above. Applying νm−1, σm to Penney’s distributions for km−1, we confirm that they
commute each other modulo ker(π). In this way, νm−1 turns out to be km-invariant
and is qualified as our desired νm. �

Corollary 3. Let h be a subalgebra of k and h′ an ideal of codimension 1 in h such
that the generic orbits by H = exp h in Ω|h are saturated with respect to h′. Let

τ = a′Xk′ + b′, a′, b′ ∈ U (kk′−1), a′ �∈ ker(π),
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be a e-central element for Ω|h′ , which is not e-central for Ω|h for which k′ is min-
imal. Then τ and [X, τ ] can be chosen in a way that they are not divisible by α,
where h = RX + h′.

We now look at the surjectivity of the homomorphism Θ defined by equation
(7). We first record the following, which will be of use later

Proposition 4 ([7, Proposition 4.4]). Keep the same notations and hypotheses and
let us denote by y′ the variable corresponding to the polynomial function defined as
in equation (8). Then for every polynomial ζ(x) ∈ C[Ω]K , there exists a polynomial
s(y′) of y′ such that the product s(y′)ζ(x) is in the image of Θ.

Let V be the set of K-diagonal elements W ∈ Uπ(g)
k such that W ·a� = PW (�)a�

with a function PW (�) which extends to a polynomial function on Ω. We consider
the image M of the mapping

ΘV : V � W �→ PW ∈ C[Ω]K .

We now prove the following:

Proposition 5. Let q(�) ∈ C[Ω]K . If there exists 0 �= u(�) ∈ M such that the
product u(�)q(�) belongs to M , then the function q(�) itself belongs to M .

Proof. We proceed by induction on dimG + dim(G/K). Let u(�) = PW1
(�) and

u(�)q(�) = PW2
(�) with W1,W2 ∈ V . Examine first the case where k = {0}. Put

b = ∩�∈Ωb[�], which is an ideal of g. It is seen that U (b) is identified modulo ker(π)
to the symmetric algebra S(b) of b because [b, b] ⊂ ker(π). Then, W1,W2 belong to
U (b) � S(b) and W2 is divisible by W1, namely that there existsW ∈ S(b) � U (b)
such that W2 = W1W . It is clear that W ∈ Uπ(g)

k and PW (�) = q(�). In sum,
q(�) ∈ M .

Suppose that dim k ≥ 1. Keep the notations introduced before. When Ω is
non-saturated with respect to kn−1, W1,W2 are taken in Uπ(kn−1)

k and the result
derives immediately from the induction hypothesis.

Suppose that Ω is saturated with respect to kn−1. It follows that W1,W2 ∈
U (kn−1) and that q(�) depends only on �′ = �|kn−1

. For almost all t ∈ R, there exists

by the induction hypothesis an element Wt ∈ Uπt
(kn−1)

k verifying PWt
(�′) = q(�′)

for almost all �′ ∈ ωt. Here, Wt depends rationally on t ∈ R. By Proposition 4,
there exists a polynomial s(y′) of y′ = Pκ(�) such that s(y′)q(�) ∈ M .

Now take an ideal g̃ �= kn−1 of codimension 1 in g. Suppose first that Ω is non-
saturated with respect to g̃. Then W1,W2 are in U (g̃) modulo ker(π). If k ⊂ g̃, the

induction hypothesis provides us the result. If k �⊂ g̃, put k̃ = k ∩ g̃ and K̃ = exp k̃.

The induction hypothesis assures that there exists a K̃-diagonal W̃ ∈ Uπ(g̃)
˜k so

that we have P̃
˜W
(�) = q(�). Since q(�) is k-invariant, W̃ turns out to be k-invariant

and hence P
˜W
(�) = q(�). In this way, q(�) ∈ M .

Recall now our previous notations: g′ = kn−1, κ its corresponding e-central
element and y′ as in equation (8). Suppose that Ω is saturated with respect to
g̃. If k ⊂ g̃, W1,W2 belong to U (g̃). As above, there exists a polynomial s̃(ỹ) of
ỹ = Pκ̃(�) such that s̃(ỹ)q(�) ∈ M . Let s(y′)q(�) = PW ′(�) and s̃(ỹ)q(�) = P

˜W
(�)

for some W ′, W̃ ∈ V . Then, s̃(κ̃)W ′ ≡ s(κ)W̃ modulo ker(π). Therefore, W ′ must
be divisible modulo ker(π) by s(κ) and W ′ ≡ s(κ)W modulo ker(π) with a certain
K-diagonal W ∈ Uπ(g)

k. Thus, q(�) = PW (�).
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Finally, suppose that k is not found in g̃. We shall argue similarly as in the proof

of Theorem 3. If b[�|k] ⊂ k̃ almost everywhere on Ω, W1,W2 belong to U (g̃) and

hence q(�) depends only on �|g̃. From the induction hypothesis applied to k̃, there

exists a K̃-diagonal W̃ ∈ Uπ(g̃)
˜k such that q(�) = P̃

˜W
(�). Since q(�) is k-invariant,

W̃ is k-invariant too and P̃
˜W
(�) = P

˜W
(�). Therefore, q(�) ∈ M .

We place in the last possibility where b[�|k] �⊂ k̃ almost everywhere on Ω. It is
sufficient for us to treat the case where s(y′) = α which is a polynomial in y′ of
degree 1.

Let j0 be the smallest index such that q(�) belongs to the symmetric algebra
S(kj0) = C[k∗j0 ] of kj0 with respect to the sequence (5) of subalgebras. Aligning
back to Subsection 3.3, let {Yk}nk=1 be a Jordan-Hölder basis of g adapted to the
flag (1) and let

S = {s1 < · · · < sr}
be the set of jump indices for Ω with respect to the flag (1) which appear in kj0 .
Set xi = �(Ysi) for 1 ≤ i ≤ r, where Ysr = Xj0 changing the ordering. So, q(�)
depends on {x1, . . . , xr}. Write

q(�) =
v∑

j=0

qj(�)x
j
r,

where qj(�)(0 ≤ j ≤ v) are polynomial functions of x1, . . . , xr−1.
Everything as in the proof of Lemma 3, we now prove by induction on the

dimension of k that there exists in M an element

ν(�) = β(�)xr + γ(�),

where β(�), γ(�) are polynomials of {x1, . . . , xr−1} and where β(�) ∈ M is not
divisible by α. Indeed, assume first that j0 > d. Making use of the e-central

element σ for Ω|k as in equation (11), one finds in S((kj0 ∩ g̃))∩C[Ω]K̃ , an element

q̃(�) outside S(kj0−1) such that αq̃(�) ∈ M̃ , the corresponding set for k̃. By the

induction hypothesis, there exists in M̃ an element

ν̃(�) = β̃(�)xr + γ̃(�),

where β̃(�), γ̃(�) are polynomials of {x1, . . . , xr−1} and where β̃(�) ∈ M̃ is not
divisible by α. Now, using the element σ as in (11), ν̃(�) turns out to be K-invariant
and hence belongs to M as is to be shown.

When j0 ≤ d, we first prove Lemma 4.

Lemma 4. We regard the symmetric algebra S(k) of k as the algebra of polynomial
functions on Ω|k through the evaluation Ω|k � � �→

√
−1�(X) for X ∈ k. Let

ζ : S(k) → U (k) be the symmetrization map. Then, ζ(q) is K-diagonal and

ζ(q)·a� = q(�)a�, � ∈ Ω|k.

Proof. We proceed by induction on dim k. When dim k = 1, the claim is trivial.
Let z(k) be the center of k. If dim z(k) = 1, z(k) is nothing but the center z of g. As
π|z �= 0, q ∈ S(k′) where k′ denotes the centralizer of k2 in k, where k2 is as in the
flag (3). Since b[�|k] ⊂ k′ for � ∈ Ω, we can apply the induction hypothesis to k′.
Suppose dim z(k) ≥ 2. For � ∈ Ω|k, we put a = z(k) ∩ ker(�), k̄ = k/a and �̄ ∈ (k̄)∗

such that �̄◦p = � with the canonical projection p : k → k̄. Let a�̄ be the Penney
distribution of k̄ at �̄. Then, we have ζ̄(q̄)·a�̄ = q̄(�̄)a�̄ from the induction hypothesis
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applied to k̄. Here, ζ̄ : S(k̄) → U (k̄) denotes the symmetrization map and q̄ ∈ S(k̄)
is such that q̄◦p = q. Thus, we get the claim. �

Now if j0 > d, we use assertion 2 of Proposition 3 to argue similarly as in the
previous case.

We now utilize a new induction on the degree v of q relatively to xr. If so,

β(�)
v
q(�)− qv(�)ν(�)

v

is of degree smaller than v relatively to xr and hence belongs to M . Thus,
β(�)

v
q(�) ∈ M . Let

β(�)
v
= PW3

(�), β(�)
v
q(�) = PW4

(�)

with W3,W4 ∈ V . Then,

αβ(�)
v
q(�) = PW ′(�)PW3

(�) = Pκ′(�)PW4
(�),

where κ′ is the polynomial in κ of degree 1 such that Pκ′(�) = α. In other words,

W ′W3 ≡ κ′W4

modulo ker(π). Because W3 is not divisible by κ′, W ′ must be divisible by κ′.
Consequently, q(�) belongs to M . �

Remark 2. It is worthnoting here that by a result of M. Duflo (cf. [14]), for any

σ ∈ K̂ and any q ∈ S(k)K , σ(ζ(q)) = q(�)id for any � in the orbit associated to
σ in k∗. It remains unclear to us whether this results provides directly a proof of
Lemma 4.

Corollary 4. Keep the same notation and assume that π|K has finite multiplicities,
then the mapping Θ defined by equation (7) is surjective.

Corollaries 2 and 4 allow to complete the proof of Conjecture 1.1. We have the
following:

Theorem 4. Let G = exp g be a connected and simply connected nilpotent Lie
group. Then Conjecture 1.1 holds. That is, when π|K has finite multiplicities,
the mapping Θ gives by passing to the quotient an isomorphism of algebras from

Dπ(G)K to the algebra C [Ω(π)]
K

of the K-invariant polynomial functions on the
orbit Ω(π).
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taines représentations unitaires d’un groupe de Lie résoluble exponentiel (French,
with French summary), Compositio Math. 139 (2003), no. 1, 29–65, DOI
10.1023/B:COMP.0000005080.07125.18. MR2024964

[5] Ali Baklouti and Hidenori Fujiwara, Commutativité des opérateurs différentiels sur l’espace
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