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ABSTRACT. Let G be a connected and simply connected nilpotent Lie group,
K an analytic subgroup of G and 7 an irreducible unitary representation of G
whose coadjoint orbit of G is denoted by Q(w). Let % (g) be the enveloping
algebra of gc, g designating the Lie algebra of G. We consider the algebra
D (G)E ~ (% (g)/ ker(m))X of the K-invariant elements of % (g)/ker(r). It
turns out that this algebra is commutative if and only if the restriction 7|x
of m to K has finite multiplicities (cf. Baklouti and Fujiwara [J. Math. Pures
Appl. (9) 83 (2004), pp. 137-161]). In this article we suppose this eventuality
and we provide a proof of the polynomial conjecture asserting that Dy (G)¥
is isomorphic to the algebra C[Q(m)]¥ of K-invariant polynomial functions on
Q(m). The conjecture was partially solved in our previous works (Baklouti,
Fujiwara, and Ludwig [Bull. Sci. Math. 129 (2005), pp. 187-209]; J. Lie
Theory 29 (2019), pp. 311-341).

1. INTRODUCTION

Let G = expg be a connected and simply connected nilpotent Lie group with
Lie algebra g and K = exp £ an analytic subgroup of G. We denote by g* (resp. £*)
the dual vector space of g (resp. ). Then, G (resp. K) acts on g* (resp. £*) by the
coadjoint action whose orbit space realizes by the orbit method [§], [12], [21] the
unitary dual G (resp. K’) of G (resp. K). We denote by 0g : g* — G the Kirillov
map and by Q(r) = Qg(7) = 65" () the coadjoint orbit of G associated to = € G.
Although we use the notation ~ for the unitary equivalence, we often identify an
irreducible unitary representation with its equivalence class.

We know in the nilpotent case the branching laws of induced and restricted
representations ([I5], [16]). Let p : g* — & be the restriction mapping. For = € G,
we consider a finite measure u, on g* equivalent to the canonical measure on the
orbit Q¢ (m) which is regarded as a measure on g*. Put v; = (0xop).(pr). The
restriction 7| of m to K is disintegrated as:
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where the multiplicities m[ are obtained as the number of the K-orbits contained
in Qg(7) Np~1(Qx(0)) (cf. [11] and [17]).

In other respects, it is well known ([2], [10], [I1]) that in these situations the
multiplicities are either uniformly bounded almost everywhere or equal to the in-
finity almost everywhere. According to these two eventualities, we say that the
representation 7|k has either finite or infinite multiplicities.

We denote by % (g) the enveloping algebra of gc and let ker(7) be the primitive
ideal of % (g) associated to m. We introduce the algebra

()" = {A € % (g); [A,#] C ker(n)}
and its image
Dr(G)* = U ()" ker(w) 2= (% () ker(m)) " ,

where the last member designates the quotient algebra of K-invariant elements.
The algebra D, (G)¥ was the object of our three previous works [4], [5] and [6].
In particular, we proved [5] that our algebra D, (G)¥ is commutative if and only
if the restricted representation 7| has finite multiplicities (cf. [I9]). We then
substantiated in [6] Conjecture [Tl (cf. [I7]):

Conjecture 1.1 (cf. [T7]). Let G be a connected and simply connected nilpotent Lie
group, K an analytic subgroup of G. Let w € G be a unitary and irreducible repre-
sentation of G such that ©|x is of finite multiplicities. Then the algebra D.(G)¥
is isomorphic to the algebra C[Q(m)]¥X of the K -invariant polynomial functions on

Q(m).

We positively proved Conjecture [[LT] in many settings, especially when K is a
normal subgroup of G or where the orbit Q(x) is flat in [6] and further, the case
where K is abelian or where Q(7) admits a normal polarizing subgroup [7]. The
aim of the present paper is to provide a proof of Conjecure [Tl

The outline of the paper is as follows: We introduce in the next section some
backgrounds about the algebra D,(G)X and some algebraic tools to describe its
generators in term of the enveloping algebra of gc. This makes use of Pedersen’s
construction of the kernel ker(m), m being the Kirillov’s model associated to ()
(cf. [21]). Section Blis devoted to prepare the ingredients to prove the main result,
mainly an algorithm which allows to define a rational function Py on Q(7), for a
given W € %, (g)*. Sections @] and [ are devoted to prove Conjecture [

2. BACKGROUNDS

2.1. Let G be a connected and simply connected nilpotent Lie group. We consider
a unipotent representation of G on a real vector space V of finite dimension. Let
v € V be an invariant vector by the action of G, i.e. g-v = v for all g € G.
Put for € V arbitrarily fixed, L, = {z + tv; ¢t € R}, the straight line passing
through = and having the direction of v. Then, there are two possibilities: either
L,NGx =L, or L, NG-x = {z}. According to these two possibilities, we shall
say that the orbit G-x is either saturated or non-saturated in the direction Rv. We
shall utilize in what follows this fact applied to the coadjoint representation of G
(or a subgroup K of G), where the invariant vector v will be a linear form which
vanishes on an ideal g’ of codimension 1 of g. In this situation, we shall say that
the orbit in question is either saturated or non-saturated with respect to g’.
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2.2. Let

(1) {0}=g0CaC - Cogn1Can=0
be a Jordan-Hoélder sequence of g, i.e. an increasing sequence of ideals of g such
that dim(g;) = j, j = 0,...,n. Let {Y1,...,Y,} be a Jordan-Hélder basis of g,
associated to this Jordan-Holder sequence, and {Yy*,...,Y,*} the basis of g* such
that Y,*(Y;) = 6;;,1 < 4,5 < n. Let p; : g* — g} be the canonical projection
which intertwines the actions of G on g* and gf. For ¢ € g*, we put e;(¢) =
dim G-p;(€), e(f) = (e1(£),...,e,(£)) and & = {e(¢),f € g*}. For e € &, we define
the G-invariant layer U, = {{ € g* : e({) = e}. Putting ep = 0, we define also
Sle)={i: e, =1+ei_1}, 95 =R—vect{YV;" : i € S(e)}
T(e)={i: e;=ei—1}, gp =R—vect{Y;": i € T(e)}.

Then we have g* = gt ® g5. There exists an order among the elements of & =
{e(l) > e > e(’“)} in such a manner that U,u) and U;<;U,) are Zariski open
sets of g* for every ¢. In this way all the layers U. are semi-algebraic set, i.e.
difference of two Zariski open sets of g*. Let U, be an arbitrary layer, we write
S(e) = {j1 < -+ < jr} where r designates the dimension of the G-orbits in Uk,.
Then there exist some functions RS :Ue x R" = R, j=1,...,n such that:

(a) For f € U, fixed, x = (z1,...,2,) = R§(f,z) : R” — R is a polynomial
function in x and the coefficients are G-invariant functions on U,;

(b) Rj(fax) =y, for j = ji € S(e), f € Ue;

(¢) If jx < j < jr+1, then R5(f,r) depends only on zy, ..., zx;

(d) For any f € U, the coadjoint orbit G- f is given by:

G-f ={ ) Ri(f,2)Yj ;2 R},
j=1

(see [22]).
Let 7$(f) be the image in % (g) by the symmetrization of the element
Ri(f, =Y., =Y, )

in the symmetric algebra S(g) of gc, namely, we replace the variable z;, in R§(f, z)
by —iXj,. Notice in particular that r§ (f) = —iYj,. Let V. be the subspace of S(g)
spanned by the elements of the form Y --- Y ai,...,a, € N, and let F. be
the image in % (g) of V, by the symmetrization. On the other hand, let E. be the
subspace of 7 (g) spanned by the elements of the form Y7* ---Y*", ay,..., 0, € N.
If S(e) =0, we put V, = F, = E, = C-1. Pedersen proved that the primitive ideal
ker(r), where m € G such that f € Q(r) is generated by the elements
uj(f) =Y; —ir§(f), j € T(e)
and that
U (g) = ker(n) ® E, = ker(m) @ F,
(see Theorem 2.1.1 and Theorem 2.2.1 in [22]). In the same way, the actions of 7
on E. and F, are faithful (see Lemma 2.2.12 and Lemma 2.2.13 in [22]). In this
way, identifying F. and F, & % (g)/ ker(w) and abusing notations, we have
D, (G)¥ ~EX ~FEX ~Cy; y; )%

j’l"
These isomorphisms are simply isomorphisms of vector spaces.
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2.3. In [13], Corwin and Greenleaf showed that Pedersen’s construction of the kernel
ker(my), where 7, designates the Kirillov’s model [21I] which represents the class
0c(¢), for ¢ € U, leads to construct e-central elements (cf. Theorem 3.1 in [I3]).
These are elements A of the enveloping algebra % (g) such that the operators mp(A)
are scalars for ¢ € U.. Then 7 (A) = me(A) for all £ € G - £. More precisely, let
U, C g* be one of the layers constructed above. Then there exists a Zariski open
set Z C g* such that Z N U, is non-empty G-invariant and for all j € T'(e) there
exists an e-central element A; € % (g;) on Z N U, i.e. the operators my(A;) are
scalars for all £ € Z N U, with the following properties:

(1) A; = P;Y; + Q;, where P;,Q; are in % (g;_1).

(2) P; is e-central on Z N U, and does not belong to ker(my).

(3) me(Aj)=0¢,(0)Id for Le ZNU,, where ¢;(£)=p;(£)¢(Y;)+q;(¢), p; and §; be-
ing non-singular rational functions on ZNU, depending only on (¢(Y1),...,4(Y;_1)).
While the rational function p; (17) is G-invariant and never vanishes on Z N U,.
Moreover, we easily see that the system {A;; j € T(e)} of these e-central elements
separates the orbits in Z N U,.

Having given the construction of A;, Corwin-Greenleaf [13] remarked the follow-
ing: Dropping out the Zariski open set ZNU, from U,, we notice that, U,\Z being
G-invariant and semi-algebraic, the parametrization of the orbits in U, is carried
out and retains all its properties on this sub-layer in U.. We are able to repeat
the whole process starting from U.\Z. Since U, is semi-algebraic, the ascendent
chain condition for the ideals in C[g*] assures that the process terminates after
a finite number of steps. So, patching the pieces together, we may suppose that
ZNU, = Us.

Let p be a unitary representation of G. We denote by J¢,, > and 5, >°
respectively the space of p, that of its differentiable vectors and the anti-dual of
;> (cf. [9] and [23]). For a € %‘f"o and b € J,7°°, we denote by (a, b) the image
of b by a, so that {a,b) = (b,a). Being given a subgroup H of G and its unitary
character y, put

()X = {a € 25> p(h)a = x(h)a, Vh € H}.

3. FIRST PREPARATIONS TO THE PROOF OF CONJECTURE [I.1]

3.1. Recall once again our situation. Let G = expg be a connected and simply
connected nilpotent Lie group with Lie algebra g, K = exp £ an analytic subgroup
of G and 7w an irreducible unitary representation of G whose coadjoint orbit is
denoted by Q(w). For £ € Q(r), we designate by b[¢|¢] a polarization of ¢ at
L]y € €. We know [B] that 7|k has finite multiplicities if and only if b[¢|¢] + g(¢) is
a Lagrangian subspace for the bilinear form By : (X,Y) — £([X,Y]), at pr-almost
all £in Q(7).

At the flag of ideals (@) of g, let & = {i1 < --- < i4} where d = dim ¢ be the set
of indices 1 < ¢ < n such that €Ng; # €N g;_1 and put

/:{jl<"'<jq}:{1’2a""n}\j

with ¢ = dim(g/t). Putting £¢; = ¢ and &5, = €+ g;, for 1 <r < ¢, we obtain a
sequence of subalgebras of g:

(2) t=¢, C Ed+1 c---Ct,1Ct, = g, dim(er/grfl) =1.
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Furthermore, considering ¢; =t N g, (1 < s <d), we get a flag of ideals of &
(3) {O}ZE()CElC-"CEd,lCEd:E, dim ¢, = s.

3.2. Let £ € Q(m). Taking there a real polarization b[{] of g, we realize 7 as
T = indgmm with B[] = exp(b[{]) and x, is the unitary character of B[¢] whose
differential is if|[;). On the other hand, by means of the flag (B]), we construct [§]
the Vergne polarization b[¢|¢] of ¢ at £|¢ € €. Put B[¢|¢] = exp(b[{]¢]). It is easy to
verify [6] that the formula

@) () = (an ) = / O ®dh (Vo € A,
Blt|e]/(B[]e]NB[4])

db designating an invariant measure on the homogeneous space B[(|¢]/(B[¢|¢]B[(]),
gives us a semi-invariant generalized vector ay in (t%’j:‘”)Bwf]’X[.

Suppose that 7|k has finite multiplicities. This would say as in the case of the
monomial representations, that b[f|¢] + g(¢) is a Lagrangian subspace of g for By
at almost all ¢ € (7) with respect to the invariant measure. Then, it results pi,-

almost everywhere in Q(7) that ay is an eigen vector for all the elements of D, (G)¥
acting on .~ by continuity. This also means that for every W € %, (g)t we have

w. Qy ‘= ’R’(W)ag = )\g(W)a[

with a certain scalar A\¢(W) (cf. [6]). Remark that this scalar \;(W) does not
depend on the choice of the polarization b[¢] and of the flag @) (cf. [15], Proposition
3).

Further, we also have the

Theorem 1 ([6], Theorem 3.4). Suppose that 7|k has finite multiplicities. The
homomorphism U (g)t > W +— Py : £+ \o(W) defines an imbedding of D,(G)¥
into the field C(QU(m))X of rational K -invariant functions on Q().

We can say even more. Aligning the two sequences () and (@), we have a
sequence of subalgebras of g:

(5) {0}=¢CctyC---Cty=tCc.---Cct,_1Ct, =g

Relatively to this sequence, let us extract again a vector Xj, € € \ €;_1 and put
b, = 4(Xy) for 1 < k < n. Consider the action of K on the sequence (Bl and define
two sets Sk, Tk of jump and non-jump indices. Namely, we denote by ef( (¢) the
dimension of the K-orbit of £]¢; € €} for every 1 < j < n. Then we agree el (0) =0.
For each index j, the same possibility of the alternative eX(£) = el (¢) + 1 or
el (£) = el | (¢) happens pir-almost everywhere on Q(w). We denote by Sk the set
of the indices 1 < j < n which verify the first eventuality and by Tk that of indices
of the second eventuality. Put % (€;)® = %, (g)* N % (¢;). Theorem 2 is proved in

I5].

Theorem 2. We keep the same notations and hypotheses. Then:

(1) If j € Sk, then %ﬂ-(fj)é = %ﬂ-(fjfl)e + %(E]) (%(Ejfl) N ker(w)).

(2) If j € Tk, then %y (&)t # U (8;-1)t + % (&) (% (8;-1) Nker(m)) and there
exists W € ?/Tr(Ej)E having the form W; = aX;+b (a,b € % (¢;-1)), a € %W(Ej_l)é
with m(a) # 0.

(3) Forj € Tk and £ € Q(m), Pw, () = @;(£)l; +1;(€), where p;(£), ;(L) are
two rational functions of £1,...,€;_1.
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As a direct consequence of this result, we obtain as in [6]:

Proposition 1.

(1) Let A be an element of Uy (8m)t for 1 < m < n satisfying w(A) # 0. Then
there exists two non-zero polynomials Ba and ya of the elements {Wj;j € Tk, j <
m} such that BaA = v4 modulo ker(r).

(2) The functions { Py, (¢);j € Tk } rationally generate the field C Q(r)*.

3.3. On the coordinates of the coadjoint orbit. Asin Section[2] we start from
the flag of ideals () of g to parameterize the orbit Q = Q(7) and denote there by
Sq and Tg respectively the sets of jump and non-jump indices. Let {Y1,...,Y,}
be a Malcev basis adapted to the flag (), ¢, = ¢(Y;) (1 < j < n) for ¢ € Q,
Sqg ={s1 < -+ < s}, r=dimQ and xp = ¥l for 1 < k < r. Describe as in
Section [2] the orbit Q2 by the polynomial relations

(6) fj:Fj(l‘l,...,!Ek), Sk<j<8k+1,
where x = (21,...,2,) runs through R”. In these circumstances the rational func-
tions on € are nothing but the rational functions of the variables (x1,...,z,).

For1<k<r,let [l (*) be the set of the K-invariant polynomial functions on §2,
which depend only on the variables {z;;4 < k}. The arguments developed in the
pages 60-61 of [24] make us see that every R in C(Q)¥ verifying

g—i;«é()and gﬁ =0(i>k)
is written in the form P/Q, where P and @Q belong to I*). Therefore, the existence
of such an element R means that 1*~Y is strictly contained in I*). Next, let
Q =Y, Qi (m > 0) be an element of I*N\I*=1 where Q; (0 < i < m)
designate polynomials of (z1, ...,z,—1) verifying @, # 0. We then confirm that
Qm and mQ,,rr + Qm_1 are K-invariant polynomials.

4. PROOF OF CONJECTURE [[LI} FIRST PART
We keep all our notations. We first define the following:

Definition 1.
(1) We say that W € %, (g)* is K-diagonal, if
7(W)a, = Pw()as

for a certain scalar Py (¢) € C independent of the polarizations chosen to describe
the distribution ay and ¢ — Py (¢) extends to a rational function on €.
(2) Let % be the set of K-diagonal elements of %, (g)¢. Let

Remark 1.
(1) From ([1], Theorem 4.1), any K-diagonal element of % (g) belongs to %, (g)*.
(2) Definition [Mlis posed independently from the fact that 7|k has finite multi-
plicities or not. In the case of finiteness, any element of % (g)* is K-diagonal (cf.
Theorem [T]).

Next, we can easily adapt the arguments of ([6], Lemma 3.2) to prove the fol-
lowing:
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Lemma 1. Let W € % (g) be K-diagonal. Then Py is identically zero if and only
if W € ker(m).

Proof. It W € ker(w), Pw(¢) = 0 because ag € #,°°. Suppose that Py () =0
almost everywhere on €2 and let us prove that W € ker(7) by induction on dim G.

Let p: g* — (£,-1)* be the restriction mapping and K,,_1 = exp(t,_1). If Q is
non-saturated with respect to ¢,,_1, there exists in ker(m) an element A having the
form A = X,, +V with a certain V' € % (£,,_1). Making use of A to kill from W the
part which is found outside of % (,_1), we can suppose that W € % (¢,_1). Since
p(Q) is a K, _1-orbit, the induction hypothesis gives us immediately the desired
result.

Suppose now that  is saturated with respect to €,_;. This implies that W
belongs to % (£,—1). The restriction 7|k, , is disintegrated as 7|, , ~ fﬂga medt
into a one parameter family {m; };cgr of irreducible unitary representations of K, 1
and accordingly the restriction p(2) = Qlg,_, is decomposed as p(Q)) = Uierwr,
where w; is the coadjoint orbit of K, _1 associated to m;. Then, the induction
hypothesis says that W belongs to ker(m;) for almost all ¢ € R and hence W €
ker (). O

The first step to prove Conjecture [LT] consists in proving Theorem [3t

Theorem 3. Let m € G and let W € %(g) be K-diagonal. The function Py
extends to a K-invariant polynomial function on 2.

The proof of Theorem [3] will be achieved through different steps. Let us start
with the following:

4.1. A preliminary inductive proof. In order to prove Theorem Bl we proceed
by induction on §(G,K) = dimG + dimG/K. For small 6(G,K), G turns out
to be abelian and the answer is immediate. Consider the flag of algebras (B) of g
and for the sake of simplicity of notation, denote g’ = €,,_; which contains ¢. Put
G’ = expg’ and suppose that Theorem Bl holds for G'.

4.1.1. Case where the ideal g’ is of non-saturation. Suppose that the orbit €2 is non-
saturated with respect to g’, namely that n € Tg. Then the projection pr : g* — g~
turns out to be a K-equivariant homeomorphism between €2 and w = pr(£2) which
is a G’-orbit. Hence, C[Q2]¥ = C[w]®X. On the other hand, 7’ = 7|g is irreducible
and there exists in ker(w) an element W’ having the form W’ = X,, + A with
A € %(g') which allows us to identify D,(G)¥X with D,/ (G")X. Since w is the
coadjoint orbit of G’ associated to 7’ and since ay = gl the induction hypothesis
proves Theorem [ in this case.

4.1.2. Case where the ideal g’ is of saturation. Suppose now that § is saturated
with respect to g’, namely that n € Sg. We have Lemma

Lemma 2 ([2], [6] Lemma 4.1]). There exists one and only one index2 < j <n-—1
belonging to Sq and b € % (g;_1) such that Y; +b € Uy (g;)* .

Likewise, if j = s; (1 < ¢ < r—1), there exists a G’-invariant polynomial function

(8) a=xz;+o(T1,...,Ti1)
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on 2, which separates the G’-orbits w, = {£ € Q : a({) = a} contained in pr(Q).
This means that pr(Q2) = [[,cg Wa, the disjoint union of G’-orbits w,. Accordingly,

€]
(9) lfer f:/ Toda
R

with 7 = g (we) for all @ € R.

Since the orbit  is saturated with respect to g/, for any ¢ € Q there exists
then a polarization b[¢] at ¢ contained in g’, which is also a polarization at ¢|4 .
Furthermore we can suppose that W € % (g'), since m(W)ay, = Pw (£)as, £ € Q, and
T = indg/ T, It follows then from the definition of ag, ¢ € Q, that

P§(t) = PG (lg).LeQ,

where the index  (resp. ') indicates the action of W on a; (resp. on aag,). We

apply the induction hypothesis to W and G’. Then it follows that the function Py,
which is rational on 2 restricts to the G’-orbits w,, @ € R, as a polynomial function.
Let ¢ be a point of 2, for each real number ¢, let « be such that Ad*(exptX,)l € wa,
then:

Py (Ad* (exp(tXn)g')0) = Pw(a,g) = Zig, Jedq,

for two polynomial functions A, B. Since Py, is polynomial, we have that B
is independent of the variable ¢’ and so Py is given by a polynomial function A
devided by a polynomial function in «.

The following consequence is then immediate.

Corollary 1. Suppose that € is contained in an ideal of codimension 2. Then for
every K-diagonal W € U, (g)*, the function £ — Py ({) is polynomial.

Proof. Let b;,j = 1,2 be two distinct ideals of codimension 1 containing ¢. Accord-
ingly to Subsection LTIl we can assume that the orbit 2 is satured with respect
to b;,j = 1,2. We fix the flag (1) such that g,—2 = b1 N b2, and g,—1 = b1, thus,
if w is the G, —o-orbit of I|g,,—2, the set of jump indices are Sq = S, U {n — 1,n},
or Sg = Sy U{i,k,n—1,n}. In the first case, we have n — 1 = s;, n = 8,41, by
(8), there is a Hyp-invariant polynomial function oy = x; + ¢1(21,...2,-1) separat-
ing the Hj-orbits, and replacing b1 by bho in the flag (1), there is a Ha-invariant
polynomial function as = x;4+1 + wa(x1,...2;—1) separating the Hs-orbits. More-
over, for any complex numbers c;, there is no common divisor for a; + ¢; and
o + co. In the second case, suppose the jump indices for the Hq-orbit w; of {|h;
are Sy, U {i,n — 1}, with ¢ = s;,, and by (8), there is a G,,_s-invariant polynomial
function 81 = x;, + p1(x1,...w;, 1) separating the G,,_s-orbits in the Hy-orbit w;.
Suppose X, be in ha \ b1, and k = s;,, by (8) there is ag = x4, + wa(r1,...Tiy—1)
separating the Ha-orbits in Q. Fix X, such that ag(exp (tX,,)l) = ¢ for each [ in Q
such that as(l) = 0. Finally put: oy (exp (¢X,)l) = B1(I]h,) or

() = (e 200 060 30 ) = 7 28 5 (a3, ),

m
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The function as, polynomial on 2 is H-invariant and separates the H; orbits in
Q. Moreover, since for any complex numbers ¢; and cs,

p— — m *
o+ = et g Lo 4 3 (202 = )" coad (X0 g, ((ad* (X,))™),
m!
m>0

and e20d"(Xn) g, — xi + (a1, ..., 2, 1), there is no common divisor for a; + ¢;
and o + c2. In both cases, applying the induction hypothesis to Wand H; , we
can write Py as a quotient of a polynomial function A; by a function B;(«;),

Ag

polynomial in «; . Thus: Py = % = F(a and

BQ(O&Q)Al = Bl(al)AQ.

Since a1 4+ ¢; and as + ¢ have no common divisor, Py itself is a polynomial
function. O

On the other hand, let W € %,(¢,)t. If v < d, W belongs to %, (£)* and the
operator o(W) is a scalar for almost all o € K with respect to the measure v, used
in the irreducible decomposition of 7|k. Then, we can apply Theorem 2.1.1 in [19]
to get:

Proposition 2. For any W € %, (£), the function £ — Py (£) is polynomial on
Q.

4.2. Proof of Theorem [3l As usual, we can assume that the center 3 of g has
dimension 1, that (= ) is not 0 on 3 and that 3 C €. Also according to 1] we
can assume that for every subalgebra g’ of codimension one containing €, that € is
saturated with respect to g’. In particular a polarization b[¢] with B[{] = exp(b[{])
of £ can always be found in g’ and W € % (g').

We make now a further induction on jg, the smallest index j € {1,...,n}, such
that W € % (¢;,). If jo < d, then W is an e-central element of Corwin-Greenleaf
for the projection of © on #* and hence the function Py () is polynomial as in
Proposition 2l We can therefore assume that jo > d + 1.

Let now [ = €441 and L = expl. If the generic L-orbits in €2|; are non-saturated
with respect to &, there exists a v = aXg41 + b, a,b € Z () which is e-central for
Q|i. Applying W, v to the Penney distribution ay(¢ € §2), we see that they commute
modulo ker(7) and so W is also L-invariant. If we use the Penney distributions
al (as in formula @) and if b[¢|] N b[¢] = b[l|e] N b[¢], we see that for some
S e (I(¢]) Nker(£)) \ &, we have for any ¢ € J>:

(W-ap,p) = W) o(b) xe(b)db

/B[ld/(B[l[]ﬂB[f])

/ / 7T(W*)p(exp(sS)b) xe(exp(sS)b)dbds
R J Ble]e]/(Blfle]NB[€])

[ (W) (m{exp(—8)) ) ()2 (exp b)dids
R J B[¢]e]/(B[t]e]NB[4])

/ P (0) / P(exp(55)0)xe(exp B dbds
R B[¢|(]/(B[e](INB[¢])

Py (0O){a ;)
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Therefore W is L-diagonal. Since 6(G,L) < 6(G, K), the induction hypothesis
implies that P‘,@ = PV%, is polynomial.

Recall now that we are in the situation where the orbit € is saturated with
respect to £, 1. There exists then by Lemma [2 a unique index 2 < rg < n —1
belonging to Sq and b € % (g,,—1) such that

(10) K=Y +b € Un(gn,)®

and [X,,, k] # 0 mod ker(7). The polynomial function P, on € , then separates
the K,,_1-orbits w,, y € R and, as we have seen in @.T.2] W belongs to % (¢,-1) and
Py can be written as % for a polynomial function A on €2 divided by a polynomial
B in the variable Pj.

Let now g be another ideal of g of codimension 1. If € C g, then Theorem Bl holds
by Corollary [l Hence we assume that ¢ ¢ g. Let us treat first the case where Q2 is
not saturated with respect to g. Write g = RX + g and G = expd. We can again
assume as in LT that W € %(g). Let £ = ¢Ngand K = expt. If b[|e] C §
almost everywhere on (2, then ay = ay; and the induction hypothesis tells us that
Py (¢) is a polynomial function on the G-orbit Q = p(€2), where p : g* — (§)* is
the restriction map. Hence Py is also a polynomial function OE\Q.

If b[¢]¢] ¢ ¢ for almost all £ € , let us write b[f|¢] = RX(¢) + b[ag}, where
¢ = p(¢). We remark that we can take h[Z\E] to be the Vergne polarisation at
Z|g € (8)* built from a Jordan-Hélder sequence .% N g of §, . denoting the flag ()
of g. As W is K-invariant, we see that

—

(W) = / (W-az plexp(tX (0))))dt (£ € Q)

for ¢ € A;2°. We identify s> with . °°. Fixing a generic ¢ € 2 and taking a
Malcev basis in g relative to b[¢], which contains a Malcev basis in b[¢[¢] relative to
b[¢|¢] N b[¢], we identify the space S, of m with R™, m = dim(g/b[¢]). Since

Blt])/(B[¢le] N BIf]) ~ Bl¢|e| B[¢)/Bl] = exp(RX (¢)) BIf}3] BIe)/ B4,
we finally get the following two eventualities: either
BI¢le)/(Blele] N BIE]) ~ BICR)/(Blek] N BIA)
Bl¢]e]/(Bl¢]e] N BJ]) ~ exp(RX (£)) B[f;] B[]/ B[]
~ exp(RX (£)) x B[El]/(B[f] N BIE).

In the first case, the distribution a, associated to m can be identified with the
generalized vector aj of T = 7|5. In the second case, for ¢ € J>° satisfying

—_—

p(exp(tX(0)9) = G(t)¥(9), t €R.g € G,
with ¢ € C.(R), ¢ € J2°, the ¢-invariance of W implies that
Wear o) = (| o0 SO dt) Wz, )
R

— P (0)( / S XO)dt) (az, ).
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In both cases we see that W-a; = Py (f)aj. According to the induction hypothesis
Py (£) = Py () is a polynomial function on © and hence also on €.

We can now assume, as we have seen before, that ) is saturated with respect
to g, that for generic £ € Q, the L-orbits of £|; are saturated with respect to £ and
that ¢ Z g.

Recall again £:=tNg. If W € % (g), then the last computation tells us that

w. agﬁ = Pw(f‘g)agﬁ.

Since 6(@, K) < 6(G, K), by the induction hypothesis, Py ({3) is a polynomial on
the G-orbit of /. o

Suppose that P, (¢) # 0 and ad*(X,,) P, = 1. Let Ky = Y5 +U,U € % (g7,—-1) be
the e-central element of Corwin-Greenleaf in %/ (g) associated to £,_;Ng and G-orbit
of £ as in (). Then as in the proof of Corollary[Il we conclude that the denominator
of the rational function Py is a polynomial in Pz, (Ad*(exp (=P, (¢)X,))¢). Since
the denominator is also a polynomial in P (¢), it follows that Py is in fact a
polynomial function.

Therefore we can finally assume that W is not contained in % (g). This means
that b[|¢] Z ¥ for generic £ € €. This being assumed, we suppose that the denom-
inator of the rational function Py (¢) is not trivial. We are brought to the case
where this denominator is equal to P,_.(¢) for some ¢ € C. Take X in & In these
circumstances, there exists in % (£) an element

(11) oc=aX+b, a,be ¥t

which is e-central for Q. If W is of degree m relatively to X with the dominant
term w,, X™, w,, € % (g), we saw in Subsection B.3] that w,, and @ are £&-invariant.

Then, applying a and w,, to ay(¢ € ), we see that they commute each other
modulo ker(w). Thus,

(12) Wi =a"W —w,,c™

is of degree inferior to m relatively to X. Repeating this process, we build an
element W € % (g) such that Pj;({) is a polynomial function on Q. This means
that « is a factor of a.

Recall that jo is the smallest index such that W € % (¢;,) modulo ker(r). We
now prove the following:

Lemma 3. There exists a K-diagonal element
v = 6on +77 577 S %(Ejo—l)v

in U (€,)% such that P,(£) extends to a polynomial function on 2 and such that 3
is not divisible by o modulo ker(r).

Proof. We proceed by induction on dim . Let first dim € = 1, namely £ is abelian.
At each point £ € Q, the Penney’s distribution a, is nothing but the Dirac measure
at the unit element of G. Put b = Nyeqb[f], which is an ideal of g. Then, the
existence of W allows us to take X, in b. This being done, v = X, suits us.
§Eppose now that dim€ > 1. Let us repeat the above construction of the element
W € % (g)* such that Pg;(() = ﬁw(Z) extends to a polynomial function on €.

Here, (= {5 and P designates the object obtained from the pair (aE,E).
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In the first step of construction, if wy, ¢ % (£,-1), then we put W’ = w,,, which
belongs to %, (g)* but not in %(}Ejrl)v where Ejo,l = ¢;,_1 Ng. Otherwise, the
element W, defined in equation (I2)) does not belong to % (¢;,—1), and we replace
W by Wi, and continue the construction of W. At the end of this process, we get

an element W' in %, (g)* but not in % (&,-1).
Hence, by the induction hypothesis, there exists a K-diagonal element

U= ano +E, E,gG %(gjo—l)’

in % (%jo )E such that Py(f) extends to a polynomial function on € and that @ is not
divisible by a modulo ker(). Since o is e-central for Q[e, it gives us the polynomial
function P,(¢) when it is applied to Penney’s distributions for €. It follows that
[0, 7] € ker(m). Thus, ¥ turns out to be £-invariant and P5(¢) = P5(¥). O

We continue the proof of Theorem [B Let us write

T

(13) W=> w X, wj € %, 1)(0<j<r).

j=0
We go now to engage a double induction on the index jo > d and on the degree r
of X, in the expression of W. As w, is ¢-invariant, it follows from the induction
hypothesis that w,-ag = Py, (£)ay for £ € Q with a function P, (¢) which extends
into a polynomial function on €. Next, in the expression ([I3)), let us suppose our
assertion established for the elements whose degree relative to X is inferior or
equal to r — 1. We see that

W=8W —wv"

is of degree inferior to r relative to X, and hence Pj;;(¢) is a polynomial function
on €. One deduces from this that Py (¢) is polynomial because f is not divisible
by a.

|

Corollary 2. Suppose that |k has finite multiplicities. Then the rational function
{— Py (0) = ©(W) (L) extends to a polynomial function on Q, where © is defined
as in equation () .

5. PROOF OF CONJECTURE [[LTt SECOND PART

Recall first the flag of subalgebras ([2), where ¢ = €4, jo > d + 1 the smallest
index such that W € % (¢;,) and « as given in equation (8). Let us first prove the
following result, which could be regarded as a substitute to Lemma [Bl Repeating
this process, we get the element 7 in Lemma [3

Proposition 3. Let m < d such that the generic K, -orbits in Qle,, are saturated
with respect to t,_1. Write t,, = RX,, + t,,_1 for some X,,, € €, \ t,,—1 and let

Tm:a;nka—l-bl a b E%(Bkmfl)

m)'md Y m

be an e-central element for Qe
k., as small as possible. Then:

which is not e-central for Qe with the index

m—1

(1) 7o and [Xom, Tm] can be choosen in a way that they are not divisible by «
modulo ker(r).
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(2) Suppose that b, = t,, + g;,—1 is strictly included in b, = ¢, + g;, and
there exists W, € Uy (hm )t such that W,, & %, (Y ,,)t™, which gives us a rational
function on Q when it is applied to Penney’s distributions for €,,, then there exists
an element

Um = amXjo + bmy Qm,bm € Z(H),),

where g;, = RX;, +g;j,—1, which is &y, -invariant and gives us a polynomial function
on ) when it is applied to Penney’s distributions for &, and such that a,, is not
divisible by a modulo ker(r).

Proof. Let us proceed by induction on dim . The claim is trivial when dim ¢ < 3.
We prove both the assertions at the same time in case of saturation. Let 4 < m < d
and suppose that the generic orbits by K,,, = exp(t,,) in Q|¢,, are saturated with
respect to €,, 1. Let

Tm = a;nka +bv . al b€ %(Ekm—l)

m)'mo Tm

be a e-central element for Q¢ _, which is not e-central for Q[¢, and which is not
divisible by «. Choose the index k,, as small as possible.

Replacing ¢ by ¢,,, Lemma [ gives us the element 7, = a}, X, + b),, with
an, b, € U (tk, —1) and al, is not divisible by a modulo ker(w). Now [X,,, 7] s
by construction in % (¢, _1), thus it is not divisible by & modulo ker(r).

This being done, suppose that there exists Wy, € Zx(bm)t\%x(hl,), where
bm = € + gj,, which gives us a rational function on @ when it is applied to
Penney’s distributions for ¢,, and let us build the element v, with the properties
cited in the proposition.

By the saturation argument, we see that W,,, € % (b,,—1) and that the Penney’s
distributions for &,, are the same as those for €,,_;. Therefore, by the induction

hypothesis, there exists a K, _1-diagonal element
Vm—1 = am—lXjO +bm_1, Gm_1,bm_1 € %(b;n—l)

in % (hm—1) which gives us a polynomial function on €2 when it is applied to Pen-
ney’s distributions for €,, 1 and such that a,,_1 is not divisible by a. If v, 1
is &,,-invariant, it is qualified as our desired v,,. Suppose that v,,_1 is not &,,-
invariant and retake the construction of our v introduced in [7]. For a sufficiently
large integer v € N, we consider

) = Vm—1+ F(1n),
where F(t) is a polynomial in one variable ¢ of degree 2v. For k € N, put
Yo =1, ¥ = (ad(Xm))" ().
Remark that [X,,, [X, Tm]] € ker(m). Therefore, if v is sufficiently large, then
oy & ker(m), ay41 € ker(m).
We now build an element of % (h,,—1)*" by the formula
Um =(ot20 + Y20t0) — (Y1th2v—1 + Yao—1¢1) + -+
+ (=1)""2(Yy—29ut2 + Yut2tu—2)
+ (1" (Wo—1%ot1 + Yos1to—1) + (—1)"05.
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Remark once again the fact that v is sufficiently large. This assures that v, is
of degree 1 with respect to X . Moreover, [X,,Vm—1] applied to a, gives us a
polynomial function on 2. Indeed, we see by definition that

d
Pix,, v (f) = EP,,7”71(eXp(tXm) -Z)’tzo, e

It follows that vy,-a; = P, (¢)a; for generic ¢ € Q with a polynomial function
P, (£) on Q.

Finally, since, for any &, (ad(X,,))*F(7,,) belongs to % (}’,,,), we can choose the
polynomial F' such that vy, = amX,, + bm, am,bm € % (h],) and a,, not divisible
by a modulo ker(7). Indeed, let

F(t) =X+ At + -+ Ay 18?71+ Xopt®, A; € C (0 < 5 < 20).

Suppose that (ad(X,,))*(a,,—1) (0 < k < ng) are not divisible by a modulo ker(r),
but that (ad(X,,))"°"*(a,m_1) and hence all the elements (ad(X,,))*(am_1), k >
ng + 1 are divisible by a modulo ker(r).

Considering the \; as variables, and supposing that for any choice of these vari-
ables, the coefficient a,, of X}, in vy, is divisible by o modulo ker(7), thus for any
J, the coefficient of A\; X, of vy, is divisible by a modulo ker(7). Remark now that
the terms Ayy—_pn,Xj, in v, appear only in the sum:

> () (ka0 + Pav-rthe) =2 ) (—1) b2y gty (mod ker(r))

ano ano

and they are modulo ker(m):

(> en(adXpm)? * (7™ (@d X o) F i —1) A2v—np X

kZTLo

where ¢ is a numerical constant. Each term in this sum is divisible by a except
the first one, by definition of ng. This proves that there is a polynomial F' such
that the conditions of the proposition hold for v,,.

Now, suppose that the generic K,,-orbits in Q| are non-saturated with respect
to £,,_1. Then, there exists an element

Om = CnXm + dm7 cmvdm S %(Em—l)
which is e-central for Qle, . If
Wm = ’UTX:n + ’Urlez;fl + - +’Ule + vg, Uj S %(f)m,l)(() < ] < 7")

with v, & ker(m)(r > 0), W/, = ¢, Wy, — 07, v, 1s &, -invariant and of degree smaller
or equal to r — 1 relative to X,, because v,., ¢,, are also &,,-invariant and commute
each other modulo ker(w). Repeating these manipulations if necessary, we arrive
to a ¢,,-invariant element W,,_1 € % (h,,—1) which gives us a rational function
on € when it is applied to Penney’s distributions. From the induction hypothesis
there exists a ¢, _1-invariant element v, which satisfies the required conditions as
above. Applying v,,_1, 0., to Penney’s distributions for ,,_1, we confirm that they
commute each other modulo ker(7). In this way, v,,_1 turns out to be ¢,,-invariant
and is qualified as our desired v,,. O

Corollary 3. Let b be a subalgebra of € and ' an ideal of codimension 1 in b such
that the generic orbits by H = expl in Q|y are saturated with respect to . Let

T=adXp +V, dV €Uty _1), a ¢ ker(r),



630 ALI BAKLOUTI, HIDENORI FUJIWARA, AND JEAN LUDWIG

be a e-central element for Qg , which is not e-central for Q|y for which k' is min-
imal. Then 7 and [X, 7] can be chosen in a way that they are not divisible by «,
where h = RX + h'.

We now look at the surjectivity of the homomorphism © defined by equation
([@. We first record the following, which will be of use later

Proposition 4 ([7, Proposition 4.4]). Keep the same notations and hypotheses and
let us denote by y' the variable corresponding to the polynomial function defined as
in equation ). Then for every polynomial {(x) € C[Q)X, there exists a polynomial
s(y') of ¥ such that the product s(y')((z) is in the image of ©.

Let ¥ be the set of K-diagonal elements W € %, (g)* such that W-a, = Py (£)a,
with a function Py (¢) which extends to a polynomial function on 2. We consider
the image M of the mapping

Oy : ¥ 5 W — Py € C[Q]¥.
We now prove the following:

Proposition 5. Let q(¢) € C[Q]X. If there exists 0 # u(f) € M such that the
product u(£)q(¢) belongs to M, then the function q(£) itself belongs to M.

Proof. We proceed by induction on dim G + dim(G/K). Let u(¢) = Pw, (£) and
u(€)q(¢) = Pw,(¢) with W1, W5 € ¥. Examine first the case where ¢ = {0}. Put
b = Nyeqblf], which is an ideal of g. It is seen that % (b) is identified modulo ker(m)
to the symmetric algebra S(b) of b because [b, b] C ker(7). Then, Wi, W5 belong to
% (b) ~ S(b) and Ws is divisible by W7, namely that there exists W € S(b) ~ % (b)
such that Wy = Wi W. It is clear that W € % (g)t and Py (¢) = q(¢). In sum,
q¢) € M.

Suppose that dim# > 1. Keep the notations introduced before. When Q is
non-saturated with respect to €, 1, Wy, Wy are taken in % (£,_1)% and the result
derives immediately from the induction hypothesis.

Suppose that €2 is saturated with respect to €,_;. It follows that Wi, Wy €
U (¢,—1) and that ¢(¢) depends only on ¢’ = £, _,. For almost all ¢ € R, there exists
by the induction hypothesis an element W; € %, (¢,_1)* verifying Py, (¢') = q(¢')
for almost all ¢ € w;. Here, W; depends rationally on ¢ € R. By Proposition [4]
there exists a polynomial s(y’) of y’ = P,(¢) such that s(y")q(¢) € M.

Now take an ideal g # €,_1 of codimension 1 in g. Suppose first that  is non-
saturated with respect to g. Then Wy, Wy are in % (g) modulo ker(r). If € C g, the
induction hypothesis provides us the result. If ¢ ¢ g, put E=tNg g and K = exp{’
The induction hypothesis assures that there exists a K-diagonal W € %, (9)* so
that we have PW (0) = q(£). Since g(¢) is E-invariant, W turns out to be E-invariant
and hence Pj;(¢) = ¢(¢). In this way, ¢(¢) € M.

Recall now our previous notations: g’ = €,_1, x its corresponding e-central
element and 3y’ as in equation (B). Suppose that Q is saturated with respect to
g. If £ C g, Wi, W5 belong to % (g). As above, there exists a polynomial 5(y) of
y = Px(¢) such that 5(y)q(¢) € M. Let s(y')q(¢) = Pw-(¢) and 5(y)q({) = Pg:(£)
for some W/, W € #. Then, 5(7)W’ = s(x)W modulo ker(r). Therefore, W’ must
be divisible modulo ker(w) by s(x) and W’ = s(k)W modulo ker(7) with a certain
K-diagonal W € %, (g)t. Thus, q(¢) = Py (¢).
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Finally, suppose that ¢ is not found in g. We shall argue similarly as in the proof
of Theorem [Bl If b[¢|¢] C ¢ almost everywhere on Q, W7, Ws belong to % (g) and

hence ¢(¢) depends only on £|3. From the induction hypothesis applied to €, there
exists a K-diagonal W € %, (§)* such that q(¢) = ﬁW (£). Since ¢(¢) is t-invariant,
W is t-invariant too and ]SW (€) = Pg:(0). Therefoze, q(f) € M.

We place in the last possibility where b[¢|¢] ¢ £ almost everywhere on Q. It is
sufficient for us to treat the case where s(y') = a which is a polynomial in 3’ of
degree 1.

Let jo be the smallest index such that ¢(¢) belongs to the symmetric algebra
S(tj,) = C[e;)] of £, with respect to the sequence (B)) of subalgebras. Aligning
back to Subsection B3] let {Yj}7_, be a Jordan-Hoélder basis of g adapted to the
flag () and let

S:{Sl <-~'<Sr}
be the set of jump indices for Q with respect to the flag (Il) which appear in ;.
Set z; = £(Ys,) for 1 < i < r, where Y, = Xj, changing the ordering. So, ¢(¢)

k3

depends on {z1,...,z,}. Write
q(0) = a5 (0,
j=0

where ¢;(¢)(0 < j <) are polynomial functions of x1,...,z,_1.
Everything as in the proof of Lemma Bl we now prove by induction on the
dimension of £ that there exists in M an element

v(l) = B(O)zr +(0),
where 5(¢),v(£) are polynomials of {xi,...,z,_1} and where S(¢) € M is not
divisible by a. Indeed, assume first that jo > d. Making use of the e-central
element o for ¢ as in equation (IIJ), one finds in S((&;, N g)) NC[Q]X, an element
(¢) outside S(tj,_1) such that ag(f) € M, the corresponding set for €. By the
induction hypothesis, there exists in M an element

o(f) = B)a, +7(0),
where 3(£),7(¢) are polynomials of {z1,...,2z,_1} and where 3(f) € M is not
divisible by . Now, using the element o as in (1), #(¢) turns out to be K-invariant
and hence belongs to M as is to be shown.
When jg < d, we first prove Lemma [4

Lemma 4. We regard the symmetric algebra S() of € as the algebra of polynomial
functions on Q¢ through the evaluation Qle > ¢ — /—1(X) for X € t. Let
C:S(8) = % (&) be the symmetrization map. Then, ((q) is K-diagonal and

C(q)-ae = q(l)as, £ € Q.

Proof. We proceed by induction on dimt. When dim¢ = 1, the claim is trivial.
Let 3(€) be the center of €. If dim 3(¢) = 1, 3(£) is nothing but the center 3 of g. As
m|; # 0, ¢ € S(¥') where ¥ denotes the centralizer of £ in £, where £, is as in the
flag @l). Since b[¢|¢] C ¥ for ¢ € Q, we can apply the induction hypothesis to .
Suppose dim3(£) > 2. For £ € Q¢, we put a = 3(¢) Nker(¢), € = ¢/a and ¢ € (£)*

such that fop = ( with the canonical projection p : £ — ¢. Let a; be the Penney
distribution of £ at £. Then, we have ((g)-a; = §(¢)a; from the induction hypothesis
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applied to €. Here, ¢ : S(€) — % (€) denotes the symmetrization map and g € S(¥)
is such that gop = q. Thus, we get the claim. (Il

Now if jo > d, we use assertion 2 of Proposition [3 to argue similarly as in the
previous case.
We now utilize a new induction on the degree v of q relatively to x,. If so,

B(6)°q(l) — qu(O)v(6)°
is of degree smaller than v relatively to x, and hence belongs to M. Thus,
B(0)"q(¢) € M. Let

BO)" = P, (0), B(0)"q(t) = Pw,(0)
with W3, Wy € ¥. Then,
aB(£)°q(€) = Pw(€)Pw, (£) = Pu (0) P, (0),
where &’ is the polynomial in k of degree 1 such that P,/ (¢) = . In other words,
W'Ws3 = £'Wy

modulo ker(w). Because W3 is not divisible by «/, W’ must be divisible by x'.
Consequently, ¢(£) belongs to M. O

Remark 2. Tt is worthnoting here that by a result of M. Duflo (cf. [14]), for any
o e K and any ¢ € S(8)%, 0(C(q)) = q(¢)id for any ¢ in the orbit associated to
o in t*. It remains unclear to us whether this results provides directly a proof of
Lemma [

Corollary 4. Keep the same notation and assume that 7| has finite multiplicities,
then the mapping © defined by equation [{) is surjective.

Corollaries 2 and [] allow to complete the proof of Conjecture [LTI We have the
following:

Theorem 4. Let G = expg be a connected and simply connected nilpotent Lie
group. Then Conjecture [LI] holds. That is, when w|kx has finite multiplicities,
the mapping © gives by passing to the quotient an isomorphism of algebras from
D ()X to the algebra C[Q(m)]™ of the K-invariant polynomial functions on the
orbit Q(m).
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