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THE CONTRACTION CATEGORY OF GRAPHS

NICHOLAS PROUDFOOT AND ERIC RAMOS

Abstract. We study the category whose objects are graphs of fixed genus
and whose morphisms are contractions. We show that the corresponding con-

travariant module categories are Noetherian and we study two families of mod-
ules over these categories. The first takes a graph to a graded piece of the ho-
mology of its unordered configuration space and the second takes a graph to an
intersection homology group whose dimension is given by a Kazhdan–Lusztig
coefficient; in both cases we prove that the module is finitely generated. This
allows us to draw conclusions about torsion in the homology groups of graph
configuration spaces, and about the growth of Betti numbers of graph configu-
ration spaces and Kazhdan–Lusztig coefficients of graphical matroids. We also
explore the relationship between our category and outer space, which is used
in the study of outer automorphisms of free groups.

1. Introduction

We are interested in ways of assigning a vector space or abelian group to a
graph that are contravariantly functorial with respect to contractions of graphs.
A contraction, which is defined precisely in Section 2.1, preserves the genus (first
Betti number) of a graph, so we consider the category Gg whose objects are graphs
of genus g and whose morphisms are contractions. For any commutative ring k, we
define Repk(Gop

g ) to be the category of functors from Gop
g to k-modules. An object

of this category is called a Gop
g -module with coefficients in k.

1.1. Noetherianity and growth. For any category C, a module M ∈ Repk(C)
is called finitely generated if there exist finitely many objects x1, . . . , xr of C along
with elements vi ∈ M(xi) such that, for any object x of C, M(x) is spanned over k
by the images of the elements vi along the maps induced by all possible morphisms
fi : xi → x. If every submodule of a finitely generated module is itself finitely
generated, the category Repk(C) is said to be locally Noetherian.

Sam and Snowden have developed powerful machinery for proving that module
categories are locally Noetherian. They define what it means for C to be quasi-
Gröbner, and they show that, if C is quasi-Gröbner, then Repk(C) is locally Noe-
therian for any Noetherian commutative algebra k [20]. The most prominent exam-
ple of a quasi-Gröbner category is the category FI of finite sets with injections; the
fact that Repk(FI) is locally Noetherian has been used to prove stability patterns
in coinvariant algebras and in the cohomology groups of configuration spaces and
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other moduli spaces [4], in the homology groups of congruence subgroups [17], and
in the syzygies of Segre embeddings [22].

In the prequel to this paper, the authors built on work of Barter [3] to prove
that the opposite category Gop

0 of trees with contractions is quasi-Gröbner [14]. The
technical heart of this paper is the extension of this result to arbitrary genus.

Theorem 1.1. For any non-negative integer g, the category Gop
g is quasi-Gröbner,

and therefore the category Repk(Gop
g ) is locally Noetherian for any Noetherian com-

mutative algebra k.

Theorem 1.1 is useful for proving that specific Gop
g -modules are finitely generated,

and this gives some control over their dimension growth. More precisely, we say
that a module is finitely generated in degrees ≤ d if the objects x1, . . . , xr in the
definition of finite generation may be taken to be graphs with at most d edges. If k
is a field and M is finitely generated in degrees ≤ d, then the dimension of M(G) is
constrained by a polynomial of degree d in the number of edges of G (Proposition
4.3). Furthermore, if we fix a graph and modify it by either subdividing edges or
“sprouting” new leaves at a fixed set of vertices, then the dimension of M evaluated
on the modified graph behaves as a polynomial of degree at most d in the subdivision
and sprouting parameters (Corollaries 4.5 and 4.7).

Sometimes we have no control of the generation degree of a finitely generated
module, but we can still control its growth. We say that M is d-small if it is a
subquotient of a module that is finitely generated in degrees ≤ d, and d-smallish if
it admits a filtration whose associated graded is d-small. Theorem 1.1 implies that
d-small modules are finitely generated, and it is not hard to prove that the same
is true for d-smallish modules (Proposition 4.2). The degree of generation of such
modules may be much larger than d, but for the purposes of the results mentioned
in the previous paragraphs, they grow as if they were finitely generated in degrees
≤ d. This will be important for the two classes of examples that we study in detail,
which we describe below.

1.2. Homology of configuration spaces. Given a graph G and a positive integer
n, the n-stranded unordered configuration space of G is the topological space1

UConfn(G) :=
{
(x1, . . . , xn) ∈ Gn

∣∣ xi �= xj

}/
Sn.

The homology groups of these spaces have been extensively studied in settings both
theoretical [1, 2, 9] and applied [8].

One powerful technique for studying these groups, which is applied for example
in [2], is to fix the graph G and consider the direct sum of the homology groups
of UConfn(G) for all n. This direct sum is a module over a polynomial ring with
generators indexed by the edges of G, where a variable acts by “adding a point”
to the corresponding edge. An orthogonal approach is to fix n and vary G. This
approach has been used in a number of recent works [10, 14, 18, 19], and it is the
approach that we take here. In particular, the homology of UConfn(G) is functo-
rial with respect to contractions (Section 5.2), and therefore defines an object of
RepZ(Gop

g ).

1Later we give a formal combinatorial definition of a graph, but in the introduction we don’t
distinguish between a graph and its topological realization.



THE CONTRACTION CATEGORY OF GRAPHS 675

Theorem 1.2. Fix natural numbers g, i, and n. The Gop
g -module

G �→ Hi

(
UConfn(G);Z

)
is (g + i+ n)-small. In particular, it is finitely generated.

One concrete consequence of Theorems 1.1 and 1.2 is that we obtain some control
of the type of torsion that can appear in these homology groups. We know from the
work of Ko and Park that the only torsion that can appear in H1

(
UConfn(G);Z

)
is

2-torsion [9, Corollary 3.6]. Furthermore, this torsion carries extremely interesting
information: it is trivial if and only if G is planar! The topological meaning of
torsion in higher degree homology is more mysterious, but we can at least show
that there is a bound on the type of torsion that can occur.

Corollary 1.3. For any triple (g, i, n) of positive integers, there exists a constant
dg,i,n such that for every graph G of genus g, the torsion part of Hi

(
UConfn(G);Z

)
has exponent at most dg,i,n.

Remark 1.4. In this work we only consider unordered configurations of points,
mainly because the tools we use largely derive from the paper [2] and this is the
setting in which they work. It is likely that one can obtain analogues of Theorem
1.2 and Corollary 1.3 for ordered configuration spaces, starting by reproving certain
results from [2] in the ordered setting.

1.3. Kazhdan–Lusztig coefficients. Kazhdan–Lusztig polynomials of matroids
are analogues of Kazhdan–Lusztig polynomials of Coxeter groups. Just as Kazhdan–
Lusztig polynomials of Weyl groups can be interpreted as Poincaré polynomials of
certain intersection homology groups, the same is true of Kazhdan–Lusztig poly-
nomials of graphical (or, more generally, realizable) matroids. See [13] for a survey
that explores this analogy in depth.

More precisely, given a graph G, we can define a complex variety XG, called the
reciprocal plane, with the property that the coefficient of ti in the Kazhdan–Lusztig
polynomial of G is equal to the dimension of IH2i(XG). These homology groups are
functorial with respect to contractions [16], thus we obtain an object of RepC(Gop

g ).

Theorem 1.5. Fix a natural number g and a positive integer i. The Gop
g -module

G �→ IH2i(XG)

is (2i− 1 + g)-smallish. In particular, it is finitely generated.

For example, Theorem 1.5 combines with the results on subdivision described
in Section 1.1 to imply that the ith Kazhdan–Lusztig coefficient of the matroid
associated with the n-cycle is a polynomial in n of degree at most i. Indeed, the
formulas for these coefficients appearing in [15] demonstrate that this bound is
sharp (Example 6.4).

1.4. Outer automorphisms of free groups. A further motivation for studying
the category Gg and its modules is that this category is closely related to Out(Fg),
the outer automorphism group of a free group on g generators. This group is in
many ways analogous to various arithmetic groups and to mapping class groups of
surfaces, and much work has gone into exploring its cohomology; see Vogtmann’s
ICM address [24] for a survey.

We call a graph G of genus g ≥ 2 reduced if it has no bridges and no vertices of
valence 2. If we consider the full subcategory of Gg consisting of reduced graphs and
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replace it with an equivalent small category, we obtain a category whose nerve is
a classifying space for Out(Fg) (Corollary 7.5). This observation leads to Theorem
1.6.

Theorem 1.6. Fix a non-negative integer g and a commutative ring k. Let M ∈
Repk(Gop

g ) be the module that assigns k to every reduced graph and 0 to every non-
reduced graph, with all nontrivial transition functions equal to the identity. Then
there is a canonical k-algebra isomorphism

Ext∗Repk(G
op
g )(M,M) ∼= H∗(Out(Fg); k).

Our proof of Theorem 1.6 relies on the very non-trivial theorem of Culler and
Vogtmann that outer space is contractible [5]. Since Out(Fg) acts on outer space
with finite stabilizers, the rational cohomology of the quotient coincides with the
rational cohomology of Out(Fg). We stress, however, that Theorem 1.6 holds for
arbitrary coefficients.

1.5. Relationship to other work. This paper generalizes the authors’ previous
paper [14], in which we prove Theorems 1.1 and 1.2 for the category G0 of trees.
The proof of Theorem 1.1 takes the argument used in [14] as a starting point and
builds on this argument in order to treat graphs of higher genus. While the idea of
applying the techniques of [20] is the same, there is a significant additional layer of
technical difficulty in the higher genus setting.

Once we have established Theorem 1.1, the proof of Theorem 1.2 for arbitrary
genus is nearly identical to the proof in the genus 0 case. Theorem 1.5 has no direct
analogue in the genus 0 setting because Kazhdan–Lusztig polynomials of trees are
trivial. The same goes for Theorem 1.6 because Out(F0) is the trivial group.

In 2020, Miyata and the authors announced a proof of the categorical graph
minor theorem, which is the analogue of Theorem 1.1 for the category G whose
objects are connected graphs of arbitrary genus and whose morphisms are built
out of contractions and edge deletions. The category Gg is the full subcategory of
G consisting of graphs of genus g, and Theorem 1.1 would follow from this result.
Unfortunately, that preprint contained a critical mistake, and the categorical graph
minor theorem remains a conjecture.

2. Graph categories

We begin by fixing terminology and conventions about graphs and trees and
defining all of the various categories of decorated graphs with which we will work
in this paper. The reader may want to skim this section at first and refer back to
it as needed.

2.1. Graphs. A directed graph is a quadruple (V,A, h, t), where V and A are finite
sets (vertices and arrows), and h and t are maps from A to V (head and tail). We
will always assume that our directed graphs are nonempty. A graph is a quintuple
(V,A, h, t, σ), where (V,A, h, t) is a directed graph and σ is a free involution on A
such that h ◦ σ = t. An orbit of σ is called an edge. A graph is connected if it is
possible to move from any vertex to any other vertex via a sequence of adjacent
vertices. The genus of a connected graph is the number of edges minus the number
of vertices plus one. A tree is a connected graph of genus 0. We will write |G| to
denote the number of edges of G.
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Given a pair of graphs G = (V,A, h, t, σ) and G′ = (V ′, A′, h′, t′, σ′), a weak
contraction ϕ : G → G′ is given by a map

ϕ̂ : V 
 A → V ′ 
A′

satisfying the following properties:

• If ϕ̂(a) ∈ A′, then h′ ◦ ϕ̂(a) = ϕ̂ ◦ h(a), t′ ◦ ϕ̂(a) = ϕ̂ ◦ t(a), and σ′ ◦ ϕ̂(a) =
ϕ̂ ◦ σ(a).

• The preimage of every arrow arrow is a single arrow.
• The preimage of every vertex is a nonempty connected subgraph.

Note that the third condition implies that a maps to a vertex if and only if σ(a)
maps to a vertex; the edges that map to vertices are called contracted edges. If
F ⊂ G is a subgraph, we write G/F to denote the graph obtained from G by
weakly contracting each component of F .

For any graph G = (V,A, h, t, σ), we define the topological realization Top(G)
by first taking the CW-complex with 0-cells given by V , 1-cells given by A, and
attaching maps given by h and t, and then taking the quotient by the action of σ
on this CW-complex. We note that a weak contraction ϕ : G → G′ induces a map
Top(ϕ) : Top(G) → Top(G′), making Top a functor from the category of graphs
with weak contractions to the category of topological spaces.

We define a contraction ϕ : G → G′ to be a weak contraction with the additional
property that the preimage of every vertex is a tree. If ϕ : G → G′ is a contraction
and G is a graph of genus g, then so is G′. We denote by Gg the category whose
objects are connected graphs of genus g and whose morphisms are contractions.
Note that the weak contraction from G to G/F is a contraction if and only if F is
a forest (that is, each component of F is a tree).

2.2. Trees. The definitions in Sections 2.2 and 2.3 will be used only in Section 3,
where we prove Theorem 1.1. A rooted tree is a pair consisting of a tree and a
vertex, which is called the root. The vertex set of a rooted tree is equipped with a
natural partial order in which v ≤ w if and only if the unique directed path from v
to the root passes through w (so the root is maximal). A leaf of a rooted tree is a
minimal vertex with respect to this partial order.

For any vertex v, we define a direct descendant of v to be a vertex covered by
v in the partial order. A planar rooted tree is a rooted tree along with a linear
order on the set of direct descendants of each vertex v. This induces a depth-first
linear order on the entire vertex set of the tree. A contraction of rooted trees is
a contraction of trees that preserves the root, and a contraction of planar rooted
trees is a contraction of rooted trees with the additional property that, if v comes
before w in the depth-first order, then the first vertex in the preimage of v comes
before the first vertex in the preimage of w. Let RT and PT be the contraction
categories of rooted trees and planar rooted trees, respectively.

Remark 2.1. Barter [3] defines the category RT whose objects are rooted trees
and whose morphisms are pointed order embeddings on vertex sets (embeddings
compatible with the partial order), along with the category PT whose objects
are planar rooted trees and whose morphisms are pointed order embeddings that
preserve the depth-first linear order. In [14, Proposition 2.4], we prove that RT is
equivalent to RT op, and a similar argument shows that PT is equivalent to PT op.
We will make use of Barter’s work, via these equivalences, in Section 3.
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Finally, we will need a labeled version of the above definitions. Let S be a finite
set. We define an S-labeled planar rooted tree to be a triple (T, v, �), where (T, v)
is a planar rooted tree and � is a function from the set of vertices of T to S. The
most naive way to define a contraction ϕ : (T, v, �) → (T ′, v′, �′) of labeled planar
rooted trees would be to say that it is a contraction of planar rooted trees with
the property that the pullback of �′ along ϕ is equal to �. This, however, is not
quite what we want. If ϕ : (T, v) → (T ′, v′) is a contraction of planar rooted
trees and ϕ∗ : (T ′, v′) → (T, v) is the corresponding pointed order embedding
under the equivalence of Remark 2.1, we want to impose the condition that the
pullback of � along ϕ∗ is equal to �′. The proof of [14, Proposition 2.4] tells us that
ϕ∗(w′) = maxϕ−1(w′), so the appropriate condition for ϕ : (T, v, �) → (T ′, v′, �′)
to be an S-labeled contraction is that �′(w′) = �(maxϕ−1(w′)) for all w′ ∈ T ′.
Equivalently, we say that a vertex w of T is ϕ-maximal if u ≤ w for all vertices
u with ϕ(u) = ϕ(w), and we say that ϕ is an S-labeled contraction if and only if
�′ ◦ ϕ(w) = �(w) for all ϕ-maximal vertices w.

2.3. Rigidified graphs. Given a nonempty connected graph G, a spanning tree
for G is a subgraph which contains all of the vertices and is a tree. A rigidified
graph of genus g is a graph of genus g along with a choice of spanning tree and an
ordering and orientation (i.e. distinguished arrow) of each of the g extra edges that
are not in the spanning tree. Equivalently, fix once and for all a graph Rg with one
vertex and g loops, called the rose of genus g. Then a rigidified graph of genus g
is a quadruple (G, T, v, τ ), where G is a graph of genus g, (T, v) is a planar rooted
spanning tree of G, and τ : G → Rg is a contraction whose contracted edges are
precisely the edges of T .

We denote by PGg the category whose objects are rigidified graphs of genus
g and whose morphisms are contractions that restrict to contractions of planar
rooted trees (in particular, only edges in the spanning tree can be contracted) and
are compatible with the order and orientations of the extra edges. We use the
letter P in the notation because PG0

∼= PT . The point of this definition is that
rigid graphs are graphs with just enough extra structure to eliminate all nontrivial
automorphisms.

2.4. Reduced graphs. Most of the definitions in Sections 2.4 and 2.5 will be used
only in Section 7, where we discuss connections to outer automorphism groups
of free groups. Fix a graph G. An edge of G is called a bridge if deleting the
edge increases the number of connected components. For any vertex v, the valence
of v is defined to be the number of arrows a with h(a) = v. We call a graph
reduced if it has no bridges and no vertices of valence 2. We also consider the
unique graph with one vertex and one edge to be reduced, even though the vertex
has valence 2. Intuitively, the idea is that any connected graph may be obtained
from a reduced graph by subdividing edges and “uncontracting” bridges, and there
are finitely many isomorphism classes of reduced graphs of any fixed genus. For
example, there are two reduced graphs of genus 2 up to isomorphism, namely the
rose R2 = ∞ and the melon  .

Remark 2.2. If G is reduced and ϕ : G → G′ is a contraction, then G′ is also
reduced. For example, all contractions with domain equal to the melon are either
automorphisms or maps to the rose, and all contractions with domain equal to the
rose are automorphisms.
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We define Gg,red to be the full subcategory of Gg whose objects are reduced
graphs. In the next section, we will want to talk about the nerve of this category,
but one can only define the nerve of a small category. For this reason, we choose a
list G1, . . . , Gr that includes a unique representative of each isomorphism class of
reduced graphs of genus g, and we let Gsmall

g,red be the full subcategory of Gg,red with

objects G1, . . . , Gr. Thus Gsmall
g,red is a small category that is equivalent to Gg,red.

2.5. Marked reduced graphs. If G is a graph of genus g, a marking of G is
an equivalence class of contractions from G to the rose Rg, where ψ : G → Rg is
equivalent to ψ′ : G → Rg if and only if the induced maps Top(ψ) and Top(ψ′) on
topological realizations are homotopy equivalent. We will denote the equivalence
class of ψ by [ψ]. A marked graph of genus g is a pair (G, [ψ]), where G is a graph
of genus g and [ψ] is a marking of G. We observe that the set of all markings of
G is a torsor for Out(Fg). A contraction from (G, [ψ]) to (G′, [ψ′]) is a contraction
ϕ : G → G′ such that [ψ] = [ψ′ ◦ϕ]. We define outer category Og to be the category
whose objects are marked reduced graphs of genus g and whose morphisms are
contractions. The group Out(Fg) acts on Og in a natural way, fixing the graph but
changing the marking.

As in Section 2.4, we would like to define a small subcategory of Og that is
equivalent to Og. We will do this in two subtly different ways, which we now
describe. Recall that we have chosen representatives G1, . . . , Gr of the isomorphism
classes of reduced graphs of genus g. Let Osmall

g be the full subcategory of Og

consisting of objects of the form (Gi, [ψi]) for some i and any marking [ψi] of
Gi. Note that there are still isomorphisms between distinct objects of Osmall

g .
Specifically, if [ψ] is a marking of G and ϕ : G → G is a nontrivial automorphism
of G, then [ψ] �= [ψ ◦ ϕ], but ϕ : (G, [ψ]) → (G, [ψ ◦ ϕ]) is an isomorphism. To
eliminate this phenomenon, we choose for each Gi a representative of each Aut(Gi)
orbit in the set of markings of Gi, and we define Otiny

g to be the subcategory of Og

generated by these objects. Note that the natural inclusions

Otiny
g ⊂ Osmall

g ⊂ Og

are both equivalences.

Example 2.3. There is only one reduced graph of genus 1 up to isomorphism,
namely the cycle R1. A marking of R1 is the same as an orientation of the loop. The
category Osmall

1 has two objects, related by the action Out(F1) ∼= S2, corresponding
to the two choices of marking of R1. Neither object has nontrivial automorphisms.
The category Otiny

1 has only one object, and it has no nontrivial automorphisms.
We discuss the nerves of these categories in Example 7.6.

The advantage of working with Osmall
g is that the action of Out(Fg) on Og

restricts to an action on Osmall
g , where it acts freely on the set of objects. The

advantage of working with Otiny
g is that it is a poset category in the following sense.

Proposition 2.4. If (G, [ψ]) and (G′, [ψ′]) are objects of Otiny
g , then

|MorOtiny
g

(
(G, [ψ]), (G′, [ψ′])

)
| ≤ 1.

Furthermore, if there exists a morphism in both directions, then (G′, [ψ′]) = (G, [ψ]).
In particular, the set of objects of Otiny

g admits a poset structure with (G′, [ψ′]) ≤
(G, [ψ]) if and only if there exists a morphism from (G, [ψ]) to (G′, [ψ′]).
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Proof. If g ≤ 1, the proposition is trivial, so we assume that g ≥ 2. We begin by
proving the proposition when G = G′. In this case, the proposition says that, if ρ
is an automorphism of G and Top(ρ) is homotopic to the identity, then ρ must in
fact be equal to the identity. This is proved in [26, Lemma 1].

Next we consider the case where G �= G′. Suppose that [ψ′] is a marking of G′

and ϕ1, ϕ2 : G → G′ are contractions with [ψ′ ◦ ϕ1] = [ψ′ ◦ ϕ2]. Since Top(ψ′) is
a homotopy equivalence, this implies that Top(ϕ1) is homotopic to Top(ϕ2). By
[21, Lemma 1.3], ϕ1 and ϕ2 differ by an automorphism ρ of G′. We know that
Top(ρ) is homotopic to the identity, therefore ρ is equal to the identity by the
previous paragraph. Thus ϕ1 = ϕ2, as desired. �

3. Local Noetherianity

The purpose of this section is to prove Theorem 1.1, which says that Repk(Gop
g )

is locally Noetherian for any Noetherian commutative ring k.

3.1. Gröbner theory of categories. Let C be an essentially small category and
x an object of C. We define Cx to be the set of equivalence classes of morphisms
out of x, where f ∈ MorC(x, y) is equivalent to g ∈ MorC(x, y

′) if there exists an
isomorphism h from y to y′ such that h ◦ f = g. The set Cx comes equipped with
a natural quasi-order defined by putting

f ≤ g ⇐⇒ there exists a morphism h with h ◦ f = g.

Note that it is possible to have f ≤ g and g ≤ f even if the targets of f and g are
not isomorphic, hence ≤ is only a quasi-order. An infinite sequence f0, f1, f2, . . .
of a quasi-ordered set is called bad if there is no pair of indices i < j such that
fi ≤ fj . The category C is said to satisfy property (G2) if, for every object x of
C, Cx admits no bad sequences. The category C is said to satisfy property (G1) if,
for every object x of C, Cx admits a linear order ≺ that is compatible with post-
composition in the following sense: if f, g ∈ MorC(x, y), h ∈ MorC(y, z), and f ≺ g,
then h ◦ f ≺ h ◦ g. The category C is called Gröbner if it satisfies properties (G1)
and (G2) and has no endomorphisms other than the identity maps.

Remark 3.1. Sam and Snowden [20] explain that the motivation for properties (G1)
and (G2) is deeply rooted in Gröbner basis theory from commutative algebra, with
≤ playing the role of the natural divisibility order on monomials and ≺ playing the
role of a term order such as the lexicographic order.

Let C and C′ be categories and let Φ : C′ → C be a functor. We say that Φ
satisfies property (F) if, for all objects x of C, there exists a finite collection of
objects y1, . . . , yr of C′ and morphisms fi : x → Φ(yi) such that, for any object y
of C′ and any morphism f : x → Φ(y), there exists a morphism g : yi → y with
f = Φ(g) ◦ fi. We say C is quasi-Gröbner if there exist a Gröbner category C and
an essentially surjective functor Φ : C′ → C satisfying property (F).

The motivation for these definitions comes from Theorems 3.2 and 3.3, both of
which are of fundamental importance in our work.

Theorem 3.2 ([20, Proposition 3.2.3]). If Φ : C → C′ has property (F) and M is
a finitely generated C′-module, then Φ∗M is a finitely generated C-module.

Theorem 3.3 ([20, Theorem 1.1.3]). If C is quasi-Gröbner and k is a Noetherian
commutative ring, then Repk(C) is locally Noetherian.



THE CONTRACTION CATEGORY OF GRAPHS 681

3.2. The category of rigidified graphs of fixed genus is Gröbner. We begin
with the following translation of Barter’s work to our setting.

Theorem 3.4. The category PT op ∼= PGop
0 of planar rooted trees is Gröbner.

Proof. Barter proves that PT is Gröbner [3], and the same is true of PT op by
Remark 2.1. �

Our goal in this section is to extend Theorem 3.4 to the category PGop
g for

arbitrary genus g. We begin with Corollary 3.5 of Theorem 3.4.

Corollary 3.5. For any natural number g, the category PGop
g satisfies property

(G1).

Proof. Fix a rigidified graph (G, T, v, τ ) of genus g. We need to define a linear order
on (PGop

g )(G,T,v,τ) that is compatible with post-composition. Let Φ : PGg → PT
denote the forgetful functor, which induces a poset map

Φ(G,T,v,τ) : (PGop
g )(G,T,v,τ) → (PT op)(T,v).

A key property of this map is that, if

ϕ1, ϕ2 : (G′, T ′, v′, τ ′) → (G, T, v, τ )

represent different classes in (PGop
g )(G,T,v,τ), then their classes remain different in

(PT op)(T,v).
Choose any linear order ≺G on (PGop

g )(G,T,v,τ) with the property that Φ(G,T,v,τ)

is (weakly) order-preserving. In order to establish property (G1), assume that ϕ1

and ϕ2 are as above with [ϕ1] ≺G [ϕ2], and that

ψ : (G′′, T ′′, v′′, τ ′′) → (G′, T ′, v′, τ ′)

is any contraction. Since Φ(G,T,v,τ) is order-preserving,

Φ(G,T,v,τ)[ϕ1] �T Φ(G,T,v,τ)[ϕ2],

and by the observation in the previous paragraph, it must be a strict inequality.
By definition of ≺T , this implies that Φ(G,T,v,τ)[ϕ1 ◦ ψ] ≺T Φ(G,T,v,τ)[ϕ2 ◦ ψ], and
therefore that [ϕ1 ◦ ψ] ≺G [ϕ2 ◦ ψ]. �

Our next task is to prove that PGop
g satisfies property (G2). We begin by stating

a version of Kruskal’s tree theorem for labeled planar rooted trees. Let S be a
finite set. If (T, v, �) and (T ′, v′, �′) are S-labeled planar rooted trees, we define
(T ′, v′, �′) ≤ (T, v, �) if there exists a contraction from (T, v, �) to (T ′, v′, �′). This
defines a quasi-order on the set of isomorphism classes of S-labeled planar rooted
trees.

Theorem 3.6. Let S be a finite set. The quasi-order on the set of isomorphism
classes of S-labeled planar rooted trees admits no bad sequences.

Proof. After using Remark 2.1 to translate between order embeddings and contrac-
tions, the case where S is a singleton is proved in [3, Lemma 10]. On the other
hand, the theorem is proved for general S, but with rooted trees instead of planar
rooted trees, in [6, Theorem 1.2]. Both proofs are essentially the same, and are in
fact modeled on the original proof of Nash-Williams for unlabeled rooted trees [11].
These arguments can be trivially modified to cover the result stated above. �
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Corollary 3.7 is a relative version of Theorem 3.6. The case where S is a singleton
is proved in [3, Theorem 9]. However, it turns out that the proof is greatly simplified
by allowing labels, as we demonstrate below.

Corollary 3.7. Let S be a finite set and let (T, v, �) be an S-labeled planar rooted
tree. The set (PT op

S )(T,v,�) admits no bad sequences.

Proof. An element of (PT op
S )(T,v,�) is represented by a pair consisting of an S-

labeled planar rooted tree (T ′, v′, �′) and a contraction ϕ′ : (T ′, v′, �′) → (T, v, �).
Let V be the vertex set of T , let U := S×

(
V 
{0}

)
, and define a U -labeled planar

rooted tree (T ′, v′, �′U ) by putting

�′U (w
′) :=

{
(�′(w′), ϕ′(w′)) if w′ is ϕ′-maximal

(�′(w′), 0) otherwise.

Suppose that ϕ′ : (T ′, v′, �′) → (T, v, �) and ϕ′′ : (T ′′, v′′, �′′) → (T, v, �) represent
two elements of (PT op

S )(T,v,�) and let (T ′, v′, �′U ) and (T ′′, v′′, �′′U ) be the corre-
sponding U -labeled planar rooted trees. We have ϕ′ ≤ ϕ′′ with respect to the
quasi-order on (PT op

S )(T,v,�) if and only if there exists an S-labeled contraction
ψ : (T ′′, v′′, �′′) → (T ′, v′, �′) such that ϕ′′ = ϕ′ ◦ ψ. On the other hand, we have
(T ′, v′, �′U ) ≤ (T ′′, v′′, �′′U ) with respect to the quasi-order on isomorphism classes
of U -labeled planar rooted trees if and only if there exists a U -labeled contraction
ψ : (T ′′, v′′, �′′U ) → (T ′, v′, �′U ).

We claim that an S-labeled contraction ψ is a U -labeled contraction if and only
if ϕ′′ = ϕ′ ◦ ψ. The easiest way to see this is to use Remark 2.1 to translate from
contractions to pointed order embeddings, as the statement becomes tautological
in that setting. This implies that any bad sequence in (PT op

S )(T,v,�) induces a bad
sequence of isomorphism classes of U -labeled planar rooted trees, and Theorem 3.6
tells us that no such sequences exist. �

Let S = {0, 1}2g. Given a ridigified graph (G, T, v, τ ) of genus g, we construct an
S-labeled planar rooted tree (T, v, �) as follows. Recall that τ induces an ordering
and an orientation on the g extra edges of G. For each 1 ≤ i ≤ g, let w2i−1 be the
vertex at which the ith extra edge originates and let w2i be the vertex at which the
ith extra edge terminates. Then for each vertex w and each 1 ≤ j ≤ 2g, define the
jth component of �(w) to be 1 if w ≥ wj and 0 otherwise.

Lemma 3.8. Let (G, T, v, τ ) and (G′, T ′, v′, τ ′) be rigidified graphs of genus g,
and let (T, v, �) and (T ′, v′, �′) be the associated S-labeled planar rooted trees. Let
ϕ : (T, v) → (T ′, v′) be a contraction of planar rooted trees. Then ϕ induces a
contraction of rigidified graphs if and only if it is compatible with the S-labeling.

Proof. On one hand, ϕ induces a contraction of rigidified graphs if and only if
ϕ(wj) = w′

j for all j. On the other hand, ϕ is compatible with the S-labeling if

and only if, for all ϕ-maximal vertices w, w ≥ wj ⇐⇒ ϕ(w) ≥ w′
j .

Assume first that ϕ induces a contraction of rigidified graphs, and let w be a
ϕ-maximal vertex. If w ≥ wj , then ϕ(w) ≥ ϕ(wj) = w′

j . Conversely, if ϕ(w) ≥ w′
j ,

then w lies above that unique ϕ-maximal preimage of w′
j , which in turn lies above

wj .
Assume next that ϕ is compatible with the S-labeling. For any j, we want to

show that ϕ(wj) = w′
j . To begin, let uj be the unique ϕ-maximal preimage of w′

j .
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Then

ϕ(uj) = w′
j ⇒ uj ≥ wj ⇒ w′

j = ϕ(uj) ≥ ϕ(wj).

Assume for the sake of contradiction that ϕ(wj) �= w′
j , and let zj be the ϕ-maximal

preimage of ϕ(wj). Then we have that the label of zj agrees with that of ϕ(wj),
which must be 0 in the j-th coordinate by our assumption. But this would then
force zj to not be bigger than wj . This directly contradicts maximality of zj in the
preimage of ϕ(wj). �

Corollary 3.9. For any natural number g, the category PGop
g satisfies property

(G2).

Proof. Fix a rigidified graph (G, T, v, τ ) of genus g, and let (T, v, �) be its associated
S-labeled planar rooted tree. We need to prove that the set (PGop

g )(G,T,v,τ) admits
no bad sequences. By Lemma 3.8, such a bad sequence induces a bad sequence in
(PT op

S )(T,v,�), and Corollary 3.7 says that no such sequences exist. �

We are now ready to prove the main result of this section.

Theorem 3.10. For any g ≥ 0, the category PGop
g is Gröbner.

Proof. This follows from Corollaries 3.5 and 3.9, along with the fact that rigidified
graphs have no nontrivial automorphisms. �

3.3. The category of graphs of fixed genus is quasi-Gröbner.

Lemma 3.11. The forgetful functor Φ : PGop
g → Gop

g is essentially surjective and
has property (F).

Proof. Essential surjectivity is clear. For any genus g graph G, we need to choose
a finite collection of genus g rigidified graphs (Gi, Ti, vi, τi) along with contrac-
tions ϕi : Gi → G such that, for every genus g rigidified graph (G′, T ′, v′, τ ′)
and every contraction ϕ : G′ → G, there exist an index i and a contraction
ψ : (G′, T ′, v′, τ ′) → (Gi, Ti, vi, τi) such that ϕ = ϕi ◦ ψ.

For our rigidified graphs (Gi, Ti, vi, τi) and our contractions ϕi, we will choose a
representative of every possible isomorphism class of such structures whose number
of edges is at most |G|+ g. Since there is a finite number of rigidified graphs with
a fixed number of edges and finitely many contractions between any two graphs,
there are only finitely many such choices.

Let (G′, T ′, v′, τ ′) and ϕ be given, and let E′ be the set of edges of G′ that
are contracted by ϕ. Let ψ be the canonical contraction from (G′, T ′, v′, τ ′) to
(G′/(E′ ∩ T ′), T ′/(E′ ∩ T ′), v′, τ ′). It is clear from the definition that ϕ factors
through ψ. It thus remains only to show that the number of edges of G′/(E′ ∩ T ′)
is at most |G| + g. Indeed, we have |E′| = |G′| − |G| and |T ′| = |G′| − g, thus
|E′∩T ′| ≥ |G′|−(|G|+g). From this it follows that |G′/(E′∩T ′)| = |G′|−|E′∩T ′| ≤
|G|+ g. �

Proof of Theorem 1.1. By Theorem 3.10 and Lemma 3.11, Gop
g is quasi-Gröbner.

Theorem 1.1 then follows from Theorem 3.3. �

4. Smallness and growth

We define what it means for a module over Gop
g to be generated in low degree,

and see what this tells us about its dimension growth.
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4.1. Generation degree, smallness, and smallishness. Fix a Noetherian com-
mutative ring k. For any genus g graph G, let PG ∈ Repk(Gop

g ) be the principal
projective module that assigns to a genus g graph G′ the free k-module with basis
MorGg

(G′, G). Note that a module M is finitely generated if and only if it is iso-
morphic to a quotient of a finite sum of principal projectives. We say that a module
M ∈ Repk(Gop

g ) is finitely generated in degree ≤ d if we only need to use principal
projectives corresponding to graphs with d or fewer edges. Lemma 4.1 illustrates
this notion in a specific example.

Lemma 4.1. Let E be the Gop
g -module that takes a graph G to the free k-module

with basis indexed by edges of G, with maps given by the natural inclusions of bases.
The Gop

g -module E⊗i is generated in degrees ≤ g + i.

Proof. For any graph G of genus g, E⊗i(G) has a basis given by an ordered i-
tuple of edges, and any such basis element is in the image of the map induced
by a contraction ϕ : G → G′ if and only if none of the distinguished edges are
contracted by ϕ. If G has more than g + i edges, then it has more than i edges
that are not loops, therefore for any given i-tuple, one can find a non-distinguished
edge to contract. �

We say that a module M is d-small if it is a subquotient of a module that
is finitely generated in degrees ≤ d. We say that M is d-smallish if it admits a
filtration whose associated graded is d-small.

Proposition 4.2. If M is d-smallish for some d, then M is finitely generated.

Proof. Choose a filtration of M such that the associated graded grM is d-small.
Theorem 1.1 implies that grM is finitely generated. This means that there is a
finite collection G1, . . . , Gr of genus g graphs, along with elements vi ∈ grM(Gi),
such that, for any genus g graph G, the natural map

r⊕
i=1

⊕
ϕ:G→Gi

k · ei,ϕ → grM(G)

taking ei,ϕ to ϕ∗vi is surjective. For each i, choose an arbitrary lift ṽi ∈ M(Gi) of
vi. The natural map

r⊕
i=1

⊕
ϕ:G→Gi

k · ei,ϕ → M(G)

taking ei,ϕ to ϕ∗ṽi is also surjective, which means that M is finitely generated. �

Proposition 4.3. Let k be a field, and suppose that M ∈ Repk(Gop
g ) is d-smallish.

Then there exists a polynomial fM (t) ∈ Z[t] of degree at most d such that, for all
G, dimk M(G) ≤ fM (|G|).

Proof. We may immediately reduce to the case where M is the principal projective
PG′ for some genus g graph G′ with d edges. For any G, a contraction from G to
G′ is determined, up to automorphisms of G′, by a choice of |G| − d edges of G to

contract. The number of such choices is
(|G|

d

)
, so dimk PG′(G) ≤ |Aut(G′)|

(|G|
d

)
. �
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4.2. Subdivision. Fix a graph G of genus g, a natural number r, and an ordered
r-tuple e = (e1, . . . , er) of distinct directed non-loop edges of G. For any ordered r-
tuplem = (m1, . . . ,mr) of natural numbers, let G(e,m) be the graph obtained from
G by subdividing each edge ei into mi edges. The number mi is allowed to be zero,
and we adopt the convention that subdividing ei into 0 edges means contracting ei.
For each i, the graph G(e,m) has a directed path of length mi, where the directed
edge ei used to be, and we label the vertices of that path v0i , . . . , v

mi
i .

Let OI be the category whose objects are linearly ordered finite sets and whose
morphisms are ordered inclusions. Every object of OI is isomorphic via a unique
isomorphism to the finite set [m] for some m ∈ N. For any m ∈ Nr, let [m] denote
the corresponding object of the product category OIr.

Our goal in this section is to define a subdivision functor ΦG,e : OIr → Gop
g

and prove that ΦG,e has property (F). We define our functor on objects by putting
ΦG,e([m]) := G(e,m). Let f = (f1, . . . , fr) be a morphism in OIr from [m] to [n].
We define the corresponding contraction

ΦG,e(f) : G(e, n) → G(e,m)

by sending vti to vsi , where s is the maximal element of the set {0} ∪ {j | fi(j) ≤
t} ⊂ {0, 1, . . . ,mi}.

For any n ∈ Nr, let |n| :=
∑

ni. We say that a contraction ϕ : G(e, n) → G′

factors nontrivially if there exist a non-identity morphism f : [m] → [n] in OIr and
a contraction ψ : G(e,m) → G′ such that ϕ = ψ ◦ ΦG,e(f).

Proposition 4.4. The subdivision functor ΦG,e : OIr → Gop
g has property (F).

Proof. Property (F) says exactly that, for any graph G′ of genus g, the set of
contractions from some G(e,m) to G′ that do not factor nontrivially is finite. Let
ϕ : G(e,m) → G′ be given. We have

|G(e,m)| = |G|+ |m| − r,

so ϕ must contract |G| + |m| − r − |G′| edges. If |m| is sufficiently large, then at
least one of those edges must be one of the subdivided edges. We may then factor
ϕ nontrivially by first contracting that edge.

This tells us that, if we are looking for contractions from some G(e,m) to G′

that do not factor nontrivially, we only need to consider finitely many r-tuples m.
The proposition then follows from the fact that all Hom sets in Gop

g are finite. �

Proposition 4.3 implies that, if M ∈ Repk(Gop
g ) is d-smallish, the dimension of

M(G(e,m)) is bounded by a polynomial in m of degree at most d. Corollary 4.5
to Proposition 4.4 says that the dimension of M(G(e,m)) is in fact equal to a
polynomial in m when each coordinate is sufficiently large.

Corollary 4.5. Let k be a field, and suppose that M ∈ Repk(Gop
g ) is d-smallish.

Then there exists a multivariate polynomial fM,G,e(t1, . . . , tr) of total degree at most
d such that, if m is sufficiently large in every coordinate,

dimk M(G(e,m)) = fM,G,e(m1, . . . ,mr).

Proof. Proposition 4.2 tells us that M is finitely generated, though we have no
control over the degree of generation. Theorem 3.2 and Proposition 4.4 combine
to tell us that Φ∗

G,eM is a finitely generated OIr-module. By [20, Theorem 6.3.2,

Proposition 6.3.3, and Theorem 7.1.2], this implies that there exists a multivariate
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polynomial fM,G,e(t1, . . . , tr) such that, if m ∈ Nr is sufficiently large in every
coordinate,

dimk M(G(e,m)) = dimk Φ
∗
G,eM([m]) = fM,G,e(m1, . . . ,mr).

Proposition 4.3 says that dimk M(G(e,m)) is bounded above by a polynomial
of degree d in the quantity |G(e,m)| = |G| − r + |m|, thus the total degree of
fM,G,e(t1, . . . , tr) can be at most d. �

4.3. Sprouting. Fix a graph G of genus g, a natural number r, and an ordered
r-tuple v := (v1, . . . , vr) of distinct vertices of T . For any ordered r-tuple m =
(m1, . . . ,mr) of natural numbers, let G(v,m) be the tree obtained from G by at-
taching mi new edges to the vertex vi, each of which has a new leaf as its other
endpoint. We will label the new leaves connected to the vertex vi by the symbols
v1i , . . . , v

mi
i .

Our goal in this section is to define a sprouting functor ΨG,v : OIr → Gop
g and

prove that ΨG,v has property (F). We define our functor on objects by putting
ΨG,e([m]) := G(v,m). Let f = (f1, . . . , fr) be a morphism in OIr from [m] to [n].
We define the corresponding contraction

ΨG,v(f) : T (v, n) → T (v,m)

by fixing all of the vertices of T , sending vti to vsi if fi(s) = t, and sending vti to vi
if t is not in the image of fi.

As in Section 4.2, we say that a contraction ϕ : G(v, n) → G′ factors nontrivially
if there exist a non-identity morphism f : [m] → [n] in OIr and a contraction
ψ : G(v,m) → G′ such that ϕ = ψ ◦ΨT,v(f).

Proposition 4.6. The sprouting functor ΦG,v : OIr → Gop
g has property (F).

Proof. The philosophy of the proof is nearly identical to that of Proposition 4.4.
Property (F) says exactly that, for any graph G′ of genus g, the set of contractions
from some G(v,m) to G′ that do not factor nontrivially is finite. Let ψ : G(v,m) →
G′ be given. We have

|G(v,m)| = |G|+ |m|,

so ψ must contract |G|+ |m| − |G′| edges. If |m| is sufficiently large, then at least
one of those edges must be one of the newly sprouted edges. We may then factor
ψ nontrivially by first contracting that edge.

This tells us that, if we are looking for contractions from some G(e,m) to G′

that do not factor nontrivially, we only need to consider finitely many r-tuples m.
The proposition then follows from the fact that all Hom sets in Gop

g are finite. �

The proof of Corollary 4.7 is identical to the proof of Corollary 4.5, so we omit
it.

Corollary 4.7. Let k be a field, and suppose that M ∈ Repk(Gop
g ) is d-smallish.

Then there exists a multivariate polynomial fM,G,v(t1, . . . , tr) of total degree at most
d such that, if m is sufficiently large in every coordinate,

dimk M(G(v,m)) = fM,G,v(m1, . . . ,mr).
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4.4. Combining small modules. This section is devoted to stating and proving
a lemma that we will need in Section 6.3.

Let H = (V,A, h, t, σ) be a graph of genus h with no loops. For each vertex
v ∈ V , fix a natural number gv and a Gop

gv -module Nv. Let g := h +
∑

v gv.
Consider the Gop

g -module N defined by putting

N(G) :=
⊕

ψ:G→H

⊗
v∈V

Nv

(
ψ−1(v)

)
,

where the sum is over all weak contractions ψ : G → H with the property that
ψ−1(v) has genus gv for all v. If ϕ : G → G′ is a contraction, the induced map
N(G′) → N(G) kills the ψ summand unless all of the edges contracted by ϕ are
also contracted by ψ. If this is the case, then there is an induced weak contraction
ψ′ : G′ → H whose fibers are contractions of the fibers of ψ, and these contractions
induce a natural map from the ψ summand of N(G) to the ψ′ summand of N(G′).

Lemma 4.8. In the above situation, suppose that Nv is dv-small for all v ∈ V ,
and let d := |H|+

∑
v dv. Then the Gop

g -module N is d-small.

Proof. We may immediately reduce to the case where each Nv is a principal pro-
jective. That is, for all v ∈ V , we have Nv = PGv

for some fixed graph Gv of genus
gv with dv edges. The k-module N(G) is spanned by classes indexed by tuples of
the form

(ψ;ϕv)v∈V ,

where ψ : G → H is a weak contraction with the property that ψ−1(v) has genus
gv for all v and ϕv : ψ−1(v) → Gv is a contraction. The set of edges of G that
are not contracted by any of the maps ϕv has cardinality d and includes all of the
loops. Thus, if G has more than d edges, at least one edge e is a non-loop that
gets contracted by one of the maps ϕv. It follows that the class may be pulled back
from the corresponding class in N(G/e). �

5. Homology of configuration spaces

The purpose of this section is to prove Theorem 1.2. Our main technical tool
is the reduced Świ ↪atkowski complex of An, Drummond-Cole, and Knudsen [2].
Sections 5.1 and 5.2 are reproduced from [14, Sections 3.1 and 3.2] for the reader’s
convenience.

5.1. The reduced Świ ↪atkowski complex. Let G = (V,A, h, t, σ) be a graph,
and let RG be the integral polynomial ring generated by the edges of G. For any
vertex v, let

Av := {a ∈ A | h(a) = v},
and let S(v) denote the free RG-module generated by the set Av 
 {∅}. We equip
S(v) with a bigrading by defining an element of Av to have degree (1, 1), ∅ to have

degree (0, 0), and an edge to have degree (0, 1). Let S̃(v) ⊂ S(v) be the submodule

generated by the elements ∅ and a − a′ for all a, a′ ∈ Av. We equip S̃(v) with an
RG-linear differential ∂v of degree (−1, 0) by putting

∂∅ = 0 and ∂(a− a′) :=
(
[a]− [a′]

)
,
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where [a] denotes the edge {a, σ(a)}. We then define the reduced Świ ↪atkowski
complex

S̃(G) :=
⊗
v∈V

S̃(v),

where the tensor product is taken over the ring RG; this is a bigraded free RG-
module with a differential ∂.

For any graph G and any natural number n, let UConfn(G) denote the configu-
ration space of n distinct unordered points in Top(G). Let H•

(
UConf�(G)

)
denote

the bigraded abelian group

H•
(
UConf�(G)

)
:=

⊕
(i,n)

Hi

(
UConfn(G);Z

)
.

Theorem 5.1 ([2, Theorem 4.5 and Proposition 4.9]). If G has no isolated vertices,
then there is an isomorphism of bigraded abelian groups

H•
(
UConf�(G)

) ∼= H•
(
S̃(G)

)
.

Remark 5.2. If G is connected, then the only way thatG can have isolated vertices is

if G has one vertex and no edges. In this case, H•
(
S̃(G)

)
= S̃(G) = Z, concentrated

in bidegree (0, 0), whereasH•
(
UConf�(G)

) ∼= Z⊕Z, concentrated in bidegrees (0, 0)

and (0, 1). Thus the reduced Świ ↪atkowski complex fails only to recognize that the
degree zero homology of UConf1(G) is nontrivial.

5.2. Functoriality. Suppose that we have two graphs G = (V,A, h, t, σ) and G′ =
(V ′, A′, h′, t′, σ′) along with a contraction ϕ : G → G′. There is a natural map of
differential bigraded modules

ϕ̃∗ : S̃(G′) → S̃(G),

which induces a map

ϕ∗ : Hi

(
UConfn(G

′);Z
)
→ Hi

(
UConfn(G);Z

)
by passing to homology [2, Lemma C.7]. To describe ϕ̃∗, we first consider the case
where the number of edges of G is one greater than the number of edges of G′; we
call such a contraction ϕ a simple contraction. Let e = {a0, a1} denote the unique
contracted edge, and write

0 = h(a0) = t(a1) and 1 = t(a0) = h(a1).

Let
w′ := ϕ̂(e) = ϕ̂(0) = ϕ̂(1) ∈ V ′.

We have a canonical ring homomorphism RG′ → RG along with an RG′-module
homomorphism ⊗

v′∈V ′�{w′}
S̃(v′) →

⊗
v∈V �{0,1}

S̃(v).

Given a′ ∈ A′
w′ , let a ∈ A0
A1 be the unique arrow mapping to a′. We then define

an RG′ -module homomorphism

S̃(w′) → S̃(0)⊗ S̃(1)

by the formula

∅ �→ ∅ ⊗ ∅ and a′ �→
{
(a− a0)⊗ ∅ if h(a) = 0

∅ ⊗ (a− a1) if h(a) = 1.
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Tensoring these two maps together, we obtain the homomorphism ϕ̃∗ : S̃(G′) →
S̃(G), and it is straightforward to check that this homomorphism respects the
differential. Arbitrary contractions may be obtained as compositions of simple con-
tractions, and the induced homomorphism is independent of choice of factorization
into simple contractions. To summarize, we have the following result.

Theorem 5.3. [2] There is a bigraded differential Gop
g -module that assigns to each

graph G the reduced Świ ↪atkowski complex S̃(G). The homology of this bigraded
differential Gop

g -module is the bigraded Gop
g -module that assigns to each graph G the

bigraded Abelian group H•
(
UConf�(G)

)
.

5.3. Smallness. We are now ready to prove Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. Given a graph G and a pair of natural numbers i and n,

let S̃(G)i,n be the degree (i, n) summand of the reduced Świ ↪atkowski complex.

We will show that the Gop
g -module taking G to the abelian group S̃(G)i,n is gen-

erated in degrees ≤ g + i + n. Theorem 5.3 says that the Gop
g -module taking G

to Hi

(
UConfn(G)

)
is a subquotient of this module, so this will imply that it is

(g + i+ n)-small.

The group S̃(G)i,n is generated by elements of the form

ζ := e1 · · · en−i

i⊗
j=1

(aj0 − aj1) ⊗
⊗

v/∈{v1,...,vi}
∅,

where e1, . . . , en−i are edges (not necessarily distinct), v1, . . . , vi are vertices (dis-
tinct), and, for each j, aj0, aj1 ∈ Avj . For a particular ζ of this form, we will call
{v1, . . . , vi} the set of distinguished vertices. Without loss of generality, we may
assume that there is some integer r with 0 ≤ r ≤ i such that vj is adjacent to some
distinguished vertex (possibly itself) if and only if j ≤ r. We may also assume that,
if j ≤ r, t(aj1) is distinguished. If not, then ζ may be written as a difference of
classes of this form.

We call an edge e a distinguished edge if one of the following five conditions hold:

• e is a loop
• e connects two distinguished vertices
• e = ek for some k ≤ n− i
• e = [aj0] for some j ≤ i
• e = [aj1] for some j ≤ i.

We will now argue that there are at most g + i + n distinguished edges. Let l be
the number of loops that are not at distinguished vertices. Let H be the induced
subgraph on {v1, . . . , vr}, which in particular contains all of the loops that are at
distinguished vertices. Since H is a subgraph of G and is missing l loops, the sum
of the genera of the components of H is at most g− l, and therefore H has at most
r + g − l edges. (Equality is achieved if and only if r = 0 and G is obtained by
attaching g loops to a tree, in which case H is empty and l = g.) This means that
the total number of distinguished edges is at most

l + (r + g − l) + (n− i) + i+ (i− r) = g + i+ n.

Let G be given with |G| > g+ i+n. Since there are at most g+ i+n distinguished
edges, we may choose an edge e which is not distinguished. Let G′ := G/e be the
graph obtained from G by contracting e, and let ϕ : G → G′ be the canonical
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simple contraction. Let e′k be the image of ek in G′, v′j the image of vj in G′, a′j0
the image of aj0 in G′, and a′j1 the image of aj1 in G′. Let

ζ ′ := e′1 · · · e′n−i

i⊗
j=1

(a′j0 − a′j1) ⊗
⊗

v′ /∈{v′
1,...,v

′
i}
∅ ∈ S̃(G′)i,n.

We claim that ζ = ϕ̃∗ζ ′.
If e is not incident to any vertex vj , this is clear. The interesting case occurs

when e is incident to one of the distinguished vertices. Assume without loss of
generality that it is incident to v1, and let w be the other end point of e. Consider
the unique a ∈ Av1 with [a] = e (this uniquely characterizes a because e is not a
loop). Applying the map ϕ∗ replaces each e′k with ek. When j > 1, it replaces a′j0
with aj0 and a′j1 with aj1. It replaces a

′
10 with a10 − a and a′11 with a11 − a. This

means that it replaces a′j0 − a′j1 with aj0 − aj1, and therefore that ϕ̃∗ζ ′ = ζ.

We thus conclude that every element of S̃(G)i,n is a linear combination of ele-
ments in the images of map associated with simple contractions; this completes the
proof. �

Proof of Corollary 1.3. Let Tg,i,n ∈ RepZ(Gop
g ) be the module that assigns to each

graph G the torsion subgroup of Hi

(
UConfn(G);Z

)
. By Theorem 1.2, Tg,i,n is a

submodule of a finitely generated module, and is therefore itself finitely generated.
We may then take dg,i,n to be the least common multiple of the exponents of the
generators. �

6. Kazhdan–Lusztig coefficients

For each graph G = (V,A, h, t, σ), let RG be the C-subalgebra of rational func-
tions in the variables {xv | v ∈ V } generated by the elements{

1

xv − xw

∣∣∣ v �= w adjacent

}
,

and let XG := SpecRG. The ring RG is called the Orlik-Terao algebra of G and
the variety XG is called the reciprocal plane of G. We will be interested in the
intersection homology group IH2i(XG) with coefficients in the complex numbers.

If ϕ : G → G′ is a contraction, we obtain a canonical map from IH2i(XG′) to
IH2i(XG), and these maps compose in the expected way [16, Theorem 3.3(1,3)]. The
purpose of this section is to study the Gop-module IH2i that takes G to IH2i(XG),
and in particular to prove Theorem 1.5.

6.1. Orlik-Solomon algebras. For each G, let OS•(G) be the Orlik-Solomon
algebra [12] of the matroid associated with G, with coefficients in the complex
numbers. For any natural number i, we will denote the linear dual of OSi(G) by
OSi(G). For the purposes of this paper, we will need to know four things about
the Orlik-Solomon algebra:

• OS1(G) is spanned by classes xe indexed by the edges of G, with relations
xe = xf if e and f are parallel and xe = 0 if e is a loop.

• OS•(G) is generated as a C-algebra by OS1(G).
• If G′ is a contraction of G, we obtain a functorial map OS•(G) → OS•(G′)
by killing the generators indexed by contracted edges. This in turn induces
a map OS•(G

′) → OS•(G).
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• IfG is the disjoint union ofG1 andG2, thenOS•(G) ∼= OS•(G1)⊗OS•(G2).

By the third bullet point above, OSi is a Gop
g -module for any natural number i.

Lemma 6.1. For any natural number i, OSi is (g + i)-small.

Proof. Recall from Lemma 4.1 the Gop
g -module E that assigns to any graph the

C-vector space with basis given by the edges. By the first two bullet points above,
OSi(G) is a quotient of the ith tensor power of E(G)∗, therefore OSi is a submodule
of E⊗i. Lemma 4.1 says that E⊗i is generated in degrees ≤ g + i, therefore OSi is
(g + i)-small. �

6.2. The spectral sequence. A subgraph F ⊂ G with the same vertex set is
called a flat of G if the graph G/F has no loops. The rank of F is defined as the
number of vertices minus the number of connected components, and the corank of
F , denoted crkF , is the number of connected components minus 1. Theorem 6.2
was proved in [16, Theorems 3.1 and 3.3]; see also [14, Theorem 4.2].

Theorem 6.2. For any graph G and natural number i, there is a first quadrant
homological spectral sequence E(−, i) in the category of Gop

g -modules converging to
IH2i, with

E(G, i)1p,q =
⊕

crkF=p

OS2i−p−q(F )⊗ IH2(i−q)(XG/F ).

If ϕ : G → G′ is a contraction, the induced map E(G′, i)1p,q → E(G, i)1p,q kills the
F -summand unless F contains all of the edges contracted by ϕ. In this case, the
image of F in G′ is a flat F ′ of G′, and G′/F ′ is canonically isomorphic to G/F .
The map takes the F -summand of E(G, i)1p,q to the F ′-summand of E(G′, i)1p,q by
the canonical map OS2i−p−q(F ) → OS2i−p−q(F

′) tensored with the identity map
on IH2(i−q)(XG/F ).

6.3. Smallness.

Proof of Theorem 1.5. By Theorem 6.2, IH2i admits a filtration whose associated
graded is isomorphic to the infinity page of E(−, i), therefore it is sufficient to show
that, for all p and q, E(−, i)1p,q is (2i− 1 + g)-small.

The set of flats of G is in bijection with equivalence classes of weak contractions
with source G for which the target has no loops, where two such weak contractions
are equivalent if they differ by an automorphism of the target. We therefore have

E(G, i)1p,q ∼=

⊕
|Vert(H)|=p+1

⎛
⎜⎝

⊕
ψ:G→H
weak

⎛
⎝ ⊗

v∈Vert(H)

OS∗
(
ψ−1(v)

)
⎞
⎠

2i−p−q

⊗
IH2(i−q)(XH)

⎞
⎟⎠

Aut(H)

.

If we fix H and require that the graph ψ−1(v) has genus gv, Lemmas 4.8 and 6.1
together imply that E(−, i)1p,q is d-small, where d = |H|+ 2i− p− q +

∑
v gv. If h

is the genus of H, then |H| = p + h and
∑

v gv = g − h, so d = 2i + g − q. Since
this is independent of the choice of H or of the numbers gv, we can conclude that
E(−, i)1p,q is (2i+ g − q)-small.

Finally, we note that IH2(i−q)(XH) = 0 unless 2(i − q) < p or q = i and p = 0
[7, Proposition 3.4], while OS2i−p−q(F ) = 0 unless p + q ≤ 2i. In particular
E(−, i)1p,0 = 0 for all p, which implies that each E(−, i)1p,q is (2i− 1+ g)-small. �
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Remark 6.3. The module IH0 = E(−, 0)10,0 is the constant module taking every
graph to C and every morphism to the identity. This module is g-small rather
than (g − 1)-small, which is why we required that i be positive in the statement
of Theorem 1.5. Indeed, one can see that the last sentence of the proof fails when
p = q = i = 0.

Example 6.4. When g = 1, Theorem 1.5 and Corollary 4.5 combine to say that
the ith Kazhdan–Lusztig coefficient of the n-cycle should eventually agree with a
polynomial in n of degree at most 2i. In fact, it is equal to [15, Theorem 1.2(1)]

1

i+ 1

(
n− i− 2

i

)(
n

i

)
,

so our result is sharp.

Example 6.5. Let Gg(a1, . . . , ag+1) be the genus g > 0 graph obtained by taking
the graph with two vertices and g + 1 edges between them and subdividing the ith

edge into ai pieces. Theorem 1.5 and Corollary 4.5 say that the first Kazhdan–
Lusztig coefficient of Gg(a1, . . . , ag+1) should eventually agree with a multivariate
polynomial of total degree at most g + 1 in a1, . . . , ag+1.

The first Kazhdan–Lusztig coefficient is equal to the number of corank 1 flats
minus the number of rank 1 flats [7, Proposition 2.12]. If ai > 1 for all i, this is
equal to

g+1∏
i=1

ai +

g+1∑
i=1

(
ai
2

)
−

g+1∑
i=1

ai.

Thus our result is again sharp.

7. Outer Category

The purpose of this section is to describe how one may use the category Gg,red

to compute cohomology groups of Out(Fg) with arbitrary coefficients.

7.1. Nerves of categories. We begin by briefly reviewing some facts about small
categories and their nerves. Let C be a small category. Then we define the nerve
|C| of C to be the geometric realization of the simplicial set defined as follows. The
0-simplices are in bijection with the objects of C, while the i-simplices for i > 0 are
in bijection with i-tuples of morphisms

(f1, . . . , fi)

such that, for each 0 ≤ j ≤ i, the codomain of fj+1 agrees with the domain of fj .
For each i > 0 and 1 ≤ j ≤ i+ 1 the face map ∂j is defined by

∂j(f1, . . . , fi) =

⎧⎪⎨⎪⎩
(f2, . . . , fi) if j = 0

(f1, . . . , fi−1) if j = i+ 1

(f1, . . . , fj−2, fj−1 ◦ fj , fj+1, . . . , fi) otherwise.

The degeneracy map σj is defined by

σj(f0, . . . , fi) = (f0, . . . , fj−1, id, fj , . . . , fi),

where id is the identity map on the domain of fj−1 (or the codomain of fj).
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Remark 7.1. We immediately see that there is a canonical homeomorphism |C| ∼=
|Cop|. A functor between two categories induces a map between their nerves, and
an equivalence of categories induces a homotopy equivalence between the nerves.

Let k be a commutative ring, and let k ∈ Repk(C) be the module that takes every
object to the 1-dimensional vector space k and every morphism to the identity map.
The following standard result can be found, for example, in [25, Theorem 5.3].

Theorem 7.2. There is a canonical graded k-algebra isomorphism Ext∗Repk(C)(k, k)∼= H∗(|C|; k).

7.2. Outer category and the cohomology of Out(Fg). We begin with the
following result, which relies heavily on Culler and Vogtmann’s work on outer space
[5].

Theorem 7.3. The nerves |Osmall
g | and |Otiny

g | are contractible.

Proof. The categories Osmall
g and Otiny

g are equivalent, therefore Remark 7.1 tells us

that it is sufficient to prove that |Otiny
g | is contractible. By Proposition 2.4, Otiny

g is

a poset category, which implies that |Otiny
g | is homeomorphic to the order complex

of the poset structure on the set of objects. This order complex is called the spine
of outer space, and it is known to be contractible [5, Corollary 6.1.2 ]. �

Recall that we have an action of the group Out(Fg) on the category Osmall
g , which

induces an action on the nerve. We also have a functor Φ : Osmall
g → Gsmall

g,red given

by forgetting the marking, and this functor induces a map Φ∗ : |Osmall
g | → |Gsmall

g,red |
of nerves.

Proposition 7.4. The action of Out(Fg) on |Osmall
g | is free and proper, and Φ∗ :

|Osmall
g | → |Gsmall

g,red | is the quotient map.

Proof. The fact that the action is free and proper follows from the fact that it is
free on the set of objects (which correspond to 0-simplices) and each group element
acts by a simplicial map. To see that Φ∗ is the quotient map, we need to show that
it is surjective and its fibers coincide with the orbits of Out(Fg). This follows from
the fact that Out(Fg) acts transitively on the set of markings of a reduced graph
of genus g. �

Corollary 7.5. The nerve |Gsmall
g,red | is a classifying space for the group Out(Fg).

Example 7.6. Let us consider the very simple case where g = 1, which we began
discussing in Example 2.3. The category Otiny

1 has only one object (an oriented
loop) and no nontrivial morphisms, so its nerve is a point. The category Osmall

1 has
two objects, namely a loop with two different orientations, and these two objects
are uniquely isomorphic. The nerve of Osmall

1 is an infinite-dimensional sphere S∞,
and the group Out(F1) ∼= S2 acts via the antipodal map with quotient RP∞. The
category Gsmall

1,red has a single object with automorphism group S2, so its nerve is
homeomorphic to RP∞, which is a classifying space for S2.

Corollary 7.7. For any commutative ring k, we have

Ext∗Repk(G
op
g,red)

(k, k) ∼= H∗(Out(Fg); k).
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Proof. To compute Ext∗Repk(G
op
g,red)

(k, k), we may replace Gg,red with the equivalent

category Gsmall
g,red . The result then follows from Remark 7.1, Theorem 7.2, and Corol-

lary 7.5. �

Proof of Theorem 1.6. Given a pair of modules

M ∈ Repk(Gop
g ) and N ∈ Repk(G

op
g,red),

we will write M to denote the restriction of M to Repk(G
op
g,red) and N ! to denote

the extension of N by zero to Repk(Gop
g ). The functors M �→ M and N �→ N ! are

exact and the former is left adjoint to the latter, therefore

Ext∗Repk(G
op
g,red)

(M,N) ∼= Ext∗Repk(G
op
g )(M,N !).

If we apply this fact with M = k! and N = k, we see that Theorem 1.6 is equivalent
to Corollary 7.7. �

7.3. A sample calculation. We now use Corollary 7.7 to compute the first coho-
mology of Out(F2) ∼= GL(2;Z) with coefficients in an arbitrary field k. In particular,
we illustrate the extent to which the representation theory of finite groups (namely
automorphism groups of graphs) can be used to aid our calculations.

As in Section 2.4, there are exactly two reduced graphs of genus 2 up to iso-
morphism, namely the rose ∞ and the melon . The automorphism group of the
rose is D4, while the automorphism group of the melon is S3 × S2. Let ϕ1, ϕ2,
and ϕ3 be the three contractions from the melon to the rose obtained by cyclically
permuting the edges and then contracting the middle one. Up to post-composition
by an automorphism of the rose, every contraction is of this form.

Let P∞ ∈ Repk((Gsmall
2,red )

op) be the principal projective module corresponding to
the rose, and consider the surjection P∞ → k that sends every basis element to 1.
Let K be the kernel of this homomorphism. Applying the functor Hom(−, k) gives
us the long exact sequence

0 → Hom(k, k) → Hom(P∞, k) → Hom(K, k) → Ext1(k, k) → Ext1(P∞, k).

An element of Hom(P∞, k) is determined by its value on the identity morphism of
∞, which implies that the first map Hom(k, k) → Hom(P∞, k) is an isomorphism.
The fact that P∞ is projective implies that Ext1(P∞, k) = 0, thus Hom(K, k) →
Ext1(k, k) must also be an isomorphism. We therefore want to compute Hom(K, k).

An element of Hom(K, k) is a pair2

(f, g) ∈ HomD4
(K(∞), k)×HomS3×S2

(K( ), k)
satisfying the condition that, if we pre-compose g with any of the three inclusions
K(∞) → K( ) induced by ϕ1, ϕ2, and ϕ3, we obtain f .

Let’s start by computing HomS3×S2
(K( ), k) and HomD4

(K(∞), k). The group
S3 × S2 acts freely on the set of contractions from the melon to the rose with two
orbits, which we will call the untwisted contractions and the twisted contractions.
The untwisted contractions consist of the orbit that includes the three maps ϕi, and
the twisted contractions consist of untwisted contractions followed by an automor-
phism of the rose that fixes one of the two loops and reverses the orientation of the
other loop. We therefore have P∞( ) ∼= k[S3 × S2]⊕ k[S3 × S2] as representations

2Here we are using the symbol k to denote the 1-dimensional trivial representations of both
D4 and S3 × S2.
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of S3 × S2. The space of homomorphisms from P∞( ) to k is 2-dimensional, with
a basis given by the homomorphisms that take the sum of the coefficients of the
twisted or untwisted maps. Applying HomS3×S2

(−, k) to the short exact sequence
0 → K( ) → P∞( ) → k → 0 and noting that P∞( ) is a projective representation
of S3 × S2, we obtain the long exact sequence

0 → HomS3×S2
(k, k) → HomS3×S2

(P∞( ), k) → HomS3×S2
(K( ), k)

→ Ext1S3×S2
(k, k) → 0.

Since the abelianization of S3 × S2 is S2 × S2, we have dimExt1S3×S2
(k, k) = 2 if

k has characteristic 2 and 0 otherwise. Hence dimHomS3×S2
(K( ), k) = 3 if k

has characteristic 2 and 1 otherwise. A similar argument for the rose tells us that
dimHomD4

(K(∞), k) = 2 if k has characteristic 2 and 0 otherwise.
Let’s find explicit bases for our Hom spaces. Let h1 : K( ) → k be the homo-

morphism that adds the coefficients of the untwisted maps in K( ) ⊂ P∞( ). This
homomorphism is well defined and nonzero for any field k. Let h2 : K( ) → k be
the homomorphism that adds the coefficients of C3 × S2 ⊂ S3 × S2 for both the
twisted and untwisted maps and let h3 : K( ) → k be the homomorphism that
adds the coefficients of S3 × {id} ⊂ S3 × S2 for both the twisted and untwisted
maps. Each of these homomorphisms is well defined if and only if the characteristic
of k is 2, in which case it is straightforward to check that {h1, h2, h3} is a basis for
HomS3×S2

(K( ), k). Let f1 : K(∞) → k add the coefficients of the untwisted auto-
morphisms of the rose (those generated by horizontal and vertical reflections), and
let f2 : K(∞) → k add the coefficients of the automorphisms that keep the left loop
on the left and the right loop on the right. Each of these homomorphisms is well
defined if and only if the characteristic of k is 2, in which case it is straightforward
to check that {f1, f2} is a basis for HomS3×S2

(K( ), k).
Finally, we observe that h1 restricts to f1 and h2 restricts to f2 under all three

inclusions of K(∞) into K( ). On the other hand, the restriction of h3 to K(∞)
fails to be D4-equivariant and depends on the choice of inclusion of K(∞) into
K( ). We therefore conclude that

dimH1(Out(F2); k) =

{
2 if char(k) = 2

0 otherwise.

Remark 7.8. This result can also be obtained by working directly with a presen-
tation for Out(F2), such as the one in [23, Section 2.1]. This presentation can be
used to compute the abelianization, and H1(Out(F2); k) is isomorphic to the vector
space of group homomorphisms from the abelianization to k.
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