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ROOT COMPONENTS FOR TENSOR PRODUCT OF AFFINE

KAC-MOODY LIE ALGEBRA MODULES

SAMUEL JERALDS AND SHRAWAN KUMAR

Abstract. Let g be an affine Kac-Moody Lie algebra and let λ, μ be two
dominant integral weights for g. We prove that under some mild restriction,
for any positive root β, V (λ) ⊗ V (μ) contains V (λ+ μ − β) as a component,
where V (λ) denotes the integrable highest weight (irreducible) g-module with
highest weight λ. This extends the corresponding result by Kumar from the
case of finite dimensional semisimple Lie algebras to the affine Kac-Moody
Lie algebras. One crucial ingredient in the proof is the action of Virasoro
algebra via the Goddard-Kent-Olive construction on the tensor product V (λ)⊗
V (μ). Then, we prove the corresponding geometric results including the higher

cohomology vanishing on the G-Schubert varieties in the product partial flag
variety G/P × G/P with coefficients in certain sheaves coming from the ideal
sheaves of G-sub-Schubert varieties. This allows us to prove the surjectivity of
the Gaussian map.

1. Introduction

Let g be a symmetrizable Kac–Moody Lie algebra, and fix two dominant inte-
gral weights λ, μ ∈ P+. To these, we can associate the integrable, highest weight
(irreducible) representations V (λ) and V (μ). Then, the content of the tensor de-
composition problem is to express the product V (λ) ⊗ V (μ) as a direct sum of
irreducible components; that is, to find the decomposition

V (λ)⊗ V (μ) =
⊕

ν∈P+

V (ν)⊕mν
λ,μ ,

where mν
λ,μ ∈ Z≥0 is the multiplicity of V (ν) in V (λ)⊗V (μ). While this is a classi-

cal problem with a straightforward statement, determining the multiplicities mν
λ,μ

exactly–or even determining when mν
λ,μ > 0–is a challenging endeavor. Various al-

gebraic, geometric, and combinatorial methods have been developed to understand
the tensor decomposition problem; see [Ku4] for a survey in the case of (finite
dimensional) semisimple Lie algebras.

While having a complete description for the components of a tensor product is
desirable, many significant results in the literature demonstrate the existence of
“families” of components; that is, components that are uniformly described and
exist for tensor product decompositions regardless of g. One such example is given
by the root components V (λ+ μ− β) for a positive root β.

We show the existence of root components for affine Lie algebras generalizing the
corresponding result in the finite case (i.e., when g is a semisimple Lie algebra) as

Received by the editors July 14, 2021, and, in revised form, April 21, 2022.
2020 Mathematics Subject Classification. Primary 14M15, 14M17, 20G44, 22E47.
The second author was partially supported by the NSF grant number DMS-1802328.

c©2022 American Mathematical Society

825

https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/617


826 SAMUEL JERALDS AND SHRAWAN KUMAR

in [Ku1]. Recall that by a Wahl triple (introduced in [Ku1] though not christened
as Wahl triple there) we mean a triple (λ, μ, β) ∈ (P+)2 × Φ+ such that

(P1) λ+ μ− β ∈ P+, and
(P2) If λ(α∨

i ) = 0 or μ(α∨
i ) = 0, then β − αi �∈ Φ � {0},

where Φ (resp. Φ+) is the set of all the roots (resp., positive roots).
The main representation theoretic result of the paper is Theorem I (cf. Theorem

9.1).

Theorem I. For any affine Kac-Moody Lie algebra g and Wahl triple (λ, μ, β) ∈
(P+)2 × Φ+,

V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

We construct the proof in three parts. First, notice that the conditions (P1) and
(P2) are invariant under adding δ; that is, if (λ, μ, β) is a Wahl triple, then so is
(λ, μ, β + kδ) for any k ∈ Z≥0. This allows us to make use of the Goddard-Kent-
Olive construction of the Virasoro algebra action on the tensor product V (λ)⊗V (μ)
and we explore its action on the subspaces Wλ+μ−β (as in Definition 2.3). This
reduces the problem to certain ‘maximal root components’ via Proposition 3.9. In
the second part, closely following the construction of root components for simple
Lie algebras as in [Ku1], we show the existence of the bulk of the maximal root
components. Finally, in the third part, we construct the remaining maximal root
components that are excluded from the previous methods explicitly using familiar,
but ad hoc, constructions from the general tensor decomposition problem using the
PRV components.

We next prove the corresponding geometric results. Let G be the ‘maximal’ Kac-
Moody group associated to the symmetrizable Kac-Moody Lie algebra g and let P
be a standard parabolic subgroup of G corresponding to a subset S of the set of
simple roots {α1, · · · , α�}, i.e., S is the set of simple roots of the Levi group of P.
In the sequel, we abbreviate S as the subset of {1, · · · , �}. In particular, for S = ∅,
we have the standard Borel subgroup B (corresponding to the Borel subalgebra
b). Let W be the Weyl group of g and let W ′

P be the set of smallest length
coset representatives in W/WP , where WP is the subgroup of W generated by the
simple reflections {sk}k∈S . For any finite dimensional pro-algebraic P-module M ,
by L (M) we mean the corresponding homogeneous vector bundle on XP := G/P
associated to the principal P-bundle: G → G/P by the representation M of P.

For any integral weight λ ∈ h∗ (where h is the Cartan subalgebra of g with the
corresponding standard maximal torus H of G), such that λ(α∨

k ) = 0 for all k ∈ S,
the one dimensional H-module Cλ (given by the character λ) admits a unique P-
module structure (extending the H-module structure); in particular, we have the
line bundle L (Cλ) on XP . We abbreviate the line bundle L (C−λ) by L (λ) and

its restriction to the Schubert variety XP
w := BwP/P by Lw(λ) (for any w ∈ W ′

P).
Given two line bundles L (λ) and L (μ), we can form their external tensor product
to get the line bundle L (λ�μ) on XP×XP . A dominant integral weight μ is called
S-regular if μ(α∨

k ) = 0 if and only if k ∈ S. The set of such weights is denoted by

P+
S

o
.

Then, we prove that, for any μ ∈ P+
S

o
and w ∈ W ′

P such that XP
w is P-stable

under the left multiplication:

Hp(XP
w ,I k

e ⊗ Lw(μ)) = Hp(XP
w , (Ow/I

k
e )⊗ Lw(μ)) = 0, for all p > 0, k = 1, 2,
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where Ie is the ideal sheaf of XP
w at the base point e and Ow denotes the struc-

ture sheaf of XP
w . We further explicitly determine H0(XP

w ,I 2
e ⊗ Lw(μ)) and

H0(XP
w , (Ow/I

2
e )⊗ Lw(μ)) (cf. Proposition 10.1 and Corollary 10.2).

For any w ∈ W ′
P such that the Schubert variety XP

w is P-stable, define the
G-Schubert variety:

X̂P
w := G ×P XP

w .

Consider the isomorphism:

δ : G ×P XP 	 XP ×XP , [g, x] 
→ (gP, gx), for g ∈ G and x ∈ XP .

We have the canonical embedding

X̂P
w ↪→ G ×P XP .

In particular, we can restrict the line bundle L (λ� μ) via the above isomorphism

δ to X̂P
w to get the line bundle denoted Lw(λ � μ). Then, for λ, μ ∈ P+

S

o
, k =

1, 2, w ∈ W ′
P as above and p ≥ 0, we determine (cf. Lemma 11.1):

Hp(X̂P
w , Î k

e ⊗ Lw(λ� μ)) and Hp(X̂P
w , (Ôw/Î

k
e )⊗ Lw(λ� μ)),

in terms of the cohomology of the partial flag variety G/P with coefficients in

explicit homogeneous vector bundles, where Îe denotes the ideal sheaf of X̂P
e in

X̂P
w and Ôw is the structure sheaf of X̂P

w . In fact, we show that

Hp(X̂P
w , Îe ⊗ Lw(λ� μ)) = 0, for all p > 0.

Let Φ+ ⊂ h∗ be the set of positive roots, Φ+
S := Φ+ ∩ (⊕k∈S Z≥0αk) and Φ+(S) :=

Φ+ \ Φ+
S .

We next study the vanishing of the first cohomology H1(X̂P
w , Î 2

e ⊗ Lw(λ� μ))
and prove the following crucial result (cf. Proposition 11.4):

Proposition II. Let g be an affine Kac-Moody Lie algebra. Then, for any λ, μ ∈
P+

S

o
(where S is an arbitrary subset of the simple roots of g̊) and any w ∈ W ′

P such
that the Schubert variety XP

w is P-stable, consider the following two conditions:

(a) H1(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0.
(b) For all the real roots β ∈ Φ+(S), satisfying S ⊂ {0 ≤ i ≤ � : β − αi �∈ Φ+ �

{0}} and λ+μ−β∈P+, there exists a fβ ∈Homb (Cλ+μ−β ⊗ V (λ)∨, V (μ))
such that

Xβ(fβ(Cλ+μ−β ⊗ v∗λ)) �= 0, for Xβ �= 0 ∈ gβ,

where V (λ)∨ is the restricted dual of V (λ), and v∗λ �= 0 ∈ [V (λ)∨]−λ.

Then, the condition (b) implies the condition (a).

Further, we show that under the assumptions of Proposition II, the condition (b)
of Proposition II is satisfied in all the cases except possibly g̊ of type F4 or G2 (cf.
Proposition 11.6 for a more precise result). The proof of Proposition 11.6 relies on
explicit constructions of root components obtained in the earlier sections including
that of the GKO operator and Lemma III (cf. Lemma 11.5):

Lemma III. Let (λ, μ, β) be a Wahl triple for a real root β and let V (λ+μ−β) ⊂
V (λ) ⊗ V (μ) be a δ-maximal root component. Observe that β ∈ Φ̊+ or β = δ − γ

for γ ∈ Φ̊+. Then, for β ∈ Φ̊+, the validity of condition (b) of Proposition 11.4 for
V (λ+ μ− β) implies its validity for V (λ+ μ− β − kδ) for any k ≥ 0.
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Moreover, if β = δ − γ for γ ∈ Φ̊+, then we have an identity connecting the
condition (b) of Proposition 11.4 for V (λ+μ−δ+γ) with that of V (λ+μ−β−kδ),
k ≥ 1 (see the identity (32)).

Combining Proposition II and Proposition 11.6, we obtain the following main
geometric result of the paper (cf. Theorem 11.7):

Theorem IV. Let g be an affine Kac-Moody Lie algebra and let w ∈ W ′
P be such

that the Schubert variety XP
w is P-stable. Then, for any λ, μ ∈ P+

S

o
(where S is an

arbitrary subset of the simple roots of g̊) such that the condition (b) of Proposition
11.4 is satisfied for all the Wahl triples (λ, μ, β) for any real root β ∈ Φ+,

Hp(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0, for all p > 0.

In particular, the canonical Gaussian map

H0(X̂P
w , Îe ⊗ Lw(λ� μ)) → H0(X̂P

w , (Îe/Î
2
e )⊗ Lw(λ� μ))

is surjective.
In particular, the theorem holds for any simply-laced g̊ and g̊ of types B�, C�.

Moreover, it also holds for g̊ of type F4 in the case P is the Borel subgroup B.

As a fairly straight forward corollary of Theorem IV, taking inverse limits, we
get the following (cf. Corollary 11.8):

Corollary V. Under the notation and assumptions of Theorem IV, the canonical
Gaussian map

H0(XP ×XP ,ID ⊗ L (λ� μ)) → H0(XP ×XP , (ID/Ĩ 2
D)⊗ L (λ� μ))

is surjective, where ID is the ideal sheaf of the diagonal D ⊂ XP ×XP and Ĩ 2
D is

defined as lim←−w
Îe(w)

2.

2. Affine Lie algebras (notation and preliminaries)

In this section, we recall the definition of affine Kac-Moody Lie algebras g and
their root and weight lattices. For a more extensive treatment of g and its proper-
ties, see [Kac, Chapters 6 and 7].

Let g̊ be a finite-dimensional simple Lie algebra over C with a fixed Borel sub-
algebra b̊ and Cartan subalgebra h̊ ⊂ b̊. We denote the rank of g̊ (which is, by

definition, the dimension of h̊) by �. Let Φ̊ ⊂ h̊∗ be the set of roots and Φ̊+ (resp.

Φ̊−) be the subset of positive (resp. negative) roots. Then, the associated affine
Kac-Moody Lie algebra is given, as a vector space, by

g = g̊⊗ C[t, t−1]⊕ CK ⊕ Cd,

where K is the central element and d the derivation or scaling element. The Lie
bracket in g is given by

[x⊗ tm + zK + ζd, x′ ⊗ tn + z′K + ζ ′d] =[x, x′]⊗ tm+n + nζx′ ⊗ tn −mζ ′x⊗ tm

+mδn,−m(x|x′)̊gK,(1)

for x, x′ ∈ g̊, n,m ∈ Z, z, z′, ζ, ζ ′ ∈ C, where δm,−n is the Kronecker delta and (·|·)̊g
is the invariant form on g̊ normalized so that (θ|θ)̊g = 2, where θ ∈ Φ̊ is the highest
root of g̊. Through the paper we will always take this normalized form on g̊.
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The Cartan subalgebra of g is given by h := h̊⊕ (CK + Cd). We thus have

h∗ := h̊∗ ⊕ (Cδ + CΛ0),

where δ is defined by δ(d) = 1, δ|̊
h⊕CK = 0 and Λ0(K) = 1, Λ0 |̊h⊕Cd = 0 and h̊∗ is

the dual of h̊ taking d and K to zero. Setting α0 := δ − θ, α∨
0 := K − θ∨ for θ as

above, and {αi}�i=1, {α∨
i }�i=1 the set of simple roots and coroots of g̊, we have that

{αi}�i=0, {α∨
i }�i=0 are the simple roots and coroots of g.

Let Φ be the set of roots of g and Φ+ (resp. Φ−) be the subset of positive (resp.
negative) roots. Then, we can separate Φ = ΦRe�ΦIm, a disjoint union of real and
imaginary roots. These are given precisely by

ΦRe = {β + kδ : β ∈ Φ̊, k ∈ Z},
ΦIm = {kδ : k ∈ Z\0}.

Finally, let {Λi}�i=0 be the set of fundamental weights of g defined by Λi(α
∨
j ) = δij

(determined up to a multiple of δ). Then, the dominant integral weights of g are

given by P+ =
(⊕�

i=0 Z≥0Λi

)
⊕ Cδ. The integrable highest weight (irreducible)

g-modules are parameterized by P+. For λ ∈ P+, let V (λ) be the corresponding
integrable highest weight g-module.

Fix dominant weights λ, μ ∈ P+, and consider the tensor product V (λ)⊗V (μ)
of representations. Note that, as δ(α∨

i ) = 0 for all i, the representation V (kδ)
is one-dimensional for all k ∈ C, and V (λ) ⊗ V (kδ) ∼= V (λ + kδ). Therefore,
throughout the remainder of this paper, we can assume without loss of generality
that λ(d) = μ(d) = 0 up to an appropriate twist by V (kδ).

Definition 2.1. For λ ∈ P+, the integer λ(K) is called the level of λ. Further,
for any v ∈ V (λ) (not necessarily a highest weight vector), we have K.v = λ(K)v,
since K is a central element of g. So, we say that V (λ) has level λ(K).

If λ is of level l and μ is of levelm, then each irreducible component of V (λ)⊗V (μ)
is of level l +m. Indeed, the Cartan component V (λ + μ) clearly has level l +m,
and if V (ν) ⊂ V (λ)⊗V (μ), then necessarily λ+μ−ν ∈ ⊕�

i=0Z≥0αi, and αi(K) = 0
for all i.

We also recall Definition 2.2 taken from [BrKu] of δ-maximal components of the
tensor product.

Definition 2.2 (δ-Maximal components). A component V (ν) ⊂ V (λ) ⊗ V (μ)
is called δ-maximal if V (ν + kδ) �⊂ V (λ)⊗ V (μ) for any k > 0.

Let g′ := [g, g] be the derived subalgebra of g. By the Lie bracket given in (1),
we have g′ = g̊⊗C[t, t−1]⊕CK. In particular, the g′ action on V (λ) cannot detect
the weight δ. Nevertheless, it is known that the restriction of V (λ) to a g′-module
remains irreducible (cf. [Ku3, Lemma 2.1.4]). This allows us to make Definition
2.3.

Definition 2.3. Let V (ν) ⊂ V (λ)⊗ V (μ) be a δ-maximal component. We denote
by W ν the subspace

W ν :=
∑
k≥0

V (ν − kδ)⊕mk ⊂ V (λ)⊗ V (μ),

where mk := mν−kδ
λ,μ is the multiplicity of V (ν − kδ) in V (λ)⊗ V (μ).
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That is, W ν is the ν-isotypic component of V (λ) ⊗ V (μ) with respect to the
g′-action. In the next section, we make use of the Virasoro algebra to more closely
examine the structure of such W ν .

3. Virasoro algebra and Goddard–Kent–Olive construction

In this section, we recall the basics of the Virasoro algebra and its representation
theory. In particular, we give an overview of the Goddard–Kent–Olive (GKO)
construction of the Virasoro algebra and its action on tensor products of affine Lie
algebra representations. We follow the exposition of [KRR].

Definition 3.1. The Virasoro algebra V ir is a Lie algebra over C with basis
{c, Lk|k ∈ Z} with commutation relations

(2) [Lk, Lj ] = (k − j)Lk+j +
1

12
(k3 − k)δk,−jc, [V ir, c] = 0.

We set V ir0 := CL0 ⊕ Cc, and the dual space V ir∗0 := Ch⊕ Cz, where {h, z} is
the basis dual to that of {L0, c}. Similar to the case of Kac–Moody representations,
we have the notion of highest weight representations of V ir:

Definition 3.2. A representation V of V ir is defined to be a highest weight repre-
sentation with highest weight λ ∈ V ir∗0 if there is a vector v ∈ V such that

X.v = λ(X)v ∀X ∈ V ir0, Lk.v = 0 ∀k ≥ 1, V = U

(⊕
k<0

CLk

)
.v.

The structure of highest weight V ir representations is in many ways parallel to
that of Kac–Moody representations. Denote by Vμ the μ-weight space of V . Then,
by the defining relations (2) for V ir, we have L−k : Vμ → Vμ+kh. Further, if V
has highest weight λ, then for any v ∈ V (not necessarily highest weight vector) by
equation (2) we again have c.v = λ(c)v. We refer to the value λ(c) as the central
charge of the representation V .

Definition 3.3. A V ir representation V is called unitarizable if there is a positive-
definite Hermitian form 〈·|·〉 on V satisfying 〈Lk.v|w〉 = 〈v|L−k.w〉 and 〈cv|w〉 =
〈v|cw〉 for all k ∈ Z and v, w ∈ V .

The existence of a positive-definite form on a highest weight representation V
allows us to investigate the weight spaces of V . More specifically, the following
Lemma 3.4 from [BrKu] determines when the weight spaces λ+kh of an irreducible,
highest weight representation with highest weight λ are nontrivial.

Lemma 3.4. Let V be a unitarizable, highest weight (irreducible) representation
of V ir with highest weight λ. Then, we have the following:

(1) If λ(L0) �= 0, then Vλ+kh �= 0 for any k ∈ Z≥0.
(2) If λ(L0) = 0 and λ(c) �= 0, then Vλ+kh �= 0 for all k ≥ 2, and Vλ+h = 0.
(3) If λ(L0) = λ(c) = 0, then V is one-dimensional.

Proof. Let v be the highest weight vector of V . Then, we have (for all k > 0):

0 ≤ 〈L−kv|L−kv〉 = 〈LkL−kv|v〉 = (2kλ(L0) +
1

12
(k3 − k)λ(c))〈v|v〉.

Thus, λ(L0) and λ(c) both must be nonnegative numbers. So, if λ(L0) �= 0, we have
L−kv �= 0 for any k ≥ 0. If λ(L0) = 0, then we have (k3 − k)λ(c) ≥ 0; if λ(c) �= 0,
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this is nonzero for k > 1 and zero for k = 1, so that L−1v = 0 and L−kv �= 0 for
k > 1. Finally, if λ(L0) = λ(c) = 0, then we get that L−kv = 0 for all k > 0, so V
must be one-dimensional. �

The Goddard–Kent–Olive construction. The similarity between representa-
tions of Kac–Moody algebras and the Virasoro algebra is not coincidental. A foun-
dational result linking the two theories is given by the Sugawara construction, which
embeds V ir ↪→ Û(g) in a certain completion Û(g) of the enveloping algebra U(g)
of an affine Lie algebra g such that an integrable highest weight (irreducible) repre-
sentation V (λ) of g becomes a unitarizable representation of V ir. We make use of a
related construction, known as the Goddard–Kent–Olive (for short GKO) construc-
tion, to produce an action of V ir on a tensor product V (λ) ⊗ V (μ) of g-modules.
At its core, the GKO construction is “relative” and relies on the diagonal inclusion
g̊ ↪→ g̊⊕ g̊, but we will not give complete details of the construction here; see Lec-
ture 10 of [KRR] for a more in-depth treatment. Proposition 3.5 is the primary
computational tool we need from this construction.

Proposition 3.5 ([KRR, Proposition 10.3]). Let g be an affine Lie algebra and
λ, μ ∈ P+ be weights with levels l, m respectively. Then,

(1) V (λ)⊗ V (μ) is a unitarizable V ir representation with nonnegative central
charge

(dim g̊)

(
l

l + h∨ +
m

m+ h∨ − l +m

l +m+ h∨

)
,

where h∨ is the dual Coxeter number of g ([Kac, §6.1]).
(2) L0 acts on V (λ)⊗ V (μ) by

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − Ω

l +m+ h∨

)
,

where Ω is the Casimir operator of g ([Ku3, §1.5]) and (·|·) is the normalized
form on h∗ as in [Ku3, Lemma 13.1.8].

(3) For all k, [Lk, g
′] = 0; i.e., the Lk are intertwining operators for the repre-

sentation of g′ on V (λ)⊗ V (μ).

Remark 3.6. As the Casimir Ω acts on the g-module V (ν) by (ν|ν + 2ρ) (cf.,
[Ku3, 2.1.16]), we can easily compute the action of L0 on any component V (ν) of
V (λ)⊗ V (μ); it will act via a scalar depending only on λ, μ, ν.

Now, let V (ν) ⊂ V (λ) ⊗ V (μ) be a δ-maximal component as in Definition 2.2
and consider the subspace W ν as in Definition 2.3. By Proposition 3.5(3), we can
conclude the following immediate corollary.

Corollary 3.7. W ν is a unitarizable V ir representation.

In general, W ν is not an irreducible V ir representation. However, by Remark 3.6,
L0 acts on each V (ν− kδ) as a scalar, so that each of these summands corresponds
to a single V ir weight space.

Lemma 3.8. For any k ∈ Z, L−k : V (ν) → V (ν − kδ), corresponding to shifting
the V ir weight by kh, where ν is not necessarily a δ-maximal weight.
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Proof. As all ofW ν has the same nonnegative central charge, we need only compute
the change in the weight with respect to h. By Proposition 3.5 and Remark 3.6,
we have that L0 acts on V (ν − kδ) via

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (ν − kδ|ν − kδ + 2ρ)

l +m+ h∨

)
=

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (ν|ν + 2ρ)− 2k(ν|δ)− 2k(ρ|δ)
l +m+ h∨

)
=

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (ν|ν + 2ρ)− 2k(l +m)− 2k(h∨)

l +m+ h∨

)
=

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (ν|ν + 2ρ)

l +m+ h∨

)
+ k.

Now, as L0 acts on V (ν) by 1
2

(
(λ|λ+2ρ)
l+h∨ + (μ|μ+2ρ)

m+h∨ − (ν|ν+2ρ)
l+m+h∨

)
and we have that

L−k adds kh to a weight space, we get the desired result. �

Therefore, combining Lemmas 3.8 and 3.4 we get the following key proposition,
which allows us to determine if the multiplicities mk = mν−kδ

λ,μ as in Definition 2.3
are nonzero.

Proposition 3.9. Let λ, μ ∈ P+ be of positive levels l,m, respectively. Let V (ν) ⊂
V (λ) ⊗ V (μ) be a δ-maximal component, and consider the V ir subrepresentation
W ν . Then, we have the following:

(1) If (λ|λ+2ρ)
l+h∨ + (μ|μ+2ρ)

m+h∨ − (ν|ν+2ρ)
l+m+h∨ �= 0, we have mk ≥ 1 for all k ≥ 0.

(2) Else, we have m1 = 0 and mk ≥ 1 for k = 0, k ≥ 2.

Proof. Choose a nonzero highest weight vector vν ∈ V (ν) ⊂ W ν . By Lemma 3.8,
we have Lk(vν) = 0 for all k > 0, as there are no components of the form V (ν+kδ)
in W ν . Thus, vν is a highest weight vector for the V ir action, and generates a
highest weight, unitarizable (irreducible) V ir-submodule of W ν . Applying Lemma
3.4, we can determine if L−k(vν) is nonzero by computing the L0-action on vν
(done in the proof of Lemma 3.8). But L−k(vν) ∈ V (ν − kδ) by Lemma 3.8 and if
nonzero it is the highest weight vector of V (ν − kδ) under the U(g′) action, since
[L−k, g

′] = 0. Therefore, Lemma 3.4 gives the result. (Observe that c acts by a
nonzero scalar on V (λ)⊗ V (μ) by Proposition 3.5(1).) �

We conclude this section with two examples; the first is an alternate approach
to [Kac, Exercise 12.16], and the second is an interpretation of root components for
affine Lie algebras with respect to imaginary roots.

Example 3.10. Consider g = ŝl2, and let λ = μ = Λ0. Then, of course V (2Λ0) ⊂
V (Λ0) ⊗ V (Λ0) is a δ-maximal component. By Proposition 3.5 and Remark 3.6,
the L0 action on V (2Λ0) is given by the scalar:

1

2

(
(Λ0|Λ0 + 2ρ)

3
+

(Λ0|Λ0 + 2ρ)

3
− (2Λ0|2Λ0 + 2ρ)

4

)
.

But we have (Λ0|Λ0) = (Λ0|ρ) = 0 (cf., [Kac, §6.2]), so that L0 acts by 0 on
V (2Λ0). Thus, by Proposition 3.9, we have V (2Λ0 − δ) �⊂ V (Λ0) ⊗ V (Λ0). But
V (2Λ0 − kδ) ⊂ V (Λ0) ⊗ V (Λ0) for any k > 1; this agrees with Exercise 12.16 of
[Kac].
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Example 3.11. For any affine Lie algebra g, let λ = μ = ρ. Then, of course,
V (2ρ) ⊂ V (ρ) ⊗ V (ρ) is δ-maximal. We then get, since ρ is of level h∨, that L0

acts on V (2ρ) via

1

2

(
2(ρ|ρ+ 2ρ)

2h∨ − (2ρ|2ρ+ 2ρ)

3h∨

)
=

(ρ|ρ)
6h∨ > 0.

Thus, by Proposition 3.9, we have V (2ρ− kδ) ⊂ V (ρ)⊗ V (ρ) for any k ≥ 0.

4. Some general results on tensor product decomposition

Proposition 4.1 is crucial to our work on root components in the case of affine
Lie algebras. For the semisimple Lie algebras, it is due to Kostant [Kos].

Proposition 4.1. Let g be a symmetrizable Kac–Moody algebra, and fix λ, μ, ν ∈
P+. Then, the multiplicity of V (ν) in V (λ)⊗ V (μ) is given by:

mν
λ,μ = dim{v ∈ V (μ)ν−λ : e

λ(α∨
i )+1

i .v = 0 for all simple roots αi},
where ei is a root vector corresponding to the root αi.

Proof. Define an increasing filtration {Fn(λ)}n≥0 of V (λ) by

Fn(λ) :=
∑

β∈Q+:|β|≤n

V (λ)λ−β,

where Q+ := ⊕iZ≥0αi, for any β =
∑

niαi, we define |β| :=
∑

ni and V (λ)γ
denotes the γ-weight space. Then, clearly, each Fn(λ) is b-stable. We also set

V (λ)∨ := ⊕β∈Q+ (V (λ)λ−β)
∗
.

Let Cν denote the one-dimensional b-module with the Cartan subalgebra h acting
via the weight ν and of course the commutator n := [b, b] acts trivially. Now,

Homg (V (ν), V (λ)⊗ V (μ)) 	 Homb (Cν , V (λ)⊗ V (μ))

	 lim−→
n

Homb (Cν , Fn(λ)⊗ V (μ))

	 lim−→
n

Homb (Fn(λ)
∗ ⊗ Cν , V (μ)) ,

since Fn(λ) is finite-dimensional

	 Homb (V (λ)∨ ⊗ Cν , V (μ)) ,(3)

where the last isomorphism is induced from the surjection V (λ)∨ → Fn(λ)
∗ ob-

tained from dualizing the embedding Fn(λ) ↪→ V (λ). It is indeed an isomorphism
since any b-module homomorphism f : V (λ)∨ ⊗ Cν → V (μ) clearly descends to a
homomorphism f̄ : FN (λ)∗ ⊗ Cν → V (μ) for some large N because the weights of
V (λ)∨ ⊗ Cν lie in −λ+ ν +Q+ whereas the weights of V (μ) lie in μ−Q+.

From the definition of the integrable highest weight module (cf. [Ku3, Definition
2.1.5 and Corollary 2.2.6]) (rather its analogue for the integrable lowest module
V (λ)∨), we get that V (λ)∨ is obtained from the Verma module for the negative
Borel Mb−(−λ) (with lowest weight −λ) by taking its quotient by the submod-

ule generated by {eλ(α
∨
i )+1

i .v−λ}, where ei runs over all the (positive) simple root
vectors and v−λ is the lowest weight vector of Mb−(−λ). In particular, the map

U(n) → V (λ)∨, a 
→ a · v−λ,
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is surjective with kernel the left ideal generated by {eλ(α
∨
i )+1

i }i. From this and the
above isomorphism (3), we get the proposition. �

The above result also follows from the work of Kashiwara [Kas1], [Kas2] on the
existence of crystal base and global base for quantum group representations.

We can deduce from Proposition 4.1 the following well-known fact, which we
refer to as additivity in the tensor decomposition. Following [Ku1, Corollary 1.5],
we give a purely algebraic proof, but remark that this can also be deduced from
the Kac-Moody analogue of the Borel–Weil theorem.

Corollary 4.2. Let λ, λ′, μ, μ′, ν ∈ P+. Then, mν
λ,μ ≤ mν+λ′+μ′

λ+λ′,μ+μ′ .

Proof. Define a map ξ : V (μ) → V (μ + μ′) via ξ(v) = π(v ⊗ vμ′), where vμ′ is
a nonzero highest weight vector of V (μ′) and π : V (μ) ⊗ V (μ′) → V (μ + μ′) is
the projection onto the Cartan component. For any nonzero v ∈ V (μ), vμ ⊗ vμ′ ∈
U(g).(v ⊗ vμ′), so the map ξ is clearly injective. Now, by Proposition 4.1, choose

a vector v ∈ V (μ)ν−λ satisfying e
λ(α∨

i )+1
i .v = 0 for all the simple roots αi. Then,

ξ(v) ∈ V (μ+μ′)ν+μ′−λ and satisfies e
λ(α∨

i )+1
i .(ξ(v)) = 0. Thus, by Proposition 4.1,

we get mν
λ,μ ≤ mν+μ′

λ,μ+μ′ . Repeating the argument a second time for λ and λ′ gives
the result. �

5. Existence of root components for imaginary roots

Now, let β = kδ be a positive imaginary root. By the regularity condition (P2)
for root components as in Section 1, if (λ, μ, β) is a Wahl triple, then necessarily
λ and μ are both regular dominant weights. Combining Example 3.11 and addi-
tivity in the tensor decomposition (Corollary 4.2), we get the first example of root
components via Corollary 5.1.

Corollary 5.1. Let β = kδ be a positive imaginary root, and (λ, μ, β) a Wahl
triple. Then, V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

Remark 5.2. In fact, the stronger statement that V (λ+ μ− kδ) ⊂ V (λ)⊗ V (μ) is
true if at least one of λ or μ is regular dominant follows immediately from the
same approach as in Example 3.11.

6. Existence of root components for β = γ + kδ, for γ ∈ Φ̊+

Fix for the remainder of this section a simple untwisted affine Lie algebra g

and a Wahl triple (λ, μ, β) ∈ (P+)2 × Φ+
Re. Without loss of generality, assume

that λ(d) = μ(d) = 0. Let l, m be the levels of λ and μ, respectively. Then,
by Proposition 3.5(2), we know precisely how L0 ∈ V ir acts on V (λ) ⊗ V (μ) via
the GKO construction. The goal of this section is to understand how this action
interacts with potential root components V (λ+μ−β). As a first step, we consider
the Cartan component V (λ+ μ) ⊂ V (λ)⊗ V (μ) in Lemma 6.1.

Lemma 6.1. For λ, μ ∈ P+ with levels l, m, respectively, we have

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (λ+ μ|λ+ μ+ 2ρ)

l +m+ h∨

)
≥ 0.

Proof. Let v := vλ ⊗ vμ ∈ V (λ) ⊗ V (μ), where vλ, vμ are nonzero highest weight
vectors in V (λ), V (μ), respectively. Then, v is the highest weight vector of the
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Cartan component V (λ + μ) ⊂ V (λ) ⊗ V (μ). Now, consider the Virasoro action
V ir.v coming from the GKO construction. As V (λ+μ) is a δ-maximal component
of V (λ) ⊗ V (μ), by Lemma 3.8, Lk.v = 0 for all k ≥ 1. So, consider the highest
weight, unitarizable (irreducible) Virasoro submodule of V (λ)⊗V (μ) generated by
v. By Proposition 3.5, we know that the action of L0 on v is given precisely by the
scalar value above. Further, by the proof of Lemma 3.4, we know that this value
must be nonnegative. �

Now, we can obtain from this the following key proposition pertaining to Wahl
triples.

Proposition 6.2. Let (λ, μ, β) ∈ (P+)2 × Φ+
Re be a Wahl triple. Then,

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (λ+ μ− β|λ+ μ− β + 2ρ)

l +m+ h∨

)
> 0.

Proof. We use the bilinearity of the form (·|·) to expand the third term as

(λ+ μ− β|λ+ μ− β + 2ρ)

l +m+ h∨ =
(λ+ μ|λ+ μ+ 2ρ)

l +m+ h∨ − 2(λ+ μ|β) + 2(ρ|β)− (β|β)
l +m+ h∨ .

In total, we therefore have

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (λ+ μ− β|λ+ μ− β + 2ρ)

l +m+ h∨

)
=

1

2

(
(λ|λ+ 2ρ)

l + h∨ +
(μ|μ+ 2ρ)

m+ h∨ − (λ+ μ|λ+ μ+ 2ρ)

l +m+ h∨

)
+

1

2

(
2(λ+ μ|β) + 2(ρ|β)− (β|β)

l +m+ h∨

)
.

By Lemma 6.1, we know that the first term is nonnegative. Further, we know that

2(ρ|β) − (β|β) ≥ 0, as 1 ≤ ρ(β∨) = 2(ρ|β)
(β|β) . Finally, by the property (P1) of the

Wahl triple, we have (λ+μ|β) > 0 (since λ+μ−β ∈ P+, we get (λ+μ−β|β) ≥ 0
and hence (λ + μ|β) > 0), so that in total the expression as a whole is strictly
positive. �

As a consequence of Propositions 6.2 and 3.9, we get Corollary 6.3.

Corollary 6.3. Let (λ, μ, β) ∈ (P+)2×Φ+
Re be a Wahl triple and let V (λ+μ−β) ⊂

V (λ)⊗V (μ) be a δ-maximal root component. In particular, λ, μ have strictly positive
levels. Then, for any k ≥ 0, we have V (λ+ μ− β − kδ) ⊂ V (λ)⊗ V (μ).

Proof. By Propositions 6.2, 3.5 and Remark 3.6, L0 acts on V (λ + μ − β) via a
scalar > 0. Thus, by Proposition 3.9,

V (λ+ μ− β − kδ) ⊂ V (λ)⊗ V (μ), for all k ≥ 0.

This proves the corollary. �

Note that while Corollary 6.3 allows us to conclude the existence of infinitely
many root components from the existence of its associated δ-maximal component,
the action of the Virasoro does not a priori say anything about the appearance of
the δ-maximal root components in the tensor product decomposition. Nevertheless,
to conclude the proof of Theorem I of Section 1, our work is reduced by Corollary
6.3 to showing the existence of these δ-maximal root components.
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Recall that, for any β ∈ Φ+
Re, we can write β = γ + kδ for some γ ∈ Φ̊ and

k ∈ Z≥0. This can further be separated into two cases: If γ ∈ Φ̊+, then we can

take any k ≥ 0. If γ ∈ Φ̊−, then necessarily k ≥ 1. Therefore, when considering the
δ-maximal root components V (λ+μ−β), it suffices to consider the two possibilities:

V (λ + μ − γ) and V (λ + μ − (−γ + δ)), where γ ∈ Φ̊+. The first of these cases
follows immediately from Kumar’s result in the finite case [Ku1].

Proposition 6.4. Let (λ, μ, γ) be a Wahl triple with γ ∈ Φ̊+. Then, mλ+μ−γ
λ,μ �= 0.

Proof. Let V̊ (λ) ⊂ V (λ) denote the g̊-submodule generated by the highest weight

vector, and similarly for V̊ (μ). Then, by [Ku1, Theorem 1.1], we have

V̊ (λ+ μ− γ) ⊂ V̊ (λ)⊗ V̊ (μ).

Denote by vγ ∈ V (λ) ⊗ V (μ) the highest weight vector for g̊ that generates

V̊ (λ+μ−γ). We claim that this is in fact a highest weight vector for g. Indeed, all
that remains to check is that e0.vγ = 0. By the assumption that λ(d) = μ(d) = 0,
we have that no vector in V (λ)⊗ V (μ) can have weight ν with ν(d) ≥ 1. However,

since γ ∈ Φ̊+, if e0.vγ �= 0, we have (λ+μ−γ+α0)(d) = α0(d) = 1, a contradiction.
Thus, e0.vγ = 0 and generates a g-submodule V (λ+ μ− γ) ⊂ V (λ)⊗ V (μ). �

From this, via Corollary 6.3, we have Corollary 6.5.

Corollary 6.5. Let (λ, μ, β) be a Wahl triple with β = γ + kδ for some γ ∈ Φ̊+

and k ≥ 0. Then, V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

7. Existence of root components for β = γ + kδ, for γ ∈ Φ̊−

We now show the existence of the δ-maximal root components of the form V (λ+

μ−(−γ+δ)) for γ ∈ Φ̊+. The results and arguments of this section parallel those in
[Ku1]; we reproduce some of the original arguments therein here for completeness.

Recall from Proposition 4.1 that

mλ+μ−β
λ,μ = dim{v ∈ V (μ)μ−β : e

λ(α∨
i )+1

i .v = 0 for all the simple roots αi}.
Our goal is to explicitly construct such a vector v ∈ V (μ)μ−β for (λ, μ, β) ∈ (P+)2×
Φ+

Re a Wahl triple. To do so, we begin with the following preparatory lemma.

Lemma 7.1. Let β ∈ Φ+
Re, with β = γ + kδ for some γ ∈ Φ̊ and k ∈ Z≥0, and

suppose β−2αi is a root for some 0 ≤ i ≤ �. Then, neither of β−2αj or β−2αj−αi

is a root or zero for j �= i.

Proof. If β ∈ Φ̊+ (that is, if k = 0), then the lemma holds by explicit knowledge
of the finite root systems; see [Bou81] for example. Else, first suppose β − 2α0 is a

root. Then, we have β − 2(δ − θ) = (γ + 2θ) + (k − 2)δ is a root, where θ ∈ Φ̊+ is
the highest root of the underlying semisimple Lie algebra. Thus, β − 2α0 is a root
if and only if γ + 2θ is a root in Φ̊, so that γ = −θ. In this case, neither of β − 2αj

or β− 2αj −α0 is a root for any j �= 0, as the first would mean that −θ− 2αj ∈ Φ̊,

and the second would mean that −2αj ∈ Φ̊, a clear contradiction. Also, clearly,
β − 2αj or β − 2αj − α0 cannot be zero.

Now, suppose β − 2αi is a root for i �= 0. Then, we have (γ − 2αi) + kδ is a

root, so that γ − 2αi ∈ Φ̊. By the finite case, we get that β − 2αj and β − 2αj −αi

are not roots or zero for j �= 0, i, as this would have to hold for γ. (For γ positive,
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we have seen this above and for γ negative, we can similarly see using the explicit
knowledge of the root system as in [Bou81].) As above, β − 2α0 ∈ Φ would imply
that γ = −θ, contradicting β − 2αi is a root. Finally, β − 2α0 − αi ∈ Φ would
imply that γ − αi + 2θ ≤ θ, so that γ = −θ or γ = −θ + αi; in each of these cases,
γ − 2αi is not a root, contradicting β − 2αi being a root. Further, it is easy to see
that β − 2αj − αi cannot be zero for any j �= i. �

We next introduce the following set of indices, which will play a role in the
construction of sufficient Wahl triples associated to a positive root β.

Definition 7.2. For β ∈ Φ+, define Fβ := {0 ≤ i ≤ � : β − αi �∈ Φ � {0}}.
Proposition 7.3. Let (λ, μ, β) be a Wahl triple with β a real root, and suppose
that β − 2αi �∈ Φ+ for any 0 ≤ i ≤ �, or else μ(β∨) = 1. Then, V (λ + μ − β) ⊂
V (λ)⊗ V (μ).

Thus, for simply-laced g (i.e., g̊ is simply-laced), for any Wahl triple,

(4) V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

Proof. Let vμ denote a nonzero highest weight vector of V (μ), and choose a nonzero
root vector X−β ∈ g−β. Set v := X−β.vμ. For any 0 �= Xβ ∈ gβ, we have (using
[Ku3, Theorem 1.5.4]),

Xβ.v=Xβ(X−β.vμ)=[Xβ, X−β]vμ=(Xβ |X−β)ν
−1(β)·vμ=(Xβ|X−β)μ(ν

−1(β))vμ,

where ν : h → h∗ is the map induced by (·|·). This is nonzero as (Xβ|X−β) �= 0 and
by the regularity condition (P2), μ(ν−1(β)) > 0. Then, v ∈ V (μ)μ−β is a nonzero
vector.

By the dominance of λ we have λ(α∨
i ) + 1 ≥ 1. Then, if i ∈ Fβ, we get

ei.v = ei(X−β.vμ) = [ei, X−β].vμ = 0,

as by definition αi−β �∈ Φ∪{0}. Else, if i �∈ Fβ, we have by the regularity condition
(P2) that λ(α∨

i ) + 1 ≥ 2, and

e2i .v = ((adei)
2(X−β)).vμ = 0

by the assumption that β − 2αi �∈ Φ+. Thus, for all i, e
λ(α∨

i )+1
i .v = 0. This proves

the proposition in the case β − 2αi �∈ Φ+ for any i by using Proposition 4.1.
For the proof in the case μ(β∨) = 1, observe first that for any weight ν of V (μ),

(μ|μ) ≥ (ν|ν) (cf. [Kac, Proposition 11.4 (a)]). Denoting n := λ(α∨
i ) + 1, we have:

(μ− β + nαi|μ− β + nαi) = (μ|μ) + n2(αi|αi) + 2n(μ− β|αi), since sβμ = μ− β

= (μ|μ) + n2(αi|αi) + n(αi|αi)(μ− β|α∨
i )

= (μ|μ) + n(αi|αi) ((λ+ μ− β|α∨
i ) + 1)

> (μ|μ), since λ+ μ− β ∈ P+ by (P1).

Thus, V (μ)μ−β+nαi
= 0.

To prove equation (4), by Corollaries 5.1, 6.3 and 6.5, it suffices to assume that

β = δ − γ, for a positive root γ ∈ Φ̊+. Any such root β does satisfy the condition
that β − 2αi /∈ Φ+ for any simple root αi. Hence the first part of the proposition
proves (4). �
Remark 7.4. This proof holds more generally for any symmetrizable Kac-Moody
algebra g and triple (λ, μ, β) satisfying (P1) and (P2) under the condition on β as
in Proposition 7.3.
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Next, we consider triples (λ, μ, β) where β is a real root with β − 2αi ∈ Φ+ for
some 0 ≤ i ≤ �. By Lemma 7.1, this i is unique. For technical reasons, we assume

that g �= G
(1)
2 ; this will be handled separately.

Proposition 7.5. Let g �= G
(1)
2 , and let (λ, μ, β) be a Wahl triple with β a real

root. Suppose αi is the unique simple root such that β − 2αi ∈ Φ+. In particular,
μ(β∨) ≥ 1 by the condition (P2). Then, V (λ+ μ− β) ⊂ V (λ)⊗ V (μ) assuming at
least one of the following:

(1) λ ∈ P+ is regular dominant, or
(2) Fβ = Fβ−αi

.

Proof. Again, let vμ ∈ V (μ) denote a nonzero highest weight vector, X−β ∈ g−β

a nonzero root vector, and define X−β+αi
:= [ei, X−β], X−β+2αi

:= [ei, X−β+αi
].

Since g �= G
(1)
2 , we have that |β(α∨

i )| ≤ 2, so that β − 3αi, β + αi �∈ Φ. Set

v := (X−β+αi
fi − 2μ(α∨

i )X−β) · vμ ∈ V (μ)μ−β.

Then, by a similar computation as in the proof of Proposition 7.3 (making use of
the condition (P2) since i /∈ Fβ), we have Xβ.v �= 0 for any 0 �= Xβ ∈ gβ, so that
v �= 0. (Since β + αi /∈ Φ, β(α∨

i ) ≥ 0.) Now, for any j �= i, we have

e2j .v = e2j(X−β+αi
fi.vμ)− 2μ(α∨

i )e
2
j(X−β.vμ)

= ((adej )
2(X−β+αi

)fi).vμ − 2μ(α∨
i )((adej )

2(X−β)).vμ

= 0

as (adej )
2(X−β+αi

) = 0 and (adej )
2(X−β) = 0 by Lemma 7.1. Further, we have

ei.v = X−β+2αi
fivμ + μ(α∨

i )X−β+αi
vμ − 2μ(α∨

i )X−β+αi
vμ

= X−β+2αi
fivμ − μ(α∨

i )X−β+αi
vμ,

=⇒ e2i .v = μ(α∨
i )X−β+2αi

vμ − μ(α∨
i )X−β+2αi

vμ

= 0.

Therefore e2j .v = 0 for all j.

If λ ∈ P+ is regular dominant, then λ(α∨
j ) + 1 ≥ 2 for all j. So, by Proposition

4.1 we get V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).
Else, for any j such that λ(α∨

j ) = 0, by condition (P2) we have j ∈ Fβ; note
that i �∈ Fβ . Thus, if Fβ = Fβ−αi

, we have

ej .v = [ej , X−β+αi
]fi · vμ − 2μ(α∨

i )[ej , X−β] · vμ = 0,

so, again by Proposition 4.1, we have V (λ+ μ− β) ⊂ V (λ)⊗ V (μ). �

To end this section, recall the set of indices Fβ for β ∈ Φ+ from Definition
7.2. The following dominant weights will play a crucial role for the remaining
constructions.

Definition 7.6. Given β ∈ Φ+
Re, define ρβ :=

∑
i 	∈Fβ

Λi.

By construction, the weight ρβ satisfies condition (P2) for the root β and is the
minimal dominant weight with ρβ(d) = 0 that can do so. Therefore, we can con-
clude Lemma 7.7 by the additivity property of the tensor decomposition Corollary
4.2.
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Lemma 7.7. If 2ρβ −β ∈ P+ is such that m
2ρβ−β
ρβ ,ρβ �= 0, then mλ+μ−β

λ,μ �= 0 for any

Wahl triple (λ, μ, β).
Further, it is easy to see that 2ρβ −β ∈ P+ for any g except possibly for G2-type

g̊.

8. Exceptional maximal components

In light of Corollaries 5.1, 6.3 and 6.5, all that remains to show to complete the
proof of Theorem I is the existence of root components V (λ+μ−β) ⊂ V (λ)⊗V (μ)

for β = −γ+δ, where γ ∈ Φ̊+. We can reduce further, by making use of Proposition
7.3 and Lemma 7.1, to the case that β− 2αi ∈ Φ+ for some unique i (in particular,
g̊ is not simply-laced). We can exclude the case i = 0, via the following easy lemma.

Lemma 8.1. Let (λ, μ, β) be a Wahl triple such that β = −γ+kδ for some γ ∈ Φ̊+

and k ≥ 1 and such that β − 2α0 ∈ Φ. Then, V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

Proof. Direct computation shows that

β − 2α0 = −γ + kδ − 2α0 = 2θ − γ + (k − 2)δ.

This is a root if and only if 2θ − γ ∈ Φ̊, so necessarily γ = θ. But then we have
β = α0 +(k− 1)δ. Thus, we can reduce to the δ-maximal component associated to
β = α0; the existence of V (λ+μ−α0) in V (λ)⊗V (μ) is clear by taking any linear
combination: c(f0 · vλ)⊗ vμ + dvλ ⊗ f0 · vμ, for c, d ∈ C. �

The remaining options for such β = −γ + δ (where γ ∈ Φ̊+), with i �= 0,

correspond to roots γ ∈ Φ̊+ such that γ + 2αi ∈ Φ̊+. We collect these possibilities,
organized by the type g, γ ∈ Φ̊+, and the associated unique simple root denoted
αi(γ), in Table 1.

Table 1. Exceptional components

g γ αi(γ)

B
(1)
�

∑
i≤k<� αk, 1 ≤ i < � α�

C
(1)
�

(
2
∑

i≤k<� αk

)
+ α�, 2 ≤ i ≤ � αi−1

F
(1)
4 α2 α3

F
(1)
4 α1 + α2 α3

F
(1)
4 α2 + 2α3 α4

F
(1)
4 α1 + α2 + 2α3 α4

F
(1)
4 α1 + 2α2 + 2α3 α4

F
(1)
4 α1 + 2α2 + 2α3 + 2α4 α3

G
(1)
2 α2 α1

G
(1)
2 α1 + α2 α1

We refer to these roots β and their associated root components as “exceptional,”
since root behavior of these does not appear in the semisimple setting and the meth-
ods to demonstrate their existence in the tensor decomposition do not uniformly
fit into the general approach of [Ku1]. Instead, we will primarily make use of the
PRV components to construct these final δ-maximal components. Throughout the
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remainder of this section, we deal with Wahl triples (λ, μ, β = δ − γ) for each
specified γ in Table 1. We first recall the following results:

Theorem 8.2 ([Ku2, Theorem 3.7], [M2, Corollaire 3] (PRV components)). Let g
be any symmetrizable Kac-Moody Lie algebra. For any λ, μ ∈ P+ and the Weyl
group elements v, w ∈ W such that η := vλ + wμ ∈ P+, we have V (η) ⊂ V (λ) ⊗
V (μ).

8.1. B
(1)
� . For γ =

∑
i≤k<� αk, 1 ≤ i < �, β = −γ + δ, we have α� as the unique

simple root such that β − 2α� ∈ Φ+. Setting [�] := {0, 1, 2, . . . , �}, we have:

Fβ =

{
[�]\{i− 1, �} i �= 2,

[�]\{0, 1, �} i = 2.

Comparing this to Fβ−α�
, we see that Fβ = Fβ−α�

in all the cases; thus we can
apply Proposition 7.5.

8.2. C
(1)
� . For any γ = γi = (2

∑
i≤k<� αk) + α� (2 ≤ i ≤ �) in Table 1, Fβi

=

[�] \ {i − 1}, where βi := δ − γi. In this case ρβi
(β∨

i ) = 1. Thus, Proposition 7.3
and Lemma 7.7 take care of this case.

8.3. F
(1)
4 .

• γ = α2: Here, β = −α2 + δ = α0 + 2α1 + 2α2 + 4α3 + 2α4, Fβ = {0, 2, 4},
and we can take λ = μ = ρβ = Λ1 + Λ3. We use the following variant of
the construction from [Ku1]: define v ∈ V (ρβ)ρβ−β by

v := (X−β+α3
f3 − 2X−β −X−β+α3+α4

[f3, f4]) vΛ1+Λ3
.

Then, one can check directly as previously that Xβ.v �= 0, so that v �= 0,
and that e0.v = e2.v = e4.v = e21.v = e23.v = 0, as required to apply
Proposition 4.1.

• γ = α1+α2: We have β = −γ+δ = α0+α1+2α2+4α3+2α4, Fβ = {1, 2, 4},
and we can take λ = μ = ρβ = Λ0 +Λ3. Set w = s3s2s4s3s2s4s3, v = s1s0.
Then,

vρβ = ρβ − α0 − α1, wρβ = ρβ − 2α2 − 4α3 − 2α4.

Thus, we have V (wρβ + vρβ) = V (2ρβ − β) ⊂ V (ρβ) ⊗ V (ρβ) as a PRV
component.

• γ = α2+2α3: In this case, we have β = −γ+δ = α0+2α1+2α2+2α3+2α4,
and α4 is the unique simple root such that β − 2α4 ∈ Φ+. Then, Fβ =
{0, 2, 3} = Fβ−α4

and we can apply Proposition 7.5.
• γ = α1 +α2 +2α3: We have β = −γ + δ = α0 +α1 +2α2 +2α3 +2α4, and
α4 is the unique simple root such that β − 2α4 ∈ Φ+. As in the previous
case, we compute Fβ = {1, 3} = Fβ−α4

, so that we can apply Proposition
7.5.

• γ = α1 + 2α2 + 2α3: For this case, we get β = −γ + δ = α0 + α1 + α2 +
2α3 + 2α4. Set w = s4s3s1s2s3s4, v = s0, and use λ = μ = ρβ = Λ0 + Λ4.
Then,

vρβ = Λ0 + Λ4 − α0, wρβ = ρβ − α1 − α2 − 2α3 − 2α4,

so that we get V (wρβ + vρβ) = V (2ρβ − β) ⊂ V (ρβ) ⊗ V (ρβ) as a PRV
component.
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• γ = α1 + 2α2 + 2α3 + 2α4: In this final case, we have β = −γ + δ =
α0+α1+α2+2α3, and α3 is the unique simple root such that β−2α3 ∈ Φ+.
Then, we see that Fβ = {1, 2, 4} = Fβ−α3

, so we can apply Proposition 7.5.

8.4. G
(1)
2 .

• γ = α2: We have β = −α2 + δ = α0 + 3α1 + α2. Then, the minimal
dominant λ, μ ∈ P+ satisfying the necessary conditions (P1) and (P2) are
λ = Λ0 + Λ1, μ = Λ0 + 2Λ1. Setting w = s1s2s1, v = s0, we have

vμ = Λ0 + 2Λ1 − α0, wλ = s1s2s1(Λ0 + Λ1) = λ− 3α1 − α2,

so that we have V (wλ + vμ) = V (λ + μ − β) ⊂ V (λ) ⊗ V (μ) as a PRV
component.

• γ = α1+α2: We have β = −α1−α2+ δ = α0+2α1+α2, Fβ = {2}. Then,
we have ρβ = Λ0 +Λ1, and 2ρβ − β ∈ P+. Setting w = s2s1 and v = s0s1,
we have wρβ = Λ0+Λ1 −α1−α2 and vρβ = Λ0+Λ1 −α0 −α1, so that we
have V (wρβ + vρβ) = V (2ρβ − β) ⊂ V (ρβ)⊗ V (ρβ) as a PRV component.

9. Main theorem on root components

Combining Corollaries 5.1, 6.3 and 6.5, Lemma 7.7 and Proposition 7.3 and the
results from Section 8, we get the following main result of our paper (cited as
Theorem I in Section 1):

Recall that by a Wahl triple we mean a triple (λ, μ, β) ∈ (P+)2 ×Φ+ such that

(P1) λ+ μ− β ∈ P+, and
(P2) If λ(α∨

i ) = 0 or μ(α∨
i ) = 0, then β − αi �∈ Φ � {0}.

Theorem 9.1. For any affine Lie algebra g and Wahl triple (λ, μ, β) ∈ (P+)2×Φ+,

V (λ+ μ− β) ⊂ V (λ)⊗ V (μ).

10. Study of the cohomology H∗(XP
w ,I 2

e ⊗ Lw(μ))

Let g be a symmetrizable Kac-Moody Lie algebra with its standard Borel sub-
algebra b and standard Cartan subalgebra h [Ku3, §1.1.2]. Let Φ ⊂ h∗ be the set
of roots and Φ+ (resp. Φ−) be the subset of positive (resp. negative) roots and let
Δ = {α1, . . . , α�} ⊂ Φ+ be the subset of simple roots with α∨

i the corresponding
simple coroots. Let P+ be the set of dominant integral weights. The integrable,
highest weight (irreducible) g-modules are parameterized by P+. For λ ∈ P+,
let V (λ) be the corresponding integrable, highest weight g-module. For any sub-
set S ⊂ {1, . . . , �}, let p = pS := b ⊕ (⊕α∈Φ+

S
g−α) be the corresponding standard

parabolic subalgebra, where gα is the root space corresponding to the root α and
Φ+

S := Φ+ ∩ (⊕k∈S Z≥0αk). Then,

u := ⊕α∈Φ+(S) gα

is the nil-radical of p, where Φ+(S) := Φ+ \Φ+
S . Let G,B,P = PS ,U ,H be the cor-

responding ‘maximal’ groups associated to the Lie algebras g, b, p, u, h respectively
(cf. [Ku3, Section 6.1]). Let W be the Weyl group of g and let W ′

P be the set of
smallest length coset representatives in W/WP , where WP is the subgroup of W
generated by the simple reflections {sk}k∈S .

For any finite dimensional pro-algebraic P-module M , by L (M) we mean the
corresponding homogeneous vector bundle (locally free sheaf) on XP := G/P as-
sociated to the principal P-bundle: G → G/P by the representation M of P (cf.
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[Ku3, Corollary 8.2.5]). For any integral weight λ ∈ h∗, such that λ(α∨
k ) = 0 for

all k ∈ S, the one dimensional H-module Cλ (given by the character λ) admits a
unique P-module structure (extending the H-module structure); in particular, we
have the line bundle L (Cλ) on XP . We abbreviate the line bundle L (C−λ) by

L (λ) and its restriction to the Schubert variety XP
w := BwP/P by Lw(λ) (for any

w ∈ W ′
P). Given two line bundles L (λ) and L (μ), we can form their external

tensor product to get the line bundle L (λ� μ) on XP ×XP .
A dominant integral weight μ is called S-regular if μ(α∨

k ) = 0 if and only if

k ∈ S. The set of such weights is denoted by P+
S

o
. With this definition, we have

the following:

Proposition 10.1. For any μ ∈ P+
S

o
and w ∈ W ′

P such that XP
w is P-stable

under the left multiplication (i.e., w−1αk ∈ Φ+
S � Φ− for all the simple roots αk

with k ∈ S),

(a) Hp(XP
w ,Ie ⊗ Lw(μ)) = 0, for all p > 0,

(b) Hp(XP
w ,I 2

e ⊗ Lw(μ)) = 0, for all p > 0 , and
(c) H0(XP

w ,I 2
e ⊗ Lw(μ)) (resp. H0(XP

w , (Ow/I 2
e ) ⊗ Lw(μ)) is canonically

isomorphic (as P-modules) with
(
Vw(μ)/(T̂e(X

P
w ) · vμ)

)∗
(resp. (T̂e(X

P
w ) ·

vμ)
∗), where Ie denotes the ideal sheaf of the base point e = P/P ⊂ XP

w ,Ow

denotes the structure sheaf of XP
w , vμ �= 0 ∈ [V (μ)]μ , Vw(μ) ⊂ V (μ) is

the Demazure module (which is the b-submodule of V (μ) generated by the

extremal weight vector vwμ) and T̂e(X
P
w ) · vμ := Cvμ ⊕ Te(X

P
w ) · vμ (here

Te(X
P
w ) is the Zariski tangent space of XP

w at e).

(Observe that, since μ(α∨
k ) = 0 for k ∈ S, T̂e(X

P
w ) · vμ ⊂ V (μ) is stable under P,

and also the point e being P-fixed, H0(XP
w ,I k

e ⊗Lw(μ)) and H0(XP
w , (Ow/I k

e )⊗
Lw(μ)) have canonical P-module structures for any k ≥ 1.)

Proof. (a) Consider the sheaf exact sequence:

(5) 0 → Ie ⊗ Lw(μ) → Lw(μ) → (Ow/Ie)⊗ Lw(μ) → 0.

Clearly, Hp(XP
w , (Ow/Ie) ⊗ Lw(μ)) = Hp(e,L (μ)|e) = 0, for all p > 0.

Also, Hp(XP
w ,Lw(μ))=0, for p>0, and the restriction map: H0(XP

w ,Lw(μ))
→ H0(e,Lw(μ)|e) is surjective (cf. [Ku3, Theorem 8.2.2]). So, the long
exact cohomology sequence associated to the sheaf sequence (5) gives (a).

(b) Similarly, consider the sheaf exact sequence:

(6) 0 → I 2
e ⊗ Lw(μ) → Lw(μ) → (Ow/I

2
e )⊗ Lw(μ) → 0.

We write a part of the corresponding cohomology exact sequence:

0 → H0(XP
w ,I 2

e ⊗ Lw(μ)) →H0(XP
w ,Lw(μ))

π→ H0(XP
w , (Ow/I

2
e )⊗ Lw(μ))

→ H1(XP
w ,I 2

e ⊗ Lw(μ)) → 0.(7)

The sheaf exact sequence:

(8) 0 → (Ie/I
2
e )⊗ Lw(μ) → (Ow/I

2
e )⊗ Lw(μ) → (Ow/Ie)⊗ Lw(μ) → 0

gives:

(9) 0 → Te(X
P
w )∗ ⊗ C

∗
μ → H0(XP

w , (Ow/I
2
e )⊗ Lw(μ)) → C

∗
μ → 0.
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Now, we assert that the map π is surjective: To prove this, observe first
that the map

θ : u− → V (μ), X 
→ X · vμ
is injective, where u− is the opposite nil-radical of p: For any root β ∈
Φ+(S), pick root vectors Xβ ∈ gβ and Yβ ∈ g−β. Then,

XβYβ · vμ = (Xβ|Yβ)(μ|β)vμ, by [Ku3, Theorem 1.5.4].

From the nondegeneracy of (·|·) over g and the weight consideration, we get

the injectivity of θ. (Here we have used the assumption that μ ∈ P+
S

o
.)

Since π is a p and hence h-module map, from the exact sequence (9) and
the following identification with the dual Demazure module:

H0(XP
w ,Lw(μ)) 	 Vw(μ)

∗ (cf. [Ku3, Corollary 8.1.26]),

to prove the surjectivity of π, it suffices to show that θw : Te(X
P
w ) →

Vw(μ), X 
→ X ·vμ, is injective, where we identify Te(X
P
w ) ↪→ Te(XP) 	 u−.

But the injectivity of θw clearly follows from the injectivity of θ.
So, the exact sequence (7) (and the surjectivity of π) establishes the

vanishing of H1(XP
w ,I 2

e ⊗ Lw(μ)). Vanishing of Hp(XP
w ,I 2

e ⊗ Lw(μ)),
for p > 1, follows by considering the cohomology exact sequence associated
to the sheaf exact sequence:

(10) 0 → I 2
e ⊗ Lw(μ) → Ie ⊗ Lw(μ) → (Ie/I

2
e )⊗ Lw(μ) → 0,

and the (a)-part of the proposition. So, (b) follows.
(c) It is easy to see, from the description of the map π, that

(11) Kerπ = {f ∈ Vw(μ)
∗ : f|(T̂e(XP

w )·vμ) = 0} 	
(
Vw(μ)/(T̂e(X

P
w ) · vμ)

)∗
.

So, using the exact sequences (7) and (9), (c) follows.
�

From Proposition 10.1 together with [Ku3, Theorem 8.2.2] we immediately get:

Corollary 10.2. Under the assumptions of Proposition 10.1, Hp(XP
w , (Ow/I k

e )⊗
Lw(μ)) = 0, for all p > 0 and k = 1, 2.

11. Surjectivity of the Gaussian map

We continue to follow the notation and assumptions from Section 10. For any
w ∈ W ′

P such that the Schubert variety XP
w is P-stable, set

X̂P
w := G ×P XP

w .

Consider the isomorphism:

δ : G ×P XP 	 XP ×XP , [g, x] 
→ (gP, gx), for g ∈ G and x ∈ XP .

We have an embedding

X̂P
w ↪→ G ×P XP .

In particular, we can restrict the line bundle L (λ� μ) via the above isomorphism

δ to X̂P
w to get the line bundle denoted Lw(λ� μ).
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Lemma 11.1. For λ, μ ∈ P+
S

o
, k = 1, 2, w ∈ W ′

P as above, and any p ≥ 0, there
are canonical isomorphisms:

Hp(X̂P
w , Î k

e ⊗ Lw(λ� μ)) 	 Hp(XP ,L (λ)⊗ L (H0(XP
w ,I k

e ⊗ Lw(μ)))),

and

Hp(X̂P
w , (Ôw/Î

k
e )⊗Lw(λ�μ)) 	 Hp(XP ,L (λ)⊗L (H0(XP

w , (Ow/I
k
e )⊗Lw(μ)))),

where Îe denotes the ideal sheaf of X̂P
e in X̂P

w and Ôw is the structure sheaf of X̂P
w .

Further,

(12) Hp(X̂P
w , Îe ⊗ Lw(λ� μ)) = 0, for all p > 0.

(We will see later that Hp(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0, for all p > 0.)

Proof. Consider the fibration

σ : X̂P
w → XP , [g, x] 
→ gP

and the associated Leray spectral sequence. Then, it is easy to see that Rpσ∗(Î
k
e ⊗

Lw(λ � μ)) is canonically isomorphic with L (λ)⊗ L (Hp(XP
w ,I k

e ⊗ Lw(μ))) for

any p ≥ 0. (A similar statement is true for Î k
e replaced by Ôw/Î k

e .) In particular,
by Proposition 10.1, Corollary 10.2 and the (degenerate) Leray spectral sequence,
first part of the lemma follows.

To prove the vanishing (12), use the cohomology exact sequence associated to
the sheaf exact sequence:

0 → Îe ⊗ Lw(λ� μ) → Lw(λ� μ) → (Ôw/Îe)⊗ Lw(λ� μ) → 0,

and [Ku2, Theorem 2.7] (also see [M2, Lemmas 21, 22]). �

Lemma 11.2 is used in proving our crucial Proposition 11.4.

Lemma 11.2. Let g be an affine Kac-Moody Lie algebra (cf. Section 2). Take

λ, μ ∈ P+
S

o
and θ ∈ P+. Then, if Homp (V (θ)∨,C∗

λ ⊗ (g · vμ)∨) is nonzero, then
θ = λ+ μ− β, for some β ∈ Φ+(S) ∪ {0}.

If β is zero, then the above space is one dimensional.
If such a β is a real root, then the above space is nonzero if and only if S ⊂ Fβ

(cf. Definition 7.2), in which case it is one dimensional.
If β is an imaginary root, then this space is of dimension (dim gβ)− |S|.

Proof. It is easy to see that, as a p-module,

g · vμ 	 (g/Ann vμ)⊗ Cμ,

where Ann vμ is the annihilator of vμ in g and the right side is given the tensor
product p-module structure. Hence, using the nondegenerate invariant form (.|.)
on g, we get:

(13) (g · vμ)∨ 	 (u⊕ (Kerμ)⊥)⊗ C
∗
μ ,

where Kerμ := {h ∈ h : μ(h) = 0}, (Kerμ)⊥ := {h ∈ h : (h|Kerμ) = 0} and
u ⊕ (Kerμ)⊥ is a p-module under the adjoint representation. By the presentation
of V (θ)∨ as a U(b)-module as in the proof of Proposition 4.1, we get:

Homb (V (θ)∨,C∗
λ ⊗ (g · vμ)∨) 	 Homb

(
V (θ)∨,C∗

(λ+μ) ⊗ (u⊕ (Kerμ)⊥)
)
, by (13)

	 {v ∈ [u⊕ (Kerμ)⊥]λ+μ−θ : (ad ei)
θ(α∨

i )+1v = 0}, for all the simple roots αi,
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where ei is a root vector corresponding to the simple root αi. It is easy to see, from
the above description, that

Homp (V (θ)∨,C∗
λ ⊗ (g · vμ)∨) 	 {v ∈ [u⊕ (Kerμ)⊥]λ+μ−θ : (ad ei)

θ(α∨
i )+1v = 0,

(14)

for all the simple roots αi and (ad fk)v = 0 for all k ∈ S},
where fk is a root vector corresponding to the negative simple root −αk. Clearly,
the following conditions (1) and (2) are both satisfied if the right side of (14) is
nonzero:

(1) λ+ μ− θ = β, for some β ∈ Φ+(S) ∪ {0}, and
(2) If β �= 0 is real, Fβ ⊃ S.

To prove (2), observe that if [fk, gβ] = 0 then β−αk is not a root of g. Conversely,
for any dominant θ which satisfies the conditions (1) and (2) as above, the right
side of (14) (and hence Homp (V (θ)∨,C∗

λ ⊗ (g · vμ)∨) is one dimensional if either
β = 0 or β is a real root:

If β = 0, (ad ei)
θ(α∨

i )+1((Kerμ)⊥) = 0 for all i /∈ S, since λ, μ ∈ P+
S

o
. Moreover,

ad ek((Kerμ)⊥) = ad fk((Kerμ)⊥) = 0 for all k ∈ S (since μ(α∨
k ) = 0).

So, assume now that β ∈ Φ+(S) is a real root and pick 0 �= Xβ ∈ gβ. By the
above condition (2), (ad fk)Xβ = 0, for k ∈ S. So, by the sl(2)-module theory,

β(α∨
k ) ≤ 0 and (ad ek)

1−β(α∨
k )Xβ = 0. In particular, (ad ek)

1+θ(α∨
k )Xβ = 0. For

i /∈ S, we again claim that (ad ei)
θ(α∨

i )+1Xβ = 0, since β+(θ(α∨
i )+1)αi /∈ Φ+: We

have

(β + (θ(α∨
i ) + 1)αi)(α

∨
i ) = (λ+ μ+ θ)(α∨

i ) + 2 ≥ 4 ,

since λ, μ ∈ P+
S

o
and θ ∈ P+. But, this contradicts [Bou81, Page 278, Fact 6].

(Here we used the assumption on g being an affine Kac-Moody Lie algebra.) This
completes the proof of the lemma in the case β is either zero or a real root.

Assume now that β = λ + μ − θ is an imaginary root pδ, p > 0. For any h ∈ h

take v(h) = h⊗ tp ∈ gpδ. Then, for any k ∈ S,

(ad ek)v(h) = (ad fk)v(h) = 0 if and only if αk(h) = 0,

where α0 is interpreted as the negative of the highest root. Moreover, for i /∈ S,

(15) (ad ei)
(λ+μ−pδ)(α∨

i )+1v(h) = 0, since λ, μ ∈ P+
S

o
and pδ(α∨

i ) = 0.

Thus, by equation (14), for θ = λ+ μ− pδ,

(16) Homp (V (θ)∨,C∗
λ ⊗ (g · vμ)∨) 	 {h⊗ tp : αk(h) = 0 ∀k ∈ S}.

In particular, it has dimension dim gpδ − |S|. �

Lemma 11.3. Let the notation and assumptions be as in Lemma 11.2 and let M
be a p-module quotient π : R � M , where R := C∗

λ ⊗ (g · vμ)∨. Then, for any
θ ∈ P+, the canonical map

(17) π̂M : Homp (V (θ)∨, R) → Homp (V (θ)∨,M)

is surjective.

Proof. By the proof of Lemma 11.2, both the sides of (17) are zero unless θ =
λ+ μ− β, for some β ∈ Φ+(S) ∪ {0}. We identify Homp (V (θ)∨, R) with the right
side of (14) and a similar identification for Homp (V (θ)∨,M). To prove the lemma,
we consider the three cases separately:
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Case I (β = 0). In this case Homp (V (θ)∨, R) 	 (Kerμ)⊥ (cf. Proof of Lemma
11.2) and thus the lemma follows easily in this case.

Case II (β is a real root). In this case, following the proof of Lemma 11.2,

Homp (V (θ)∨, R) 	 gβ , if Fβ ⊃ S

= 0, otherwise.

Identifying R with u ⊕ (Kerμ)⊥ via equation (13), it suffices to prove that if 0 �=
π(gβ) ⊂ Homp (V (θ)∨,M), then Fβ ⊃ S. Since 0 �= π(gβ) ⊂ Homp (V (θ)∨,M),
we get that, for all k ∈ S, [fk, π(gβ)] = 0, which implies β(α∨

k ) ≤ 0. Assume, if
possible, that Fβ �⊃ S, i.e., for some k ∈ S, β − αk ∈ Φ+ (it cannot be zero since
β ∈ Φ+(S)). Then, [ek, gβ−αk

] is nonzero and hence, gβ being one dimensional,
[ek, gβ−αk

] = gβ giving rise to [ek, π(gβ−αk
)] �= 0. From this, by the sl2-module

theory, we easily see that [fk, π(gβ)] �= 0. A contradiction (to equation (14)) since
π(gβ) ⊂ Homp (V (θ)∨,M). Thus, Fβ ⊃ S. From this the lemma follows in this
case.

Case III (β is an imaginary root pδ for p > 0). Take h ⊗ tp (for h ∈ h) such that
π(h⊗ tp) ⊂ Homp (V (θ)∨,M). Define the subset S′ ⊂ S by

S′ := {k ∈ S : π(α∨
k ⊗ tp) = 0},

where we set α∨
0 = −θ∨ for the highest root θ of g̊. Consider the decomposition

(18) h̊ = (⊕k∈S′ Cα∨
k )⊕ h̊(S′),

where h̊(S′) := {x ∈ h̊ : αk(x) = 0 ∀k ∈ S′}. Let h′ be the projection of h in

the h̊(S′)-factor (under the above decomposition). Then, from the definition of
S′, we see that π(h ⊗ tp) = π(h′ ⊗ tp). Moreover, it is easy to see that h′ ⊗ tp ∈
Homp (V (θ)∨, R), i.e.,

(ad ek)(h
′ ⊗ tp) = (ad fk)(h

′ ⊗ tp) = 0, for all k ∈ S

(cf. equation (15)). (To show that αk(h
′) = 0 for k ∈ S \ S′, use the nonvanishing

π(α∨
k ⊗ tp) �= 0 and ek · π(h′ ⊗ tp) = 0.)

�

We prove the following crucial result towards the proof of Theorem 11.7. We
follow the notation as in Lemma 11.1.

Proposition 11.4. Let g be an affine Kac-Moody Lie algebra (cf. Section 2).

Then, for any λ, μ ∈ P+
S

o
(where S is an arbitrary subset of the simple roots of

g̊) and any w ∈ W ′
P such that the Schubert variety XP

w is P-stable, consider the
following two conditions:

(a) H1(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0.
(b) For all the real roots β ∈ Φ+(S), satisfying Fβ ⊃ S and λ + μ − β ∈ P+

(in particular, (λ, μ, β) is a Wahl triple), there exists an

fβ ∈ Homb (Cλ+μ−β ⊗ V (λ)∨, V (μ))

such that

(19) Xβ(fβ(Cλ+μ−β ⊗ v∗λ)) �= 0, for Xβ �= 0 ∈ gβ , where v∗λ �= 0 ∈ [V (λ)∨]−λ.

Then, the condition (b) implies the condition (a).
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Proof. Consider the sheaf exact sequence over X̂P
w :

(20) 0 → Î 2
e ⊗ Lw(λ� μ) → Lw(λ� μ) → (Ôw/Î

2
e )⊗ Lw(λ� μ) → 0.

From the cohomology exact sequence associated to the above sheaf exact se-
quence and the vanishing of H1(X̂P

w ,Lw(λ� μ)) (cf. [Ku2, Theorem 2.7]), we get
that (a) is equivalent to the surjectivity of the canonical map

τw : H0(X̂P
w ,Lw(λ� μ)) → H0(X̂P

w , (Ôw/Î
2
e )⊗ Lw(λ� μ)).

By Lemma 11.1 and Proposition 10.1 we get:

H0(X̂P
w , (Ôw/Î

2
e )⊗ Lw(λ� μ)) 	 H0(XP ,L (λ)⊗ L ((T̂e(X

P
w ) · vμ)∗)).

Further, by [Ku3, Theorem 8.2.2]

H0(X̂P
w ,Lw(λ� μ)) 	 H0(XP ,L (λ)⊗ L (Vw(μ)

∗)).

Transporting the map τw under these identifications, we get the map

τ̃w : H0(XP ,L (λ)⊗ L (Vw(μ)
∗)) → H0(XP ,L (λ)⊗ L ((T̂e(X

P
w ) · vμ)∗)),

which is induced from the canonical restriction: L (Vw(μ)
∗) → L ((T̂e(X

P
w ) · vμ)∗).

By [M1, Proposition 12], for any finite dimensional pro-algebraic P-module M ,
we have a canonical G-module isomorphism:

H0(XP ,L (M)) 	 ⊕θ∈P+ V (θ)∗ ⊗ [V (θ)⊗M ]p,

where G acts trivially on [V (θ)⊗M ]p. So, the surjectivity of the map τ̃w (and hence
of τw) is equivalent to the surjectivity of the canonical restriction maps

γw
θ : Homp (V (θ)∨,C∗

λ ⊗ Vw(μ)
∗) → Homp

(
V (θ)∨,C∗

λ ⊗ (T̂e(X
P
w ) · vμ)∗

)
for all θ ∈ P+.

For θ = λ + μ, the map γw
θ is clearly nonzero and hence surjective by Lemmas

11.2 and 11.3.
Making use of Lemmas 11.2 and 11.3 again, we can assume (for the surjectivity

of γw
θ ) that θ is of the form θ = λ + μ − β for β ∈ Φ+(S) and if β is a real root,

then Fβ ⊃ S.
We first analyze the surjectivity of

γθ : Homp (V (θ)∨,C∗
λ ⊗ V (μ)∨) → Homp (V (θ)∨,C∗

λ ⊗ (g · vμ)∨) .
Choose a positive definite Hermitian form {·|·} on V (λ) (and V (μ)) satisfying

{Xv|w} = {v|σ(X)w}, for v, w ∈ V (λ) and X ∈ g,

where σ is a conjugate-linear involution of g which takes gα to g−α for any root α
(cf. [Ku3, Theorem 2.3.13]). Now, set the tensor product form (again denoted by)
{·|·} on V (λ)⊗ V (μ).

Consider the following diagram (for θ = λ+ μ− β):

Homg(V (θ), V (λ)⊗ V (μ))

� γ1

��

�
γ2 �� Homg(V (λ)⊗ V (μ), V (θ)) �

γ3 �� Homp(Cλ ⊗ V (μ), V (θ))

γ̂θ

��
Homb(Cθ ⊗ V (λ)∨, V (μ)) Homp(Cλ ⊗ (g · vμ), V (θ)) ,

where γ1 and γ3 are the canonical restriction maps, which are isomorphisms (as can
be easily seen respectively from the isomorphism (3) and [Ku3, Identity 3.1.13.9]).
We now describe the map γ2: For any nonzero f ∈ Homg(V (θ), V (λ)⊗V (μ)), write
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V (λ) ⊗ V (μ) = Image f ⊕ (Image f)⊥ and set γ2(f) as the projection on the first
factor (identifying it with V (θ) under f). It is easy to see that γ2 is a bijection
(though nonlinear). Further, γ̂θ is the canonical restriction map.

We identify

Homp (Cλ ⊗ V (μ), V (θ)) 	 Homp (V (θ)∨,C∗
λ ⊗ V (μ)∨)

and

Homp (Cλ ⊗ (g · vμ), V (θ)) 	 Homp (V (θ)∨,C∗
λ ⊗ (g · vμ)∨) .

We first take θ = λ + μ − β for a real root β ∈ Φ+(S) such that S ⊂ Fβ. Follow-
ing through the various isomorphisms in the above diagram, it can be seen that
(denoting n+ = [b, b] and n− is the opposite subalgebra to n)

γ̂θ is nonzero (and hence surjective since the range has dimension 1)

⇔ there exists a b-morphism f = fβ : Cθ ⊗ V (λ)∨ → V (μ)

such that {(γ−1
1 f)V (θ)|Cλ ⊗ (g · vμ)} �= 0

⇔ {U(n−)((γ−1
1 f)Cθ)|Cλ ⊗ (g · vμ)} �= 0

⇔ {(γ−1
1 f)Cθ|Cλ ⊗ (g · vμ)} �= 0 by the invariance of

{·|·}; since Cλ ⊗ (g · vμ) is U(n)-stable

⇔ {f(Cθ ⊗ v∗λ)|g · vμ} �= 0

⇔ {f(Cθ ⊗ v∗λ)|X−β · vμ} �= 0, for 0 �= X−β ∈ g−β

⇔ {Xβ(f(Cθ ⊗ v∗λ))|vμ} �= 0, by the invariance of {·|·}
⇔ Xβ(f(Cθ ⊗ v∗λ)) �= 0.

For β = 0, γ̂θ is clearly surjective.
So, let us now take β to be an imaginary root pδ, for p > 0:
Recall from the isomorphism (16) that, under the identification (13),

Homp (V (θ)∨,C∗
λ ⊗ (g · vμ)∨) 	 {h⊗ tp : h ∈ h andαk(h) = 0 ∀k ∈ S}.

We next show that, under the restriction map

V (μ)∨ → (g · vμ)∨ 	 (u⊕ (Kerμ)⊥)⊗ C
∗
μ,

for any h ∈ h, the element xh := (− h⊗tp

pμ(K) ) · v∗μ goes to

(21) xh 
→ (h⊗ tp)⊗ v∗μ .

To see this, take any h′ ∈ h. Then,

xh((h
′ ⊗ t−p) · vμ) = v∗μ

([
h⊗ tp

pμ(K)
, h′ ⊗ t−p

]
· vμ

)
= (h|h′).

Similarly, (
(h⊗ tp)⊗ v∗μ

)
((h′ ⊗ t−p) · vμ) = (h⊗ tp|h′ ⊗ t−p)

= (h|h′).

This proves (21). Now, for any h ∈ h such that αk(h) = 0 for all k ∈ S, the element
xh satisfies

(22) e
θ(α∨

i )+1
i · xh = 0 ∀i, and fk · xh = 0 ∀k ∈ S.
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To prove this, observe that (in V (μ)∨)

e
θ(α∨

i )+1
i · (h⊗ tp) · v∗μ =

θ(α∨
i )+1∑

j=0

(
θ(α∨

i ) + 1
j

)(
(ad ei)

j(h⊗ tp)
)
· (eθ(α

∨
i )+1−j

i · v∗μ),

cf. the proof of [Ku3, Lemma 1.3.3]

= 0, since (ad ei)
2(h⊗ tp) = 0 and e

μ(α∨
i )+1

i · v∗μ = 0,

by the presentation of V (μ)∨ as a b-module given in the proof of Proposition 4.1.
Further, for k ∈ S,

fk · (h⊗ tp) · v∗μ = [fk, h⊗ tp] · v∗μ
= 0, since αk(h) = 0 by assumption.

Thus, v∗θ 
→ xh extends uniquely to a p-module morphism V (θ)∨ → C
∗
λ ⊗ V (μ)∨.

This proves the surjectivity of the restriction map

γθ : Homp (V (θ)∨,C∗
λ ⊗ V (μ)∨) → Homp (V (θ)∨,C∗

λ ⊗ (g · vμ)∨)

for θ = λ+ μ− pδ.
Consider the commutative diagram for any θ ∈ P+ of the form θ = λ+ μ− β,

for β ∈ Φ+(S) ∪ {0} and w ∈ W ′
P such that XP

w is P-stable:

Homp (V (θ)∨,C∗
λ ⊗ V (μ)∨)

��

γθ �� Homp (V (θ)∨,C∗
λ ⊗ (g · vμ)∨)

π̂M

��

Homp (V (θ)∨,C∗
λ ⊗ Vw(μ)

∗)
γw
θ

�� Homp

(
V (θ)∨,C∗

λ ⊗ (T̂e(X
P
w ) · vμ)∗

)
,

where the vertical maps are the canonical restriction maps and M := C∗
λ⊗(T̂e(X

P
w )·

vμ)
∗. By Lemma 11.3, π̂M is surjective. Further, by the above proof, γθ is surjective

for all θ = λ + μ − β such that β = 0 or an imaginary root. Moreover, as proved
above, for a real root β ∈ Φ+(S) with Fβ ⊃ S, γθ is surjective if and only if there
exists a b-morphism fβ : Cθ ⊗ V (λ)∨ → V (μ) such that Xβ(fβ(Cθ ⊗ v∗λ)) �= 0.

By Lemma 11.2, for any real root β ∈ Φ+(S) satisfying Fβ �⊃ S, we have
Homp (V (θ)∨,C∗

λ ⊗ (g · vμ)∨) = 0. In particular, γw
θ is surjective for β = 0 or

an imaginary root or a real root β ∈ Φ+(S) such that Fβ �⊃ S and it is surjective
for a real root β ∈ Φ+(S) with Fβ ⊃ S if the condition (b) of the proposition is
satisfied for β. Thus, τ̃w (equivalently τw) is surjective if the condition (b) of the
proposition is satisfied. This proves the proposition. �

Lemma 11.5. Let (λ, μ, β) be a Wahl triple for a real root β and let V (λ+μ−β) ⊂
V (λ) ⊗ V (μ) be a δ-maximal root component. Observe that β ∈ Φ̊+ or β = δ − γ

for γ ∈ Φ̊+ (cf. Theorem 9.1). Then,

(1) If β ∈ Φ̊+, the validity of condition (b) of Proposition 11.4 for V (λ+μ−β)
(i.e., the validity of (19)) implies its validity for V (λ+μ−β− kδ) for any
k ≥ 0.
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(2) If β = δ − γ for γ ∈ Φ̊+, then we have (with notation as introduced below
in the proof , see the identity (32))

(l +m+ h∨)X−γ(k + 1) · v∗λ(L−kw) = l(k + 1)X−γ(1) · wμ−β

− (λ|̊h, γ|̊h)X−γ(1)·wμ−β+
∑

βi∈Φ̊+:

βi+γ∈Φ̊+

[X−γ(1), X−βi
]Xβi

·wμ−β +A,

where A :=

⎛⎜⎜⎜⎝ ∑
βi∈Φ̊+:

βi−γ∈Φ̊+

[X−γ Xβi
]X−βi

(1) · wμ−β

⎞⎟⎟⎟⎠
+ ((k + 1)m− (μ|γ))X−γ(1) · wμ−β.

Proof. Let w ∈ V (λ+ μ − β) ⊂ V (λ)⊗ V (μ) be the highest weight vector. Then,
L−k(w) is a highest weight vector in V (λ)⊗ V (μ) with weight λ+ μ− β − kδ (cf.
Proposition 3.5(3) and Lemma 3.8). As before, let l, m be the central charges of
V (λ) and V (μ), respectively, and h∨ the dual Coxeter number of g. Write

w = vλ ⊗ wμ−β +
∑

q∈Q+\{0}
v♣λ−q ⊗ w♣

μ−β+q,

where v♣λ−q is a basis of weight vectors of V (λ) of weight λ−q, w♣
μ−β+q ∈ V (μ)μ−β+q

(possibly zero), and Q+ :=
⊕�

j=0 Z≥0αj . Observe that v♣λ−q occurs as many times

(possibly zero) as the dimension of the weight space V (λ)λ−q.
Denote by v∗λ : V (λ) ⊗ V (μ) → V (μ) the contraction via the highest weight

vector vλ. Then, by the proof of Proposition 4.1, we have that v∗λ(w), for w the

highest weight vector as above, satisfies the conditions e
λ(α∨

i )+1
i · (v∗λ(w)) = 0 for

all simple roots αi.
By [KRR, Proposition 10.3], for any k > 0, the GKO operator (cf. Proposition

3.5):

(l+m+h∨)L−k(w)=m(Lg

−k⊗Id)(w)+lvλ⊗(Lg

−kwμ−β)+l
∑
q 	=0

v♣λ−q⊗(Lg

−kw
♣
μ−β+q)

−
∑
j∈Z,i

(ui(−j)·vλ)⊗(ui(j−k)·wμ−β)−
∑
j∈Z, i

∑
0	=q≤β

(ui(−j)·v♣λ−q)⊗(ui(j−k)·w♣
μ−β+q),

where {ui} is a basis of g̊, {ui} is its dual basis, and Lg

−k is the Virasoro operator

of g (cf. [KRR, Corollary 10.1]). Now, take a root basis {Xβi
} of n̊+ := ⊕α∈Φ̊+ g̊α

and the dual basis {X−βi
} of n̊− := ⊕α∈Φ̊+ g̊−α, and a basis {hj} of h̊ and its

dual basis {hj}, with respect to the normalized form. That is, (Xβi
, X−βj

) = δij ,

(hi, h
j) = δij . Then, we have for β ∈ Φ̊+,

(l +m+ h∨)v∗λ(L−k(w)) = l Lg

−k(wμ−β)−
∑
i

v∗λ(ui · vλ)(ui(−k) · wμ−β)

−
∑

i,0	=q≤β

v∗λ(ui · v♣λ−q)(u
i(−k) · w♣

μ−β+q)(23)



ROOT COMPONENTS FOR TENSOR PRODUCT 851

For β = δ − γ with γ ∈ Φ̊+, the above equation holds if we augment the right side
with

−
∑

βi∈Φ̊+:
γ≤βi

v∗λ(X−βi
(1) · v♣λ−δ+βi

)(Xβi
(−k − 1) · w♣

μ+γ−βi
).

Now, we consider the two cases separately. First, assume β ∈ Φ̊+. Then, for
Xβ(k) := Xβ ⊗ tk, we have by equation (23):

(l +m+ h∨)Xβ(k) · v∗λ(L−k(w)) = lkXβ · wμ−β +
∑
j

λ(hj)β(h
j)Xβ · wμ−β

−
∑

βi∈Φ̊+:

β−βi∈Φ̊+

v∗λ(Xβi
· v♣λ−βi

)[Xβ, X−βi
] · w♣

μ−β+βi
− v∗λ(Xβ · v♣λ−β)((μ, β) + km)w♣

μ ,

by [KRR, Corollary 10.1, Identity 10.13b]

= lkXβ ·wμ−β+(λ|̊h, β|̊h)Xβ · wμ−β−
∑

βi∈Φ̊+:

β−βi∈Φ̊+

v∗λ(Xβi
· v♣λ−βi

)[Xβ, X−βi
]·w♣

μ−β+βi

(24)

− v∗λ(Xβ · v♣λ−β)((μ, β) + km)w♣
μ .

For any root βi ∈ Φ̊+, choose a basis of V (λ)λ−βi
consisting of X−βi

.vλ (which

we will denote simply by v◦λ−βi
) and any basis v♣

′

λ−βi
of V (λ)λ−βi

annihilated by

Xβi
. With such a basis, equation (24) becomes:

(25) (l +m+ h∨)Xβ(k) · v∗λ(L−k(w)) = lkXβ · wμ−β + (λ|̊h, β|̊h)Xβ · wμ−β

−
∑

βi∈Φ̊+:

β−βi∈Φ̊+

v∗λ(Xβi
X−βi

·vλ)[Xβ, X−βi
]·w◦

μ−β+βi
−v∗λ(XβX−β ·vλ)((μ, β)+km)w◦

μ.

Since Xβi
annihilates w, we get

(26) −Xβi
· wμ−β = (λ, βi)w

◦
μ−β+βi

.

Combining equations (25) and (26), we get taking Xβ · wμ−β = wμ (which is
possible by the assumption that condition (b) of Proposition 11.4 is valid for the
δ-maximal component V (λ+ μ− β)):

(27) (l +m+ h∨)Xβ(k) · v∗λ(L−k(w)) = lkwμ + (λ|̊h, β|̊h)wμ

+
∑

βi∈Φ̊+:

β−βi∈Φ̊+

[Xβ , X−βi
]Xβi

· wμ−β + ((μ, β) + km)wμ.

We next claim that for any βi ∈ Φ̊+ such that β − βi ∈ Φ̊+,

(28) [Xβ, X−βi
]Xβi

+ [Xβ, X−(β−βi)]Xβ−βi
= dβi

Xβ, for some dβi
∈ Z>0.

To prove this, write

(29) [Xβ, X−βi
] = cXβ−βi

, for some c �= 0.

Then,
([Xβ, X−(β−βi)], X−βi

) = −c(X−(β−βi), Xβ−βi
), by (29)

= −c.
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Thus,

(30) [Xβ , X−(β−βi)] = −cXβi
.

Combining (29) and (30), we get

[Xβ, X−βi
]Xβi

+ [Xβ , X−(β−βi)]Xβ−βi

= c[Xβ−βi
, Xβi

]

= [[Xβ, X−βi
], Xβi

], by (29)

= dβi
Xβ, for some dβi

∈ Z>0 by sl2-module theory.

This proves (28). Substituting (28) into (27), we get

(31) (l +m+ h∨)Xβ(k) · v∗λ(L−k(w)) =⎛⎜⎜⎜⎝lk+(λ|̊h, β|̊h) + (μ, β) + km+
1

2

∑
βi∈Φ̊+:

β−βi∈Φ̊+

dβi

⎞⎟⎟⎟⎠wμ �= 0,

since β ∈ Φ̊+. This proves the first part of the lemma.
Now, consider the case where β = δ − γ for some γ ∈ Φ̊+. Recall that θ is the

highest root of g̊. By the analogue of equation (23) for β,

(l +m+ h∨)X−γ(k + 1) · v∗λ(L−k(w))

= l(k + 1)X−γ(1) · wμ−β −
∑
j

λ(hj)γ(h
j)X−γ(1) · wμ−β

−
∑

βi∈Φ̊+:

βi+γ∈Φ̊+

v∗λ(Xβi
· v♣λ−βi

)[X−γ , X−βi
](1) · w♣

μ−β+βi
+A

using the analogue of the equation (26) obtained from X−βi
(1) · w = 0.

= l(k + 1)X−γ(1) · wμ−β − (λ|̊h, γ|̊h)X−γ(1) · wμ−β

−
∑

βi∈Φ̊+:

βi+γ∈Φ̊+

v∗λ(Xβi
X−βi

· vλ)[X−γ , X−βi
](1) · w◦

μ−β+βi
+A

= l(k + 1)X−γ(1) · wμ−β − (λ|̊h, γ|̊h)X−γ(1) · wμ−β

+
∑

βi∈Φ̊+:

βi+γ∈Φ̊+

[X−γ , X−βi
](1)Xβi

· wμ−β +A, using equation (26).

Finally, we get

(l +m+ h∨)X−γ(k + 1) · v∗λ(L−kw) = l(k + 1)X−γ(1) · wμ−β

− (λ|̊h, γ|̊h)X−γ(1) · wμ−β +
∑

βi∈Φ̊+:

βi+γ∈Φ̊+

[X−γ(1), X−βi
]Xβi

· wμ−β +A.(32)

�
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Proposition 11.6. Let (λ, μ, β) be a Wahl triple for a real root β. Then, the
condition (b) of Proposition 11.4 (specifically, the identity (19)) is satisfied for
some embedding V (λ+ μ− β) ⊂ V (λ)⊗ V (μ) in the following cases:

(a) g̊ is arbitrary but β is of the form kδ + γ, for any γ ∈ Φ̊+ and k ≥ 0.
(b) g̊ is arbitrary but β is of the form (k + 1)δ − θ, for any k ≥ 0, where θ is

the highest root of g̊.
(c) g̊ is simply-laced.
(d) g̊ is of type B� (� ≥ 2).
(e) g̊ is of type C� (� ≥ 2).
(f) g̊ is not of type G2 and λ is regular dominant.

Proof. (a) By [Ku1, §2.7], the proposition is true for β = γ. Thus, (a) follows
from Lemma 11.5.

(b) In this case β = α0+kδ for k ≥ 0. For β = α0, the proposition follows from
the proof of Lemma 8.1. Now, to prove the proposition for β = α0+ kδ, by
the identity (32) of the proof of Lemma 11.5, we get that the right side of
the identity (32) equals ((l +m)(k + 1)− (λ+ μ|θ))X−θ(1) ·wμ−α0

. Now,
X−θ(1) · wμ−α0

�= 0 since (λ, μ, α0) is a Wahl triple; and (l +m)(k + 1) −
(λ+ μ|θ) = (l +m)k + (λ+ μ)(α∨

0 ) �= 0. This proves (b).
(c) Using (a) and (b), it suffices to prove the proposition for β = (k+ 1)δ − γ,

for k ≥ 0 and γ ∈ Φ̊+ \ {θ}. In this case the proposition follows from the
proof of Proposition 7.3.

(d) As in (c), it suffices to prove the proposition for β = (k+1)δ− γ, for k ≥ 0

and γ ∈ Φ̊+ \ {θ}. Observe first that if β − 2αi /∈ Φ+ for any simple root
αi (0 ≤ i ≤ �), then by the proof of Proposition 7.3, the proposition follows.
So, assume that β− 2αio ∈ Φ+ for some (and hence unique by Lemma 7.1)
simple root αio . If io �= 0, then by Section 8.1, Fβ = Fβ−αio

. (Observe
that Fβ = Fβ+kδ for any k ∈ Z.) Hence, the proposition in this case follows
from the proof of Proposition 7.5. So, assume now that io = 0. In this case,
by the proof of Lemma 8.1, β = (k + 1)δ − θ, which is already covered by
(b). This completes the proof of the proposition in the case (d).

(e) As in (d), it suffices to prove the proposition for β = (k + 1)δ − γ, for

k ≥ 0 and γ ∈ Φ̊+ \ {θ} such that β − 2αj ∈ Φ+ for some (and hence
unique) simple root αj (1 ≤ j ≤ �). Thus, β = (k + 1)δ − γi, k ≥ 0, where

γ = γi (2 ≤ i ≤ �) is as in Example of C
(1)
� in Section 8. Further, using

Lemma 7.7, we can assume that λ = μ = ρβ = Λi−1 (cf. Example of C
(1)
�

in Section 8). (Observe that if the proposition is valid for the Wahl triple
(λ, μ, β), then the proposition is valid for (λ+λ′, μ+μ′, β) for any dominant
weights λ′, μ′ ∈ P+ by the proof of Corollary 4.2.)

For β = δ− γi, the proposition follows from the proof of Proposition 7.3
since Λi−1(β

∨) = 1. We now prove the proposition for β = (k+1)δ−γi for
k ≥ 1 (and λ = μ = Λi−1). We use the identity (32) of the proof of Lemma
11.5 to show that in this case X−γi

(k + 1) · v∗λ(L−kw) �= 0:
By the proof of Proposition 7.3, we can take wΛi−1−(δ−γi) = Xγi

(−1) ·
wΛi−1

. We freely use the notation from [Bou81, Planche III]. Then, for any

βj ∈ Φ̊+ such that βj + γi ∈ Φ̊+, we get that βj is precisely of the form
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εj − εi for 1 ≤ j < i (and γi = 2εi). Thus,

[X−γi
(1), X−βj

]Xβj
Xγi

(−1) · wΛi−1

=
[
[X−γi

(1), X−βj
], [Xβj

, Xγi
(−1)]

]
· wΛi−1

=
(
[X−γi

(1), X−βj
], [Xβj

, Xγi
(−1)]

)
(Λi−1, δ − γi − βj)wΛi−1

,

by [Ku3, Theorem 1.5.4]

=
(
X−γi

(1), [X−βj
, [Xβj

, Xγi
(−1)]]

)
(Λi−1, δ − γi − βj)wΛi−1

= (X−γi
(1), Xγi

(−1)) (Λi−1, δ − γi − βj)wΛi−1
,

=
1

2
wΛi−1

, since (Λi−1, δ − γi − βj) = 1/2.(33)

Hence,∑
1≤j<i

[X−γi
(1), X−βj

]Xβj
Xγi

(−1) · wΛi−1
=

(i− 1)

2
wΛi−1

.

Further,

X−γi
(1)Xγi

(−1) · wΛi−1
= [X−γi

(1), Xγi
(−1)] · wΛi−1

= wΛi−1
,

since l = m := Λi−1(K) = 1.

So, the right side of the identity (32) of the proof of Lemma 11.5 becomes(
2(k + 1) +

(i− 1)

2

)
wΛi−1

�= 0.

This proves the proposition in this case.
(f) Proof of the proposition in this case follows from the proofs of Propositions

7.3 and 7.5.
�

Following is the main theorem of this section:

Theorem 11.7. Let g be an affine Kac-Moody Lie algebra and let w ∈ W ′
P be such

that the Schubert variety XP
w is P-stable. Then, for any λ, μ ∈ P+

S

o
(where S is an

arbitrary subset of the simple roots of g̊) such that the condition (b) of Proposition
11.4 is satisfied for all the Wahl triples (λ, μ, β) for any real root β ∈ Φ+(S) (cf.
Proposition 11.6),

(34) Hp(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0, for all p > 0.

In particular, the canonical Gaussian map

(35) H0(X̂P
w , Îe ⊗ Lw(λ� μ)) → H0(X̂P

w , (Îe/Î
2
e )⊗ Lw(λ� μ))

is surjective.
In particular, (34) and (35) are valid for any simply-laced g̊ and g̊ of types B�, C�.

Moreover, they also are valid for g̊ of type F4 in the case P is the Borel subgroup
B.

Proof. By Proposition 11.4, we get the vanishing H1(X̂P
w , Î 2

e ⊗ Lw(λ� μ)) = 0.
To prove the higher cohomology vanishing, consider the cohomology exact se-

quence, associated to the sheaf exact sequence over X̂P
w :

(36) 0 → Î 2
e ⊗ Lw(λ� μ) → Lw(λ� μ) → (Ôw/Î

2
e )⊗ Lw(λ� μ) → 0.
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First of all by [Ku2, Theorem 2.7] (also see [M2, Lemmes 21]),

(37) Hp(X̂P
w ,Lw(λ� μ)) = 0, for all p > 0.

Further, by Lemma 11.1 and Proposition 10.1,

(38) Hp(X̂P
w , (Ôw/Î

2
e )⊗ Lw(λ� μ)) 	 Hp(XP ,L (λ)⊗ L ((T̂e(X

P
w ) · vμ)∗)).

Now, we prove the vanishing:

(39) Hp(XP ,L (λ)⊗ L ((T̂e(X
P
w ) · vμ)∗)) = 0, for all p > 0.

Take a P-module filtration of the finite dimensional P-moduleMw := C∗
λ⊗(T̂e(X

P
w )·

vμ)
∗:

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fd = Mw,

such that Vj := Fj/Fj−1 is an irreducible P-module for each 1 ≤ j ≤ d. By Engel’s
theorem, Vj is a trivial U-module, thus it can be considered as an irreducible module
for the (finite dimensional) Levi algebra l := p/u. Let δj be the lowest weight of Vj

as an l-module. Thus,

(40) δj(α
∨
k ) ≤ 0, for all k ∈ S.

To prove the vanishing (39), it suffices to show that

(41) Hp(XP ,L (Vj)) = 0, for all p > 0.

From the classical Borel-Weil-Bott theorem for the finite dimensional reductive Lie
algebra l and the Leray spectral sequence for the fibration G/B → G/P, we get

(42) Hp(XP ,L (Vj)) 	 Hp(XB,L (−δj)), for all p ≥ 0.

Observe further that δj , in particular, is a weight of C∗
λ ⊗ (T̂e(X

P
w ) · vμ)∗ which is

a quotient of C∗
λ ⊗ (g · vμ)∨. Thus, δj is of the form δj = −(λ + μ − β), for some

β ∈ Φ+(S) ∪ {0}. Hence, for i /∈ S, since λ, μ ∈ P+
S

o
, by [Bou81, Page 278, item

6],

(43) −δj(α
∨
i ) ≥ −1.

Thus, combining equations (40), (43) and (42), the vanishing (41) follows from the
affine analogue of the Borel-Weil-Bott theorem (cf. [Ku3, Corollary 8.3.12]). This
proves the vanishing (39).

Thus, the cohomology exact sequence associated to the sheaf exact sequence (36)
and the above two vanishing results (37) and (39) (using the identification (38))
prove (34) and (35) of the theorem.

The last ‘In particular’ statement of the theorem follows from Proposition 11.6.
�

For any w ∈ W ′
P such that XP

w is P-stable, we think of X̂P
w as a sub-ind-

variety of XP × XP via the isomorphism δ : G ×P XP → XP × XP (as in the

beginning of Section 11). From now on, we think of the sheaf Î k
e = Îe(w)

k over

X̂P
w (for any k ≥ 1) as a sheaf over XP ×XP by considering δ∗(iw)∗(Îe(w)

k), where
iw : G ×P XP

w → G ×P XP is the canonical embedding. Let ID be the ideal sheaf
of the diagonal D ⊂ XP ×XP . Then, from the sheaf exact sequence:

0 → Îe(w) → Ôw → Ôe → 0,

we get that

ID 	 lim←−
w

Îe(w).
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Define

Ĩ 2
D := lim←−

w

Îe(w)
2.

Observe that I 2
D ⊂ Ĩ 2

D and the inclusion is strict in general.
As a corollary of Theorem 11.7, we get the following. This was conjectured in

the finite case by Wahl [Wah] and proved in that case by Kumar [Ku1].

Corollary 11.8. Under the notation and assumptions of Theorem 11.7, the canon-
ical Gaussian map

H0(XP ×XP ,ID ⊗ L (λ� μ)) → H0(XP ×XP , (ID/Ĩ 2
D)⊗ L (λ� μ))

is surjective.
In particular, it is surjective for any simply-laced g̊ as well as g̊ of types B�, C�.

In addition, it is surjective for g̊ of type F4 in the case P is the Borel subgroup B.

Proof. By Theorem 11.7, for any w ∈ W ′
P such that XP

w is P-stable, the canonical
map

ηw : H0(XP×XP , Îe(w)⊗L (λ�μ)) → H0(XP×XP , (Îe(w)/Îe(w)
2)⊗L (λ�μ))

is surjective. Moreover, ηw is a G-module morphism between G-modules which are
finite direct sums of V (θ)∗ for some θ ∈ P+ (cf. proof of Proposition 11.4). Let
Kw be the kernel of ηw. Then, Kw being a finite direct sum of V (θ)∗, it is easy
to see that {Kw}w satisfies the Mittag-Leffler condition (cf. [H2, Chap. II, §9]).
Thus, by [H2, Chap. II, Proposition 9.1], the canonical map
(44)

lim←−
w

H0(XP×XP , Îe(w)⊗L (λ�μ))→ lim←−
w

H0(XP×XP , (Îe(w)/Îe(w)
2)⊗L (λ�μ))

is surjective. Further, by [H2, Chap. II, Proposition 9.2],

(45) lim←−
w

H0(XP ×XP , Îe(w)⊗ L (λ� μ)) 	 H0(XP ×XP ,ID ⊗ L (λ� μ))

and

(46) lim←−
w

H0(XP ×XP , (Îe(w)/Îe(w)
2)⊗ L (λ� μ))

	 H0(XP ×XP , (lim←−
w

Îe(w)/Îe(w)
2)⊗ L (λ� μ)).

From the left exactness of lim←− in the category of sheaves,

(47) j : ID/Ĩ 2
D ↪→ lim←−

w

Îe(w)/Îe(w)
2.

Hence, by combining equations (44)–(47), we get that the composite

H0(XP ×XP ,ID⊗L (λ� μ))
η→ H0(XP ×XP ,ID/Ĩ 2

D ⊗ L (λ� μ))

j∗
↪→ H0(XP ×XP , (lim←−

w

Îe(w)/Îe(w)
2)⊗ L (λ� μ))

is surjective and hence so is η (and j∗ is an isomorphism). This proves the corollary.
�

Remark 11.9.
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(a) It is very likely that, under the assumptions of Corollary 11.8, Hp(XP ×
XP , Ĩ 2

D ⊗ L (λ � μ)) = 0 for all p > 0 (cf. [H1, Chap. I, Theorem 4.5]).
Moreover, for p = 1, it is equivalent to the condition (b) of Proposition
11.4.

(b) It is likely that Theorem 11.7 (and hence Corollary 11.8) is valid for any g

and any λ, μ ∈ P+
S

o
.
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